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Abstract
Novel approach for detecting changes in
neighbourhood of moving autonomous ve-
hicles is presented in this thesis. The work
is based on a 3D map constructed from
3D measurements provided by set of Li-
DARs mounted on a vehicle. The changes
are detected by comparing the map with
current 3D data.

To obtain suitable representation of
3D scene, we propose Normal Distribution
Transform Belief Map (NDT-BM) which
combines known Normal Distribution
Transform Occupancy Map (NDT-OM)
and Transferable Belief Model (TBM).
From NDT-OM we use the grid structure
and the ability to preserve information
about mass distribution within each cell.
TBM is used for better modeling dynamic
behavior of urban environment. To detect
changes, we propose segmentation process
based on computation of distance between
elements of NDT-BM and new 3D mea-
surements. To handle a noise in LiDAR’s
measurements, we established heuristics
based on clustering.

In real-world experiments we demon-
strated the ability of NDT-BM to cor-
rectly map static objects and cope with
the dynamic ones. We have shown that
we are able to detect static and dynamic
changes of various speed and size too.

Keywords: 3D data aggregation,
change detection, 3D map, LiDAR,
autonomous car

Abstrakt
V této práci je prezentován nový přístup
k detekci změn v okolí jedoucích auto-
nomních vozidel. Práce jsou založeny na
3D mapě vytvořené z 3D měření poskyto-
vaných sadou LiDAR sensorů namontova-
ných na vozidle. Změny jsou detekovány
porovnáním mapy s aktuálními 3D daty.

Pro získání vhodné reprezentace 3D
scény, navrhujeme tzv. Normal Distribu-
tion Transform Belief Mapu (NDT-BM),
která kombinuje již existující tzv. Normal
Distribution Transform Occupancy Mapu
(NDT-OM) a tzv. Transferable Belief Mo-
del (TBM). Z NDT-OM používáme struk-
turu mřížky a schopnost uchovat infor-
mace o masové distribuci v každé buňce.
TBM je použit pro lepší modelování dy-
namického chování městského prostředí.
Pro detekci změn navrhujeme segmen-
tační proces založený na výpočtu vzdále-
nosti mezi prvky NDT-BM a novými 3D
měřeními. K řešení problémů se šumem
jsme použili heuristický přístup založený
na shlukování.

V reálných experimentech jsme pro-
kázali schopnost NDT-BM správně mapo-
vat statické objekty a vypořádat se s těmi
dynamickými. Ukázali jsme, že dokážeme
detekovat statické i dynamické změny, a
to o různých rychlostí a velikostí.

Klíčová slova: agregace 3D dat,
detekce změn, 3D mapa, LiDAR,
autonomní automobil
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Chapter 1
Introduction

Our aim of this thesis is to propose method which will help autonomous
vehicles to detect changes in its neighborhood during ride in urban envi-
ronment. One motivation for this work is to improve safety of autonomous
driving. According to WHO’s statistic, in 2013 there were 1.25 million road
deaths around the world and they predict that road traffic injuries become
the seventh leading cause of death by 2030. Second motivation aims to in-
crease comfort for passengers. Consider the scenario of autonomously finding
parking spot in a busy city, while user need not be inside the vehicle.

All of mentioned reasons have one common attribute which autonomous
cars need to have. They should have knowledge about urban environment
in advance, to be able to plan paths, to accurately predict behavior of other
subjects on the road etc. Since the urban environment is dynamic and from
day-to-day new wall by the road can be built, smart car needs to be able to
detect these changes as well.

Hence, we focus in this work on what are the options to represent 3D
scene, how can be improved and how to use it to detect changes.

