
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 21, 2017

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Lip Reading using Deep Neural Networks

 Student: Jan Horák

 Supervisor: doc. Ing. Pavel Kordík, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2018/19

Instructions

Survey state of the art in the area of image and video recognition. Design and implement a real-time
system capable of lip reading from video. Evaluate the accuracy on simplified word classification task and
explore the possibility to recognize sentences in real-time. Build a prototype that present capabilities
of deep learning algorithms in the browser.

References

Will be provided by the supervisor.

Bachelor’s thesis

Lip Reading using Deep Neural Networks

Jan Horák

Department of Theoretical Computer Science
Supervisor: doc. Ing. Pavel Kord́ık, Ph.D.

May 13, 2018

Acknowledgements

I would first like to thank my thesis advisor doc. Ing. Pavel Kord́ık, Ph.D.
for his expert advice and encouragement throughout this thesis.

I am also very grateful to Rob Cooper at BBC Research for help in ob-
taining the dataset.

Finally, I must express my very profound gratitude to my parents, sister
and to my girlfriend for providing me with unfailing support and continuous
encouragement throughout my years of study. This accomplishment would
not have been possible without them. Thank you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 13, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Jan Horák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Horák, Jan. Lip Reading using Deep Neural Networks. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2018. Also available from: 〈http://janhorak.info/lip〉.

http://janhorak.info/lip

Abstrakt

Problém odeźıráńı ze rt̊u, tedy uměńı odhadu vysloveného slova, popř. celé
věty, pouze z vizuálńı informace, je vzhledem k vysoké r̊uznorodosti artikulace
lid́ı, počtu jazyk̊u a slov v každém z nich, velmi složitá, ale zaj́ımavá úloha.

V této Bakalářské práci analyzuji doposud známé zp̊usoby odeźıráńı ze rt̊u,
zjǐsťuji jejich přesnosti a mou snahou je ověřeńı zda je použit́ı metod umělé
inteligence, konkrétně hlubokých neuronových śıt́ı, vhodným kandidátem pro
řešeńı tohoto problému. V praktické části se zaměřuji na prezentaci výsledk̊u a
to jednak v podobě přesnosti mnou vytrénované neuronové śıtě na testovaćıch
datech, jednak vytvořeńım webové aplikace pro zjǐstěńı, jak náročné by bylo
takový nástroj využ́ıt v praxi pro rozpoznáváńı řeči v reálném čase metodou
odeźıráńı ze rt̊u.

Kĺıčová slova odeźıráńı ze rt̊u, poč́ıtačové viděńı, neuronové śıtě, hluboké
neuronové śıtě, 3D konvoluce, detekce objekt̊u, předzpracováńı dat, Python,
Keras

vii

Abstract

The problem of lip reading, which means a skill of guessing one’s uttered
word or whole sentence only out of a visual information, is a very hard - yet
interesting task, due to variety of people, their languages and articulations.

In this bachelor thesis I analyze the known methods of lip reading, I find
their accuracy and my aim is to verify whether the use of artificial intelligence
methods, namely Deep Neural Network, is a suitable candidate for solving this
problem. In the practical part, I focus on presenting the results both in terms
of the accuracy of the trained neural network on test data and by creating and
publishing a web application to find out how difficult it would really be to use
such a tool for a real-time speech recognition using the lip reading method.

Keywords lip reading, computer vision, neural networks, deep neural net-
works, 3D convolutions, object detection, data preprocessing, Python, Keras

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2

2 Research 3
2.1 Detection using Haar Cascades 4
2.2 Neural Networks . 6
2.3 State of the Art . 13

3 Used Data and Tools 17
3.1 Python . 17
3.2 Jupyter . 17
3.3 OpenCV . 17
3.4 TensorFlow and Keras . 18

4 Design 23
4.1 Preprocessing . 24
4.2 Training . 24
4.3 Evaluation . 25
4.4 Web Application . 25

5 Implementation 27
5.1 Preprocessing . 27
5.2 Training . 33
5.3 Evaluation . 38
5.4 Web Application . 40

Conclusion 45

Bibliography 47

xi

A Contents of Enclosed CD 57

B Setup Guide 59

C LRW Dataset Words 61

xii

List of Figures

2.1 Image classification, object detection and instance segmentation . . 3
2.2 Haar features . 5
2.3 Example of a network with many convolutional layers 6
2.4 Overview of applying convolution. 7
2.5 Image convolving . 8
2.6 Video, 3D object convolving . 8
2.7 Max-Pooling . 9
2.8 Underfitting, Good fit, Overfitting 10
2.9 Example of augmented samples of an image 12
2.10 Dropout in Neural Network . 12
2.11 Regions with CNN features . 14
2.12 Faster R-CNN detection example 14

3.1 Teachable Machine demo . 20
3.2 LRW speaker samples . 21

4.1 Developing stages . 23
4.2 Lips detection process . 24
4.3 Web application design . 25
4.4 Web application state diagram . 26

5.1 Lip detection and tracking . 29
5.2 Saved NumPy array sample . 31
5.3 Kernel size comparison . 35
5.4 Dropout rate comparison . 37
5.5 Confusion matrix of trained words 39
5.6 Face coordinates from clmtrackr library 40
5.7 Mouth openness detection chart 42
5.8 Lip reading web application . 44

xiii

List of Tables

3.1 LRW speaker samples . 21

5.1 EF-3 model architecture . 34
5.2 Lightweight model architecture . 34
5.3 Model architectures . 35
5.4 Model architectures evaluation . 38

xv

List of Listings

1 Keras model example . 19
2 Face and mouth detection process 28
3 Tracking mouth region across frames 30
4 Batch generator of lip samples 32
5 Sample normalization . 36
6 Keras.js weights encoding . 41
7 Clmtracker tracking and detection 41
8 Keras.js prediction . 43
9 Keras model example. 59
10 Jupyter localhost start . 59

xvii

Chapter 1
Introduction

1.1 Motivation

The problem of lip reading is a very present topic that has not yet been
fully resolved and is a great challenge for solving using artificial intelligence
and machine learning methods. The art of lip reading could be used to help
hearing people with disabilities by enhancing speech recognition in noisy areas,
or possibly by security forces in situations where it is necessary to identify a
person’s speech when the audio record is not available. Given the number of
languages, the vocabulary of each and very diverse articulation across people,
it is impossible to manually create a computer algorithm that can be reading
from the lips. Even human professionals in this field are able to correctly
estimate just about every second word [1, p. 3] and only under ideal conditions.
Therefore, the problem of lip reading is a perfect candidate for solution using
Artificial Intelligence (AI).

I chose this topic, because I am very interested into Machine Learning (ML)
and AI in general and I wanted to further extend my skills and knowledge
by working on a practical and interesting project in this field. I took the
advantage to work on this project by signing into Datalab Summercamp 20171

last year, where I could research this topic by proposing to follow up and
replicate the results of Lip Reading in Wild (LRW) [2] achieved by J. S.
Chung and A. Zisserman at University of Oxford.

1https://datalab.fit.cvut.cz/events/95-summer-camp-2017

1

https://datalab.fit.cvut.cz/events/95-summer-camp-2017

1. Introduction

1.2 Goals

The goals of my thesis are following:

1. Survey state of the art in the area of image and video recognition.

2. Design and implement a real-time system capable of lip reading from
video.

3. Evaluate the accuracy on simplified word classification task.

4. Explore the possibility to recognize sentences in real-time.

5. Build a prototype that present capabilities of deep learning algorithms
in the browser.

1.2.1 Structure of thesis

In this thesis I go through and describe a complete way how to preprocess
the LRW dataset, design a Neural Network architecture capable of lip-reading
uttered words and deploying this system on a website.

In the following chapter (Chapter 2), I research and describe building
methods and algorithms suitable for Automated Lip Reading (ALR) systems,
state of the art in image and video recognition in general, and the previous
approaches in the field of computer vision.

Next, in Chapter 3, I describe some of the applicable tools and libraries,
which implements previously described methods and are therefore suitable
candidates to be used for the implementation of ALR.

Finally, in Chapter 5, I write down the process of preprocessing the LRW
dataset, building and training a Deep Neural Network capable of recognizing
a lip-articulated words using the tools mentioned in Chapter 3. I show the
resulting performance and accuracy of the trained model by comparing various
trained models of different architectures and parameters, and I design and
build a website application where the final model is deployed to and bound to
work with a web-camera using JavaScript, so that users can try the lip reading
on their own computers and devices in real-time.

2

Chapter 2
Research

In the past years, researchers have made great advances in a field of computer
vision. At the beginning, I highlight the three most common task in computer
vision. These are:

• Image Classification.

• Object Detection.

• Instance Segmentation.

Differences are illustrated in Figure 2.1.

Figure 2.1: Comparison between image classification, object detection and
instance segmentation. Source: [3]

In the case of Object Classification, sometimes also called Object Recogni-
tion, we handle the task of determining what kind of object is most likely in
the image.

3

2. Research

In the past, features such as HOG, Haar (Section 2.1), histograms, etc.
combined with machine learning algorithms like Support Vector Machines or
Neural Network have been used to address this problem [4, 5].

However, in 2012 team of University of Toronto scientist created an algo-
rithm and won the ImageNet Large Scale Visual Recognition Challenge by us-
ing deep Convolutional Neural Networks to classify 1.2 million high-resolution
images into 1,000 distinct classes, reducing the top-5 error rate by 11% [6].
Every year since then, deep learning models have dominated the challenges
and even surpassed human performance in the field of image recognition [7].

2.1 Detection using Haar Cascades

In 2001 Paul Viola and Michael Jones published a paper ”Rapid Object Detec-
tion using a Boosted Cascade of Simple Features” [8] describing an effective
and robust object detection method using Haar feature-based classifiers.

