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Abstrakt / Abstract

Práce se zaměřuje na optimalizaci
spotřeby energie robotické buňky typu
flow shop. Uvažujeme robotickou buňku
skládající se z m strojů a jednoho trans-
portního robota, která produkuje jeden
typ výrobku. Robot přenáší výrobky
mezi stroji a zajištuje naložení a vylo-
žení strojů. Uvažujeme cyklický rozvrh
pohybů robota s cílem minimalizovat
spotřebu energie.

Problém formulujeme jako smí-
šené celočíselné lineární programovaní
(MILP). Popisujeme postup, kterým
ověřujeme správnost MILP formulace.
Dále jsme vyvinuli heuristický přístup
založený na genetickém algoritmu pro
tento NP těžký problém.

Výsledky práce naznačují, že běžné
výrobní flow shop linky mohou být
efektivně optimalizovány exaktním al-
goritmem. Nicméně větší robotické
buňky s více stroji mohou dosáhnout
v rozumném čase téměř optimálního
řešení pomocí heuristického přístupu.
Hlavní přínos práce je odlišná kriteriální
funkce oproti ostatním pracím, které se
zabývají optimalizací výrobních linek
typu flow shop.
Klíčová slova: Rozvrhování robotických
buňek, flow shop, smíšené celočíselné
lineární programovaní (MILP), gene-
tický algoritmus (GA), minimalizace
spotřeby energie

Překlad titulu: Optimalizace spotřeby
robotických buněk s jedním robotem a
m stroji

This thesis focuses on the energy op-
timization of flow shop type manufac-
turing cells. We consider cells consist-
ing of m machines and a material han-
dling robot producing one type of a part.
The robot transfers parts between ma-
chines and ensures machines loads and
unloads. We consider the cyclic schedul-
ing of the robot moves with the objective
of minimizing the energy consumption.

We develop a mixed integer linear
programming formulation (MILP) of
the problem. We describe a verification
procedure to evaluate the correctness of
the MILP formulation. We also develop
a heuristic approach based on genetic
algorithm for this NP-hard problem.

The result of this thesis indicates that
a common flow shop type manufactur-
ing cells can be effectively optimized by
the exact algorithm. However, larger
robotic cells with more machines can
achieve a near-optimal solution by the
heuristic approach in a reasonable time.
The main contribution of the thesis
is a different objective function com-
pared to other studies that deal with
the optimization of the flow shop type
manufacturing cells.
Keywords: Robotic cell scheduling,
flow shop, mixed integer linear pro-
gramming formulation (MILP), genetic
algorithm (GA), energy consumption
minimization
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Chapter 1
Introduction

The manufacturing companies are using more and more industrial robots. According to
Robotic Industries Association, robot sales increased by 16 % to 294,312 units valued
at $ 13,1 billion in 2016, IFR (2017) [1]. The companies use industrial robots especially
to increase productivity. However, raising the cost of electricity causes the pressure to
reduce energy consumption. For example, industrial robots consume in avarage 8 %
of the energy needed during the production of vehicles (see [2]). The primary goal of
the optimization is to minimize the energy consumption of a robotic cell for a given
production rate. For example, a real optimized robotic cell from Škoda Auto can save
up to 20 % of energy by changing the robot speeds and applying power-saving modes
(see [3]).

Manufacturing companies often use a Flow Shop (FS) type production system. This
system is consists of an input device denoted by M0, some set of machines denoted by
M1, ...Mm, an output device denoted by Mm+1, and a material handling robot [4], see
Figure 1.1. We called this production system as a robotic cell. The robot transfers
one part at a time between machines. All unprocessed parts are available on machine
M0 (input buffer) and follow the same operational sequence from M1 to Mm. After
that, finished parts are stored on machine Mm+1 (output buffer). Such a robotic cell
can produce identical parts and is referred to as a single-part-type cell. In contrast, a
multiple-part-type cell processes different types of parts. These different part types re-
quire different processing times on a given machine. Dawande et al. (2007) [5], describe
much diverse industrial application such as semiconductor manufacturing, production
of printed circuit boards, testing board used in mainframe, textile mills or engine block
manufacturing. More complex robotic cells need more sophisticated models and algo-
rithms. The classical problem of FS is to determine the part sequence (PS) and the
handling robot move sequence (RMS) that maximize throughput or minimize the cycle
time (CT) [5, 4]. Minimize the CT means that robotic cell process the same set of parts
indefinitely. The state of the system is described by the position of the robot and the
status of all machines. The machine can be in the idle state or loaded with a part.
The final state of a cycle schedule must be identical to its initial state to satisfy repeti-
tiveness. However, the init state need not be an empty state in which all machines are
idle. Cycle schedule repets the same sequence robot moves indefinitely. This approach
is easy to implement and control for real-life application.

1.1 Related work
Existing studies assume several variations of the FS. Sethi et al. (1992) [6] define an
n-unit cycle as a sequence of robot activities in which the system returns to the same
state after production n parts. Many studies use a multi-unit cycle according to the
fact that multi-unit cycle can lead to a CT that is smaller than the smallest one-unit
CT which proved Brauner and Finke (2001) [7]. Brauner et al. (2003) [8] studied a
complexity of a one-cycle robotic flow-shops, and proved that the problem is NP-hard.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.1. Robotic cell.

Some studies assume Hybrid Flow Shops (HFSs), sometimes called as a robotic cell
with parallel machines, which differs from the classical FS that allows identical parallel
machines. This technique increases the capacity of a single stage and enables parallel
operations. The last extensibility of the FS is a number of used manipulation robots
(single-robot resp., multiple-robot) or number of parts that can robot transfer at one
time (single-gripper or dual-gripper robot). The FS robotic cells have not tempory
storage between the machines. It causes that all parts must be either in the input
buffer, on one of the machines, transfer by the robot, or in the output buffer. There
are three types of pickup criteria — free pickup, no wait, and interval. In free pickup
criteria, there is no limit for remove a part that has completed processing on a machine.
Compared to that a part must be pickup immediately as soon as machine completes
processing that part in no wait criteria. In interval robotic cells, each machine has
defined time interval (also called time window) in which a completed processing part
must be removed from that.

Batur et al. (2011) [9] developed Mixed Integer Linear Formulation (MILP) and
heuristic algorithm based on Longest Processing Time (LPT) for model with multiple-
part-type and two machines. Elmi and Topaloglu (2017) [10] considered the cyclic
scheduling with multiple-part-type and two single-gripper robots. They developed Ant
Colony Optimization (ACO) algorithm. Batur et al. (2016) [11] assume HFSs where is
parallel machines, and some parts can skip some operations (machines). They model
this as Traveling Salesman Problem (TSP) and formulate heuristic approach based
on Simulated Annealing (SA). The great inspiration for our work is the article from
Gultekin et al. (2018) [4]. They assume FS with multiple-part-type, m-machines, free
pickup criteria, and single-gripper robot. They consider cycle scheduling of the parts
and the robot move with the objective of maximalizing the throughput rate. They
published a very detailed review of the related scheduling problems in robotic cells.
Other older thorough reviews of the scheduling problems in robotic cells can be found
in article by Dawande et al. (2005) [12] and in book by Dawande et al. (2007) [5].

1.2 Our research
An overview of the existing literature shows that there are many variants of the schedul-
ing problem in FS robotic cells, but all these studies have the same objective: maximize
the throughput or minimize the CT.

In this thesis, we consider a simpler variant of FS — single-part-type, m-machines,
free pickup criteria, and single-gripper robot. The main contribution of our work is
different objective. Our objective is to find optimal energy consumption schedule for

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Thesis outline

a fixed CT. We develop a MILP formulation of this problem and implement it in the
Gurobi Optimization solver1. We tested the MILP model by a different approach,
but this approach can only be used for small robotic cells because it uses a brute
force method. We also developed a heuristic approach based on a Genetic Algorithm
(GA). We compare both the exact and the heuristic algorithm on generated benchmark
instances that we provide publicly for others.

1.3 Thesis outline
The remainder of the thesis is organized as follows. The problem statement and the
notation are presented in next Chapter 2. The mathematical programming formula-
tions are explained in Chapter 3. Chapter 4 describes the method that verifies the
correctness of the mathematical formulation of the problem. Chapter 5 presents the
proposed heuristic algorithm. In Chapter 6 the generating of benchmarks and the set
of tested instances are summarized. Chapter 7 represent the results of the thesis on the
experiments. Chapter 8 concludes the thesis.

1 For more information see the software web page: http://www.gurobi.com
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Chapter 2
Problem Statement

In this section, we provide the formal definition of the problem. We use a classification
scheme for sequencing, and scheduling problems in robotic cells described in a book
and an article, written by Dawande et al. [5, 12]. See Figure 2.1 for better orientation
in classification of the FS. The following text discusses the inclusion of our model under
consideration in the classification scheme.

Figure 2.1. The classification scheme for robotic flow shops [12].

2.1 Machine Environment
In this section, we describe the first part of the classification schema that considers a
number of machines, a number of robots and its types, and their layout in the cell.

2.1.1 Number of Machines per Stage
Each processing stage of our robotic cell has only one machine, and in the literature is
this type called as a simple robotic cell. Because in simple robotic cells the number of
processing stages is equal to the number of machines, we use the word machine with the
same meaning as the word stage. We consider the robotic cell contains m+2 machines:
M0, M1, ..., Mm+1. LetM = 0, 1, ...,m+ 1 be the set of indices of these machines. The

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Processing Characteristics

robot takes a part from the input buffer (denoted as machine M0), transports the part
to the first processing machine (M1), and loads the part. M1 process the part and after
that, the robot unloads the part from M1, then transports it to the next processing
machine (M2), on which it loads the part. The robot repeats this procedure on others
processing machines (M2, M3, ..., Mm). After the last processing machine (Mm) has
finished its operations on the part, the robot unloads the part and gives it to the output
buffer (denoted as Mm+1). Each machine provides some operation (drilling, cutting,
welding, grinding, painting, ...) with the part. Each part to be processed goes through
each machine Mi, i ∈M in the same sequence, and cannot skip any machines.

Be careful that the previous paragraph is not misunderstood. It does not specify that
the robot must wait nearby the machine until the machine has completed its processing
on the part. The robot can move to another processing machine or to the input buffer
to transport another part to its next place. In other words, a robot move sequence
(RMS) may not be the same as the sequence of the part processing on the machines.

2.1.2 Number and Type of Robots
We assume the robotic cell that contains one robot only (called single-robot cell). This
robot has one gripper (single-gripper robot), and it can hold only one part at a time. A
single-gripper robot has one disadvantage versus dual-gripper robot. In a single-gripper
simple robotic cell, the robot cannot unload a part from machine Mi, i ∈ 0, ...,m− 1,
unless the next machineMi+1 is ready to process it. This condition is commonly referred
to as a blocking condition (see chapter 2.1.3 in [5]).

