
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 29, 2017

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Automata Approach to XML Data Indexing: Implementation and Experimental Evaluation

 Student: Lukáš Renc

 Supervisor: Ing. Eliška Šestáková

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2018/19

Instructions

Study the following automata-based XML data indexing methods: Tree String Path Automaton (TSPA), Tree
String Path Subsequences Automaton (TSPSA), and Tree Paths Automaton (TPA).
For these methods, suggest an appropriate implementation.
1) Focus on optimal time and space complexity, easy experimental evaluation and system architecture.
2) Implement the algorithms as a Java library and test its functionality using a suitable data set.
3) Provide experimental evaluation (time and space complexity) of these methods using different input
data sets.
For example, use different size of XML files, different average depth of XML trees or different number of
leaves.
In the experiments, focus on the index construction phase, size of the index structure and time complexity
of query evaluation.

References

Will be provided by the supervisor.

Bachelor’s thesis

Automata Approach to XML Data
Indexing: Implementation and
Experimental Evaluation

Lukáš Renc

Department of Theoretical Computer Science
Supervisor: Ing. Eliška Šestáková

May 15, 2018

Acknowledgements

I would like to express my gratitude to my supervisor, Ing. Eliška Šestáková,
for sharing her knowledge, words of encouragement, and her guidance through
the program.

I would also like to thank my family: my parents and my brother. Last but
not least I am extremely thankful to my partner Terezka for unconditionally
believing in me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 15, 2018 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Lukáš Renc. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Renc, Lukáš. Automata Approach to XML Data Indexing: Implementation
and Experimental Evaluation. Bachelor’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2018.

Abstrakt

Tato práce se zabývá implementací a experimentálním vyhodnocením metod
pro indexování XML dokumentů. Konkrétně se jedná o metody Tree String
Path Automaton (TSPA), Tree String Path Subsequence Automaton (TSPSA)
a Tree Path Automaton (TPA). Tyto metody jsou založeny na teorii konečných
automatů a umožňují nalezení odpovědi pro omezenou podmnožinu XPath
dotazů (obsahující pouze /, // přechody a jejich kombinaci) v lineárním čase
délky dotazu. Jednotlivé metody jsou v této práci implementovány jako Java
knihovna. K předzpracování XML dokumentu je použita knihovna SAX.
Hlavní část práce se věnuje popisu, implementaci a podmínkám běhu experi-
mentů. V práci jsou prezentovány provedené experimenty. Tyto experimenty
zkoumají, jak závisí vlastnosti indexu na velikosti (hloubce, šířce) vstupního
XML souboru. Při tvorbě indexu měříme spotřebu RAM a čas. Proto XML
dokumenty použity pro experimenty tvoří set s navzájem různými klíčovými
parametry (např. průměrná hloubka, maximální hloubka, velikost, počet
listů). V závěru práce jsou graficky prezentovány výsledky experimentů. Ve
výsledné knihovně je zabudována podpora pro spuštění výše zmíněného ex-
perimentálního prostředí.

Klíčová slova XML, indexování dat, automat, konečný automat, XPath,
index

vii

Abstract

This thesis deals with implementation and an experimental evaluation of some
XML data indexing methods. The methods are as follows:Tree String Path
Automaton (TSPA), Tree String Path Subsequence Automaton (TSPSA) and
Tree Path Automaton (TPA). All of these methods are based on the theory of
finite automata and answer a limited subset of XPath query (limited to /, //
transitions and their combination) in linear time to the length of the query.
They are implemented as a Java library. SAX library is used to preprocess an
XML document. The main part of the thesis is dedicated to a description, an
implementation and conditions under which experiments are conducted. In
the thesis experiments are run to clarify relations between Size/Depth/Width
of an XML document and RAM consumption/Time to build an index. The
chosen XML documents, which are presented in this thesis, form a set of mu-
tually different documents in crucial aspects (average depth, maximal depth,
size, number of leaves). Results of the conducted experiments are described in
the end of the thesis. There is built-in support for experimental environment
in the resulting Java library.

Keywords XML, data indexing, automaton, finite state machine, XPath,
index

ix

Contents

Introduction 1
Motivation . 2
Goals . 2

1 Theoretical Background 3
1.1 Basic Notions . 3
1.2 XML . 4
1.3 XPath . 8

2 Automata Approach to XML Data Indexing 9
2.1 Tree String Path Automaton 10
2.2 Tree String Path Subsequences Automaton 13
2.3 Tree Path Automaton . 16

3 Research 21
3.1 Effective XML Preprocessing 21
3.2 Finite Automaton Incremental Construction 22
3.3 Trie Data Strucuture . 23
3.4 Finite Automaton Transition Table 23
3.5 Summary . 23

4 Implementation 25
4.1 New Algorithm description . 25
4.2 Classes Description . 29
4.3 Used Libraries & Data Structures 32
4.4 Advantages & Disadvantages of the Algorithm 33

5 Experimental Evaluation 35
5.1 Methods Description . 35
5.2 DataSets Description . 35

xi

5.3 Experiments . 37
5.4 Experimental Results Summary 48

6 Library Usage 49
6.1 Method getdTSPA() . 49
6.2 Method getdTSPSA() . 50
6.3 Method getdTPA() . 50
6.4 Method getnTPA() . 50
6.5 Method getResults() . 51
6.6 Method resolveQuery() . 51

7 Goals Fulfillment 53

Conclusion 55

Bibliography 57

A Acronyms 61

B Contents of enclosed SD Card 63

xii

List of Figures

1.1 Sample XML file . 5
1.2 XML tree model T (D) from Example 1.1 6

2.1 String path set for the sample XML from Figure 1.1 10
2.2 String path alphabet for the sample XML from Figure 1.1 10
2.3 Individual TSPA for the string path set from Example 2.1 11
2.4 TSPA for the string path set from Example 2.1 12
2.5 Evaluation of the sample query from Figure 1.2.2 13
2.6 Deterministic TSPSA for the XML tree model T from Figure 2.1. . 15
2.7 TSPA for the String path P = TEAMS(1) TEAM(5) TOPPPLAYER(9)

TEAM(10) TOPPLAYER(11) from Example 2.3.1. 16
2.8 TSPSA for the String path P = TEAMS(1) TEAM(5) TOPPPLAYER(9)

TEAM(10) TOPPLAYER(11) from Example 2.3.1. 18
2.9 TPA for the String path P = TEAMS(1) TEAM(5) TOPPPLAYER(9)

TEAM(10) TOPPLAYER(11) from Example 2.3.1 19
2.10 TPA for the string path set from Example 2.1 20

4.1 Sample string path set to demonstrate differences between two
backtracking approaches. 27

4.2 Visualization of the Semideterministic backtracking approach. . . . 28
4.3 Visualization of the Nondeterministic backtracking approach. . . 29

5.1 Time during TPA build for the Sample XML dataset 39
5.2 RAM usage during TPA build for the Sample XML dataset 40
5.3 Time of TPA Build for the Generated XML dataset 42
5.4 RAM Usage during TPA build for the Generated XML dataset . . 43
5.5 Time during TPA build for the Real World XML dataset 44
5.6 RAM usage during TPA build for the Real World XML dataset . 45
5.7 Time of evaluation for queries Q1, Q2, Q3 for the D2 46
5.8 Time of evaluation for queries Q4, Q5, Q6 for the D5 47

xiii

5.9 Time of evaluation for queries Q7, Q8, Q9 for the D10 48

6.1 High level of TSPA structure . 50

xiv

List of Tables

5.1 Features of the chosen XML documents for experiments 37
5.2 Time of TPA Build for the Sample XML dataset 39
5.3 RAM usage of TPA Build for the Sample XML dataset 40
5.4 Time of TPA Build for the Generated XML dataset 41
5.5 RAM Usage of TPA Build for the Generated XML dataset 43
5.6 Time of TPA Build for the Real World XML dataset 44
5.7 RAM Usage of TPA Build for the Real World XML dataset 45
5.8 Query evalution performance test for NbaSample2.xml 46
5.9 Query evalution performance test for XMark-f0.01.xml 47
5.10 Query evalution performance test for Orders.xml 47

xv

Introduction

Extensible Mark Up Language (XML) [1] is a widespread way to share and
store data. It has been a W3C recommendation for 20 years. Because of
popularity of XML language [2] efficient quering is needed. This scientific field
has been studied for many years. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
Unfortunately, XML has a few significant drawbacks for the speed performance
(e.g., variable length of an element due to parallel processing is not possible)
which slows down evaluation of queries. Therefore time and memory efficient
evaluator is needed.

XPath [17], XLink [2] (query languages providing standards for queries on
XML documents for more efficient evaluation), etc., do not make use of prior
structuring of a given XML file, therefore queries are not resolved fast due
to excessive XML tree traversal. This issue can be fixed via indexing. Finite
automaton is one of possible solutions for the design of the index [18]. It meets
time efficiency, unlike XPath or XLink.

This thesis implements and provides experimental evaluation to three
automata-based methods which were presented in [18] namely Tree String
Path Automaton (TSPA), Tree String Path Subsequence Automaton (TSPSA),
Tree Path Automaton (TPA) [18].

Being able to quickly answer queries on any XML document is fundamental
for a smooth run of an application. Suggested solution is very effective for
different queries on the same XML file. (Because of the time spent on creating
of the evaluator which is later used again without modifications.)

The main goal of this thesis is to implement the design and conduct ex-
periments on a finite automaton based index which is used to quickly resolve
queries on any given XML file. The thesis contains analysis of already known
solutions. Author focuses not only on suggesting implementation of the index
but also on implementing environment for experiments. The thesis presents
conducted experiments which show efficiency and speed of the evaluator in
tables and graphs. Last but not least the author aims to create extensible
interface for further improvements and/or additional functionality.

1

Introduction

The thesis continuous in the following structure. Starts with theoreti-
cal background (principles, definitions) then move on to chapter about exist-
ing approach. After theoretical chapters comes a chapter presenting author’s
approach. In the second part of the thesis there is an introduction to ex-
perimental environment and in the end there are interpreted results of the
experiments.

Motivation
Author’s main motivation for choosing this topic is making use of the theory
of automata in practice. Challenging current solutions and possible everyday
usage of the result is another reason author made the decision.