They provided three key contributions:

• Integral image

• AdaBoost-inspired learning algorithm

• Attentional Cascade method

Their proposed solution made possible to run object detection with very good
precision in real-time (15 FPS on a 700 MHz processor)

The algorithm is needs a lot of positive images (images of object to be
detected) and negative images (e.g. background) to train the classifier. From
these images Haar features (see Figure 2.2) are extracted. Each feature is a
single value obtained by subtracting sum of pixels under the white rectangle
from sum of pixels under the black rectangle. [9]

2.1.1 Integral Image

Integral image is a an image we get by cumulative addition of values of neigh-
bor pixels above and to the left for every pixel in the image.

I(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (2.1)

where I(x, y) is the integral image and i(x, y) is the original image. This
could be computed efficiently in single pass over the image by using following
recurrence:

I(x, y) = i(x, y) + I(x, y − 1) + I(x− 1, y)− I(x− 1, y − 1) (2.2)

4

2.1. Detection using Haar Cascades

Figure 2.2: Example rectangle features shown relative to the enclosing de-
tection window. The sum of the pixels which lie within the white rectangles
are subtracted from the sum of pixels in the grey rectangles. Two-rectangle
features are shown in (A) and (B). Figure (C) shows a three-rectangle feature,
and (D) a four-rectangle feature. [8]

This helps to greatly reduce the computational time, and hence speed up
the detection, because by calculating integral image first we can obtain the
sum of the pixels lying within the rectangle only by referring the rectangle
corner points. To get the sum of i(x, y) over the rectangle spanned by A, B,
C and D, we calculate:∑

x0≤x≤x1
y0≤y≤y1

i(x, y) = I(A) + I(D)− I(C)− I(B), (2.3)

where A = (x0, y0), B = (x1, y0), C = (x0, y1) and D = (x1, y1).

2.1.2 Attentional Cascade

When detecting object in images an Attentional Cascade method is applied to
each area of the image, which provides an order of evaluating and checking for
features, to prevent computing all features for each area in the image, since
we expect most of the parts to not be the object. The importance of them
is trained using an adaptive boosting algorithm (known as AdaBoost). This
cascading method ensures that redundancy computing is kept to minimum.

5

2. Research

2.2 Neural Networks

Neural Network is a computer system heavily inspired by the human brain
and nervous system. It consists of series of algorithms that attempts to iden-
tify underlying relations in set of data and are able to adapt and learn from
provided data to produce best possible result. By adding a so called hidden
layer/s between input and output layer, we can, with sufficient and hidden
layer/s width, represent any function. Due to this reason Multilayer Feedfor-
ward Networks are often called as Universal Approximators [10].

2.2.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN or ConvNet) is a class of ordinary
Neural Network, designed with assumption that the inputs are images, allow-
ing us to encode certain properties into the architecture. The problem with
regular Neural Network is that they don’t scale well to images, because even
for a low resolution images, when using fully-connected structure of layers, we
would have a very big numbers of weights/parameters, which would quickly
lead to overfitting (explained in following Section 2.2.4). [11]

Figure 2.3: Example of a network with many convolutional layers. Filters are
applied to each training image at different resolutions, and the output of each
convolved image is used as the input to the next layer. Source: [12]

As can be seen on Figure 2.3 there are four main operations in the CNN:

• Convolution

• Non Linearity (ReLU)

• Pooling

• Classification (Fully Connected Layers)

These operations are the basic building blocks of every Convolutional Neu-
ral Network.

6

2.2. Neural Networks

2.2.1.1 Convolution

The primary purpose of Convolution in case of a CNN is to extract features
from the input image. Convolution preserves the spatial relationship between
pixels by learning image features using small squares of input data.

Every image is considered by a computer as an matrix of numbers (where
numbers specify pixel color intensity). We create a Convolution Layers by
convolving or ”sliding” a filter (sometimes referred to as a kernel) by N pixels
(also called stride) across the input image, where the current region bellow
the filter is called receptive field, and multiplying the the values in the filter
with the original pixel values of the image, thus computing element wise mul-
tiplications. We add the multiplication outputs to get the final integer which
forms a single element of the output matrix. The final output matrix is called
Convolved Image, Activation Map or Feature Map. [13]

As an example, considering an I as an input image, matrix K as a fil-
ter/kernel of size h× w, we can compute the Convolved Image I ∗K as

(I ∗K)xy =
h∑

i=1

w∑
j=1

Kij ∗ Ix+i−1,y+j−1 (2.4)

which can be illustrated with Figure 2.4.

Figure 2.4: Diagrammatical overview of the above Formula 2.4 and the result
of applying convolution over an image. [14]

2.2.1.2 2D vs 3D Convolutions

When applying convolutions filter the input shape and filter shapes are im-
portant. In case of images we generally have either a 2D matrix of pixel values
with dimensions height×width, representing a grayscale image, or a 3D ma-
trix of shape height× width× 3, in case of colour image with red, green and
blue channels.

7

2. Research

When handling a grayscale image with input shape of W ×H, a kernel of
shape k × k is used convolving in two directions (x, y) across the image, and
2D output matrix is obtained - Figure 2.5a.

With colour image, the input is W ×H ×L, (L = 3 channels), a kernel of
shape k× k×L is used and the convolving is still performed in two directions
(x, y), thus we again get a 2D matrix as an output - Figure 2.5b.

(a) 2D Convolution with 2D input (b) 2D Convolution with 3D input

Figure 2.5: Image convolving. Source: [15]

When building a ConvNet for classifying 3D objects, represented as a point
cloud or 3D mesh, or when classifying a video, which can be imagined as an
image sequence that can be stacked, we can represent the input layer by
a 3D matrix. We can then use 3D convolutions (input of shape W ×H × L,
and a kernel of shape k × k × d, where d < L). Since kernel depth is smaller
than the depth of the input volume, we convolve in three directions (x, y, z)
and therefore the output will also be a 3D volume. See Figure 2.6 bellow. [15]

Figure 2.6: Video, 3D object convolving. Source: [15]

2.2.2 Pooling Layer

Pooling layer is another essential block of well-performing CNN architecture.
Pooling is also referred to as a downsampling. Several options exists (Average
Pooling, L2-Norm Pooling), but the one being the most used and popular is
Max-Pooling. Max-Pooling is an operation, where a filter convolves around
each subregion (again with specified stride), and outputs the maximum num-
ber of this subregion to the output matrix. To better illustrate this process,
see Figure 2.7.

Pooling layers are used in part to reduce overfitting by providing an ab-
stracted form of the representation. It also reduces the computational cost by
reducing number of parameters to learn. Lastly, it provides basic translation

8

2.2. Neural Networks

invariance to the internal interpretation, which is the reason some networks,
where object specific positions are needed, don’t use them at all. [14]

Figure 2.7: Max-Pooling with filter of size 2× 2. Source: [14]

2.2.3 CNN Architecture and Training

As seen on Figure 2.3, Convolution Neural Network is commonly made up
of only three layer types: Convolution (CONV), Pooling (POOL), and Fully
Connected (FC) layers, where CONV and POOL layers are ordinarily repeated
several times to create a Deep Neural Network and extract high-level features.

A Fully Connected layer is a normal Multi Layer Perceptron that uses a
softmax activation function in the output layer.

The whole architecture is then trained by updating and adjusting fil-
ters/weights in the Neural Network though a training process called back-
propagation in the similar way as with a normal NN. [13]

2.2.4 Underfitting and Overfitting

Not only when using Neural Networks, but when training any model with
machine learning methods, it is important to make sure that the resulting
model is not underfit or overfit to the data.

Variance refers to how much a model changes in response to the training
data.

Bias refers to how much a model ignore the data.

Finding a good balance of bias vs variance is a critical concept in any Ma-
chine Learning modeling. Underfitted model has low variance and high bias,
and thus the model is generalizing too much and fails to learn the underlying
relationship between inputs and outputs.

In case of overffiting, model having high variance and low bias, results the
model is too much relying on the training data and may therefore fail to fit
additional data or predict future observations reliably.

Typically the dataset is being split into three parts:

9

2. Research

Figure 2.8: Underfitting (left), Good fit (middle), Overfitting (right).
Source: [16]

• Training set.

• Validation set.

• Testing set.

When training the Neural Network, or any other Machine Learning model,
we feed the model with data from training set, to update the parameters
(weights in case of NN) and preform a cross-validation2 with data from vali-
dation set to compare the performances of the prediction what were created
on the training set. After we finish training we perform a prediction on our
test set in order to see the accuracy on unseen data. Both overfitting and
underfitting cause poor generalization on the test set. [17]

2.2.5 Normalization

Normalization, known as feature scaling can be an important preprocessing
step for many machine learning algorithms. By normalizing our data we put
them on the same scale, which can significantly improve the ability for model
to learn if the scales for different features are very different.

2.2.5.1 Standardization

An effective normalization technique is standardization, involving scaling the
values of each feature in the data to have zero-mean and unit-variance:

x′ = x− x̄
σ

(2.5)

2https://www.cs.cmu.edu/˜schneide/tut5/node42.html

10

https://www.cs.cmu.edu/~schneide/tut5/node42.html

2.2. Neural Networks

where x is the original feature vector, x̄ is the mean of that feature vector,
and σ is its standard deviation.

2.2.5.2 Batch Normalization

Batch Normalization of Neural Network is one way to solve or minimize the
problem of covariance shift, that is, the change in the distribution of inputs to a
unit as training progresses, and therefore improve the training. By normalizing
these inputs to have zero mean and unit variance, training can be drastically
sped up. If we consider a single unit in a Neural Network, then its output is
given by

yN (X; w, b) = g(Xw + b), (2.6)

where g is a nonlinearity, such as the rectified linear function (ReLU) or a
sigmoid, X is the input, and w and b are the learned weights and bias. In a
a Convolutional Neural Network, the weights can be shared with other units.

