
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 12, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Symplectic Orthogonalization and Lattice Reduction Techniques

 Student: Peter Bočan

 Supervisor: Ing. Ivo Petr, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2018/19

Instructions

Lattice-based cryptography is a promising alternative to cryptography based on factorization or discrete
logarithm problem since neither classical nor quantum algorithm is currently known that would effectively
solve general instances of hard lattice problems. The aim of this work is to get acquainted with lattice-based
cryptosystems (NTRU in particular) and to investigate lattice reduction techniques.

In particular, the student will
- study mathematical background underlying lattice-based cryptography and give its thorough description
- investigate orthogonalization methods used in lattice reduction algorithms and their symplectic versions
presented in paper [1]
- compare the performance of standard and symplectic orthogonalization algorithms using randomly
generated NTRU lattices.

References

[1] Gama N., Howgrave - Graham N., Nguyen P. Q. - Symplectic Lattice Reduction and NTRU, Advances in
Cryptology - EUROCRYPT 2006. Lecture Notes in Computer Science, vol 4004. Springer, Berlin, Heidelberg, 2006
[2] Silverman J. H., Pipher J., Hoffstein J. - An Introduction to Mathematical Cryptography, Springer New York, 2008
[3] Galbraith S. D., Mathematics of Public Key Cryptography, Cambridge University Press, 2012

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Bachelor’s thesis

Symplectic orthogonalization and lattice

reduction techniques

Peter Bočan

Supervisor: Ing. Ivo Petr, Ph.D.

15th May 2018

Acknowledgements

Many thanks to my supervisor – Ing. Ivo Petr, Ph.D. for this long adventure
through out the past months.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 15th May 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c⃝ 2018 Peter Bočan. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bočan, Peter. Symplectic orthogonalization and lattice reduction techniques.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2018.

Abstrakt

V tejto práci sme sa zamerali na matematický popis NTRU kryptosystému
založenému na ťažkom probléme na bodovej mriežke a otestujeme viacero or-
togonalizačných algoritmov poṕısaných v práci od Nicolasa Gamu nad malými
bodovými mriežkami.

Kĺıčová slova NTRU, symplektická, mriežka, ortogonalizace, Eigen

Abstract

In this thesis we study the underlying mathematical principles that are funda-
mental for lattice-based cryptosystem, namely NTRU. We have benchmarked
algorithms proposed by Nicolas Gama, et al. on a low-dimensional NTRU
matrices.

Keywords NTRU, symplectic, lattice, orthogonalisation, Eigen

ix

Contents

Introduction 1

1 Theory of lattices 3

1.1 Background and Motivation . 3

1.2 Lattice problems . 6

1.3 Solving the SVP and CVP in a lattice 7

2 Orthogonalization algorithms 9

2.1 Gram-Schmidt orthogonalization 9

2.2 Integral Gram-Schmidt . 11

2.3 Lagrange-Gauss lattice reduction 11

2.4 Cholesky decomposition . 12

2.5 µDµT factorization . 13

2.6 LQ decomposition . 14

3 NTRU 17

3.1 Polynomials . 17

3.2 NTRU cryptosystem . 19

3.3 NTRU lattices . 20

4 Symplectic and dual orthogonalization algorithms 23

4.1 Symplectic group, symplecticity, duality 23

4.2 Symplectic LQ . 24

4.3 Symplectic Gram-Schmidt . 24

4.4 Dual Gram-Schmidt . 25

4.5 Symplectic µDµT , Symplectic Cholesky 26

5 Implementation 27

5.1 Programming language and libraries 27

5.2 Generating random NTRU lattices 28

xi

5.3 Testing . 28

6 Results 31

Conclusion 33

Bibliography 35

A Acronyms 37

B Manual 39

C Contents of enclosed SD 41

xii

List of Figures

1.1 An example of a lattice (points) generated by vectors b1,b2 4
1.2 Two different bases for the same lattice 7
1.3 An example of a bad solution . 8

2.1 A projection of vector v2 onto the orthogonal vector v⊥
1 of v1 . . . 10

6.1 Comparison of Gram-Schmidt family 31
6.2 Comparison of Integral Gram-Schmidt and Gram-Schmidt 32
6.3 Comparison of Cholesky decomposition and Integral Gram-Schmidt 32

xiii

List of Tables

3.1 NTRU parameters . 19

xv

Introduction

In the past decades quantum computing got into the real world implementa-
tion and it quickly became the very promising way of computing and solving
the very hard problems of computer science threatening the online security.

Scientists have developed many cryptosystems, one of which is called
NTRU introduced in 1996 by Jeffrey Hoffstein, Joseph H. Silverman and Jill
Pipher. The NTRU is a lattice-based cryptosystem which falls into the cat-
egory of post-quantum cryptography.

Post-quantum cryptography is a new branch cryptography primarily fo-
cused on a set of cryptosystems that are resistant to quantum computing.

The NTRU cryptosystem is based on searching the problem of shortest
vector in a given lattice, namely NTRU lattice, in contrast to the RSA or
ElGamal which are based on factorisation or discrete logarithm problems and
they are susceptible to the power of quantum computing.

The search for the shortest vector in a lattice was proven to be NP-hard
problem and there are no quantum or classical algorithms known to solve this
problem.

All algorithms mentioned in my work serve as ways of solving such a prob-
lem, the most notable are Gram-Schmidt or Cholesky, but We will inspect
their symplectic and dual versions which may improve their performance.

I have decided to study this area of cutting edge post-quantum crypto-
graphy because of the all new concepts, new approaches to cryptography and
cybersecurity.

I will explore the mathematical background of a lattice-based crypto-
graphy, especially a group of orthogonalization algorithms and their symplectic
versions, which are very closely related to the NTRU cryptosystem.

This thesis is based on the research paper of Nicholas Gama, et al. who
applied the orthogonalization algorithms on the symplectic lattices which are
proportional to the NTRU lattices.

1

Chapter 1

Theory of lattices

1.1 Background and Motivation

The NTRU cryptosystem, introduced by mathematicians Jeffrey Hoffstein,
Joseph H. Silverman and Jill Pipher in 1996 is based on NP-hard problem
of finding the shortest vector in a given high-dimensional lattice. The prob-
lem is not related to already established factorization or discrete logarithm
problem, which are susceptible to Shor’s algorithm.[1]

Definition 1 (Lattice). Let B = (b1,b2, . . . ,bn) be a n-tuple of linearly in-
dependent vectors in Rm. The lattice Λ generated by B is a set of all integral
linear combinations

Λ (B) =

{
n∑

i=1

αibi : αi ∈ Z

}
.

We say that n-tuple B is a basis of a lattice Λ and basis vectors B generate
a lattice Λ.

In general, lattice can occupy a m-dimensional vector space, but it can be
of a lower dimension n (m > n). In that case, lattice rank is n, and lattice
dimension is m. If m = n then lattice is full rank.

Definition 2 (Basis matrix of a lattice). Let B = (b1,b2, . . . ,bn) be a n-tuple
of linearly independent vectors in Rm generating a lattice Λ. We can describe
a lattice Λ by a n×m matrix B as Λ(B) = {vB : v ∈ Zm} . The basis matrix
of a lattice B is constructed by placing basis vectors bi into rows.

