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Instructions

DPP Offline is a mobile application for the iOS platform, which finds public transport routes in Prague using
open GTFS data. However, the application does not always find an optimal solution. Many received
feedbacks refer to that the application often finds routes with unnecessary line changes or does not offer
the best lines to the destination. It is obvious that the problem is the ineffective algorithm of searching
routes. The aim of the thesis is to design and implement a new version of the application with respect to
limited power of mobile devices. The new version, like the old one, should be able to find routes without an
Internet connection.
1)Analyze existing solutions, discuss advantages and disadvantages.
2)Revise the used algorithm and optimize the data structures in the recent solution.
3)Design and implement a new version of the application, give emphasis to used algorithm and data
structures.
4)Propose and discuss some user enhancements and how they could be implemented.
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Abstrakt

Tato práce se zabývá problémem nejkratších cest v časově závislém váženém
multigrafu. Příkladem takového grafu je síť veřejné dopravy postavená s
GTFS daty. Cílem práce je navrhnout strukturu dat a algoritmus pro vyh-
ledávání tras v dopravních sítích a optimalizaci pro zrychlení procesu vyh-
ledávání tras. Výsledkem je offline mobilní aplikace pro vyhledávání tras hro-
madné dopravy v Praze.

Klíčová slova Veřejná doprava, Časově závislý graf, Algoritmy nejkratších
cest, GTFS
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Abstract

This thesis deals with the shortest path problem in a time-dependent directed
weighted multigraph. An example of such graph is a public transport network
built with GTFS data. The aim of the thesis is to design data structure and
algorithm for routes search in transport networks and design optimizations to
improve route search process. The result is an offline mobile application for
public transport route search in Prague.

Keywords Public transport, Time-dependent graph, Shortest path problem
algorithms, GTFS
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Introduction

Many city dwellers use public transportation and want to have all needed in-
formation about the journey in their pockets, which is why transport mobile
applications are so popular. However, there is an enormous amount of data
representing public transport networks of modern cities, it is not easy to pro-
cess this data on mobile devices. For example, the Prague public transport
network contains more than one thousand stops and more than one and a half
million departure times.

Most mobile applications for searching public transport routes do not solve
the problem of processing big data on mobile devices. These applications
require Internet connection and calculate necessary data using server com-
putation power. Often, such applications are simply covers for the essential
solutions on the server side. However, there is another type of application
that only uses device resources. These applications do not require a perma-
nent Internet connection and use advanced algorithms and data structures to
find routes in fractions of a second.

One of those mobile applications is DPP Offline. It was released in 2016
for iOS by the author of this thesis. The application is intended for Prague’s
public transport network. Unfortunately, the implementation of this applica-
tion has a lot of problems and left much to be desired from the user point of
view. Feedback often referred to how the application often found routes with
unnecessary line changes or did not offer the best lines to the destination.
Moreover, the time needed to calculate a route is much longer than in other
similar applications.

It is obvious that the main problems are ineffective route search algorithm
and inappropriate data structure. The main goal is to design and implement a
new version of DPP Offline for route search in Prague that takes into consid-
eration the limited power of mobile devices. The new version, like the old one,
should be able to find routes without an Internet connection. Furthermore,
the new version must find more convenient routes and work much faster than
its predecessor.
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Chapter 1
Theoretical Introduction

The application has two sensitive areas which can affect final accuracy and
processing time. These areas are data structure and algorithm for routes
search. The algorithm has a direct effect on route search performance and
result route optimality. The data structure provide access to the needed data
and indirectly affect the running speed of the algorithm. This chapter intro-
duces problems and terminology considered in the thesis.

1.1 Terminology
First, terms from graph theory must be briefly defined. A lot of information
is obtained from [1]. Graph is an ordered pair G = (V, E), where V is a set of
vertices and E is a set of two element subsets of V . Set E names the edge set
and represents relationships between pairs of vertices. A multigraph is a graph
that can have more than one edge between a pair of vertices. A directed graph
is a graph where every edge from set of edges E is an ordered pair of vertices.
A weighted graph is a graph where all edges have an assigned numerical value
by weight function. A time-dependent graph [2] is a graph that utilizes a
cost function cost(e, t) where t is the current time. This function returns the
cost of an edge depending on the time at which the query is executed. A
graph which describes a public transport network is time-dependent directed
weighted multigraph.

Some public transport terms within this thesis must also be defined. All
stops with the same names form a node. A line (e.g. tram number 15) is a set
of trips with the same name that passes the same sequence of nodes. Most
often a line has two directions, but there may be more or less. Departure is
defined by line, departure time, source, and target stops. Departure is unique
and represents an edge between two nodes in transportation network. Trip is
a consistently ordered sequence of departures that belongs to the same line.
Simply explained, trip represents all departures in a line’s iteration. Finally,

3



1. Theoretical Introduction

a route is an ordered sequence of departures that forms a path between two
nodes. Each next departure in the route must start from the previous one’s
target. All these terms are described also in article [3].

1.2 Algorithm
The algorithmic problem considered in this thesis applies to a subset of the
shortest-path problems. The basic shortest-path problem is defined as the
problem of finding a path between two vertices in a graph such that the sum
of the weights of the path’s constituent edges is minimized [4].

The problem can be specified as finding an ordered sequence of departures
which form a route in a time-dependent, directed, and weighted multigraph
such that the route is optimal to the given criteria.

1.3 GTFS Data
Data of public transport schedules is needed to construct a transportation
network. Prague Public Transit Company releases this data for free in GTFS
format [5]. All transportation data used in the application is built from this
data. The expiration time of the provided data is one week, then the data
becomes invalid and must be updated. However, updating is rarely a problem
because the new data will be provided in the same GTFS format.

