
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 8, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Physics Simulation Game Engine Benchmark

 Student: Marek Papinčák

 Supervisor: doc. Ing. Jiří Bittner, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

Review the existing tools and methods used for physics simulation in contemporary game engines. In the
review, cover also the existing benchmarks created for evaluation of physics simulation performance.
Identify parts of physics simulation with the highest computational overhead. Design at least three test
scenarios that will allow to evaluate the dependence of the simulation on carefully selected parameters
(e.g. number of colliding objects, number of simulated projectiles). Implement the designed simulation
scenarios within Unity game engine and conduct a series of measurements that will analyze the behavior
of the physics simulation. Finally, create a simple game that will make use of the tested scenarios.

References

[1] Jason Gregory. Game Engine Architecture, 2nd edition. CRC Press, 2014.
[2] Ian Millington. Game Physics Engine Development, 2nd edition. CRC Press, 2010.
[3] Unity User Manual. Unity Technologies, 2017. Available at https://docs.unity3d.com/Manual/index.html
[4] Antonín Šmíd. Comparison of the Unity and Unreal Engines. Bachelor Thesis, CTU FEE, 2017.

Bachelor’s thesis

Physics Simulation Game Engine
Benchmark

Marek Papinčák

Department of Software Engineering

Supervisor: doc. Ing. Jǐŕı Bittner, Ph.D.

May 15, 2018

Acknowledgements

I am thankful to Jiri Bittner, an associate professor at the Department of
Computer Graphics and Interaction, for sharing his expertise and helping me
with this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as school work
under the provisions of Article 60(1) of the Act.

In Prague on May 15, 2018 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2018 Marek Papinčák. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Papinčák, Marek. Physics Simulation Game Engine Benchmark. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2018.

Abstrakt

Väčšina dnešných hier využ́ıva hernú fyziku aby maximalizovala zážitok z
hrania. Na trhu je niekǒlko herných enginov s integrovaným fyzikálnym en-
ginom, ktoré ǔlahčuju vývojárom implementáciu hernej fyziky do ich hier.
V tejto práci sa zameriavam na Unity herný engine s jeho integrovaným
PhysX fyzikálnym enginom. Implementoval som sedem testov, ktoré testujú
fyzikálne komponenty v Unity a možu pomôcť herným vývojárom s výberom
toho pravého herného enginu pre ich hru. Posledný benchmark je jednoduchá
strategická hra, ktorá využ́ıva komponenty testované v predošlých testoch.

Kĺıčová slova Game Engine, Benchmark, Game Physics, Unity, PhysX

Abstract

Most of the contemporary games use game physics to offer the full
experience. There are several game engines on the market with integrated
physics engine to help developers implement physics in their game. In this
thesis, I concentrate on Unity game engine with its iteration of PhysX physics

vii

engine. I implemented seven benchmark to test its components and help
developers decided whether the Unity is the right engine for their game. The
last benchmark is a simple real-time strategy game that makes use of physics
components tested in the other six benchmarks.

Keywords Game Engine, Benchmark, Game Physics, Unity, PhysX

viii

Contents

Introduction 1
Motivation . 1
Structure . 2

1 Game physics 3
1.1 Game design and the role of physics 3
1.2 Games and game physics - How does it work? 3
1.3 Physics engine . 4
1.4 Unity game engine . 6
1.5 Physics in Unity . 7
1.6 Physics optimization tools . 11
1.7 Current benchmarks . 11

2 Benchmarks 17
2.1 Performance test of the collision system 17
2.2 Accuracy test of the collision system 18
2.3 Fire accuracy test . 18
2.4 Cloth component benchmark 19
2.5 Deformable object benchmark 20
2.6 Physics based animation benchmark 21
2.7 Game benchmark . 22
2.8 Assets . 25

3 Results 27
3.1 Performance test of the collision system 27
3.2 Accuracy test of the collision system 30
3.3 Fire accuracy test . 31
3.4 Cloth component benchmark 31
3.5 Deformable object benchmark 32
3.6 Physics based animation benchmark 33

ix

3.7 Game benchmark . 34

Conclusions 37

Bibliography 39

A Contents of enclosed CD 41

x

List of Figures

1.1 Enviroment destruction in Red Faction: Guerilla developed by Vo-
lition. 4

1.2 Excellent mud physics powered by Havok in Spintire by Oovee
Games Studios. 6

1.3 Object without collider(left), one with custom primitive collider(middle)
and one with mesh collider(right). Picture is from unity asset store
page for Concave Colliter tool for unity. 9

1.4 Visual editor for cloth self collision particles. Green dots represent
self colliding particles. 10

1.5 Picture of the physic debbuger. Static collider is highlighted by
red color, active rigidbodies by light green and inactive have dark
green color. 12

1.6 Unity WebGL benchmark. Courtesy of Unity Technologies. 13

2.1 Snapshot of the performance test. A machine gun is releasing cas-
ing on the ground which creates a heap full of collisions. 18

2.2 Snapshot of collision accuracy test. Spheres are rolled down the
sides of a triangular prism. They collide in the middle and collision
error is measured. 19

2.3 Snapshot of the cloth component benchmark. Rugs in the picture
collide with poles and later with the ground and the wall. 20

2.4 Snapshot of Deformable object benchmark. Holes in the plate are
created upon collisions with bullets. 21

2.5 Picture of the defenders, positioned on the ramparts, with all types
of units. 22

2.6 Picture of the incoming enemy wave with all types of enemies. . . 23
2.7 Picture of the clash of forces. Bullet trajectories are highlighted

by sharp colors. 24

xi

3.1 Graph detailing time per frame change with increasing number of
casings. Graph compares standard version of the casings test run
in editor, built version and CPU usage of the version run in editor. 28

3.2 Graph comparing different versions of performance test. 28
3.3 Casing heaps created by collision performance test. Left heap is

created with 10 ms and right with 20 ms timestep. Right heap is
bigger than left as casings are thrown further with 20 ms timestep. 29

3.4 Graph showing proportional error of sphere collisions. Error is
calculated as total count of collisions divided by error collisions. It
occurs when centers of 2 spheres are closer than their radius sum. 30

3.5 Graph of the cloth component benchmark. Graph shows overall
framerate difference between active cloth self collision, active cloth
self and inter collision and standard with neither of the 2. 32

3.6 Graph of deformable object benchmark. Graph shows the impact
on performance of mesh deformation. Vertex count of used mesh:
1 - 1144; 2 - 2304; 3 - 5824; 4 - 12474 33

3.7 Graph of scripted game benchmark. The green line represents the
CPU usage of FixedUpdate, the blue line CPU usage of Physic-
sSkinnedClothFinishUpdate and the red line overall time per frame.
Graph starts at 20th frame as overall time per frame is over 200 in
first couple of frames. 34

xii

List of Tables

3.1 Built standard iteration of Collision performance test on different
platforms. Time is shown in seconds. Test uses capsule colliders
and timestep is set to 10 ms. 29

3.2 Benchmark platforms. NR - native resolution, TR - tested resolution. 30
3.3 Bullet was fired at a wall with different physics simulation timesteps.

Numbers represent y value of contact point 3D vector. In the first
row timestep increased respectively, in the second a force behind
bullet was increased, and a different type of force was used with
increasing timestep in the third row. 31

xiii

Introduction

Motivation

Video game is a real-time interactive computer simulation set in the real or
imaginary world. Player takes control of a game character and is presented
with a set of challenges. Imagine saving New York as the Spider-Man, clear-
ing dungeon with a party of heroes, winning the Champions league with your
favourite team or controlling the whole army of Greeks at the battle of Ther-
mopylae. This and much more have been tackled by different game genres
over the years. While early games were considered to be toys for children,
games of today are a multi-billion-dollar industry rivalling Hollywood in size
and popularity.