Goals
The main goals of this thesis is to

• study existing automata-based XML data indexing methods [18] namely
Tree String Path Automaton, Tree String Path Subsequence Automaton,
Tree Path Automaton,

• implement these automata-based XML data indexing methods as a Java
library,

• build into the library support for running experiments,

• provide detailed experimental evaluation of the implemented methods.

2

Chapter 1
Theoretical Background

1.1 Basic Notions

1.1.1 Alphabet

Definition 1 (Alphabet). An alphabet A is a finite non-empty set whose
elements are called symbols.

1.1.2 String

Definition 2 (String). A string over a given alphabet A is a finite sequence
of symbols of A.

1.1.3 Subsequence

Definition 3 (Subsequence). A subsequence of a string x = x1x2...xn is a
string y obtained by deleting zero or more symbols from x.

1.1.4 Prefix

Definition 4 (Prefix). A prefix of a string x = x1x2...xn is a string y =
x1x2...xm, where m ≤ n.

1.1.5 Nondeterministic Finite State Automaton

Definition 5 (NFSA). A Nondeterministic Finite State Automaton (NFSA)
is a five-tuple M = (Q, A, δ, q0, F), where Q is a finite set of states, A is an
alphabet, δ is a state transition function from Q × A to the power set of Q,
q0 ∈ Q is an initial state and F ⊆ Q is a set of final states.

3

1. Theoretical Background

1.1.6 Deterministic Finite State Automaton
Definition 6 (DFSA). A finite state automaton is Deterministic (DFSA) if
∀a ∈ A, q ∈ Q : |δ(q, a)| ≤ 1.

For a nondeterministic finite state automaton M1 = (Q1, A, δ1, q01, F1),
we can construct an equivalent deterministic finite state automaton M2 =
(Q2, A, δ2, q02, F2) using the standard determinization algorithm based on sub-
set construction [19]. Every state q ∈ Q2 corresponds to some subset of Q1.
We call this subset a d-subset (deterministic subset). The d-subset is a totally
ordered set; the ordering is equal to ordering of states of M1 considered as
natural numbers.

1.1.7 Automata Product Construction
Let M1 = (Q1, A, δ1, q01, F1) and M2 = (Q2, A, δ2, q02, F2) be two finite state
automata. We define a finite state automaton M∪ such that L(M∪) = L(M1)∪
L(M2). We can build the automaton M∪ by running the automata M1 and
M2 in “paralllel” by remembering the states of both automata while read-
ing the input. This is achived by the product construction [19]: M∪ = (Q1 ×
Q2, A, δ, (q01, q02), (F1×Q2)∪(Q1×F2)), where δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)).

1.1.8 Trees
A rooted and directed tree T is an acyclic connected directed graph T =
(N, E), where N is a set of nodes and E is a set of ordered pairs of nodes
called directed edges. A root is a special node r ∈ N with in-degree zero. All
other nodes of a tree T have in-degree one. There is just one path from the
root r to every node n ∈ N , where n ̸= r. A node n1 is a direct descendant
of a node n2 if a pair (n2, n1) ∈ E.

A labeling of a tree T = (N, E) is a mapping N into a set of labels. T is
called a labeled tree if it is equipped with a labeling. T is called an ordered
tree if a left-to-right order among siblings in T is given. Any node of a tree
with out-degree zero is called a leaf. A depth of a node n, denoted as depth(n),
is the number of directed edges from the root to the node n.

1.2 XML
XML [1] is a markup language that defines a set of rules for encoding docu-
ments in a format that is both human-readable and machine-readable. The
set of marks of an XML document is not fixed and can be defined in various
ways for each document. The key constructs of an XML document are tags,
elements and attributes. XML document can be seen as a tree of nodes where
each of the nodes is created according to an element in the XML document

4

1.2. XML

and edges represent element inclusion [18]. XML indexes which are imple-
mented in this thesis deal with only the structure of the elements. Attributes
and texts are ignored and therefore not inserted into leaves. Every node con-
sists of a pair - label + id. The label corresponds to a tag name and the id
is an identifier made of an associated preorder number of its element in an
XML document. XML alphabet is formed by a set of unique tag names as it
is defined below.

Definition 7 (XML alphabet). Let D be an XML document. An XML alpha-
bet A of D, represented by A(D), is an alphabet where each symbol represents
a tag name (label) of an XML element in D.

Consider having this sample XML document which shows a basic info
about NBA teams and their own supportive team in G League.• 1

Example 1.2.1. <TEAMS>
<TEAM name = "L.A. CLippers">

<TOPPLAYER>Blake Griffin</TOPPLAYER>
<COACH>Doc Rivers</COACH>

</TEAM>
<TEAM name = "Washington Wizards">

<TOPPLAYER>Tomas Satoransky</TOPPLAYER>
<COACH>Scott Brooks</COACH>
<ARENA>Capital One ARENA</ARENA>
<GLEAGUE>

<TEAM name = "Capital City Go-Go">
<TOPPLAYER>Tobias Love</TOPPLAYER>
<ARENA>
St. Elizabeths East Entertainment and Sports Arena
</ARENA>

</TEAM>
</GLEAGUE>

</TEAM>
</TEAMS>

Figure 1.1: Sample XML file

The sample XML document, from Figure 1.1, can be represented as a tree.
See Figure 1.2.

1Tomas Satoransky is a Czech player! Go Sato Go !

5

1. Theoretical Background

TEAMS,1

TEAM,2

TOPPLAYER,3 COACH,4

TEAM,5

TOPPLAYER,6 COACH,7 ARENA,8 GLEAGUE,9

TEAM,10

TOPPLAYER,11 ARENA,12

Figure 1.2: XML tree model T (D) from Example 1.1

1.2.1 Supported Set of Queries
All automata presented in this paper support some fragments of linear XPath
queries. In particular, the author focused on the two common axes (i.e.,
child and descendant-or-self) with name tests. Following XPath queries are
supported.

XP /,nametest Queries using the child axis (i.e., /) only. By using only /transitions
each element on a path to the result has to be specified

XP //,nametest Queries using the descendant-or-self axis (i.e., //) only. By
using only //transitions multiple previous elements on a path to the
result cannot be specified

XP /,//,nametest Queries using any combination of child (i.e., /) and descendant-
or-self (i.e., //) axis.

1.2.1.1 Visual Demonstration for XP [/]/,nametest

Visual demonstration of above mentioned notation of transition. Sample
queries are evaluated for the sample XML document, see 1.1.

Example 1.2.2 (Sample XP /,nametest query).

Input Query: /TEAMS/TEAM/ARENA

Output Node: ARENA 8

6

1.2. XML

TEAMS,1

TEAM,2

TOPPLAYER,3 COACH,4

TEAM,5

TOPPLAYER,6 COACH,7 ARENA,8 GLEAGUE,9

TEAM,10

TOPPLAYER,11 ARENA,12

Example 1.2.3 (Sample XP //,nametest query).

Input Query: //ARENA

Output Node: ARENA 8, ARENA 12

TEAMS,1

TEAM,2

TOPPLAYER,3 COACH,4

TEAM,5

TOPPLAYER,6 COACH,7 ARENA,8 GLEAGUE,9

TEAM,10

TOPPLAYER,11 ARENA,12

Example 1.2.4 (Sample XP [/]/,nametest query).

Input Query: //TEAM/GLEAGUE//ARENA

Output Node: ARENA 12

TEAMS,1

TEAM,2

TOPPLAYER,3 COACH,4

TEAM,5

TOPPLAYER,6 COACH,7 ARENA,8 GLEAGUE,9

TEAM,10

TOPPLAYER,11 ARENA,12

7

1. Theoretical Background

1.3 XPath
XPath [17] (XML Path Language) is one of the XML query languages. Its
name comes from the use of the path as a navigation notation on an XML
document. It is a language for addressing parts of an XML document, designed
to be used by both XSLT and XPointer.

8

Chapter 2
Automata Approach to XML

Data Indexing

This chapter shows possible automata-based solution to XML data indexing.
First we specify 3 definitions which are later used in description of each au-
tomaton. Starting with TSPA, the thesis moves onto the TSPSA and the
TPA.

The finite automata and methods described in this chapter were presented
in [18][20][21] .

Definition 8 (String path). Let T be an XML tree model of height h. A
string path P = n1n2 . . . nt (t ≤ h) of T is a linear path leading from the root
r = n1 to the leaf nt.

Definition 9 (String path alphabet). Let P be a string path of some XML
tree model. A string path alphabet A of P , represented by A(P), is an alphabet
where each symbol represents a node label in P .

Definition 10 (String paths set). Let T be an XML tree model with k leaves.
A set of all string paths over T is called a string paths set, denoted by P (T) =
{P1, P2, . . . , Pk}.

Following examples demonstrate principles of above mentioned definitions.
String path set and Alphabet for the sample XML document, see 1.1, are
presented in the following example.

9

2. Automata Approach to XML Data Indexing

The String path set for 1.1 XML document is as follows:
Example 2.0.1 (Sample String path set). •

• P1 = TEAMS(1) TEAM(2) TOPPLAYER(3),
• P2 = TEAMS(1) TEAM(2) COACH(4),
• P3 = TEAMS(1) TEAM(5) TOPPLAYER(6),
• P4 = TEAMS(1) TEAM(5) COACH(7),
• P5 = TEAMS(1) TEAM(5) ARENA(8),
• P6 = TEAMS(1) TEAM(5) GLEAGUE(9)TEAM(10)TOPPLAYER(11),
• P7 = TEAMS(1) TEAM(5) GLEAGUE(9)TEAM(10)ARENA(12),

Figure 2.1: String path set for the sample XML from Figure 1.1

The corresponding string path alphabet for 1.1 XML document is as follows:
Example 2.0.2 (Sample String path Alphabet). •

• A(P1) = A(P3) = {TEAMS,TEAM,TOPPLAYER},
• A(P2) = A(P4) = {TEAMS,TEAM,COACH},
• A(P3) = {TEAMS,TEAM,ARENA},
• A(P4) = {TEAMS,TEAM,GLEAGUE,TOPPLAYER},
• A(P5) = {TEAMS,TEAM,GLEAGUE,COACH}.