The GTFS format was developed by Google in 2005 and is a collection
of CSV files with all data about the transportation network and associated
geographic information. These files have defined structures that allow for
use without needing to contact the transport agency. Table 1.1 reviews files
required in the GTFS format [6].

Table 1.1: Required GTFS files.

File Description
agency.txt One or more transit agencies that provide the data in

this feed.
stops.txt Individual locations where vehicles pick up or drop off

passengers.
routes.txt Transit routes. A route is a group of trips that are

displayed to riders as a single service.
trips.txt Trips for each route. A trip is a sequence of two or

more stops that occurs at specific time.
stop_times.txt Times that a vehicle arrives at and departs from indi-

vidual stops for each trip.
calendar.txt Dates for service IDs using a weekly schedule. Specify

when service starts and ends, available week days.
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1.4. Data Structure

The GTFS format describes optional files that can be provided by trans-
port agencies. These files are described in table 1.2. In the case of Prague
Public Transit Company, the agency provides two optional files: shapes.txt
and calendar_dates.txt.

Table 1.2: Optional GTFS files.

File Description
shapes.txt Rules for drawing lines on a map to represent a

transit organization’s routes.
calendar_dates.txt Exceptions for the service IDs defined in the

calendar.txt file.
fare_attributes.txt Fare information for a transit organization’s

routes.
fare_rules.txt Rules for applying fare information for a transit

organization’s routes.
frequencies.txt Headway (time between trips) for routes with

variable frequency of service.
transfers.txt Rules for making connections at transfer points

between routes.
feed_info.txt Additional information about the feed itself, in-

cluding publisher, version, and expiration infor-
mation.

More information about the GTFS format can be found e.g. in the FIT CTU
master’s thesis [7].

1.4 Data Structure
Data structure has a strong influence on resulting performance. Every request
to the data structure must be processed as soon as possible, so the main criteria
in the choice of data structure are the result size and data fetching speed.

The problem can be defined as a finding of a suitable data structure format
(e.g., SQLite, raw) and its content to reach the optimal ratio between result
size and data fetching speed. This data structure must contain all data from
the original GTFS files needed for route search and represent transportation
network in the form of a graph.
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Chapter 2
Analysis of Existing Solutions

Transport applications are very popular in the current era of intelligent mobile
devices. In this chapter, four main competitors were selected to compare their
parameters. All four competitors provide systems for public transport route
search in Prague and are available on the App Store [8] for the iOS platform.

2.1 Existing Software Products
All statistical data in this section is collected by the Apptrace [9] service. The
information presented here is correct as of 30th April 2018.

• IDOS [10]
The most popular application for public transport routes search in

the Czech Republic is IDOS. The application has a lot of useful features
and quickly finds wanted connections. It allows searching for only direct
routes (without line changing) and setting minimal time for transfer.
Subjectively, this is the best application if the user has permanent access
to the Internet; however, it has advertisements. The iOS version of the
application was launched in 2011.

Figure 2.1: User Interface of IDOS.

7



2. Analysis of Existing Solutions

• PID Info [11]

PID Info is the official application from PPTC and was launched
for the iOS platform in 2016. PID Info, as IDOS, requires permanent
Internet connection. This application has not gained much popularity
even though PPTC advertises it inside transport and at stations. The
possible reason for this could be that the first version of the application
(named DPP INFO) had many bugs. The most recent version is much
better and has become competitive. The application allows for limiting
the number of transfers and the choice of transport types for searching.

Figure 2.2: User Interface of PID Info.

• CG Transit [12]

This is the only application (except DPP Offline) that allows users
to search for routes in Prague without a permanent Internet connection.
The data provider for this application is Chaps [13]. This application
contains all the features offered by rival applications even though it
works without an Internet connection. The first release for the iOS
platform was in 2011. Unfortunately, the application is pay-to-use and
users must buy an annual license to use it without restrictions.

Figure 2.3: User Interface of CG Transit.
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2.2. Conclusion

• DPP Offline
The thesis focuses on DPP Offline. This application was released

in 2016 for the iOS platform. It is distributed free of charge and does
not require a permanent Internet connection. The first version received
negative feedback about the application’s functioning, which is what
triggered this thesis. This application is described in detail in chapter 3.

Figure 2.4: User Interface of DPP Offline.

Presently, DPP Offline’s only competitor is CG Transit, which has the
same philosophy but is pay-to-use. Table 2.1 lists the competitiveness analysis
of all four applications. All tests were performed with the Apple iPhone SE.

Table 2.1: Competitiveness analysis of all four applications. Average search
time has significant errors in measurement and are presented for basic un-
derstanding of the competitiveness situation. Database size for IDOS and
PID Info could not be defined because the databases are stored on the servers.

IDOS PID Info CG Transit DPP Offline
Free of charge Yes Yes No Yes
Offline mode No No Yes Yes
Other cities Yes No Yes No
Internal map Yes Yes Yes No
Contains advertising Yes No No No
Average search time 800 ms 1 sec 600 ms 6 sec
Database size – – 11 MB 205 MB

2.2 Conclusion
In this chapter four application were compared. There are another applica-
tions, that help to search public transport routes, e.g. Google Maps [14], but
route search is not their main function. So, route searching in such applica-
tions is implemented poorly.

9



2. Analysis of Existing Solutions

As depicted in table 2.1, DPP Offline has many weaknesses. Internet in-
dependence is the most important feature of DPP Offline, but CG Transit has
implemented this feature more successfully. Moreover, Internet independence
takes a lot of work because the route search algorithm and data structure must
be fast enough to present results in a fraction of a second using the limited
computing power available to a mobile device.