Following this introduction, in chapter 2 related works in the field of
3D mapping are studied and compared. In the next following two chapters,
chapter 3 and chapter 4, we presents our approach of 3D mapping and change
detection. In chapter 5 set of experiments is described and analyzed. At the
end, in chapter 6, the thesis is summarized.
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Chapter 2
Related work

The one of the widely used representation of 2D and 3D space across various
robotics tasks, are Occupancy grid maps [Elf89]. An Occupancy map repre-
sents the environment as a set of cells, created by uniform space partitioning.
The binary label is assigned to the each of those cells, to distinguish if it
contains objects (cell is occupied) or not (cell is free). Classification process
is based on thresholding of occupancy – probability of being occupied. Occu-
pancy for each cell is, independently to each other, updated with every new
observation about its current state. As observations, the measurements from
sonar or LiDAR sensor are usually used. Then the updating step for specific
cell is done by increasing (reflected point lies within the cell’s boundaries)
or decreasing (cell lies between sensor and reflected point) it’s occupancy by
some constant factor.

There are two assumptions in the occupancy grid map model, which can
cause inaccurate results. Firstly, it is assumed that the space is uniform within
each cell. Secondly, it is assumed that the environment consists of static
objects, so it is not explicitly trying to model the dynamics [SASL13]. The
first assumption cause problems when the size of the grid cell is bigger than a
object, so the object occupied only the part of the cell’s space and LiDAR’s
rays or sonar’s waves can go through this cells, if they are in appropriate
position. This induce contradictory observations, which can leads to wrong
classification (e.g., cell with mass is labeled as free). The shortcoming of the
second assumption emerge when the map is used in dynamic environment
(e.g., urban environment). Depending on the mutual position of a moving
object and a sensor, moving object can leave a trace, set of cell incorrectly
labeled as occupied, in the map.

A simple way how to compensate drawback of the first assumption, is to
set size of a cell to be lower then the size of the smallest objects which can

3



2. Related work.....................................
occur in the mapped environment. But intuitively, with decreasing cell’s size,
the memory consumption of the whole map is growing.

Authors in [SASL13] overcome both problems by using Normal Distri-
bution Transform (NDT) representation [BS03] to model, how points are
generated from a surface within a cell. In proposed 3D representation for
mapping called Normal Distribution Transform Occupancy Map (NDT-OM)
they enhance each cell of occupancy grid with the NDT element, to be able to
track the distribution of a mass within the cell. In the update step they adjust
the value of the increment according to position of the cell’s distribution and
processed observation.

In the article [PNDW98], authors discuss another inaccuracy in occu-
pancy grid maps. In occupancy grid map by [Elf89], value of occupancy after
initialization is 0.5. Thus, after cell’s initialization we can say there is 50%
chance that it is occupied, even we have not received any information yet.
In addition, they mention if the occupancy of cell is close to 0.5, no one can
determine if it is because contradictory observations were obtained for that
cell (related to mentioned problems above), or that not enough information
has been received. To cope with this problem, they use so-called Evidential
approach. They represent the environment as a grid with uniformly splitted
cells, but instead of Bayesian probabilistic method for fusion of sensor’s infor-
mation, they use the Dempster-Shafer theory of evidence (DST) [Sha76]. The
advance of DST is, that it allows to explicitly model these two situations, by
proper definition of a frame of discernment. In the articles [TTWB14, TW17],
authors go further and using DST they create the environment model capable
to represent free space, static occupancy and dynamic occupancy, which they
use for tracking and mapping in dynamic urban environment.

There are many others way how to represent 3D scene. For example,
modeling objects in scene from 3D point cloud can be done by polygonal
meshes [SYM10]. This approach leads to very precise representation, but at
the cost of high memory consumption. In [PGK02] they introduce methods
for simplification of input 3D point cloud which can be used to compress
amount of data points before the polygonal mesh is created. In [SLB18],
authors novel mapping technique is based on representing a map not in the
position domain (as the all previously mentioned approaches), but in the
discrete frequency domain and using inverse discrete cosine transform to
convert it to a continuously differentiable scalar field in the position domain.

In this work, we propose a new approach to create 3D representation of
dynamic environment, based on combination of NDT, NDT-OM and TBM
models.

4



Chapter 3
Aggregation of 3D data

Before we describe the details, we would like to introduce the main idea and
flow of the data aggregation process (see Figure 3.1), whose output is a 3D
map – representation of 3D scene.