Figure 2.2: String path alphabet for the sample XML from Figure 1.1

2.1 Tree String Path Automaton
The Tree String Path Automaton (TSPA), for details see [18], is a finite au-
tomaton. Its purpose is to speed up the evaluation for all of the XPath queries
which use only the child axis (i.e., /-axis). Formal definition of such a fragment
is represented by the following context-free grammar:

G = ({S}, A(D), {S → SS | /a, such as a ∈ A(D)}, S)

For the given XML tree we first obtain all of the string paths which form
together a string path set. XPath queries that contain only child axis are
basically prefixes of individual string paths. Therefore using a prefix automa-
ton for a set of string paths is possible. To achieve this we construct prefix
automata for each of the string path in the string path set and afterwards run
all of the automata ”in parallel” by remembering the states of all automata
while reading input. This is achieved by the product construction and as a
result we get the desired tree string path automaton.

10

2.1. Tree String Path Automaton

Data: A string path P = n1n2 . . . n|P |.
Result: DFSA M = (Q, A, δ, 0, F) accepting all XP {/,name−test}

queries of P .
ht! Q← {0, id(n1), id(n2), . . . , id(n|P |)},
ht! A = {/a : a ∈ A(P)},
ht! δ(0, /label(n1))← id(n1),
∀i ∈ {1, 2, . . . , |P | − 1} : δ(id(ni), /label(ni+1))← id(ni+1),

ht! F ← Q \ {0}.

[18]
Algorithm 1: Construction of a deterministic prefix automaton for a single
string path.

By running Algorithm 1 desired automata are as follow:

0start 1 2 3
/TEAMS /TEAM /TOPPLAYER

0start 1 2 4
/TEAMS /TEAM /ARENA

0start 1 5 6
/TEAMS /TEAM /TOPPLAYER

0start 1 5 7
/TEAMS /TEAM /TOPPPLAYER

0start 1 5 8
/TEAMS /TEAM /ARENA

0start 1 5 9 10 11
/TEAMS /TEAM /GLEAGUE /TEAM /TOPPLAYER

0start 1 5 9 10 12
/TEAMS /TEAM /GLEAGUE /TEAM /ARENA

Figure 2.3: Individual TSPA for the string path set from Example 2.1

Example 2.1.1.

After combining each of the individual TSPA Figure 2.3 by running them
in parallel, final TSPA Figure 2.1.2 is created.

Example 2.1.2 (Resulting sample TSPA).

11

2. Automata Approach to XML Data Indexing

0start 1 2, 5 3, 6

4, 7

8

9 10 11

12

/TEAMS /TEAM /TOPPLAYER

/COACH

/ARENA

/GLEAGUE

/TEAM /TOPPLAYER

/ARENA

Figure 2.4: TSPA for the string path set from Example 2.1

Example 2.1.3 (TSPA sample query evaluation). Sample evaluation of the
sample XP /,nametest query /TEAMS/TEAM/ARENA 1.2.2 follows.

2.1.1 Discussion of Time and Space Complexities

TSPA 2.1.2 efficiently supports the evaluation of all XP /,nametest queries of
an XML document D. The number of such queries is linear in the number
of nodes of the XML tree model T(D). For an input query Q of size m and
output length of size n, TSPA obviously performed the searching in time
O(m + n) and does not depend on the size of the original document. A
result cannot be returned any faster beacause the query of m elements has
to be read first → complexityT ime + O(m). Result of length n returns in
time O(n) → complexityT ime + O(n). Therefore the minimum amount of
complexity time for query evaluation is O(m + n). For more details (proof)
see [18].

12

2.2. Tree String Path Subsequences Automaton

0start 1 2, 5 3, 6

4, 7

8

9 10 11

12

/TEAMS /TEAM /TOPPLAYER

/COACH

/ARENA

/GLEAGUE

/TEAM /TOPPLAYER

/ARENA

Figure 2.5: Evaluation of the sample query from Figure 1.2.2

2.2 Tree String Path Subsequences Automaton
The Tree String Path Subsequences Automaton (TSPSA) [18] is a finite state
automaton that efficiently evaluates all linear XPath queries XP {//,name−test}

where only the descendant-or-self axis (i.e., //-axis) is used. This kind of an
XPath fragment, can be represented by the context-free grammar as follows:

G = ({S}, A(D), {S → SS | //a, such as a ∈ A(D)}, S)

In the very same fashion as for the TSPA the construction of TSPSA is
very systematic. At first, an XML document is processed in order to obtain a
string path set. There is a crucial difference between TSPA and TSPSA. For
satisfying XP //,nametest queries algorithm focuses on subsequences of a string
path rather than prefixes. Because of that we create a subsequence automaton
for each of the string paths and then by production merge them all together
to get the desired TSPSA.

Paper [18] defines following definitions which are used in the Section 2.1.2.
TSPSA construction algorithm follows as well.

13

2. Automata Approach to XML Data Indexing

Definition 11 (Set of occurrences of an element label in a String path). Let
P = n1n2 . . . n|P | be a String path and e be an element label occurring at
several positions in P (i.e., label(ni) = e for some i). A set of occurrences of
the element label e in P is a totally ordered set OP (e) = {o | o = id(ni) ∧
label(ni) = e, i = 1, 2, . . . , |P |}. The ordering is equal to ordering of element
prefix identifiers as natural numbers.

Definition 12 (ButFirst). Let P and OP (e) = {o1, o2, . . . , o|OP (e)|} be a String
path and a set of occurrences of an element label e in the String path P ,
respectively. Then, we define a function ButF irst(OP (e)) = {o2, . . . , o|OP (e)|}.

Data: A String path P = n1n2 . . . n|P |.
Result: DFSA M = (Q, A, δ, q0, F) accepting all (non-empty)

XP {//,name−test} queries of P

1. ∀e ∈ A(P) compute OP (e).

2. Build the “backbone” of the finite state automaton
M = (Q, A, δ, q0, F):

a) Q← {q0, q1, . . . , q|P |}, A← {//a : a ∈ A(P)}, F ← Q \ {q0},
q0 ← 0

b) ∀i, where i← 1, 2, . . . , |P |:
i. set state qi ← OP (label(ni)),

ii. add δ(qi−1, //label(ni))← qi,

iii. OP (label(ni))← ButF irst(OP (label(ni))).

3. Insert “additional transitions” into the automaton M :

∀i ∈ {0, 1, . . . , |P | − 1}, ∀a ∈ A(P):
i. add δ(qi, //a)← qs, if there exists such s > i where

δ(qs−1, //a) = qs ∧ ¬∃r < s : δ(qr−1, //a) = qr

ii. δ(qi, //a)← ∅ otherwise.

Algorithm 2: Construction of a deterministic subsequence automaton for
a single string path.

We can run all subsequence automata “in parallel” using the product con-
struction (similarly to TSPA) and obtain the index for all XP {//,name−test}

14

2.2. Tree String Path Subsequences Automaton

queries of the particular XML document. Figure 2.6 illustrates TSPSA con-
structed by Algorithm 2 for the XML document D and its XML tree model
T (D) from Figure 1.2.

The searching phase of TSPSA evaluates input queries in the same way as
TSPA. The answer for the input query is given by the d-subset contained in
the terminal state.

0

st
ar

t

1
2,

5,
10

3,
6,

11

8,
12

4,
7

9
10

11 12

//
TE

AM
S

//
TE

AM

//
GL

EA
GU

E

//
TO

PP
LA

YE
R

//
AR

EN
A

//
CO

AC
H

//
TE

AM

//
GL

EA
GU

E

//
TO

PP
PL

AY
ER

//
AR

EN
A

//
CO

AC
H

//
GL

EA
GU

E

//
TO

PP
LA

YE
R

//
AR

EN
A

//
CO

AC
H

//
TE

AM

//
TE

AM

//
TO

PP
LA

YE
R

//
AR

EN
A

//
TO

PP
LA

YE
R

//
AR

EN
A

Figure 2.6: Deterministic TSPSA for the XML tree model T from Figure 2.1.

15

2. Automata Approach to XML Data Indexing

2.3 Tree Path Automaton
Tree Paths Automaton (TPA) [18] is an automaton designed to answer signif-
icant amount of possible XPath queries.Those which only contains any com-
bination of child (i.e., /) and descendant-or-self (i.e., //) axes, denoted as
XP {/,//,name−test}. All the supported XPath queries can be represented by
the context-free grammar as follows.

G = ({S}, A(D), {S → SS | /a | //a, such as a ∈ A(D)}, S)

One can see TPA as a combination of previously introduced prefix and sub-
sequence automaton. Both XP {/,name−test} and XP {//,name−test} queries are
subsets of XP {/,//,name−test} queries, therefore they are supported by TPA as
well. The paper [18] suggests algorithm that combines prefix and subsequence
automata together for each String path separately and later on creates final
TPA by combining TPAs of individual String paths. The algorithm follows.

Example 2.3.1. Let D and T (D) be an XML document and its corresponding
XML tree model from Example 1.1 and Figure 1.2, respectively. Given P =
TEAMS(1) TEAM(2) TOPPPLAYER(6) TEAM(7) TOPPLAYER(8) as the input String
path, Algorithm 3 follows these steps:

1. creates TSPA for P as shown in Figure 2.7,
2. creates TSPSA for P as shown in Figure 2.8,
3. combines TSPA and TSPSA. See the resulting TPA for P in Figure 2.9.

0start 1 2 9 10 11
/TEAMS /TEAM /GLEAGUE /TEAM /TOPPPLAYER

Figure 2.7: TSPA for the String path P = TEAMS(1) TEAM(5) TOPPPLAYER(9)
TEAM(10) TOPPLAYER(11) from Example 2.3.1.

16

2.3. Tree Path Automaton

Data: A string path P = n1n2 . . . n|P |.
Result: DFSA M = (Q, A, δ, 0, F) accepting all XP {/,//,name−test}

queries of P .
1. Construct a deterministic finite state automaton

M1 = (Q1, A1, δ1, 0, F1) accepting all XP {/,name−test} queries of P
using Algorithm 1.

2. Construct a deterministic finite state automaton
M2 = (Q2, A2, δ2, 0, F2) accepting all XP {//,name−test} queries of P
using Algorithm 2.

