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Abstrakt

Větvící regulární výrazy jsou regulární výrazy rozšířené o unární operátor
Fork. Tento operátor přidává souběžnou složku k výrazům. Cílem práce je
tyto Větvící regulární výrazy implementovat, aby se daly využít k analýze
paralelních programů. V práci jsou Větvící regulární výrazy rozšířeny o op-
erátory Atomic, Sync a Async a převedeny metodou Brzozowského derivátů na
konečný automat. Tento automat reprezentuje chování programu popsaného
výrazem.

Klíčová slova větvící výrazy, deriváty, souběžnost, regulární výrazy, au-
tomaty
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Abstract

Forkable regular expressions are regular expressions extended with unary op-
erator Fork. Fork adds concurrent part to the expressions. The goal of this
thesis is to implement Forkable regular expressions, so that they can be used
to analyze parallel programs. This thesis extends Forkable regular expres-
sions with operators Atomic, Sync and Async. These extended Forkable reg-
ular expressions are transformed into a finite-state machine using Brzozowski
derivatives. This automaton represents effects of a program described by the
expression and its behavior.

Keywords forkable expressions, derivatives, concurrency, regular expres-
sions, automata
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Introduction

The world is filled with events and activities happening concurrently. But in
fact their effects are always sequenced by some means. Concurrent constructs
are introduced into programs and with them some problems may arise. Prob-
lems such as locks and race conditions, that create non-deterministic behavior,
must be recognized and resolved. Analyzing concurrency is hard but very use-
ful.

On the other hand regular expressions are easy to understand and use.
They are capable of modeling concurrency, but they do not do it very well.
For this reason many extensions of regular expressions came into existence.
One of these extended definitions is Forkable Regular Expressions (FREs) by
Sulzmann and Thiemann that added operator Fork. Fork describes effects of
creating a new thread and thus appends concurrent part to the expression.

The problem is that this added Fork operator may allow creation of non-
regular languages. This can be avoided by restricting the use of Fork operator.
Furthermore FREs lack synchronization events and thus cannot describe many
parallel programs, or they do so very crudely. By adding other operators FREs
can come closer to real parallel programs while maintaining their clarity.

The goal of this thesis is to add other operators that can bring FREs closer
to parallel programs then implement a method to transform FREs according
to the Sulzmann and Thiemann definition extended by these new operators
into a finite state machine using Brzozowski derivatives. The programming
will be done in the Java Programming Language.
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Chapter 1
Preliminaries

Basic definitions were adapted from [1] with some minor changes.

Definition 1. An alphabet, often denoted as Σ, is a set of symbols.

String s ∈ Σ∗ is a sequence of symbols of any finite length.

A string of zero length is called empty string and is denoted by ϵ.

Language L ⊆ Σ∗ is a set of strings.

In the context of this thesis a symbol generally represents a primitive event
such as reading or writing to memory. A string then describes a task.

1.1 Finite automaton
Definition 2. [1, 2] Finite automaton A is a five-tuple, A = (Q, Σ, ∆, q0, F ),
where:

Q is a finite set of states,

Σ is a finite set of input symbols i. e. an alphabet,

∆ is a transition relation, ∆ ⊆ Q× (Σ ∪ {ϵ})×Q, that links combination
of a state and a symbol to a subset of next states,

q0 is a start state, one of the states in Q,

F is a set of final states or accepting states, subset of Q.

Definition 3. Let A = (Q, Σ, ∆, q0, F ) be a finite automata.
Configuration of A is pair (q, w) ∈ Q × Σ∗. Configuration (q0, w) is called
starting configuration of A and configuration (q′, ϵ), where q′ ∈ F , is called
final or accepting configuration of A.

3



1. Preliminaries

Definition 4. Let A = (Q, Σ, ∆, q0, F ) be a finite automata and let ⊢A⊆
(Q×Σ∗)× (Q×Σ∗) be a binary relation on a set of configurations of A, such
that

(q, w) ⊢A (q′, a · w) ⇐⇒ (q, a, q′) ∈ ∆ , a ∈ Σ ∪ {ϵ} . (1.1)
A member of ⊢A is called a transition in A.

Definition 5. Finite automaton A is called deterministic, iff for every pair
(q, x) ∈ Q × Σ exists at most one transition ((q, x · w), (q′, w)) in A for any
w ∈ Σ∗. In other words, relation ∆ can be substituted with function δ,
δ : Q× Σ→ Q.
If finite automaton is not deterministic, it is called non-deterministic.

Transition relation specifies triplets of start state, symbol or ϵ, end state.
Restriction to function means that every combination of a start state and
a symbol gives just one end state.

Definition 6. Finite automaton A = (Q, Σ, ∆, q0, F ) accepts string w ∈ Σ∗

iff (q0, w) ⊢∗
A (q, ϵ), where q ∈ F . In other words, there exists a sequence of

transitions from the starting configuration to the accepting configuration.
Finite automaton A accepts language L iff for every string w ∈ L, A

accepts w.

Definition 7. Language L is called regular language iff there exists a finite
automaton A, such that A accepts L.

Definitions are slightly modified from [1] and [2].
Regular languages are closed under the operations of union, concatenation

and intersection as shown in [2].

1.2 Regular expressions
Definition 8. [1] Regular expressions R denoting language L(R) over Σ are
defined recursively as follows:

(i) ∅, ϵ and every symbol a ∈ Σ are regular expressions denoting languages
as follows:

L(∅) = ∅ ,

L(ϵ) = ϵ ,

L(a) = a .

(1.2)

(ii) If S and T are regular expressions then with ascending priority:

a) alternation R = S + T is a regular expression denoting union of
languages:

L(R) = L(S) ∪ L(T ) , (1.3)

4



1.2. Regular expressions

b) concatenation R = S · T is a regular expression denoting concate-
nation of languages (the dot between expressions can be omitted,
if the meaning stays clear):

L(R) = L(S) · L(T ) , (1.4)

c) iteration or Kleene star operation R = S∗ is a regular expression
denoting closure of language:

L(R) = ϵ + L(S) · L(S∗) (1.5)

d) parenthesis R = (S) is a regular expression denoting the same
language.

Definition 9. [1] Regular expressions R and S are equivalent iff they describe
the same language:

R = S ⇐⇒ L(R) = L(S) . (1.6)

Derivatives of regular expressions were introduced by Brzozowski in [3].
Brzozowski uses regular expression and regular language very interchangeably,
therefore a reformulation to fit regular expression definition was required.

Definition 10. [3] Let R and S be regular expressions and x ∈ Σ∗ a string
of finite length.
If L(S) = {w | x · w ∈ L(R)}, then S is derivative of R with respect to x and
is denoted as dx(R).

The process of finding a derivative is called derivation. It is easy to see
that for every R and x all the possible derivatives of R with respect to x are
equivalent.

Definition 11. [4] Left quotient of L2 with L1 is denoted as L1 \ L2, where

L1 \ L2 = {w | ∃v ∈ L1, v · w ∈ L2} . (1.7)

x \ L is shortened notation of {x} \ L .