We have a vehicle equipped with LiDAR sensor and navigation platform.
LiDAR provides 3D measurements (i.e., 3D points of reflected obstacles)
and navigation platform serves as source of vehicle’s and LiDAR’s current
position in global coordinate system. Then, we make a ride with this vehicle
and obtain 3D measurements of appropriate 3D scene. After that, acquired
raw 3D points are transformed from sensor’s coordinate system into global
coordinate system using navigation platform by process called registration.
These transformed 3D points, denoted as point cloud, are sent to the server.
When the server obtains sufficient amount of point clouds of particular 3D
scene or if it already has a 3D map for this scene (from previous run of data
aggregation process), the 3D map is created or updated, respectively, by
proposed 3D data aggregation algorithm (ALG-AGG). Then this map will be
used to determine what has changed in vehicle’s surrounding (see chapter 4).

In this work, the 3D map is a 3D grid dividing 3D scene into equally
large cells. Every such cell (called voxel) can keep any information about
the space (as voxel’s property) what it limits with its borders. The basic
property in our 3D map is label if the voxel is free (voxel does not contain any
amount of static mass), occupied (voxel contains some amount of static mass)
or dynamic occupied (free voxel which is occasionally temporarily occupied).

5



3. Aggregation of 3D data ................................

3D map

Point cloud

LiDAR’s
positions
(registred)

RegistrationLiDAR’s
positions

Vehicle’s position

ALG-AGG

LiDAR’s 3D
measurements
from whole ride

Figure 3.1: Overall workflow of 3D data aggregation process. At first, all
LiDAR’s 3D measurements and positions from whole ride are registered into
global coordinate system. Then algorithm ALG-AGG is used and 3D map is
created or updated. Red and blue frame denote the part of the process running
on the side of the vehicle and server, respectively.

3.1 Evidential grid mapping

Common approach to determine which voxels are free or occupied is to
use occupancy grid [Elf89, SASL13], where for each voxel the occupancy is
calculated and then the labeling is done by thresholding.

In our work we use extension to this approach. Inspired by [MCB11,
TTWB14, TW17], we decided to use The Transferable Belief Model (TBM)
[Sme94]. This framework should help us to overcome inaccuracies caused by
dynamic objects when occupancy grid mapping is used.

By system S in this task we consider set of voxels, the frame of discern-
ment is

Ω = {F, O, D} , (3.1)

representing hypotheses that space is free, occupied or dynamic occupied.
The power set of Ω is

2Ω = {∅, F, O, D, {O, D}, {F, O}, {F, D}, Ω = U} , (3.2)

where U represents unknown state and ∅ represents conflict which indicate
that for the appropriate voxel we observed two or more contradictory evidences
(e.g., for voxel which we consider as a free, we observe evidence indicating it
is occupied).

In this work, set of all basic belief masses for all propositions from 2Ω

will be denoted as B and their sum will always be 1,

∑
A∈2Ω

m(A) = 1. (3.3)
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................................ 3.1. Evidential grid mapping

3.1.1 Combination of evidence

To determine the correct state of our system S, we do some independent
measurements by various sensors. Every such information is in TBM called
as evidence and it can be represented by B.

We assume that LiDAR sensor’s with known position during measurement
are used as the source of information about S. Than we can count with two
types of evidences assignable to any voxel v:. hit evidence Bhit corresponding to the position of the reflected point

which is inside v,.miss evidence Bmiss corresponding to the part of the laser ray which
goes completely through v.

We will use term evidence integration to denote combination of evi-
dence’s basic belief masses with voxel’s basic belief masses using conjunctive
combination rule [Sme07],

m12(A) =
∑

X∩Y=A
m1(X)m2(Y ), ∀A ⊆ Ω. (3.4)

3.1.2 Belief mass derivation

We added two counters, α and β, as another voxel’s properties, to be able
to track number of Bhit and Bmiss evidences integrated into voxel and to
compute ratio ρ = α