3. Construct a deterministic finite state automaton
M = (Q, A1 ∪A2, δ, 0, Q \ {0}) accepting all XP {/,//,name−test} queries
of P as follows:

initialize Q = Q1 ∪Q2;
create a new queue S and initialize S = Q;
while S is not empty do

State q ← S.pop;
forall a ∈ A1 do

create a new d-subset d;
forall numbers n in the d-subset of q do

if δ1(n, a) ̸= ∅ then
add n into d;

end
end
if d ̸= ∅ then

if d /∈ Q then
Q = Q ∪ {d};
S.push(d);

end
δ(q, a)← d ; ▷ add / transitions

end
end
find the smallest number m in the d-subset of q;
find a matching state q2 ∈ Q2 containing m as the smallest number
in its d-subset;
∀a ∈ A2 : δ(q, a)← δ2(q2, a) ; ▷ add // transitions

end
Algorithm 3: Construction of TPA for a single string path

17

2. Automata Approach to XML Data Indexing

0start 1 5, 10 9 10 11
//TEAMS

//TEAM

//GLEAGUE

//TOPPPLAYER

//TEAM

//GLEAGUE

//TOPPPLAYER

//GLEAGUE

//TEAM

//TOPPPLAYER

//TEAM

//TOPPPLAYER

//TOPPPLAYER

Figure 2.8: TSPSA for the String path P = TEAMS(1) TEAM(5) TOPPPLAYER(9)
TEAM(10) TOPPLAYER(11) from Example 2.3.1.

18

2.3. Tree Path Automaton

0
st

ar
t

1
5,

10 5

9
10

11
/[
/]
TE
AM
S

//
TE
AM

//
GL
EA
GU
E

//
TO
PP
PL
AY

ER

//
TE
AM /T
EA
M//

GL
EA

GU
E

//
TO
PP
PL
AY

ER

/[
/]

TO
PP

PL
AY

ER

//
TE
AM

/[
/]
TO
PP

LA
YE

R

/[
/]
TO
PP
PL

AY
ER

//
TE
AM

//
TO

PP
PL
AY

ER

/[
/]
TE
AM

//
TO
PP

PL
AY

ER /[
/]
TO

PP
LA

YE
R

Fi
gu

re
2.

9:
T

PA
fo

r
th

e
St

rin
g

pa
th

P
=

TE
AM
S(

1)
TE
AM

(5
)
TO
PP
PL
AY
ER

(9
)
TE
AM

(1
0)

TO
PP
LA
YE
R(

11
)

fro
m

Ex
am

pl
e

2.
3.

1

19

2. Automata Approach to XML Data Indexing

0
st

ar
t

1
2,

5,
10

2,
5

3,
6

3,
11

,
6

4,
17

8,
12

8

9
10

11
12

/[
/]

TE
AM

S

//
GL

EA
GU

E

//
TE

AM

//
TO

PP
PL

AY
ER

//
CO

AC
H

//
AR

EN
A

//
GL

EA
GU

E

/T
EA

M

//
TE

AM

//
TO

PP
PL

AY
ER

//
CO

AC
H

//
AR

EN
A

/[
/]

TO
PP

PL
AY

ER

//
TE

AM

/[
/]

TO
PP

LA
YE

R

/[
/]

CO
AC

H

/[
/]

AR
EN

A

/T
OP

PP
LA

YE
R //

TO
PP

PL
AY

ER

/[
/]

CO
AC

H

/A
RE

NA

//
AR

EN
A

/[
/]

TO
PP

PL
AY

ER
//

TE
AM

/[
/]

TE
AM

//
TO

PP
PL

AY
ER

//
AR

EN
A

/[
/]

TO
PP

LA
YE

R /[
/]

AR
EN

A

Fi
gu

re
2.

10
:

T
PA

fo
r

th
e

st
rin

g
pa

th
se

t
fro

m
Ex

am
pl

e
2.

1

20

Chapter 3
Research

The author did a research for good practices and effective implementation of
a finite automaton before suggesting any improvements. This chapter consists
of gathered ideas from multiple papers. The gained knowledge is later used in
author’s implementation of TPA.

3.1 Effective XML Preprocessing
In Java there are two main methods how to parse an XML document. These
are SAX [22] library and JDOM [23] library. The main goal during prepro-
cessing phase is to lower RAM consumption as much as possible and speed up
parsing.

Build phase of automaton doesn’t need any special order of elements.
Therefore only a method to access the next element is needed. There is no
need to use methods for getting previous element and/or any jumps in tree
traversal.

In addition, it is desired to avoid memorizing the whole structure of the
parsed XML. RAM consumption is lowered by avoiding this, because there is
no copy of the XML document stored in RAM.

3.1.1 SAX lib vs. JDOM lib Performance Comparison
The followed statements are presented according to [23][24]. Both advantages
and disadvantages are aimed fulfill the goal of building an automata.

21

3. Research

SAX lib
Advantages

Faster runtime Runtime is faster than JDOM parsing.
Only the current element is stored in RAM The method nextElement()

returns only the next element which saves memory.
Suitable for parsing large XML documents SAX was designed

to parse large XML documents.
Disadvantages

API is not the super friendliest Other parsers feature friendlier
API.

JDOM lib
Advantages

Friendly API JDOM parser features friendly API.
Disadvantages

Slow runtime Runtime is slower as JDOM creates a new full copy,
modeled as a tree, of the given XML in memory.

High RAM consumption JDOM creates a new full copy, mod-
eled as a tree, of the given XML in memory.

Based on these facts the author made a decision to favor the SAX for
building an automaton.

3.2 Finite Automaton Incremental Construction
According to [25] and [26], the incremental construction influence final au-
tomaton in positive ways. Main advantages are as follow.

Extends advantages of SAX parsing Because of a step by step building
concept, only the current and the next element are important. An output
of the SAX parser perfectly fits into it.

Lower RAM usage Resulting automaton instance is known from the very
beginning and is only expanded by new states. There are no other
redundant instances of work automata left.

No redundant states If implemented properly, there are no redundant states.
Because of it, the build phase does not rely on behavior of the Java
Garbage Collector.

Transparency It is easier to debug.

22

3.3. Trie Data Strucuture

3.3 Trie Data Strucuture
Trie is a data structure usually used to store a set where the keys are mostly
strings. See [27][28][29]. Typical usage is for dictionaries and word completion
apps.

Trie data structure features following advantages.

No hash function → There are no collisions. Therefore no collision man-
agement is needed.

Look up in O(|query|) Fast look up even in for the worst case scenario.

Insert in O(|word|) Fast insert even in for the worst case scenario.

Transparent Data structure Easy to maintain.

Problem of indexing an XML document is similar to dictionaries. Author’s
goal is to quickly find an element and return its info back. A dictionary works
in the same way - finds a given word and returns its translation (info) back.
Therefore the author can benefit from making use of well studied area of Trie
data structure.

3.4 Finite Automaton Transition Table
Papers [30] [31] [32] deal with transition table as a data structure to store
transitions for automata purposes.

Transition tables aim to store data. Each of its element can be retrieved
by specifying its column and row. Transition tables for automata purposes
are designed in a way that each column represents a set of transitions for
individual phrases. Each row represents a set of transitions for individual
states.

First one of the main advantage is that no transitions are duplicated.
Therefore no RAM is wasted for redundant transitions. Secondly, the method
getTransition() works in O(log(|TransitionSet|)) . If the exact coordinates
are specified (there is no need for look up of coordinates) then getTransition()
operates in O(1).

The disadvantage is the need to provide a TableManager which takes care
of maintaining the structure and retrieval of elements in a transition table.

3.5 Summary
The author makes use of the newly gained knowledge in the following imple-
mentation of TPA. Because of advantages of Incremental construction and
Trie data structure, the decision was made to redesign the original algorithm
from the paper [21]. The new algorithm benefits from both the incremental

23

3. Research

production and the similarity to Trie data structure. In addition, switch to
the SAX library was made (to lower RAM requirements), despite the fact of
the less user-friendly API. Furthermore, advantages of Transition table con-
cept are used as well. In the implementation automaton instance contains a
Map of all states. Each state contains a Map of its transitions. As already
stated above, there are no duplicates states. Therefore, there are no duplicates
transitions as well.

24

Chapter 4
Implementation

The whole implementation is written in Java [33]. IntelliJ IDEA used as an
IDE. Author’s Java library is split into 2 packages - Automaton and Exper-
iments. Created automata are serialized (Automaton class implements Seri-
alizable interface) to save time for repeated usage. The library is controlled
via the command line. The author made a decision to optimize the previous
attempts by thinking through the main algorithm. A new algorithm has been
made up.

4.1 New Algorithm description

A new algorithm has been made up to speed up the process of a creation and
lower the amount of used RAM during it. The creation of TPA 2.10 splits
into the three phases.

1. Preprocessing of XML document

2. Build phase

3. Determinization

4.1.1 Preprocessing

Given XML document is firstly preprocessed with SAX library. The main
advantage of the SAX library is smaller RAM consumption as it only returns
element by element. (Unlike JDOM library which returns the whole XML
document as a tree). At the end of this phase String paths 2.9 in the form of
String path set are passed to the next phase.

25

4. Implementation

4.1.2 Build phase
This is the crucial part of the algorithm. An input for this phase is a String
path set. An output is a nondeterministic finite automaton reflecting the
structure of the given XML. The algorithm extends concept similar to TRIE
[27]. On top of the edited TRIE concept, there is a backtracking for each of
the added XMLTags. The backtracking is responsible for assigning correctly
// transitions. Pseudo code follows:

Data: A String path set S .
Result: NFSA M = (Q, A, δ, q0, F) accepting all

XP {//name−test,/name−test} queries.
foreach Path P of String Path Set S do

foreach XMLTag tag of Path P do
Transition t = get /transiton according to tagName from
currentState;
/* Retrieve a /transition according to state and phrase

*/
if t != null then

/* CurrentState already contains a transition
according to tagName. */

if (!(State pointed by t contains tagP id)) then
Add tagP id to pointed state by t;
Backtracking(tag,currentState,automaton);
/* If pointed state does not contain tag pid

add tag pid and backtrack[??]. */
else

/* CurrentState does not contain transition with
phrase. */

Create a new state newState containing tag;
Set a path to newState;
Set a parent of newState to currentState;
Create both [/]/transitions from currentState to newState
on phrase == tagName;

Update transition t to newly created;
Backtracking(tag,currentState,automaton);
/* Create a new state, transition to it and

backtrack[??]. */
end
Update currentState according to transition t;
/* Jump forward with currentState. */

end
end

Algorithm 4: Author’s TPA build-phase design

26

4.1. New Algorithm description

4.1.2.1 Bactracking

The backtracking, already mentioned above, assigns correctly all // transi-
tions.