Definition 3 (Inner product). Let a,b ∈ Rm, then inner product is a map
⟨·, ·⟩ : Rm × Rm 7→ R defined as ⟨a,b⟩ =

∑m
i=1 aibi or written in the vector

notation as abT . Vectors a,b ∈ Rm are orthogonal if and only if ⟨a,b⟩ = 0.

3

1. Theory of lattices

b1

b2

Figure 1.1: An example of a lattice (points) generated by vectors b1,b2

Throughout the thesis we will use ∥·∥ to refer the standard Euclidean
norm, which is defined as ∥a∥ =

√
⟨a,a⟩.

Now, before we dive deeper into the properties of lattices, we shall intro-
duce a unimodular matrices and their relation to the lattices.

Remark. General linear group of degree n is the set of all n× n invertible
matrices over field F : GLn(F) = {M ∈ Fn,n : matrix is invertible} . Especially,
the set of all n × n invertible matrices over field F with determinant of 1:
SLn(F) = {M ∈ GLn(F) : detM = 1} .

Lemma 1 (Unimodular matrix). Let U ∈ GLn(Z), We say that matrix U
is unimodular if and only if detU = ±1.

Theorem 1 (Properties of unimodular matrix). Let U,V be unimodular matrices.
Then the following holds

• U−1 is unimodular,

• UV and VU are unimodular.

Lemma 2. Let B be a n ×m basis matrix of a lattice Λ where m > n then
there is a linear map P : Rm 7→ Rn defined by a matrix P ∈ Rm,n such that
PΛ is a lattice of rank n and ∀v ∈ Λ : ∥Pv∥ = ∥v∥ and for all 1 ≤ i < j ≤
n : ⟨vi,vj⟩ = ⟨viP,vjP⟩.

If the linear map is represented by a m×n matrix P then a matrix for the
image of Λ under the projection P is the n× n matrix BP which is invertible.

This lemma proves the existence of a projection which projects the a lattice
from Rm to Rn, making the projected lattice a full rank lattice. The projection
preserves the Euclidean norm.

4

1.1. Background and Motivation

Lemma 3. Two n × m matrices B1, B2 generate the same lattice Λ if and
only if B1 and B2 are related by unimodular n × n matrix U. Specifically,
B1 = UB2.

I will leave out the proof, but this lemma proves the existence of a unim-
odular matrix U such that U−1B1 = B2.

Definition 4 (Integral lattice). A lattice is integral (or integer) if and only
if all vectors of its basis have integral entries.

Because of the nature of computers it will be beneficial to base our cryp-
tography around integers and integral basis vectors of a lattice to avoid oper-
ations on floating point numbers as much as possible, as they may introduce
rounding errors in computations.

Also, it is clear that we can represent a lattice as a set of points in a vector
space, or as a set of vectors, and we will do so interchangeably.

Definition 5 (Determinant of a lattice). Let Λ be a lattice generated by vectors
(b1, . . . ,bn) ∈ Rm. Then the determinant of Λ, denoted as detΛ is the value
of |detBP| where P is the projection matrix.

Lemma 4 (Independence of a basis). The determinant of a lattice is inde-
pendent of the choice of basis matrix B and the choice of projection P .

Lemma 5 (Hadamard’s inequality). Let Λ be a lattice, take any basis (b1, . . . ,bn)
for Λ and then

detΛ = |detBP| ≤ ∥b1∥ . . . ∥bn∥ .

Definition 6 (Hadamard ratio). Let (b1, . . . ,bn) be a basis of a lattice Λ,
then we define the following quantity

H(b1, . . . ,bn) =

(
detΛ

∥b1∥ . . . ∥bn∥

)1/n

and call it Hadamard ratio.

The Hadamard ratio ranges as 0 < H(b1, . . . ,bn) ≤ 1 and it serves
us as a good measure of orthogonalization.

Definition 7 (Gram matrix). Let (b1, . . . ,bn) be a set of vectors. Then
matrix G ∈ Rn,n is Gramian ∀i, j ∈ 1, . . . , n : Gi,j = ⟨bi,bj⟩ or written
as a matrix G = VVT where V is a matrix of vectors b1, . . . ,bn written in
rows. We will refer to Gram matrix of (b1, . . . ,bn) as G(b1, . . . ,bn).

We will attribute a volume to a lattice is using the following theorem which
will be useful later.

Theorem 2 (Volume of a lattice). Let Λ be a lattice described by the basis
matrix (b1, . . . ,bn) then we can attribute a volume to a lattice Λ as follows

vol(b1, . . . ,bn) =
√

detG(b1, . . . ,bn)

5

1. Theory of lattices

1.2 Lattice problems

I will list most notable variants of the NP-hard problems on a lattice, but
the fundamental are the first two problems. The symbol 0 represents the zero
vector of Rm.

Definition 8 (The Shortest Vector Problem (SVP)). Find the shortest nonzero
vector in a given lattice Λ, more specifically, minimize the Euclidean norm

min
v∈Λ\{0}

∥v∥ .

Such vector is a solution to the shortest vector problem.

Definition 9 (The Closest Vector Problem (CVP)). Given a vector w ∈ Rn,
which does not lie in a lattice Λ, find the shortest nonzero vector in a lattice Λ
that is the closest to the vector w. More specifically, minimize the Euclidean
norm

min
v∈Λ\{0}

∥v −w∥ .

Such vector is a solution to the closest vector problem.

Definition 10 (The Approximate Shortest Vector Problem (apprSVP)). Let
Λ be a a lattice of dimension n and ϕ(n) be a function of n, find a nonzero
vector v in a lattice Λ that is no more than ϕ(n) times longer than the shortest
nonzero vector:

v ≤ ϕ(n) ∥vshortest∥ .
Vector v is a solution to the approximate shortest vector problem.

Definition 11 (The Approximate Closest Vector Problem (apprCVP)). Given
a vector w ∈ Rn, which does not lie in a lattice Λ, find the closest nonzero
vector in a lattice Λ that is no more than ϕ(n) times longer than the closest
to the vector w

v ≤ ϕ(n) ∥vclosest −w∥ .
Vector v is a solution to the approximate closest vector problem.

However, there might be more than one solution to the problem. For
example, a lattice described by the following basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
has three shortest vectors, each of them has the minimal Euclidean norm and
every vector suffices as a solution to the problem.

Lemma 6 (Gaussian heuristic). Let N be a dimension of a lattice Λ. The
Gaussian expected shortest length is

σ(Λ) =

√
N

2πe
(detΛ)1/N .

The Gaussian heuristic says that a shortest nonzero vector in a randomly
generated lattice will satisfy

∥vshortest∥ ≈ σ(Λ).

6

1.3. Solving the SVP and CVP in a lattice

1.3 Solving the SVP and CVP in a lattice

Let Λ be a full rank lattice described by the orthogonal basis (b1,b2, . . . ,bn) ∈
Rn, i.e. such that ⟨bi,bj⟩ = 0 for all i ̸= j and we want to solve the SVP and
CVP on this particular lattice.