2.1.3 Cell Layout
In our model, we consider both cell layout: linear and circular. The linear cell model
(Figure 1.1) allows more processing machines while circular cell model has the robot
in the center and machines are around. The second variant is more transparent for
drawing pictures, so we draw the pictures for circular cells without detracting from
generality.

2.2 Processing Characteristics
In this section, we describe robot operations first, then the considered pickup criterion,
and a number of part-types. In the end, we write about used processing strategy.

2.2.1 Robot Operations
The robot can do two types of movements: loaded and unloaded or it can be in the
idle state. At any point time, the robot must be moving, or be in the idle state and
simultaneously meets two constraints:

. No two identical types of operations (loaded, unloaded and idle state) can not follow
immediately.. Between two unloaded moves, or two idle states must be one loaded move.

Loaded move
We define the set of robot activities A0, A1, ..., Am, see Figure 2.2. Let A = 0, 1, ...,m
be the set of indices of these activities. Each activity Ai contains several steps, i ∈ A.
The robot unloads a part from the machineMi, transfers it from machineMi to the next
processing machine Mi+1, and loads the part to machine Mi+1, i ∈ A. Each loading
and unloading time is assumed to be zero. The loaded robot move is characterized by

5



2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.2. Definition of the robot activity Ai, i ∈ A.

transfer time duration denoted by δi, and it means the duration that is needed for the
activity Ai, i ∈ A. Each loaded move duration δi has defined its lower bound duration
δi that meets physical constraints of this robot move, i ∈ A.

Unloaded move
The unloaded robot move is the second type of the movements. Let θi+1,j , where
i, j ∈ A, is the duration of the unloaded robot move from machine Mi+1 after its
loaded to machine Mj for its unloaded, see Figure 2.3. Each unloaded move duration
θi+1,j has defined its lower bound duration θi+1,j that meets physical constraints of
this robot move. Some unloaded robot moves defined above are not acceptable. In
these situations, the lower bound duration θi+1,j is set to zero. It is in following two
combinations of indices i, j:

. i+ 1 = j; move from the one place to the same place, i, j ∈ A.. i = j; this unloaded move cause that the next loaded movement does not respect the
blocking condition, i, j ∈ A.

Robot idle state
The robot can wait (to be in the idle state) in three situations. The first wait can occur
when the robot loads the machine with a part and waits unless the machine completed
its processing on the part. Other two waits can occur before respectively after the
unloaded move. We define wi+1,j , where i, j ∈ A, that is equal to the duration of the
robot waiting between machines Mi+1 and Mj , see Figure 2.3. During this waiting, the
robot is in the idle state between two activities: Ai+1 and Aj . Some robot waits in the
idle state defined above are not acceptable as in the cases of unloaded moves. In these
situations, the wi+1,j is set to zero. It is in following combinations of indices i, j:

. i = j; this wait means that there is also the unloaded move with those indices
combination. This unloaded move causes that the next loaded movement does not
accept the blocking condition.

2.2.2 Pickup Criterion

From the three types of pickup criterion, we selected free-pickup criterion. A part which
has complete a process on a machine can stay on this machine for an infinite amount
of time until it has been transported to the next place. This type of criterion is not
suitable for parts that need limited time operations such as a galvanic plating, etc.

6
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Figure 2.3. Definition of the possible robot moves and waits of the robot in the idle state
- Solid arrows present loaded robot movements while dot arrows present a combination of

unloaded robot movements with durations of the robot idle state.

2.2.3 Number of Part-Types

We consider that our robotic cell is producing identical parts (called single-part-type).
We define the processing time pi, i ∈ A. It means duration of the operation on machine
Mi and not how long the part occupied this machine. The processing time is equal to
zero for the input buffer (machine M0), p0 = 0.

2.2.4 Processing Strategy

We assume a cyclic scheduling using an one-unit cycle. Brauner et al. (2003) [8] describe
the one-unit cycle as a permutation of m+ 1 activities starting with activity A0. This
last assumption is made without loss of generality. In each repetition of the one-cycle
one part leaves the cell, and one enters it.

2.3 Objective Function
Our optimization problem uses energy consumption as its objective. The problem
addresses in this thesis is to minimize energy consumption for a fixed CT value. It
requires a definition of energy functions for individual movements and waits in the
robot idle state.

Let Eδ
i denotes energy function for the loaded move of the robot, Eθ

i+1,j denotes
energy function for the unloaded move from machine Mi+1 to machine Mj , and Ew

i+1,j
denotes energy function for waiting robot in the idle state. Vergnano et al. (2012) [13]
describe a method how to model and parametrize energy consumption for each robot
operation as a function of an execution time. Mohammeda et al. (2014) [14] apply this
approach for a six-axis manipulation robot. We use definitions, which are described in
the previous literature [13–14]. The loaded and unloaded robot movements are convex
functions by the description in the literature, and their approximations can be described

7



2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
by equations:

Eδ
i (δi) =

1∑
c=−3

acδ
c
i , ∀i ∈ A; (2.1)

Eθ
i+1,j (θi+1,j) =

1∑
c=−3

acθ
c
i+1,j , ∀i, j ∈ A. (2.2)

Figure 2.4 sees such two functions which demonstrate the robot operation energy con-
sumption as the function of its execution time.

Figure 2.4. Robot operation energy consumption as a function of its execution time for
two operations, taken from [13].

Let Ew
i+1,j denotes a linear energy function for waiting robot in the idle between

machines Mi+1 and Mj . When the robot is in the idle state, its arms are not moving
and stay in the same position. In this situation, motors consume only energy which is
needed to compensate gravity force, but not consumes energy needed for accelerations.
Thanks to this, we can consider that the dependence of consumed energy on time is a
linear function. The linear coefficient of the function depends only on the configuration
of robotic arms. See Figure 2.5 which demonstrates different energy-intensive robot
configurations in the robot idle state. In the described robotic cell, we assume two
possible places for each wait duration wi+1,j where the robot can be in the idle state.
For the wait duration wi+1,j , the first place is by machine Mi+1 after its loading, and
the second place is by machine Mj before its unloading. We prefer the place where the
robot configuration consumes less value of energy. The following equation describes the
function of the preferred place for each possible wait duration wi+1,j :

Ew
i+1,j (wi+1,j) = ai+1,jwi+1,j , ∀i, j ∈ A; ai+1,j ∈ R+

0 ; (2.3)

where ai+1,j is the linear coefficient of this function.
The outcome of the problem described above is the Robot Activities Sequence (RAS)

that the robot cyclically repeats for fixed the CT value so that it consumes the smallest
amount of energy.

2.4 Example
The following example can help to understand the problem and operations of the robotic
cell.
Example 2.1. In the example, we consider a single-gripper simple robotic cell with
five machines M0, M1, M2, M3, M4, see Figure 2.6. Machine M0 is an input buffer

8
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Figure 2.5. Demonstration of different energy-intensive robot configurations in the robot
idle state. The configuration a) consume the least amount of energy. The second extream is
the robot configuration c) which consumes the most amount of energy. Something between

the robot configurations a) and c) is the variant b).

which contains an infinite number of unprocessed parts, and these parts are immediately
available. Machines M1, M2 and M3 are processing machines. Machine M4 is an output
buffer which stores entirely processed parts. For simplicity reason, we assume that all
energy functions for loaded and unloaded robot movements in this example have the
same formula:

Eδ
i = 5000δ−3

i + 200000δ−2
i + 1000δ−3

i + 4000 + 650δi, i ∈ 0, 1, ..., 3, (2.4)

Eθ
i+1,j = 5000θ−3

i+1,j +200000θ−2
i+1,j +1000θ−3

i+1,j +4000+650θi+1,j , i, j ∈ 0, 1, ..., 3. (2.5)

The minimal value of the previous energy function is around 8.5 s, see Figure 2.7.

Figure 2.6. Model of the robotic cell that is considered in Example 1 with all possible
moves and durations of waits.

9



2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.7. The graph corresponding to the equation (2.4) and (2.5). The minimum func-
tion value is around 8,5s.

The Table 2.1 contains all other needed parameters for the description of the robotic
cell:

. Processing times,. Lower bounds for loaded robot movements,. Lower bounds for unloaded robot movements,. Coefficients a of linear functions for robot idle states. There are available two co-
efficients for each machine because the robot can wait after loading the machine or
before unloading the machine.

The cycle time is given as CT = 70.

Processing times:
Machine M0 M1 M2 M3

Processing times 0 25 5 40

Lower bounds δi:
Activity A0 A1 A2 A3

δi 4 3 1 6

Lower bounds θi+1,j:
Machine [↓from/→to] M0 M1 M2 M3

M1 0 0 2 3
M2 5 0 0 2
M3 3 7 0 0
M4 2 3 5 0

Coefficients a of linear
functions:

Machine M0 M1 M2 M3 M4
after loading — 60 40 100 80

before unloading 20 120 160 80 —

Table 2.1. All other needed parameters for description of the robotic cell in Example 1.

10
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The MILP model, which is developed in the next Chapter 3, found the optimal
solution, see Figure 2.8. The optimal RAS σRAS = {0, 3, 1, 2} together with the starting
times of each activities are provided in Table 2.2. According to that, we use the one-unit
cycle processing strategy, in each repetition of the σRAS one part leaves the cell, and
one enters into it. Figure 2.9 shows the corresponding Gantt chart. We can see that
part with label 1 enters into the cell, and the part with label 0 leaves the cell during
one-unit cycle processing strategy. Next, we can see that the example contains all three
possible variants where the robot can wait in the idle state.

Figure 2.8. A solution to the problem from Example 1.

Activity A0 A3 A1 A2
ŝi 0 21.3 33.9 45.2

Table 2.2. The optimal RAS σRAS = {0, 2, 1, 3} and start times of activities from Exam-
ple 1.

Figure 2.9. Gantt chart of the solution from Example 1.
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This chapter has formally describe the problem addressed in this thesis. In the end,

we give the example of the single-gripper simple robotic cell with five machines. This
example should help to understand the model parameters and possible movements of the
manipulation robot. We used the same energy-consuming function for all movements
to simplified the example compared to a real model. In the next section, we formulate
a solution to the addressed problem using a MILP.
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Chapter 3
Mixed Integer Linear Programming
Formulation

In this chapter, we describe a solution to the problem that we explained in the previ-
ous section using Mixed Integer Linear Programming (MILP) formulation. First, we
define sets, constant parameters, and decision variables. Then, we formulate model
constraints. A summary of the whole model is given at the end of the chapter.