10



Chapter 3
Analysis of the First Version

Other than DPP Offline, none of the other applications has open source code
to process implementation analysis. Hence this chapter only reviews the first
version of DPP Offline. The whole application is written in Objective-C [15].
This version was developed in the summer of 2016 with open GTFS data
from the PPTC. The algorithms and data structures used in the version are
described below.

3.1 Data Transformation and Preprocessing
For faster access to GTFS data, it has to be translated to the suitable data
structure. The relational SQLite database [16] was chosen to be the format
for the data structure, because the application was developed for the iOS
platform and the SQLite format is compatible with Apple’s Core Data [17].
A database structure was designed to fit the GTFS data and is mapped in
figure 3.1 and described in table 3.1.

Figure 3.1: Data structure of the database used in the first version of DPP Of-
fline. Relationships mean foreign keys. One arrow means ”to-one” and double
arrow means ”to-many” relationships.
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3. Analysis of the First Version

Table 3.1: Description of data structure of the database used in the first
version of DPP Offline.

Entity Attribute Description

Stop

identifier Unique identifier of the stop.
name Name of the stop.
lat The latitude of the stop.
lon The longitude of the stop.
node Node associated with this stop.

Node

identifier Unique identifier of the node.
name Name of the node.
formattedName Node.name attribute without diacrit-

ics.
arrivals Array of departures that arrives to the

node.
departures Array of departures that departure

from the node.
stops Array of associated stops.

Departure

identifier Unique identifier of the departure.
name Name of the line to which the departure

belongs.
days Integer mask with information about

days of week when the departure is
working.

startDate Date from which the departure is work-
ing.

endDate Date to which the departure is working.
time Departure time.
minutesInWay Minutes from departure to arrival.
nodeFrom The node from which the departure

leaves.
nodeTo The node to which the departure ar-

rives.
previousDeparture The next departure on the same trip.
nextDeparture The next departure on the same trip.

Matrix data Binary data of the Floyd–Warshall ma-
trix

isNight Flag indicating if the matrix is pre-
pared for day or night.

Not all of the GTFS data provided by PPTC was used in the first version
of the application. Data from files agency.txt and shapes.txt were not
processed, which is why data from this file was not part of the database
structure. However, the structure contained all the needed data to find routes

12



3.2. Routes Search Algorithm

in the Prague transportation network.
The database has linking properties that help to speed up access time.

For example, to find the next or previous departure on the same trip, the
algorithm should not search in the whole database because it is enough to
use the Departure.previousDeparture or Departure.nextDeparture at-
tributes. Moreover, the database contains two preprocessed properties to re-
duce computation in the runtime. The first attribute is Node.formattedName,
that stores Node.name without diacritics for faster stop searching. A lot of
people search for their needed stop by writing its name without diacritics.
The second attribute is Departure.minutesInWay, which replaces arrival time
from the original GTFS data.

This database is adapted for routes search with Floyd–Warshall path ma-
trices (more at section 4.1.1). The entire database is filled simply by parsing
GTFS files, except for the Matrix entity. Calculating O(|V |3) [18] in the run-
time would be complicated, so path matrices are pre-calculated and stored in
the database. These matrices create with algorithm 1 when the rest of the
database is filled.

In this implementation, the database contains two path matrices: day and
night versions. This decision was made because of the specifics of the Prague
public transport network – day and night lines are not always the same. In
this case, the optimal path between the same nodes can be different according
to the departure time. To solve it, the application decides what matrix have
to be loaded according to departure time.

Algorithm 1 Path matrices creating
1: function CreatePathMatrix(nodes, isNight)
2: n← nodes count
3: time← isNight ? 01:00 AM : 10:00 AM
4: weight← n× n weight matrix for the current time
5: path← n×n path matrix built with Floyd-Warshall algorithm
6: return path
7: end function

3.2 Routes Search Algorithm
In this version of the application route representation was an ordered array
of departures (entity Departure). To find a route, a custom algorithm that
worked with Floyd–Warshall matrices (more at section 4.1.1) was used. Pseu-
docode is presented in algorithm 2.

First, the algorithm loads a path matrix according to date and builds a
path between nodeFrom and nodeTo with the loaded matrix. The built path
is an array of nodes, nothing more. Then, the algorithm finds appropriate
departures from the start of the path and adds those departures to the result.

13



3. Analysis of the First Version

Algorithm 2 Route searching
1: procedure FindRoute(nodeFrom, nodeTo, date)
2: matrix← day or night path matrix according to date
3: path← nodes path from nodeFrom to nodeTo from matrix
4: for i in 1 to path.count do
5: node← path[i]
6: tmp← node.departures that have a node from path on a way
7: best← the best departure from tmp
8: i← max. number of nodes that can be reached with best
9: date← best.time + best.minutesInWay + 1 minute

10: add best departure to result
11: end for
12: end procedure

For every line change, one extra minute is added to date to provide time
for transfer. If the algorithm must choose between departures (algorithm 2,
line 7), it uses a comparison function as presented in algorithm 3. The coeffi-
cient 6 was chosen because it produced better results in the tests than other
options.

Algorithm 3 Deaprtures comporison
1: function Comparator(firstDeparture, secondDeparture)
2: stop← difference in the number of stops before transfer
3: time← difference in the departure time (minutes)
4: return (6 ∗ stop) > time ▷ 6 is a constant coefficient
5: end function

3.3 Conclusion
As depicted in table 2.1, the database size is relatively big for the task. An-
other database structure could exclude a lot of useless information. Moreover,
because the question about data structure format is not closed, different for-
mats must be tested to determine which is the most optimal. This can also
affect the processing speed of fetch requests.