If basis vectors are orthogonal it’s easy to solve the SVP and CVP. Every
vector v ∈ Λ has the length given by the following formula

∥v∥2 = ⟨v,v⟩ = ⟨a1b1 + a2b2 + · · ·+ anbn, a1b1 + a2b2 + · · ·+ anbn⟩ =
= a21⟨b1,b1⟩+ a22⟨b2,b2⟩+ · · ·+ a2n⟨bn,bn⟩ =
= a21 ∥b1∥2 + a22 ∥b2∥2 + · · ·+ a2n ∥bn∥2 .

Since a1, a2, . . . , an ∈ Z then the shortest nonzero vector(s) are in the set
of orthogonal basis {±b1,±b2, . . . ,±bn}.

In order to solve the CVP problem in a lattice Λ We will follow similar
argument. Let wn ∈ Rn such that

wn = s1b1 + s2b2 + · · ·+ snbn where s1, s2, . . . , sn ∈ R.

Then for the vector w ∈ Λ where w = a1b1 + a2b2 + · · ·+ anbn we have

∥v −w∥2 = (a1 − s1)
2 ∥b1∥2 + (a2 − s2)

2 ∥b2∥2 + · · ·+ (an − sn)
2 ∥bn∥2 .

Because a1, a2, . . . , an are required to be integers, the given norm is min-
imised, if we take each ai to be the closest integer to si. Thus solution to the
CVP problem is a vector v =

∑n
i=1⌊s1⌉bi where ⌊·⌉ is rounding to the nearest

integer.

b1

b2

(a) An example of a “bad basis”

b1 b2

(b) An example of a “good basis”

Figure 1.2: Two different bases for the same lattice

Therefore solving the SVP and CVP is trivial once the basis of a lattice
is orthogonal. We will demonstrate the underlying CVP problem in R2 geo-
metrically on a simple example where we compare a “good basis” with a “bad
basis” (Figure 1.2).

7

1. Theory of lattices

If we try to solve the CVP with a “bad basis” we will not find the correct
solution as it is pictured in Figure 1.3. It will miss the closest lattice point
and the problem grows with the rank of a lattice.

Target point

Closest lattice point

Closest vertex

Figure 1.3: An example of a bad solution

8

Chapter 2

Orthogonalization algorithms

As we have seen, orthogonalization of a lattice solves the SVP and CVP.
However, orthogonalization algorithms described in this section serve as un-
derlying layer across linear algebra helping to solve many related computation
problems.

Any orthogonalization, given a set of vectors (b1, . . . ,bn) will ompute the
set of vectors (b∗

1, . . . ,b
∗
n) such that every pair of vectors (⟨b∗

i ,b
∗
j ⟩ = 0 for all

i ̸= j) is orthogonal.

In this section we will introduce a list of orthogonalization algorithms
namely Gram-Schmidt, Lagrange-Gauss, Cholesky and others. We will refer
to [2, 3, 4] as the basis for the analysis of mentioned algorithms.

2.1 Gram-Schmidt orthogonalization

The Gram-Schmidt orthogonalization (GSO) algorithm works iteratively on
a set of n m-dimensional vectors (b1, . . . ,bn) which components are in any
field. The first step is to proclaim the vector b1 as already “orthogonal”.
Next step is to project the second vector b2 onto the vector b1 and similarly
orthogonally projecting k-th vector onto all previous k − 1 vectors which has
been orthogonalized in previous steps.

We define the projection of a vector v onto u as a map Rn × Rn 7→ Rn :

proju(v) =
⟨v,u⟩
∥u∥2

u, (2.1)

such map outputs a vector. Computing

v∗
2 = v2 − projv1

(v2)

produces a vector v∗
2 which is orthogonal to v1.

9

2. Orthogonalization algorithms

v1

v2

v⊥
1

v∗
2

Figure 2.1: A projection of vector v2 onto the orthogonal vector v⊥
1 of v1

Algorithm 1 Gram-Schmidt algorithm

1: procedure Gram-Schmidt(b1, . . . ,bn ∈ Rm)
2: b∗

1 ← b1

3: for k = 2 upto n do
4: dk ←

∑k−1
i=1 b∗

i ⟨bk,b
∗
i ⟩ / ∥b∗

i ∥
2

5: b∗
k ← bk − dk

6: end for
7: return (b∗

1, . . . ,b
∗
n)

8: end procedure

Please note, that throughout this thesis we will refer to matrices as a list
of vectors. Matrices are constructed constructed row-wise, if it’s not said
otherwise.

Algorithm 1 returns a set of vectors that are orthogonal to each other,
provides the result in O(mn4 log2(X)) operations where X is the upper bound
of ∥bi∥ for all i such that 1 ≤ i ≤ n.

However Classic GSO is not the best algorithm for the lattice reduction
as it is generally numerically unstable in floating point arithmetic. When
dealing with vectors over Zn in an exact arithmetic in Q the integers may
grow very large. It is commonly referred as coefficient explosion.

Also under a closer inspection we can notice that we can express the GSO
as a matrix equation as follows

B = µB∗,

where µ ∈ GLn(R) is a lower triangular matrix, B is the “input” basis and B∗

is the orthogonalized “output” basis. The matrix µ has 1 on the diagonal and
under diagonal are the coefficients of the projection µk,i = ⟨bk,b

∗
i ⟩/ ∥b∗

i ∥
2 for

all i < k. We will exploit this relation in the following section.

10

2.2. Integral Gram-Schmidt

2.2 Integral Gram-Schmidt

Integral GSO constructed in the paper [5, p. 7] is specifically built for the
“input” basis vectors in Zm. In that case the b∗

i and µi,j are in general
rational. To avoid rational arithmetic we will use integral quantities, namely
matrix λ ∈ GLn(Z), for all 1 ≤ i ≤ n: let λ0,0 = 1 and λi,i =

∏i
j=1 ∥b∗

j∥2 =

vol(b1, . . . ,bi)
2 ∈ Z and let the λi,j = µi,jλj,j for all j < i.

Recall the GSO algorithm where we computed µi,j as ⟨bi,b
∗
j ⟩/∥b∗

j∥2. Mul-
tiplying it λj,j we obtain λi,j = ⟨bi,b

∗
j ⟩λj−1,j−1 ∈ Z .

All steps lead us to replace the µ matrix with integral lower triangular
matrix λ which allows us efficiently compute the lower triangular µ matrix
(µi,j = λi,j/λj,j), if necessary. For lattice reduction purposes λ suffices matrix
well enough.

Algorithm 2 Integral Gram-Schmidt algorithm

1: procedure IntegralGram-Schmidt(b1, . . . ,bn ∈ Zm)
2: for i = 1 upto n do
3: λi,1 ← ⟨bi,b1⟩
4: for j = 2 upto i do
5: S = λi,1λj,1

6: for k = 2 upto j − 1 do
7: S ← (λk,kS + λj,kλi,k)/λk−1,k−1

8: end for
9: λi,j ← ⟨bi,bj⟩λj−1,j−1 − S

10: end for
11: end for
12: return λ
13: end procedure

Time complexity of the algorithm 2 is O(mn2 log2|B|) where |B| is an
upper bound of ∥bi∥ .