It is easy to see, that a derivative S of R with respect to x can be inter-
preted as

L(S) = x \ L(R) . (1.8)
Brzozowski devised a recursive method to find derivatives of expressions:

dx(x) = ϵ ,

dx(y) = ∅ for y ∈ Σ ∪ {∅, ϵ} and y ≠ x ,

dx(R∗) = dx(R) ·R∗ ,

dx(R · S) = dx(R) + δ(R) · dx(S) ,

dx(R + S) = dx(R) + dx(S) ,

dϵ(R) = R .

(1.9)

5



1. Preliminaries

Definition 12. [3] Let R be a regular expression, then null function is defined
as follows:

δ(R) =
{

ϵ if ϵ ∈ L(R)
∅ otherwise

. (1.10)

Null function is useful for finding a derivative of expression as shown in 1.9.

6



Chapter 2
State-of-the-art

At the beginning of this chapter in section 2.1, two basic ways of transforming
a regular expression into a finite automaton are presented. A short summary
of thoughts and algorithms about concurrency, that are the most relevant to
this thesis, follow in section 2.2. In section 2.3 there is a terse analysis of
created extensions of regular expressions.

2.1 Transformation of regular expressions into
finite automata

It is easy to see that deterministic automata are easier to work with, and
therefore a deterministic finite automaton is set as a transformation goal.

It has been proved in [5] that transforming regular expressions or non-
deterministic finite automata into minimal deterministic finite automata is
PSPACE problem.

2.1.1 Construction by structural induction
First to mention a straight-forward construction by induction. The construc-
tion of the automaton begins with one starting and one final state. Depending
on the expression R, one of the following from figure 2.1 is chosen:

(a) if R = ∅

(b) if R = ϵ

(c) if R = x

(d) if R = S + T

(e) if R = S · T

(f) if R = S∗

7



2. State-of-the-art

This approach generates a non-deterministic finite automaton with ϵ transi-
tions, which has to be determinized afterwards.

(a) (d)

ϵ S ϵ

ϵ
T

ϵ

(b)

ϵ

(e)

ϵ S ϵϵ T ϵ

(c)

x

(f)

ϵ

ϵ T ϵ

ϵ

Figure 2.1: Induction steps in creating finite automaton [1]

2.1.2 Construction using Brzozowski derivatives
Other possible approach is to use Brzozowski derivatives.

A regular expression R can be considered to be a state. A derivative of
R with respect to a string x can be seen as a state dx(R) reached from state
R by a sequence of transitions using x. It means that the set of states Q
would contain R and all its distinct (not equal) derivatives. Moreover every
expression R, such that ϵ ∈ L(R), can be considered to be an accepting state.

As there is a finite number of not equal derivatives, this approach is pos-
sible. Brzozowski proved that this approach creates a minimal deterministic
finite automaton and also that “it is often quite difficult to determine whether
two regular expressions are equal”. Therefore similarity, that can be decided
in polynomial time, has been introduced in place of equality. Two similar
expressions must be equal, even though there can be two dissimilar but equal
expressions. Brzozowski proved that even the number of dissimilar derivatives
is finite. [3]

An implementation of this method would iterate over existing derivatives
trying to find a new one using (1.9). Accepting state can be checked using

8



2.2. Concurrency analysis

null function as in (1.10).

2.2 Concurrency analysis
Program analysis can be divided into two categories: static analysis and dy-
namic analysis. [6]

“Static concurrency analysis is a technique for determining all the possible
synchronization patterns in a concurrent program, without program execution.
It is capable of detecting, for instance, infinite waits and concurrent updates
to shared variables.” However this static concurrency analysis is an NP-hard
problem. [7] Detecting locks and other static analysis decision problems are
NP-complete. [8, 9]

2.2.1 Taylor’s algorithm
One of the algorithms for static concurrency analysis is described by Taylor
in [9] and can be summarized as follows.

It needs a call graph, scope information and a control flow graph of the
analyzed program. The algorithm generates a complete concurrency history
of a program while reporting all synchronization events, all parallel and all
infinite wait situations or locks. However as a static analysis tool it considers
all paths executable and therefore it can report some events as suspicious even
though they are impossible to occur. A concurrency history is a sequence of
concurrency states. A concurrency state represents a status of tasks in a flow
graph and a set of its successors is defined. More detailed information about
analysis is disclosed in [9].

Young and Taylor complemented this algorithm with symbolic execution
in [7]. Symbolic execution prunes out impossible situations and with them
falsely reported events, while concurrency analysis reduces the number of
interleavings for symbolic execution to explore. Pruning all impossible sit-
uations is similar to the halting problem, however it can still point to many
unexecutable paths. [7] There are more optimizations in [7] to battle the com-
binatorial explosion that is inherent in the static concurrency analysis and
symbolic execution itself.

2.2.2 Duesterwald and Soffa algorithm
The algorithm described by Duesterwald and Soffa in [8] uses data-flow anal-
ysis instead of state based analysis as Taylor in [9]. Data-flow based analysis
has lower computational complexity but pays for it with less precision.

The algorithm also considers procedures and with them – possibly infinite
– nesting of parallelism. To accommodate this they introduced Module Inter-
action Graph that splits the program into regions of statements. The ordering

9



2. State-of-the-art

of regions is created by iterating on this graph using data-flow and thus regions
capable of executing concurrently can be located.

2.2.3 Sinha and Wang algorithm
Sinha and Wang in [10] criticize the redundant bi-modal reasoning of other an-
alyzers. By bi-modal reasoning they mean changing semantics from sequential
(intra-thread) to concurrent (inter-thread) and back, which is the source of in-
efficiency. They proposed a two-stage program that separates the intra-thread
and the inter-thread. The first stage summarizes the sequential part of every
task and the second stage deals with concurrency. They also defined concur-
rent control flow graphs for concurrent programs as an extension of control
flow graphs to bolster their program.

2.2.4 Amtoft’s behaviors
In [11], Amtoft et al. defined a process algebra called behaviors, that can be
constructed directly from CML (standard ML with added concurrency). These
behaviors represent a communication topology between created concurrent
tasks. Analysis is then done on behaviors. For a given behavior their algorithm
produces some constraints that have to be solved. The solution then grants
insight on the concurrency of analyzed behaviors.

2.3 Extensions of regular expressions
2.3.1 Constrained Expressions
Constrained expressions were created to provide an automated support for
the design of concurrent systems. They can be divided into system expressions
and constraints. [12]

System expressions are basically regular expressions with newly introduced
operator shuffle.

Definition 13. [12, 13] Let x, y ∈ Σ be symbols, v, w ∈ Σ∗ strings, U, V ⊆ Σ∗

sets of strings and R, S, T regular expressions.
Operator shuffle ∥ describes interleaving of two strings:

ϵ ∥ x = x ∥ ϵ = {x} ,

x · v ∥ y · w = x · (v ∥ y · w) ∪ y · (x · v ∥ w) .
(2.1)

It can be lifted from strings to sets of strings:

U ∥ V = {w | u ∈ U, v ∈ V, w ∈ u ∥ v} , (2.2)

then it can be used as regular expression operator:

R ∥ S = T ⇐⇒ L(R) ∥ L(S) = L(T ) . (2.3)

10



2.3. Extensions of regular expressions

This corresponds to sequencing two parallel tasks as an interleaving hap-
pens naturally and randomly. Also it is worth noticing that this construction
does not increase the expressiveness of regular expressions as it can be substi-
tuted by – albeit long – sequence of alternations and concatenations [13].