With Batch Normalization, instead the input to the nonlinearity is nor-
malized,

yB(X; w, γ, β) = g(Xw− µ(Xw)
σ(Xw) γ + β), (2.7)

where the mean µ and standard deviation σ are computed given a batch X
of training data. At test time, the values of µ and σ are fixed. The extra
parameters γ and β are needed to still be able to represent all possible ranges
of inputs to g. [18]

2.2.6 Regularization

Deep Neural Network are involved with a large number of parameters, and
tends to overfit easily. Regularizing Neural Network is an important task to
reduce overfitting and many algorithms have been presented to handle this
problem.

2.2.6.1 Data Augmentation

Training a good model requires a lot of data. Lack of the labeled training
data leads to poor generalization (see Section 2.2.4) and in general the more
data we have the better the model will be. Obtaining them, however, is often
not an easy task and every data collection process is associated with a cost.
This cost can be in terms of dollars, human effort, computational resources
and off course time consumed in the process. The augmentation can help, by
extending the current training dataset with modified (augmented) samples.
These new samples are created by various transformations of current labeled
sample, leaving label the same. Type of augmentation depends on the type
of the data. In case of images, we can rotate the original image, blur it, add
noise, change lighting conditions (brightness, contrast), scale, shift or crop it

11

2. Research

differently, so for one image we can generate different sub-samples. See Figure
2.9 for an image augmentation example. In audio, we can stretch or narrow
the sample, change speed, pitch, volume or add noise.

Figure 2.9: Example of heavily augmented samples of an image generated
with Imgaug tool. Source: [19]

2.2.6.2 Dropout

Dropout is a very common technique to reduce overfitting. It consists of setting
to zero the output of each hidden neuron with a certain probability. This way
these ”dropped out” neurons do not contribute to the forward pass and the
Neural Network is forced to learn more robust features by finding an other
activation path with conjunction of other neurons. Dropout can be illustrated
by Figure 2.10. [20, 6]

Figure 2.10: Dropout in Neural Network. Source: [20]

12

2.3. State of the Art

2.3 State of the Art

There are lots of new proposed architectures of Convolutional Neural Networks
being published nowadays, with slight adjustments, or with improvements over
specific domains, or bringing completely new ideas, shifting the performance
higher above its ancestors.

2.3.1 Classification and Detection

Image Classification. Some of the best preforming architectures for image
classification are: VGG Net (2014) [21], with straightforward deep architecture
being used as a basis of many other ConvNets today, GoogLeNet (2015) [22]
introducing a non-sequentially stacked up layers, with very good performance
and computational efficiency, and Microsoft ResNet (2015) [23], exceeding
human performance in accuracy of image recognition by introducing an idea
of ”Residual Blocks”.

Object Detection. Three most known approaches to the object detection
task based on CNN are:

1. R-CNN (Fast R-CNN, Faster R-CNN)

2. YOLO

3. SSD

R-CNN (Regions with CNN features) was the first object detection method
using CNN. Training R-CNN consist of training a normal CNN model from
classification, with additional one class referring to the background (no object
of interest). Since CNNs were too slow and computationally very expensive,
it was impossible to run on all patches generated by sliding window detector.
Selective Search object proposal algorithm [24] was used to solve this issue
reducing number of bounding boxes to close to 2000 region proposals. These
regions are called ”Regions of Interest” (RoI).

R-CNN feeds RoI patches to CNN, which compute CNN features, and
uses SVM for the region classification. In final step, R-CNN runs a simple
linear regression on the region proposal to generate tighter bounding box
coordinates, to accurately get the final result.

Two years later (2015), Girshick introduced an improved version called Fast
R-CNN [26], which uses a ”RoI Pooling layer”. It shares the forward pass of
a CNN for an image across its subregions, eliminating the main bottlenecks of
R-CNN, in a way of sharing computational across the proposals. Fast R-CNN
also combines the training of the CNN, classifier and bounding box regressor
in a single model.

13

2. Research

Figure 2.11: Regions with CNN features. Source: [25]

Because of using Selective Search for region proposals, fairly slowing down
the whole process, this object detection method still struggled of being used
in a real-time.

This was solved effectively with the Faster R-CNN architecture [27], in-
troduced by research a team at Microsoft Research (Shaoqing Ren, Kaiming
He, Ross Girshick, and Jian Sun). The insight of Faster R-CNN was reusing
already calculated CNN features to generate region proposals, instead of run-
ning a separate Selective Search algorithm. This is done via adding a Fully
Convolutional Network on top of the features of the CNN, creating a so called
”Region Proposal Network”.

Faster R-CNN is capable of running in real-time (using GPU) with a very
good accuracy (Figure 2.12). [27]

Figure 2.12: Faster R-CNN detection example. Source: [28]

14

2.3. State of the Art

2.3.2 Lip Reading

In lip reading there is a fundamental limitation on performance due to ho-
mophemes. These are sets of words that sound different, but involve identical
movements of the speaker’s lips. (e.g ‘p’, ‘b’ and ‘m’) [2]. Using the NNs
to perform a prediction on whole sentences can distinguish between visually
similar word candidates.

To address this issue Chung et al. introduced a new network model which
they called ”Watch, Listen, Attend and Spell” [29]. This model incorporates
both audio and video training in a modules, and is then able to predict unseen
sentences with lip reading only, or combined with audio to further helps with
original sentence decoding. Decoding speed is only about 0.5 second for a
5-second sentence, which makes it significantly faster than real-time.

Another advance progress in a domain of lip reading brings an insight of
paper Lip2AudSpec: Speech reconstruction from silent lip movements video
[30] which aims to reconstruct the lip movements directly into spectrogram,
which can be further used for a natural sounding reconstructed speed.

15

Chapter 3
Used Data and Tools

3.1 Python

Python3 is an interpreted high-level programming language created by Guido
Van Rossum, first released in 1991. It is designed to be easily readable and
for general-purpose programming. Python has a huge set of libraries which
can be used for machine learning and artificial intelligence programming (e.g.
NumPy, SciPy, Scikit Learn, Tensorflow, Keras). Many of these libraries are
using C or Fortran as a backend to preform heavy computation tasks very
quickly.

3.2 Jupyter

Project Jupyter4 is a tool which enable users to write their code into a so
called Notebook, providing an interactive computing thanks to running code
directly after executing a specified part of code (called Cell). Running a code
in a Cell displays the output directly after that Cell. This feature is very useful
for rapid prototyping applications, data science or reports as the Notebooks
can be easily exported into normal a Python code or a PDF document.

3.3 OpenCV

OpenCV 5 (Open Source Computer Vision Library) is an open-source multi-
platform library of programming functions mainly aimed at computer vision.
It has C++, Python and Java interfaces and it was designed for computational
efficiency.

3https://www.python.org/
4http://jupyter.org/
5https://opencv.org/

17

https://www.python.org/
http://jupyter.org/
https://opencv.org/

3. Used Data and Tools

OpenCV contains many useful functions and algorithm implementations,
which I am using in the following chapter (Chapter 5). Some of them are:

• Video/Camera stream input.

• Haar-cascade classifier.

• Object tracking.

• Drawing tools.

• Image cropping.

3.4 TensorFlow and Keras

TensorFlow. TensorFlow is an open source framework for high performance
numerical computation. Its flexible architecture allows easy deployment of
computation across a variety of platforms (GPUs, CPUs, TPUs), and from
desktops to clusters of servers to mobile and edge devices. It was originally
developed by researchers and engineers from the Google Brain team within
Google’s AI organization. TensorFlow framework provides strong support for
machine learning and deep learning and the flexible numerical computation
core is used across many other scientific domains. TensorFlow is an excellent
choice for creating Deep Neural Networks with endless possibilities for fine-
tuning each individual component of the network. [31]

Keras. Keras, on the other hand, is a high-level Neural Network API. It is
also open source. The main focus of this library is to bridge the gap between
the low-level TensorFlow’s computational functions and nice and easy user-
friendly experience, with still taking advantage of fast environment for experi-
ments. When prototyping or researching a Deep Neural Network it might be a
tedious work to write and debug Neural Networks in pure TensorFlow frame-
work and this is where exactly Keras could be a right choice. Keras backend
can also be easily switched, and besides TensorFlow, CNTK6 or Theano7 can
be also used. Since TensorFlow, CNTK and Theano all support both GPU
and CPU training/predicting it is not a surprise that Keras supports them
too. There exists two types of APIs for defining Neural Networks models in
Keras:

• Sequential.

• Functional.
6https://www.microsoft.com/en-us/cognitive-toolkit/
7http://deeplearning.net/software/theano/

18

https://www.microsoft.com/en-us/cognitive-toolkit/
http://deeplearning.net/software/theano/

3.4. TensorFlow and Keras

The Sequential model is a linear stack of layers and it is straightforward when
defining a model architecture. The Functional API was designed to make it
easier for defining more complex models, such as DAGs, models with shared
layers, or models with multiple inputs and/or outputs. [32, 33]

For purpose of this thesis, I am using sequential architecture of model and
therefore using Sequential API.

3.4.1 Keras example

Defining a Neural Network architecture with Keras is very easy. See Listing
1 as an example when defining a model.

Import Sequential API and Layer definitions
from keras.models import Sequential
from keras.layers import Dense, Activation

Build model passing layers to Sequential constructor directly
model = Sequential([

Dense(32, input_shape=(784,)),
Activation('relu'),
Dense(10),
Activation('softmax'),

])

Or by using add method
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))

Listing 1: Keras model example. Taken from [33]

3.4.2 In-Browser Machine Learning

Keras.js is a JavaScript library enabling built and trained models with Keras
to be run in browser. [34]

The main benefit of running the model in JavaScript at the client side
is that the server does not have to compute all the tasks and eliminating or
minimizing data transferring/streaming to server and thus respecting data
privacy and improving security.

In modern web browsers users can benefit from GPU acceleration support
provided by WebGL8 and thanks to this speeding up the model prediction.