Algorithmic problems are even more noticeable. After time profiling, it
became clear that the hardest part of the algorithm was departure filtering at
algorithm 2, line 6. Generally, this part took approximately eighty percent of
all computation time. This is a significant amount of time when you consider
the average search time of six seconds. For example, another offline application
CG Transit from the previous chapter has average search time six hundred
milliseconds. Furthermore, considered algorithm often provides non-optimal
routes with many transfers. The main reason for this is an incorrect approach
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3.3. Conclusion

to the task. The algorithm has no variety when the skeleton of the path is
given. It means, that when the path is built from matrix (algorithm 2, line
3), nothing can significantly change the constructed path. Despite the fact
that the matrix contains optimal routes, it is composed for a certain time
(algorithm 1, line 3). At other times, the matrix may not provide the most
optimal path.

It is obvious that data structure and route search algorithms should be
replaced by more advantageous options. The list of the most suitable solutions
is presented in the next chapter.
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Chapter 4
Design

This chapter reviews the most popular existing algorithms for the shortest-
path problem and designs a data structure that can be used to improve the
application’s performance.

4.1 Routes Search Algorithm
Mobile devices are very sensitive to increased complexity, which is why it is
important to revise existing solutions and compare them due to the problem
defined in the section 1.2. A lot of works in the field of transportation networks
(e.g. [3, 19, 2]) and time-dependent shortest path problem (e.g. [20]) tend to
use Dijkstra’s algorithm modifications. Three of Dijkstra’s modifications and
a Floyd–Warshall algorithm, used in the first version of the application, are
reviewed below.

4.1.1 Floyd–Warshall
In spite of the title of the section, the algorithm considered here is rather a
brute–force with using Floyd–Warshall matrices. It is the algorithm used in
the first version of the application. It was reviewed in detail in section 3.2
(algorithm 2), where the first version of the application is also revised. The
following section describes the basis of the Floyd–Warshall algorithm [18].

The Floyd–Warshall algorithm builds a matrix that represents the short-
est path between all pairs of vertices and has time complexity O(|V |3). Pseu-
docode is presented in algorithm 4. A list of vertices between the source and
target nodes that provide the Floyd–Warshall matrix is not enough to com-
pute a departure path quickly enough. The possible solution to this problem
could be storing departures instead of nodes in the matrices, but the algo-
rithm would then need about 7 · 24 · 4 = 672 matrices (one matrix for every
15 minutes in a week) with increased size. That is not possible but would
provide a linear complexity O(n), where n is the number of nodes in the path.
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Algorithm 4 Floyd–Warshall algorithm
1: procedure FWMatrix(G)
2: matrix[i, j]← i = j ? 0 : ∞ ▷ ∀i, j ∈ V (G)
3: matrix[i, j]← E(G)(i, j) ▷ ∀(i, j) ∈ E(G)
4: for i in V (G) do
5: for j in V (G) do
6: for k in V (G) do
7: if matrix[j, k] > matrix[j, i] + matrix[i, k] then
8: matrix[j, k]← matrix[j, i] + matrix[i, k]
9: end if

10: end for
11: end for
12: end for
13: end procedure

In sum, the Floyd–Warshall algorithm is an effective algorithm for some
tasks. But the problem cannot be solved with this algorithm in sufficient time,
because the main purpose of the Floyd-Warshall algorithm is to compute a
matrix for all pairs of vertices. However, the Prague public transport network
contains more than one thousand stops and more than one and a half million
departure times that are too much to calculate or store with a mobile device.
Moreover, transportation network is a time-dependent graph, so all routes
can’t be described with the only one matrix. This algorithm is better suited
for static graphs.

4.1.2 Dijkstra
The Dijkstra algorithm [21] is probably the most popular algorithm to address
the shortest path problem, despite the fact that it was invented in 1959. It
is easy in implementation and provides good time and space complexity. The
worst-case performance for the original Dijkstra algorithm is O(|V |2). In the
algorithm 5 is given a modification of Dijkstra algorithm using a priority
queue. This modification can lead to faster computing than original Dijkstra
algorithm and has a better worst-case performance O(|E|+ |V | log |V |).

Priority queue is a data type similar to a usual queue, but each element in
the priority queue has a “priority” value. The priority queue has three basic
operations: extract_min, add_with_priority and decrease_priority. All
operations for the Fibonacci priority queue have a constant O(1) time com-
plexity, except for extract_min with a O(log n) time complexity. Priority
queues are reviewed in more detail in [22].

Despite the simplicity, the Dijkstra algorithm has a good chance to produce
desirable results. Problems may arise with route search between nodes that are
too far, because the basic Dijkstra algorithm is an uninformed algorithm and
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Algorithm 5 Dijkstra algorithm with priority queue
1: procedure Dijkstra(G, source)
2: for i in V (G) do
3: dist[i]← i ̸= source ? ∞ : 0
4: queue.add_with_priority(i, dist[i])
5: end for
6: while u← queue.extract_min do
7: for all neighbors v of u do
8: if dist[u] + E(G)(u, v) < dist[v] then
9: dist[v]← dist[u] + E(G)(u, v)

10: prev[v]← u
11: queue.decrease_priority(v, dist[u] + E(G)(u, v))
12: end if
13: end for
14: end while
15: end procedure

therefore its performance will decrease as distance increases between nodes.
To find out if these problems will have a critical impact on performance, some
tests must be run. Results of these tests can be found in chapter 5.

4.1.3 Bidirectional Dijkstra
The bidirectional Dijkstra algorithm [2] is a modification of the Dijkstra algo-
rithm to include one important feature. The algorithm runs from both source
and target vertices at the same time. The path is found when the two meet
in the middle. The only thing that must be added to the Dijkstra algorithm 5
to get bidirectional Dijkstra algorithm is vertices marking by both instances.