Constraints do not need shuffle operator, instead they use operator iterated
shuffle.

Definition 14. [12] Let R be a regular expression.
Iterated shuffle (or shuffle closure) † is defined recursively as follows:

R† = ϵ + R ∥ R † . (2.4)

It is worth noting that the use of the iterated shuffle can describe a non-
regular language as can be seen from expression (a · b · c)†.

2.3.2 Concurrent regular expressions
Garg and Ragunath in [13] define Concurrent Regular Expression (CRE) by
adding operators:

• interleaving,

• α-closure,

• synchronous composition

• renaming.

Interleaving is equivalent to the shuffle operator 13 and α-closure is equivalent
to iterated shuffle 14.

Lemma 1. [13] Shuffle satisfies the following properties:

A ∥ B = B ∥ A (Commutativity) ,

A ∥ (B ∥ C) = (A ∥ B) ∥ C (Associativity) ,

A ∥ {ϵ} = A (Identity of ∥) ,

A ∥ ∅ = ∅ (Zero of ∥) ,

(A + B) ∥ C = (A ∥ C) + (B ∥ C) (Distributivity over +) .

(2.5)

Synchronous composition can be seen on figure 2.2. Because the use of
the iterated shuffle can generate a non-regular language, Garg and Ragunath
defined concurrent regular languages that CREs characterize. Concurrent reg-
ular languages are equivalent with petri net languages, because CRE can be
transformed into a petri net and the other way around as Garg and Ragunath
show in [13].

11



2. State-of-the-art

A⨿B = {w, w/ΣA ∈ A, w/ΣB ∈ B} where A and B are sets
and w/S denotes the restriction of string w to the symbols in set S

Figure 2.2: Definition of synchronous composition [13]

12



Chapter 3
Forkable regular expressions

3.1 Original definition
The syntax definition of the Forkable Regular Expression (FRE) via regular
grammar

R ::= ∅ | ϵ | x | R + R | R ·R | R∗ | Fork(R) | (R) (3.1)

reveals a new operator. From definition 8 it adds the operator Fork, that took
a function pattern.

Definition 15. [4] Trace language L(R) ⊆ Σ∗ and L(R, K) ⊆ Σ∗ is defined
as

L(R) = L(R, {ϵ}) , (3.2)
L(∅, K) = ∅ , (3.3)
L(ϵ, K) = K , (3.4)
L(x, K) = {x} ·K , (3.5)

L(R + S, K) = L(R, K) ∪ L(S, K) , (3.6)
L(R · S, K) = L(R, L(S, K)) , (3.7)

L(R∗, K) = µ(λX.L(R, X) ∪K) , (3.8)
L(Fork(R), K) = L(R, {ϵ}) ∥ K) , (3.9)

with respect to continuation language K ⊆ Σ∗.

The continuation language K essentially contains everything that happens
after the expression.

The rule for Kleene star (3.8) uses the least fixed point of the lambda
function λX.L(R, X) ∪ K). The least fixed point of that lambda function
exists as shown in [4]. For full definition of the least fixed point operator µ

13



3. Forkable regular expressions

see [14]. For purposes of this thesis, it is equal to the transitive closure and the
rule (3.8) has the same meaning as recursive L(R∗, K) = L(R, L(R∗, K))∪K.

In the rule for Fork (3.9), there is once again the shuffle operator ∥ from
definition 13. The rule describes the behavior of the Fork operator. Fork
causes interleaving of its operand with the continuation language.

Definition 16 (Semantic equality). [4] FREs R and S are equal, if their trace
languages are equal with respect to any continuation language K:

R ≡ S ←− L(R, K) = L(S, K), ∀K ∈ Σ∗ . (3.10)

They also introduced the sequential part S(R) and the concurrent part
C(R) of FRE R described by figure 3.1. Sequential part describes what hap-
pens in this task and concurrent part describes newly created concurrent tasks.
[4] This corresponds to intra-thread and inter-thread from Sinha and Wang
in [10].

C(∅) = ∅ ,

C(ϵ) = ϵ ,

C(x) = ∅ x ∈ Σ ,

C(R + S) = C(R) + C(S) ,

C(R · S) = C(R) · C(S) ,

C(R∗) = C(R)∗ ,

C(Fork(R)) = Fork(R) ,

S(∅) = ∅ ,

S(ϵ) = ∅ ,

S(x) = x x ∈ Σ ,

S(R + S) = S(R) + S(S) ,

S(R · S) = S(R) · S + C(R) · S(S) ,

S(R∗) = C(R) ∗ ·S(R) ·R∗ ,

S(Fork(R)) = ∅ ,

Figure 3.1: Concurrent and sequential recursive function [4]

dx(∅) = ∅ , (3.11)
dx(ϵ) = ∅ , (3.12)

dx(y) =
{

ϵ if x = y ,

∅ otherwise,
(3.13)

dx(R + S) = dx(R) + dx(S) ,
(3.14)

dx(R · S) = dx(R) · S
+ C(R) · dx(S) ,

(3.15)
dx(R∗) = dx(R) ·R∗ , (3.16)

dx(Fork(R)) = Fork(dx(R)) .
(3.17)

Figure 3.2: Derivatives of FREs [4]

Derivatives of FREs are also slightly different than in (1.9) as seen in
figure 3.2. The most important change is in the derivative of concatenation.
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Concurrent part replaces null function. In a fork-free expression concurrent
part gives the same result as null function, therefore concurrent part can be
seen as null function lifted to FREs. It enables Fork prefixes to be ignored,
therefore it is the pivot point in the concurrency of FREs. As a matter of fact
the derivative of concatenation R · S considers two alternatives:

1. an event from R occurs,

2. R is a concurrent task and an event from S occurs.

In the case that R has a sequential part that cannot be skipped,

C(R) = ∅ ,

and the latter will not be considered. The explanation is that every leading
Fork represents an already created concurrent task and as such it can execute
anytime.

It is noticeable in (3.15), that the expression tries to describe all possibil-
ities that can happen using alternation. This is the same approach as Taylor
in [9]. An expression of program is similar in meaning to a concurrency state
with its successors being its derivatives. This exploration of every state (pos-
sible or not) leads to combinatorial explosion

Theorem 1 (Left quotient). [4] Let R be an Forkable Regular Expression and
x be a symbol, then

L(dx(R)) = x \ L(R) . (3.18)

This theorem proves that the derivatives correspond with trace language.

Definition 17. Let R be an expression with defined language L(R), then

δ′(R) =
{
{ϵ} ϵ ∈ L(R) ,

∅ otherwise
(3.19)

is a generalization of null function δ from definition 12.

Theorem 2 (Representation). [4] Let R be a FRE, then

L(R) = δ′(R) ∪
∪

x∈Σ
x · L(dx(R)) . (3.20)

Brzozowski in [3] showed that every regular expression can be written
as a sum of its derivatives. That is exactly what theorem 2 is showing for
Forkable Regular Expression.