Modern games require a large number of developers. A big part of
those are artists, who create audio and visuals for the game. Engineers design
and implement the software that makes the game work. Game designers create
the game world, write a story and design gameplay. Testers identify bugs and
boring parts of the game. Producers and publishers take care of the marketing
and business side of the development.

Every good game requires a way to render objects on screen, an-
imations, physics, user interface, audio and a lot of scripting to join them
into a quality product (more in chapter 1). Developing these parts takes a
lot of time, so programmers started to make universal tools. Some of these
tools cover only one part (physics engine covers physics), while others offer
the complete package - game engine. A game engine allows you to focus on
world-building, gameplay, and graphical or audio assets. You can learn more
about game engines in Game Engine Architecture by Jason Gregory [1].

Two of the most popular engines on the market are Unity and Unreal
engine. A. Šmı́d compared these two engines in his bachelor’s thesis [2]. He

1

Introduction

concluded that Unity is comfortable and easy to use, while Unreal is robust
and takes time to get used to. Unity is also more widespread and has a large
community, so it’s more possible to find a solution for your problem online.
As a beginner in game development, I chose Unity so I could focus on the true
matter at hand - game physics.

Most games are set in the real world and players expect that objects
will behave in a physically correct way. Game physics ensures that world
objects won’t fall through each other and defines what happens if they collide
(more in chapter 1). This has a large impact on performance. Developers
have a tight technical budget that physics is only a small part of. They have
to choose wisely what kind of physical effects they want to use and when.

In this thesis, I work with Unity, one of the most popular game
engines in the world. Unity supports a variety of physical effects through its
physical components. I created several benchmarks that test these components
and measure their impact on performance.

Structure

In chapter 1, I go deeper into game physics, how Unity operates and what
kind of physics components are supported. I talk about game design and how
its influenced by physics in modern games. I go deeper into the technical side
and talk about physics engine. In the second part of the chapter, I examine
capabilities of PhysX, the physics engine integrated into Unity.

I have created seven benchmarks of Unity physics testing: perfor-
mance of the collision system, accuracy of the collision system, fire accuracy,
cloth component, custom deformable object, physics animations and physics
in a game scenario. The final benchmark is a simple RTS game that incor-
porates all other benchmarks into one. All of the mentioned benchmarks are
detailed in chapter 2. Results of the benchmarks can be found in chapter 3. I
present the results in form of graphs, tables, pictures, and commentary.

2

Chapter 1
Game physics

1.1 Game design and the role of physics

Physics is an inherent part of any modern game. It defines everything from
how objects move when they fall under gravity to what they do when they
tumble around and come into contact with other objects. A game doesn’t have
to have complicated game physics to be enjoyable, but bad physics system will
completely remove the fun from most games. Player expects real physics in a
game like Battlefield with realistic character models and animations. It would
be weird and disappointing if grenades wouldn’t bounce off the walls or dead
players would be stuck to the floor after being blown up.

Game physics can be also used as a gameplay feature and many
games have it as their main selling point. A great example of a physical-based
destruction model is Besiege where player can construct custom siege engines
and destroy castles. Another legendary examples are the gravity gun in Half-
life 2, the first use of real bullet ballistics in Sniper Elite or fully destructible
buildings in Red Faction: Guerilla.

1.2 Games and game physics - How does it work?

Video game is an example of soft real-time interactive agent-based computer
simulation. That is a lot of words, let’s break it down. Simulation is a math-
ematical model of the real or imagined game world. Agent-based simulations
are those in which a number of distinct agents (objects) interact. Interactive
real-time simulation means that simulation responds to player input in real
time and changes the game world accordingly. [1]

At the core of every real-time system is the concept of a deadline.
Video games require screen to be updated 30 or 60 times per second in order

3

1. Game physics

Figure 1.1: Enviroment destruction in Red Faction: Guerilla developed by
Volition.

to provide the illusion of motion. This means that there’s only so much
information that computer can process in one frame. Developers have to
balance how much of this information will be game logic, physics, AI etc. A
soft real-time system is one in which missed deadlines are not catastrophic.
Missed deadlines in games mean lower performance. If game misses too many
deadlines it will start to stutter and become unplayable. [1]

Game physics is more accurately described as rigid body dynamics
simulation. A rigid body is an idealized, infinitely hard, non-deformable solid
object. Dynamics refers to the process of determining how these rigid bodies
move and interact over time under the influence of forces. Dynamics simu-
lation makes heavy use of the collision detection system in order to properly
simulate various behaviours like bouncing, sliding, rolling and coming to rest.
While collision system can be used standalone, all games that move objects
about have some sort of collision detection.

1.3 Physics engine

Physics engine provides an accompanying way of simulating real-world re-
sponses for objects in games [3]. It is basically a big calculator that does
the mathematics needed to simulate physics. A good example is movement:
engine gets mass, gravity, velocity and friction properties from an object and
computes its new location. Physics engine itself doesn’t know which objects
should move or have physical properties. It’s up to the game or game engine
to decide.

Physics engine that represents all required physical properties from

4

1.3. Physics engine

real life is called general-purpose physics engine. This type of engine is used
in most triple-A games that strive to create a believable world. Some physics
engines focus only on one property like water or mud. One-purpose game
engines are better suited for simulations or simple games that revolve around
one game mechanic(ex. water racing).

There are two compelling advantages to using a physics engine. Physics
effects take a lot of time and effort to develop. It is much easier to import
a general-purpose physics engine. The second advantage is quality. Popu-
lar physics engines of today have been developed for many years by highly
competent developers.

The main reason not to import a general-purpose physics engine is
speed. It is quite processor intensive. When you are working with a very
simple game environment, this generality can mean wasted processing power.

1.3.1 PhysX

PhysX is a multi-threaded physics simulation SDK used in the large ma-
jority of today’s games. It supports rigid body dynamics, soft body dynam-
ics, rag-dolls and character controllers, vehicle dynamics, particles, volumetric
fluid simulation and cloth simulation including tearing and pressurized cloth.
PhysX started out as a library called Novodex, produced and distributed by
Ageia. It was later bought by NVIDIA. CPU version of the SDK is provided
for free [4]. Developers can also pay a fee to obtain full source code and the
ability to customize the library as needed. PhysX is used by Unity and is the
engine I will be working with in this thesis.

1.3.2 Havok

Havok is very popular commercial physics SDKs. It’s developed by Irish
company Havok that was acquired by Intel in 2007 which sold it to Microsoft
in 2015. It has been used by leading game developers in over 400 titles [5]. A
great example of Havok powered game is Spintires as seen in 1.2. Developers
from Oovee Game studios pushed Havok physics to its limits and created
an off-roading simulation with amazing mud and water physics [6]. Havok
is comprised of a core collision physics engine, plus a number of optional
add-on products including a vehicle physics system, a system for modelling
destructible environments, and a fully featured animation SDK with direct
integration into Havok’s ragdoll physics system.

1.3.3 Bullet

Bullet [7] is a free and open-source physics engine. It has been used in several
commercial games and movies. It uses a collision detection system that is

5

1. Game physics

Figure 1.2: Excellent mud physics powered by Havok in Spintire by Oovee
Games Studios.

integrated with its dynamics simulation. However, it is possible to use the
collision system as standalone or use it integrated into other physics engines.
Bullet offers support for rigidbody and soft body simulation. Soft body sup-
port includes cloth, rope, and deformable objects.