Figure 4.1: Dijkstra (left) versus Bidirectional Dijkstra (right) dispersion. Red
dots represent source and target vertices, the gray circle represents explored
vertices, and the green dot represents a common vertex to connect two paths.
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Theoretically, this modification can solve the problem previously described
in section 4.1.2 relating to the Dijkstra algorithm: “…performance will decrease
with distance increasing between nodes”. If the search starts from both of the
vertices, the dispersion will be significantly less. This is schematically depicted
in figure 4.1. But there is a reason why this algorithm can not be used for the
problem.

This paragraph is a paraphrase of thesis [2] about bidirectional Dijkstra
algorithm. In this thesis it is said that in a public transportation network we
cannot execute a search starting at target node because we do not know at
what time to begin (a necessary parameter when searching a transit network).
We will not know that time until we have executed a forward search and
determined at which time we will arrive at target node. Only then can we begin
executing the search in the backward direction. This makes a bidirectional
Dijkstra search very difficult to implement unless we permit estimation of the
arrival time which removes optimality. This is unfortunate because many nice
techniques have been developed using bidirectional search.

4.1.4 A*
Another variation of Dijkstra’s algorithm is the A* [3, 20]. It achieves better
performance by using heuristic functions [23]. These functions inform search
algorithms by choosing the best alternative based on the available informa-
tion. Specifically, A* algorithm selects alternatives that minimize equation 4.1
where n is the current vertex in which the algorithm is located, g(n) is a cost
function of the path from start to the current vertex and h(n) is a heuristic
function that approximates cost from the current vertex to the target.

f(n) = g(n) + h(n) (4.1)

The obvious measure of cost is time. Hence, function g(n) provides the
time from the start of the search to arrival to the current node. The heuristic
function h(n) must approximate the time needed to get from the current node
to the target. As was mentioned in section 1.3, every stop in GTFS format
has the location property, so the fastest way to approximate the needed time
is to use distance with a certain coefficient.

The pseudocode is presented in the algorithm 6. The algorithm uses stan-
dard implementation with lists, but it can be improved with different tech-
niques. For example, priority queues can be used instead of lists, similar to
the Dijkstra algorithm from section 4.1.2. More detailed these options will be
considered in the next chapter.

Short analysis of all four algorithms indicates that A* has the greatest
chance of success. The main feature is that this algorithm is informed and
has good resistance to the problem of performance decreasing when distance
increases. Anyway, algorithms will be tested detailed in the next chapter.
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Algorithm 6 A* algorithm
1: procedure AStar(G, source, target)
2: open.add(source)
3: g_score, f_score← map with default value ∞
4: g_score[source]← 0
5: f_score[source]← h(source)
6: while open is not empty do
7: n← node from open with lowest f_score
8: if n = target then
9: break

10: end if
11: open.remove(n)
12: closed.add(n)
13: for all neighbors v of n do
14: if v ∈ closed then
15: continue
16: end if
17: if v /∈ open then
18: open.add(v)
19: end if
20: if g(v) < g_score[v] then
21: path[v]← n
22: g_score[v]← g(v)
23: f_score[v]← g(v) + h(v)
24: end if
25: end for
26: end while
27: end procedure

4.2 Data Structure
Another problem is the designing of a suitable data structure for all needed
data that is parsed from GTFS. The problem is described in section 1.4.

First, the format for stored data must be chosen. There are two options:
relational database or raw data. To select the right option, some tests must
be processed, the results for which can be found in the next chapter.

Second, the data structure must be defined. The main problem of the
database structure from the first version of the application (depicted in fig-
ure 3.1) is data repetition. Departures from the same trip have the same
Departure.days, Departure.startDate, and Departure.endDate service at-
tributes, because each trip has the only one associated service. It is a mis-
take to repeat this data for every instance of Departure. The best way
to reduce Departure entities is presented in study [3]. Trip entities with
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Trip.departureTimes arrays of the departure times can be used instead of
all Departure entities. Moreover, the entity Stop is not required, because
route search algorithm uses data from the Node entity. To completely reduce
the Stop entity, Stop.lat and Stop.lon attributes must be moved into the
Node entity. The Matrix entity can also be removed if the Floyd–Warshall
algorithm will not used.

Figure 4.2: Revised data structure. Relationships mean foreign keys. One
arrow means ”to-one” and double arrow means ”to-many” relationships.

Table 4.1: Description of revised data structure.

Entity Attribute Description

Node

lat The latitude of the Node.
lon The longitude of the Node.
name Name of the Node.
trips Array of all trips, that go through the

Node.

Trip

departureTimes Array of all departure times from source
Node to the target Node ordered according
to Trip.nodes array. Additionally, it has
one more element at the last position with
arrival time at the target Node.

name Name of the line to which the trip belongs.
nodes Ordered array of nodes, that shows the

order in which the trip goes through stops.
service Link to the Service entity.

Service

days Integer mask, that shows on what days of
the week the trip works.

endDate Date showing until what day the trip
works.

startDate Date showing from what day the trip
works.

trips Array of all trips, that have assigned this
service.
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4.3 Conclusion
Dijkstra’s algorithm variations can show much better results than algorithm
from the first version of the application. After short analysis in this chapter,
it can be confidently said that one of the described algorithms will be used as
an algorithm for the new version of the application. Anyway, these algorithms
are not intended for time-dependent graph, such as transportation network.
So, chosen algorithm must be modified to work with Prague public transport
network. More about implementation in chapter 5.

Designed data structure is presented in figure 4.2 and described in ta-
ble 4.1. The main advantages of this structure, in contrast to the previous
one, are a reduced number of entities and a significantly smaller size (more in
chapter 5). However, this structure also has disadvantages.

First, the algorithm cannot retrieve all departures from the Node, because
the Node only has information about trips. This means that the algorithm
must search for needed departures in the Trip.departureTimes array accord-
ing to the Trip.nodes array. However, in the new version of the application
it may not be necessary to retrieve all departures. All trips in Node.trips
attribute will be ordered by departure time from the node and departures can
be extracted up to a certain constant. In this case, this problem will not have
a big effect on the performance.