3.1 Sets
We define two following sets in the MILP formulation:

.M = {0, 1, ...,m+ 1}: The set of machine indices, (M0, M1, ..., Mm+1). M0 is the
input buffer and Mm+1 is the output buffer;. A = {0, 1, ...,m}: The set of activity indices, (A0, A1, ..., Am).

3.2 Constant Parameters
In this section, we describe parameters which are fixed during the optimization. We
divide those parameters into three categories.

In the first category are parameters which give physical restraints for robot move-
ments:

. δi: The lower bound for the loaded robot move duration δi, δi ∈ R+
0 ; i ∈ A;. θi,j : The lower bound for the unloaded robot move duration θi,j , θi,j ∈ R+

0 ; i, j ∈ A.

The second category contains parameters which are needed for energy functions de-
scription. Energy consuming functions defined by Equations (2.1) and (2.2) in the
previous Chapter 2 are convex functions. However, we need a linear representation
of these functions in the MILP formulation. Therefore, we sample these convex func-
tions with a uniform distribution to create piecewise-linear functions, see Figure 3.1. A
number of the linear function used for the approximation is defined by a parameter k,
k ∈ N. The k value is set according to the CT value. The increasing k value gives a
better approximation of convex functions. However, more time is needed to compute a
solution. Now, we can define parameters which contain an amount of energy for each
robot movements and each segment of the piecewise-linear functions:

. eδi,k: Energy which consumes the robot during its loaded movement duration δi if we
assume k-th linear approximation of the convex function, eδi,k ∈ R; i ∈ A; k ∈ N;

eδi,k (δi) = akδi + bk, ∀i ∈ A; ak, bk ∈ R; (3.1)

13
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. eθi+1,j,k: Energy which consumes the robot during its unloaded movement duration
θi+1,j if we assume k-th linear approximation of the convex function, eθi+1,j,k ∈ R;
i, j ∈ A; k ∈ N;

eθi+1,j,k (θi+1,j) = akθi+1,j + bk, ∀i, j ∈ A; ak, bk ∈ R; (3.2)

. ewi,l: Energy which consumes the robot during its waiting in the idle state which is
localized nearby machine Mi. The indice l specifies where the robot waits. If l = 0
the robot waits in front of the machine Mi after the robot loaded it or if l = 1 the
robot waits behind the machine Mi to unload it, ewi,l ∈ R+

0 ; i ∈M; l ∈ {0, 1};

ewi,0 (wi,x) = ak0wi,x, ∀i, x ∈M; ak ∈ R; (3.3)

ewi,1 (wx,i) = ak1wx,i, ∀i, x ∈M; ak ∈ R. (3.4)

Figure 3.1. A principle how we convert convex energy functions to piecewise-linear func-
tions.

Now, we can describe the third category which contains other constant parameters:

. pi: The processing time of parts on machines Mi, pi ∈ R+; i ∈ A\{0};. CT : The cycle time, CT ∈ R+. Duration of the RAS is equal to the CT value;. B: A very large number.

3.3 Decision Variables
Now we describe decision variables describing the model. Those variables can be
changed during the optimization.

Variables describing the time dependencies of activities:

. si: The start time of the activity Ai, i ∈ A, which transfers the first part from the
first one-unit cycle, si ∈ R+

0 ;. ŝi: The start time of the activity Ai i ∈ A at the first RAS, ŝi ∈ [0, CT );. qi: An integer variable which shifts the activity start time si from a n-execution of
RAS to the first execution of RAS about n − 1 times CT. The value of qi variable

14
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is count to n − 1, qi ∈ N0. It is because, the previous three variables are bound by
equation si = ŝi + CT · qi, ∀i ∈ A.

Variables needed for robot movements:

. δi: Traveling time of the loaded robot between adjacent machines Mi and Mi+1,
δi ∈ R+

0 ; i ∈ A;. θi,j : Traveling time of the unloaded robot between machines Mi and Mj , θi,j ∈
R+

0 ; i, j ∈ A;. wi,j : Waiting time of the robot between machines Mi and Mj , wi,j ∈ R+
0 ; i, j ∈ A.

Variables which contain the amount of energy for each robot movement:

. Eδ
i : Energy which consumes the robot during its loaded movement expressed as the

maximum of piecewise-linear functions of Eδ
i , Eδ

i ∈ R+
0 ; i ∈ A;

Eδ
i (δi) = max

(
eδi,k (δi)

)
, ∀i ∈ A; k ∈ N; (3.5)

. Eθ
i+1,j : Energy which consumes the robot during its valid unloaded movement ex-

pressed as the maximum of piecewise-linear functions of Eθ
i+1,j , Eθ

i+1,j ∈ R+
0 ; i, j ∈ A;

Ei+1,j
θ (θi+1,j) = max

(
eθi+1,j,k (θi+1,j)

)
, ∀i, j ∈ A; k ∈ N; (3.6)

. Ew
i,j : Energy which consumes the robot during its waiting in the idle, Ew

i,j ∈ R+
0 ; i, j ∈

M;
Ew
i,j (wi,j) = min

(
ewi,0, e

w
j,1
)
, ∀i, j ∈M. (3.7)

The last type of variables are the following binary decision variables:

xi,j =
{

1 if Ai → Aj , ∀i, j ∈ A;
0 otherwise

yi,j =
{

1 if Ai → Aj immediately, ∀i, j ∈ A;
0 otherwise

. xi,j : xi,j is equal to 1 if activity Ai occurs before activity Aj or xi,j is equal to 0 in
the opposite case;. yi,j : yi,j is equal to 1 if activity Ai occurs immediately before activity Aj or yi,j is
equal to 0 in the opposite case.

3.4 Constraints
In this section, we describe all constraints which define the mathematical model of our
robotic cell. All variables and parameters, which we use, are explained in the previous
paragraphs of this chapter.

The following constraints define the order of robot activities in the RAS:

x0,j = 1, ∀j ∈ A : j 6= 0; (3.8)
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xi,i = 0, ∀i ∈ A; (3.9)

xi,j = 1− xj,i, ∀i, j ∈ A : i < j; (3.10)

yi,j ≤ xi,j , ∀i, j ∈ A : j 6= 0; (3.11)∑
∀i∈A:i 6=j

yi,j = 1, ∀j ∈ A; (3.12)

∑
∀j∈A:i 6=j

yi,j = 1, ∀i ∈ A; (3.13)

y0,0 = 0. (3.14)

The constrain (3.8) ensures that activity A0 is the first activity of the RAS. The con-
straint (3.9) defines the value of xi,j when i = j. If activity Ai is before activity Aj in
the RAS, then the Aj must occur after the Ai. This sentence imposes constrain (3.10).
Next constrain (3.11) ensures that if activity Ai occurs immediately before activity Aj ,
then the Ai must be before the Aj in the RAS. The previous sentence is correct except
the last activity in the RAS. This last activity is before activity A0 from the next cycle
of the RAS. The described issue is solved by the constraint (3.11) which is defined for
∀j ∈ A except j 6= 0. The constraint (3.12) respectively constraint (3.13) ensures that
each activity Aj has only one predecessor, respectively each activity Ai has only one
successor. The previous equations do not specify the state of decision variable y0,0, so
the constraint (3.14) defines its state.

The following constraints define the start time si of activity Ai which transfers the
first part from the first one-unit cycle:

si + δi + pi+1 ≤ si+1, ∀i ∈ A : i 6= m; (3.15)

si+1 + δi+1 − CT ≤ si, ∀i ∈ A : i 6= m. (3.16)

The constraint (3.15) say that between two start times of activities Ai and Ai+1, i ∈
A : i 6= m, which transfer the same part must be enough amount of time for the loaded
robot move δi plus the processing time of a part pi+1 on machine Mi+1. However,
the maximum amount of that time is limited by the constraint (3.16). For a better
understanding, see Figure 3.2 that illustrates these two equations.

Figure 3.2. The relationship of two immediately following activities which transfer the
same part.

The previous constraints (3.15) and (3.16) describe dependencies of activities which
transfer the same part. However, activities can transfer several parts in the one-unit
cycle of the RAS. Constraint (3.17) describes the relationship between activity Ai which
transfers the first part from the first one-unit cycle (start time si) and activity Ai from
the RAS (start time ŝi), i ∈ A. We commented this constraint in Section 3.3 when we
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defined the used variables. We can describe the constraint (3.17) by other words: ŝi is
the remainder after the division of si by CT and qi is the integer part of this division:

si = ŝi + CT · qi, ∀i ∈ A. (3.17)

The constraint (3.18) defines the start time of the schedule:

s0 = 0. (3.18)

Now we describe constraints that specified the order of the activities in the RAS.
Similar problem solves Sucha et al. (2004) [15] in Section 5.2. We used this approach
and transformed it into our problem. A robot activity schedule repeats a one-unit cycle
of the RAS infinitely. Each RAS, which is neither in the head nor the tail of the schedule,
contains all activities even if they can transfer parts from different one-unit cycles. See
Figure 3.3, which contains a pease of the final schedule (three one-unit cycles) for a
robotic cell with three activities. In the u-th occurrence of the one-unit cycle, the
activity Ai and Aj start at time s,i and s,j respectively and meet Equation (3.17):
s,i = ŝi + CT · u and s,j = ŝj + CT · u. We derive constraints based on ŝ because those
constraints do not depend on q from Equation (3.17). Based on the order of activities
in the RAS, two disjoint cases can occur (lines a) and b)) in Figure 3.3):

Figure 3.3. The piece of schedule on which we derive the relationship of two arbitrary
activities in the RAS.

In the first case, we consider activity Ai to be followed by activity Aj and both
transfer the u-th part in the same cycle, i.e. the situation in Figure 3.3 a), therefore

ŝj − ŝi ≥ δi + θi+1,j + wi+1,j . (3.19)

At the same time, the previous occurrence of Aj , which transfer the (u− 1)-th part, is
followed by the Ai, which transfer the u-th part, therefore

ŝi − (ŝj − CT ) ≥ δj + θj+1,i + wj+1,i. (3.20)

The conjunction into one double-inequality is:

δj + θj+1,i + wj+1,i ≤ ŝi − ŝj + CT ≤ CT − (δi + θi+1,j + wi+1,j) . (3.21)

In the second case, we consider activity Aj to be followed by activity Ai but they
transfer the u-th part in different cycles, i.e. the situation in Figure 3.3 b). To derive
constraint for the second case, it is enough to exchange index i with index j in the
double-inequality:

δi + θi+1,j + wi+1,j ≤ ŝj − ŝi + CT ≤ CT − (δj + θj+1,i + wj+1,i) ;
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δi + θi+1,j + wi+1,j − CT ≤ ŝj − ŝi ≤ − (δj + θj+1,i + wj+1,i) ;
δj + θj+1,i + wj+1,i ≤ ŝi − ŝj ≤ CT − (δi + θi+1,j + wi+1,j) . (3.22)

The first case, Equation (3.21), differs from the second case, i.e. Equation (3.22),
only in CT in the middle of the double-inequality. This CT indicates whether activity
Ai is before activity Aj within the same one-unit cycle or not. According to that,
Equations (3.21) and (3.22) can be reduced into one double-inequality, while using
decision variable xi,j (xi,j = 1 when activity Ai is followed by activity Aj and xi,j = 0
when activity Aj is followed by activity Ai):
δj + θj+1,i +wj+1,i ≤ ŝi − ŝj +CT · xi,j ≤ CT − (δi + θi+1,j + wi+1,j) , ∀i, j ∈ A : i < j.