During writing this thesis Google released their own web-based framework
called Tensorflow.js, which could be used not only for predicting outputs from
already trained model, but also defining, training or transfer learning a Deep

8WebGL is graphic library for native graphics rendering on web

19

3. Used Data and Tools

Neural Network directly in browser. In case of transfer learning for example
re-train the model to match a users needs and improve the results by learning
from new data ”on the fly”. A nice example of building a ML web-based
application is a Teachable Machine9 by Google, enabling users to map their
input to specified outputs using transfer learning methods (Figure 3.1). [31]

Figure 3.1: Teachable Machine demo. Source: [35]

3.4.3 LRW Dataset

The dataset I use, is, as was already mentioned in the introduction, the Lip
Reading in Wild (LRW)[2] dataset (can be downloaded here10). This dataset
consists of up to 1000 utterances of 500 different words, spoken by hundreds of
different speakers, mainly a BBC reporters11. All videos are 29 frames (1.16
seconds) in length, and the word occurs in the middle of the video. The words
are divided into 3 sets - Train, Validation, Test, as can be seen in the Table
3.1.

9https://teachablemachine.withgoogle.com/
10http://www.robots.ox.ac.uk/˜vgg/data/lip_reading/
11British Broadcasting Corporation

20

https://teachablemachine.withgoogle.com/
http://www.robots.ox.ac.uk/~vgg/data/lip_reading/

3.4. TensorFlow and Keras

Set Number of classes Samples per class
Train 500 800-1000
Validation 500 50
Test 500 50

Table 3.1: LRW speaker samples

The dataset can be used for non-commercial, academic research and before
getting access a Data Sharing agreement with BBC Research & Development
must be signed. Therefore I do not enclose the dataset. Also, images samples
from the dataset used in this thesis were approved by BBC Research group.

Figure 3.2: LRW speaker samples. Source: [2]

Preview of the speakers can be seen in Figure 3.2 above. List of all words
can be found in Appendix C.

21

Chapter 4
Design

In this chapter I present the anticipated procedures of data preprocessing,
NN architectures, its training and evaluating, and methods of tracking and
lip-reading the user when using the web application. These stages can be seen
in Figure 4.1 bellow.

Data Preprocessing

Model Training

Model Evaluating

Web Deployment

Figure 4.1: Developing stages

23

4. Design

4.1 Preprocessing

In the preprocessing stage, the goal is to process the data from raw video to
get only the region of interest - the mouth. Although feeding non preprocessed
videos and letting the NN learn the features and the area of interest itself from
a bigger frame might be also possible, it would require a far bigger dataset.
Focusing solely on the mouth area will speed up the training.

Therefore I first process every video from the dataset, locating and crop-
ping the mouth region and then tracking this area for the rest of the frames.
These cropped frames are saved in the hard drive, so it is not necessary to
preprocess the data before each training.

Because there is not much variation in color across the different frames, I
save the frames as a grayscale image, reducing the size 3 times.

Detect face Detect mouth
in face region Initialize tracker

Video

Get tracked frames
and add to array

Figure 4.2: Lips detection process

4.2 Training

My goal is to train a good performing model, with a solid accuracy and fast
enough to be able to lip read words said by an user on in the website appli-
cation. Therefore in the implementation part (Chapter 5), I benchmark and
compare the accuracy and speed of various model architectures, including the
one proposed in [2], and the ones I build and tweak myself.

The model with the best accuracy is then exported and used on within
the website application.

24

4.3. Evaluation

4.3 Evaluation

Evaluating the model accuracy is a key task in every ML area. It is necessary
to find out if the model had learned patterns that generalize well for unseen
data instead of just overfitting (as mentioned in Section 2.2.4) on the data it
was shown during training.

There are many metrics of measuring the predictive accuracy of a model.
For simplicity I use the test set of LRW dataset, and perform a so called Top-1
accuracy which means that the word with highest probability must be exactly
the expected answer.

Some researchers also use Top-5 accuracy (e.g. in [6, 2]), which means
that any of the model 5 highest probability answers must match the expected
answer. [36]

4.4 Web Application

By publishing and embedding the trained model into a website application
(web app) we can achieve a very new user experience and possibilities. The
key idea is to allow the user to utilize his own graphics card, running the
model completely on client side, and thus improving speed, minimizing server
load and protecting user data.

Client

Website

Server

User

Model
weights

Model

Web-camera

Output

Figure 4.3: Web application design

The only exchange of data between user and server is when accessing
the website. The client downloads the website itself, model architecture and
trained weights. From this point no more data needs to be send or reviewed
from the server. Illustration of this process can be seen in Figure 4.3.

25

4. Design

The website application use the user’s web-camera in a similar way as
when preprocessing the data for training. On each frame the head and mouth
is detected and tracked and the cropped area of lips are being held in an array.

In Figure 4.4, I outline various states of the website application for record-
ing and predicting a lip sample.

N frames recorded
Recording

Key pressed
Idle Detecting

Predicted

Predicting Yes

No

Mouth open?

Figure 4.4: Web application state diagram

The process begins in Idle state, and after a user hits a given key the
process moves to Detecting state, where it monitors whether the user opened
his mouth, and if so, moves to Recording state. From this point it counts a
specific number of frames, which are then passed to the model for a prediction
(Predicting state). After the model predicted the word, process returns back
to Idle state, and the whole process can start again.

26

Chapter 5
Implementation

In this chapter I go through training process and its details using Keras library,
compare various architectures and impact of their parameters. Next I show a
deployment process of the best performing to website application, and describe
the application creation details.

5.1 Preprocessing

For the preprocessing part I use primarily Jupyter Notebook with Python
3.6 kernel. The benefits of using the Notebooks are a convenient workflow
and easily exportable and reproducible outputs. The final Notebooks or their
exported HTML version can be viewed on the enclosed CD medium (Appendix
A).

5.1.1 Word Selection

Because of my very limited computation resources (section 5.2.2), and consid-
ering ease of usage of the web application, I did not strive to train the entire
LRW dataset, which would take days or weeks to train on my GPU. Instead
I focused to try different architectures and tuning methods, with a goal to
improve the current accuracy and speed on a smaller subset of words.

I chose randomly 30 words, however, when testing the web application I
found out that the number was still overwhelming and the words hardly fitted
into the result bar plot.

Therefore I manually removed 10 words, preferably the ones that had very
similar co-articulation with others or were hardly pronounceable for non-native
speakers, and I was left with the following 20 words:

about, absolutely, according, afternoon, already, british, economic,
george, history, hospital, information, london, manchester, missing,
office, question, remember, sunshine, warning, without

27

5. Implementation

5.1.2 Detection and Tracking

Detection. I run a Haar classifier (described in Section 2.1) on 1st frame
of every sample during preprocessing. All used pretrained Haar classifiers can
be found here12.

• Frontal face by R. Lienhart.
• Profile face by D. Bradley.
• Mouth by M. C. Santana [37].

First the frontal face classifier is used to detect a face in the first frame, if
it fails to find a face a portrait face classifier is used in the same manner. In
the detected face region another Haar classifier is run - this time the mouth
classifier. If even portrait face or mouth classifier fails to detect a face, the
sample is skipped. Otherwise the tracker is initialized on the detected mouth
area, which is slightly enlarged for better tracking (more features to track) and
to prevent accidentally cropping a part of the mouth in case of fast movement.
Detection can be seen in the Figure 5.1 bellow.

Load HAAR classifiers
face_frontal_cascade = cv2.CascadeClassifier('frontalface.xml')
face_profile_cascade = cv2.CascadeClassifier('profileface.xml')
mouth_cascade = cv2.CascadeClassifier('mouth.xml')

Find frontal faces in the grayscale image
faces = face_frontal_cascade.detectMultiScale(

gray, scaleFactor=1.2, minNeighbors=3, minSize=(100, 100))
if len(faces) == 0:

Frontal face not found, try profile face
faces = face_profile_cascade.detectMultiScale(

gray, scaleFactor=1.2, minNeighbors=3, minSize=(100, 100))

...

if len(faces) > 0:
Frontal or profile face found, try detecting mouth
mouths = mouth_cascade.detectMultiScale(

roi_lower_face, scaleFactor=1.3, minSize=(15, 15))

Listing 2: Face and mouth detection process

In Listing 2, the method detectMultiScale called on a Haar cascade
object detects objects of different sizes in the input image. Its additional
parameters that I use are:

12http://alereimondo.no-ip.org/OpenCV/34

28

http://alereimondo.no-ip.org/OpenCV/34

5.1. Preprocessing

• scaleFactor - parameter specifying how much the image size is reduced
at each image scale.

• minNeighbors - parameter specifying how many neighbors each candi-
date rectangle should have to retain it.

• minSize - minimum possible object size. Objects smaller than that are
ignored.

Good values for these parameters I found via a ”trial and error” method,
when trying the different detection parameters on various samples.

Figure 5.1: Lip detection and tracking (ordered by rows). In the first image,
blue rectangle is a detected face area, green is a mouth area, where a tracker
is initialized. In the following frames, the red rectangle is the tracked mouth
area. Base image: LRW dataset, word ”ABOUT” [2]

29

5. Implementation

Tracking. There are many methods of tracking a specified object across
multiple subsequent frames, and describing the functioning of each consid-
erably exceeds the scope of this work. OpenCV library [38] offers multiple
tracking algorithms:

• KCF Tracker,
• MIL Tracker,
• MedianFlow Tracker,

and many more. Each tracking algorithms has its own strengths and weak-
nesses. Very good comparison and description is available at [39].

I found out that these three algorithms listed above are robust enough
for lip tracking, however, a test of processing 100 video samples ended up by
losing tracker on 39 samples when using KCF, 17 when using MedianFlow
and 13 when using MIL. By taking into consideration the average speed of
MedianFlow (65 ms / sample) and MIL (2559 ms / sample), I decided to use
MedianFlow tracker. The result can be seen again in the Figure 5.1.

Create MedianFlow tracker to track detected mouth on upcoming frames
tracker = cv2.TrackerMedianFlow_create()

...