There are two approaches.

Semideterministic Some states are merged and/or cloned.

Nondeterministic No states are merged, nor cloned.

Each approach has its advantage. The build phase with the Semidetermin-
istic backtracking is slower, however a determinization is faster. Vica-versa
for the Nondeterministic approach. The thesis shows experimental comparison
for both of them.

Differences between both approaches are visualized in the Figures 4.2 4.3.
(Please bear in mind that both Figures 4.2 and 4.3 are not the final results
of the build phase for the string path set 4.1 .)

• P1 = LOCATION(1) EAST(2)CITY(3)

• P2 = LOCATION(1) WEST(4) CITY(5)

Figure 4.1: Sample string path set to demonstrate differences between
two backtracking approaches.

4.1.2.2 Semideterministic backtracking

The Semideterministic approach implements a feature which merges two states
in a new one. This is done by observing whether the parent state (P) of the
current state (C) has a // transition (T) to any other state (S). if so, the
current state (C) and the state S are merged together into a state (C,S). The
transition (T) is modified to connect the parent (P) with the new merged
state (C,S).

See Figure 4.2 for visualization. Pseudocode 5 follows:

27

4. Implementation

Data: XML tag, currentState, automaton
Result: Changes in the structure of the given automaton
State propagated = currentState;
State parent = currentState;
//transition t2;
while parent != null do

t2 = currentState get //transiiton on tagName;
if t2 != null then

if ! (Pointed state by t2 contain tagP id) then
if !(propagated state contains all Xml tags from
t2.getPointedState) then

new State clone;
clone = merge(propagated and t2getPointedState);
/* merge all // and /transitions and XmlTags */
add clone to automata states;

set t2 to point to clone;
foreach Clone = c created by merge of parent do

add /transition from c to propagated on tagName;
add //transition from c to propagated on tagName;

end
else

add new //transition from parent to propagated on tagName;
end
parent = parent.getParent();

end
Algorithm 5: Semideterministic backtracking approach

0start 1 2 3

4 5

3, 5

[/]/LOCATION [/]/EAST /CITY

[/]/WEST

/CITY

//CITY

Figure 4.2: Visualization of the Semideterministic backtracking approach.

28

4.2. Classes Description

4.1.2.3 Nondeterministic backtracking

The Nondeterministic backtracking approach is more straightforward and eas-
ier to implement. There are neither merges, nor cloning involved. Every new
state is connected with the previous ones with // transition. This approach
saves time by avoiding computing possible merged states and/or clones.

See Figure 4.3 for visualization. Pseudocode 6 follows:

Data: XML tag, currentState, automaton
Result: Changes in the structure of the given automaton
State parent = parent of currentState;
while parent != null do

Add new //transition from parent to currentState on tagName;
parent = parent.getParent();

end
Algorithm 6: Nondeterministic backtracking approach

0start 1 2 3

4 5

[/]/LOCATION [/]/EAST /CITY

[/]/WEST

/CITY

//CITY

//CITY

Figure 4.3: Visualization of the Nondeterministic backtracking approach.

4.1.3 Determinization
Well studied algorithm that converts NFSA (Nondeterministic finite automa-
ton) to DFSA (Deterministic finite automaton) which accepts the same set of
queries. To study the algorithm see [34] and [35] .

4.2 Classes Description
Author’s Java library is split into 2 packages - Automaton and Experiments.
Classes in both packages aim to provide an easy to use, yet effective interface.
Created automata are serialized (via Serializable interface) to save time for
repeated usage.

29

4. Implementation

4.2.1 Automaton package
Aims to provide simple to use and effective methods to create, manipulate and
control finite automata which serves as an index for a given XML document.
The code itself fulfills object oriented principles. Additional automata are
possible to be added to extended the family of currently implemented ones.
This package consists of the following classes:

4.2.1.1 XMLTag class

The class that stores data that represent original XML tag. In the current de-
sign class stores name of the XML tag and assigned unique ID. Class overrides
Clone method for String Path 4.2.1.4 creation purpose. The author suggests
storing XML elements data here as a further possible extension to design.
This class is used under the hood in all of the automata.

4.2.1.2 State class

The class that represents states according to the theoretical model of finite
automata. Each instance contains Hashset of all its Transitions4.2.1.3 and
all XML tags 4.2.1.1. In addition, there is a back reference to a parent (for
TSPSA the parent is set as a State which would be the parent in TSPA). This
class is used under the hood in all of the automata.

4.2.1.3 Transition class

The class that represents transitions according to the theoretical model of
finite automata. Each instance contains a phrase to jump onto the next state
and exactly two States 4.2.1.2 - state From and state To (Excluding starting
and ending states of an automaton. Those contain only To, respectively From
state). This class is used under the hood in all of the automata.

4.2.1.4 StringPath class

The class that implements String Path 8 idea. Consists of a LinkedList of
XMLTags. It is a base part for StringPathOrderedSet class.

4.2.1.5 StringPathOrderedSet class

Class that holds all of the StringPath instances. Its instance is created while
preprocessing an XML document. It is implemented as an ArrayList of String-
Paths.

4.2.1.6 Automaton class

An abstract class which is extended by TSPA class 4.2.1.8, TSPSA class 4.2.1.9
and TPA class 4.2.1.10. The fundamental class for this thesis which puts

30

4.2. Classes Description

Transitions 4.2.1.3 and States 4.2.1.2 together. It is an implementation of the
theoretical model of an automaton. The only class property is an instance
of State 4.2.1.2 firstState, which defines which state is the starting point for
automaton. Besides handy methods for manipulation with the automaton,
there is an abstract method resolveQuery which is overridden by TSPA 4.2.1.8,
TSPSA 4.2.1.9 and TPA 4.2.1.10.

4.2.1.7 AutomatonFactory class

The class fulfilling factory design pattern. Static methods buildTSPA(), buildT-
SPSA() return ready-to-use tree string path automaton 2.1, respectively tree
string path subsequence automaton 2.2. Method getStringpathSet() is respon-
sible for pre processing an XML document to StringPathSet 4.2.1.5 instance
which is passed to build automaton methods.

4.2.1.8 dTSPA class

The class that represents TSPA. It stores only the unnecessary values to pro-
vide full functionality of an automaton. Use the method resolveQuery() to
correctly parse and answer a specific query in O(|query|+ |returnedelements)
time complexity.

4.2.1.9 dTSPSA class

The class that represents TSPSA. It stores only the unnecessary values to
provide full functionality of an automaton. Use the method resolveQuery() to
correctly parse and answer a specific query in O(|query|+ |returnedelements)
time complexity.

4.2.1.10 dTPA class

The class that represents TPA. It stores only the unnecessary values to provide
full functionality of an automaton. Use the method resolveQuery() to correctly
parse and answer a specific query in O(|query| + |returnedelements) time
complexity.

4.2.2 Experiment package

The purpose of this package is to easily conduct experiments on the given XML
documents. An user benefits from measured values during runtime which are
then presented in a table in command line. Package Experiments contains
following classes.

31

4. Implementation

4.2.2.1 KnowYourXml class

The class to get info about a given XML document. Concept of Lazy initial-
ization is used. All values available via getters. XML document is checked
for: Maximal depth, Average depth, Element count, Leaves count, Size of the
document, Memory consumption for TPA, Time to build TPA and Number
of states.

4.2.2.2 ExperimentRunner class

The class that runs experiments on a directory consisting of XML documents.
KnowYourXml class 4.2.2.1 methods are used for calculating results for each
of the documents. Results are returned in the form of an instance of the
ExperimentResult class 4.2.2.3.

4.2.2.3 ExperimentResult class

The class to store and share results calculated out of methods from Experi-
mentRunner class 4.2.2.2. Overriden method toString() returns data in the
format of an Ascii table.

4.3 Used Libraries & Data Structures

Multiple advanced data structures and libraries are used among the author’s
library.

Data Structures

HashMap The data structure is used in class State4.2.1.2 to store
XMLTags 4.2.1.1.

MultiValuedHashMap The data structure is used in class State 4.2.1.2
to store Transitions 4.2.1.3.

Libraries

SAX The library is used to access individual elements of a raw XML
document. The decision to use this library was made to lower RAM
consumption.

javax.ws.rs.core The library is used to provide MultiValuedHashMaps.

32

4.4. Advantages & Disadvantages of the Algorithm

4.4 Advantages & Disadvantages of the Algorithm
4.4.1 Advantages
No redundant states during the build phase Every created state is used

in the resulting automaton. This feature enables algorithm to be inde-
pendent of Java Garbage Collector behavior.

Possible immediate processing of a StringPath StringPaths, which rep-
resent inner structure of elements, don’t have to be stored.

Processing speed Algorithm runs faster because of usage of advanced data
structures

Ram consumption Algorithm uses less RAM because of shallow copies of
data between two different State 4.2.1.2 instances.

SAX preprocessing By using the SAX lib for preprocessing algorithm runs
faster and consumes less RAM

Advantages of TRIE The algorithm makes use of TRIE - well studied data
structure concept

Incremental Construction As the result is incrementally constructed there
are no working copies which increases RAM consumption

Semideterministic approach speeds up determination up to 60x Merging
states during backtracking in Build phase 4.1.2 is an effective way how
to save significant amount of time.

4.4.2 Disadvantages
Sequential processing of StringPath. Algorithm cannot be easily run in

parallel. Therefore effective threads implementation is not possible.

33

Chapter 5
Experimental Evaluation

For the conducted experiments the author uses Intel i5 CPU at 1.30GHz with
TurboBoost 2.0 up to 2.6GHz, 4GB of 1600MHz LPDDR3 RAM, running Mac
OS X Sierra. All the following data were gathered and computed by running
every experiment at least 20 times to minimize measurement error.