(3.23)
The next constraint (3.24) specified that sum of all possible loaded and unloaded

durations and durations of all possible wait the robot in idle states is equal to the CT
value. A combination of indices i = j ignore unloaded movements from machine to the
same machine and the blocking condition [5] is met by ignoring indies where i = j + 1.∑

i∈A
δi +

∑
i∈A:i 6=0, j∈A:i 6=j+1

wi,j +
∑

i∈A:i 6=0, j∈A:i 6=j∧i 6=j+1
θi,j = CT. (3.24)

The following set of constraints describe lower and upper bounds for durations of the
loaded and the unloaded robot movements and idle states durations:

δi ≥ δi, ∀i ∈ A; (3.25)
θi+1,j ≥ yi,j · θi+1,j , ∀i, j ∈ A; (3.26)
θi+1,j ≤ 0, ∀i, j ∈ A : i+ 1 = j; (3.27)

θi+1,j ≤ yi,j · CT, ∀i, j ∈ A : i+ 1 6= j; (3.28)
wi+1,i+1 ≥ yi,i+1 · pi+1, ∀i ∈ A; (3.29)
wi+1,j ≤ yi,j · CT, ∀i, j ∈ A. (3.30)

The constraint (3.25) applies lower bound for loaded robot move durations δi. The
constraint (3.26) using decision variable yi,j sets the lower bound for unloaded robot
move durations θi+1,j . This lower bound is set to θi+1,j if yi,j = 1 or is pushed to
zero if yi,j = 0. The upper bound for durations θ are divided into two inequalities.
The first constraint (3.27) pushes durations of prohibited movements to zero (unloaded
move from a machine to the same machine). The second constraint (3.28) sets the upper
bound of θi+1,j to CT if yi,j = 1 or is pushed to zero if yi,j = 0. The constraint (3.29) set
the lower bound for idle state durations wi+1,i+1 when the robot waits by the machine
Mi+1 until that machine finished the process on the part. The constraint (3.30) sets
the upper bound for idle state durations wi+1,j to CT if yi,j = 1 or is pushed to zero if
yi,j = 0.

The last two constraints (3.31) and (3.32) ensure the correct value of consuming
energy for loaded and unloaded robot movement durations. Those constraints select
the maximum of piecewise-linearized convex functions for fixed durations δi respectively
θi+1,j which is assumed in the schedule. The problem is to ensure that unused unloaded
robot moves do not influence the objective. In the linear programming, we can not use
multiplication of two variables (multiplicate energy variable by yi,j variable), so we
use a trick with the subtraction of a large number, i.e. the part (1− yi−1,j) · B in
constraint (3.32).

Eδ
i (δi) ≥ eδi,k (δi) , ∀i ∈ A; k ∈ N; (3.31)

Eθ
i+1,j (θi+1,j) ≥ eθi+1,j,k (θi+1,j)−(1− yi−1,j) ·B, ∀i ∈M; j ∈ A; k ∈ N : i 6= 0. (3.32)
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3.5 Objective Function
The goal of the optimization is to find a feasible schedule having the given CT that
minimize the overall energy consumption. We assume the following objective function
in our model of the robotic cell:

min

∑
i∈A

Eδ
i (δi) +

∑
i∈M, j∈A: j 6=0 ∧ i 6=j+1 ∧ i 6=j

Eθ
i (θi,j) +

∑
i∈M, j∈A

Ew
i (wi,j)

 . (3.33)
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3.6 Model Summary
Minimize∑

i∈A
Eδ
i (δi) +

∑
i∈M, j∈A: j 6=0 ∧ i 6=j+1 ∧ i 6=j

Eθ
i (θi,j) +

∑
i∈M, j∈A

Ew
i (wi,j)

subject to

x0,j = 1, ∀j ∈ A : j 6= 0
xi,i = 0, ∀i ∈ A

xi,j = 1− xj,i, ∀i, j ∈ A : i < j

yi,j ≤ xi,j , ∀i, j ∈ A : j 6= 0∑
∀i∈A:i 6=j

yi,j = 1, ∀j ∈ A

∑
∀j∈A:i 6=j

yi,j = 1, ∀i ∈ A

y0,0 = 0,
si + δi + pi+1 ≤ si+1, ∀i ∈ A : i 6= m

si+1 + δi+1 − CT ≤ si, ∀i ∈ A : i 6= m

si = ŝi + CT · qi, ∀i ∈ A
s0 = 0,

δj + θj+1,i + wj+1,i ≤ ŝi − ŝj + CT · xi,j ≤ CT − (δi + θi+1,j + wi+1,j) , ∀i, j ∈ A : i < j∑
i∈A

δi +
∑

i∈A:i 6=0, j∈A:i 6=j+1
wi,j +

∑
i∈A:i 6=0, j∈A:i 6=j∧i 6=j+1

θi,j = CT,

δi ≥ δi, ∀i ∈ A
θi+1,j ≥ yi,j · θi+1,j , ∀i, j ∈ A

θi+1,j ≤ 0, ∀i, j ∈ A : i+ 1 = j

θi+1,j ≤ yi,j · CT, ∀i, j ∈ A : i+ 1 6= j

wi+1,i+1 ≥ yi,i+1 · pi+1, ∀i ∈ A
wi+1,j ≤ yi,j · CT, ∀i, j ∈ A
Eδ
i (δi) ≥ eδi,k (δi) , ∀i ∈ A; k ∈ N

Eθ
i+1,j (θi+1,j) ≥ eθi+1,j,k (θi+1,j)− (1− yi−1,j) ·B, ∀i ∈M; j ∈ A; k ∈ N : i 6= 0
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Chapter 4
Verifying Correct Mathematical Formulation in
MILP Model

The model described in the previous chapter is complicated because it contains a lot of
variables, parameters, and constraints. Primarily, there are many exceptions and con-
ditions which depend on values of indices. For this reason, we developed an alternative
approach in order to compare its solution with the solution of the [MILP].

In this chapter, we describe the alternative approach to define the model of our
robotic cell based on the Floyd-Warshall Algorithm [16–17]. The model is simpler than
the previous one because we assume an extra knowledge as the activity order in the
RAS. At the end, we describe a pseudo code of a comparative and verification procedure
that compares both MILP and alternative solutions. From the outset, it is necessary
to say that this alternative procedure can only be used to verify the correctness of the
mathematical formulation of the MILP model, as we can only solve small instances
with this approach.

4.1 Alternative Model Description
In this section, we formulate the alternative model of our robotic cell. We describe the
cell as a graph and use the Floyd–Warshall algorithm for finding the longest path in it.

Assume that the robotic cell is represented by an oriented graph G. Vertices of the
graph G are activities A0, A1, ..., Am, and weights of edges are equal to the minimal
value of durations that is needed between start times of activities. Let’s say we know
the order of activities in the RAS. This is the same as knowledge of values of all yi,j
in the MILP model. According to that, we know which unloaded movements occur. It
means that values of those variables can be nonzero and others must be zero. Then
the longest path between two vertices (i, j) , i, j ∈ A, is equal to the duration that the
robot needs between start time of activity Ai and start time of activity Aj .

Let us consider the weight matrix C [m×m] where the matrix elements correspond
to the minimal value of duration that the robot need between start times of activities.
In the beginning, the C matrix is initialized follows:

c (i, j) =
{

0 if i = j, ∀i, j ∈ A;
−∞ otherwise

Now we need to mathematically describe elements c (i, j) in the weight matrix C. See
Figure 4.1, which graphically represents relations between activities, and can be de-
scribed by the following equations:

si + δi + pi+1 ≤ si+1, ∀i, j ∈ A; (4.1)

si + δi + θi+1,j + (Ui − Uj) · CT ≤ sj , ∀i, j ∈ A : yi,j = 1. (4.2)
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Figure 4.1. Relations between activities for using Floyd–Warshall algorithm: wide arrows
represent minimal a time duration of a loaded robot move δ compared to that dot arrows
represent a minimal duration which is needed for an unloaded robot movement θ; thin
arrows visualize a process time duration p on a machine; red labels notice a sequence

number U of a part which is transfered by an activity.

where Ui respectively Uj is a sequence number of a part. This number starts from 1
and is incremented by one with each part which the cell begins to process. It may
be difficult to determine values of sequence numbers. Therefore, we give the following
example.
Example 4.1. Let’s have a fixed RAS, for example {A0, A2, A1}. The goal is to find
sequence numbers U of parts for each activity in the RAS. The first following pseudo-
code describes, how to achieve the goal.

Let have variable n initialized to a u value. The initial value of u can be a general
number so that it can be set up to u = 1. We want to find all the activities in the
RAS in ascending order. Therefore, we define the variable a (initialized to zero), which
keeps the index of the activity being searched. Then we periodically go through the
RAS cycle until a temporary variable a is less than the number of activities in the RAS.
If we find an activity in RAS which the indice number is equal to the value in the a
variable, then we write the n value to the a position on the part sequence array and
increment the a by one. We decrement variable n by one after each throughput of the
RAS.

1 let U be an array of sequence numbers
2 let RAS be an array of robot activity sequence
3 let a be a temporaly variable
4 let n be a counter of RAS cycles
5
6 a := 0 // activity A_0 is the first activity in the RAS
7 n := u // u is a general number, can be set up to u := 1
8
9 while a < len(RAS)

10 for i from 0 to len(RAS)
11 if RAS[i] = a
12 U[a] := n
13 a := a + 1
14 end if
15 n := n - 1
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Figure 4.2 illustrates the solution of the part sequence numbers for the RAS specified
in this example. A solution for more complicated RAS {A0, A4, A3, A5, A2, A1} is shown
in Figure 4.3. Now, it should be clear, how to find sequence numbers of parts for each
activities in the RAS, and we can continue with model description.