2.3 Lagrange-Gauss lattice reduction

For a lattice of a dimension of 2 there exists a very efficient algorithm with
solves the SVP and returns a “good basis” for the given lattice. This algorithm
was published by Gauss, but was known to Lagrange.

This algorithm however does not work for higher dimensions. If we had
a lattice of a rank n (n > 2), we would have to find the right linear combination
(Algorithm 3, line 6) for a vector bn in a lattice of a rank n − 1 generated
by vectors (b1, . . . ,bn−1) which leads us to the search for the solution of the
CVP.

11

2. Orthogonalization algorithms

It’s very similar to the Classical GSO with two nuances, the first being
the swapping of a larger vector with the smaller one (in the comparison of the
two norms) and the second one is rounding to the nearest integer.

The following algorithm executes O(log3 n) operations.

Algorithm 3 Lagrange-Gauss Lattice Reduction

1: procedure Lagrange-Gauss(b1,b2 ∈ R2)
2: while true do
3: if ∥b2∥ < ∥b1∥ then
4: swap b1 ↔ b2

5: end if
6: µ = ⌊⟨b1,b2⟩/ ∥b1∥2⌉
7: if µ = 0 then
8: return (b1,b2)
9: end if

10: b2 ← b2 − µb1

11: end while
12: end procedure

2.4 Cholesky decomposition

Cholesky decomposition is a symmetric version to more general LU decompos-
ition where L is lower triangular matrix and U is an upper triangular matrix.
Cholesky decomposition requires B ∈ Rn,n to be a symmetric definite positive
matrix then there exists a lower triangular matrix L ∈ Rn,n with strictly posit-
ive diagonal such that B = LLT . Algorithm returns only the lower triangular
matrix L. It’s also important to note that orthogonalization is hidden in the
following fact that B(L−1)∗.

We will derive the algorithm from the definition of the Cholesky decom-
position. A simple decomposition example in R3,3:

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33

l11 l21 l31
0 l22 l32
0 0 l33

The resulting matrix is as follows

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 l211 l21l11 l31l11
l21l11 l221 + l222 l31l21 + l32l22
l31l11 l31l21 + l32l22 l231 + l232 + l233

 .

12

2.5. µDµT factorization

2.4.1 Generalisation of Cholesky decomposition

Let L ∈ GLn(R) be a symmetric definite positive matrix. Every coefficient
can be computed iteratively, for all 1 ≤ k ≤ n computed as follows:

lkk =

√√√√akk −
k−1∑
i=1

l2ki

and coefficients under the main diagonal can be computed as

(∀i : 1, . . . , n) (∀k : k < n) : lik =
1

lkk

(
aik −

k−1∑
i=1

lijlkj

)
.

The following algorithm executes O(mn2) operations.

Algorithm 4 Cholesky decomposition

1: procedure Cholesky-Decomposition(b1, . . . ,bn ∈ Rn)
2: for i = 1 upto n do
3: for j = 1 upto i do
4: if i = j then

5: lij ←
√

bii −
∑i−1

m=1 l
2
im

6: else
7: s←

∑i−1
i=1 lijlkj

8: lij ← (bik − s)/lkk
9: end if

10: end for
11: end for
12: return L
13: end procedure

2.5 µDµT factorization

The µDµT factorization mentioned in the work of Gama [5] is based on an
matrix LDLT factorization, where given matrix A can be expressed as a mul-
tiplication of three matrices, where L,M are lower triangular matrices and
D = diag(d1, d2, . . . , dn), such that A = LDMT .

If matrix A is symmetric then we can save some effort using a variant of
LDMT called LDLT factorization, showing that M = L.

The couple (µ,D) is a µDµT factorization of A. Similarly as in the case
of Cholesky, we will derive the algorithm from a simple example. We want to
factorise a matrix into three matrices such thata11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

d11 0 0
0 d22 0
0 0 d33

1 l21 l31
0 1 l32
0 0 1

13

2. Orthogonalization algorithms

obtaining the following result d11 l21d11 l31d11
l21d11 l221d11 + d22 l21l32d22 + l32d22
l31d11 l21l32d22 + l32d22 l231d11 + l232d22 + d33

 .

2.5.1 Generatization of µDµT factorization

Now, we can observe how to compute entries of matrices L and D. For the
diagonal matrix D we do the following

1 ≤ i ≤ n : dii = aii −
j−1∑
k=1

l2jkdkk

and for the L matrix, 1 ≤ i, j ≤ n, i ≤ j

lij =
1

djj

(
aij −

j−1∑
k=1

likdkkljk

)
.

It’s very similar to Cholesky factorization, computing starts with the com-
puting d11 and expanding row-wise from left to right. This algorithm requires
O(n3).

Algorithm 5 µDµT algorithm

1: procedure µDµT -factorization(b1, . . . ,bn ∈ Rn)
2: d11 ← b11

3: for i = 1 upto n do
4: for j = 1 upto i do
5: if i = j then
6: dij ← bii −

∑j−1
k=1 l

2
jkdkk

7: else
8: s← bij −

∑j−1
k=1 likdkkljk

9: lij ← s/djj

10: end if
11: end for
12: end for
13: return L,D
14: end procedure

2.6 LQ decomposition

Definition 12 (Orthogonal matrix). Let Q ∈ Fn,n. Matrix Q is orthogonal if
and only if QTQ = QQT = E.

14

2.6. LQ decomposition

From definition 12 follows that, if a matrix is orthogonal then we can
interchange its transpose with its inverse, from these facts it’s clear that
det
(
QTQ

)
= detE = 1.

Before computing LQ decomposition, which as a result returns two matrices
– L a lower triangular matrix and Q which is a orthogonal matrix, is neces-
sary to introduce the QR decomposition, where Q is orthogonal and R is upper
triangular matrix.

The QR decomposition is introduced on a rectangle matrix A ∈ Rm,n

where m ≥ n. Factoring it into matrix Q ∈ Rm,m and R ∈ Rm,n and the
computation can be done in many ways including Gram-Schmidt. The most
of the variants are described in the publication of Golub and Van Loan [3].
The output of the QR decomposition produces an orthonormal vector basis
written in the first n columns of Q.

To achieve the LQ decomposition it’s only necessary to transpose the input
matrix A, because transposing A = QR will lead to AT = RTQT , and because
L = RT .

We will base the QR decomposition on the GSO. Let A = (a1, . . . ,an) ∈
Rm,n be a column-wise matrix. Matrix Q = (q1, . . . ,qm) ∈ Rm,m is a Q-factor
of a matrix A, and matrix R = (r1, . . . , rn) ∈ Rm,n is a R-factor of a matrix
A.