5.1 Methods Description
Performance of the new algorithm 4 (for the both backtracking approaches 6
5) is tested. Results for the previous implementation of TPA 2.10 and Saxon
lib are evaluated as well for comparison purposes.

List of the methods follows:

M1 = tpalib The previous implementation. For more information see: [18].

M2 = New Algorithm - Semideterministic backtracking The new Al-
gorithm proposed by this thesis with the semideterministic backtracking
approach. For more information see: 4.2.

M3 = New Algorithm - Nondeterministic backtracking The new Algo-
rithm proposed by this thesis with the nondeterministic backtracking
approach. For more information see: 4.3.

M4 = Saxon The java library for evaluating XPath [36] queries. For more
information see: [22]

5.2 DataSets Description
Following datasets are used as input data for each of the experiments. They
are split into 3 categories. Each category has its own typical features among
its XML documents.

35

5. Experimental Evaluation

5.2.1 Sample XML Documents
Very small XML documents are used through this thesis for example pur-
poses. They feature one or two tricky sections to test a correct output of the
methods. GoT.xml (For more information see: [18]) was put into the dataset
to reevauluate experiments under the same performance conditions as other
XML documents are evaluated.

D1 = NBASample.xml The document shown in the beginning 1.1 of the
thesis. It describes my favorite NBA teams. Easy to process.

D2 = NBASample2.xml Slightly upgraded original NBASample.xml docu-
ment. It features a section which causes that output of the Build phase
4.1.2 is always nondeterministic.

D3 = GoT.xml Sample XML document from the paper [18].

5.2.2 Generated XML documents
These datasets were generated by Xmlgen [37] using different scaling factors.
XMark xmlgen scaling factors of a document are a float value where 0 produces
the “minimal document”. They have in common big average depth and big
diversity of XML elements resulting in big automata.

D4 = XMark-f0.005.xml Generated XML document, scaling factor = 0.005

D5 = XMark-f0.01.xml Generated XML document, scaling factor = 0.01

D6 = XMark-f0.1.xml Generated XML document, scaling factor = 0.1

D7 =XMark-f1.xml Generated XML document, scaling factor = 1

5.2.3 Real World XML Document Examples
Taken from Washington.edu XML Data Repositary, these datasets feautures
real data from different situations. Usually they are more shallow and contain
repetitive constructions which result in a smaller resulting automaton

D8 = Auction.xml Auction data converted to XML from EBay web sources.

D9 = Uwm.xml Course data derived from an university website.

D10 = Orders.xml Order data from a supplier.

36

5.3. Experiments

5.3 Experiments
The conducted experiments are split into two categories by the focused sub-
ject. In these categories both RAM usage and time consumption are measured
and visualized.

1. TPA build

a) Time consumption

b) RAM usage

2. Query Evalution

a) Time consumption

b) RAM usage

5.3.1 Differences in Datasets

As shown in the tab 5.1 datasets differ not only in size but also in depth and
number of leaves. These are the main three aspects which influence perfor-
mance on building the automaton and the resulting size of automaton. The
most significant difference in duration of the build is for the D6 and the D9
XML documents. Although the D6 is almost two times smaller than the D9,
build for the D6 takes 8.49 seconds whereas for the D9 only 0.36 second.

Size
(MB)

Max
Depth

Average
Depth

Number
of Ele-
ments

Number
of

Leaves

Build
TPA
RAM
(MB)

Build
TPA
Time
(s)

Index/
XML
Size
ratio

Number
of

States

D1 0.005 4 2.08 12 7 6 12 5.74 13
D2 0.007 4 2.18 16 8 6 12 4.09 13
D3 0.005 4 2.08 12 7 6 12 5.74 13
D4 0.11 11 4.71 1729 1204 14 0.92 1.11 576
D5 0.57 11 4.50 8518 6211 16 1.63 0.97 897
D6 1.16 11 4.51 17132 12504 103 8.49 0.87 1020
D7 115.7 11 4.54 1666315 1211774 741 573 0.85 1296
D8 0.23 4 2.76 311 250 10 5.62 0.01 33
D9 2.28 4 2.9 66729 50885 27 0.36 0.73 22
D10 5.25 3 1.9 149989 134990 57 19.36 1.2 50

Table 5.1: Features of the chosen XML documents for experiments

37

5. Experimental Evaluation

5.3.2 TPA build
Experiments start at the moment of preprocessing data and end when a fi-
nite automaton is determinized. Following tables, for each of datasets sepa-
rate, show measured data during building TPA with a different method. In
the following subsection there is a new abbreviation DNF. It stands for Did
Not Finished. The experiments were conducted with parameter --Xmx3500m
which extends maximum available RAM to 3500MB. This is the most author’s
computer can handle. Therefore extensive usage of RAM may result in Java
Out of memory extension. If this situation repetitively happens during an
experiment then the abbreviation DNF is used.

38

5.3. Experiments

5.3.2.1 Sample XML documents Time

The table presents values from the conducted experiments. Values in rows
M1 and M2 represent duration in miliseconds for each phase, namely Prepro-
cessing, Build phase, Determinization. Abbreviations are used. As both the
M3 and the M4 either does not contain or cannot be divided into the above
mentioned phases, not every field is filled with measured data in the rows M3
and M4. The table of measured values follows:

D1 D2 D3
pre build det pre build det pre build det

M1 0.24 0.11 0.01 0.24 0.12 0.02 0.24 0.11 0.01
M2 0.24 0.02 0.11 0.24 0.01 0.10 0.24 0.01 0.10
M3 0.94 • 0.25 0.89 • 0.22 0.96 • 0.24
M4 • • 0.29 • • 0.33 • • 0.31

Table 5.2: Time of TPA Build for the Sample XML dataset

Following graphs visualize measured values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

Figure 5.1: Time during TPA build for the Sample XML dataset

39

5. Experimental Evaluation

5.3.2.2 Sample XML documents RAM Usage

The table presents values from the conducted experiments. Values in rows M1
and M2 represent RAM usage (MB) after each phase, namely Preprocessing,
Build phase, Determinization. Abbreviations are used. As both the M3 and
the M4 either does not contain or cannot be divided into the above mentioned
phases, not every field is filled with measured data in the rows M3 and M4.
The table of measured values follows:

D1 D2 D3
pre build det pre build det pre build det

M1 10.1 12.1 12.4 8.4 12.1 12.4 10.1 12.1 12.3
M2 10.1 11.9 12.5 8.4 12.0 12.5 10.1 12.1 12.4
M3 2.1 • 3.0 2.2 • 3.1 2.1 • 3.1
M4 • • 16 • • 16 • • 17

Table 5.3: RAM usage of TPA Build for the Sample XML dataset

Following graphs visualize measured values.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

Figure 5.2: RAM usage during TPA build for the Sample XML dataset

40

5.3. Experiments

5.3.2.3 Generated XML documents Time

The table presents values from the conducted experiments. Values in rows
M1 and M2 represent duration in miliseconds for each phase, namely Prepro-
cessing, Build phase, Determinization. Abbreviations are used. As both the
M3 and the M4 either does not contain or cannot be divided into the above
mentioned phases, not every field is filled with measured data in the rows M3
and M4. The table of measured values follows:

D4 D5 D6 D7
pre build det pre build det pre build det pre build det

M1 0.36 0.44 0.12 0.41 0.91 0.31 0.81 7.1 0.58 8.2 547 18.1
M2 0.36 0.09 0.54 0.41 0.28 1.62 0.81 5.5 516 8.2 446 68400
M3 0.33 • 10.4 0.59 • 33.75 22.73 • DNF DNF • •
M4 • • 0.35 • • 0.40 • • 0.93 • • 4.3

Table 5.4: Time of TPA Build for the Generated XML dataset

Following graphs visualize measured values.

41

5. Experimental Evaluation

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

Figure 5.3: Time of TPA Build for the Generated XML dataset

5.3.2.4 Generated XML documents RAM Usage

The table presents values from the the conducted experiments. Values in rows
M1 and M2 represent RAM usage (MB) after each phase, namely Preprocess-
ing, Build phase, Determinization. Abbreviations are used. As both the M3
and the M4 either does not contain or cannot be divided into the above men-
tioned phases, not every field is filled with measured data in the rows M3 and
M4. The table of measured values follows:

Following graphs visualize measured values.

42

5.3. Experiments

D4 D5 D6 D7
pre build det pre build det pre build det pre build det

M1 7.5 14.0 14.1 7.5 15.7 15.9 37.7 64.4 103 221 464 741
M2 7.5 13.5 17.8 7.5 13.5 17.5 37.7 67.7 112 221 541 762
M3 10 • 159 17 • 306 126 • DNF DNF • •
M4 • • 21.2 • • 11.3 • • 46.2 • • 448

Table 5.5: RAM Usage of TPA Build for the Generated XML dataset

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

Figure 5.4: RAM Usage during TPA build for the Generated XML dataset

43

5. Experimental Evaluation

5.3.2.5 Real World documents Time

The table presents values from the conducted experiments. Values in rows
M1 and M2 represent duration in miliseconds for each phase, namely Prepro-
cessing, Build phase, Determinization. Abbreviations are used. As both the
M3 and the M4 either does not contain or cannot be divided into the above
mentioned phases, not every field is filled with measured data in the rows M3
and M4. The table of measured values follows:

D8 D9 D10
pre build det pre build det pre build det

M1 1.05 0.08 0.11 0.37 5.11 0.14 0.39 18.8 0.17
M2 1.05 0.06 0.15 0.37 4.81 0.19 0.39 18.1 0.19
M3 0.41 • 0.15 4.46 • 12.1 13.1 • 20.3
M4 • • 1.42 • • 0.71 • • 0.82

Table 5.6: Time of TPA Build for the Real World XML dataset

Following graphs visualize measured values.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

Figure 5.5: Time during TPA build for the Real World XML dataset

44

5.3. Experiments

5.3.2.6 Real World documents Ram Usage

The table presents values from the the conducted experiments. Values in rows
M1 and M2 represent RAM usage (MB) after each phase, namely Preprocess-
ing, Build phase, Determinization. Abbreviations are used. As both the M3
and the M4 either does not contain or cannot be divided into the above men-
tioned phases, not every field is filled with measured data in the rows M3 and
M4. The table of measured values follows:

D8 D9 D10
pre build det pre build det pre build det

M1 10.1 10.2 10.2 15.4 26.6 27.4 27 52 57.4
M2 10.1 10.2 10.2 15.4 26.2 27.1 27 39 57.7
M3 2.2 • 9.1 33.2 • 265 67.2 • 571.4
M4 • • 19.4 • • 23.3 • • 24

Table 5.7: RAM Usage of TPA Build for the Real World XML dataset

Following graphs visualize measured values.