Figure 4.2. Visualization of the process of searching the part sequence numbers for the
first example: The arrow vizualizes algorithm througtputs of the RAS; black labels a
represent an indice value of an activity which the algorithm actualy finding; red labes

mean a sequence number value of part that an activity transfer it.

Figure 4.3. Searching the part sequence numbers for more complicated RAS example:
descriptions of used sybmols are same as in the Figure 4.2

From the previous two equations (4.1) and (4.2), we can edit the weight matrix C of
the maximal durations where

c (i, i+ 1) = δi + pi+1, ∀i ∈ A; (4.3)

c (i, j) = δi + θi+1,j + (Ui − Uj) · CT, ∀i, j ∈ A : yi,j = 1. (4.4)

Equation (4.3) specifies the minimum duration between two activities which index dif-
fers by one (the Ai activity followed by the Ai+1). Equation (4.4) sets up the minimum
duration between two activities which immediately follow in the RAS.

The initialized weight matrix C by equations (4.3) and (4.4) is an input for the
Floyd–Warshall algorithm. After the algorithm ends its process, we must check values
on the diagonal in output matrix C. If some of those values are positive, it means
that algorithm does not find a feasible solution, because it contains a positive cycle.
In other words, there does not exist a path which executes each activity just one time
for the given RAS and CT. However, if the diagonal values stay zero, it says that the
algorithm finds a feasible solution. Moreover, if we focus on values in the first line of the
output matrix C, we have minimal start times of activities which transfer the same part
(the part with the same sequence number). Be careful that these start times are not
misinterpreted as compared to the samely labeled MILP start times. The difference is
that MILP searches values of δ, θ and w that give the energy-optimal solution, however,
the described alternative algorithm using only lower bounds (δ and θ).
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4.2 Comparative and Verification Procedure
From the previous section, we have defined an alternative model, and we know how the
Floyd–Warshall algorithm works when is applied to our type of the robotic cell. Now
we describe the comparative and verification procedure that compares both MILP and
alternative solutions.

Let have an instance cell of a robotic cell. This instance contains all needed constants
like delta, theta, processing times, energy functions, etc. The goal of the verification
procedure is to find an interval of CT values for which the MILP formulation gives a
feasible solution. The goal is achieved as follow:

. If the MILP formulation gives a feasible solution for the defined CT, the same RAS
must be feasible in the Floyd procedure described previously for the same instance;. or if the MILP formulation does not give a solution for the defined CT, the Floyd
procedure cannot find any solutions for the same instance. In this case, the Floyd
procedure tries to find solutions for all permutations of the RAS.

The problem is that the feasibility depends on the CT value. The goal of the proce-
dure is to find the smallest CT value, denoted as CTfeasible, for which we can find at
least one feasible solution. We assume a lower bound for the feasible CT interval equal
to zero, denoted as CTlower. We define an upper bound for the feasible CT interval,
denoted as CTupper, by the following equation:

CTupper = 10×
∑
i∈A

δi +
∑

i∈A\{m}

pi+1 + 10× θm+1,0. (4.5)

The robot does m + 1 loaded movements δ and m times waits by machines while the
waits durations are equal to process times p. At the end of the RAS, the robot does
one unloaded move θm+1,0 from the output buffer machine (Mm+1) to the input buffer
machine (M0). The constant multiplication 10 is used because we do not know the
optimal move durations δ and θ but only their lower bounds.

See the following pseudo-code which we comment on the following text. The code
cyclically does following steps until a difference between CTupper and CTlower is not
small (less than CTres):

. A MILP model is built and MILP () procedure returns its feasibility status Silp
(Silp = true if the MILP model find feasible solution);. If MILP () returns a feasible solution, the getRAS () method gets the RAS, and the
floyd () procedure enumerates that solution;. Then two situations can occur. If the floyd () procedure returns true (feasible solu-
tion), then both approaches give the same feasible result. It is the correct behavior
and algorithm can continue. In the other case, there is a mistake in some approach
and the algorithm reports an error;. If MILP () do not find a feasible solution. All permutations of RAS is built tested
by floyd () procedure. It returns feasibility Se as OR product of feasibility of all
permutations;. Then two situations can occur. If the floyd () procedure does not find any solution
(returns false), then both approaches are not able to find a solution for the defined
value of the CT . It is the correct behavior in this case, and the algorithm can
continue. But if Se is true, there is a mistake in some approach and algorithm
reports an error;
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. If the algorithm does not find an error, bounds for CT value are updated in the
second phase of the algorithm;. If MILP () procedure gives a feasible solution, we save the value of the CT to the
variable CTfeasible first. Then the CTupper is set to the value in the CT . The new
CT value for the next cycle is count by splitting the interval 〈CTlower;CTupper〉;. If MILP () procedure gives a unfeasible solution, we save the value of CT to the
variable CTlower first. The CTupper is not change in this situation. The new CT
value for the next cycle is count by splitting the interval 〈CTlower;CTupper〉;. Then the algorithm repeats the previous steps with the new CT value. When the
CTupper − CTlower < CTres the verification algorithm returns value of the CTfeasible.

1 procedure bf_test(Instance cell)
2 let CT, CT_lower, CT_upper be temporaly variables
3 let CT_feasible be the smallest feasible cycle time
4 let CT_res be the smallest resolution of cycle time
5 let S_ilp, S_e be boolen variables
6 let RAS be an array of robot activity sequence
7
8 CT_upper := "number" // CT that ensure feasible solution
9 CT := CT_upper

10 CT_lower := 0
11
12 while (CT_upper - CT_lower > CT_res)
13 S_ilp := MILP(cell, CT) // MILP model procedure
14 if(S_ilp)
15 RAS := getRAS() // Returns MILP RAS solution as the array
16 // Enumeration of RAS using Floyd-Warshall algorithm
17 S_e := floyd(cell, CT, RAS)
18 if(S_e) ok_feasible() // Both feasible
19 else error()
20 else
21 // Brute force enumeration using Floyd-Warshall algorithm
22 S_e := floyd(cell, CT)
23 if(!S_e) ok_unfeasible() // Both unfeasible
24 else error()
25 end if
26 if S_ilp
27 CT_feasible := CT
28 CT_upper := CT
29 CT := (CT_upper + CT_lower) / 2
30 else
31 CT_lower := CT
32 CT := (CT_upper + CT_lower) / 2
33 end if
34 return CT_feasible

In this chapter, we formulated the alternative approach which was selected for veri-
fying of the correct mathematical formulation in the MILP model. We can not ensure
that the MILP model is absolutely corrected using this approach, but it can minimalize
possible mistakes to the minimum. For a randomly generated instance of our robotic
cell and still decreasing CT value, we check all permutations of the RAS if the MILP
model does not find a solution. If the feasibility of verification algorithm is the same as
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the feasibility of the MILP () procedure, then we update the CT value and repeats the
algorithm. In the end, we find the smallest CT value which gives the feasible solutions.

The problem with this approach is that the floyd () procedure must generate all
permutations of the RAS in situations when the MILP () procedure does not find a
solution. So it is possible to check models with up to 11 activities in reasonable time.
Then the time needed for verification rapidly grow. However it is very likely, if the
algorithm does not detect mistakes on small instances, it will not detect them in large
ones.

26



Chapter 5
Heuristic Algorithm

In previous Chapters 3 and 4, we design and verify an exact algorithm for scheduling
problem based on the MILP. This approach always finds an optimal solution, but it
may take a long time, especially if the number of machines is large. For this reason, we
design and implement an alternative algorithm exploiting the structure of the objective
function. We chose the Genetic Algorithm (GA) [18] as the alternative approch. In the
following part of the text, we first describe the principle of the genetic algorithm and
then we apply it to our robotic cell.

5.1 Genetic Algorithm
The GA is a heuristic approach which uses a principle of natural selection. The GA uses
evolution techniques which are known from biology as selection, inheritance, crossover,
and mutation. The principle of the GA is a creation of generations which represents
different solutions to a problem. The GA stores a set of solutions (called population)
where each individual of the population is one solution to the problem.

The goal of the GA is to get high-quality solutions by an interactively applicating
principle of the natural selection. To do that, the GA needs to measure a solution
quality by a fitness function for each individual in each generation. The fitness function
expresses the solution quality represented by the individual. Individuals are partially
randomly selected based on the fitness function value to a modification (crossover and
mutation), thanks to this, the new individuals are creating for the next generation.
Some high-quality solutions may achieve the next generation without these modifica-
tions. This procedure is interactively repeated thereby the quality of the solutions is
gradually increasing. The GA is stopped after the solution quality reaches the defined
value or after a time limit is exceeded.

5.1.1 Scheme of Genetic Algorithm

The genetic algorithm can be described by the following sequence of steps:

1) Create a zero population which contains randomly generated individuals;
2) Select several individuals with a high value of fitness function from the population.

Use some partially random procedure for the selection;
3) Generate a new population from the selected individuals using followings techniques:

. crossover - exchange part of two individuals between them;. reproduction - copy some individuals without modification;. mutation - slightly modify some new individuals;

4) Evaluate fitness function for each new individual;
5) If a termination criteria is not achieved continue with step 2;
6) After the GA fulfill the termination criteria, the individual with the highest value of

the fitness function is the best solution which the GA found.
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So far we described general features and principle of the GA. In the next section, we

apply these principles to our robotic cell, and we detailed explain each step of the GA.

5.2 Genetic Algorithm Aplication
In this section, we design a genetic algorithm which solves the energy optimization
problem of our robotic cell. We gradually describe each part of the GA schema. At
first, we explain a solution encoding. Then we describe a selection of the population
size, and how we generate a zero population. One subsection is dedicated to a fitness
computation. Then three subsections define three procedures how to generates individ-
uals to a new generation. At the end of the section, we mention a termination criterion
of the GA.

5.2.1 Solution Encoding

The effectivity of the genetic algorithm depends on a suitable encoding of a solution
into the set of properties. Every properties has a defined set of possible values. The
solution is then represented as combinations of values from all properties.

In our case, the goal of the optimization algorithm is to find the RAS and then
durations of each movement and waiting in the idle state. So that the suitable encoding
can be a RAS without the first activity which is always A0. Let us define the solution
encoding as an array of activity indices. Thanks to this definition, the total number of
solutions is equal to all permutations of activities A1, A2, ..., Am i.e. m! solutions. The
first part of the goal ensures solutions encoding and the second part measure a quality
of a solution by the fitness function.

5.2.2 Population Size and Zero Population Generation

The number of distinct solutions depends on m. So it is not suitable to use a constant
population size for all instances of robotic cells. We determine the population size as
a function of the number of activities, α ×m. The value of the α parameter is set by
computational tests, see Section 7.3.

