
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 4, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: ElateMe application for Android (continuation)

 Student: Ilia Liferov

 Supervisor: Ing. Petr Pauš, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

A goal of the thesis is to continue in development of Android application ElateMe, that have been
introduced by Bc. Georgii Solovev in his thesis. You should get the application to the commercial ready
state.

Analyse:
- follow a new customer’s instructions and requirements, use FURPS+
- available libraries for Android Pay, Bitcoin payments, Paypal payments
- use appropriate UML diagrams
Design:
- update platform specific model
Implement:
- Bitcoin payment, Paypal, Android Pay
- new requirements, specially a handling of collection/wish
- sharing a product from web browser into application
Test:
- use appropriate tests
- automate unit tests and UI tests using Continuous integration

References

Will be provided by the supervisor.

Bachelor’s thesis

ElateMe - Android client (continuation)

Ilia Liferov

Department of Software Engineering
Supervisor: Ing. Petr Pauš, Ph.D.

May 11, 2018

Acknowledgements

First and foremost, I have to thank my supervisor Petr Pauš and project
supervisor Michal Maněna. I also express my gratitude to Georgii Solovev, a
previous developer, for a high quality of work done by him in his thesis.

I would like to take this opportunity to thank my family for their support
during the whole period of my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 11, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Ilia Liferov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.

It has been submitted at Czech Technical University in Prague, Faculty of

Information Technology. The thesis is protected by the Copyright Act and its

usage without author’s permission is prohibited (with exceptions defined by the

Copyright Act).

Citation of this thesis

Liferov, Ilia. ElateMe - Android client (continuation). Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2018.

Abstrakt

Systém ElateMe je kombinace sociálńı śıtě a crowdfundingové platformy. Sys-
tém pomáhá uživatel̊um vytvářet přáńı a přisṕıvat na přáńı ostatńıch uživatel̊u.
Jednoduše řečeno, systém ElateMe řeš́ı problém obdarováńı vhodným dárkem
člena rodiny, př́ıtele nebo kolegu. Systém je integrován do autorizačńıho
systému Facebooku, a proto uživatel ani nemuśı vytvářet ElateMe účet, aby
mohl systém použ́ıvat. Aplikace jsou dostupné pro r̊uzné platformy, např́ıklad
pro webový prohĺıžeč, operačńı systémy Android a iOS. Aplikace použ́ıvaj́ı
backendový server, který ř́ıd́ı přáńı a př́ıspěvky, pośılá r̊uzné notifikace.

Ćılem této bakalářské práce je pokračováńı ve vývoje klientské aplikace
pro operačńı systém Android, kterou začal vyv́ıjet ve své bakalářské práci
Georgii Solovev. Nejprve je potřeba zanalyzovat nové zákaznické požadavky,
např́ıklad správu přáńı, podporu přisṕıváńı a nové metody plateb (pomoćı
baknovńı karty, PayPal, bitcoin̊u a Android Pay). Existuj́ıćı architektura
aplikace může být zlepšená v př́ıpadě potřeby a všechny d̊uležité bugy muśı
být opravené. Nakonec je potřeba vytvořit vhodné testy pro aplikačńı kód a
automatizovat je.

Tento text obsahuje analýzu a návrh nových požadavk̊u, aktualizované
diagramy, popisy d̊uležitých změn v architektuře aplikace, úvod do testováńı
aplikačńıho kódu a automatizace test̊u. Nové požadavky (předevš́ım platby)
byly úspěšně implementovány a popsány pomoćı vhodných UML diagramů.
Testy byly napsané a úspěšně automatizované.

Kĺıčová slova Klientská aplikace, Sociálńı śı̌t, Crowdfunding, Platby, Testo-
vańı, Pr̊uběžná integrace, Bitcoin, PayPal, Android Pay, Android, Java, Rx-
Java 2, Robolectric, JUnit, Mockito

vii

Abstract

The ElateMe system is a combination of social network and crowdfunding
platform. It helps users to create own wishes and contribute to the others.
Simply said, the ElateMe system solves the problem of giving a suitable gift
to a family member, a friend or a colleague. The ElateMe system is integrated
into Facebook authorization systems, so a user does not even need to create
an ElateMe account in order to use the system. Applications for the ElateMe
system are available on di�erent platforms such as web browsers, Android and
iOS. Applications use a backend server, which manages wishes, contributions,
sending various notifications and so on.

The goal of this thesis is to continue to develop the ElateMe application
for the Android operating system, which was started by Georgii Solovev in
his thesis. First of all, it is needed to analyze and implement new user re-
quirements, such as wish managing, handling of contributions, new methods
of payment (wish bank card, PayPal, bitcoins and Android Pay). Existing
application architecture may be improved if necessary, and all critical bugs
should also be fixed. Finally, it is required to write appropriate tests for the
application’s code and automate them.

This text contains the new requirements analysis and design, updated plat-
form specific diagrams, description of important changes of the application ar-
chitecture, an introduction to the application’s code testing and automation.
The new customer’s requirements (especially payments) were successfully im-
plemented and described with appropriate UML diagrams. The application’s
code tests were created and successfully automated.

Keywords Client app, Social network, Crowdfunding, Payments, Testing,
Continuous integration, Bitcoin, PayPal, Android Pay, Android, Java, RxJava
2, Robolectric, JUnit, Mockito

viii

Contents

Introduction 1

1 Analysis 3
1.1 System description . 3
1.2 Task overview . 4
1.3 Previous developer . 5
1.4 Google Play Market . 5
1.5 Minimum API level . 7
1.6 Popups and notifications . 8
1.7 Bank payments . 10
1.8 Bitcoin payments . 10
1.9 PayPal payments . 12
1.10 Android Pay . 12
1.11 Sharing a product from a web browser 13
1.12 Requirements specification . 14

2 Design 17
2.1 UI design . 17
2.2 Application architecture . 25
2.3 Platform-specific model updates 41

3 Implementation 45
3.1 Code organization . 45
3.2 Libraries . 46
3.3 Custom binding adapters . 50

4 Testing 53
4.1 Common libraries for testing 53
4.2 Testing of the UI layer . 54
4.3 Testing of the presentation layer 55

ix

4.4 Testing of the service layer . 56

5 Continuous integration 59

Conclusion 63

Bibliography 65

A Acronyms 69

B Contents of enclosed flash drive 71

x

List of Figures

1.1 Without Google Play App Signing 7
1.2 With Google Play App Signing . 7
1.3 Android versions distribution . 8
1.4 Wireframe of some appeared popup in the application 9
1.5 Notifications tab (active) on the main screen of the application . . 10
1.6 Fio bank payment page in the application 11
1.7 Example of Android Pay payment is some application 13

2.1 Implemented feed screen . 18
2.2 Implemented comments in the wish detail screen 20
2.3 The first version of implementation of the wish creation screen . . 22
2.4 The current version of the wish creation screen (main screen) . . . 23
2.5 The current version of the wish creation screen (subscreens) 24
2.6 Implemented popup and its class diagram 25
2.7 One implemented item of the notification list and its class diagram 26
2.8 Service layer class diagram (a part of class diagram) 28
2.9 Getting wish from the network with token management (sequence

diagram) . 29
2.10 Polling popups and notifications from the backend server (sequence

diagram) . 31
2.11 Picking donation options by a user (sequence diagram) 32
2.12 Donation with bank card (sequence diagram) 33
2.13 BitPay payment screen in the ElateMe application 35
2.14 Donation with bitcoins via BitPay service (sequence diagram) . . . 36
2.15 Braintree Drop-in picker for payment method 37
2.16 Donation with the Braintree service (sequence diagram) 38
2.17 Example of sharing menu in web browser 39
2.18 Sharing product from a web browser (sequence diagram) 40
2.19 Notification view models of the application (full class diagram) . . 41
2.20 Component diagram of the application 42

xi

2.21 Service layer (full class diagram) 43
2.22 Popup view models of the application (full class diagram) 44

3.1 Example of using RxJava for obtaining token before actual request 47
3.2 Example of using RxTuples for passing several values between Rx-

Java operators . 48
3.3 Example of Donation data class with Lombok’s annotations 49
3.4 Example of usage Donation builder generated by Lombok library . 49
3.5 Implemented binding adapter for loading images into a view 51
3.6 Usage of the binding adapter for loading images into a view 51

4.1 Example of mocking the CommentsDataProvider object 54
4.2 Usage of DaggerMockRule library 57
4.3 Usage of a test observer . 58

5.1 The application’s CI pipeline file 60
5.2 Result of running the application’s build/test pipeline in GitLab CI 61

xii

Introduction

Nowadays almost everyone facing the problem of choosing a suitable gift for
someone. The ElateMe is the system, which is able to solve such kind of
problem. It allows users to create wishes, contribute to wishes of the friends,
commenting wishes and even making a surprise wishes for a chosen friend.
These system’s features and integration into the Facebook’s identity system
(for logging in) make the ElateMe system a powerful social network with
features of a crowdfunding platform. The ElateMe system has applications
for various platforms, such as web browser, Android operating system, and
iOS.

The goal of this thesis is to continue to develop the ElateMe Android ap-
plication, which was started by Georgii Solovev in his thesis. Georgii analyzed
basic customer’s requirements and successfully implemented them, although
there were a lot of features to implement in order to make the application
usable for the end users. For example, screen for creating a new wish and
payments were not implemented. So, in more detail, the goal of this thesis is
to analyze, design, implement the new customer’s requirements and test the
application’s code.

The primary motivation to choose this thesis’s task was to practice software
development processes on the real running project, try advanced practices of
Android development and contribute to the growing project.

The following text is divided into five main chapters: Analysis, Design,
Implementation, Testing and Continuous Integration. The Analysis chapter
describes the ElateMe application and introduces the analysis of all require-
ments, which should be designed and implemented. The Design chapter’s goal
is to present a design of the analyzed requirements with appropriate diagrams
and screenshots. The most important approaches and libraries, which were
used during the development are placed in the Implementation chapter. The
Testing and Continuous Integration chapters describe used approaches in the
testing of the application’s source code and automating of the tests.