Definition 18 (Descendants). [4] A descendant S of a Forkable Regular Ex-
pression R is either R itself, a derivative of R, or the derivative of a descendant.
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3. Forkable regular expressions

R ≃ R (Reflexivity) (3.21)
R ≃ S ∧ S ≃ T =⇒ R ≃ T (Transitivity) (3.22)
R ≃ S =⇒ S ≃ R (Symmetry) (3.23)
R + (S + T ) ≃ (R + S) + T (Associativity) (3.24)
R + S ≃ S + R (Commutativity) (3.25)
R + R ≃ R (Idempotence) (3.26)
R + ∅ ≃ R (Unit) (3.27)
ϵ ·R ≃ R · ϵ ≃ R, ϵ∗ ≃ ϵ, Fork(ϵ) ≃ ϵ (EmptyWord) (3.28)
∅ ·R ≃ R · ∅ ≃ ∅, ∅∗ ≃ ϵ, Fork(∅) ≃ ∅ (EmptyLanguage) (3.29)
E ::= [] | E∗ | R · E | E + S | R + E | Fork(E) (RegularContext) (3.30)
S ≃ T =⇒ E[S] ≃ E[T ] (Compatibility) (3.31)

Figure 3.3: Rules and axioms for similarity of FREs [4]

Definition 19 (Similarity). [4] Forkable Regular Expression R and S are
similar, if R ≃ S is derivable using rules and axioms from figure 3.3.

In the compatibility rule in figure 3.3 E denotes a regular context. Ac-
cording to its grammar it has a hole inside denoted by []. The notation E[R]
describes placing R into this hole. Similarity is an equivalence relation, be-
cause it is reflexive transitive and symmetric.

The expression Fork(R)∗ – called iterated fork – for R = a · b · c describes
a non-regular language and therefore can no longer be transformed into a finite
automaton. Notice that in the definition (3.1) the creation of iterated fork is
not restricted in any way.

Definition 20 (Well-behaved). [4] A FRE is well-behaved if all subterms of
the form R∗ have the property

C(dw(r)) ≤ ϵ , ∀w ∈ Σ∗ . (3.32)

Sulzmann and Thiemann in [4] proved that a well-behaved Forkable Reg-
ular Expression describe a regular language and therefore it is possible to
transform into a finite automaton.

Definition 21 (Dissimilar Descendants). [4] The set of dissimilar descendants
of R, d≃(R), is defined as a complete set of arbitrarily chosen representative
FRE for the equivalence classes d(R)/(≃).

Theorem 3 (Finiteness of Well-Behaved Dissimilar Descendants). [4] Let T
be a well-behaved Forkable Regular Expression, then

n(d≃(T )) <∞ , (3.33)
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where n(A) is the cardinality of set A, d≃(T ) is a set of dissimilar descendants
of T .

This proves, that the transformation will finish, because there is only a fi-
nite number of dissimilar descendants of a Forkable Regular Expression.

To find them a normal form of Forkable Regular Expression was proposed
seen at figure 3.4.

R⊕ S =



R R = S ∨ S = ∅
S R = ∅
R′ ⊕ (R′′ ⊕ S) R = R′ + R′′

(R⊕ S′) + S′′ R ̸= R′ + R′′, S = S′ + S′′, R < S′

S′ + (R⊕ S′′) R ̸= R′ + R′′, S = S′ + S′′, R ≥ S′

R + S R ̸= R′ + R′′, S ̸= S′ + S′′, R < S′

S + R R ̸= R′ + R′′, S ̸= S′ + S′′, R > S′

R⊙ S =



∅ R = ∅ ∨ S = ∅
R S = ϵ

S R = ϵ

R′ ⊙ (R′′ ⊙ S) R = R′ ·R′′

S ·R R = Fork(R′), S = Fork(S′), S′ < R′

Fork(S′) · (R⊙ S′′) R = Fork(R′), S = Fork(S′) · S′′, S′ < R′

R · S R ̸= R′ ·R′′

R ∗ =

{
ϵ R = ∅ ∨R = ϵ

R∗ otherwise

F (R) =


∅ R = ∅
ϵ R = ϵ

Fork(R) otherwise

Figure 3.4: Normal form of Forkable Regular Expression [4]

3.2 New operators
The most defining feature of parallel programs is the creation of threads. That
is what creates concurrency and with it non-deterministic behavior known as
race conditions. FREs have Fork to model the effect of thread creation, thus
it is possible to use FREs to search for race conditions.

The following subsections informally describe desired behavior of each op-
erator and the motivation behind it.
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3.2.1 Operator Atomic
In parallel programs, for the purpose of eliminating race conditions, synchro-
nization measures are introduced, most notably locks. Locks make a section
of code or a resource accessible only to one thread. The incentive is to disable
all possibly intrusive elements when executing that section. Thus locks can
be generalized into atomization of the section.

FREs themselves have no means to create an atomic section, therefore
the operator Atomic can be introduced. Atomic describes atomic execution
of a section of code. For language it would mean a restriction to interleaving
as it would make a whole string appear as a single symbol. FREs extended
by the operator Atomic are able to recognize deadlocks caused by the use of
locks with a fair share of false positives caused by the generalization. Use of
Atomic for truly atomic sections obviously does not give false positives.

It is intriguing to think about the scope of Atomic. A global atomic section
makes sense when the expression is describing a run on a single computer.
When distributed systems are taken into consideration, the scope of Atomic
starts to matter. A local version of Atomic is more universal and thus is chosen
for further consideration.

3.2.2 Operator Sync
One of the features of parallel programs is synchronization in the sense that
the main thread or process waits for others to finish, enforcing their termina-
tion. Although FREs can model behavior of creating concurrent threads and
processes, they cannot model this enforcement of termination. FRE waits for
all concurrent tasks to finish only at the end of the expression. This is not
enough as this does not support modularity, because a concatenation of two
FREs shifts this end of expression. That is undoubtedly the desired behavior
and it highlights the benefit of having a specialized operator.

The operator Sync (from synchronous) can be introduced to specify a scope
for created threads. These threads run synchronously and are forced to ter-
minate inside the scope, thus modeling the behavior of waiting. It can also be
used as a means of sequencing parallel programs one after another.

Sync can also serve as a scope for local variant of Atomic. In the modeling
of distributed system Sync would represent a single computer.

Sync is basically an inverted operator for Fork and, because of using it as
a scope for Atomic, it is also an inversion of Atomic.

3.2.3 Operator Async
Asynchronous directly translates to “not occuring at the same time” or “having
each operation started only after the preceding operation is completed”. [15]
Sometimes a set of unrelated tasks has to be executed. In this case the order of
execution is not important. Considering the latter definition of asynchronous,
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the tasks can be executed one by one on a single thread. This behavior can
be observed in simple implementations of callback programming or in the
implementation of coroutines in Unity [16].

Operator Async describes this behavior. Async randomly sequences its
operands without creating real concurrency. It is possible to model Async
using Fork, Atomic and Sync.