If we do not restrict the value of CT, all permutation of activities are feasible in the
one-unit processing strategy. Therefore the zero population can be initialized randomly.
However, we need to ensure that at least one individual from population gives the
feasible solution for defined CT. Otherwise, we can not create a new generation through
crossing and mutation. If no feasible permutation is generated, then the algorithm is
restarted. Further for this case, there need to be defined the maximal execution time
duration in the termination criterion.

5.2.3 Fitness Computation

The genetic algorithm needs to evaluate the quality of individuals. Additionally, the
solution encoding which we use does not fully describe the solution of the robotic cell. In
this subsection, we define a fitness computation that meets the previous requirements.

We define the fitness function using linear programming as in the case of the exact
algorithm. However, the model is much simpler thanks to RAS knowledge from solution
encoding. The output of the fitness computation is the quality of the solution, which
is the most energy-efficient solution for the given RAS.

Now let’s define the fitness computation as a Linear Programming (LP) problem. All
variables, which we use, have the same meaning and are described in Chapter 3.
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Minimize∑
i∈A

Eδ
i (δi) +

∑
i,j∈A: yi,j=1 ∧ i 6=j

Eθ
i+1,j (θi+1,j) +

∑
i,j∈A: yi,j=1

Ew
i+1,j (wi+1,j) ; (5.1)

subject to
si + δi + pi+1 ≤ si+1, ∀i ∈ A : i 6= m; (5.2)

si+1 + δi+1 − CT ≤ si, ∀i ∈ A : i 6= m; (5.3)

si = ŝi + CT · qi, ∀i ∈ A; (5.4)

s0 = 0; (5.5)

ŝi + δi + θi+1,j + wi+1,j ≤ ŝj , ∀i, j ∈ A : yi,j = 1 ∧ j 6= 0; (5.6)

ŝi + δi + θi+1,0 + wi+1,0 ≤ ŝ0 + CT, ∀i ∈ A : yi,0 = 1; (5.7)∑
i∈A

δi +
∑

i,j∈A: yi,j=1
wi+1,j +

∑
i,j∈A: yi,j=1

θi+1,j = CT ; (5.8)

δi ≥ δi, ∀i ∈ A; (5.9)

θi+1,j ≤ θi+1,j ≤ CT, ∀i, j ∈ A : yi,j = 1 ∧ i+ 1 6= j; (5.10)

wi+1,i+1 ≥ pi+1, ∀i ∈ A : yi,i+1 = 1 ∧ i 6= m; (5.11)

wi+1,j ≤ CT, ∀i, j ∈ A : yi,j = 1; (5.12)

Eδ
i (δi) ≥ eδi,k (δi) , ∀i ∈ A ∧ k ∈ N; (5.13)

Ei+1,j
θ (θi+1,j) ≥ eθi+1,j,k (θi+1,j) , ∀i, j ∈ A, k ∈ N : yi,j = 1 ∧ i+ 1 6= j. (5.14)

Equations (5.2)-(5.5) are the same as equations used in the exact formulation. One
difference is in the Equation (5.4), where the qi is not a decision variable now, but it is
a known constant. The value of the qi is equal to a difference of part sequence numbers.
If Ai and Ai+1 activities transfer same part in one execution of the RAS, then the value
of the qi is equal to zero. But those activities can transfer different parts, and then it is
needed to count the part sequence number, see Example in Section 4.1. Equations (5.6)
and (5.7) are based on the double-inequality (3.23) used in the exact formulation when
the order of the activities is known.

From Equation (5.8) implies, that a sum of durations of robot operations durations
must be equal to the CT value. Equations (5.9)-(5.12) describe bounds for decision
variable. Those bounds are used only for variables that are used in the robot operations
defined by the RAS.

The last two Equations (5.13) and (5.14) describe a relation between duration of robot
moves and energy which is consumed during a movement. Equation (5.13) is same as
constraint used in the exact algorithm, while the Equation (5.14) can be simpler because
we do not need to shut down this constraint for unused moves. That is possible thanks
to the knowledge which movements are used at the time when we define this constraint.

The Equation (5.1) describes the objective function of the previous MILP formulation
and ensures that the algorithm finds the minimal value of consuming energy for a defined
order of activities in the RAS. The value of this objective we used as our fitness value.
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5.2.4 Elite Solutions

Elite solutions are some individuals which have the highest fitness value. Those individ-
uals automatically move to the next generations. The best individuals are maintained
through different generations by this techniques. The number of elite solutions which
we move to the next generation is determined as a percentage β of the population size.
The value of β parameter we set by computational tests, see Section 7.3. All the elite
solutions can also be used as a parent for crossover or can be a little bit mutated.
Mentioned techniques (crossover and mutation) are described in the following sections.

5.2.5 Crossover
Crossover is a process when we produce a child solution from more than one parent
solutions. Parent solutions must be selected by a partly random process.

In our GA we use a roulette wheel selection method [18]. The method is based on a
real roulette wheel, which contains same size fields for each number. Then each number
on the roulette has the same probability selection. However, we need the partly random
process which prefers individuals with the highest fitness to be selected as parents. So we
use the roulette wheel with the number of fields equal to a population size where a size
of an individual field is proportional to an inverted value of its fitness. Probabilities of
fields are normalized so that their sum is equal to one. Thanks to that we can randomly
generate two numbers in an interval from 0 to 1 and then find two intervals which are
assigned to individuals. By this process, we select two individuals as parents for the
crossover technique. We create two children from those two parents by the following
process. At first, we randomly generate a cutting point. Then the RAS is copied from
the first (second) parent to the first (second) child until the cutting point. The second
part beyond the cutting point is completed by adding the same sequence of missing
activities from the other parent RAS.

5.2.6 Mutation
Mutation is very useful technique. It enables to achieve solutions which cannot be
built only by the crossover technique from the initial population. Let assume that no
individual from the initial population does not start with the first activity. Then the
crossover technique is not able to generate a child which start with the first activity.
That is one example when the mutation is useful.

The mutation interchanges the order of two activities in an individual with proba-
bility γ. If the individual is selected for mutation, then the activities for interchange
are selected randomly. The value of parameter γ is set by computational tests, see
Section 7.3. The mutation is the last operation changing the new population, and it
is applied to both previously generated individuals by elite solutions and the crossover
technique.

5.2.7 Termination Criterion
The genetic algorithm is not able to determine if it found an optimal solution. Thus it
is essential to define one or more heuristic termination criterion.

In our case, the GA terminates after λ generation which returns the same best
solution. The value of parameter λ is set by computational tests, see Section 7.3. The
previous termination criterion may not be sufficient, because of a time convergence to
a local or a global minimum may take not defined time especially for large robotic cells
with many machines. Other problem can occur when no solution exists for defined CT
value. However, the similar situation occurs when the CT value is nearby the minimal
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CT value then only a few solutions are feasible from all permutation of activities. In
these situations, the algorithm repeatedly generates an initial population until it creates
some feasible solution. Thus we need a second termination criterion based on a duration
of execution for situations when the GA executes its computation for a long time.
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Chapter 6
Benchmark Instances

In this chapter, we describe how we generate instances of our robotic cell, and which
benchmark sets we have generated for evaluation of our algorithms. However, it is
necessary to say that no test instances do not appear for our problem in the litera-
ture. Some benchmark instances exist for the robotic flow shop problem, but they are
generated for models that minimize CT or maximize throughput, i.e., the benchmark
used by Gultekin et al. (2018) [4] from the source written by Carlier (1978) [19]. So
we can not use those benchmark instances because, as opposed to others, we minimize
the energy consumption of the robotic cell with the fixed CT value. That is the reason
why we generate own benchmarks.

In the first section, we explain the parameters which is necessary to generate our
benchmark instances. In the second section, we describe the generated instances on
which we perform experiments.

6.1 Generating of Benchmarks
In the following text, we describe which parameters are needed for an initial description
of our robotic cell. If we need to create a new instance, we must define approach
with which we generate values for all constant parameters. These constant parameters
include:

. lower bound durations for loaded and unloaded movements,. processing times of parts on machines,. value of CT,. parameters which describe energy functions,. and some other parameters, i.g., a very large number B, a sample period used for
sampling energy functions and number of samples.

Let’s first explain the generation of lower bound durations for loaded and unloaded
moves. We do not assume specific machine layout, thanks to this we do not expect a
relationship between machine distance and duration of movement between them. This
approach we also select because of that duration of move between two nearby machines
can require time-consuming changes of the robot configuration. These problematic
configurations are located close to a maximum motor rotation value which is used in
robot arms or near singular robot areas. If we consider the previous description, we
can randomly generate values for both types of lower bound durations δ and θ from the
interval (0.1 s - 2 s) with the uniform distribution. With this approach, we do not add
to the model the dependence on machine layout of the robotic cell.

Other generated parameters are the process times of parts on machines. We randomly
generate values of those parameters p from the interval (5 s - 60 s) with the uniform
distribution. The resulting robotic cell can thus include a combination of both short
and long manufacturing operations.
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Before we describe the generation of energy functions, let’s explain a few general
robotic cell parameters. The most important parameter is the number of production
machines. This parameter is equal to the value of the indexm, which we first introduced
in Chapter 2, and we retain its importance in the whole thesis. However, it is necessary
to remind that m means the number of production machines while the robotic cell
contains m+2 machines (do not forget to the input and output buffers).The parameter
m can take integer value greater than 1 which is evident from the problem statement.
Another parameter is B which is a large number. This number must be large at least
as the highest possible value of energy functions because the number B is used to
eliminate the effect of unused unloaded movements in the MILP formulation. So we set
this parameter to the largest value which can be represented in an operating system.

In this paragraph, we explain how to generate a CT value. Other work is usually
looking for a minimum CT value. So, in real use of our model, the user knows the
minimum CT value or at least knows the current CT in a non-optimized robotic cell.
For the industry, interesting instances of robotic cells are those which have the CT
value close to the minimal possible CT value. The minimum CT value of our robotic
cell model can be determined using the verification procedure described in the Chapter 4
but only for a cell with 10 production machines (m = 10). For larger instances, we
need to estimate the CT value. However, all instances we have generated allow us to
find a feasible schedule.

Now, we describe how we generate parameters for energy functions. This work is
based on data measured by Libor Bukata1. He has simulated a move of a six-axis
manipulator to obtain dependence of duration and energy consumption on speed. His
simulated move was concatenated from four smaller movements. He simulated the
concatenate move in the Tecnomatix Process Simulates2 software developed by Siemens
company and using the Kuka Robot RCS module. See the Table 6.1 which contains
measured data for robot Kuka kr150 r2700 extra3, and the Figure 6.1 show a graph
from this data.

speed [%] duration of all four moves [s] energy [J]
100 5.19 23 821
80 6.17 20 248
50 9.45 16 632
25 17.73 17 706
15 29.11 22 697

Table 6.1. Measured data from the simulated movement.