1

Chapter 1
Analysis

The goal of this chapter is to describe the ElateMe Android application, in-
troduce the thesis’ task to the reader, submerge the reader into some details
of Android development world and identify the primary system requirements.

1.1 System description

The system description is described well in the bachelor’s thesis of the previous
developer, Georgii Solovev. While the primary architecture of the app will
not di�er too much, some parts will undergo changes because of the new
requirements.

Similarities and di�erences:

• “ElateMe’s system will follow client-server pattern with a thin client.

It will have two parts: server and mobile clients on Android and iOS

platforms.” [1] The global architecture of the ElateMe system will be
the same – we will continue to develop a thin mobile client application
for Android operation system.

• “This application will use Facebook Software Development Kit (SDK)

for registration and login.” [1] The login process will remain the same,
although some improvements are required. (Explained below in the
design section.)

• “For the payment transactions will be used FIO bank SDK.” [1] Bank
payments will be implemented in a di�erent way, via in-app webview
approach. (Explained below in the Bank payments section.)

The implementation approaches for the new features will be chosen based on
feature requirements.

Besides the implementation of the new features, the application requires
several bugfixes. (The solutions of the most significant bugs are described

3

1. Analysis

in this thesis.) The less important changes, from the business value point of
view, are code reorganization and improvement of the code quality. These
improvements have low business value (which means little impact on the new
features) but help to make code cleaner and more readable for further devel-
opment sake.

Thus, all changes, done in the scope of this bachelor’s thesis, are divided
into three main groups: for features, for bugfixes and code improvements.

1.2 Task overview

In this section a detailed analysis for each item of this thesis task is given.
(some of the task items are grouped together for more convenient description)

1. Analyzing using FURPS+ and implementing new customer’s
instructions and requirements (especially handling of collec-
tion/wish).

We need to analyze the new requirements using FURPS+ and implement
them. FURPS+ is a classifying model of software quality attributes. It
contains such functional and non-functional requirements as Functional-
ity, Usability, Reliability, Performance, Supportability, and Constraints.
Requirements are described below in this chapter under the Require-
ments specification section.

2. Analyze available libraries for Android Pay, Bitcoin payments,
Paypal payment and bank payments and implement those kinds
of payments.

Those kinds of payments are entirely di�erent, so we need to analyze
the opportunity to implement them in the ElateMe Android application
and implement if it is possible.

3. Sharing a product from web browser into the application.

This is one of the functional requirements. The essence of this require-
ment is to make the ElateMe Android application handle links from web
browser, trying to recognize the potential product for wish creation.

4. Update platform specific model/use appropriate UML diagrams.

We need to update platform specific model, which was introduced in the
previous bachelors’ thesis [1]. It is important because this model has
been changed since then and we need to reflect the changes in it. For
describing new processes and architecture decisions, appropriate UML
diagrams will be used.

4

1.3. Previous developer

5. Use appropriate tests and automate testing using Continuous
Integration.

We need to write proper tests and automate them with some Continu-
ous Integration framework. We can choose UI tests and Unit tests as
appropriate tests for Android applications.

1.3 Previous developer

The goal of this thesis is to continue in the development of ElateMe Android
application. Georgii Solovev performed previous development. He has written
his bachelor’s thesis, and there is a lot of references to it in this text.

We got the ElateMe Android application project from the previous devel-
oper – Georgii Solovev, and it was in the good state mostly, although there
were some bugs and problems with the Android SDK usage. Also, some ar-
chitecture approaches were not so good, so we decided to replace them with
more suitable alternatives. These improvements are described in this bache-
lors’ thesis.

1.4 Google Play Market

To make the application publicly available, we need to choose distribution
platform. There are several of platforms: Google Play Market, Amazon App-
store, SlideMe, Samsung Galaxy Apps and other less popular platforms. We
are choosing Google Play Market because of several reasons:

• it is available out of the box (there is no need to install anything and
register a new account),

• it feels more native and trusted for users,

• ElateMe application is building with Android SDK, so using Google Play
Market is the most tested and comfortable way to publish and support
the application.

Google Play is a service for digital distribution by Google. It serves as
the o�cial application store for the Android operating system, allowing users
to browse and download applications developed with the Android software
development kit (SDK) and published through Google.

Google Play Services provides Google Play Console. It helps a developer to
test, publish and manage the application, gather various statistics and other
useful features, which are essential during development and support phases of
the application.

5

1. Analysis

1.4.1 Publishing on Google Play Market

Publishing the application on Google Play Market can be done via Google Play
Console. Before the first release rollout, we have done several required steps
such as defining product details (title, descriptions), determining a category
of the application, uploading graphical assets (logos and banner), providing
information about supported languages and translations. All this information
was provided by Michal Maněna (a project manager), so we were able to
prepare our first rollout.

Each rollout of the next version of the application was done by performing
such steps:

• updating version of the application in the gradle file,

• generating (and signing) of the .apk file,

• uploading to the Google Play Console,

• creating the new release in the Google Play Console.

Google Play Console o�ers several types of application releases:

• Alpha release (usually small number of allowed users, is used for testing
purposes)

• Beta release (usually higher number of allowed users, is used for testing
purposes)

• Production (an application is publicly available in the Google Play Mar-
ket)

During the development phase of the project, we decided to stick to the Alpha
and Beta types of releases because of testing purposes. Making the application
available for a group of trusted users is very important. User’s feedback is
useful and helpful in finding bugs, usability problems and performance issues.

1.4.2 Google App Signing

“Android requires that all APKs be digitally signed with a certificate before

they can be installed.” [2] Because of this requirement, we needed to generate
keystore, containing our public/private key pair for app signing.

“Because your app signing key is used to verify your identity as a developer

and to ensure seamless and secure updates for your users, managing your key

and keeping it secure are very important, both for you and for your users. You

can choose either to opt in to use Google Play App Signing to securely manage

and store your app signing key using Google’s infrastructure or to manage and

secure your own keystore and app signing key.” [2]

6

1.5. Minimum API level

One way is to manage signing key for our application by ourselves as
shown in the Figure 1.1. “If you choose to manage your own app signing key

and keystore, you are responsible for securing the key and the keystore.” [2]
We decided to use the other way, Google App Signing, because it is more

Figure 1.1: Without Google Play App Signing

convenient and secure way of managing the keystore for APK signing. Each
developer has it is own key, which is used by Google App Signing for identifying
trusted developers. None of the developers has access to the actual app signing
key, so it can not be lost or compromised. Schematic view of this process is
shown in the Figure 1.2.

Figure 1.2: With Google Play App Signing

1.5 Minimum API level

“API Level is an integer value that uniquely identifies the framework API

revision o�ered by a version of the Android platform.” [3] Minimum API Level
(or minimum Android SDK version) identifies the lowest Android OS version,
supported by an application. Simply put, a user cannot install an application
if it has higher minimum API Level than his device supports. Minimum API
Level is the critical thing when we are talking about the distribution among
the users.
On the other hand, some new features and conveniences (from a development
perspective) become available from the higher versions of API Level. (For
example, Java 8 Stream API is available from API level 24 or higher.) Thus,
it is necessary to choose minimum API Level wisely.

The previous research (done by Georgii Solovev in his bachelor’s thesis)
shows that minimum API Level for ElateMe application is 19. The decision

7

1. Analysis

is based on statistics, provided by o�cial Google pages. The API level was
picked in order to cover about 90% of devices.

Michal Maněna stated that the target group of the ElateMe Android appli-
cation should be about 95%. To fulfill this requirement, we needed to analyze
the current state of Android devices market.
Referring to the o�cial Google pages in the Figure 1.3, we established, that
minimum API level could not be increased. Increasing even in one step, to
the 21. version, would entail loss of 12% of the users.

Figure 1.3: Android versions distribution [4]

1.6 Popups and notifications

The next important requirement was implementing layouts for popups and
notifications.

What is popup? Popup is a small window with some essential informa-
tion for a user. Each popup contains some text and possible images, which
help to describe particular popup better. Any popup can suddenly appear
while a user is using the application. When it appears, the user should close
it in order to continue using the application. It is important to note that popup
is not a push notifications and it can not be received while the application is
closed or minimized.

8

1.6. Popups and notifications

The goal is to implement popups for all kind of messages and events in the
system. Example of such popup designed by Jan Ho�man (a team designer)
is shown in Figure 1.4.

Figure 1.4: Wireframe of some appeared popup in the application

What are notifications? Notifications are the other source of important
information for a user. In our application, they are presented by the list of
items on a separate fragment. The notification list is available by clicking on
the corresponding tab with bell icon on the main screen.

Such functionality has been already primitively implemented by Georgii
Solovev in his thesis, but in this thesis, the goal is to implement layouts for each
notification type in the system and make a counter of unread notifications,
which should be placed on the notifications tab icon (tab is shown in Figure
1.5).

9

1. Analysis

Figure 1.5: Notifications tab (active) on the main screen of the application

1.7 Bank payments

Bank payment is one of the main features of ElateMe Android application.
ElateMe system uses its bank account to collect money and hold them until a
wish collection will be successful or rejected. ElateMe system has its account
in the Fio banka, a.s., so our application needs to communicate with the bank
somehow.

According to the previous research done by Georgii Solovev in his thesis,
the application should be directly connected to the Fio bank servers by using
Fio bank SDK. Despite this, we decided to do it in another way. Instead of
communicating directly with Fio bank servers, ElateMe Android application
will interact with the main backend server, as well as the application does
it, for example, for creating wish or getting feed. Each time the application
wants to make the bank payment, it will get the specific link to the Fio bank
gateway, placed on the web. Thus, a user of the application can proceed his
payment via a browser. You can see the example of such payment page in the
Figure 1.6

1.8 Bitcoin payments

Payment in bitcoins is the other main feature of ElateMe Android application.
It will allow users to make payments not only with bank card but in the most
popular crypto-currency – Bitcoins.