Another disadvantage is that in this implementation, the Trip entity has
no attribute with arrival times. It was removed because of specific of Prague
public transport network to reduce the size of data structure. The next de-
parture time on the trip is used as an arrival time because it is almost always
the same time. However, the departure time from the target node does not
exist, which is why the last element added to the Trip.departureTimes array
is the arrival time at the target node. Processed tests showed that such data
structure helps to significantly reduce the size of the database with almost no
effect on the found routes. In the worst case, for a very small number of trips,
the arrival time will differ by one minute.
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Chapter 5
Implementation

The main aim of the thesis is to implement a new version of the application.
The goal of this chapter is to provide the important implementation details
and describe designed optimizations.

5.1 Application Structure
The new version of the application, like the old one, is written in Objective-C.
Another option was Swift language [24], but rewriting the whole application
in another language would be complicated. Besides, no one guarantees any
increase in performance of an application.

It does not make sense to describe the whole structure of the applica-
tion, because all iOS applications has almost identical structure. Below are
described files, that have impact on the route search algorithm and data struc-
ture. Files Algorithms.h and Algorithms.m contain almost everything about
route search algorithm and another help functions. File AppDelegate.h con-
tains control macros, e.g. for turning on database loading mode. Trans-
portation network is represented with files Database.h, Database.m and its
derivatives Database*. All files have a clear structure and are conveniently
placed in the project.

5.2 Route Search Algorithm
All route search algorithms from the previous chapter except for bidirectional
Dijkstra can be implemented and compared to choose the best one. As follows
from the previous chapter, the A* algorithm has the highest chance of success.
Its implementation is shown in algorithm 7. Some changes were applied unlike
basic algorithm 6, because the public transport network is a time-dependent
graph and a path is an array of departures, not nodes. That is why the new
algorithm stores and compares departures instead of nodes. Furthermore,
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the algorithm was implemented using a priority queue. This helps to speed
up the algorithm; in algorithm 6 at line 7, acquiring the object with lowest
f(v) has linear time complexity O(n), but it has constant time complexity
O(1) with priority queue implementation. An open source solution named
BEPriorityQueue [25] was used instead of implementing a priority queue from
a scratch.

Many implementation details can be found with the new algorithm. E.g.
at line 9, the algorithm extracts a departure with the lowest priority value
and uses it to find an optimal path. The priority value for extracted depar-
ture is received to calculate priority values for the newly added departures.
Each priority value calculates at lines 28 – 29 and it is a sum of heuristic
and cost functions (equation 4.1) for the considered departure created at line
25. The heuristic function is based on the simplest Euclidean distance be-
tween the considered node and target node with a constant coefficient of 0, 7.
The cost function is a number of seconds from the start of searching to the
arrival time of the considered departure, multiplied by coefficient 0, 5. Addi-
tionally, transfer fine is added to priority value to penalize unnecessary line
changes. Transfer fine is set to 2000 if the line is changed, to 1000 if one
line of metro is changed for another line of metro, and to 0 if there is no
transfer. Another coefficient is used at line 17 of the algorithm that limits
the number of obtained trips by 40 to prevent the queue from overflowing
and to speed up calculating. The probability that the optimal departure will
come after another 40 departures are left is very low, but a lower coefficient
has almost no impact on the algorithm’s performance. When the target node
is reached, the path is reconstructed from the last departure using the path
dictionary. All coefficients used in the application are easily replaceable and
are chosen after thorough testing of the optimality of found routes. Most of
them can be changed in file AppDelegate.h. For example, constant named
C_TIME_COEFFICIENT represents a coefficient used at line 29 (0, 5 in the final
implementation) and constant named C_DISTANCE_COEFFICIENT is used at
line 28 (0, 7 in the final implementation).

As was mentioned in the previous chapter, the Dijkstra algorithm is simi-
lar to A*. Because A* implementation with priority queue was used, Dijkstra
priority queue algorithm 5 can be achieved by removing heuristics from al-
gorithm 7. Another change, such as using departures instead of nodes, must
also be applied to make the algorithm work. That is why another pseudocode
for Dijkstra algorithm implementation is not provided.

Table 5.1 compares all algorithms on the same routes. All calculations
were conducted under the same conditions with the same data structure and
content. Exception is the algorithm from the first version of the application,
that used Floyd-Warshall matrices to find a route. Results for this algorithm
are taken from the first version of the application, because the algorithm needs
old data structure. Description of the new data structure, with the help of
which another algorithms were tested, is provided in the next section.
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Algorithm 7 A* algorithm
1: function AStar(source, target, date)
2: firstIteration← true
3: while !open.isEmpty or firstIteration do
4: if firstIteration then
5: value, time, distance← 0
6: node← source
7: firstIteration← false
8: else
9: departure, value← open.extract_min

10: node← departure.nodeTo
11: time← seconds from currentDate to arrival time of departure
12: distance← euclidean distance between node and target
13: end if
14: if node = target then
15: return departures array reconstructed with path
16: end if
17: trips← 40 trips from node with the closest departure
18: time to the currentDate
19: for all trip in trips do
20: if trip.service doesn't work at currentDate then
21: continue
22: end if
23: transferF ine← fine for the transfer
24: newNode← next node on the trip's way
25: newDeparture← created departure from trip for node
26: newDistance← euclidean distance between newNode and target
27: newTime← seconds from currentDate to arrival time of newDeparture
28: newV alue← value + 0, 7 · (newDistance− distance)+
29: 0, 5 · (newTime− time) + transferF ine
30: if newDeparture /∈ closed then
31: open.add_with_priority(newDeparture, newV alue)
32: path[newDeparture] = departure
33: closed.add(newDeparture)
34: end if
35: end for
36: end while
37: end function
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Table 5.1: Comparing algorithms under the same conditions. In the table are
given time intervals spent to find a route.