From observation of the Figure 6.1 and from the literature [13–14], we can say that
each movement of a robot can be split into three sections (descent, minimum, and
growth). The robot consumes a lot of energy when it uses the maximum speed to
move. The simple consideration is to let the robot can move slower, so it will consume
less energy. However, the previous consideration is not entirely correct. A slowly
moving robot must also compensate gravity force for a longer time. Thanks to this,
energy curves have a global minimum after which the energy consumption increases
almost linear. Vergnato et al. (2012) [13] describe an equation how to parametrize

1 Postgraduate student and research worker in Industrial Informatics Research Center, CTU in Prague;
http://industrialinformatics.fel.cvut.cz/member/libor-bukata
2 More information: https://www.plm.automation.siemens.com/global/en/products/tecnomatix/
3 More information: https://www.robots.com/robots/kuka-kr-150-r2700-extra

33

http://industrialinformatics.fel.cvut.cz/member/libor-bukata
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/
https://www.robots.com/robots/kuka-kr-150-r2700-extra


6. Benchmark Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.1. The graph shows the dependence of energy consumption on a robot speed for
the simulated movement.

those energy functions:

E(t) =
1∑

c=−3
act

c = a−3t
−3 + a−2t

−2 + a−1t
−1 + a0 + a1t. (6.1)

If we approximate the measured data from the Table 6.1 using the Equation (6.1) we
obtain the following coefficients:

a−3 = 300; a−2 = 361400; a−1 = 3000; a0 = 7200; a1 = 515. (6.2)

In this way, we have one possible option of the energy function. In order not to use
the same curve for all movements, we generate the individual curve coefficients for each
move. Values of coefficients are randomly generated with the uniform distribution from
following intervals:

a−3 ∈ [100; 5000) ;
a−2 ∈ [300; 370000) ;
a−1 ∈ [3000; 7000) ;
a0 ∈ [3000; 8000) ;
a1 ∈ [200; 800) . (6.3)

We need to be careful with one problem that can occur if we independently generate a
lower bound duration of a motion and its associated energy function. The lower bound
duration of the movement must be less than the argument of the energy function in
the global minimum. If we break this condition described in the previous sentence, the
movement will not correspond to the real movement of the robot. In this case, the
solver would only use the growing part of the energy function, and it is not possible.
Therefore, it is necessary to check this condition when we generate energy functions.
The global minimum can be found by using the first derivative of the energy function
as:

E(t)′ = 0; (6.4)

−3a−3t
−4 − 2a−2t

−3 − a−1t
−2 + a1 = 0. (6.5)
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Intervals defined in the Equation (6.3) together with the interval for generating lower
bound durations δ and θ described above allow creating only suitable combinations.

So far we have described the generation of energy functions for loaded and unloaded
movements. In these cases, we were able to come out from the simulated motion.
However, the used simulation program does not allow to simulate the robot’s consump-
tion when it does not move. Thanks to this, we can not estimate consumes in idle
states without measuring on a real robot. For this reason, we expecte the robot’s con-
sumption in the idle states as a linearly increasing dependence on wait time duration,
E(t) = awt+ 0. The interval of values for the aw coefficient is created like 20 % of the
interval for the a1 parameter, aw ∈ [40; 160).

The last two parameters for generating benchmark instances are sampling period and
number of samples. Energy functions are convex functions, and [MILP] formulation al-
lows only linear functions. Therefore, we sample energy functions with a sampling
period of 0.25 s. At these points, which are one hundred, the energy function is approx-
imated by the linear function. So that, each energy curve is sampled in the interval
(0.25 s - 25 s).

The Table 6.2 shows a summary of all parameters and their values that we used to
generate benchmark instances.

parameter value or interval
lower bound duration δ 0.1 s - 2.0 s
lower bound duration θ 0.1 s - 2.0 s

process time p 5 s - 60 s
number of production machines m min 2

large number B max double value
CT —

coefficient a−3 100 - 5000
coefficient a−2 300 - 370000
coefficient a−1 3000 - 7000
coefficient a0 3000 - 8000
coefficient a1 200 - 800
coefficient aw 40 - 160

sampling period 0.25 s
number of samples 100

Table 6.2. Summary of parameters and their values or value intervals that are used to
generate benchmark instances.

6.2 Set of Benchmarks
In this section, we describe the generated instances on which we perform experiments.
Each generated instance is stored in a separate plain text file. The file structure is as
follows:

The first line contains two numbers, the first is the number of production machines
m, and the second number is the CT value. Following lines always contain the name of
the parameter (p, delta, or theta) and its value. Next rows contain information about
parameters of the linear straight line used to approximate the energy curve. All of these
test instances are stored on the enclosed CD.

We generate test instances for several robotic cell size for evaluation of our method,
i.e., robotic cells with 2-15 processing machines. The benchmark set always contains 5
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instances for each size of the considered robotic cell. So the benchmark set includes 70
instances of our robotic cell. We also generate some instances for a specific experiment,
but those instances are stored in a separate directory.
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Chapter 7
Experiments

This chapter deals with experiments which we have done. The chapter purpose is to
show the usability of the exact and the heuristic approaches, and their comparison.
Experiments are conducted on benchmark instances. See the previous Chapter 6 where
we explain a process of generating those instances.

All experiments are performed on a machine with Intel Core i5 2,3 GHz (2 cores), 8
GB of DDR3 RAM under a 64-bit operating system. Mathematical models are solved
with a Gurobi Optimizer 7.5.1 solver with 600 s time limit. The genetic algorithm is
executed with 900 s time limit.

7.1 Exact Algorithm - Dependence of an Execution
Time on a CT Value

We select two instances for this experiment. The first cell contains 7 processing ma-
chines (m = 7) and the second contains 10 processing machines (m = 10). Because
a size of cells is smaller than 11 we can compute the minimal CT value which gives a
feasible solution by the verification procedure, see Chapter 4.

At first, we compute the smallest CT value which gives the feasible solution. Then we
repeatedly execute the exact algorithm with the same instance but with the increasing
CT value, and measure the CPU execution time.

The Figure 7.1 shows the dependence of a CPU execution time on a CT value for
two tested instances. We can see that instances, where their CT value is near to the
least CT value for those instances, need a more CPU execution time.

Figure 7.1. Dependence of an execution time on a CT value. The x-axis is in the log-
arithmic scale, and the dot orange line represents the time limit for the CPU execution

time.

Thus, we can say that difficult instances are those which have its CT value close
to the lowest CT value. It follows that most industrial applications would be among
difficult instances. Because the goal of an industrial production is often to maximize
production in a minimum time.
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7.2 Exact Algorithm - Dependence of Energy
Consumption on a CT Value

We select the same two instances as in Section 7.1 for this experiment to demonstrate
the other one dependence. We make the same cells with the difference that now we
measure the amount of consumed energy.

The Figure 7.2 shows the dependence of energy consumption on a CT value for two
tested instances.

Figure 7.2. Dependence of an energy consumption on a CT value. The x-axis is in the
logarithmic scale.

From observation of above graphs, i.e., Figure 7.2, we can say that the concatenate
robot movement has a similar dependence as any single robot movement operation.
If we do not require on the schedule with a minimum CT value, energy consumption
is rapidly decreasing, i.g., the difference between the minimal CT value and about
2 % greater CT value can save 40 % of energy on each RAS cycle. If we consider the
difference between 104 % and 110 % of the minimal CT value, it is possible to save 32 %
of energy. Similarly, energy consumption gradually decreases with increasing of the CT
value up to the value where it is possible to achieve the optimum for each movement,
then energy consumption linearly increasing1. From that CT value, the robot uses the
excess time for the least energy-intensive operation, which can be assumed to be waiting
in an idle state, specifically in the least energy-consuming one.

7.3 Genetic Algorithm - Parameter Calibration
In this section, we discuss calibration of the heuristic algorithm. Then we make com-
putation test to determine the best parameter values of the genetic approach which we
describe in the Chapter 5.

We use a robotic cell with 10 processing machine (m = 10) for parameter calibra-
tion. To select the best parameter values, we define two levels for each parameter, see
Table 7.1. Each combination, which is 24, is solved for three times to minimize the
randomness process used in the GA. As a result, we solve 24 × 3 = 48 problems, and it
is our dataset for parameters calibration.

The performance of each parameter combinations is measured by two approaches.
The first is a relationship of the maximum % error to its average % error. The second
approach is base on a relationship of the average CPU time to the average % error. In
the first phase of the parameter calibration, we compute the optimal solution for the

1 The linear dependence may not be straightforward since the x-axis is logarithmic.
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Parameter Levels
α 10 15
β 0.1 (10 %) 0.2 (20 %)
γ 0.05 (5 %) 0.1 (10 %)
λ 10 15

Table 7.1. The levels of the parameters used in our GA formulation.

Figure 7.3. The parameter calibration result for the GA. The red mark is one result which
we selected, and parameter combination of this result we use for next evaluation tests of

the GA.

tested instance by the exact algorithm. By this way, we get the optimal solution that
is used to calculate errors. In the next phase, the average CPU time, the average and
the maximum error of the three replication are calculated. The measured results for
each of the 48 parameter combinations are shown in Figure 7.3.

We selected the parameter combination which achieves the average error of 1.81 %
and the maximum error of 3.62 %. This combination is highlighted by the red mark
in Figure 7.3. We selected that despite the fact that exist better combinations with
the smaller of the error value, but the selected one has the smaller average CPU time
(149.04 s). The selected parameter values are α = 10, β = 0.2, γ = 0.1, and λ = 15.
We use those parameters for next evaluation tests of the GA.

7.4 Comparison of Exact and Heuristic Algorithm
In this section, we describe the last experiment which gives a comparison of two
approaches that we implemented, i.e., the exact and the heuristic algorithm. The per-
formance of both algorithms is measured at same instances. In Chapter 6, we describe
the method with which we generate benchmark instances, and we also explain the
dataset structure. Our use benchmark datasets consist of the 70 randomly generated
instances which model robotic cells with m producing machines where m is the number
between 2 and 15. We give those datasets publicly available.

The experiment procedure is as follows:

. One solution (amount of consumed energy) is counted by the exact algorithm using
the MILP formulation by the Gurobi Optimization solver. It gives us the best-found
solution and the gab. The gab is a percentage value that indicates the smallest value
of a potentially optimal solution. In other words, the solver need not find the optimal
solution in a defined time limit, but it gives us a certainty that the optimal solution
is not less than the best-found solution minus the gab.
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. The same instance is solved by the heuristic algorithm three times to minimize the

randomness process used in the GA. The best and the average of solutions, and the
best and the average CPU time are saved.. Differences between the solution from the exact algorithm and the best respectively
the average of solutions from the GA are counted by the follows equations:

diff = 100× (Min. of 3 replication GA− Best found MILP) /Best found MILP, (7.1)

avgdiff = 100× (Avg. of 3 replication GA− Best found MILP) /Best found MILP. (7.2)

The results are summarized in Tables 7.2 and 7.3.