1.8.1 What are bitcoins?

“Bitcoin is an innovative payment network and a new kind of money.” [5]
“Bitcoin is open-source; its design is public, nobody owns or controls Bitcoin,

and everyone can take part.” [5] Paying in bitcoins means to make a bitcoin
transaction from one bitcoin address to another. “A Bitcoin address, or simply

10

1.8. Bitcoin payments

Figure 1.6: Fio bank payment page in the application

address, is an identifier of 26-35 alphanumeric characters, beginning with the

number 1 or 3, that represents a possible destination for a bitcoin payment.”
[6] To pay with bitcoins, you need to have bitcoins and address for payment.
For simplicity, there are several applications, which help you to manage your
bitcoins and make payments.

1.8.2 Whom to pay?

Since our ElateMe backend server is responsible for managing wish collections,
choosing of a bitcoin payments provider depends on the backend server very
much. Our team decided to use BitPay as a provider for bitcoin payments.
The ElateMe system will have its own account in BitPay, and all bitcoin
transactions will be done via this service. Thus, I need to integrate BitPay
services into our Android application. Luka Lukaševič has research of available
providers of bitcoin payments in his thesis. [7]

11

1. Analysis

1.9 PayPal payments

1.9.1 What is PayPal?

PayPal is online payment service, established in 1998. It allows users to trans-
fer funds electronically. The money can be sent to anyone with an e-mail ad-
dress, even if the recipient does not have PayPal account. There is an ability
to associate PayPal account with a bank account or credit card in order to
add or withdraw money. PayPal is one of the most popular payment services
around the world, it is accepted by millions of e-shops, for example, by eBay.

ElateMe service is not an exception. It is important to support as much
widely used payment services as possible, so PayPal is one of them. With
PayPal acceptance, any ElateMe user will be able to donate for some wish
with his PayPal account, where he has funds or set credit cards and bank
accounts.

1.9.2 Whom to pay?

ElateMe system has own PayPal account for money holding during collecting
for some wish. Holding, collecting and manipulating wish money is a task for
our backend servers, and it is not covered in this bachelor’s thesis. The actual
task is to make ElateMe Android application support PayPal payments.

Our team decided to use Braintree service as a payment service provider in
our ElateMe system. Braintree is a PayPal service, so it is the most convenient
and preferable way to support PayPal payments. Braintree supports a lot of
di�erent payment methods besides PayPal such as Apple Pay, Android Pay,
Masterpass, and others. By choosing Braintree services our team got not only
PayPal payments, but also Apple Pay for iOS devices and Android Pay for
Android devices.

1.10 Android Pay

1.10.1 What is Android Pay?

Mobile payment services are becoming more and more popular during last few
years. The main convenience of mobile payment is that you can pay with your
smartphone or smartwatch simply just by keeping them close to a payment
terminal. The other handy feature of mobile payments is that you can use it
for internet payments.

Android Pay is such mobile payment service developed by Google and
supported by Android devices (with Android KitKat 4.4 and above).

12

1.11. Sharing a product from a web browser

1.10.2 Payment flow

The other important task of this thesis is to make ElateMe Android applica-
tion support donation with Android Pay, which means an ability to make an
internet payment with Android Pay. The flow of payment is pretty straight-
forward: a user chooses Android Pay as a payment method, then he selects a
card he wants to pay with, then he should authenticate himself (by password
or fingerprint) and finally proceed the payment. Example of such payment in
some Android application where a user choosing his card is shown in Figure
1.7.

Figure 1.7: Example of Android Pay payment is some application [8]

1.11 Sharing a product from a web browser

Let’s imagine the user of ElateMe service surfing the web using his smart-
phone, where ElateMe application installed. Supposably he finds an inter-

13

1. Analysis

esting product on some e-shop website and wants to create wish with it in
ElateMe service. Of course, he could create wish manually, setting by hands
all required parameters such as title, amount, image and so on. But what if
our Android application would do all these routine operations for the user?
Here comes sharing from a web browser.

1.11.1 Possible solution

Although it is called sharing from a web browser, actual trick is that applica-
tion should be provided with webpage URL in order to recognize the potential
product. So, we need to make our application receive data from other appli-
cations somehow in the Android operating system.

1.12 Requirements specification

1.12.1 Functionality

R1 New feed item layout: The goal is to implement new feed item ac-
cording to a new design.

R2 Comments in the feed: The goal is to implement the latest comment
for each feed item.

R3 Paging for all lists of items: A user should be able to load all of the
items in series.

R4 New comments in wish detail screen: The goal is to implement new
layout for comments, which should be placed at the end of the screen with
detailed wish view.

R5 New screen with wish creation: Besides the primitive creation of the
wish, a user should be able to choose wish deadline, visibility and fixed/any
amount of donation.

R6 Sharing from a web browser: A user should be able to share any
page (i.e., while surfing the web) into the app in order to create the new wish.
If the product on the page will be successfully recognized, a user will be able
to create a new wish with it.

R7 FIO Bank payments integration: The app should support payments
via FIO Bank payment gateway. (card payments)

14

1.12. Requirements specification

R8 PayPal payments integration: The app should support payments
with PayPal account.

R9 Bitcoin payments: The app should support payments in bitcoins.

R10 Android Pay payments: The app should support payments via An-
droid Pay.

R11 New notification popups: Notification popups with some important
information should be implemented. When some new event takes place, a
user should be informed with a corresponding small window (popup) in the
application.

R12 Unread notifications indicator: The user interface should have an
indication of the number of unread notifications.

R13 New notification list: List of all notifications should be reworked.
New layout for the list item and click on notification should be implemented.

1.12.2 Usability

R8 App stability: High stability of the app in terms of “living” in Android
OS is needed. The app should correctly handle such cases as force exiting,
being in the background and returning to the foreground.

1.12.3 Reliability

R9 Security during the bank payment: Bank payments should be suf-
ficiently secured.

1.12.4 Performance

R10 Network performance optimizations: To take measures aimed at
reducing the number of network calls.

1.12.5 Supportability

R11 Clean code: The source code should be clean and understandable.

R12 Separation of concerns: Application architecture should meet this
design principle.

R13 Continuous Integration and Automatic Testing: Automatic test-
ing should be configured and deployed.

15

1. Analysis

1.12.6 Constraints

R14 Minimal supported API: Minimal supported API is 19.

R15 Landscape screen orientation: No landscape layout is supported.

16

Chapter 2
Design

This chapter introduces the major user interface changes, describes the ar-
chitecture decisions of the most important features of the application and
provides the updated platform-specific model.

2.1 UI design

All user interface requirements I received from Michal Maněna or Jan Ho�man,
and all my recommendation and request were discussed with them in advance
before implementation.

While implementing, I tried to follow Google Material Design Guidelines
[9] and use the latest approaches and modern libraries.

2.1.1 New feed screen

The feed screen is the first screen (except the screen with login, which is shown
in case a user is not logged in yet) which is presented to a user when he opens
the application. This screen contains a list of wishes, so in order to make each
entry of the list outstanding and informative, I decided to use card view. Each
card will have brief information about the wish, such as title, author image,
wish image, collection progress and the latest comment if present.

Implemented feed screen with one entry of the list of wishes is shown in
Figure 2.1.

You can see:

• facebook picture of the author and his name,

• wish deadline,

• wish title, image, and a short description,

• collection progress in form of a horizontal progress bar,

17

2. Design

Figure 2.1: Implemented feed screen

• “more” button, which opens the context menu of the wish,

• “details” button, which opens the new screen with details of this partic-
ular wish,

• the latest comment with author name and image, text and date.

Moreover, some edge cases of the view logic were handled:

• Deadline icon and date is not shown if the deadline of the wish is not
set.

• Card changes its height based on the presence of wish image. Which
means, that card is getting lower when the image of the wish is absent.

• Wish description is shown with ellipsis in order to keep the normal height
of the card. Too long descriptions are shown Ñ•ut and ended with three
dots.

18

2.1. UI design

• The latest comment section is not showing in case of absence of any
comment.

2.1.2 New comments in wish detail screen

The next essential requirement was the implementing comments on the screen
with wish details. Jan Ho�man provided the user interface design for this. I
implemented this feature by strictly following the provided design, although
some behavioral improvements were made by myself.

The use cases which should be implemented were reading comments and
adding comments. I added hiding comments and hiding the input field for
comments as useful improvements. Important points:

• message with a number of comments,

• list of comments (showing only the latest comment when comments are
hidden),

• button for collapsing the list of comments (changing its text accord-
ingly),

• input field for making a new comment. This input field is hidden behind
the bottom of the screen when the user is looking at details of the wish.
As soon as the user scrolls down to the comments, input field appears
with smooth animation. When the user navigates back to the details,
input field hides as well. It’s important to note, that text in the input
field survives these hidings. If the user leaves some text in the input
field without sending, then triggers hiding of the input field by scrolling
up and then scrolls back down, his text will remain.

Examples of the implemented screen are shown in Figure 2.2.

2.1.3 New wish creation screen

According to domain rules and business-rules of our ElateMe system, creating
a new wish requires some information, namely, wish recipient, set of allowed
(for viewing and donating) users, deadline of the wish and type of donations
(such as fixed amount or currency). All those things along with wish title,
image and amount make up the new wish, created by a user of ElateMe system.
Thus, our screen should provide a convenient and intuitive user interface for
creating a new wish.

The first solution

The first solution of wish creation screen was implemented following an inter-
active design of the web version, which is available at website [10]. I had to

19

2. Design

Figure 2.2: Implemented comments in the wish detail screen

20

2.1. UI design

use mobile mode in my web browser in order to get a mobile-looking example
of the interface. The resulting screen is shown in Figure 2.3.