Initialize tracker with first frame and bounding box
tracker.init(frame, detected_mouth_bbox)

...

ok, bbox = tracker.update(next_frame)
if ok:

Tracker is successfully matched in following frame
TODO: crop and resize the tracked area (bbox)

else:
Tracker is lost (tracked area changed significantly)
TODO: skip this sample / try again with different tracker

Listing 3: Tracking mouth region across frames

In the Listing 3 above, I show the usage of tracker from OpenCV library
[38] on simplified example from my code. First a MedianFlow tracker object
is created by calling the TrackerMedianFlow create() function. Then I begin
tracking the desired area by calling init method with parameters image and
bbox (area described with tuple of x, y, w, h). In the next frame, I just call
the update, to return the new bbox and state ok of boolean values, where
True means tracker found the tracked area, and False means the tracker is
lost.

30

5.1. Preprocessing

5.1.3 Data Storing and Retrieving

Saving. Because preprocessing the data (extracting the mouth region) of
the whole dataset take some time, it is not wise to run over the whole process
again, when performing lot of testings and adjustments of training. Instead,
saving the preprocessed data can save a lot of time. When extracting the
mouth regions via the tracking method described above, I convert to grayscale
and resize each frame to dimensions 24×32 pixels, which in total of 28 frames
produces a tensor of size 28×24×32, with depth, height and width respectively.
The values are populated in a NumPy 3D array and stored compressed on a
hard disk. The saved array of one sample can be seen in Figure 5.213.

Figure 5.2: Saved NumPy array sample

Batch loading. When loading data the data into the Neural Network, mul-
tiple approaches can be used. In the beginning, when I was training just on
few samples, I had loaded all the training and validation data into the RAM
memory. However, this works only up to the point where the size of data do
not exceed the total RAM and GPU memory capacity. Luckily a better ap-
proach called batch loading exists. Idea behind this is to load a smaller batch
of data (typically 16, 32, 64, etc.), train the network on this smaller chunk,
and then load other data. This approach only uses the required amount of
memory to process the current batch at a given time. Furthermore, an aug-
mentation step can be added when loading the data (more on this in following
section 5.2).

13Some figures in this thesis contains 25 frames instead of 28 (the very first frame is not
saved). Initially, I was experimenting with both sizes, but left the illustrations of size 25 to
better fit the grid.

31

5. Implementation

Keras has an in-built support for batch loading using Python generators.
Generator can be tough as a function which yields a data continuously upon
each request. When working with images the Keras provides already imple-
mented ImageDataGenerator class14, with optional augmenting options, but
it is not useful for higher dimensional data. In the Listing 4, I show a simpli-
fied implementation of generator which loads and yields the lip samples (3D
arrays).

def lip_sample_generator(basedir, set_type, batch_size, nb_classes):
"""Replaces Keras' native ImageDataGenerator."""

Directory from which to load samples
directory = os.path.join(basedir, set_type)

Placeholder NumPy arrays for features and labels
batch_features = np.zeros((batch_size, DEPTH, ROWS, COLS, 1))
batch_labels = np.zeros((batch_size, nb_classes), dtype="uint8")

file_list = ... # Populate with file paths

while True:
for b in range(batch_size):

Each time choose random sample from dataset
i = np.random.choice(len(file_list), 1)[0]

Load the sample
sample = np.load(file_list[i])

... Normalization and augmentation

... One hot encoding

Place sample and its label to the NumPy array
batch_features[b] = sample
batch_labels[b] = encoded_label

yield (batch_features, batch_labels)

Listing 4: Batch generator of lip samples

14https://keras.io/preprocessing/image/

32

https://keras.io/preprocessing/image/

5.2. Training

5.2 Training

In this section I describe the NN architectures used for training the lip samples,
compare different parameters, and present achieved results.

5.2.1 Base Training parameters

If not specified otherwise, I perform the training with the following parameters:

Number of epochs - 30 or end if validation accuracy does not improve after
4 consequent epochs.

Optimizer - Adam15.

Learning rate - 1× 10−4.

Other parameters that I tune or change, I specifically name for each model
listed in Benchmarks section (Section 5.2.4).

5.2.2 Used Hardware for training

For training I used my own desktop computer with the following specification:

CPU - Intel(R) Core(TM) i5 CPU 750 2.67Ghz,

RAM - 16,0 GB,

GPU - NVIDIA GeForce GTX 1050 Ti (4 GB VRAM),

OS - Windows 10 Home.

5.2.3 Base model architecture

When training the Neural Network I have used various architectures. First I
have built a model as is suggested in LRW [2, p. 8], the EF-3 architecture (see
Table 5.1), which is based on VGG-M model [40].

15https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-
learning/

33

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

5. Implementation

Layer type Output Shape Param #
Conv3D (None, 28, 24, 32, 48) 1344
Batch Normalization (None, 28, 24, 32, 48) 192
MaxPooling3D (None, 9, 8, 10, 48) 0
Conv3D (None, 9, 8, 10, 256) 332032
MaxPooling3D (None, 3, 2, 3, 256) 0
Batch Normalization (None, 3, 2, 3, 256) 1024
Conv3D (None, 3, 2, 3, 512) 3539456
Conv3D (None, 3, 2, 3, 512) 7078400
Batch Normalization (None, 3, 2, 3, 512) 2048
Flatten (None, 9216) 0
Dense (None, 20) 184340
Total params: 11,138,836
Trainable params: 11,137,204
Non-trainable params: 1,632

Table 5.1: EF-3 model architecture

The training of the the EF-3 architecture ended after 16 epochs, as vali-
dation accuracy did not improved for 4 consecutive epochs. The resulting test
accuracy is 80.29%.

I was also experimenting with more lightweight model architectures, and
found another well-performing solutions, which trains much faster (due to
approximately 10 times less trainable parameters), while still maintaining or
even exceeding the final test accuracy.

As a base architecture I used the one described by the Table 5.2 bellow,
on which I tried other architecture differentiation and parameter tuning.

Layer type Output Shape Param #
Conv3D (None, 28, 24, 32, 32) 4032
MaxPooling3D (None, 9, 8, 10, 32) 0
Conv3D (None, 9, 8, 10, 64) 256064
Conv3D (None, 9, 8, 10, 64) 512064
MaxPooling3D (None, 3, 2, 3, 64) 0
Flatten (None, 1152) 0
Dense (None, 128) 147584
Dense (None, 20) 2580
Total params: 922,324
Trainable params: 922,324
Non-trainable params: 0

Table 5.2: Lightweight model architecture

34

5.2. Training

5.2.4 Benchmarks

I ran a benchmarks of different architecture tuning to find out the impact of
various normalization and generalization methods, described in Section 2.2.6
and section 2.2.5. For the benchmarks I trained the following models listed in
Table 5.3, where each model builds on top of the base architecture described
by Table 5.2 and adds a small modification to it.

Model Batch Normalization Dropout Kernel size
A1 - - 3× 3× 3
A2 - - 5× 5× 5
B Yes - 5× 5× 5
C Yes 20% 5× 5× 5
D Yes 40% 5× 5× 5

Table 5.3: Model architectures

5.2.5 Kernel size

When comparing the results of model A1 and A2, I found out that enlarging
the kernel size of 3D convolutions from (3, 3, 3) to (5, 5, 5) greatly improves
the final accuracy - from 75.84% to 80.85%. The training process can be seen
in the Figure 5.3. This is probably thanks to better registering the features
in the 3D volume in this smaller architecture, and the bigger kernel might be
less prone to noise in the image data. Therefore I used the kernel of shape
(5, 5, 5) with the training of rest of the benchmark models (B, C, and D).

0 2 4 6 8 10 12 14
epoch

0.3

0.4

0.5

0.6

0.7

0.8

va
l.

ac
cu

ra
cy

model accuracy

kernel (3 x 3 x 3)
kernel (5 x 5 x 5)

Figure 5.3: Kernel size comparison

35

5. Implementation

5.2.6 Normalization

Before feeding the data into the each network I scale the data to be between
−1 and 1, thus converting the uint8 NumPy array of values [0; 255] to type
float16 of range [−1; 1]. Simple code to achieve this can be seen in Listing 5
bellow.

Normalize to [-1; 1] and convert to type "float16"
sample = (sample.astype("float16") - 128) / 128

Listing 5: Sample normalization

I compare the two architectures, A2 and B, where A2 is an architecture
without Batch Normalization (BN), and B uses BN layers. The test accuracy
of A2 is 80.85%, whereas B is 81.85%. Which shows small, yet apprecia-
ble improvement. Batch Normalization can, however, have more significant
impact while training much bigger and/or multivariate data.

5.2.7 Dropout

As can be seen in Figure 5.4, usage of a Dropout technique has a significant
impact on the training. The model without a Dropout regularization (B) has
a much steeper learning curve, resulting in earlier convergence and the loss
stops to improve. On the opposite, D with a 40% Dropout achieved much
better validation loss, thanks to better regularization. However, using even
higher Dropout rate can lead to the model not being able to train at all.

5.2.8 Augmentation

I was experimenting with augmenting the samples using imgaug library [19].
Basic idea to augment a series of images is to remember parameters of applied
operation (transformation), and then use it the same way on the rest of frames.
However, imgaug library is build to be used for augmenting images, not 3D
arrays, which my sample representation were stored in, and iterating over each
slice of this array, picking one frame, applying the transformation and putting
it back in place posed significant computation overhead. As the feeding of
data was done simultaneously, this drastically impacted the time of training
via GPU as it was no longer usable.

Solution to this would be to first augment the data, save it onto hard drive
and then train the model from this new data. This requires several times more
space on hard drive. Another approach is to utilize parallel computation and
augment the data in batches, at the same time as training the model. I have
not tried these two methods and instead focused on to other methods of tuning
the model.

36

5.2. Training

0 5 10 15 20 25
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

model accuracy

B - train acc.
B - validation acc.
C - train acc.
C - validation acc.
D - train acc.
D - validation acc.

0 5 10 15 20 25
epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

model loss
B - train loss
B - validation loss
C - train loss
C - validation loss
D - train loss
D - validation loss

Figure 5.4: Dropout rate comparison

37

5. Implementation

5.3 Evaluation

After training each of the chosen model, the testing accuracy was measured
on a test set containing 898 samples.