Recall the GSO from the 1 which will generate orthogonal basis (b1, . . . ,bn).
The Q-factor is constructed by placing orthonormal vectors qk = bk/ ∥bk∥
from the GSO in the columns. Q =

(
q1 q2 . . . qn

)
, and constructing the

R-factor as follows

R =

⟨a1,q1⟩ ⟨a2,q1⟩ ⟨a3,q1⟩ . . . ⟨anq1⟩

0 ⟨a2,q2⟩ ⟨a3,q2⟩ . . . ⟨an,q2⟩
0 0 ⟨a3,q3⟩ . . . ⟨an,q3⟩
...

...
...

. . .
...

0 0 0 0 ⟨an,qn⟩

 .

Algorithm 6 QR decomposition based on GSO

1: procedure QR-Decomposition(b1, . . . ,bn ∈ Rm)
2: (b∗

1, . . . ,b
∗
n)← Gram-Schmidt(b1, . . . ,bn)

3: for i = 1 upto n do
4: qi ← b∗

i / ∥b∗
i ∥

5: for j = i upto n do
6: rji ← ⟨aj ,qi⟩
7: end for
8: end for
9: return (Q,R)

10: end procedure

15

2. Orthogonalization algorithms

Thus producing the LQ decomposition is trivial.

Algorithm 7 LQ decomposition

1: procedure LQ-Decomposition(A ∈ Rm,n)
2: Q,R← QR-Decomposition(AT)
3: return (RT ,Q)
4: end procedure

16

Chapter 3

NTRU

In 2017, Computer Security Resource Centre of National Institute of Stand-
ards and Technology (CSRC NIST) have called [6] for the papers for Post-
Quantum Cryptography Standardization. NTRUEncrypt, proposed by Jeffrey
Hoffstein et al., is one of many cryptosystems.

The NTRU (pronounced as en-tru) cryptosystem is can be formulated
using polynomials over rings. This cryptosystem was introduced in the 2006
in the paper of J. Hoffstein, et al. [7]. This part of the thesis is heavily reliant
upon the book of Hoffstein, et al. [4]

The main advantage against the other public key cryptosystems is that it
does not depend on the generating a pair of large primes, which takes up a lot
of time and all NTRU operations are quick – encryption, decryption, public
key derivation are done within O(N2) operations, where N is the dimension
of the lattice.

3.1 Polynomials

Definition 13 (Quotient ring). Let R be a ring and let m ∈ R,m ̸= 0. For
any a ∈ R we write a for the set of all a′ ∈ R such that a′ ≡ a (mod m). The
set a is called a congruence class. We call R/(m) a quotient ring of R by m.

Definition 14 (Polynomial ring over Zq). Let q be a prime. Let R be a ring
and let m ∈ R,m ̸= 0. For any a ∈ R we write a for the set of all a′ ∈ R such
that a′ ≡ a (mod m). The set a is called a congruence class. We call R/(m)
a quotient ring of R by m.

Definition 15 (Ring of convolution polynomials). Let N be a natural num-
ber. The ring of convolution polynomials of rank N is the quotient ring
R = Z[x]/(xN − 1).

17

3. NTRU

Definition 16 (Ring of convolution polynomials modulo q). Let N be a nat-
ural number. The ring of convolution polynomials of rank N is the quotient
ring Rq = (Z/qZ)[x]/(xN − 1).

Definition 17 (Convolution product of polynomials in a quotient ring). Let
a(x),b(x) ∈ R. The convolution product of polynomials of degree N is a poly-
nomial c(x), such that

a(x) ⋆ b(x) = c(x) where ck =
∑

i+j≡k (mod N)

aibk−i, ∀i, j ∈ 0, . . . , N − 1

Definition 17 refers to classical product of two polynomials but there are
two additional operations – reducing the degree of a polynomial and, if ap-
plicable, reducing the coefficients modulo q.

Example. Let a(x) = 1 + 4x + 2x4 − 5x6,b(x) = 1 − 7x − x2 − 6x3 and
N = 6, q = 13.

a(x) ⋆ b(x) = 30x9 + 5x8 + 23x7 − 7x6 − 14x5 − 22x4 − 10x3 − 29x2 − 3x+ 1

= 30x3 + 5x2 + 23x1 − 7− 14x5 − 22x4 − 10x3 − 29x2 − 3x+ 1

= −14x5 − 22x4 + 20x3 − 24x2 + 20x− 6 in Z[x]/(x6 − 1).

Now we want to reduce the coefficients modulo q = 13, so we get

a(x) ⋆ b(x) = 12x5 + 4x4 + 7x3 + 2x2 + 7x+ 7 in (Z/13Z)[x]/(x6 − 1).

Lemma 7. Let q be a prime. Then a(x) ∈ Rq has a multiplicative inverse in
Rq if and only if

gcd(a(x), xN − 1) = 1 in (Z/qZ)[x]

and can be computed by Extended Euclidean Algorithm applied on polynomials.

Definition 18 (Set of ternary polynomials). For any natural numbers d1 and
d2 we define a set of ternary polynomials T (d1, d2) as follows

T (d1, d2) =

a(x) has d1 coefficients equal to 1,

a(x) ∈ R : a(x) has d2 coefficients equal to − 1,

a(x) has all others coefficients equal to 0

 .

The set T is telling us how many coefficients within any polynomial from
the set have value 0 or ±1.

Definition 19 (Concatenating of two vectors). Let h(x) = a0 + a1x + · · · +
an−1x

n−1,g(x) = b0+b1x+· · ·+bn−1x
n−1 be polynomials in Z[x]/(xN−1) then

we will compound a new vector (h,g) = (a0, . . . , an−1, b0, . . . , bn−1) ∈ Z2n.

18

3.2. NTRU cryptosystem

3.2 NTRU cryptosystem

We can now start building a NTRU cryptosystem. We need to pick four
numbers (N, p, q, d) such that N is a prime, gcd(p, q) = gcd(N, q) = 1 and
q > (6d + 1)p. The last inequality is very important in order to successfully
decrypt the encrypted message.

It may not seem obvious why the very first parameter must be a prime
number, it was proposed by Silverman to use the the power of two in or-
der to apply Fast Fourier Transformations, but it was discovered that if N
is composite then the NTRU cryptosystem is not secure.

The parameter N is used to define the degree of polynomials to be at most
N−1, parameter q will be used to truncate the coefficients of the polynomials
and parameter p is used for the decryption.

For illustration purposes we will refer to the Table 3.1 to demonstrate how
large these parameters according to [8].

Table 3.1: NTRU parameters

type N q p

Moderate Security 167 128 3

Standard Security 251 128 3

High Security 347 128 3

Highest Security 503 256 3

Because the NTRU is an asymmetric lattice-based cryptosystem, it re-
quires to have both public and private keys. Firstly, Alice publishes the men-
tioned four numbers and derives the public key from the private keys.

3.2.1 Public key derivation

In order for Alice to generate the public key, she must establish two polyno-
mials f(x),g(x) as follows f(x) ∈ T (d+ 1, d) and g(x) ∈ T (d, d). From these
private keys, she computes inverses

Fq(x) = f(x)−1 in Rq and Fp(x) = f(x)−1 in Rp,

and Alice repeats this until she successfully established the inverses of the
key. Now, she computes h(x), which will be hers public key

h(x) = Fq(x) ⋆ g(x) inRq

The vector (f ,Fp) is Alice’s private key. She can, however, store only f
and compute Fp later.