Optimized brute-force Dijkstra A*
Dejvická – Můstek 4,28 sec 50 ms 15 ms
Marjánka – Anděl 8,85 sec 17,35 sec 57 ms
Husinecká – Hasova 7,98 sec > 300 sec 140 ms
Hládkov – Volha 13,78 sec > 300 sec 192 ms
Strážní – I. P. Pavlova 4,97 sec 90 ms 133 ms
Kublov – Vozovna Žižkov 10,79 sec > 300 sec 70 ms
Dívčí hrady – Kajetánka 6,92 sec > 300 sec 1,29 sec
Trojská – Motol 4,36 sec > 300 sec 105 ms
Bílá Hora – Bílá labuť 3,70 sec 11,83 sec 2,09 sec
Palmovka – Lhotka 5,89 sec > 300 sec 140 ms
Terminál 3 – Hotel Golf 5,30 sec > 300 sec 4,85 sec
Zličín – Bílá Hora 3,95 sec > 300 sec 113 ms
Lotyšská – Kněžská luka 3,75 sec 21,89 sec 854 ms
U Památníku – Ruská 1,14 sec 1,83 sec 828 ms

Table 5.1 illustrates that the A* algorithm has better results than other
options; the algorithm was accordingly chosen for the new version of the ap-
plication. However, performance decreases could be noted for routes “Dívčí
hrady – Kajetánka”, “Bílá Hora – Bílá labuť” and “Terminál 3 – Hotel Golf”.
The reason for this is small implementation issues. Despite this, almost all
routes can be found in a fraction of a second. The Dijkstra algorithm is an
uninformed algorithm, which poses a problem previously described in sec-
tion 4.1.2 that relates to performance decreasing with increases in distance.

5.3 Data Structure
It was decided that the new version of the application should use the GTFS
file agency.txt. This file contains information about transit agencies that
provided data for this feed. Data from this file was used to filter out lines
provided from agencies other than PPTC. It helped to reduce database size
and is not affected by route search in Prague because most of the other agencies
provided lines for suburb areas.

One more optimization was applied to separate lines that were not in-
tended for ordinary movement in Prague. Within this optimization were sep-
arated lines with identification numbers in the range 251 – 899. According to
PPTC [26], these lines were devised for school buses and regional routes.

A lot of suburban nodes had zero trips after these optimizations were ap-
plied. Nodes with empty departures array do not do any good and complicate
nodes search process, that’s why was decided to remove these nodes from the
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database. The amount of nodes was decreased from 1784 to 1161 as a result.
However, this did not have a big impact on the database size.

Filtering a number of trips from the given time occurs at line 17 in the new
algorithm 7. The array node.trips must be sorted to perform this operation
more quickly. Ordering is done in GTFS parsing phase.

As was mentioned in section 4.2, two of the most common formats can be
used for storing such data structure. The first option is a relational database.
Usually, as a relational database format for iOS is used SQLite. This option
was used in the first version of the application. The advantages are simple
compatibility with iOS Core Data and a time tested system for database man-
agement. However, disadvantages for relational databases also exist, mainly
sluggishness, large amounts of metadata, and a long preprocessing time. An-
other option is using coded raw data with its own structure. The disadvan-
tages of this method are an inability to use links inside the data structure and
the absence of any embedded optimizations and infrastructure in general. In
return, the structure becomes fully customizable with no excess data.

Creating an SQLite database is a known process which does not make sense
to describe, but there are infinite ways to create raw data. The creation of raw
data files for this thesis used two classes of Apple’s framework Foundation [27]:
NSCoder and NSData. NSCoder allows for the conversion of any instance of
any class to an NSData object and back. An instance of NSData class is a
static byte buffer with an interface for managing this data. Fortunately, the
interface of NSData provides methods for its writing and reading to and from a
file. The only thing to do is to create class representing data structure showed
in figure 4.2 and to fill it with parsed and processed GTFS data. However, this
class must contain integer values for referencing to another instance instead
of usual links.

After testing both formats, it was decided to use the raw data format.
The first reason for this was the result database size. It was circa 180 MB
for SQLite format and 75 MB for raw data. This difference can be explained
by the large amount of metadata and the need to reverse links for every
relationship in Core Data. The second reason, correlated with the first one,
is preprocessing time. The device spends approximately thirteen seconds to
load the database from a file in SQLite format after the application is started.
Using the raw data format, this time decreases to 5 seconds. This time is
decreased to approximately three seconds if the raw data file is separated into
three different parts (nodes, trips, and services) and the parts are loaded in
parallel.

5.4 Functions
In addition to route search from node A to node B at the current time, the new
version of the application has implemented some user enhancements. They

29



5. Implementation

are briefly described in this section.

• Departure time

Users can explicitly set departure time and day (only today or to-
morrow) from which to search a route. There is no additional algorithm
for this; another date is simply passed to algorithm 7 as a date argument.

• Next route

After a route is found, users can search for the next one by pressing
the appropriate button. This feature uses the same algorithm 7 for route
search, but as a date argument is sent the first departure time of the
found route with five extra minutes. This ensures that a new route will
be different with a later departure time.

• Via

Users can specify an intermediate node C for the route search from
A to B. First, the algorithm finds a route between A and C. Then, it
searches a route from C to B at arrival time to C. After both routes
are found, the algorithm unite them into one.

• Locating

The fastest way to specify nodes is to use locating. This feature
compares Euclidean distance from the device’s location to all nodes and
chooses the closest. The nodes location is also used in heuristic functions,
so this enhancement does not require any additional data and has no
impact on the data structure. This function is very convenient for the
specification of departure node.