Model BN Dropout Kernel size # Epochs Test acc. Speed16

EF-3 - - 3× 3× 3 16 80.29% 195 ms
A1 - - 3× 3× 3 14 75.84% 112 ms
A2 - - 5× 5× 5 14 80.85% 119 ms
B Yes - 5× 5× 5 18 81.85% 123 ms
C Yes 20% 5× 5× 5 11 84.08% 125 ms
D Yes 40% 5× 5× 5 27 88.31% 119 ms

Table 5.4: Model architectures evaluation

5.3.1 Confusion Matrix

Confusion Matrix (CM) is tool for summarizing the performance of a classifi-
cation algorithm. It can give a better idea of what classes the model predicts
wrongly the most and for which words they are being confused. I generated
a confusion matrix for a model with best accuracy - D2, and the plotted CM
can be seen in Figure 5.5.

All values are normalized and the number in each individual cell represents
how much is the given word being confused with another one (in percentage).
The darker background illustrates a higher confusion rate.

16Average time to predict one standalone sample using my NVIDIA GTX 1050 Ti graphics
card. Using GPU can be much more effecting when predicting multiple samples at a time,
by utilizing parallel computation and reducing overhead.

38

5.3. Evaluation

ABOUT

ABSO
LU

TE
LY

ACCORDING

AFTE
RNOON

ALR
EA

DY

BRITI
SH

EC
ONOMIC

GEO
RGE

HIST
ORY

HOSP
ITA

L

INFO
RMATIO

N

LO
NDON

MANCHES
TE

R

MISS
ING

OFFI
CE

QUES
TIO

N

REM
EM

BER

SU
NSH

INE

WARNING

WITH
OUT

Predicted label
accuracy=0.8831; misclass=0.1169

ABOUT

ABSOLUTELY

ACCORDING

AFTERNOON

ALREADY

BRITISH

ECONOMIC

GEORGE

HISTORY

HOSPITAL

INFORMATION

LONDON

MANCHESTER

MISSING

OFFICE

QUESTION

REMEMBER

SUNSHINE

WARNING

WITHOUT

Tr
ue

 la
be

l

75 0 2 0 0 0 2 0 0 2 4 0 2 0 0 0 6 0 0 4

2 78 0 5 0 0 0 0 2 0 0 2 2 2 2 0 0 0 0 0

0 0 87 0 2 0 0 2 0 2 0 0 0 0 0 0 2 2 2 0

0 0 0 95 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0

2 0 7 0 73 2 0 0 0 0 0 0 0 0 2 0 0 0 9 2

0 0 0 0 2 95 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 92 0 5 0 0 2 0 0 0 0 0 0 0 0

0 4 6 2 0 0 0 82 0 0 0 0 0 0 2 0 0 2 0 0

0 0 0 2 0 0 0 0 84 0 0 13 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 95 0 2 0 0 0 0 0 0 0 0

2 0 0 0 0 4 0 0 0 0 90 2 0 0 0 0 0 0 0 0

0 2 0 0 2 0 2 0 0 0 0 87 4 0 0 0 0 0 2 0

0 0 0 0 0 2 0 0 0 0 0 2 89 0 4 2 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 2 88 2 0 0 4 0 0

0 0 0 2 2 0 0 0 0 0 0 2 0 0 88 2 2 0 0 0

0 0 0 0 0 8 0 0 2 0 0 0 2 0 0 87 0 0 0 0

5 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 87 0 0 2

0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 95 0 0

0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95 0

2 0 0 0 0 4 0 0 0 0 2 2 0 0 0 0 0 0 0 88

Confusion Matrix

0 10 20 30 40

Figure 5.5: Confusion matrix of trained words. Implemented using scikit-learn
machine learning library [41]

39

5. Implementation

5.4 Web Application

The web application (web app) is one apart from preprocessing of data and
training the models key part of this thesis. As was already mentioned in the
Design chapter (Chapter 4), it should be a demonstration of the lip-reading
performance of the trained model, by enabling user to see predicted result of
a single spoken (lip-articulated) word into the web-camera.

To achieve a near real-time performance I build the web app using a
JavaScript and libraries running on client side.

5.4.1 Used Libraries

For easy document traversal and manipulation I use jQuery17 library, for
rendering debug and result plots I use Chart.js18 which can be used to draw
beautiful, animated and interactive charts.

When building the web app, TensorFlow.js had not been realeased yet,
and because of training the models in Keras library, I chose to use Keras.js
[34] library for easy model deployment.

Finally, for face/mouth detection and tracing I found a perfectly fitting,
well-performing library called clmtrackr [42], which is in fact a JavaScript
implementation of ”Deformable Model Fitting by Regularized Landmark Mean-
Shift” [43]. It can detect and track a face and also guess and map 70 face
feature points (face coordinates) on a face, which I use for tracking a mouth
area. All feature points, their location and identification number can be seen
in Figure 5.6.

Figure 5.6: Face coordinates from clmtrackr library. Source: [42]

17https://jquery.com/
18http://www.chartjs.org/

40

https://jquery.com/
http://www.chartjs.org/

5.4. Web Application

5.4.2 Model deployment

Keras.js uses a custom protocol buffer format binary file for the Keras model
weights file. Before using the weights with the model in web app, a conversion
of original weights file has to be made. This could be done easily with Keras.js
provided encoder.py script by running it with a path of model weight as an
argument (Listing 6).

python encoder.py "/path/to/model_weights.h5"

Listing 6: Keras.js weights encoding

5.4.3 Tracking and Recording

Thanks to clmtrackr library, detection and tracking in video element is very
easy. First, a tracker object is inicialized, and then attached to video element
by passing it as an argument of start method.

Clmtrackr then tries to find a face, and if it is successful, it then maps
face coordinates to fit the face as closely as possible. This coordinates can
be retrieved by calling getCurrentPosition() method and then individually
checked for obtaining a single coordinate position. I use this to figure out the
position of mouth and its width and height. I then expand this area and store
it into an array. The process of using clmtrackr in my web application can be
seen in Listing 7

// Initialize clmtrackr
var ctrack = new clm.tracker();
ctrack.init();

...

// Start tracking
ctrack.start(vid);

... // Loop to obtain coordinates on every frame

var pos = ctrack.getCurrentPosition();

var mouth_left_top_corner = [pos[44][0], pos[46][1]];
var mouth_right_top_corner = [pos[50][0], pos[46][1]];
var mouth_width = mouth_right_top_corner[0] - mouth_left_top_corner[0];
var mouth_height = pos[53][1] - pos[47][1];

Listing 7: Clmtracker tracking and detection

41

5. Implementation

As can be seen in state diagram (Figure 4.4) in previous chapter, the
recording stage (acquiring of the lip frames) has two ”switches”. First, hitting
a spacebar enables the second, mouth openness switch, which when activated
starts to count acquired frames to fill the whole sample for prediction.

I use the first one as a prevention against unwanted activation of recording
when a user is not yet ready. The mouth openness switch has to be very
sensitive to begin recording as soon as the user open his mouth to pronounce
a word, because delaying this action may result results to shifted sample and
prediction may not be correct.

Originally, I used clmtrackr coordinates in the middle of upper and lower
lip (60 and 57) and measured their relative distance, however, for some words
with smaller lips movements in the beginning, this approach did not work as
the coordinates sometimes did not make a significant move to activate the
threshold.

To solve this issue I take another approach and monitor the change of
brightness in the center of mouth and save it into an array. If a new value
surpasses the standard deviation of past values significantly, the recording state
is activated. Plotting of the standard deviation can be seen in Figure 5.7.

Figure 5.7: Mouth openness detection chart

5.4.4 Prediction

The resulting array of lip frames is, after capturing 28 frames, flattened19,
normalized in a same way as when training, and the resulting vector is given
to the model for prediction. When the model is done predicting, it outputs
the vector of probabilities for each word, which are then displayed in a chart
for easy review. The prediction function can be see in Listing 8.

5.4.5 Issues and Debugging

During the implementation I encountered many problems, and debugging any
ML applications is not an easy task, because we can not directly see what
happens inside the model, when the model is not working as it should.

To better debug the web app I use two visual aids. One is a plotting
the last 25 frames under the previewing window, to better understand what
frames are being fed into the model, and second is a graph of mouth openness

19Since 1 lip frame is a 2D array, and the model accepts a 1D vector (array), all frames
are joined by lines into a one array.

42

5.4. Web Application

async function predict(arr) {

// Convert input array to Float32Array
const inputData = {

input: new Float32Array(arr)
}
// Perform a prediction
var outputData = await model.predict(inputData);

// Convert Float32Array into a normal array of Integers
var outputDataArr = Array.prototype.slice.call(outputData["output"]);
var outputDataArrInt = [];
for(var i = 0; i < outputDataArr.length; i++) {

var whole = parseFloat(outputDataArr[i]);
outputDataArrInt.push(Math.round(whole * 100));

}
// Plot the resulting probabilities on the chart
updateChart(myChart, outputDataArrInt);

}

Listing 8: Keras.js prediction

mentioned in previous subsection. This chart can be shown when clicking the
cog icon in the top-left corner of the web app (as seen in Figure 5.7).

To name some of the problems: One, very hard to sort out was, that not
all web-cameras behaves the same, and there is no way how to force to run at
the united and desired FPS on the web (through Media Capture and Streams
API20). To address this problem web app grabs a frame in fixed interval which
ensures the equally long samples (≈ 1 second) by downsampling the frames
of faster running web-cameras and interpolating the ones from web-cameras
running bellow a desired frame rate (25-28 FPS).

Another issue is caused by having the model trained on words 1 second
long, cropped from continuous speech, where the word itself occurs in middle
of the video. Now when predicting model would have worse accuracy if the
sample starts right when a mouth opens as the whole sample would be shifted
to the beginning. So when a mouth opening occurs I take into account 6-7 past
frames (thanks for buffering all the frames) and the rest till the full capacity
of sample (28 frames). Some longer, slowly spoken words could, however, not
be fully pronounced whole in time before beginning of prediction due to this
approach.