The problem is that this design is not adaptive to mobile devices and
is made based on the version for web browsers. There are two significant
disadvantages:

1. All information is concentrated in one single screen.

2. There is one fragment with tabs in the such another fragment. Since
tabs can be changed by left or right swiping, such behavior with inner
tabs might be ambiguous and unclear for a user.

The current solution

To make the screen of wish creation more adaptive for mobile devices and
intuitive, we decided to rework it. The new screen was reworked base on
Jah Ho�man’s design mockups. The most important change to mention was
separating the screen into the main screen and four subsequent screens. Each
subsequent screen is responsible for picking required options of the new wish
such as wish recipient, wish visibility, wish deadline and type of donations.
You can see all those implemented screens in Figures 2.4 and 2.5. It must
be noted that some user experience improvements were implemented such as
picking a currency of the donation and choosing visibility among recipient
friends.

2.1.4 New popups and notifications

To implement popups and notifications we needed not only to organize service
layer in order to make them update recurrently but also to design all logic of
viewing the popups and notifications in our application.

The popups

According to provided UI design, all popups look almost the same way – they
all have a header, a text, and an optional image. On the other hand, each
type of popup has its own data, which should be presented to the user in
header or text. (For example amount and image of the wish in one popup,
name and author of the wish in another popup). The problem is to distinguish
such di�erent logic of what should be shown and how it should be shown from
each other, trying to follow such important design principle as separation of
concerns.

The solution is to place the view logic in the base class of popup view
model and concentrate the content logic in the derived classes. Thus, derived
class logic is responsible for determining a content of the popup and base class

21

2. Design

Figure 2.3: The first version of implementation of the wish creation screen

22

2.1. UI design

Figure 2.4: The current version of the wish creation screen (main screen)

logic is responsible for showing the content properly (with all appropriate logic
such as treating the absence of the popup image).

There is an example of implemented popup 2.6a and its class diagram 2.6b.

The notifications

The same solution was applied to the same problem with notifications. All
view logic was placed in the base class and content logic in the derived classes.

There is an example of one item of the notification list 2.7 and its class
diagram.

23

2. Design

Figure 2.5: The current version of the wish creation screen (subscreens)

24

2.2. Application architecture

(a) Example of the implemented popup (b) Class diagram of the implemented popup

Figure 2.6: Implemented popup and its class diagram

2.2 Application architecture

2.2.1 Service layer rework

What is a service layer?

A service layer is a layer of the application software architecture, which exists
between the UI layer and the data access layer. The goal of such service layer
is to encapsulate business-logic of an application, to communicate with the UI
and to access the needed data.

Problems with the previous realization

Previous organization and implementation of this important layer was inflex-
ible and complicated in usage, and there is an explanation why.

The previous realization was based on so-called Interactor pattern which
is the part of Clean Architecture pattern in Android development (you can

25

2. Design

(a) Example of one item of the notification list

(b) Class diagram of one item of the notification list

Figure 2.7: One implemented item of the notification list and its class diagram

read more about it in the article [11]). There are a lot of details to explain,
but I will provide a short description of the main concept of these interactors
and explain, why I decided to replace them with a more appropriate solution.

Simply put, interactor is an object, which encapsulates some business-
logic (like any member of service layer should do) of either strictly one use
case or a particular combination of them. The other important thing to men-
tion is that there is only one way to get the result of interactor execution –
subscribe to the result. For example, previously in the ElateMe application,
there was interactor for getting wish by its id, called GetWithInteractor. To
use it I needed to inject this interactor object, call its execution by providing
some wish id and subscribe to the result, which is wish found by provided id.
To summarize, I can request service layer for some data and get the result
asynchronously. It sounds like the service layer fulfills its role, but there is

26

2.2. Application architecture

a pitfall over here. The last thing to mention before diving in explanations
is that ElateMe Android application uses reactive extensions. It is “an API

for asynchronous programming with observable streams.” [12] Using reactive
extension helps a lot in writing asynchronous code, managing threads, process
user’s inputs and so on. It is a very powerful tool with the ability to convert
absolutely anything (user clicks or network response) to a stream of data and
combine such streams if needed. For example, we use Retrofit library, which
helps us to “convert” our any HTTP request to an observable stream of data
(response or error of the HTTP request).

Back to the pitfall of approach with interactors, let’s describe some sit-
uation. What will we do, if we need to get some wish by its id and get all
users who contributed to it at the same time? The solution that comes to
mind is to use one interactor in the subscription on another interactor, which
in our situation means take GetWishInteractor, subscribe to it and then use
the next, GetConributedUsers, interactor in this subscription. The problem
is that it is a wrong, impractical solution and furthermore huge misuse of
reactive extensions.

So, there are two main problems with this approach:

1. Interactors ask, but not being asked. Each interactor needs you to pro-
vide a subscription to it instead of giving you the observable stream of
data you requested.

2. We can not combine interactors, so we are forced to create the new inter-
actor every time we need to combine some primitive use cases. GetWish-
Interactor is for getting a wish, GetWishWithContributedUsersInterac-
tor is for getting wish with its contributed users, GetWishWithCached-
ContributedUsersInteractor is for getting a wish with cached contributed
users and so on. It makes code dirty and di�cult to support.

New realization

The new realization is based on dividing out service layer into sublayers:

• Data access layer. For example Retrofit service, which returns observable
for an HTTP request.

• Data provider layer. There is no actual need for this sublayer for now
because the only one source of data for out ElateMe application, for
now, is network. It will be useful in case of using several sources of data,
for example, network and some local storage. Then this sublayer will be
responsible for managing those sources.

• Service layer. This is a sublayer, where all application business-logic
is concentrated in. For example, here we can combine observables and
enrich our wish with its contributed users.

27

2. Design

Figure 2.8: Service layer class diagram (a part of class diagram)

Thus, the problem of combining observables is solved. Every member of the UI
layer is able now to obtain some needed observable streams of data, combine
them the way it wants and use all the power of reactive extensions. You can
see a part of the class diagram of the service sublayer in Figure 2.8.

2.2.2 Handling Android application lifecycle

The problem

The ElateMe system uses Facebook as a login system. Connecting using Face-
book SDK ElateMe Android application allows users to sign with their Face-
book accounts. So, to make the application communicate with our ElateMe
backend server, a user must be authorized through Facebook systems. During
the authorization of a user, the application obtains specific token which is
required for communication with ElateMe backend server. Solovev Georgii’s
implementation is pretty straightforward – when a user opens the application,
the first screen he sees is the login screen, which checks whether the user is
logged in and either let him proceed to the app or showing him welcome screen
with a login button. Also, the application obtains necessary token if the user
is already logged in. This implementation is perfect unless there is not any
other entry point to the application besides mentioned login screen.

The problem was how Android OS manages its applications. If a user opens
an app on his Android phone, then minimize it and lets it run in the back-
ground, Android OS can easily unload minimized application from memory if
it is necessary. Then, if the user decides to open the minimized application
back, Android OS will try to recreate this application in the state the user saw

28

2.2. Application architecture

Figure 2.9: Getting wish from the network with token management (sequence
diagram)

it the last time before minimizing. When this happens to our ElateMe applica-
tion, needed application token is missings in our restored application, and all
requests to the backend server won’t succeed (will return 401 Unauthorized).

The solution

I decided to change the way our application obtains authorization token. In-
stead of getting it on the first screen, it should be got when the first request
which required this token is triggered. To implement this, I created login ser-
vice for obtaining and caching this important token. So any method of data
provider sublayer (described in section 2.2.1) now asks this login service for
the token before making the actual request. The login service checks if the to-
ken is cached and either returns it or obtains the new one. Detailed sequence
diagram of this process is shown in Figure 2.9.

29

2. Design

2.2.3 Popups and notifications

This subsection describes architecture details of the popups and notifications
in the ElateMe Android application.

The main distinction between this feature and the others is that popups
and notifications should be managed by some Android application component,
which is able to perform background operations. There are Android services
for such cases.

“A Service is an application component that can perform long-running op-

erations in the background, and it doesn’t provide a user interface. Another

application component can start a service, and it continues to run in the back-

ground even if the user switches to another application.” [13]
There are the three di�erent types of services:

• Foreground service, which “performs some operation that is noticeable

to the user. For example, an audio app would use a foreground service

to play an audio track.” [13]

• Background service, which “performs an operation that isn’t directly no-

ticed by the user. For example, if an app used a service to compact its

storage, that would usually be a background service.” [13]

• Bound service, to which an application component can be bound. “A

bound service runs only as long as another application component is

bound to it. Multiple components can bind to the service at once, but

when all of them unbind, the service is destroyed.” [13]

Bound services perfectly fit our needs, because we need to update and show
popups and notifications only when the user sees and uses our application.
We can bind it when the application is in the foreground and unbind when it
goes o�. Such service will be used for recurrent updates of new popups and
counter of unread notifications from the ElateMe backend server. Notification
service will publish via event bus an event, indicating updates of popups or
unread notifications counter and all interested components of the application
such activities or fragments will receive such event and handle it on their own.
Thus, main activity (one which contains four tabs) will update its notification
counter (notifications tab bell icon) and all activities will be able to show new
popups. Sequence diagram of this process is shown in Figure 2.10.

2.2.4 Payments

Before describing the architecture of each type of payment, we need to describe
some general things, which are common for all payments.

All payments can be made only from the screen with details of the wish.
If a user opens wish to which he is able to donate, he will see donate but-
ton. By clicking on it, the user will be asked to choose amount and donation

30

2.2. Application architecture

Figure 2.10: Polling popups and notifications from the backend server (se-
quence diagram)

31

2. Design

method (bank card, Bitcoins, PayPal or Android Pay). Then the user initial-
izes payment by accepting some donation method. This process is described
by sequence diagram, which can be found in Figure 2.11. The screenshot of
picking donation amount and method is shown in Figure 2.11.

All kinds of payments are described separately in the next parts.