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Preprocessing, 2 = Build, 3 = Determiniziation)â��

SemiTPA
NonTPA

tpalib
Saxon

Figure 5.6: RAM usage during TPA build for the Real World XML dataset

45

5. Experimental Evaluation

5.3.3 Query evaluation
This subsection contains data from conducted experiments on query evalu-
ation performance. Both backtracking approaches of the new algorithm 4
produce the same result. The following experiments use only the result of
build methods. Therefore, it is sufficient to evaluate only the result of TPA
indifferent to its backtracking approach during its build phase.

Following experiments share a common structure as follow. All XML docu-
ments in each dataset has very similar structure. The author chose one sample
out of each dataset to represent it. For each of the samples 3 queries are run.
These 3 queries has mutually different length, combination of axis and result
in different size of the set of returned elements. Therefore performance of each
method is evaluated well. Experiments starts at the moment of the beginning
of resolving a query and end as soon as a method returns a result.

The RAM usage appeared constant because the amount of the used RAM
for evaluation is too minor to the amount of a loaded index. Therefore a
visualization of graphs is unnecessary .

5.3.3.1 Sample XML documents

For this dataset the author chose D2 =NBASample2.xml to repsent the dataset.
This XML document features the biggest structure out of others. The follow-
ing table reveals measured values.

Time (ms) & RAM Usage (MB)
TPA M3 M4 TPA M3 M4 #elements

Q1 = //gleague//arena 1 1 7 5 4 16 1
Q2 = //team/topplayer 1 1 13 5 4 16 4
Q3 = /teams//team 1 1 5 5 4 16 5

Table 5.8: Query evalution performance test for NbaSample2.xml

 0

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Q1, 2 = Q2, 3 = Q3)â��

SemiTPA
Saxon

Figure 5.7: Time of evaluation for queries Q1, Q2, Q3 for the D2

46

5.3. Experiments

5.3.3.2 Generated XML documents

For this dataset the author chose D5 =XMark-f0.01.xml to repsent the dataset.
This XML document is the biggest whose M3 build method successfully fin-
ished. The following table reveals measured values.

Time (ms) & RAM Usage (MB)
M1 M3 M4 M1 M3 M4 #elements

Q4 = /site/open_auctions 1 1 8 15 31 9 1
Q5 = //site//open_auction 1 1 30 15 31 9 120
Q6 = //people/person 1 1 21 15 31 9 255

Table 5.9: Query evalution performance test for XMark-f0.01.xml

 0

 5

 10

 15

 20

 25

 30

 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Q1, 2 = Q2, 3 = Q3)â��

SemiTPA
Saxon

Figure 5.8: Time of evaluation for queries Q4, Q5, Q6 for the D5

5.3.3.3 Real World documents

For this dataset the author chose D10 = Orders.xml to represent the dataset.
This XML document represents a typical XML document from everyday life.
The following table reveals measured values.

Time (ms) & RAM Usage (MB) •
M1 M3 M4 M1 M3 M4 #elements

Q7 = /table/t/ 1 1 15 47 131 24 14995
Q8 = //t/o_clerk 1 1 123 47 131 26 14998
Q=//t/o_orderkey 1 1 131 47 131 24 14997

Table 5.10: Query evalution performance test for Orders.xml

47

5. Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3

T
im

e
(m

s)

Phase (1 = Q1, 2 = Q2, 3 = Q3)â��

SemiTPA
Saxon

Figure 5.9: Time of evaluation for queries Q7, Q8, Q9 for the D10

5.4 Experimental Results Summary
Out of the results of the conducted experiments the method M1 (SemiTPA)
clearly dominates from M2 (NonTPA) and M3 (tpalib) in the means of per-
formance during build. This is due to the new algorithm and the usage of
advanced data structures. All of the mentioned methods M1, M2, M3 evaluate
queries in O(|query|+ |returnedelements|). Unlike the method M4 (Saxon).
However M4 (Saxon) build time and RAM usage are clearly the lowest among
all of the mentioned methods for files bigger than a few megabytes.

48

Chapter 6
Library Usage

The library is designed to create deterministic automata for indexing purposes
and check features of XML documents. Author named the library BPIndex.
Library contains following public methods: After a standard import process of
the BPIndex.jar it is needed to import also javax.ws.rs:javax.ws.rs-api:2.1
library.

• getdTSPA()

• getdTSPSA()

• getdTPA()

• getnTPA()

• getResults()

• resolveQuery()

A closer look to each of the above mentioned methods follows.

6.1 Method getdTSPA()

Method which returns a TSPA. The basic structure of the method is as follows.
On a returned object method resolveQuery() shall be called to evalaute

a query. As the TSPA automaton answers only /transition queries. The
method returns the automaton significantly faster than getdTPA() or getdTSPSA()
methods. This method has the most in common with TRIE concept out
of the above mentioned 3 methods, namely getdTPA(), getdTSPSA() and
getdTSPA(). The methods getdTSPSA() and getdTPA() extends the designe
of the getdTSPA() method.

49

6. Library Usage

1. Check if serialize TSPSA exists for the given XML document

2. If the seriliaze automaton doesn’t exist then create one and serialize it

3. If the seriliazed automaton exists then deserialize it

4. Return automaton

Figure 6.1: High level of TSPA structure

6.2 Method getdTSPSA()

Method which returns an instance of the DeterministicTSPSA class. The
methods behaviour is structured in the same fashion as getdTSPA(). 6.1.

On a returned object method resolveQuery() shall be called to evalaute
a query. The method getdTSPSA() is very close to the getdTPA() method,
because the resulting automata are very similiar. In fact, Implementanting
the getdTSPSA() is easier via the getdTPA() method.

6.3 Method getdTPA()

The method returns an instance of the DeterministicTPA class. This method
is an implememtation of the new algorithm, with the semidetermenistic back-
tracking, suggested by the author. It further extends the concept of the
getdTSPA() method. See 4 for detailed description of internal callings. On a
returned object method resolveQuery() shall be called to evalaute a query.
It is recommended to use this method as the resulting automaton is the most
complex out of other possible ones. The methods behaviour is structured in
the same fashion as getdTSPA() 6.1.

6.4 Method getnTPA()

The method has the very same output as the getdTPA() method. This method
is an implememtation of the new algorithm, with the nondetermenistic back-
tracking, suggested by the author. This method is not as efficient as the
getdTPA() one. It was created as a part of the conducted research. There are
no benefits in using this method instead of using the getdTPA() method. The
methods behaviour is structured in the same fashion as getdTSPA(). 6.1.

50

6.5. Method getResults()

6.5 Method getResults()

For information about an XML document or a folder containing XML docu-
ments call the method getResults(). The result of this method (according to
a given XML document) consists of: Name of the XML Document, Size of the
XML Document, Maximal Depth, Average Depth, Number of Leaves, Num-
ber of Elements, Time to build TPA, Used RAM to build TPA and Number
of States of TPA.

6.6 Method resolveQuery()

The method handles answering a query. Each automaton class has its own
parser for the specific type of the supported queries. The method returns a
collection of XMLTag instances. The begining of the thesis specifies a require-
ment which states to answer a query in O(query.length() + result.length()).
This method meets the requirement.

51

Chapter 7
Goals Fulfillment

The goals were stated as follow.

1. Study TSPA,TSPSA and TPA

2. Implement TSPA,TSPSA and TPA

3. Support for experiments

4. Evaluation of the implemented methods

The author not only implemented but also came with the new algorithm
for TPA. The idea of the new algorithm came from studying existing ap-
proaches and their implementation. The efficient implementation is due to
studying previous attempts and following appropriate recommendations. The
differences in both the time and the RAM consumption are significant. Up to
60 times faster and less than a half of the RAM consumption in the TPA build
phase. What’s more, the final index saved on a hard drive takes less than 50%
of memory in comparison to the original one. The author conducted exper-
iments for evaluation purposes. Three different types of datasets were made
up to test performance of author’s suggested methods. Experiments com-
pared performance (Time and RAM usage) of four different methods, namely
tpalib, Saxon, tpalibIM TPA, tpalibIM TPAn. The tpalib and Saxon were
included for comparison reasons. Both author’s methods performed better in
the experiments than the original one from the tpalib. However, there is a
significant difference in the performance of tpalibIM TPA and tpalibIM TPAn
methods. The author does not recommend using tpalibIM TPAn as it was
created as a part of the research. The experiments assured expectations that
the tpalibIM TPA performs better in comparison to tpalib. The author also
implemented a method into the library which returns values for experimental
usage.

The author states that all of the goals were fulfilled.

53

Conclusion

The main goal of this thesis was the implementation and the experimental
evaluation of the XML data indexing methods. The implemented methods
were TSPA, TSPSA and TPA. Experiments conducted on XML data sets
were focused on comparison of perfomance of the implemented method, clari-
fying relations between size and time to build an index. Both implementation
goals were fulfilled. Implementation is written in Java. A further extension
is possible due to an appropriate design. Library features user-friendly API.
Figure 5.7 5.8 5.9 shows performance of the suggested solution versus wildly
used Saxon library on the sample XML documents. The speed of answering a
query is reached due to memorized structure of the given XML document. It
is up to the user to decide whether it is worth it or not. The implementation
significantly optimize time and memory usage. Furthermore, the implemen-
tation of the index is designed to correspond with the theoretical design of
finite automata.

55

Bibliography

[1] Bray, T.; Paoli, J.; et al. Extensible markup language (XML). World
Wide Web Journal, volume 2, no. 4, 1997: pp. 27–66.

[2] DeRose, S. XML Linking Language (XLink) Version 1.0. online, 2001.
Available from: http://www.w3.org/TR/xlink

[3] Goldman, R.; Widom, J. Dataguides: Enabling query formulation and
optimization in semistructured databases. Technical report, Stanford,
1997.