This could be also (better) solved by training the model of larger dataset
and augmenting it by shifting and scaling a time domain, thus obtaining a
better robustness and regularization.

20https://developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API

43

https://developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API

5. Implementation

5.4.6 Results on Web

Although I did not focus on any profiling or optimization for improving time
efficiency, apart from designing lightweight model architecture (Section 5.2)
the prediction runs very fast even in web environment. One sample prediction
lasts about 500 - 700 milliseconds to output using my GPU and would be even
faster using a better one. The prediction accuracy is also very good, although
some words have to be lip-articulated precisely, or quickly in a case of long
words (to fit in a 1 second recording interval).

The final web application appearance can be seen in Figure 5.8 bellow.

Figure 5.8: Lip reading web application. Top: Title with buttons to show
help screen and to show mouth openness chart. Top left: Video element
with clmtracker mapped on face. Bottom left: Preview of past 25 lip frames
for easier debugging. Right: Bar chart of predicted result words. Bottom:
Footer with reference to this thesis. Online version of the web application can
be found at: www.janhorak.info/lip

44

www.janhorak.info/lip

Conclusion

The main goal of this thesis was to create a demo website application, enabling
visitors to try a lip reading in browser on their own computer.

During implementation, I familiarized with various technologies and new
tools, such as Object Detection techniques, Convolutional Neural Networks
and Keras.js framework enabling a trained NN model to run on client side
using JavaScript.

In the first section I surveyed the most used Image Classification and
Object Detection methods as well as the current State of the Art in a field of
Automated Lip Reading.

The result of this Bachelor’s thesis is a Jupyter Notebook containing a
script for preprocessing the LRW dataset and training Deep Neural Networks
of various architectures and parameters, achieving very good accuracy of clas-
sifying lip-articulated words, both with the testing data and in the demo
website application, which design and implementation is a next output of this
thesis.

This created website application can be easily extended in order to be used
for other similar purposes, or further improved by supplying even a higher
accurate model or a model capable of lip-reading whole sentences.

45

Bibliography

[1] Hassanat, A. B. A. Visual Speech Recognition. CoRR, volume
abs/1409.1411, 2014, 1409.1411. Available from: http://arxiv.org/
abs/1409.1411

[2] Chung, J. S.; Zisserman, A. Lip Reading in the Wild. In Asian Conference
on Computer Vision, 2016.

[3] Ouaknine, A. Review of Deep Learning Algorithms for Ob-
ject Detection. Medium [online], 2018. Available from: https:
//medium.com/comet-app/review-of-deep-learning-algorithms-
for-object-detection-c1f3d437b852

[4] Bosch, A.; Zisserman, A.; et al. Image Classification using Random
Forests and Ferns. In 2007 IEEE 11th International Conference on
Computer Vision, Oct 2007, ISSN 1550-5499, pp. 1–8, doi:10.1109/
ICCV.2007.4409066.

[5] Zheng, Y.; Meng, Y.; et al. Object recognition using a bio-inspired neu-
ron model with bottom-up and top-down pathways. Neurocomputing, vol-
ume 74, 2011: pp. 3158–3169.

[6] Krizhevsky, A.; Sutskever, I.; et al. Imagenet classification with deep con-
volutional neural networks. In Advances in neural information processing
systems, 2012, pp. 1097–1105.

[7] Szegedy, C.; Liu, W.; et al. Going Deeper with Convolutions. CoRR,
volume abs/1409.4842, 2014, 1409.4842. Available from: http://
arxiv.org/abs/1409.4842

[8] Viola, P.; Jones, M. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition. CVPR

47

1409.1411
http://arxiv.org/abs/1409.1411
http://arxiv.org/abs/1409.1411
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

Bibliography

2001, volume 1, 2001, ISSN 1063-6919, pp. I–511–I–518 vol.1, doi:
10.1109/CVPR.2001.990517.

[9] OpenCV. Face Detection using Haar Cascades. 2018, [cit. 04-17-2018].
Available from: https://docs.opencv.org/trunk/d7/d8b/tutorial_
py_face_detection.html

[10] Hornik, K.; Stinchcombe, M.; et al. Multilayer Feedforward Networks Are
Universal Approximators. Neural Netw., volume 2, no. 5, July 1989: pp.
359–366, ISSN 0893-6080, doi:10.1016/0893-6080(89)90020-8. Available
from: http://dx.doi.org/10.1016/0893-6080(89)90020-8

[11] Stanford University. Convolutional Neural Networks. CS231n Convolu-
tional Neural Networks for Visual Recognition [online], 2017. Available
from: http://cs231n.github.io/convolutional-networks/

[12] Trujillo J., A. Summarization of video from Feature Extraction Method
using Image Processing and Artificial Intelligence. 01 2018.

[13] Deshpande, A. A Beginner’s Guide To Understanding Convolutional Neu-
ral Networks. Personal Github blog [online], 2016. Available from: https:
//adeshpande3.github.io/adeshpande3.github.io/A-Beginner’s-
Guide-To-Understanding-Convolutional-Neural-Networks/

[14] Veličković, P. Deep learning for complete beginners: convolu-
tional neural networks with keras. Cambridge Spark [online], 2016.
Available from: https://cambridgespark.com/content/tutorials/
convolutional-neural-networks-with-keras/index.html

[15] runhani (https://stackoverflow.com/users/6730309/runhani). What do
you mean by 1D, 2D and 3D Convolutions in CNN? Stackover-
flow [online], 2017, [cit. 30-04-2018]. Available from: https://
stackoverflow.com/a/44628011

[16] Pedregosa, F.; Varoquaux, G.; et al. Underfitting vs. Overfitting.
Scikit-learn documentation [online], 2017, [cit. 28-04-2018]. Avail-
able from: http://scikit-learn.org/stable/auto_examples/model_
selection/plot_underfitting_overfitting.html

[17] Koehrsen, W. Overfitting vs. Underfitting: A Conceptual Ex-
planation. Towards Data Science [online], 2018. Available from:
https://medium.com/comet-app/review-of-deep-learning-
algorithms-for-object-detection-c1f3d437b852

[18] van Laarhoven, T. L2 Regularization versus Batch and Weight Normaliza-
tion. CoRR, volume abs/1706.05350, 2017, 1706.05350. Available from:
http://arxiv.org/abs/1706.05350

48

https://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://cs231n.github.io/convolutional-networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
https://stackoverflow.com/a/44628011
https://stackoverflow.com/a/44628011
http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/comet-app/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
1706.05350
http://arxiv.org/abs/1706.05350

Bibliography

[19] Jung, A. imgaug. 2016. Available from: https://github.com/aleju/
imgaug

[20] Srivastava, N.; Hinton, G.; et al. Dropout: A Simple Way to Prevent Neu-
ral Networks from Overfitting. Journal of Machine Learning Research,
volume 15, 2014: pp. 1929–1958. Available from: http://jmlr.org/
papers/v15/srivastava14a.html

[21] Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR, volume abs/1409.1556, 2014,
1409.1556. Available from: http://arxiv.org/abs/1409.1556

[22] Szegedy, C.; Liu, W.; et al. Going Deeper with Convolutions. In Computer
Vision and Pattern Recognition (CVPR), 2015. Available from: http:
//arxiv.org/abs/1409.4842

[23] He, K.; Zhang, X.; et al. Deep Residual Learning for Image Recognition.
CoRR, volume abs/1512.03385, 2015, 1512.03385. Available from: http:
//arxiv.org/abs/1512.03385

[24] Uijlings, J.; van de Sande, K. E. A.; et al. Segmentation
as Selective Search for Object Recognition. In ICCV, 2011, doi:
10.1109/ICCV.2011.6126456. Available from: http://www.huppelen.nl/
publications/ICCV2011SelectiveSearch.pdf

[25] Girshick, R. B.; Donahue, J.; et al. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. CoRR, volume
abs/1311.2524, 2013, 1311.2524. Available from: http://arxiv.org/
abs/1311.2524

[26] Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ICCV ’15, Washington, DC,
USA: IEEE Computer Society, 2015, ISBN 978-1-4673-8391-2, pp. 1440–
1448, doi:10.1109/ICCV.2015.169. Available from: http://dx.doi.org/
10.1109/ICCV.2015.169

[27] Ren, S.; He, K.; et al. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. In Ad-
vances in Neural Information Processing Systems 28, edited by
C. Cortes; N. D. Lawrence; D. D. Lee; M. Sugiyama; R. Gar-
nett, Curran Associates, Inc., 2015, pp. 91–99. Available from:
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-
time-object-detection-with-region-proposal-networks.pdf

[28] Owano, N. When AI is made by AI, results are impressive. Tech
Xplore [online], 2017, [cit. 02-05-2018]. Available from: https://
techxplore.com/news/2017-12-ai-results.html

49

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://www.huppelen.nl/publications/ICCV2011SelectiveSearch.pdf
http://www.huppelen.nl/publications/ICCV2011SelectiveSearch.pdf
1311.2524
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://techxplore.com/news/2017-12-ai-results.html
https://techxplore.com/news/2017-12-ai-results.html

Bibliography

[29] Chung, J. S.; Senior, A. W.; et al. Lip Reading Sentences in the Wild. In
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, 2017, pp. 3444–
3453, doi:10.1109/CVPR.2017.367. Available from: https://doi.org/
10.1109/CVPR.2017.367

[30] Akbari, H.; Arora, H.; et al. Lip2AudSpec: Speech reconstruction
from silent lip movements video. CoRR, volume abs/1710.09798, 2017,
1710.09798. Available from: http://arxiv.org/abs/1710.09798

[31] Abadi, M.; Agarwal, A.; et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015. Available from: https://
www.tensorflow.org/

[32] Chollet, François and others. Keras. 2015. Available from: https://
keras.io

[33] Chollet, François and others. Keras: Sequential Model Guide. 2015,
[cit. 04-26-2018]. Available from: https://keras.io/getting-started/
sequential-model-guide/

[34] Chen, L. Keras.js. 2016. Available from: https://github.com/
transcranial/keras-js

[35] Google. Teachable Machine. AI Experiments [online], 2017. Available
from: https://teachablemachine.withgoogle.com/

[36] Pinto, R. Evaluation & Calculate Top-N Accuracy: Top 1 and Top 5.
Stackoverflow [online], 2016, [cit. 07-05-2018]. Available from: https:
//stackoverflow.com/a/37670482

[37] Castrillón Santana, M.; Déniz Suárez, O.; et al. ENCARA2: Real-time
Detection of Multiple Faces at Different Resolutions in Video Streams.
Journal of Visual Communication and Image Representation, April 2007:
pp. 130–140.