19

3. NTRU

3.2.2 Encryption

Bob chooses a plain text (message) m ∈ Rp and also chooses a random ternary
polynomial r ∈ T (d, d) then he proceeds and encrypts the message with Alice’s
public key h as follows

e ≡ pr ⋆ h+m in Rq.

3.2.3 Decryption

Definition 20 (Centered lift). Let a(x) ∈ Rq. The centered lift of a polyno-
mial a to R is a unique polynomial a′(x) ∈ R. Satisying a′(x) mod q = a(x)
whose integral coefficients are chosen in the interval a′i ∈ (−q/2, q/2].

Alice computes f ⋆ e ≡ pg ⋆ r+ f ⋆m in Rq and centerlifts f ⋆ e (and call
it a) then she computes

m ≡ Fp ⋆ a in Rp

.

3.2.4 The NTRU key recovery problem

Definition 21 (The NTRU Key Recovery Problem). Given h(x), find a tern-
ary polynomials f(x),g(x) satisfying

f(x) ⋆ h(x) ≡ g(x) in Rq

It is important to note that the pair (f ,g) which solves the given problem
is not unique, another solutions are (xk ⋆ f , xk ⋆ g), ∀k ∈ {0, . . . , N − 1}. The
polynomial xk ⋆ f is called a rotation of f .

In order to brute-force this problem Eve would have to find f or g go
through all ternary polynomials in a polynomial ring R, which consists of
#T (d1, d2) polynomials. We can compute the size of the set as follows

#T (d1, d2) =
N !

d1!d2!(N − d1 − d2)!

number of polynomials is maximised if d1 and d2 are approximately N/3.
However, because all rotations of a private key are a solution to the key
recover problem, Eve has to check approximately #T (d1, d2)/N polynomials.

3.3 NTRU lattices

In this section we are going to interconnect the lattice theory with the NTRU
cryptosystem.

20

3.3. NTRU lattices

Definition 22 (Cyclical permutation matrix). Let h(x) = a0 + a1x + · · · +
an−1x

n−1, a0, . . . , an−1 ∈ Z be a polynomial of degree n. Then we define a cyc-
lical permutation matrix Ph ∈ Zn,n such that

Ph =

a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2
...

...
. . .

...
...

a2 a3 · · · a0 a1
a1 a2 · · · an−1 a0

Definition 23 (NTRU matrix). Let h be a public key and Ph be its permuta-
tion matrix, E is an identity matrix and Θ is a zero matrix. Then an NTRU
lattice ΛNTRU

h is described by the matrix MNTRU
k ∈ GL2n(Z)

MNTRU
k =

(
E Ph

Θ qE

)
Lemma 8. Let f ,g be private polynomials, which were used to generate the
public key h(x) Assume f(x) ⋆ h(x) ≡ g(x) in Rq and let u(x) ∈ R be the
polynomial satisfying

f(x) ⋆ h(x) = g(x) + qu(x)

Then
(f ,−u)MNTRU

h = (f ,g),

this means that (f ,g) ∈ ΛNTRU
h and its rotations are the shortest vectors in

the NTRU lattice.

Now we will assume that d ≈ N/3 and q ≈ 6d ≈ 2N . The Gaussian heur-
istic predicts the shortest nonzero vector in a lattice σ(ΛNTRU

h) ≈
√

Nq/πe ≈
0.484N . Because both vectors f and g have 2d coefficients non-zero, result-
ing vector (f ,g) has approximately 4d non-zero coefficients hence ∥(f ,g)∥.
Therefore

∥(f ,g)∥
σ(ΛNTRU

h)
≈ 2.39√

N
,

so the vector (f ,g) is a factor of O(1/
√
N) than the Gaussian heuristic for

the shortest vector and thus vector (f ,g) is the shortest vector in a NTRU
lattice.

21

Chapter 4

Symplectic and dual
orthogonalization algorithms

In the previous chapter we have demonstrated that NTRU cryptosystem
is based around lattices and the problem of orthogonality. However, we will
demonstrate in this chapter that NTRU lattices are actually q-symplectic.

Before we dive into the symplectic versions of orthogonalization algorithms
mentioned in the work of Gama [5], we shall explain the symplecticity, duality
and other variants.

4.1 Symplectic group, symplecticity, duality

Definition 24 (Isometry). Let X and Y be metric spaces with metrics dX and
dY . A map f : X → Y is called an isometry (or distance preserving) if for
any a, b ∈ X one has

dY (f(x), f(y)) = dX(x, y).

Definition 25 (Dual lattice). Let Λ be a lattice. We define a dual lattice Λ×

such as

Λ× = {v ∈ spanΛ, ∀u ∈ Λ : ⟨v,u⟩ ∈ Z}

Definition 26 (Quadrant notation). Let A,B,C,D ∈ GLn(F) then we define

Q[A,B,C,D] =
(
A B
C D

)
∈ GL2n(F)

Definition 27 (Symplectic matrix). Let M ∈ GL2n(F). and J = Q[0,En,−En, 0].
We say that matrix is symplectic if and only if MT JM = J.

Definition 28 (Isodual lattice). A lattice Λ is said to be isodual if there exists
an isometry σ of Λ onto its dual lattice.

23

4. Symplectic and dual orthogonalization algorithms

What the definition tells us is that between a lattice and its dual lattice
there is an isometry. A map that preserves the distances is useful in

Definition 29 (Symplectic lattice). Let Λ be a isodual lattice, and let τ be
a isometry of Λ. We say that lattice Λ is symplectic if and only if τ2 = −1.

In other words, if there exists an orthogonal basis of spanΛ over which
the matrix of τ is J then there is a basis Λ whose Gram matrix is symplectic.
A full rank symplectic lattice Λ has a volume of 1.

Definition 30 (q-symplectic lattice). A lattice Λ ∈ Z2n is q-symplectic if
and only if the lattice Λ/

√
q is symplectic, where q ∈ N0 and its volume is qn.

4.2 Symplectic LQ

We will implement the symplectic version of QR factorisation based on the
symplectic version of GSO.

Time complexity of this algorithm is exactly as in the case of Algorithm 9
O(n5 log2B)

Algorithm 8 Symplectic LQ algorithm

1: procedure SymplecticQR(b1, . . . ,b2n ∈ Z2n)
2: (b∗

1, . . . ,b
∗
n)← SymplecticGram-Schmidtt(b1, . . . ,bn) ▷ Algorithm 9

3: for i = 1 upto n do
4: qi ← b∗

i / ∥b∗
i ∥

5: for j = i upto n do
6: rji ← ⟨aj ,qi⟩
7: end for
8: end for
9: return (RT ,Q)

10: end procedure

Theorem 3. Let G ∈ GLn(Z) be a symmetric (positive) definite matrix and
µ the µDµT factorisation of G. Let λ0,0 = 1 and λk,k = detGk where Gk

is the top left k × k block of G. Let λ = µ · diag(λ1,1, . . . , λn,n) and U =
(µT)−1 · diag(λ0,0, . . . , λn−1,n−1). Then the following holds:

λ ∈ GLn(Z), U ∈ GLn(Z), λ = GU.