1.4 Unity game engine

Unity is one of the most popular game engines nowadays. Thanks to its intu-
itive and easy to learn toolset, Unity is used by many developers from hobby-
ists to professionals. It is used to develop 2D and 3D games for web, mobile,
desktop, and consoles. In terms of scripts, Unity uses C# and Javascript.
More about Unity development can be learned in [8].

Every test created for this thesis is made with Unity editor. It lets
you create simple games in few hours, as most things are already done for you.
World in Unity editor is made of game objects. Each object has a transform
component that stores its position in the world. You can attach various com-
ponents to this game object: lighting effects, physics, mesh, texture, custom
scripts and more. After pressing play editor starts the main loop and launches
the game.

1.4.1 Unity main loop and scripts

Game, like animation, is a continuous stream of frames. Each frame, a game
loop script is executed that directs what’s happening on the screen. Usually
there are 30 or 60 frames per second and more frames means better per-
formance. The game loop scrip is contained in MonoBehaviour base class

6

1.5. Physics in Unity

which all scripts must derive from. Game loop calls many important func-
tions including start, update, fixed update, late update, rendering functions
and decommissioning functions.

At the start of a game, a start function is called which contains all
required prerequisites. You can also use start function in a custom script.
For example to allocate an array or to find another game object needed for
execution of a script.

The update function is called every frame and contains game logic.
This means that if you make a multiplayer shooter and tie shooting to update
function, the player with lower framerate will shoot fewer bullets. This prob-
lem can be avoided by using Time.deltatime property and changing ”bullets
per frame” to ”bullets per second” in your game.ewer

The fixed update is a special function used for physics. It is called
every x milliseconds based on timestep value. The fixed update can be called
several times during an update function or not at all if FPS is too high. In
case of FPS being too low, it is possible to limit the number of fixed update
calls in the Maximum Allowed Timestep setting in Time Manager.

After the update function, a late update function is called for the
last bit of game logic and then begin the rendering functions. At the end of a
frame, an end of frame and pause functions are called.

Before game ends, decommissioning functions are called and the
game is closed. All functions in execution order can be found in documenta-
tion [9].

All scripts in Unity derive from MonoBehaviour base class as can be
seen in its manual page [9].

1.5 Physics in Unity

The physics in Unity is supplied by integrated NVIDIAs PhysX engine. It’s
split into two parts: 2D Physics and 3D Physics. Although they can coex-
ist together in the same scene, they are two separate entities that cannot
communicate among themselves.

1.5.1 Rigidbody

Objects in Unity are not affected by physics by default. We don’t want to move
the road, trees, walls. We want to move a car on the road. To accomplish
that we need to assign a rigidbody component to it. Such an object will
immediately respond to gravity and is movable by forces. Gravity is a global

7

1. Game physics

force in unity and all rigidbodies respond to it according to their mass and drag
properties. Force is an easy way to move rigidbodies in Unity. We shouldn’t
move rigidbodies by changing their transform properties. If we want to, we
have to use kinematic rigidbodies that can exist without having their motion
controlled by the physics engine. When moved, rigidbodies appear as active
in the physics simulation. Unmoved rigidbodies change into an inactive state
to save CPU usage.

1.5.2 Colliders

Collider component defines the shape of an object for the purposes of physical
collisions. Colliders can be split into primitive colliders and mesh colliders.
Primitive colliders are the box, sphere, and capsule colliders. Mesh colliders
match the shape of the object’s mesh exactly as can be seen in 1.3. Mesh
colliders can’t collide with other mesh colliders by default. This can be fixed by
marking one of them as convex. They are much more processor-intensive and
impact performance in a huge way. Mesh colliders should be used sporadically,
mostly on static objects. It is much more effective to use compound colliders
which are combinations of primitive colliders.

Colliders can be added to an object without a rigidbody component
to create floors, walls, and similar motionless objects. Such colliders are known
as static. Repositioning static colliders will hugely impact game performance.
Colliders applied to an object with rigidbody are dynamic and should be
moved by forces. Collider can be also added to a kinematic rigidbody. A
moving kinematic rigidbody will apply friction to other objects and will wake
up other rigidbodies when they make contact. A good example is doors, they
normally act like immovable obstacles, but can be open/closed.

Physical materials allow us to add real physical properties to certain
colliders. We can add slippery material to the floor and make it into ice,
bouncy material with a lot of friction to a rubber ball, or we can create new
materials with custom properties.

1.5.3 Deformable objects

Deformable objects are objects that can change their shape by applying forces
on them, clicking on them or by other means. Unity doesn’t support de-
formable objects directly, but it does support skinned mesh. The skinned
mesh is a type of mesh that can be deformed by predefined animation se-
quences [?]. It uses bones that are invisible objects inside the mesh that are
attached to each other to form a skeleton. This skeleton is powered by anima-
tion that dictates how it is supposed to move. If the skeleton moves the mesh
bends itself accordingly. It is also possible to attach rigidbodies to this skele-
ton and power it by the physics engine. This is often used to create a ragdoll

8

1.5. Physics in Unity

Figure 1.3: Object without collider(left), one with custom primitive col-
lider(middle) and one with mesh collider(right). Picture is from unity asset
store page for Concave Colliter tool for unity.

effect, where characters arms and legs bend after throwing it or striking it
with an explosion. The community has also created solutions for deformable
objects in Unity. Some of these solutions are the realtime mesh deformation
package [10] that works with collision and other Unity physics systems, or a
tutorial that teaches you how to create a stress ball [11].

1.5.4 Joints

Joint is a special type of constraint that connects two objects with a different
force effect. There are 5 types of joints: fixed, spring, hinge, character and
configurable joint.

Fixed joint is used to lock two rigidbodies at a fixed distance and
orientation.

Spring joint uses an invisible spring to keep two rigidbodies at the
same distance. When they get separated the spring pulls them back together
with a predefined force.

Hinge joint keeps two rigidbodies at a fixed distance with customized
orientation. Useful for doors, chains, pendulums, etc. Hinge joint can be
customized to apply a spring and a motor to the objects. The motor spins the
joint around its axis with a predefined force.

Character joint is used in ragdoll to connect its body parts. It has
more options to set up constraints than previous joints. Options like twist

9

1. Game physics

Figure 1.4: Visual editor for cloth self collision particles. Green dots represent
self colliding particles.

limit, swing limit and even break force that specifies force at which the joint
breaks.

Configurable joint is a highly customizable type of joint. It incorpo-
rates constraints and options from other existing joints. It is mainly used for
complex simulation.

1.5.5 Cloth

The cloth component is designed to simulate fabrics using the physics engine.
It is specially made for character clothing and only works with skinned meshes.
The component doesn’t normally react to the world and the world doesn’t
react nor recognize the cloth component. It’s possible to manually add objects
with the sphere or capsule collider from the world to the cloth component. The
cloth component will react to them as they come into contact with it, but they
won’t receive any force from the cloth component.

The cloth component applies a constraint to every vertex from the
cloth mesh. These constraints dictate how far can mesh vertex travel from its
initial position during simulation. It is possible to set these values in a visual
editor that highlights each constraint on the mesh.

Unity allows cloth self collision and intercollision. Cloth component
adds collision particles to each skinned mesh. These particles collide with each
other and create the effect of cloth self collision. Particles can be set up in the
visual editor, see 1.4. Intercollision is a collision between two distinct objects
with cloth component. It uses similar particles as for self collision, but has to
be also activated in Physics Manager.