MILP GA
file obj [J] gab [%] CPU [s] obj [J] CPU [s] diff [%] avg diff [%]

m02 1 357855 0.00 0.01 357855 3.23 0.00 0.00
m02 1 357 855 0.00 0.01 357 855 3.23 0.00 0.00
m02 2 115 345 0.00 0.02 115 345 3.51 0.00 0.00
m02 3 750 607 0.00 0.01 750 607 2.98 0.00 0.00
m02 4 129 526 0.00 0.01 129 526 3.30 0.00 0.00
m02 5 97 523 0.00 0.01 97 523 3.42 0.00 0.00
m03 1 169 832 0.00 0.02 169 832 5.88 0.00 0.00
m03 2 723 040 0.00 0.02 723 040 5.47 0.00 0.00
m03 3 143 788 0.00 0.05 143 788 6.16 0.00 0.00
m03 4 264 416 0.00 0.02 264 416 5.87 0.00 0.00
m03 5 158 166 0.00 0.30 158 166 6.36 0.00 0.00
m04 1 751 237 0.00 0.32 751 237 9.95 0.00 0.00
m04 2 388 612 0.00 0.18 388 612 9.90 0.00 0.00
m04 3 428 052 0.00 0.40 428 052 9.32 0.00 0.00
m04 4 207 670 0.00 0.49 207 670 11.04 0.00 0.00
m04 5 225 334 0.00 0.22 225 334 9.89 0.00 0.00
m05 1 204 894 0.00 0.64 219 753 16.84 0.00 4.61
m05 2 306 745 0.00 1.20 434 762 18.24 0.00 21.77
m05 3 185 460 0.00 0.63 190 172 15.93 2.48 2.48
m05 4 414 018 0.00 0.73 414 018 16.69 0.00 0.55
m05 5 319 234 0.00 0.75 322 484 14.20 1.01 1.01
m06 1 336 578 0.00 9.13 344 750 50.26 0.00 1.59
m06 2 224 743 0.00 2.39 224 743 24.32 0.00 3.26
m06 3 195 212 0.00 2.45 195 212 36.75 0.00 1.10
m06 4 205 777 0.00 3.02 205 777 26.99 0.00 0.00
m06 5 199 063 0.00 1.03 199 063 24.13 0.00 0.24
m07 1 336 578 0.00 9.15 341 664 31.97 1.49 1.83
m07 2 278 695 0.00 2.99 278 695 50.72 0.00 3.84
m07 3 308 145 0.00 4.57 320 732 45.97 3.92 4.95
m07 4 242 004 0.00 3.98 247 394 58.28 0.00 3.06
m07 5 218 531 0.00 5.75 218 531 50.98 0.00 1.58

Table 7.2. Summary of the results which compare the implementation of the exact and the
heuristic algorithm. Other results continue in Table 7.3
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MILP GA
file obj [J] gab [%] CPU [s] obj [J] CPU [s] diff [%] avg diff [%]

m08 1 277 065 0.00 5.95 297 078 60.61 0.00 4.20
m08 2 259 188 0.00 10.27 267 947 72.84 3.27 3.41
m08 3 317 811 0.00 5.45 317 811 40.26 0.00 2.66
m08 4 287 385 0.00 8.23 287 385 80.03 0.00 1.29
m08 5 298 237 0.00 15.37 308 280 42.72 0.00 3.22
m09 1 354 815 0.00 31.07 399 005 106.77 0.00 4.55
m09 2 300 610 0.00 44.30 314 248 98.51 0.00 4.03
m09 3 318 616 0.00 41.28 333 985 118.60 2.83 3.86
m09 4 395 570 0.00 16.44 410 370 82.62 0.00 1.23
m09 5 396 471 0.00 33.00 423 237 99.14 2.02 4.69
m10 1 457 908 0.00 51.49 471 881 179.23 2.96 4.51
m10 2 392 724 0.00 64.19 416 061 140.83 2.08 5.59
m10 3 430 437 0.00 152.82 467 250 176.06 0.00 5.03
m10 4 307 226 0.00 88.53 326 478 212.22 3.83 4.61
m10 5 340 653 0.00 182.86 370 727 119.99 4.10 7.96
m11 1 367 593 0.00 49.97 369 325 189.51 0.47 0.71
m11 2 351 105 0.00 5.41 382 287 262.70 7.53 8.77
m11 3 389 213 0.00 6.26 398 364 141.85 0.00 4.23
m11 4 418 244 0.00 205.17 444 192 152.89 5.18 5.63
m11 5 476 768 0.00 350.54 493 234 155.17 1.33 3.38
m12 1 441 029 0.00 221.99 454 933 394.68 3.06 7.85
m12 2 481 796 0.00 196.33 584 840 298.52 4.53 11.42
m12 3 529 998 0.00 219.28 588 689 304.68 4.40 7.46
m12 4 478 099 0.00 520.69 528 551 212.91 6.65 8.26
m12 5 513 181 3.44 TL 537 337 595.13 3.53 5.79
m13 1 634 997 5.92 TL 768 320 240.82 9.94 15.02
m13 2 881 638 6.27 TL 1 037 471 271.15 6.29 9.72
m13 3 550 192 6.21 TL 587 171 557.32 5.56 6.57
m13 4 809 354 20.93 TL 785 343 286.81 -3.06 3.04
m13 5 711 191 14.43 TL 749 400 499.95 0.77 7.70
m14 1 795 797 10.81 TL 887 668 307.45 6.04 8.74
m14 2 777 523 12.78 TL 794 471 391.81 2.13 6.94
m14 3 685 192 15.13 TL 762 532 484.76 6.13 9.50
m14 4 809 610 19.42 TL 720 840 579.51 -12.31 -7.49
m14 5 674 889 6.26 TL 851 220 453.35 5.47 13.57
m15 1 757 470 18.92 TL 824 162 410.77 -0.24 3.04
m15 2 933 222 23.34 TL 847 115 841.75 -10.16 -2.21
m15 3 902 659 15.30 TL 1 027 537 906.68 0.32 6.39
m15 4 1 117 970 32.58 TL 1 025 268 903.148 -19.41 -9.04
m15 5 883 172 18.55 TL 911 475 733.742 -7.17 -2.60

Table 7.3. Continuation of the summary of the results from the previous Table 7.2

In 16 of the instances, the exact algorithm based on the MILP formulation hit the
ten-minute time limit, and so it did not find an optimal solution, but it found a feasible
integer solution with its gab in all tested cases. It is observed that exact algorithm can
effectively deal with our variants of the robotic cell with up to 11 processing machines
in time less than 10 minutes. Therefore, it makes no sense to use the heuristic approach
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in smaller robotic cells. However, the implemented heuristic found the same optimal
solution in 35 out of 50 cases where m < 12. In the rest of the 15 instances, the GA
founds a solution that is maximal of 7.53 % worse compared to the optimal solution,
and on average of just 2.96 % worse.

The Heuristic approach is beginning to be interesting for our robotic cell variants
where m > 11. From the observation of the results, we can see that the GA algorithm
find the worse solution than the exact algorithm with the ten-minutes time limit in
14 from 20 solutions (on average of 4.63 % worse), but it needs mostly less computa-
tion time. In the 6 tested instances, the GA algorithm finds the better solution than
computes the exact algorithm.
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Chapter 8
Conclusion

Optimizing energy consumption is undoubtedly an important problem for the industry
because optimization can significantly reduce energy consumption and thus reduce the
fixed cost of manufacturing the product. Another advantage of such optimization is
that it can be implemented into existing robotic cells.

This thesis presents an optimization approach for flow shop (FS) robotic cells, which
are cells consisting of m producing machines and a material handling robot producing
one type of a part. The robot transfers parts between machines and ensures machine
loads and unloads. We consider the cyclic scheduling of the robot moves with the
objective of minimizing the energy consumption.

We developed a mixed integer linear programming formulation (MILP) that deter-
mines the energy optimal robot activity sequence (RAS). We described a verification
procedure to evaluate the correctness of the MILP formulation to minimize mistakes in
the mathematical model. Since the problem complexity increases concerning the num-
ber of machines, and it belongs into the category of NP-hard problems, we developed
a heuristic approach based on a genetic algorithm (GA).

In the experiments, we have described and verified which instances are complicated to
solve. As a result, we have generated a dataset of benchmark instances from just these
complicated instances. No other benchmark datasets are available yet for the problem
defined by us. Therefore we give our datasets publicly available. Furthermore, we have
shown that by the energy optimization we can save up to 32 % of energy if we use by 2
% longer CT value and do not require the maximum speed of the robot. In the end, we
compared both approaches as the exact algorithm based on the MILP formulation so the
heuristic approach based on the GA. We have shown that the exact algorithm proposed
by us can very effectively and quickly solve most of the robotic cells considered by
us. Therefore, it seems unnecessary to create the heuristic approach, but we designed
it for all these reasons: We used the very good Gurobi Optimization solver in the
implementation of the exact algorithm that can be too expensive for non-commercial
use; Other cheaper solvers would probably not reach so good results; Another reason
is that other studies consider significantly larger cells, i.g., Gultekin et al. (2018) [4]
describe in their computation study cells used in chemical and electroplating industry
that contains up to 28 machines.

The main contribution of the thesis is the different objective function compared to
other studies that deal with the optimization of the flow shop type manufacturing cells.
Our study is the first which optimizing energy consumption of the robotic flow shop
cell.

This thesis may be extended in the future by more complicated flow shop robotic
cells. So far we have proposed a procedure for optimizing of the single-gripper simple
robotic cell, which processes single part type, but we can arbitrarily reformulate the
mathematical model to another combination in the future.
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Appendix B
Abbreviations

ACO . Ant Colony Optimization
CT . Cycle Time
FS . Flow Shop
GA . Genetic Algorithm
HFSs . Hybrid Flow Shops
LP . Linear Programming
LPT . Longest Processing Time
MILP . Mixed Integer Linear Programming
PS . Part Sequence
RAS . Robot Activity Sequence
RMS . Robot Move Sequence
SA . Simulated Annealing
TSP . Traveling Salesman Problem
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Appendix C
Enclosed CD

. [energy_optimization]
Contains all source codes.

. [benchmarks]. [build]. [include]. [src]

. [Thesis]
Contains the sources for this thesis.. thesis.pdf
PDF version of this thesis.
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