Figure 2.11: Picking donation options by a user (sequence diagram)

2.2.4.1 Bank payments

As I mentioned earlier in the analysis chapter, our team decided to change
the approach of realization of the bank payments. The new bank payments
will not di�er from the analogical payments on web site in the web browser.
Since the goal is to give the user ability to visit the Fio bank webpage with
bank gateway, I decided to use Android webview. WebView is “a view that

displays web pages.” [14] “You can roll your own web browser or simply display

some online content within your Activity. It uses the WebKit rendering engine

32

2.2. Application architecture

to display web pages and includes methods to navigate forward and backward

through a history, zoom in and out, perform text searches and more.” [14]

The flow of payment with a bank card is pretty simple – all our applica-
tion need is to obtain URL for payment gateway webpage from the ElateMe
backend server and show this webpage to the user. When the user enters
the amount and chooses donation with a bank card, the ElateMe application
obtains URL and showing Fio bank gateway in a webview.

This flow is described by sequence diagram which is shown in figure 2.12.

Figure 2.12: Donation with bank card (sequence diagram)

33

2. Design

2.2.4.2 Bitcoin payments

As was mentioned in the analysis section of this thesis, ElateMe system uses
its own account for all types of payments. It is an essential thing in organizing
refunds and donations from several users.

Since our team decided to use BitPay service for managing bitcoin pay-
ments, the goal of this thesis is to implement the integration of BitPay pay-
ments into our Android application. BitPay supports over 40 integrations
for accepting payments in bitcoins such as shopping carts, plugins, donation
systems and libraries for today’s most popular programming languages.

O�cial documentation says, that there is Android SDK for integration
BitPay payments into an Android application. This SDK “allows our ap-

plication to create an invoice quickly, show the user an option to pay, and

track the status of the payment.” [15] This is the one which I used for BitPay
integration.

According to the documentation for BitPay Android SDK, the first thing
we needed to do is to create client token, which is used by the SDK internally
for the purpose of identifying our ElateMe system account. This client token
is a kind of address for newly created BitPay invoices. The token can be
generated via the web interface of the ElateMe BitPay account, so I asked our
product owner to provide it for me. In speaking of security, this client token
is used only for creating invoices for our ElateMe account, so we don’t have
to worry about storing the token in a secure way.

The second step is to set up SDK correctly for creating new invoices. This
is a pretty simple step, all we need is to instantiate BitPayAndroid class and
provide it with client token. During this step, we can specify what server
our application should use for BitPay payments. There are two options –
test server and production server. We decided to use the test server for now
in order to test BitPay payments without manipulating with real bitcoins.
Switching to production server can be done by changing a couple of lines in
the configuration file of our Android application.

Once we have our SDK set up, we can create invoices everytime a user
wants to donate to a wish in bitcoins. First of all, we need to instantiate
Invoice class by providing it with donation amount, currency and webhook
URL. (Webhook URL is the HTTP callback, which is used to track a state
of the invoice. As soon as the state of the invoice changed, BitPay sends the
updated state to this URL address.) Then, we need to send a newly created
invoice to the BitPay server. There is a special method for it in the BitPay
SDK, so we do not have to handle this by ourselves.

Once the invoice is successfully sent, we can show a special screen to the
user, which contains bitcoin address (with QR code), expiration date of the in-
voice and button with proceeding to the BitPay wallet. BitPay SDK provides
this screen, so there is no need to implement it.

Thus, with the help of the BitPay Android SDK, we can easily integrate

34

2.2. Application architecture

Figure 2.13: BitPay payment screen in the ElateMe application

BitPay payments into our application. Screenshot of bitcoin payment in the
ElateMe Android application is shown in 2.13. Corresponding sequence dia-
gram of the payment flow is shown in 2.14.

2.2.4.3 PayPal/Android Pay payments

Since our team chose Braintree service as a payment provider for PayPal
and Android Pay payments, the goal of this thesis is to integrate Braintree
payments into the application.

First of all, it is important to describe Braintree payment flow from the
client point of view. There are three steps in the flow:

1. A client (Android application) must obtain a client token from our
ElateMe backend server. This token identifies the user and is used for
Braintree SDK initialization.

2. The user chooses a payment method (PayPal or Android Pay) on a

35

2. Design

Figure 2.14: Donation with bitcoins via BitPay service (sequence diagram)

special Braintree Drop-In UI and proceeds the payment. The Drop-in
is shown in Figure 2.15.

3. Braintree SDK finishes the payment by making a request to Braintree
servers.

4. When payment is finished, our client code should make a request to our
backend server in order to inform the server about finished payment.
The client-side flow is shown in an appropriate sequence diagram in a

36

2.2. Application architecture

Figure 2.16.

Figure 2.15: Braintree Drop-in picker for payment method

According to the Braintree’s documentation and integration guide, our
Android application must define a special intent filter. It is important when
a user wants to pay via PayPal. If the user chooses PayPal payment method
in the Drop-in, Braintree SDK will redirect the user to a web browser for
proceeding his payment. Thus, the intent filter defines kind of entry point in
our Android application and is required for returning from the opened web
browser back to the application.

Speaking of payments via Android Pay, there are no any additional steps
to get it done. Everything is handled either by Braintree SDK or Android
Pay (integrated into Android OS if supported).

Thanks to the perfect Braintree’s integration guide integration into an
Android application is clear and easy. All I needed to do was handle a couple
of network requests to our ElateMe backend server and setup Drop-in.

37

2. Design

Figure 2.16: Donation with the Braintree service (sequence diagram)

2.2.5 Sharing from a web browser

As we described earlier in the analysis section, our application should be
able to obtain URL of a webpage, where some product should be recognized.
Research showed that there exists Google recommended approach, which is
based on Android Intents [16] and Intent Filters [16]. As a result, our ap-
plication may be available in sharing menu of some applications including a
web browser. Example of such sharing menu is shown in Figure 2.17. The
algorithm which is dealing with recognition from a web page is placed at the
backend server, and its description and details are not in the scope of this
bachelor’s thesis. “An Intent is a messaging object you can use to request an

action from another app component.” [16]
There are two types of intents:

• “Explicit intents specify which application will satisfy the intent, by sup-

plying either the target app’s package name or a fully-qualified compo-

nent class name. You’ll typically use an explicit intent to start a com-

38

2.2. Application architecture

Figure 2.17: Example of sharing menu in web browser [17]

ponent in your own app, because you know the class name of the activity

or service you want to start.” [16]

• “Implicit intents do not name a specific component, but instead declare

a general action to perform, which allows a component from another app

to handle it.” [16]

In our case, we need implicit intent. Our application must register the in-
tent filter in order to receive implicit intents. An intent filter is a set of
rules applying to some activity (android application screen) or other appli-
cation components (such as services). These rules describe how our appli-
cation will “answer” if other application “asks.” In our case, we chose “an-
droid.intent.action.SEND” as intent action (because we need to make our ap-
plication available via sharing menu) and “text/plain” as intent data type
(because an URL of the webpage is just a string).

The next step is to handle received URL webpage string. To do this, our
application checks whether some text was provided to it. If it is provided
and this text is a valid URL, the application will request our backend server
for wish recognition. The user will be redirected to the wish creation screen

39

2. Design

with filled in data of recognized product (such as title, amount and product
image). This process described by the sequence diagram which is shown in
Figure 2.18.

Figure 2.18: Sharing product from a web browser (sequence diagram)

40

2.3. Platform-specific model updates

2.3 Platform-specific model updates

Figure 2.19: Notification view models of the application (full class diagram)

41

2. Design

Figure
2.20:

C
om

ponent
diagram

ofthe
application

42

2.3. Platform-specific model updates

Fi
gu

re
2.

21
:

Se
rv

ic
e

la
ye

r
(f

ul
lc

la
ss

di
ag

ra
m

)

43

2. Design

Figure
2.22:

Popup
view

m
odels

ofthe
application

(fullclass
diagram

)

44

Chapter 3
Implementation

3.1 Code organization

3.1.1 Package organization (by feature)

Inspired by the article [18], I decided to reorganize source code of our appli-
cation. Since source code is written in Java, code organization is based on
packages. Earlier it was organized by layer. For example, there was a pack-
age for adapters, a package for activities, a package for fragments and so on.
But the problem is, that working on one feature you need to have all related
components (for example, screen, which is represented by one activity, two
fragments, and several corresponding adapters). So, organization by feature
is more convenient for developers. “Packaging stu� together by what it is, and

not by what it does, will only make you jump 10 times to the place you are

looking for.” [18]
Structure:

1. dagger – all classes related to Dagger 2, such as components and mod-
ules.

2. data.api – all interfaces, describing ElateMe backend API.

3. data.api.model – all data classes (models), related only to the data.API
(such as server response model and so on).

4. data.entities – all data classes (models), which is used by service sub-
layer (classes which business logic manipulates with).

5. data.interface – all service layer interfaces.

6. data.implementation – all implementations of service layer interfaces

7. domain.service – all implementation of service layer (contains all busi-
ness logic).

45

3. Implementation

8. presentation.base – base classes, which are widely used in the presen-
tation layer.

9. presentation.component – component classes, which are widely used
in the presentation layer.

10. presentation.splash – all classes, related to the splash screen of the
application.

11. presentation.main – all classes, related to the main screens of the
application.

12. presentation.main.wishes/settings/notifications/
friends/feed/createwish – all classes, related to corresponding screens
of the application.

3.1.2 Git workflow

“Git is a free and open source distributed version control system designed to

handle everything from small to very large projects with speed and e�ciency.”
[19]. Git manages the source code of ElateMe Android application project.

I developed new features in separate branches (new branch for each fea-
ture) and integrate them into application in one special branch (development
branch). Each release of the application was done by separate commit and
tagged by git tags in order to identify it quickly. Furthermore, I used interac-
tive rebasing to keep git repository clean and demonstrative.