10

1.6. Physics optimization tools

1.6 Physics optimization tools

1.6.1 Profiler

Unity editor offers the profiler window to inspect performance of games. The
profiler records performance and shows it in the form of graphs and various
statistics. It has several modes detailing CPU or GPU load, rendering, audio,
physics and more. Each mode offers information about what kind of object or
function is computed at that frame. For example, CPU mode shows a graph
detailing CPU load per frame split into different areas like physics, rendering,
etc. It is also possible to view computing time spent per frame on various
functions(e.x. FixedUpdate).

Physics mode displays a number of active non-kinematic rigidbody,
active kinematic rigidbody, and total rigidbody components. A number of
static colliders, trigger overlaps, active constraints and pairs of contacts. Num-
bers might not correspond to the exact count of objects in the scene as some
components are processed at a different rate.

The profiler can save the results into a byte data file that can be then
loaded and viewed again only in the profiler. Not only it can be used in the
editor, the profiler can also measure data from built games on the same PC or
different machines including iOS and Android systems via WiFi connection.

1.6.2 Physics debugger

Physics debugger is a visual tool that highlights physics components in the
scene. The physics debugger paints rigidbody components and colliders in
different colors. It is then easier to spot which colliders should and should not
be touching. The debugger can be seen in 1.5.

1.7 Current benchmarks

In this section, I look into current benchmarks and works that compare physics
engines. Since Unity uses a modified version of PhysX engine, most discussed
articles are over ten years old and work with a standalone version of PhysX,
I will not compare nor discuss their results. However, it is worth to study
aspects of the engines that were tested, and what kind of testing methods
were used.

1.7.1 Tested physics properties

Physics engine properties tested in reviewed publications can be split into two
categories[12].

11

1. Game physics

Figure 1.5: Picture of the physic debbuger. Static collider is highlighted by
red color, active rigidbodies by light green and inactive have dark green color.

The first category covers properties important for the real world
physics:

• Integrator calculates a position of an object after being struck by force.
It has to consider many factors such as velocity of the object, possible
collisions, constraints, etc. A better integrator can represent real world
forces more accurately.

• Restitution is a force that object retains after a collision.

• Friction is a resisting force that affects the sliding of an object.

• Gyroscopic force stabilizes objects position and angular velocity.

In games, the consistency of calculations is important, but exact replication
of real world physics isn’t the highest priority.

The second category includes properties important for game devel-
opment:

• Constraints lock object in certain axis or direction. Main types of con-
straints are prismatic which restrict object from rotating and only allow
movement along a specified axis, revolute that allow rotation around one
axis and spherical constraints that simulate rotation around a point. You
don’t want doors to move and block corridors, or wheels spinning away
and crashing the car.

• Representation of objects in physics simulation. Objects are represented
by colliders in the form of spheres, capsules, rectangles, etc.

12

1.7. Current benchmarks

Figure 1.6: Unity WebGL benchmark. Courtesy of Unity Technologies.

• Collision system determines accuracy and detectability of intersections
between colliders. Good collision system is essential in games, as one
missed collision could render the entire game unplayable.

1.7.1.0.1 Unity official benchmarks Unity has several official bench-
marks that propagate the engine on their website. Most of them are
heavily focusing on graphics and animations, except for their WebGL
benchmark[13]. In this simple benchmark, there are three scenarios
that test 3D physics. Each scenario tests how many colliding objects
can your computer handle at the same time. They use objects with
sphere, cube or mesh colliders that are constantly spawning and accu-
mulating in the center of screen1.6. The benchmark stops when FPS
drops below a certain threshold.

1.7.1.0.2 Boeing and Bräunl compared a number of physics en-
gines in 2007[12]. They used physics engine abstraction system PAL
that provided them various interfaces to conveniently implement five
scenarios. These scenarios test integrator, constraint, material, collision
and stacking properties of engines.

The first test evaluates integrator. It involves a sphere dropped on a
ground with a gravitation set to -9.8m/s, and timestep set to 10 ms.
The position of the sphere is then compared to various ideal cases from
the real world.

The second scenario tests material properties. It is split into restitution
test and static friction test. In the restitution test, a sphere is dropped
on a static box and spheres bounce is recorded and compared to ideal

13

1. Game physics

situations. Static friction test includes box sliding on a skewed plane.
The recorded speed of sliding is again compared to ideal cases.
The third scenario tests constraint stability. The scenario uses a chain
of spherical links connecting several spheres where most left and right
spheres were attached to boxes. The test ran for 20 seconds. In the end,
the position of spheres was compared to their initial position. Constraint
stability is important to both games and simulation.
The fourth test analyzes collision system. Several spheres are dropped
into an inverted pyramid. Test counts the number of spheres collider
intersections with the pyramid. An error is recorded, whenever a length
of spheres radius is lesser than its distance from the pyramid’s wall.
The fifth scenario tested the efficiency of physics engine to handle stacked
objects. Several boxes were dropped in a stack on top of one another.
In reality, such stack should collapse.

1.7.1.0.3 A. Seugling and M. Rollin have done a similar com-
parison in 2006 [14]. They made tests for friction, gyroscopic force,
restitution, constraints, and collisions. Some of the tests they did are
the same as the previous article, so I will only talk about the differences.
The first scenario tests gyroscopic force. A box with starting angular
velocity is placed in a world without gravity. After few seconds angular
energy and momentum are compared to initial values.
The second test measures accuracy of physics calculations. It involves a
pendulum with constraints on stick and ball. The ball is swung, velocity
and retention are observed and compared to the real world calculations.
The third test observes colliders. It’s split into three parts: primitives
with static non-convex triangle mesh, convex triangle meshes with each
other and non-convex triangle meshes with each other. Scenarios are
observed and graded according to how well they simulate reality.

1.7.1.0.4 Erez et al. created quite different tests than in previous
articles with one specific requirement in mind. They were looking for
physics engine best suited for robotics [15]. Scenarios test collisions,
restitution, friction, joints, performance and multibody dynamics.
The first one is a grasping test. A robotic hand is grasping a capsule.
The hand is powered by joints and fixed spring-dampers.
The second test is a humanoid ragdoll model thrown on the floor. The
model then wiggles from forces applied to its joint. This tests restitution
and friction from contact with the floor.
The third scenario tests constraints. It involves a planar chain made
from five bodies and five hinge joints. The test is initialized with forces

14

1.7. Current benchmarks

applied to joints which then slowly stabilize. Path of the tip of the chain
is observed and recorded.
The fourth scenario tests performance of the collision system. Several
capsules are dropped on the floor and performance is recorded.

1.7.1.0.5 Summary In summary, I would say that reviewed papers
provided interesting ideas how to test physics simulation. I took inspira-
tion from the collision system test in the first paper. Instead of collisions
with the pyramid, I focus on collisions between spheres in the collision
accuracy test.

15

Chapter 2
Benchmarks

In this chapter, I talk about benchmarks that have been made for this
thesis in Unity editor. I made several benchmarks that focus on physics
properties important for game development. The benchmarks them-
selves represent common situations in games and are combined into a
video game which is the last test in the chapter. Results if the bench-
marks can be found in the next chapter.

2.1 Performance test of the collision system

Performance test of the collision system is classic physics engine test.
The idea is that with increasing number of colliding objects on the screen,
the time needed to compute each frame rises. To test this hypothesis a
simple test was created. A firing machine gun is releasing casings on the
floor which create a big pile of colliding objects2.1.