3.3 Formal definition of new operators
Definition 22. Trace language of Extended Forkable Regular Expression
(EFRE) is taken from definition 15 of trace language with following addi-
tions:

L(R) = deatom(L(R, {ϵ}) , (3.34)
L(Sync(R), K) = deatom(L(R)) ·K , (3.35)

L(Atomic(R), K) = atom(L(R)) ·K , (3.36)

where (3.34) replaces (3.2), atom(U) of a language U is treated as a symbol
by operators and deatom(V ) recursively replaces all occurrences of atom(U)
in a language V with U , using string operations lifted to sets.

This trace language of EFRE corresponds with the proposed operators in
section 3.2.

Definition 23. Concurrent and sequential parts of Atomic and Sync are de-
fined, using the generalized null function δ′ from definition 17, in this manner:

C(Atomic(R)) = δ′(R) , (3.37)
C(Sync(R)) = δ′(R) , (3.38)

S(Atomic(R)) = R , (3.39)
S(Sync(R)) = R . (3.40)

To implement transformation using Brzozowski derivatives, expressions
must have defined derivatives. The first goal of this part of thesis is to define
rules for creating derivatives of the new operators and possibly even replace
some of the old ones.

Every following subsection describes different approach to this problem,
with the last one being satisfactory enough for implementation.

3.3.1 Using simple recursive function
The first notion was to use the rules of creating derivatives of FREs from
figure 3.2 and define simple supporting recursive function, that would change
the expression into another with an easy to find derivative.

It can be noticed that if a part of expression gets in front of Fork, it stops
being part of its continuation language, therefore effectively stopping any
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interleaving. Function α(R) was defined to draw out Atomic parts from ex-
pression R as seen in figure 3.5 and function β to get the remaining expression
without Atomic parts.

α(Atomic(R)) = R (3.41)
α(R + S) = α(R) + α(S) (3.42)
α(R · S) = α(R) + C(R) · α(S) (3.43)

α(Fork(R)) = α(R) (3.44)
α(x) = ϵ (3.45)

Figure 3.5: α function

Because skipping Forks prefixes happen during derivation of concatena-
tion, the plan was to modify this rule so that the derivative of Atomic would
precede all Forks. Derivation of expression R ·S with respect to symbol x ∈ Σ
using function α and β looks like this:

dx(R ·S) = dx(R)·S+C(R)·dx(S)+dx(α(R))·β(R)·S+dx(α(S))·C(r)·β(S) .
(3.46)

The important part was for Atomic to have no derivatives on its own, i. e. for
every symbol x ∈ Σ, dx(Atomic(R)) = ∅.

Unfortunately, this approach does not work with branching in expressions.
Counter example expression of Fork(a)(Atomic(cd)e + Atomic(gh)i) is pre-
pared into expression (cd+gh)Fork(a)(e+ i). This expression would describe
string cdai but obviously it should not. The problem with extracting Atomic
parts is visualized in figure 3.6.

3.3.2 Using very complex recursive functions
Using figure 3.6 as inspiration, it seems that instead of extracting Atomic,
pushing Fork to after Atomic might work. This comes with the problem of
duplicating parts of expression.

Another approach takes derivatives the expression processed by DeAtomic
function on figure 3.8, that pushes concurrent behavior after the respective
Atomic if possible. It is sufficient to call DeAtomic once, therefore derivation
function dx() is replaced by a placeholder d′

x(), that calls it on the result of
DeAtomic:

d′
x(R) = dx(DeAtomic(R, ϵ)) (3.75)

The ϵ as second parameter F symbolizes that no concurrent behavior is oc-
curing at the beginning.

InsertDepth is a fairly simple function that is used inside DeAtomic to in-
sert expressions into expressions. Full behavior of InsertDepth is described on
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Fork(a)

Atomic(cd) e

Atomic(gh) i

wrong

d

h

Fork(a)

e

i

correct

d

h

Fork(a)

Fork(a)

e

i

Figure 3.6: Flow of expression Fork(a)(Atomic(cd)e + Atomic(gh)i)

Let R, T be EFREs and n ∈ N a number:

InsertDepth(R, T, 0) = T ·R , (3.47)
InsertDepth(∅, T, n) = ∅ , (3.48)
InsertDepth(ϵ, T, n) = T , (3.49)
InsertDepth(x, T, n) = T · x , (3.50)

InsertDepth(R + S, T, n) = InsertDepth(R, T, n)
+ InsertDepth(S, T, n) , (3.51)

InsertDepth(R · S, T, n) = InsertDepth(R, T, n) · S , (3.52)
InsertDepth(R∗, T, n) = (InsertDepth(R, T, n− 1))∗ , (3.53)

InsertDepth(Fork(R), T, n) = Fork(InsertDepth(R, T, n− 1)) , (3.54)
InsertDepth(Atomic(R), T, n) = Atomic(InsertDepth(R, T, n− 1)) ,

(3.55)
InsertDepth(Sync(R), T, n) = Sync(InsertDepth(R, T, n− 1)) . (3.56)

Figure 3.7: InsertDepth function

figure 3.7. Its first parameter is an expression into which should second param-
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Let R, S and F be EFREs, x ∈ Σ a symbol:

DeAtomic(∅, F ) = ∅ , (3.57)
DeAtomic(ϵ, F ) = F , (3.58)
DeAtomic(x, F ) = F · x , (3.59)

DeAtomic(R + S, F ) = DeAtomic(R, F ) + DeAtomic(S, F ) , (3.60)
DeAtomic(R · S, F ) = DeAtomic(R, F ) · S + DeAtomic(S, F · C(R)) , (3.61)

DeAtomic(R∗, F ) = DeAtomic(R, F ) · R ∗ +F , (3.62)
DeAtomic(Atomic(R), F ) = DeAtomic(R, ϵ) · F , (3.63)

DeAtomic(F ork(R), F ) = DeAtomicF (R, F ork(ϵ), 1) · F , (3.64)
DeAtomic(Sync(R), F ) = F · Sync(DeAtomic(R, ϵ)) , (3.65)

DeAtomicF (∅, F, n) = ∅ , (3.66)
DeAtomicF (ϵ, F, n) = F , (3.67)
DeAtomicF (x, F, n) = InsertDepth(F, x, n) , (3.68)

DeAtomicF (R + S, F, n) = DeAtomicF (R, F, n) + DeAtomicF (S, F, n) , (3.69)
DeAtomicF (R · S, F, n) = DeAtomicF (R, InsertDepth(F, S, n))

+ DeAtomicF (S, F · C(R), n) , (3.70)
DeAtomicF (R∗, F, n) = DeAtomicF (R, InsertDepth(F, R∗, n)) + F , (3.71)

DeAtomicF (Atomic(R), F, n) = DeAtomic(R, ϵ) · F , (3.72)
DeAtomicF (F ork(R), F, n) = DeAtomicF (R, InsertDepth(F, F ork(ϵ), n), n + 1) ,

(3.73)
DeAtomicF (Sync(R), F, n) = InsertDepth(F, Sync(DeAtomic(R, ϵ)), n) . (3.74)

Figure 3.8: DeAtomic function

eter be inserted. Third parameter specifies depth of insertion, i. e. into how
many Forks and Syncs should the second parameter be nested in. Nonetheless,
it is always placed at the beginning of an expression.