5.5 Distribution
The new version of the application, like the first one, will distribute with
Apple’s official App Store. However, an application needs to be reviewed by
Apple’s employees before publishing. Unfortunately, at the time of writing,
the application is not available for downloading from App Store, but it will as
soon as possible.

5.6 Conclusion
All implemented improvements, including the new algorithm and data struc-
ture, showed a significant increase in productivity. The basic A* algorithm was
successfully modified for using in time-dependent transportation networks.
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The data structure size has been reduced more than twice. Anyway, imple-
mentation contains some irregularities that must be fixed in the next version
of the application.

Despite the fact that the application is not yet available on the App Store,
internal testing was processed to get feedback from users. All testers noted
much faster route search and absence of unnecessary transfers. Some of them
paid attention to the fact that the new version of the application often prefers
land transport (buses, trams) instead of the metro. But everyone agreed that
the new version is much better than the old one.
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Testing

Table 6.1 was compiled to illustrate how the new version of the application
works in the real life. Some popular routes were chosen to provide time spent
on the search with the old and the new algorithms.

Table 6.1: Comparing the first version and the new version of DPP Offline
under the same conditions. In the table is given time spent to find a route.

The first version The new version
Marjánka – Anděl 8,85 sec 57 ms
Dejvická – Můstek 4,28 sec 15 ms
Husinecká – Hasova 7,98 sec 140 ms
Hládkov – Volha 13,78 sec 192 ms
Strážní – I. P. Pavlova 4,97 sec 133 ms
Kublov – Vozovna Žižkov 10,79 sec 70 ms
Dívčí hrady – Kajetánka 6,92 sec 1,29 sec
Trojská – Motol 4,36 sec 105 ms
Na Smetance – Vítězné nám. 4,67 sec 60 ms
Bílá Hora – Bílá labuť 3,70 sec 2,09 sec
Palmovka – Lhotka 5,89 sec 140 ms
Terminál 3 – Hotel Golf 5,30 sec 4,85 sec
Spojovací – Čechovo nám. 3,92 sec 480 ms
Zličín – Bílá Hora 3,95 sec 113 ms
Masarykovo nádr. – Opatov 2,34 sec 90 ms
Lotyšská – Kněžská luka 3,75 sec 854 ms
U Památníku – Ruská 1,14 sec 828 ms
Albertov – Apolinářská > 300 sec > 300 sec
Stadion Strahov – Limuzská 3,62 sec 162 ms
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Problem was found for the route ”Albertov – Apolinářská”. When the
route does not exist, the algorithm slips into an infinite loop until user stops
the search. Moreover, the search can be very long when user by day searches
the route between nodes, departures between which work only at night. How-
ever, this situation is quite rare for the Prague public transport network.

Optimality of the found routes is subjective. However, it can be said that
the situation has improved significantly compared to the previous version of
the application. Some examples are depicted in figures 6.1, 6.2, 6.3 and 6.4.

Figure 6.1: Route search comparing. The first version (left) versus the new
version (right). Route Kublov – Vozovna Žižkov.

Figure 6.2: Route search comparing. The first version (left) versus the new
version (right). Route Dívčí hrady – Kajetánka.
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Figure 6.3: Route search comparing. The first version (left) versus the new
version (right). Route Terminál 3 – Hotel Golf.

Figure 6.4: Route search comparing. The first version (left) versus the new
version (right). Route Zličín – Bílá Hora.

In figure 6.4, the first version offers to use a bus number 380, but database
from the new version doesn’t contain information about inter-urban buses to
not confuse users and reduce database size.

All tests here and from previous chapters were performed by the Apple
iPhone SE. It has dual-core A9 processor with clock rate 1.8 GHz [28].
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Conclusion

The main aim of the thesis was to design and implement a new version of
the application with an improved search time that finds more optimal routes.
As follows from the previous chapter, the goal was definitely reached. Perfor-
mance of the new version has gone up significantly, and the provided routes
have no unnecessary transfers. The data structure was optimized and its size
was significantly decreased. However, the application has some little imple-
mentation issues that must be fixed in the next version. For example, handling
the situation when the route between two nodes does not exist. Anyway, the
new version of DPP Offline, developed within this thesis, puts the application
on par with the best applications for offline route search.

Future Improvements
Additional functions can be added to the application. Some of them are
proposed below.

• Foot edges
Foot edges can save a lot of time for the user. Occasionally, it will

be faster to walk for a distance than to wait for the next departure.
Distance between nodes can be used to approximate walk time. Many
existing applications have already implemented this feature, but it can
be expanded with a customizable maximum distance that the user is
ready to walk.

• Effective route planning with GPS data
If the user allows the application to use GPS data, it can be used

for effective route planning. The idea is to track user’s location and
dynamically change the route when the user has no time to catch the
needed trip.
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• Show many routes at once
This feature belongs to the UI improvements. It is already imple-

mented in applications described in chapter 3. It can be seen in fig-
ures 2.1, 2.2 and 2.3. It is more convenient to have several options at
once, but this feature can decrease performance because several routes
must be found simultaneously.
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Appendix A
Acronyms

CTU Czech Technical University

FIT Faculty of Information Technology

iOS iPhone Operating System

GTFS General Transit Feed Specification

CSV Comma-Separated Values

PPTC Prague Public Transit Company

UML Unified Modeling Language

GPS Global Positioning System
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Appendix B
Contents of enclosed media

readme.txt............................ short description of CD’s content
thesis.pdf................................... this thesis in PDF format
src

DPP Offline..............................source code of DPP Offline
thesis.....................source code of this thesis in LATEX format
jrdata.zip...........original GTFS data from PPTC for 2018-05-14
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