At the start, the machine gun is prompted to fire and release
casings with unrealistic speed to shorten the test. Casings are created
at the side of the gun and thrown in a similar direction with AddForce
function. Casings fall on the floor and create many collisions with it
and each other. The test stops when FPS slows down below a certain
threshold.

The test has several modes to find out how different settings
affect performance:

– The first mode is the standard. All modes mentioned further keep
the same setting as this one with other modifications. Casings
have capsule collider, timestep is set to 10 ms, casing mesh has 252
triangles and the test is run in the editor.

17

2. Benchmarks

Figure 2.1: Snapshot of the performance test. A machine gun is releasing
casing on the ground which creates a heap full of collisions.

– In the next mode casing collider is changed from capsule to mesh
collider. This should affect the performance in a bad way.

– In the third mode, half of the casings have capsule collider and
other half have mesh collider. Colliders change by rotation of one.

– The fourth mode has adaptive force setting enabled in Physics Man-
ager.

– The fifth mode modifies the timestep of the physics simulation.
Timesteps tried are 20 ms, 40 ms, and 80 ms.

– In the last mode, the standard test is built into an application and
ran on several different platforms.

2.2 Accuracy test of the collision system

Purpose of this test is to determine how accurately can Unity stop collid-
ers from intersecting during a collision. 200 identical spheres are placed
upon wide sides of a triangular prism. Spheres roll down the sides and
clash in the middle2.2. All sphere collisions are recorded. On each colli-
sion, the distance between two centers of colliding spheres is compared to
sphere radius times two. If the distance is shorter, an error is recorded.

2.3 Fire accuracy test

There are two popular types of firing systems in shooter games - hitscan
and physics based ballistics simulation. Hitscan weapon fires a ray in
a straight line hitting the first target the ray goes through. The other
system utilizes physics engine to simulate bullet drop so player has to

18

2.4. Cloth component benchmark

Figure 2.2: Snapshot of collision accuracy test. Spheres are rolled down the
sides of a triangular prism. They collide in the middle and collision error is
measured.

often fire slightly above his target. This requires the physics calculations
to be always consistent.

This test is split into two parts. First part tests the consistency
of physical simulation. A gun is fired into a wall thousand times, the
contact point is recorded and later compared to other points. The second
part investigates how fixed timestep affects hit accuracy. Gun is firing
bullets using AddForce function with default force mode. Bullets are
fired in the same direction and with the same force.

2.4 Cloth component benchmark

Cloth component is used with skinned mesh to represent character cloth-
ing, flags and the occasional piece of fabric in games. This benchmark
showcases its capabilities in Unity, how it interacts with the environment
and how it affects performance. The benchmark consists of rugs hanging
from racks. An increasing wind force is applied to the rugs which later
tears them from racks. Torn rugs interact with poles and wall in front
of them. In the end, the wind is stopped and rugs fall on the floor 2.3.

Rugs use cube mesh with 2304 vertices and 4092 triangles.
Poles, wall and floor use capsule colliders. There are 21 rugs and 13
poles. Wind is simulated by increasing the external acceleration value
in each rug’s cloth component. When this value reaches a certain point,
all constraints in cloth component are overridden and the rug is torn
from the rack.

The benchmark is performed in three iterations:

19

2. Benchmarks

Figure 2.3: Snapshot of the cloth component benchmark. Rugs in the picture
collide with poles and later with the ground and the wall.

– The first iteration is the standard and works as described in the
previous paragraph.

– The second iteration adds self collision to the cloth component. All
collision particles are activated.

– The third iteration uses self collision and intercollision with all col-
lision particles activated.

Time per frame is recorded and CPU usage in the profiler is observed.

2.5 Deformable object benchmark

This benchmark focuses on objects deformable by collision. Deformation
is not inherently a physics component calculated by physics simulation,
but it’s certainly a physical effect that one would like to have in his
game. It involves a gun firing at a wall. Wall gets deformed 2.4 whenever
struck by bullet according to its velocity. Since only physics component
that supports deformable objects is cloth, I created a custom script that
changes objects mesh at runtime.

The script is inspired by the second script in mesh scripting
class in Unity documentation [9]. When the wall collides with the bullet,
the script takes the collision point and its collision force. If the collision
has sufficient strength, the wall gets deformed. A new set of vertices is
created and deformed according to the impact force. The set is assigned
to wall mesh and mesh bounds are recalculated. Finally, wall’s mesh
collider is destroyed and a new one with new mesh is created in its
place.

20

2.6. Physics based animation benchmark

Figure 2.4: Snapshot of Deformable object benchmark. Holes in the plate are
created upon collisions with bullets.

Benchmark works similarly to fire accuracy test. Gun fires a
bullet with AddForce function. Bullet has a mesh with 448 vertices.
Several meshes with 1144, 2304, 5824 and 12474 vertices are tried for
the wall. Both bullet and wall use mesh collider. Framerate and visuals
are later compared.

2.6 Physics based animation benchmark

The purpose of this benchmark is to recreate animation with physics
components and research the capabilities of Unity in this topic. This
can lead to interesting results, as such animated objects react to their
environment. For this benchmark, I present a race of walking robots.

Robots are powered by joints. One robot has a Torso with
configurable joint and 6 legs with each having 2 hinge joints. Upper leg
has a motor that gets activated every 0.5 seconds. Motor tries to spin
the leg but its stopped by an angular constraint and moved back with
a spring. The lower leg is attached to the upper leg and moves with
it. It has an angular constraint and spring that keep it in place. The
configurable joint in torso has a y constraint that keeps it from moving
sideways. This together moves the robot towards its target. The robot
doesn’t fall thanks to the strong springs in its legs.

Robots start on one side of the map and clumsily move to the
other. They are slowed at stairs which they are capable to scale. Both
of those create an uneven setting where different robot wins every time.

21

2. Benchmarks

Figure 2.5: Picture of the defenders, positioned on the ramparts, with all
types of units.

2.7 Game benchmark

The last benchmark combines previously tested components into one
simple game. Isolated tests are good for showcasing the performance
of individual physics components but don’t paint the whole picture.
The benchmark is designed to show how these components interact and
perform in a game scenario. It’s split into 2 parts. A real-time strategy
game where player has to defend his base against incoming hordes of
enemies. This demonstrates how components perform in a longer period
during several waves of enemies. The other part is a scripted scenario
where a single predefined wave of enemies attacks a base defended by
entrenched forces. This type of scenario is better suited for CPU load
and frame rate analysis.

2.7.1 Real-time strategy game

To win the game, player has to defend his base against several waves of
enemies. The base is protected by short ramparts and a gate as seen
in 2.5. Player gets a few units at the start that he can position at the
ramparts. He can train more units from the side panel. Unit’s health
and damage can be upgraded. Units and upgrades cost gold which can
be attained from killing enemies or surviving the enemy wave. The end
wave gold income can be increased by investment. The game ends when
player survives all waves or his gate is destroyed by the enemies.

There are four types of enemies. A basic enemy unit is an orc
with a rifle that has low damage, low rate of fire but great accuracy. Orc
is the most common unit and will be present in every wave. Mutant is

22

2.7. Game benchmark

Figure 2.6: Picture of the incoming enemy wave with all types of enemies.

an improvement upon the orc. It wields a machine gun with a greatly
increased rate of fire, has more health but lesser accuracy. The third
enemy option is a sapper who is equipped with a shield and bombs. He
goes straight for the gate and does the most damage to it. Last but not
least, an armored walker is the most dangerous enemy unit. It carries
a machine gun turret on top that has better chance to shoot defenders
hidden behind ramparts. All types of enemies can be seen in 2.6

Player can recruit soldiers with four types of equipment. All
types of units have the same amount of health, while damage varies,
depending upon the equipped weapon. Soldiers can carry rifles and
machine guns that perform similarly to their enemy counterparts. The
third option is an anti-tank rifle that deals more damage to armored
targets. Lastly, medics carry medical bags that can be thrown on friendly
units to heal them.