DeAtomic function is described on figure 3.8. It recursively scans reachable
parts of expression collecting all concurrent behavior into expression F . Then
placing it depending on the context. It has two modes:

• DeAtomic with the context set in a sequential part. When it comes
across a symbol, it puts all concurrent behaviors in F before the sym-
bol, so that the symbol can be interleaved with it. When it comes
across the operator Atomic, it places F after it, effectively making the
operator Atomic first in its scope and thus any unwanted interleaving is
impossible.

• DeAtomicF with the context set in a concurrent part. Because any
reached symbol is in the concurrent part, it is inserted into F . Atomic
is still placed at the beginning of a scope outside of any Fork.

22



3.3. Formal definition of new operators

DeAtomic is clearly behaving differently in sequential context and concurrent
context. This corresponds to switching contexts between intra-thread and
inter-thread, called bi-modal reasoning by Sinha and Wang in [10].

This solution is neither effective nor elegant.

3.3.3 Exploiting concurrency
This approach considers sequential to be concurrent. If everything is inside
Fork, then we do not need a special case for Forks. However, the problem
with duplicating parts of expression persists.

Definition 24. The derivative of Extended Forkable Regular Expression R
with respect to some symbol x ∈ Σ is defined inductively as follows:

dx(R) = dx(R, ϵ) , (3.76)
dx(∅, T ) = ∅ , (3.77)
dx(ϵ, T ) = ∅ , (3.78)

dx(y, T ) =
{

Fork(T ) if x = y ,

∅ otherwise ,
(3.79)

dx(R + S, T ) = dx(R, T ) + dx(S, T ) , (3.80)
dx(R · S, T ) = dx(R, S · T ) + dx(S, T ) · C(R) , (3.81)

dx(R∗, T ) = dx(R ·R∗, T ) , (3.82)
dx(Fork(R), T ) = dx(R, ϵ) · Fork(T ) , (3.83)
dx(Sync(R), T ) = Fork(Sync(dx(R, ϵ)) · T ) , (3.84)

dx(Atomic(R), T ) = Atomic(dx(R, ϵ)) · Fork(T ) . (3.85)

The second parameter T contains sequential part of continuation language.
Basically it must not split operators, such as Fork or Sync, into two parts, so
the context is held in T , until it can be all put into a single Fork.

The combinatorial explosion of FRE is still present with (3.81).
Extended Forkable Regular Expression using operators Fork, Atomic and

Sync can model a fair number of other operators:

• Async doesn’t bring any new expressivity as it can be singlehandedly
built from the three:

Async(R, S, . . . ) = Sync(Fork(Atomic(R)) · Fork(Atomic(S)) · · · ) ,
(3.86)

• Shuff function that shuffles contained symbols:

Shuff(R · S · · · ) = Sync(Fork(Shuff(R)) · Fork(Shuff(S)) · · · ) .
(3.87)
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3.4 Proof of correctness
Lemma 2.

Fork(Fork(R) · S) ≡ Fork(R) · Fork(S) , for every EFRE R , S . (3.88)

Proof. From definition 16:

Fork(Fork(R) · S) ≡ Fork(R) · Fork(S)
⇐= L(Fork(Fork(R) · S), K) = L(Fork(R) · Fork(S), K) , ∀K ∈ Σ∗

Using associativity from Lemma 1 and definition 22 of trace languages:

L(Fork(Fork(R) · S), K) = L(Fork(R) · S, {ϵ}) ∥ K

. . . = L(Fork(R), L(S, {ϵ})) ∥ K

. . . = L(R) ∥ L(S) ∥ K

. . . = L(R) ∥ L(Fork(S), K)

. . . = L(Fork(R), L(Fork(S), K)

. . . = L(Fork(R) · Fork(S)), K)

(3.89)

Lemma 2 allows flattening of Forks. During creation of derivatives, this is
used at Fork rule as an example.

Lemma 3.
L(Fork(R)) = L(R) , for every EFRE R . (3.90)

Proof. Using associativity from Lemma 1 and definition 22 of trace
languages:

L(Fork(R)) = L(Fork(R), {ϵ})
. . . = L(R) ∥ {ϵ}
. . . = L(R) .

(3.91)

Lemma 3 allows to completely disregard any sequential context, because
the whole expression can be put into Fork before the creation of derivative.

Lemma 4. [4]

Fork(R) · Fork(S) ≡ Fork(S) · Fork(R) , for every EFRE R , S . (3.92)
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Proof. From definition 16:

Fork(Fork(R) · S) ≡ Fork(R) · Fork(S)
⇐= L(Fork(Fork(R) · S), K) = L(Fork(R) · Fork(S), K) , ∀K ∈ Σ∗

Using associativity and commutativity from Lemma 1 and definition 15 of
trace languages:

L(Fork(R) · Fork(S), K) = L(Fork(R), L(Fork(S), K))
. . . = L(R) ∥ L(Fork(S), K))
. . . = L(R) ∥ L(S) ∥ K

. . . = L(S) ∥ L(R) ∥ K

. . . = L(S) ∥ L(Fork(R), K)

. . . = L(Fork(S), L(Fork(R), K))

. . . = L(Fork(S) · Fork(R), K) .

(3.93)

Lemma 4 is used whenever a Fork is created. It is put at the back, but
thanks to this lemma it makes no difference, because everything is in some
kind of Fork.

Conjecture 1 (Left quotient). Let R be an Extended Forkable Regular Ex-
pression and x be a symbol, then

L(dx(R)) = x \ L(R) . (3.94)

Conjecture 2 (Correctness). Theorems 2 and 3 still hold for Extended Fork-
able Regular Expression.

Testing shows, that conjectures 1 and 2 are true, albeit a solid proof is still
needed.

25





Chapter 4
Implementation

This chapter documents important steps taken during the implementation of
the theory, that was established in this thesis.

This implementation is mostly a proof of concept. Priority is given to
comprehensibility, modularity and simplicity. Although not applicable all the
time, object-oriented design was preferred.

Symbol alphabet consists of java Characters. This was chosen to keep the
implementation as simple and comprehensible as possible. Symbol alphabet
can contain any object as long as they implement total ordering, which is
needed for normalization. However, when talking about regular expressions,
mostly letters are expected to form an alphabet, strings and languages. It
also makes the use of built-in classes Pattern and Matcher at least partially
possible, but more about that will be disclosed in section 4.4.

In the following sections, each component of the whole implementation is
described in greater detail.

4.1 Implementation of expression

FREs are implemented into Abstract Syntax Tree (AST). This structure shows
very clearly how all the recursive functions work. Also the implementation of
normal form from figure 3.4 is very transparent in order to show the meaning
behind it.