From the Theorem 3 follows the dual and symplectic version of the GSO.

4.3 Symplectic Gram-Schmidt

Symplectic version of the GSO devised in the paper of Gama [5] is specifically
made for the q-symplectic matrices.

24

4.4. Dual Gram-Schmidt

Let B be a q-symplectic basis. Then L in LQ decomposition is also q-
symplectic, and µ matrix corresponding to the GSO of B is also q-symplectic.
Let U be a dual integer matrix. Let Rn be a reversed identity matrix, that
is a matrix where the rows (or columns) are in reverse order, that is, on (i, j)-
th position is the Kronecker symbol δi,n+1−j . and let denote quadrants of
matrices µ and λ as follows

λ =

(
λ1 0
λ2 λ3

)
, µ =

(
µ1 0
µ2 µ3

)
, and U =

(
U1 0
U2 U3

)
We have U1 = Rnλ3Rn for symplectic matrices and the following relation

for q-symplectic matrices U1 = diag(q2, q4, . . . , q2n)
This algorithm reduces the number of multiplications of the Dual GSO by

half.

Algorithm 9 Symplectic Gram-Schmidt algorithm

1: procedure SymplecticGram-Schmidt(b1, . . . ,b2n ∈ Z2n)
2: for i = 1 to n do
3: precompute q2i

4: end for
5: for i = 1 to n do
6: Ui ← λi−1,i−1 (for all k, Uk represents Uk,i)
7: Ui−1 ← −λi,i−1

8: for j = i− 2 down to 1 do

9: Uj = −
(∑i

k=j+1 λk,jUk

)
/λj,j

10: end for
11: for j = 1 to i do
12: λ2n+1−j,2n+1−i ← q2(n+1−i)Uj

13: end for
14: for j = i to 2n do
15: λj,i =

∑i
k=1Gj,kUk

16: end for
17: end for
18: return λ
19: end procedure

This version of GSO runs in O(n5 log2B) where B is an upper bound of
∥bi∥

4.4 Dual Gram-Schmidt

This and the symplectic version of GSO are the work of Gama, et al. [5],
both dual and symplectic versions are devised to minimise the number of the
divisions by getting around using Gram matrix and dual lattice.

25

4. Symplectic and dual orthogonalization algorithms

Let B = (b1, . . . ,bd) be a basis and G = BBT its Gram matrix. If µ
is a GSO of B then G = µDµT where D is positive diagonal matrix. Rewriting
the previous equation as µ = G(µT)−1D−1 we can compute the k × k topleft
triangle of (µT)−1D−1. Matrix (µT)−1 is the GSO of the dual basis B =
(bd, . . . ,b1).

Algorithm 10 Dual Gram-Schmidt algorithm

1: procedure DualGram-Schmidt(b1, . . . ,bn ∈ Zn)
2: for i = 1 upto n do
3: Ui ← λi−1,i−1 (for all k, Uk represents Uk,i)
4: Ui−1 ← −λi,i−1

5: for j = i− 2 downto 1 do

6: Uj = −
(∑i

k=j+1 λk,jUk

)
/λj,j

7: end for
8: for j = i upto n do
9: λj,i =

∑i
k=1⟨bj ,bk⟩Uk

10: end for
11: end for
12: return λ
13: end procedure

Algortihm 10 reduces the number of divisions against the Algorithm 2.
This version includes n2/2 divisions whereas integral Gram-Schmidt Θ(n3).

4.5 Symplectic µDµT , Symplectic Cholesky

It was proven in the paper [5] that both µDµT factorisation and Cholesky
decomposition preserve the symplecticity of a matrix, however, in this thesis
their implementation is no different from their classical counterparts. Thus
for implementation details follow Algorithm 5 and Algorithm 4.

26

Chapter 5

Implementation

In this section we will describe the implementation and testing facilities used
within this thesis.

5.1 Programming language and libraries

• C++

We have decided on the native implementation in C++ with C++11
support enabled, which allows a wide variety of low-level optimisations.
It was also chosen for the reason that it is not transpiled or interpreted
language, which could negatively skew the results.

• Eigen

Eigen1 is a very popular library used for matrix manipulation and linear
algebra. It’s used in TensorFlow2 library from Google used for machine
learning. It’s entirely written in C++ with heavy use of templating
system which allows compiler to optimise the written code during the
compilation stage.

Also it has a builtin versions of algorithms and matrix manipulations
which are explicitly vectorised - the library itself tries to vectorise as much
as possible if such option is enabled.

• MPFR

Because of the high dimension lattices and the operations with large vec-
tors we will use MPFR 3 – Multiprecision floating computations library.
It relies on the GMP library internally. This library was chosen due to
simple, already existing binding for Eigen library.

1http://eigen.tuxfamily.org
2https://www.tensorflow.org
3http://www.mpfr.org/

27

http://eigen.tuxfamily.org
https://www.tensorflow.org
http://www.mpfr.org/

5. Implementation

5.2 Generating random NTRU lattices

In order to test the variety of algorithms it’s necessary to precompute differ-
ent NTRU matrices. However for our testing purposes we decided on ran-
domly generating public key using std::random_device in conjunction with
std::uniform_int_distribution generating random NTRU lattices which
had coefficients randomly and uniformly distributed.

We decided on NTRU parameters (N, q, p) as follows q = 128, p = 3 and
N being primes from 5 to 103. We also generated multiple variants of NTRU
lattices in the same dimension, to get better results during testing.

All NTRU matrices are generated and stored in a separate text files.

Listing 5.1: A random public key generator

std : : vector<int> randomPublicKey (int N, int Q)
{

std : : vector<int> r e s u l t (N) ;
std : : u n i f o rm in t d i s t r i b u t i o n<>

d i s t r i b u t i o n (0 , Q − 1) ;
std : : random device rd ;
std : : de fau l t random eng ine eng ine (rd ()) ;

for (int i = 0 ; i < N; ++i) {
r e s u l t [i] = d i s t r i b u t i o n (eng ine) ;

}
return r e s u l t ;

}

We shall describe the code listed above. The std::random_device rd

is our source of entropy, it is platform-dependant where and what the source
of the entropy is. In computers it’s mostly some mathematical operation (most
likely a xor) of many hardware and software counters.

The std::uniform_int_distribution serves for our random engine is sort
of a filter, however it’s not filtering, but distributing integers across the interval
(0, Q− 1).

The std::default_random_engine is an algorithm, or more precisely,
a generator which implementation is also platform-dependent and generates
the random output based on the entropy it’s given.

Using this algorithm we are able to generate random polynomials (repres-
ented as vectors in the code) in (Z/qZ)[x]/(xN − 1).

5.3 Testing

Testing was done on a linux-based machine with Intel Core i5-6560U (2 cores,
4 threads) with base frequency of 1.8 GHz (2.8 GHz with TurboBoost tech-

28

5.3. Testing

nology) equipped with 8 GB of RAM and Intel SSD 500p series.