There are more paths to victory. One player might focus on
basic riflemen with early upgrades. Other can train few machine gunners
with a lot of medics to heal them. The greedy player can recruit just
enough soldiers to barely beat the wave, invest rest of his money into
income and become unbeatable in later rounds. One important skill
shared for all strategies is to pull units under heavy fire or those with
low health.

2.7.2 Scripted scenario

The technical of the benchmark is a scripted scenario where 1 wave of
enemies attacks the defenders on ramparts. The scenario is used to com-
pare the CPU usage of FixedUpdate, PhysicsSkinnedClothFinishUpdate”
and the overall time per frame.

23

2. Benchmarks

Figure 2.7: Picture of the clash of forces. Bullet trajectories are highlighted
by sharp colors.

Benchmark is being run in Unity editor with the timestep of
the physics simulation set to 10 ms. A preselected wave of enemies is
spawned with 50 orcs, 15 mutants, 5 sappers and 2 walkers. Enemies
are randomly spawned in a designated area. Enemies battle versus 47
riflemen and 14 machine gunners. 26 soldiers are on the ground in front
of the gate, rest is positioned on the ramparts. Benchmark is stopped at
an arbitrary point near the end of the battle when most combatants are
no longer operational, and time per frame returns to initial value. All
desired values are measured at this point and no more framerate spikes
are expected in the future.

2.7.3 Physics components

The benchmark makes use of all physics components used in previous
benchmarks. Components are featured in similar and new situations.

Units have 2 states with distinct representations. In the alive
state, units have rigidbody component and capsule collider. They are
moved around the map with MovePosition from rigidbody class. In the
dead state, units lose these components and gain a ragdoll which consists
of 8 capsule colliders, 2 box colliders, and 1 sphere collider all connected
with character joints. Ragdoll freely falls to the ground simulating a
corpse. The armored walker is an only exception, as it is the animated
robot from the sixth benchmark.

Weapons fire bullets using AddForce function with default force
mode. Bullets have a capsule collider, and their rigidbody component
has a continuous dynamic collision detection to ensure that each bullet
hits its mark. Friendly bullets have yellow and enemy bullets have red

24

2.8. Assets

trail renderer to better showcase their trajectories. Trajectories can be
seen in 2.7.

Cloth component is used in flags placed on walkers, orcs backs
and gate towers. Orcs flags use a mesh with 384 vertices and 572 tri-
angles, while walkers and towers use mesh with 304 vertices and 4092
triangles. A flag can collide with its 2 capsule collider poles and with
itself.

The deformable mesh script is used for the gate deformation
as it is struck by bombs thrown by sappers. It has a mesh with 2304
vertices and 4092 triangles.

2.8 Assets

An asset can be anything from a mesh to a script. It is a basic building
block of any game. Assets can not only be created in Unity editor but
also come from different sources. It can be a model from blender or
audio file recorded on your phone. In the created benchmarks, I mainly
work with my own assets. Scripts were created in Mircosoft’s Visual
Studio. Some of the models like the machine gun and the walker were
modelled in Blender.

Most of the outside assets were imported from the Asset Store.
This includes the hand painted materials [16], surface stone textures [17],
trees [18] and RTS camera component [19]. Fantastic free live captured
animations with models were imported from Mixamo [20].

25

Chapter 3
Results

In this chapter, I present results of the benchmarks. More about bench-
marks can be found in the previous chapter. Most of the results are
measured in the editor, so the framerate isn’t as high as it would be in a
built version. The reason for this is that I use a custom script to extract
data from the profiler. The script makes use of the UnityEditor library
and Unity couldn’t build the scene with such script in it.

3.1 Performance test of the collision system

This test involves a machine gun releasing casings which then create a
heap on the ground. The test is split into several versions.

Graph 3.1 shows standard version of the test with capsule col-
liders. The graph compares overall framerate of the test run in the
editor, built version and the CPU usage of the version run in the editor.
Time per frame is above 100 ms during initialization and then stabi-
lizes below 20 ms per frame. With more casings and collisions, time per
frame rises until it reaches maximum allowed value. The benchmark
peaks at around 2.4K active rigidbody components and 10K collision
pairs. Looking at the profiler, FixedUpdate function takes little more
than 80% of the CPU load at this point. After the peak, time per frame
lowers a little, since there are no more casings falling on the heap. Cas-
ings in the heap are still active and wiggle a bit. In the end, all active
rigidbody components in the heap are put to sleep and time per frame
returns to initial value.

Graph3.2 compares different collider options, standard version
with adaptive force enabled and higher timestep. The last mentioned
seems to have the biggest impact on performance. This, however, comes

27

3. Results

Figure 3.1: Graph detailing time per frame change with increasing number of
casings. Graph compares standard version of the casings test run in editor,
built version and CPU usage of the version run in editor.

Figure 3.2: Graph comparing different versions of performance test.

28

3.1. Performance test of the collision system

Figure 3.3: Casing heaps created by collision performance test. Left heap is
created with 10 ms and right with 20 ms timestep. Right heap is bigger than
left as casings are thrown further with 20 ms timestep.

Platform Time Casings Collisions
PC 34 3144 13350

Notebook 19 2059 8593
Tablet 10 658 2370
Mobile 10 543 1753

Table 3.1: Built standard iteration of Collision performance test on different
platforms. Time is shown in seconds. Test uses capsule colliders and timestep
is set to 10 ms.

at a price, with increased timestep, physics simulation is calculated less
frequently and physics components start to stutter a bit. Test with 80
ms timestep looked like it was running at 15 FPS. Another interesting
effect3.3 is that increasing timestep also increased the force which threw
casings from the gun. I had to lower the velocity of throwing by half to
get similar heap in the test with 20 ms timestep.

Table 3.1 shows results of built standard iteration of casings
test ran on different platforms. Platform specifications can be found in
3.2.

With all things considered, capsule colliders with around 40
ms timestep and adaptive force enabled seems to be the best option to
handle a heap of colliding objects. In a game scenario, casings could be
deleted after a short while to ensure a low impact on framerate.

29

3. Results

PC i5-7600k 3.80 GHz; 16 GB RAM;
NVidia GeForce GTX 1070; Win 10 64bit;

NR: 1920 x 1080, TR: 1920 x 1080
Notebook i7-4710HQ 2.5 GHz; 8 GB RAM;

NVidia GeForce GTX 860m; Win 10 64bit;
NR: 1920 x 1080, TR: 1920 x 1080

Tablet Quad-core 2.2 GHz Cortex-A15; 2 GB RAM;
ULP GeForce Kepler; Android 6.0.1;
NR: 1920 x 1200, TR: 1920 x 1080

Mobile Quad-core Max 1.8 GHz; 3 GB RAM;
Adreno 530; Android 7.0;

NR: 1920 x 1080, TR: 1920 x 1080

Table 3.2: Benchmark platforms. NR - native resolution, TR - tested resolu-
tion.

Figure 3.4: Graph showing proportional error of sphere collisions. Error is
calculated as total count of collisions divided by error collisions. It occurs
when centers of 2 spheres are closer than their radius sum.