FRE takes the form of a node in abstract syntactic tree. This node
takes the form of the abstract class FRExpression. FRExpression extends
the abstract class RegularExpression, which consists of derivateBy and
normalize methods and isEmpty and isNullable tests. FRExpression then
adds concurrent part C and sequential part S. On top of that, it has meth-
ods stdDerivateBy, that corresponds to the native derivative of FRE, and
extDerivateBy, that was devised in this thesis as a part of EFRE.
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FRExpression also implements an interface Comparable<FRExpression>,
because one of the conditions of normal form is the total ordering of expres-
sions. It has these abstract subclasses:

• FRConstant,

• FRUnaryOperator,

• FRBinaryOperator.

A special class named FRConstant was created to represent leaves of the
AST. It is always in normal form. Subclasses of FRConstant are:

• FREmpty, representing ∅,

• FRNull, representing ϵ,

• FRLiteral, representing symbol x ∈ Σ.

Class FRUnaryOperator represents a function or unary operator. It con-
tains methods to work with a single operand. In the AST it has exactly one
child. It represents superclass for:

• FRStar as Kleene star operator,

• FRFork as Fork operator,

• FRAtomic as Atomic operator,

• FRSync as Sync operator.

Class FRBinaryOperator represents a binary operator, defines methods
to work with left and right operands and as expected has two children in
the AST, which are its operands. It has subclasses:

• FRConcatenation,

• FRAlternation.

Method normalize is based on normal form on figure 3.4.
There is no class for the representation of the operator Async because it

can be substituted by a clever use of Fork, Atomic and Sync.
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4.2 Basic automaton implementation
Interface FiniteStateMachine, representing a deterministic finite automata,
exactly copies definition 2 of finite automata restricted by definition 5.

There are multiple variants to implement this interface. Simple notation
variants given by [1] are:

• a transition diagram, that is a graph,

• a transition table, consisting of states denoting rows and symbols of the
alphabet denoting columns, in a cell in a row q and a column x there is
a state q′, such that δ(q, x) = q′.

The table can be implemented as integer matrix |Q| × |Σ| with direct
mapping of integers on states and on symbols. Final states can be recognized
by an array of boolean flags and the starting state can be mapped onto 0. It is
apparent, that non-deterministic behavior cannot happen. Required memory
space is then

O(|Q| ∗ |Σ|) ,

assuming |Σ| ≪ |Q| , it is O(|Q|) .
(4.1)

Required time for finding a transition is the same finding in random access to
a matrix and that is in constant time:

O(1) . (4.2)

Class BasicFiniteAutomata implements the graph variant. It holds a set
of nodes states, equivalent with a set of states Q, a set of input symbols
alphabet, a set of edges edges, that use a pair of (q, x), q ∈ states, x ∈ alphabet
as a key. This fulfills the condition of being a deterministic finite automa-
ton. It also remebers the starting state startState and the set of final states
endStates. Required memory space is

O(|Q|+ |Σ|+ |Q| ∗ |Σ|) = O(|Q| ∗ |Σ|) ,

assuming |Σ| ≪ |Q| , it is O(|Q|) .
(4.3)

Required time for finding a transition is the same as finding an element in
a set and that is

O(log(|Q|)) . (4.4)

The graph was chosen, despite worse performance, for its clarity. Compre-
hensibility – as stated at the beginning of this chapter – has bigger significance
than running speed.

Class BasicFiniteAutomata is just a skeleton and it needs class
FSMResolver to simulate its run. FSMResolver was designed so that it can
simulate any automaton-class implementing FiniteStateMachine interface.
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4. Implementation

It knows a current state, makes transitions using method makeStep and can
answer a simple query, whether the automaton is in an accepting configuration
or not. It is very lightweight and the automaton-class can be shared among
many FSMResolvers.

4.3 Method of transformation
Class BasicFiniteAutomatonBuilder is responsible for the transformation of
FRE into finite automaton. From defined input alphabet and expression to
transform it creates BasicFiniteAutomaton using the method of Brzozowski
derivatives adapted from [3]. The algorithm goes as described on figure 4.1:

4.4 Pattern and Matcher
FREs extend regular expressions.

Special variation of regular expressions is already implemented in java. In
java, class Pattern is used to represent an expression. Class Matcher is then
created to match a specified input against this Pattern. Those classes are
marked as final, which means that a subclass for FRE cannot be created. [17,
18]

However, those classes can be used as an inspiration for FRPattern and
FRMatcher. FRPattern implements the most fundamental methods of Pattern,
but with the use of FRE. It can compile strings of lowercase letters and sym-
bol operators. Special labels, such as fork, sync, atomic, async and null for
ϵ and empty for ∅, have to be preceded by quote character (by default /).
FRMatcher gives more control over matching such as specifying parts of input
string to be matched and resetting matching progress.

4.5 Parser
A fundamental ability of Pattern is compiling regular expressions from strings.
For FRPattern to have similar functionality, it has to be able to parse FREs.
Fortunately, FREs have very basic syntax.

There are two basic outlooks on parsing: top-down and bottom-up. As-
suming the parsing is done into AST, top-down starts with the root and builds
its way down. It struggles with left recursion, because it does not know, where
the root will be. On the other hand, bottom-up starts from small pieces and
joins them together, building the tree from the bottom with root being the
last node built. It can deal with left and right recursion, but it has a problem
with identifying a wrong input. [19]

For the purpose of parsing FREs the shunting-yard algorithm was used.
It is a specialized algorithm for parsing expressions (not necessarily regular
expressions) based on the bottom-up principle. It uses two stacks, one for
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4.5. Parser

Method: AddUnique

Input: FRE R

1. if R is not in derivatives:

2. add R to states,

3. add R to derivatives,

4. push R to queue,

5. if R isNullable:

6. add R to endStates.

Algorithm: Brzozowski derivatives

Input: alphabet Σ, FRE R

Output: BasicFiniteAutomaton

1. startState is R,

2. AddUnique(R),

3. while there are FREs in queue:

4. S = queue pop,

5. for each symbol x ∈ Σ:

6. create a derivative D of S with respect to x,

7. AddUnique(D),

8. add (S, x, D) to edges,

9. output BasicFiniteAutomaton(states, edges, Σ, startState,
endStates).

Figure 4.1: Transformation algorithm [3]

operands and one for operators. Read operands are put onto the operands
stack and operators on the operator stack, unless there are operators with
higher precedence. If there are, they are combined with operands from the-
operands stack and then pushed onto the operands stack. [20]
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4. Implementation

FRExpressionBuilder is using a slightly modified version of Shunting-
yard algorithm with the capability to distinguish between left associative and
right associative unary operators. This capability was essential, because FREs
have Kleene star ∗ that is right associative and Fork that can be treated as
left associative operator.

4.6 Testing
The functionality of project is tested using a couple of classes:

• FRETest tests FRExpression and its subclasses, it checks normalization
rules, derivation rules and parsing FRE from strings.

• BFATest tests creation of BasicFiniteAutomaton, namely its states and
edges, and correct simulation of FMSResolver.

• FRPatternMatcherTest confirms correct behavior of all the modules
through a series of specially designed FREs.

• AnalysisTest shows how FREs can be used to find race conditions and
some special examples of deadlocks.

4.6.1 Analysis example
First example is of a simple race condition on figure 4.2. The program can be
translated into Forkable Regular Expression

Fork((a · b · c)∗) · Fork((a · b · c)∗) .