29

Chapter 6

Results

In this chapter we will cover the results of the experimental part.The following
results were achieved by running iterations over different matrices within the
same dimension and the results are averaged.

In the paper of Gama [5] they included tests on 128-bit long random integer
coefficients in a rather large matrices (N ≈ 1000, remember matrices are
(2N)-dimensional) thus all our measurements on a small matrices (N ≈ 100)
resulted in quite surprising result – new algorithms mentioned in the research
paper are not suitable for low-dimensional sized NTRU lattices except for
Integral Gram-Schmidt as the whole purpose of the Dual and Symplectic GSO
is to prevent the multiplication and division of very large integers, which
involves other complex algorithms.

0 20 40 60 80 100

0

1,000

2,000

3,000

4,000

Dimension

A
v
er
ag
e
T
im

e
(m

s)

DualGS
SympGS

Figure 6.1: Comparison of Gram-Schmidt family

We can clearly see from Figure 6.1 that both Symplectic and Dual Gram-
Schmidt are quite slow and are averaging on 4 seconds at lattices around

31

6. Results

dimension of 100. Both algorithms are resulting in O(n5 log2B).
However, from the Figure 6.2 we can clearly see that Integral GSO, which

has time complexity of O(mn2 log2(B)) is faster than the original one with
time complexity O(mn4 log2(B)).

0 20 40 60 80 100

0

100

200

300

Dimension

A
v
er
ag
e
T
im

e
(m

s)

GS
IntGS

Figure 6.2: Comparison of Integral Gram-Schmidt and Gram-Schmidt

In the Figure 6.3 we can see a comparison between Integral GSO and
Cholesky decompostion. Cholesky decomposition has O(mn2) time complex-
ity and thus it is slightly faster than Integral GSO.

0 20 40 60 80 100

0

50

100

150

200

Dimension

A
v
er
ag
e
T
im

e
(m

s)

IGS
Chol

Figure 6.3: Comparison of Cholesky decomposition and Integral Gram-
Schmidt

32

Conclusion

The main aims of this thesis were mostly theoretical, extending and broad-
ening the knowledge of linear algebra and post-quantum cryptography on
a lattice-based cryptosystem, in this regard we was very successful.

We laid out the mathematics behind the lattices, defined two NP-hard
problems and described the NTRU cryptosystem. We connected orthogonal-
ization methods with the problems which are deeply related.

We developed the understanding between many new algorithms from linear
algebra was quite challenging, but also very interesting topic, we have learnt
where all the algorithms do find a usage.

Some of the orthgonalization algorithms mentioned in the paper were not
improved at all, but they have been proven to maintain symplecticity, thus
even though they are implemented, they bring no benefit at all.

This thesis may serve as an advancement of the research paper that it’s
based on.

Future research

It may be useful to highlight where the future work may go. I suggest the
following:

• Measure more extensively algorithms with different size of coefficients –
namely the size of the lattice and the q – modulus in a lattice.

• Exploring other implementations of QR factorisation and proving, or
disproving their symplecticity.

• Exploring other implementation possibilities of the Cholesky decompos-
ition.

• Explore newer, or other versions of lattice-based cryptosystem.

33

Bibliography

[1] Shor, P. W.: Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. eprint arXiv:quant-
ph/9508027, 1995, quant-ph/9508027.

[2] Galbraith, S. D.: Mathematics of Public Key Cryptography. Cambridge
University Press, 2012, ISBN 1107013925.

[3] Golub, G. H.; Van Loan, C. F.: Matrix Computations. JHU Press, third
edition, 1996, ISBN 9780801854149.

[4] Hoffstein, J.; Pipher, J.; Silverman, J.: An Introduction to mathematical
cryptography. Springer-Verlag New York, first edition, 2008, ISBN 978-0-
387-77994-2, dOI: 10.1007/978-0-387-77993-5.

[5] Gama, N.; Howgrave-Graham, N.; Nguyen, P. Q.: Symplectic Lattice Re-
duction and NTRU. Advances in Cryptology - EUROCRYPT 2006, 2006:
p. 233–253.

[6] Computer Security Resource Center NIST: Post-Quantum Cryptography
Round 1 Submissions. http://web.archive.org/web/20180408151759/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions, accessed: 2018-04-08.

[7] Hoffstein, J.; Pipher, J.; Silverman, J. H.: NTRU: A ring-based public
key cryptosystem. In Algorithmic Number Theory, e. J. P. Buhler, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, ISBN 978-3-540-69113-6, p.
267–288.

[8] On Board Security: NTRU PKCS Tutorial. https://

assets.onboardsecurity.com/static/downloads/NTRU/resources/
NTRU-PKCS-Tutorial.pdf, accessed: 2018-05-01.

35

quant-ph/9508027
http://web.archive.org/web/20180408151759/https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
http://web.archive.org/web/20180408151759/https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
http://web.archive.org/web/20180408151759/https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRU-PKCS-Tutorial.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRU-PKCS-Tutorial.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRU-PKCS-Tutorial.pdf

Appendix A

Acronyms

CSRC Computer Science Resource Center

NIST National Institute of Standards and Technology

GSO Gram-Schmidt Orthogonalization

37

Appendix B

Manual

B.0.1 Requirements

Because this implementation is based on a GMP library, it’s necessary to have
a linux based operating system.

The list of supported algorithms by the program and the associated para-
meter (argument) for the command line execution.

• GramSchmidt (1),

• IntegralGramSchmidt (2),

• QR/LQ (3),

• Cholesky (4),

• LDL (µDµT) (5),

• DualGramSchmidt (6),

• SymplecticGramSchmidt (7),

• SymplecticQR (8),

• SymplecticLDL (9),

• SymplecticCholesky (10)

In order to build the executable from scratch it’s necessary to have installed
these dependencies

• libgmp-dev

• libmpfr-dev

• CMake version 3. or higher.

39

Appendix C

Contents of enclosed SD

readme.txt.....................Instructions how to compile the sources
exe the directory with executables

data..datasets
tester ... Linux executable

src.. source codes
code............................code of the implemented algorithms
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

41

	Introduction
	Theory of lattices
	Background and Motivation
	Lattice problems
	Solving the SVP and CVP in a lattice

	Orthogonalization algorithms
	Gram-Schmidt orthogonalization
	Integral Gram-Schmidt
	Lagrange-Gauss lattice reduction
	Cholesky decomposition
	D T factorization
	LQ decomposition

	NTRU
	Polynomials
	NTRU cryptosystem
	NTRU lattices

	Symplectic and dual orthogonalization algorithms
	Symplectic group, symplecticity, duality
	Symplectic LQ
	Symplectic Gram-Schmidt
	Dual Gram-Schmidt
	Symplectic DT, Symplectic Cholesky

	Implementation
	Programming language and libraries
	Generating random NTRU lattices
	Testing

	Results
	Conclusion
	Bibliography
	Acronyms
	Manual
	Contents of enclosed SD