3.2 Accuracy test of the collision system

In this test, 400 spheres are clashing to test the accuracy of their col-
lisions. Graph3.4 displays a percentage of collisions where colliders of
spheres were intersecting. The Percentage is counted as a total count of
collisions divided by a total count of errors times 100. The graph starts
at 100% due to high velocity behind initial clashes. Error count dwindles
as spheres start to shuffle around creating low velocity collisions.

30

3.3. Fire accuracy test

Times increased 1x 2x 3x 4x 5x
Timestep Default 4.4 14.5 16.4 17.1 17.4

Force 4.4 14.6 16.5 17.1 17.4
Timestep VelocityChange 4.4 4.3 4.2 4.1 4.1

Table 3.3: Bullet was fired at a wall with different physics simulation
timesteps. Numbers represent y value of contact point 3D vector. In the
first row timestep increased respectively, in the second a force behind bullet
was increased, and a different type of force was used with increasing timestep
in the third row.

3.3 Fire accuracy test

For the first part of this test, a gun is fired for thousand times at a wall
to determine the consistency of calculations. Every shot is compared to
the first one. Not a single one has a different contact point with the wall
than the first.

In the second part, a gun is fired with fixed timestep set to
different values. Table3.3 shows measured values. Contact point position
vector didn’t change in the x nor the z direction, thus only the y direction
values are displayed. The first row represents gun fired five times with
same force of 25 starting with 10 ms timestep and ending with 50 ms.
In the second row, a gun was fired five times with the same timestep of
10 ms but with five different forces from 25 to 125. Values in the first
and second row are almost identical. This strengthens the hypothesis
from performance test that multiplying timestep by x increases the force
of AddForce function x times. The possible way to battle this effect is
to change force mode of AddForce to VelocityChange. This adds instant
velocity change to the bullet, ignoring its mass. The third row in table3.3
shows how changing timestep impacts such solution.

3.4 Cloth component benchmark

This benchmark showcases the cloth component. Rugs are torn from
racks and collide with poles, wall, and floor. The benchmark is split
into three iterations: standard, with self collision and one with both self
collision and intercollision.

Graph 3.5 shows time per frame for each iteration. The first
iteration peaks at the moment, when torn rugs hit poles. Time per frame
gets shorter as rush slowly hit the wall. The second iteration has similar
curve until rugs hit the wall, there time per frame peaks as rugs are
pressed against the wall and self collide the most. The third iteration

31

3. Results

Figure 3.5: Graph of the cloth component benchmark. Graph shows overall
framerate difference between active cloth self collision, active cloth self and
inter collision and standard with neither of the 2.

peaks when rugs hit the poles and at the same time collide with each
other. Some of the rugs get stuck on the poles, so there’s not as long
time per frame as in the second iteration during wall hitting phase.

Looking at the profiler, cloth simulation is calculated in Post-
LateUpdate.PhysicsSkinnedClothFinishFunction which starts at 30% of
CPU load with 5 ms per frame before rugs are torn. It can reach around
90% of CPU load with 40 ms per frame during pole hitting phase in the
third iteration.

Overall cloth component serves its purpose good enough. It
is good for character clothing and the occasional cloth that characters
interact with. Rug meshes in this test were exaggerated to better show
framerate difference. Similar visual results could be achieved with much
less detailed mesh and much less frame budget. Problems start when
you want your cloth objects to interact with the environment. Fact that
cloth component can interact only with capsule and sphere colliders
makes this task rather difficult. I solved this problem by creating the
whole environment from capsule colliders which is not optimal. Other
possible solutions can be found on Asset store(e.x. Obi Cloth[17])

3.5 Deformable object benchmark

Benchmark of the custom deformable object. A gun is shooting bullets
at a wall that create holes upon impact. The benchmark was run 4 times
with 1144, 2304, 5824 and 12474 vertices for wall mesh.

32

3.6. Physics based animation benchmark

Figure 3.6: Graph of deformable object benchmark. Graph shows the impact
on performance of mesh deformation. Vertex count of used mesh: 1 - 1144; 2
- 2304; 3 - 5824; 4 - 12474

Graph displays time per frame for each iteration3.6. Time is
increased with each iteration. A visible tear in the simulation can be
seen in the last iteration with 12474 vertices. This means that script is
not optimal for bullet hole simulation as only meshes with lower vertex
count can be used. Problems come from the fact that each collision whole
mesh has to be changed. This could be fixed by changing only affected
vertices but mesh class doesn’t offer such solution. Another problem is
that mesh collider has to be destroyed and added every bullet hit. A
possible solution could be achieved by using tessellation shader.

All in all, this script can be used for low detail mesh de-
formables. I could see an iteration of it being used for car deformation,
snow deformation, and similar uses.

3.6 Physics based animation benchmark

In this benchmark walking robots are animated with joints. Robots
race from the start of the map to the end. Physics animation creates an
uneven setting which leads to different robot winning every time.

The potential of joint components in Unity surprised me. It is
possible to create complex animations and it is so easy to set up. The
real challenge comes from making the character move properly with an
ability to scale obstacles. Robots used in this benchmarks have problems
with simple steps. It is no longer a question of one’s programming ability,

33

3. Results

Figure 3.7: Graph of scripted game benchmark. The green line represents
the CPU usage of FixedUpdate, the blue line CPU usage of PhysicsSkinned-
ClothFinishUpdate and the red line overall time per frame. Graph starts at
20th frame as overall time per frame is over 200 in first couple of frames.

but rather a question of his knowledge in the field of mechanics.

3.7 Game benchmark

The game benchmark is split into 2 parts: the scripted scenario and the
actual game.

In the scripted scenario, a single wave of enemies attacks de-
fenders at ramparts. CPU usage and time per frame are recorded.

Graph 3.7 shows CPU usage of FixedUpdate, PhysicsSkinned-
ClothFinishUpdate and overall time per frame. Units are randomly gen-
erated above ground to avoid spawning in the uneven terrain collider,
FixedUpdate starts high because as units fall on to the ground. Next
spike of FixedUpdate occurs when soldiers fire at each other, start turn-
ing into ragdolls and fall on the ground. Time per frame then lowers as
fewer soldiers are active. PhysicsSkinnedClothFinishUpdate stays on a
similar level because no flags are deleted during the scene. Overall time
per frame follows the trajectory of previously mentioned functions.

The overall performance of the game benchmark is good. Fram-
erate mostly stays below 30 ms per frame. Several optimization changes
had to be implemented to keep it that way. Orc flags have to be deleted
after a while as they are a constant burden on the CPU. The same goes
for ragdolls. Although they are turned inactive after a while, any con-
tact reawakens them which impacts performance. To conclude, the game

34

3.7. Game benchmark

works fairly well and shows the combined performance of all benchmarks.

35

Conclusions

In this bachelor’s thesis, I have identified critical parts of physics sim-
ulation, and I have implemented seven physics simulation benchmarks
in Unity game engine to test them. Some of the benchmarks test the
accuracy of physics simulation and its impact on framerate, while others
showcase the visual fidelity of Unity physics components, or whether it’s
possible to recreate a certain physics effect from the real world. Finally,
I created a simple real-time strategy game a the seventh benchmark that
combines previous benchmarks into one.

At first, I have touched upon contemporary physics engines
in chapter 1. In the same chapter, I have also described how physics
works in Unity and reviewed a couple of papers that compared physics
engines. In chapter 2, I have described implemented benchmarks, what
they test, why was a particular physics component used and how it
was tested. I presented the results of these benchmarks in chapter 3.
While all benchmarks brought the measured results, some of them also
displayed unexpected interesting findings.