Reading is a, incrementation is b and writing is c. A Read after Write hazard
can happen if another a gets between a and c.
/ fork ( ( abc )∗)/ fork ( ( abc )∗) <− abacbc : match

And the hazard was correctly recognized.
If locks are added to the program in order to remove this hazard, the

expression changes to

Fork(Atomic(a · b · c)∗) · Fork(Atomic(a · b · c)∗) .

The result changes to:
/ fork (/ atomic ( abc )∗)/ fork (/ atomic ( abc )∗) <− abacbc : not match

The hazard was successfully removed.
In case of deadlock in figure 4.3, it is needed to construct and expression

describing the opposite of deadlock. Such expression is

Fork(Atomic(ab))Fork(Atomic(cd)) .
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4.6. Testing

public class TestRaceCondition implements Runnable {

static int Counter ;

public void run ( ) {
for ( int i = 0 ; i < 10000; ++i ) {

int tmp = Counter ;
tmp += 1;
Counter = tmp ;

}
System . out . p r in t ln ( Counter ) ;

}

public static void main( Str ing args [ ] ) {
Counter = 0 ;
(new Thread (new TestRaceCondition ( ) ) ) . s t a r t ( ) ;
(new Thread (new TestRaceCondition ( ) ) ) . s t a r t ( ) ;

}
}

Figure 4.2: Example of race condition

Then the event output from the program is used to match against this expres-
sion. The matching goes step by step and announces when it stops matching.
That shows a deadlock happened.

Considering example output of ac, it stops matching at c and announces
deadlock. With output of cdab, it matches, which means no deadlock hap-
pened.

It might be more apparent if the event is created inside the waiting loop.
Output of such program would be infinite, but the deadlock would be recog-
nized in just a few symbols.

The deadlock in figure 4.3 is called livelock, because it does not yield and
wait for access. It makes very little difference to the example.

33



4. Implementation

public class TestDeadLock implements Runnable {

static AtomicBoolean A;
static AtomicBoolean B;

boolean inverted ;

void getAB ()
{

while ( !A. compareAndSet ( false , true ) ) {}
System . out . p r in t ln ( ”a” ) ;
while ( !B. compareAndSet ( false , true ) ) {}
System . out . p r in t ln ( ”b” ) ;
B. s e t ( fa lse ) ;
A. s e t ( fa lse ) ;

}

void getBA ()
{

while ( !B. compareAndSet ( false , true ) ) {}
System . out . p r in t ln ( ”c” ) ;
while ( !A. compareAndSet ( false , true ) ) {}
System . out . p r in t ln ( ”d” ) ;
A. s e t ( fa lse ) ;
B. s e t ( fa lse ) ;

}

@Override
public void run ( ) {

i f ( inverted )
getBA ( ) ;

else
getAB ( ) ;

}

TestDeadLock (boolean b) {
inverted = b ;

}
public static void main( Str ing args [ ] ) {

A. s e t ( fa lse ) ;
B. s e t ( fa lse ) ;
(new Thread (new TestDeadLock ( fa lse ) ) ) . s t a r t ( ) ;
(new Thread (new TestDeadLock ( true ) ) ) . s t a r t ( ) ;

}
}

Figure 4.3: Example of deadlock
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Outlook

Proving conjectures 1 and 2 is very important for the future progress. It can
shed insight on the structure of synchronization events as introduced in this
thesis.

Implementation provided by this thesis is not very scalable in terms of
expression length. Nevertheless, it is substantially modular so adding new
operators is easy. Assuming that FREs will be used in practice, another more
optimized transformation method will be needed, because the method using
Brzozowski derivatives is known to be slow.

It is also worth considering to create a separate operator DeAtomize as
an inversion to Atomic instead of using Sync for this purpose.

Adding Boolean functions to FRE could yield interesting results. Espe-
cially AND function, because it makes matching of expression against expres-
sion possible. One FRE could describe a program and the other could describe
a hazard. Then just checking the accessibility of final states of the resulting
automaton would reveal the existence of the hazard in the program.
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Conclusion

The first goal was to add other operators to bring FRE closer to parallel
programs. In chapter 3 operators Atomic, Sync and Async were selected and
designed for this task.

The definition of the operator Atomic was the trickiest one. Upon closer
inspection the meaning of Atomic forks into two possible semantically different
operators: local atomic and global atomic. The local version of Atomic was
chosen, because it can be used to model multiple layers of concurrency. This
was intriguing as it corresponds with distributed computing.

The operator Sync was defined to represent a sequential string of literals,
that is matched by the contained expression. This means that it does not
exhibit any concurrent behavior itself even if its content does. Moreover it is
the perfect operator for defining the scope of the local atomic.

The operator Async could be constructed using already defined operators
(in this case atomic, sync and fork). This construction was preferred over
a stand-alone definition, because of its simplicity and comprehensibility. The
construction also revealed another upside of using local atomic. When local
atomic was used as part of async it made interleaving of fork with asyn-
chronous tasks possible.

Another goal was to implement a method to transform FRE with these
added operators into a finite state machine using Brzozovsky derivatives.

For this task the class FRExpressionBuilder was created. An instance
of FRExpressionBuilder parses FRE from string format and outputs an Ab-
stract Syntax Tree of FRExpressions that is then processed into a finite state-
machine BasicFiniteAutomaton by a BasicFiniteAutomatonBuilder. Any
automaton-representing class that implements the FiniteStateMachine in-
terface can be simulated using a FSMResolver and that is the last step of
the process. Classes FRPattern and FRMatcher encapsulate this process and
make it simple to use.

Testing showed that the rules for the new operators were developed cor-
rectly. Moreover the increased expressiveness did affect overall complexity less
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Conclusion

than by an anticipated margin. Speed was an issue, but that was expected
due to the combinatorial explosion of states.
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Appendix A
Glossary

call graph Is a control flow graph displaying calls between procedures..

combinatorial explosion Is a quick increase in complexity because of com-
binatorics..

concurrency state Represents a status of tasks in a flow graph and a set of
its successors is defined..

concurrency history Is a sequence of concurrency states..

control flow graph A flow graph describing possible paths of execution..

halting problem Is a decision problem of whether a program stops or runs
forever..

inter-thread Is a concurrent context..

intra-thread Is a sequential context..

lock Is a synchronization construct used to restrict race conditions..

NP-complete Is a set of problems belonging to NP and NP-hard at the same
time..

NP-hard Is a set of problems that it can be reduced to every NP problem
in polynomial time..

PSPACE Is a set of decision problems solved by Turing machine using poly-
nomial amount of space. NP ⊆ PSPACE..

scope information Characterizes where declarations still apply..
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Glossary

symbolic execution Is a method, that evaluates a program based on ab-
stract inputs..

task Is a sequence of actions, creating a sequence of events..
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Appendix B
Acronyms

AST Abstract Syntax Tree.

CRE Concurrent Regular Expression.

EFRE Extended Forkable Regular Expression.

FRE Forkable Regular Expression.
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Appendix C
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src.........................................the directory of source codes
text............................................ the thesis text directory

thesis...............the directory of LATEX source codes of the thesis
thesis.pdf............................the thesis text in PDF format
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