[4] Pettovello, P. M.; Fotouhi, F. MTree: An XML XPath Graph Index. In
Proceedings of the 2006 ACM Symposium on Applied Computing, SAC
’06, New York, NY, USA: ACM, 2006, ISBN 1-59593-108-2, pp. 474–
481, doi:10.1145/1141277.1141389. Available from: http://doi.acm.org/
10.1145/1141277.1141389

[5] Zou, Q.; Liu, S.; et al. Ctree: a compact tree for indexing XML data. In
Web Information and Data Management, 2004, pp. 39–46, doi:10.1145/
1031453.1031462.

[6] Tang, N.; Yu, J.; et al. Hierarchical Indexing Approach to Support
XPath Queries. In Data Engineering, 2008. ICDE 2008. IEEE 24th
International Conference on, April 2008, pp. 1510–1512, doi:10.1109/
ICDE.2008.4497606.

[7] Kaushik, R.; Bohannon, P.; et al. Covering Indexes for Branching Path
Queries. In Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’02, New York, NY, USA: ACM,
2002, ISBN 1-58113-497-5, pp. 133–144, doi:10.1145/564691.564707.
Available from: http://doi.acm.org/10.1145/564691.564707

[8] Milo, T.; Suciu, D. Index Structures for Path Expressions. In Database
Theory — ICDT’99, Lecture Notes in Computer Science, volume 1540,

57

http://www.w3.org/TR/xlink
http://doi.acm.org/10.1145/1141277.1141389
http://doi.acm.org/10.1145/1141277.1141389
http://doi.acm.org/10.1145/564691.564707

Bibliography

edited by C. Beeri; P. Buneman, Springer Berlin Heidelberg, 1999, ISBN
978-3-540-65452-0, pp. 277–295, doi:10.1007/3-540-49257-7_18. Avail-
able from: http://dx.doi.org/10.1007/3-540-49257-7_18

[9] Rao, P.; Moon, B. PRIX: indexing and querying XML using prufer
sequences. In Data Engineering, 2004. Proceedings. 20th International
Conference on, March 2004, ISSN 1063-6382, pp. 288–299, doi:10.1109/
ICDE.2004.1320005.

[10] Zhang, B.; Wang, W.; et al. AB-Index: An Efficient Adaptive Index
for Branching XML Queries. In Advances in Databases: Concepts, Sys-
tems and Applications, Lecture Notes in Computer Science, volume 4443,
edited by R. Kotagiri; P. R. Krishna; M. Mohania; E. Nantajeewarawat,
Springer Berlin Heidelberg, 2007, ISBN 978-3-540-71702-7, pp. 988–993.
Available from: http://dx.doi.org/10.1007/978-3-540-71703-4_90

[11] Chung, C.-W.; Min, J.-K.; et al. APEX: An Adaptive Path Index for XML
Data. In Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’02, New York, NY, USA: ACM, 2002,
ISBN 1-58113-497-5, pp. 121–132, doi:10.1145/564691.564706. Available
from: http://doi.acm.org/10.1145/564691.564706

[12] Li, Q.; Moon, B. Indexing and Querying XML Data for Regular Path Ex-
pressions. In Proceedings of the 27th International Conference on Very
Large Data Bases, VLDB ’01, San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2001, ISBN 1-55860-804-4, pp. 361–370. Available
from: http://dl.acm.org/citation.cfm?id=645927.672035

[13] Wang, H.; Park, S.; et al. ViST: A Dynamic Index Method for Querying
XML Data by Tree Structures. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03, New
York, NY, USA: ACM, 2003, ISBN 1-58113-634-X, pp. 110–121, doi:
10.1145/872757.872774. Available from: http://doi.acm.org/10.1145/
872757.872774

[14] Tung, H. D. T.; Luong, D. D. An Improved Indexing Method for Xpath
Queries. Indian Journal of Science and Technology, volume 9, no. 31,
2016.

[15] Tatarinov, I.; Viglas, S. D.; et al. Storing and querying ordered XML
using a relational database system. In Proceedings of the 2002 ACM SIG-
MOD international conference on Management of data, ACM, 2002, pp.
204–215.

[16] Kha, D. D.; Yoshikawa, M.; et al. An XML indexing structure with
relative region coordinate. In Data Engineering, 2001. Proceedings. 17th
International Conference on, IEEE, 2001, pp. 313–320.

58

http://dx.doi.org/10.1007/3-540-49257-7_18
http://dx.doi.org/10.1007/978-3-540-71703-4_90
http://doi.acm.org/10.1145/564691.564706
http://dl.acm.org/citation.cfm?id=645927.672035
http://doi.acm.org/10.1145/872757.872774
http://doi.acm.org/10.1145/872757.872774

Bibliography

[17] Clark, J.; DeRose, S. XML Path Language (XPath) Version 1.0. online,
Nov 1999. Available from: http://www.w3.org/TR/xpath

[18] Šestáková, E.; Janoušek, J. Automata Approach to XML Data Index-
ing. Information, volume 9, no. 1, Jan 2018: p. 12, ISSN 2078-2489,
doi:10.3390/info9010012. Available from: http://dx.doi.org/10.3390/
info9010012

[19] Rabin, M. O.; Scott, D. Finite automata and their decision problems.
IBM journal of research and development, volume 3, no. 2, 1959: pp.
114–125.

[20] Šestáková, E.; Janoušek, J. Tree string path subsequences automaton
and its use for indexing xml documents. In International Symposium on
Languages, Applications and Technologies, Springer, 2015, pp. 171–181.

[21] Šestáková, E. Indexing XML documents. Dissertation thesis, Master?s
thesis, Czech Technical University in Prague, Faculty of Information
Technology, Prague, 2015.

[22] Kay, M. Saxon XSLT and XQuery processor. http://sourceforge.
net/projects/saxon, 2001.

[23] Hunter, J.; McLaughlin, B. The jdom project. Available in http://www.
jdom. org, volume 114, 2000.

[24] Harold, E. R. Processing Xml with Java. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002, ISBN 0201771861.

[25] Daciuk, J.; Mihov, S.; et al. Incremental construction of minimal acyclic
finite-state automata. Computational linguistics, volume 26, no. 1, 2000:
pp. 3–16.

[26] Sgarbas, K. N.; Fakotakis, N. D.; et al. Incremental construction of com-
pact acyclic NFAs. In Proceedings of the 39th Annual Meeting on As-
sociation for Computational Linguistics, Association for Computational
Linguistics, 2001, pp. 482–489.

[27] Aref, W. G. Trie based method for indexing handwritten databases.
June 18 1996, uS Patent 5,528,701.

[28] Heafield, K. KenLM: Faster and smaller language model queries. In Pro-
ceedings of the Sixth Workshop on Statistical Machine Translation, Asso-
ciation for Computational Linguistics, 2011, pp. 187–197.

[29] Willard, D. E. New trie data structures which support very fast search
operations. Journal of Computer and System Sciences, volume 28, no. 3,
1984: pp. 379–394.

59

http://www.w3.org/TR/xpath
http://dx.doi.org/10.3390/info9010012
http://dx.doi.org/10.3390/info9010012

Bibliography

[30] Steele, K. M.; Agarwal, A. Pattern matching in a multiprocessor environ-
ment with finite state automaton transitions based on an order of vectors
in a state transition table. Sept. 28 2010, uS Patent 7,805,392.

[31] Ficara, D.; Giordano, S.; et al. An improved DFA for fast regular ex-
pression matching. ACM SIGCOMM Computer Communication Review,
volume 38, no. 5, 2008: pp. 29–40.

[32] Wyschogrod, D.; Arnaud, A.; et al. Method of generating of DFA state
machine that groups transitions into classes in order to conserve memory.
July 3 2007, uS Patent 7,240,040.

[33] Arnold, K.; Gosling, J.; et al. The Java programming language. Addison
Wesley Professional, 2005.

[34] Salomaa, K.; Yu, S. NFA to DFA transformation for finite languages over
arbitrary alphabets. Journal of Automata, Languages and Combinatorics,
volume 2, no. 3, 1998: pp. 177–186.

[35] Shepherdson, J. C. The reduction of two-way automata to one-way au-
tomata. IBM Journal of Research and Development, volume 3, no. 2,
1959: pp. 198–200.

[36] Clark, J.; DeRose, S.; et al. XML path language (XPath) version 1.0.
1999.

[37] Schmidt, A.; Waas, F.; et al. XMark: A benchmark for XML data man-
agement. In VLDB’02: Proceedings of the 28th International Conference
on Very Large Databases, Elsevier, 2002, pp. 974–985.

60

Appendix A
Acronyms

XML Extensible markup language

SAX Simple API for XML

TPA Tee Paths Automaton

TSPA Tree String Paths Automaton

TSPSA Tree String Path Subsequences Automaton

XPath XML Path Language

DNF Did Not Finished

API Application Programming Interface

RAM Random Access Memory

NFSA Non-deterministic Finite State Automata

DFSA Deterministic Finite State Automata

SemiTPA Semi-deterministic Backtracking TPA

NonTPA Non-deterministic Backtracking TPA

61

Appendix B
Contents of enclosed SD Card

/
readme.txt........................description of content of SD Card
src

impl
sourcecode......................................raw java code
BPIndex.jar......................................BPIndex.jar
Example.java runnable example
Datasets...xml datasets

thesis
thesis.pdf.......................................thesis in pdf
thesis.tex..............................thesis source in LATEX

63

	Introduction
	Motivation
	Goals

	Theoretical Background
	Basic Notions
	XML
	XPath

	Automata Approach to XML Data Indexing
	Tree String Path Automaton
	Tree String Path Subsequences Automaton
	Tree Path Automaton

	Research
	Effective XML Preprocessing
	Finite Automaton Incremental Construction
	Trie Data Strucuture
	Finite Automaton Transition Table
	Summary

	Implementation
	New Algorithm description
	Classes Description
	Used Libraries & Data Structures
	Advantages & Disadvantages of the Algorithm

	Experimental Evaluation
	Methods Description
	DataSets Description
	Experiments
	Experimental Results Summary

	Library Usage
	Method getdTSPA()
	Method getdTSPSA()
	Method getdTPA()
	Method getnTPA()
	Method getResults()
	Method resolveQuery()

	Goals Fulfillment
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD Card