3.2 Libraries

This chapter introduces the most important libraries, which were used during
development of this project.

3.2.1 Stetho

Stetho is a debug bridge for Android applications developed by Facebook. It
allows using the Chrome Developer Tools for debugging Android applications.
I mostly used it for network inspection because Android Studio does not pro-
vide any convenient tool for it. Stetho would also be used for inspection if the
application had had a local database.

3.2.2 RxJava 2

RxJava 2 is an implementation of Reactive Extensions for Java language. It
is “an API for asynchronous programming with observable streams”, “combi-

nation of the best ideas from the Observer pattern, the Iterator pattern, and

functional programming.” [12] Simply said, this library can help you to convert

46

3.2. Libraries

almost anything into a stream of data and allows you to manipulate with such
streams di�erently.

I used this library mostly for obtaining data from the ElateMe backend
server and manipulating them before showing to the user. For example, in Fig-
ure 3.1 is shown how I get a stream of data, which receives the authentication
token at first and then downloads wish by id using this token.

@Override
public Single<Wish> getWish(Long id) {

//obtaining the token from loginService
return loginService.getToken()

.flatMap(token ->
//using the token to make a request

wishesApi.getWish(token.getTokenAsHeader(), id)
.toSingle());

}

Figure 3.1: Example of using RxJava for obtaining token before actual request

3.2.3 RxTuples 2

“RxTuples is a library to smooth RxJava usage by adding simple Tuple creation

functions.” [20] This library comes into action, when we need to pass more
than one value from one RxJava operation into another. There is a special
tuple data type for such cases in other languages (for example TypeScript),
but not in Java. “A tuple is a collection of several elements that may or may

not be related to each other.” [21] So, I used this library as a replacement for
tuples in Java. In Figure 3.2 is shown how I used triplet (tuple of three values)
to pass three values from the switchMap operator to the map operator.

3.2.4 EventBus

This library developed by Greenrobot is “event bus for Android and Java that

simplifies communication between Activities, Fragments, Threads, Services,

etc.” [22] We can post some messages into event bus and deliver them in
our subscribers. It is important to mention, that event bus messages are
simple POJOs. So, it is a perfect solution for communicating between Android
Activities and Services. I used EventBus for one way communication between
service for popups and notifications updating and activities (screens) of our
application. All popups and notification updates are delivered to the activities
via EventBus.

47

3. Implementation

//the first RxJava operator
.switchMap(wishResponse ->

Observable.zip(
//zipping wish
Observable.just(wishResponse),
//zipping author of the wish
this.userService

.getUserAccountInfo(wishResponse.getAuthor().getId())

.toObservable(),
//zipping comment of the wish
this.commentsService

.getComments(wishResponse.getId())

.toObservable(),
//using Triple to "pack" all three values into one tuple
Triplet::with))

//the second RxJava operator
.map(triplet ->

//accessing tuple values
mapToMyWishViewModel(triplet.getValue0(), triplet.getValue1(),

triplet.getValue2())
);

Figure 3.2: Example of using RxTuples for passing several values between
RxJava operators

3.2.5 Lombok

“Lombok is a java library that automatically plugs into your editor and build

tools, spicing up your java. Never write another getter or equals method again.

Early access to future java features such as val, and much more.” [23]
I used Lombok’s @Data annotation to create data classes (such as classes

for responses and manipulating data) in a clean and demonstrative way. Lom-
bok generates getters and setters for non-final fields, equals, hashCode and
toString methods for classes, which are marked with this annotation. Exam-
ple of such data class is shown in Figure 3.3.

The other useful feature of Lombok is a @Builder annotation. It “pro-

duces complex builder APIs for classes.” [24] The other words, Lombok im-
plements builder pattern for a class, which is annotated with this annotation.
Builder pattern is very handy in case of instantiating an object with a lot of
parameters. Without builder, you would need to instantiate an object and
provide all parameters via setters. The problem with this approach is that
your object may be in an inconsistent state after instantiation but before pro-
viding required parameters. The other way to instantiate an object with a
lot of parameters is to use a constructor. But there will be a lot of di�erent
constructors to cover all needed combinations of parameters and edge cases.

48

3.2. Libraries

@Data
@Builder
public class Donation {

@SerializedName("id")
private Long id;

@SerializedName("donator")
private User donator;

@SerializedName("wish")
private Long wish;

@SerializedName("amount")
private Double amount;

@SerializedName("date")
private DateTime date;

}

Figure 3.3: Example of Donation data class with Lombok’s annotations

When the builder pattern is realized, a class will have inner static helper class,
which can be used to instantiate an object. You can provide parameters in
any order and finally call a method for building an object. Example of usage
of the builder pattern is shown in Figure 3.4.

Donation newDonation = Donation.builder()
.donator(donator)
.wish(wish)
.amount(amount)
.date(todayDate)
.build();

Figure 3.4: Example of usage Donation builder generated by Lombok library

3.2.6 Constraint layout

Android SDK has a lot of di�erent layouts, which help to build a user interface.
Actually a layout is a group of views, and all di�erent kinds of layouts place its
own child views in a di�erent way. There is, for example, a linear layout, which
“aligns all children in a single direction, vertically or horizontally.” [25], or
relative layout, which displays child views in relative positions. “The position

of each view can be specified as relative to sibling elements or in positions

relative to the parent area.” [26] The main problem with those layouts is that

49

3. Implementation

you often need to insert one layout into another, making the tree of views very
deep. And this can be a very serious performance issue. Fortunately, Google
introduced a more productive and convenient layout – Constraint Layout.

“Constraint layout allows you to create large and complex layouts with a

flat view hierarchy (no nested view groups).” [27] All the power of this layout
is that “ConstraintLayout is available directly from the Layout Editor’s visual

tools because the layout API and the Layout Editor were specially built for

each other. So you can build your layout with ConstraintLayout entirely by

drag-and-dropping instead of editing the XML.” [27]
While creating new layouts for our application, I used Constraint layout

because it is convenient, intuitive and provides better performance.

3.2.7 ViewModel

It is important to mention that in Android SDK you can not pass an object
between activities (screens) and fragments (piece of an application’s user in-
terface). You can only pass primitive types of data (such as string, integers
and so on) or serializable objects (objects, which can be decomposed to prim-
itive data types). The problem is you can not share the same object between
activities and fragments. ViewModel is a library developed by Google espe-
cially for such problem in Android development. If your activity consists of
fragments, you can share one object called ViewModel between those frag-
ments and parent activity itself. Ability to share the same object solves the
problem with serialization/deserialization objects and passing them from one
fragment to the other. Your fragments can interact with the same object
without additional code and overhead.

For example, I used this library to share a list of visible (for a wish) friends
between two fragments (list of recipient’s friends and list of my friends) in the
screen of wish creation.

3.2.8 Android View Badger

Android View Bagder is a library, which helps you to put a badge on your
view. A badge is simply a counter (for example, a counter of unread messages).
It is a very popular way of showing something countable to the user, and it
is widely used among di�erent platforms (such as iOS, Android, macOS). I
used this library to put a badge on the button of notifications tab on the main
screen of our application.

3.3 Custom binding adapters

Our application uses data binding library, which helps you bind some data to
the appropriate views. You can set, for example, a boolean variable to view’s
visibility and this view will be visible or gone depending on a value of this

50

3.3. Custom binding adapters

bound variable. Furthermore, this can be done without writing Java code.
All bindings happen in the XML file of the view, and it is a great advantage
because your Java code won’t be flooded by primitive boilerplate code (for
example, controlling the visibility of a view, as was mentioned above).

Custom adapters come into play when you need to write your binding logic.
Simply put, you can write Java code, describing what should happen when
data binding library binds your data to a view. Also, you can define your
own XML attributes (which your view will use) by writing custom binding
adapters.

I wrote a custom binding adapter for loading images into views. I defined
two new XML attributes. The first one is for providing URL of the image, and
the other one is for providing the type of the image. The main purpose of the
type is that image loader (Picasso library) will use default image (placeholder)
in case of absence or unavailability of the image. There are three types of
default images defined in our application, such as male image, female image,
and gift image. The implemented binding adapter is shown in Figure 3.5 and
usage of this adapter is shown in Figure 3.6.

@BindingAdapter({"android:imageUrl", "android:imageType"})
public static void setImage(View view, URL imageUrl, ImageType type) {

ImageLoader
.loadImage(view.getContext(), imageUrl, (ImageView) view,

type);
}

Figure 3.5: Implemented binding adapter for loading images into a view

<de.hdodenhof.circleimageview.CircleImageView
android:id="@+id/comment_avatar"
android:layout_width="46dp"
android:layout_height="46dp"
android:layout_alignParentLeft="true"
android:layout_alignParentTop="true"
android:layout_marginRight="14dp"
android:imageUrl="@{CommentVM.imageUrl}"
android:imageType="@{CommentVM.imageType}"
app:civ_border_width="0dp"
tools:src="@drawable/avatar" />

Figure 3.6: Usage of the binding adapter for loading images into a view

51

Chapter 4
Testing

This chapter introduces approaches, which were used for writing tests of our
application. Nonetheless, it is necessary to describe basics of the application
architecture before the introduction.

An architecture of our application is based on MVP architecture pattern.
Communication between layers is shown in application component diagram in
Figure 2.20.

Since our application has three global layers, we need to test each of them.
There are three types of tests:

• UI layer testing (View in MVP).

• Presentation layer testing (Presenter in MVP).

• Service layer testing (Model in MVP).

Testing of each layer (including used libraries and solutions of essential prob-
lems) is described further.

4.1 Common libraries for testing

JUnit

“JUnit is a simple framework to write repeatable tests.” [28] This framework
helps to write tests, group tests by test cases and write code, which should
be run before/after each test or test case. It also contains a lot of functions,
which allow us to compare primitive values, arrays, and even objects quickly.