[38] Itseez. The OpenCV Reference Manual. Third edition, April 2014. Avail-
able from: http://opencv.org/

[39] Mallick, S. Object Tracking using OpenCV (C++/Python). Learn
OpenCV [online], 2017, [cit. 05-07-2018]. Available from: https://
www.learnopencv.com/object-tracking-using-opencv-cpp-python/

[40] Chatfield, K.; Simonyan, K.; et al. Return of the Devil in the Details:
Delving Deep into Convolutional Nets. CoRR, volume abs/1405.3531,
2014, 1405.3531. Available from: http://arxiv.org/abs/1405.3531

50

https://doi.org/10.1109/CVPR.2017.367
https://doi.org/10.1109/CVPR.2017.367
1710.09798
http://arxiv.org/abs/1710.09798
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
https://keras.io
https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/sequential-model-guide/
https://github.com/transcranial/keras-js
https://github.com/transcranial/keras-js
https://teachablemachine.withgoogle.com/
https://stackoverflow.com/a/37670482
https://stackoverflow.com/a/37670482
http://opencv.org/
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
1405.3531
http://arxiv.org/abs/1405.3531

Bibliography

[41] Pedregosa, F.; Varoquaux, G.; et al. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, volume 12, 2011: pp.
2825–2830.

[42] Mathias, A. clmtrackr. Github repository [online], 2017. Available from:
https://github.com/auduno/clmtrackr

[43] Saragih, J. M.; Lucey, S.; et al. Deformable Model Fitting by Regu-
larized Landmark Mean-Shift. Int. J. Comput. Vision, volume 91, no. 2,
Jan. 2011: pp. 200–215, ISSN 0920-5691, doi:10.1007/s11263-010-0380-4.
Available from: http://dx.doi.org/10.1007/s11263-010-0380-4

51

https://github.com/auduno/clmtrackr
http://dx.doi.org/10.1007/s11263-010-0380-4

Glossary

debugging is the process of finding and resolving defects or problems within a
computer program that prevent correct operation of computer software.
42

JavaScript is a multiplatform, object oriented scripting language used as a
core technology of the World Wide Web, enabling creation of interactive
web pages. 2, 19, 40, 45

NumPy is a popular Python library adding support for large, multi-dimensional
arrays and matrices and enabling high level API for working with them.
xiii, 31, 36

tensor can be tough as a generalization of matrix. E.g. a 3D tensor is a
volume, which can be represented by stacking 2D matrices in a depth.
31

53

Acronyms

AI Artificial Intelligence. 1, 18

ALR Automated Lip Reading. 2

API Application Programming Interface. 18, 19, 43, 53

CPU Computer Processing Unit. 18

DAG Directed Acyclic Graph. 19

FPS Frame per Second. 4, 43

GPU Graphic Processing Unit. 14, 18, 19, 27, 31, 36, 38, 44

HOG Histogram of oriented gradients. 4

LRW Lip Reading in Wild. 1, 2, 20, 21, 25, 27, 33, 45

ML Machine Learning. 1, 6, 7, 20, 25, 42

NN Neural Network. ix, 2, 4–9, 12, 13, 15, 18–20, 23, 24, 31, 33, 45

PDF Portable Document Format. 17

RAM Random Access Memory. 31

SVM Support Vector Machines. 4, 13

TPU Tensor Processing Unit. 18

55

Appendix A
Contents of Enclosed CD

README.txt the file with CD contents description
src.......................................the directory of source codes

lip...implementation sources
LipReading.ipynb.......main implementation Jupyter Notebook
LipReading.html.................html export of implementation
Plotting.ipynb..........auxiliary Jupyter Notebook for plotting
Plotting.html...........................html export of plotting
requirements.txt..............list of Python packages to install
haar used Haar cascades XML files directory
models............... trained Keras models and weights directory
outputs outputs of training directory
web..............................web application implementation

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

BP Horak Jan 2018.pdf...............the thesis text in PDF format

57

Appendix B
Setup Guide

Here I describe the setup process of running the content of the source codes.
The hierarchical structure of CD can be found in Appendix A.

I enclose both the source codes in Jupyter Notebooks, and their exported
version to HTML, such that they can be viewed in a web browser directly
without any installation.

For opening and running the code, a Python interpreter of version 3 or
newer has to be installed (it can be downloaded here21), together with libraries
listed in requirements.txt file.

Installing libraries can be done automatically with pip by issuing following
command in the root folder of CD.

pip3 install -r src/lip/requirements.txt

Listing 9: Keras model example.

After a successful installation of all dependencies, a Jupyter localhost
server needs to be started in the directory with Jupyter Notebooks in order
to open them (see Listing 10).

cd src/lip/
jupyter notebook --ip=localhost --port=8888

Listing 10: Jupyter localhost start

Now the Notebooks can be accessed and opened in browser by visiting the
following URL: http://localhost:8888.

21https://www.python.org/downloads/

59

http://localhost:8888
https://www.python.org/downloads/

Appendix C
LRW Dataset Words

about, absolutely, abuse, access, according, accused, across, action, actually, affairs, affected, africa,
after, afternoon, again, against, agree, agreement, ahead, allegations, allow, allowed, almost, al-
ready, always, america, american, among, amount, announced, another, answer, anything, areas,
around, arrested, asked, asking, attack, attacks, authorities, banks, because, become, before, be-
hind, being, believe, benefit, benefits, better, between, biggest, billion, black, border, bring, britain,
british, brought, budget, build, building, business, businesses, called, cameron, campaign, cancer,
cannot, capital, cases, central, certainly, challenge, chance, change, changes, charge, charges, chief,
child, children, china, claims, clear, close, cloud, comes, coming, community, companies, company,
concerns, conference, conflict, conservative, continue, control, could, council, countries, country, cou-
ple, course, court, crime, crisis, current, customers, david, death, debate, decided, decision, deficit,
degrees, described, despite, details, difference, different, difficult, doing, during, early, eastern, eco-
nomic, economy, editor, education, election, emergency, energy, england, enough, europe, european,
evening, events, every, everybody, everyone, everything, evidence, exactly, example, expect, ex-
pected, extra, facing, families, family, fight, fighting, figures, final, financial, first, focus, following,
football, force, forces, foreign, former, forward, found, france, french, friday, front, further, future,
games, general, george, germany, getting, given, giving, global, going, government, great, greece,
ground, group, growing, growth, guilty, happen, happened, happening, having, health, heard, heart,
heavy, higher, history, homes, hospital, hours, house, housing, human, hundreds, immigration, im-
pact, important, increase, independent, industry, inflation, information, inquiry, inside, interest, in-
vestment, involved, ireland, islamic, issue, issues, itself, james, judge, justice, killed, known, labour,
large, later, latest, leader, leaders, leadership, least, leave, legal, level, levels, likely, little, lives, liv-
ing, local, london, longer, looking, major, majority, makes, making, manchester, market, massive,
matter, maybe, means, measures, media, medical, meeting, member, members, message, middle,
might, migrants, military, million, millions, minister, ministers, minutes, missing, moment, money,
month, months, morning, moving, murder, national, needs, never, night, north, northern, nothing,
number, numbers, obama, office, officers, officials, often, operation, opposition, order, other, others,
outside, parents, parliament, parties, parts, party, patients, paying, people, perhaps, period, person,
personal, phone, place, places, plans, point, police, policy, political, politicians, politics, position,
possible, potential, power, powers, president, press, pressure, pretty, price, prices, prime, prison,
private, probably, problem, problems, process, protect, provide, public, question, questions, quite,
rates, rather, really, reason, recent, record, referendum, remember, report, reports, response, re-
sult, return, right, rights, rules, running, russia, russian, saying, school, schools, scotland, scottish,
second, secretary, sector, security, seems, senior, sense, series, serious, service, services, seven, sev-
eral, short, should, sides, significant, simply, since, single, situation, small, social, society, someone,
something, south, southern, speaking, special, speech, spend, spending, spent, staff, stage, stand,
start, started, state, statement, states, still, story, street, strong, sunday, sunshine, support, syria,
syrian, system, taken, taking, talking, talks, temperatures, terms, their, themselves, there, these,
thing, things, think, third, those, thought, thousands, threat, three, through, times, today, together,
tomorrow, tonight, towards, trade, trial, trust, trying, under, understand, union, united, until, us-
ing, victims, violence, voters, waiting, wales, wanted, wants, warning, watching, water, weapons,
weather, weekend, weeks, welcome, welfare, western, westminster, where, whether, which, while,
whole, winds, within, without, women, words, workers, working, world, worst, would, wrong, years,
yesterday, young

61

	Introduction
	Motivation
	Goals

	Research
	Detection using Haar Cascades
	Neural Networks
	State of the Art

	Used Data and Tools
	Python
	Jupyter
	OpenCV
	TensorFlow and Keras

	Design
	Preprocessing
	Training
	Evaluation
	Web Application

	Implementation
	Preprocessing
	Training
	Evaluation
	Web Application

	Conclusion
	Bibliography
	Contents of Enclosed CD
	Setup Guide
	LRW Dataset Words