The first benchmark showed that mesh quality and timestep
of physics simulation greatly affects CPU usage. It also highlighted the
fact that the AddForce function in default force mode increases its power
with different timesteps. This was better detailed in the fire accuracy
test. The accuracy of collisions system test showcased that while inter-
section does happen during low-speed collisions, they are minimal and
not detrimental to the simulation. Cloth component benchmark showed
that the component serves its purpose well and with moderately detailed
meshes isn’t taxing on CPU. Custom deformable mesh benchmark re-
sults were a little disappointing. They proved that the proposed method
can only be used with low detailed meshes, otherwise, it has a large im-

37

Conclusions

pact on framerate. Results of the custom physics animation benchmark
were rather surprising. I was astonished, how easy it is to create ani-
mations with the joint component. The game implemented as the last
benchmark showed that it’s possible to create a physics demanding game
in Unity game engine.

For a future work, it is possible to expand the benchmarks,
going deeper into each component. Another possibility is to implement
similar benchmarks for a different game engine. The implementations
in several engines could be then compared and the game engine with
the best physics simulation could be found. This thesis also touched
upon some topics that could be examined further. One thesis could be
written about recreating humanoid characters with physics animations,
while other could focus on different ways how to represent deformable
objects.

38

Bibliography

[1] Gregory, J. Game Engine Architecture. Taylor and Francis Group,
LLC, 2009, 9-10 pp.

[2] Šmı́d, A. Comparison of Unity and Unreal Engine, Bachelor’s The-
sis, CTU, Prague, Czech Republic,. 2017.

[3] Millington, I. Game Physics Engine Development. Elsevier Inc.,
2007.

[4] NVIDIA. PhysX home page. https://www.geforce.com/
hardware/technology/physx, accessed: 2018-01-2.

[5] Havok. Havok home page. Available from: https:
//www.havok.com/physics/

[6] Zagrebelnyy, P. Rendering and simulation in offroad driving
game. https://www.gamasutra.com/blogs/PavelZagrebelnyy/
20130613/194247/Rendering_and_simulation_in_offroad_
driving_game.php, 6 2013.

[7] Erwin Coumans, Y. B. Bullet quick start
guide. https://docs.google.com/document/d/
10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/
edit#heading=h.2ye70wns7io3, accessed: 2018-03-14.

[8] Goldstone, W. Unity 3.x Game Development Essentails. Pakt Pub-
lishing, 2011.

[9] Technologies, U. Unity Documentation. https://
docs.unity3d.com/Manual, accessed: 2018-05-14.

[10] Pott, T. Realtime mesh deformation package. http:
//labertorium.de/unity/789/unity-realtime-mesh-
deformation-package/, accessed: 2018-02-3.

39

https://www.geforce.com/hardware/technology/physx
https://www.geforce.com/hardware/technology/physx
https://www.havok.com/physics/
https://www.havok.com/physics/
https://www.gamasutra.com/blogs/PavelZagrebelnyy/20130613/194247/Rendering_and_simulation_in_offroad_driving_game.php
https://www.gamasutra.com/blogs/PavelZagrebelnyy/20130613/194247/Rendering_and_simulation_in_offroad_driving_game.php
https://www.gamasutra.com/blogs/PavelZagrebelnyy/20130613/194247/Rendering_and_simulation_in_offroad_driving_game.php
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.unity3d.com/Manual
https://docs.unity3d.com/Manual
http://labertorium.de/unity/789/unity-realtime-mesh-deformation-package/
http://labertorium.de/unity/789/unity-realtime-mesh-deformation-package/
http://labertorium.de/unity/789/unity-realtime-mesh-deformation-package/

Bibliography

[11] Flick, J. Mesh Deformation - Making a Stress Ball. http://
catlikecoding.com/unity/tutorials/mesh-deformation/, ac-
cessed: 2018-02-3.

[12] Boeing, A.; Bräunl, T. Evaluation of real-time physics simulation
systems. In Proceedings of the 5th international conference on Com-
puter graphics and interactive techniques in Australia and Southeast
Asia, ACM, 2007, pp. 281–288.

[13] Technologies, U. Unity WebGLBenchmark. https://
files.unity3d.com/jonas/WebGLBenchmark/, accessed: 2018-
05-14.

[14] Seugling, A.; M., R. Evaluation of Physics Engines and Implemen-
tation of a Physics Module in a 3d-Authoring Tool. Master’s thesis,
Umea University, Umea, Sweden, 03 2006.

[15] Erez, T.; Tassa, Y.; et al. Simulation tools for model-based robotics:
Comparison of bullet, havok, mujoco, ode and physx. In Robotics
and Automation (ICRA), 2015 IEEE International Conference on,
IEEE, 2015, pp. 4397–4404.

[16] Lusth, A. Hand Painted Textures. https://
assetstore.unity.com/packages/2d/textures-materials/
hand-painted-textures-31347, accessed: 2018-05-1.

[17] M-Assets. Hand Painted Stone Floor Pack. https:
//assetstore.unity.com/packages/2d/textures-materials/
stone/hand-painted-stone-floor-pack-99247l, accessed:
2018-05-1.

[18] Zatylny, P. Hand Painted Forest Environment Free Sample.
https://assetstore.unity.com/packages/3d/environments/
hand-painted-forest-environment-free-sample-35361, ac-
cessed: 2018-05-8.

[19] Incorporated, A. S. RTS camera. https://assetstore.unity.com/
packages/tools/camera/rts-camera-43321, accessed: 2018-05-
1.

[20] Sylkin, D. Mixamo characters and animations. https://
www.mixamo.com/, accessed: 2018-03-2.

40

http://catlikecoding.com/unity/tutorials/mesh-deformation/
http://catlikecoding.com/unity/tutorials/mesh-deformation/
https://files.unity3d.com/jonas/WebGLBenchmark/
https://files.unity3d.com/jonas/WebGLBenchmark/
https://assetstore.unity.com/packages/2d/textures-materials/hand-painted-textures-31347
https://assetstore.unity.com/packages/2d/textures-materials/hand-painted-textures-31347
https://assetstore.unity.com/packages/2d/textures-materials/hand-painted-textures-31347
https://assetstore.unity.com/packages/2d/textures-materials/stone/hand-painted-stone-floor-pack-99247l
https://assetstore.unity.com/packages/2d/textures-materials/stone/hand-painted-stone-floor-pack-99247l
https://assetstore.unity.com/packages/2d/textures-materials/stone/hand-painted-stone-floor-pack-99247l
https://assetstore.unity.com/packages/3d/environments/hand-painted-forest-environment-free-sample-35361
https://assetstore.unity.com/packages/3d/environments/hand-painted-forest-environment-free-sample-35361
https://assetstore.unity.com/packages/tools/camera/rts-camera-43321
https://assetstore.unity.com/packages/tools/camera/rts-camera-43321
https://www.mixamo.com/
https://www.mixamo.com/

Appendix A
Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

project.................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

41

	Introduction
	Motivation
	Structure

	Game physics
	Game design and the role of physics
	Games and game physics - How does it work?
	Physics engine
	Unity game engine
	Physics in Unity
	Physics optimization tools
	Current benchmarks

	Benchmarks
	Performance test of the collision system
	Accuracy test of the collision system
	Fire accuracy test
	Cloth component benchmark
	Deformable object benchmark
	Physics based animation benchmark
	Game benchmark
	Assets

	Results
	Performance test of the collision system
	Accuracy test of the collision system
	Fire accuracy test
	Cloth component benchmark
	Deformable object benchmark
	Physics based animation benchmark
	Game benchmark

	Conclusions
	Bibliography
	Contents of enclosed CD