Mockito

Mockito is “the most popular mocking framework for Java.” [29] Mocking is
replacing an object with mock, that simulate the behavior of the real object. It
helps in testing when we need to isolate object we want to test and surround it

53

4. Testing

with mocked dependencies. Example of mocking an object is shown in Figure
4.1.

@Mock
CommentsDataProvider commentsDataProvider;

@Before
public void setUp() {

MockitoAnnotations.initMocks(this);

gson = new GsonBuilder()
.registerTypeAdapter(DateTime.class, new

DateTimeTypeConverter())
.create();

CommentList commentList = gson.fromJson(COMMENTS,
CommentList.class);

//making mocked CommentsDataProvider return Single<CommentList>
//when getWishComments(Long wishId, Integer page, Integer

pageSize) is called
when(commentsDataProvider.getWishComments(anyLong(), anyInt(),

anyInt()))
.thenReturn(Single.just(commentList));

}

Figure 4.1: Example of mocking the CommentsDataProvider object

4.2 Testing of the UI layer

A UI layer is the only one layer of our application, which interacts with An-
droid SDK. It means that code of the UI layer has Android SDK dependencies.
Since Android OS runs on Dalvik/ART virtual machine (not on the JVM),
the only way to run such code is to use real Android device or emulator. That
is why tests of a UI layer require to run them in Dalvik/ART virtual machine
as well.

Testing scheme

• UI layer is emulated by Robolectric.

• Presenter layer is mocked by Mokito.

54

4.3. Testing of the presentation layer

Robolectric

But there is one way how to run code with Android SDK dependencies on the
JVM (which can be installed fast and easy on any PC or server). “Running

tests on an Android emulator or device is slow! Building, deploying, and

launching the app often takes a minute or more.” [30] “Robolectric rewrites

Android SDK classes as they are being loaded and making it possible for them

to run on a regular JVM.” [30] Thanks to this testing framework we can run
the UI layer tests locally on development machine or server without having
real Android device or emulator.

I used Robolectric to emulate the behavior of Android SDK. But there is
another problem which should be solved in order to get working tests. To test
how our UI components communicate (usually delegate user interactions) with
presenters, the presenters should be mocked. The mocking is not a big problem
and can be done with the help of Mockito library. The actual problem is to
inject our mocked presenter into our UI component (usually Android activity
or fragment).

Moxy

“Moxy is a library that helps to use MVP pattern when you do the Android

Application. Without problems of lifecycle and boilerplate code!” [31] One of
the main advantages of the library is that it handles creating and injecting a
presenter into UI component by itself. This library is very handy, although
a problem takes place when you want to write tests. Moxy does not provide
any convenient way to mock a presenter, so we need to do it somehow.

Research showed that we can override Moxy’s store (which contains and
provides presenters) and set our mocked presenter to it. The last thing we
need to do is use Moxy’s static MvpFacade and set the custom store to it. As
a result, if UI component is created, our mocked presenter will be provided to
it.

4.3 Testing of the presentation layer

Since the main purpose of a presenter is to be an abstract layer between
data and UI, presenters in our application do not contain any Android SDK
dependencies. Thus, we can easily test them in JVM.

Testing scheme

• UI layer (Android activities and fragments) is mocked by Mockito.

• Presentation layer is normally instantiated (as it would do during the
application running).

55

4. Testing

• Service layer is mocked by Mockito.

Android schedulers problem

Android schedulers are threads in which code of our application runs. There
are two important threads – UI thread and computation thread. UI thread is
a thread where code of UI components runs. Computation thread is a thread
where the other code runs (such as network calls or heavy computations). The
reason for separation UI code running is pretty simple – we do not want to
block user’s interactions during computations.

But this separation can be a problem during a testing of the presentation
layer. Reacting to some user interactions (which are simulated by mocked
UI component) a presenter usually performs a long-running operation. The
problem is that a test does not know when it should check if the presenter did
something at the end of the operation. Thus, we need to make our code run
synchronously to know when we should check presenter’s behavior.

Our application uses Android schedulers static class from RxJava library
to obtain appropriate threads. Fortunately, RxJava allows us to override
provided threads. The solution is to provide so-called trampoline thread for all
operations. It helps us to run all, and as a result, we can test our asynchronous
code easily.

4.4 Testing of the service layer

A code of a service layer does not contain Android SDK dependencies as well.
But it contains a lot of reactive code (observable data streams), and we need
to test it somehow.

Testing scheme

• Service layer is normally instantiated.

• Data provider layer is mocked by Mockito.

Dependency injection and mocking

The main problem with testing of the service layer is mocking our depen-
dencies. Each service contains several dependencies on our data providers.
Moreover, those dependencies are provided by Dagger 2 framework. I used
DaggerMockRule library to mock all required needed dependencies easy with-
out boilerplate code. The first thing to do is define a component (component
inject dependencies in Dagger 2). And the second one is to mark all depen-
dencies, which should be mocked. As a result, a testing service gets mocked
dependencies instead of real ones. Usage of DaggerMockRule library is shown
in Figure 4.2.

56

4.4. Testing of the service layer

//setting up DaggerMockRule
@Rule
public DaggerMockRule<AppComponent> daggerMockRule =

//specifying component
new DaggerMockRule<>(AppComponent.class,

//providing domain module (test module can be provided)
new DomainModule(RuntimeEnvironment.systemContext),
//providing data module (test module can be provided)
new DataModule(),
//providing service module (test module can be

provided)
new ServiceModule())
//setting mocked component to the application
.set(component ->

((App)RuntimeEnvironment.application)
.setAppComponent(component));

//marking dependency for mocking
@Mock
UserDataProvider userDataProvider;

//marking dependency for mocking
@Mock
CommentsDataProvider commentsDataProvider;

//obtaining object for testing
//with injected mocked dependencies
@InjectFromComponent
CommentsService commentsService;

Figure 4.2: Usage of DaggerMockRule library

Testing data streams (observables)

Testing of a service layer, unlike testing of a presentation layer, does not have
the problem with threads because we are able to get needed data stream.
Fortunately, RxJava library provides some test operators and classes. The
main feature is an ability to make test observer from any observable. The test
observers support a lot of operators for testing, such as di�erent assertions
and checks. Usage of test observer is shown in Figure 4.3.

57

4. Testing

@Test
public void commentsService_shouldDeserializeCommentsList() {

//obtaining test observable from normal observable
TestObserver<List<CommentViewModel>> testObserver =

commentsService.getComments(0L).test();

//synchronously awaiting of terminating of the observable
testObserver.awaitTerminalEvent();

testObserver
//checking observable was completed without errors
.assertComplete();

}

Figure 4.3: Usage of a test observer

58

Chapter 5
Continuous integration

“Continuous Integration (CI) is the process of automating the build and testing

of code every time a team member commits changes to version control.” [32]
There are a variety of tools for continuous integration (for example Jenkins,
Circle CI and others). Our team decided to use GitLab CI. GitLab CI is CI
for building and testing a code which is integrated into GitLab. ”GitLab is
one of the more popular Git servers.” [33] Our team uses it for development,
so integrated CI is a good solution.

To have our builds and tests run automatically, we needed to do two steps:

1. Create/find appropriate Docker image.

2. Set up GitLab CI.

Docker image

“A Docker container image is a lightweight, stand-alone, executable package

of a piece of software that includes everything needed to run it: code, runtime,

system tools, system libraries, settings.” [34] GitLab CI requires docker image
to run the build and tests. I used already prepared open-source docker image,
which was found by Michal Maněna. “This Docker image contains the Android

SDK and most common packages necessary for building Android apps in a CI

tool like GitLab CI.” [35]

Setting up GitLab CI

According to GitLab CI’s Getting Started guide, all we need is to add a .gitlab-
ci.yml file to our repository. This file specifies Docker image, which should
be used and defines stages. There are two stages (build and test) in our case.
.gitlab-ci.yml file for our application’s CI pipeline is shown in Figure 5.1 and
the result of running this pipeline is shown in Figure 5.2.

59

5. Continuous integration

#docker image for android build
image: jangrewe/ gitlab ≠ci≠android

before script :
- export GRADLE USER HOME=‘pwd‘/.gradle
- chmod +x ./gradlew

cache:
key: "$CI_COMMIT_REF_NAME"
paths:

- .gradle/

#stages of pipeline
stages:

#stage for building an android application artifacts
- build
#stage for testing an application
- test

#description of build stage
build:

stage: build
#gradle command for running the build
script :

- ./gradlew assembleDebug
artifacts :

#folder for storing application artifacts after the
successful build

paths:
- app/build/outputs/apk/

#description of test stage
tests :

stage: test
#gradle command for running the tests
script :

- ./gradlew test

Figure 5.1: The application’s CI pipeline file

60

Figure 5.2: Result of running the application’s build/test pipeline in GitLab
CI

61

Conclusion

The goal of this thesis was to continue in the development of the Android
application for ElateMe. The task was to analyze, design and implement new
requirements such as handling of collection/wish, sharing a product from a
web browser into the application and using di�erent kinds of payments (bank
card, Bitcoin, PayPal, Android Pay). Moreover, the application should be
tested with appropriate automated tests.

Fulfillment of the thesis’s task:

1. Analyze and implement new requirements using FURPS+.
All important requirements were analyzed, designed and implemented.
For example, the new screen for wish creation, wish comments in several
screens, popups, and notifications.

2. Analyze and implement new kinds of payments (bank pay-
ments, Bitcoin payments, PayPal payments and Android Pay
payments).
All those kinds of payments were analyzed, designed and implemented.
Bank payments were made with the help of Fio bank web gateway.
Bitcoin payments were made by integrating with BitPay service (using
the BitPay Android SDK). PayPal and Android Pay payments were
made by integrating with Braintree service (using Braintree Android
SDK).

3. Analyzed and implement sharing a product from a web browser.
The requirement was successfully analyzed, designed and implemented.
The new feature was achieved by interacting with product recognition
algorithm, which is placed on the ElateMe backend server. Communica-
tion between web browsers and our application was done with the help
of standard Android OS approach - usage of intents and intent filters.

63

Conclusion

4. Update platform specific model/use appropriate UML diagrams.
Sequence diagrams were provided for every important and sophisticated
process described in this thesis. Appropriate class diagrams and com-
ponent diagrams were provided (or updated) as well.

5. Unit tests were written for the application. Tests of the UI
was done by emulating Android SDK with the Robolectric framework.
Although code coverage is pretty short, testing environment and ap-
proaches were analyzed and worked out. Thus, next developers can
use written tests as examples. Tests were successfully automated with
GitLab CI.

Information for next developers:

• Please notice that two dependencies (Android view badger and BitPay
SDK) are local in the gradle build system of the application, so they will
not be downloaded by gradle. Nevertheless, it is just for your informa-
tion. You should not face any problems during a building because these
two dependencies are stored in version control system.

• If you want to release a new version of the application, you need to
sign apk file before uploading to Google Play Console. (see section
1.4.2) Signing script is configured at the beginning of a build gradle file,
but you will need a file with keystore from Michal Maněna in order to
successfully sign the apk.

• Data provider layer is almost useless for now, but you will need it if you
decide to cache application data locally.

64

Bibliography

[1] Solovev, G. ElateMe - Android client. Bachelor’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2017.

[2] Sign Your App. [online], [viewed 15 April 2018]. Available from: https:
//developer.android.com/studio/publish/app-signing.html

[3] App manifest file. [online], [viewed 15 April 2018]. Available from:
https://developer.android.com/guide/topics/manifest/uses-sdk-
element.html

[4] Distribution dashboard. [online], [viewed 5 Feb 2018]. Available from:
https://developer.android.com/about/dashboards/

[5] Bitcoin. [online], [viewed 15 April 2018]. Available from: https://
bitcoin.org/en/

[6] Bitcoint address. [online], [viewed 18 April 2018]. Available from: https:
//en.bitcoin.it/wiki/Address

[7] Lukaševič, L. Analýza a implementace internetových plateb v rámci ap-

likace Elateme. Bachelor’s thesis, Czech Technical University in Prague,
Faculty of Information Technology, 2018, in preparation.

[8] Domino’s Android app. [online], [viewed 5 May 2018]. Available from:
https://www.dominos.com.au/inside-dominos/technology/android-
pay

[9] Material design. [online], [viewed 20 April 2018]. Available from: https:
//material.io/design/

[10] Jan Ho�man’s design. [online], [viewed 19 April 2018]. Available from:
http://elateme-web.janhoffman.cz

65

https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/about/dashboards/
https://bitcoin.org/en/
https://bitcoin.org/en/
https://en.bitcoin.it/wiki/Address
https://en.bitcoin.it/wiki/Address
https://www.dominos.com.au/inside-dominos/technology/android-pay
https://www.dominos.com.au/inside-dominos/technology/android-pay
https://material.io/design/
https://material.io/design/
http://elateme-web.janhoffman.cz

Bibliography

[11] Miličic, D. A detailed guide on developing Android apps using the
Clean Architecture pattern. [online], Feb 2016, [viewed 19 April 2018].
Available from: https://medium.com/@dmilicic/a-detailed-guide-
on-developing-android-apps-using-the-clean-architecture-
pattern-d38d71e94029

[12] ReactiveX. [online], [viewed 23 April 2018]. Available from: http://
reactivex.io

[13] Services overview. [online], [viewed 23 April 2018]. Available from: https:
//developer.android.com/guide/components/services

[14] WebView. [online], [viewed 23 April 2018]. Available from: https://
developer.android.com/reference/android/webkit/WebView

[15] BitPay Android SDK. [online], [viewed 23 April 2018]. Available from:
https://github.com/bitpay/android-sdk

[16] Intent and Intent Filters. [online], [viewed 23 April 2018]. Available
from: https://developer.android.com/guide/components/intents-
filters

[17] Andmade Share: For a more robust sharing menu. [online], [viewed 3 May
2018]. Available from: https://www.androidcentral.com/andmade-
share-more-robust-sharing-menu

[18] Ferreira, C. Package by features, not layers. [online], Nov 2015, [viewed
25 April 2018]. Available from: https://hackernoon.com/package-by-
features-not-layers-2d076df1964d

[19] Git. [online], [viewed 27 April 2018]. Available from: https://git-
scm.com

[20] RxTuples. [online], [viewed 27 April 2018]. Available from: https://
github.com/pakoito/RxTuples

[21] Introduction to Javatuples. [online], [viewed 27 April 2018]. Available
from: http://www.baeldung.com/java-tuples

[22] EventBus. [online], [viewed 27 April 2018]. Available from: https://
github.com/greenrobot/EventBus

[23] Project Lombok. [online], [viewed 27 April 2018]. Available from: https:
//projectlombok.org

[24] Lombok Builder. [online], [viewed 27 April 2018]. Available from: https:
//projectlombok.org/features/Builder

66

https://medium.com/@dmilicic/a-detailed-guide-on-developing-android-apps-using-the-clean-architecture-pattern-d38d71e94029
https://medium.com/@dmilicic/a-detailed-guide-on-developing-android-apps-using-the-clean-architecture-pattern-d38d71e94029
https://medium.com/@dmilicic/a-detailed-guide-on-developing-android-apps-using-the-clean-architecture-pattern-d38d71e94029
http://reactivex.io
http://reactivex.io
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://github.com/bitpay/android-sdk
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://www.androidcentral.com/andmade-share-more-robust-sharing-menu
https://www.androidcentral.com/andmade-share-more-robust-sharing-menu
https://hackernoon.com/package-by-features-not-layers-2d076df1964d
https://hackernoon.com/package-by-features-not-layers-2d076df1964d
https://git-scm.com
https://git-scm.com
https://github.com/pakoito/RxTuples
https://github.com/pakoito/RxTuples
http://www.baeldung.com/java-tuples
https://github.com/greenrobot/EventBus
https://github.com/greenrobot/EventBus
https://projectlombok.org
https://projectlombok.org
https://projectlombok.org/features/Builder
https://projectlombok.org/features/Builder

Bibliography

[25] Linear layout. [online], [viewed 27 April 2018]. Available from: https:
//developer.android.com/guide/topics/ui/layout/linear

[26] Relative layout. [online], [viewed 27 April 2018]. Available from: https:
//developer.android.com/guide/topics/ui/layout/relative

[27] Build a Responsive UI with ConstraintLayout. [online], [viewed 27 April
2018]. Available from: https://developer.android.com/training/
constraint-layout

[28] JUnit. [online], [viewed 27 April 2018]. Available from: https://
junit.org/junit4

[29] Mockito. [online], [viewed 27 April 2018]. Available from: https://
github.com/mockito/mockito

[30] Robolectric. [online], [viewed 27 April 2018]. Available from: http://
robolectric.org

[31] Moxy. [online], [viewed 27 April 2018]. Available from: https://
github.com/Arello-Mobile/Moxy

[32] What is Continuous Integration? [online], [viewed 29 April 2018]. Avail-
able from: https://docs.microsoft.com/en-us/azure/devops/what-
is-continuous-integration

[33] Git on the Server - GitLab. [online], [viewed 29 April 2018]. Available
from: https://git-scm.com/book/en/v2/Git-on-the-Server-GitLab

[34] What is a container. [online], [viewed 29 April 2018]. Available from:
https://www.docker.com/what-container

[35] GitLab CI image for building Android apps. [online], [viewed 29
April 2018]. Available from: https://github.com/jangrewe/gitlab-
ci-android

67

https://developer.android.com/guide/topics/ui/layout/linear
https://developer.android.com/guide/topics/ui/layout/linear
https://developer.android.com/guide/topics/ui/layout/relative
https://developer.android.com/guide/topics/ui/layout/relative
https://developer.android.com/training/constraint-layout
https://developer.android.com/training/constraint-layout
https://junit.org/junit4
https://junit.org/junit4
https://github.com/mockito/mockito
https://github.com/mockito/mockito
http://robolectric.org
http://robolectric.org
https://github.com/Arello-Mobile/Moxy
https://github.com/Arello-Mobile/Moxy
https://docs.microsoft.com/en-us/azure/devops/what-is-continuous-integration
https://docs.microsoft.com/en-us/azure/devops/what-is-continuous-integration
https://git-scm.com/book/en/v2/Git-on-the-Server-GitLab
https://www.docker.com/what-container
https://github.com/jangrewe/gitlab-ci-android
https://github.com/jangrewe/gitlab-ci-android

Appendix A
Acronyms

UML Unified Modeling Language

API Application Programming Interface

UI User Interface

CI Continuous Integration

SDK Software Development Kit

FURPS+ Functionality, Usability, Reliability, Performance, Supportability,
and Constraints

MVP Model View Presenter

APK Android Application Package

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

XML Extensible Markup Language

ART Android Runtime

JVM Java Virtual Machine

69

Appendix B
Contents of enclosed flash drive

root
readme.txt..................................important information
ElateMe Android client Thesis text.pdf............. thesis’s text
ElateMe Android client VPP project.vpp . Visual Paradigm project
with UML diagrams
thesis sources......................source code of the thesis‘s text
src.....................directory with source code of the application
ElateMe 2018.apk..............APK installation file for Android OS

71

	Introduction
	Analysis
	System description
	Task overview
	Previous developer
	Google Play Market
	Minimum API level
	Popups and notifications
	Bank payments
	Bitcoin payments
	PayPal payments
	Android Pay
	Sharing a product from a web browser
	Requirements specification

	Design
	UI design
	Application architecture
	Platform-specific model updates

	Implementation
	Code organization
	Libraries
	Custom binding adapters

	Testing
	Common libraries for testing
	Testing of the UI layer
	Testing of the presentation layer
	Testing of the service layer

	Continuous integration
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed flash drive