α+β . Value range of ρ ∈ 〈0, 1〉 can be split into 3 parts
which have different effect on evidence integration:. 〈0, ρL) – more Bmiss than Bhit have been integrated into voxel,. 〈ρL, ρU 〉 – the count of integarted evidences is roughly similar for both

ev. types,. (ρU , 1〉 – more Bhit than Bmiss have been integrated into voxel,

where ρL, ρU ∈ R, 0 < ρL < ρU < 1.
If Bmiss should be integrated into voxel with ρ ∈ 〈0, ρL), we can assume

the credibility and belief that voxel is free to be growing as the value of ρ is
getting closer to 0. Hence, with decreasing ρ, we increase value of m(O)hit.
Similarly, if Bhit should be integrated into voxel with (ρU , 1〉, we can assume
the credibility and belief that voxel is occupied to be growing as the value of ρ
is getting closer to 1. Hence, with increasing ρ, we increase value of m(F )hit.

If ρ ∈ 〈ρL, ρU 〉, it indicates that the part of the environment voxel it
represents is dynamic. Therefore, we increase m(D), m(O,D) for integrated
evidence with increasing ρ until ρ = ρL+ρU

2 , then we start decrease their
values.

If ρ ∈ (ρU , 1〉 or 〈0, ρL) and contrary evidence Bmiss or Bhit, respectively,
should be integrated into voxel, it either pointing on change in the environment
(e.g., new building has been built), which has not been registered yet. Or this
new evidence is outlier (due to some noise in LiDAR measurements). Thus,

7



3. Aggregation of 3D data ................................
A ∈ 2Ω m(A)hit m(A)miss

∅ 0 0
F 0 g(ρ, λF , µF = 0, σF )
O g (ρ, λO, µO = 1, σO) 0
D g(ρ, λhit

D , µD, σ
hit
D ) g(ρ, λmiss

D , µD, σ
miss
D )

{O,D} g(ρ, λhit
OD, µOD, σ

hit
OD) g(ρ, λmiss

OD , µOD, σ
miss
OD )

{F,O} 0 0
{F,D} 0 0
U 1−

∑
A∈2Ω\U m(A)hit 1−

∑
A∈2Ω\U m(A)miss

Table 3.1: List of basic belief masses of Bhit (second column) and Bmiss (third
column)

as ρ is approaching to 1 or 0, we increase m(U)miss or m(U)hit, respectively
(i.e., we decrease credibility of evidence).

To model this proposed behavior, we use Gaussian function for each of
basic belief mass,

g(ρ, λ, µ, σ) = λ · exp
(
−1

2
ρ− µ
σ

)
, (3.5)

where ρ is its input variable and other three inputs are parameters defining a
shape of Gaussian curve (λ – peak’s height, µ – position of the peak’s center,
σ – curve’s width).

Based on text above, values of basic belief masses of Bhit and Bmiss are
listed in Table 3.1. An example how values of Bhit and Bmiss changed with
respect to ρ can be seen in Figure 3.2. In Figure 3.3 we show the evolution
of voxel’s basic belief masses when different evidences are integrated in it.

8
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...................... 3.2. Normal Distribution Transform (NDT) model

3.1.3 Handling of conflict

Urban environment is a dynamic one and for that reason, a lot of conflict
situations can arises during the aggregation process. As was mentioned in
[Sme07], the way how the conflict can be handled strongly depend on the
context of the task. Therefore there is no general approach how to do it and
we should design own solution based on his experience and knowledge about
appropriate system S.

When a conflict arise for voxel vi, we check if current state si is D and if
expression BL ≤ ρ ≤ BU is true. If so, the value of m(∅) is equally divided
betweenm(D) andm({O,D}). Otherwise we normalize all basic belief masses
m in Bi,

∀A ⊆ Ω, m(A) =


m(A)

1−m(∅) if A 6= ∅
0 if A = ∅

. (3.6)

3.2 Normal Distribution Transform (NDT) model

Regular partition of the space can create voxels which contains non-uniformly
distributed mass. LiDAR’s rays can goes through these voxels, reporting
incorrectly that they are free. To compensate this drawback, we keep the
information about distribution of points in each voxel (in property N ) and
it is represented by normal distribution N (µ,C) [Mag09, SASL13], which
parameters are sample mean µ and sample covariance matrix C and they can
be estimated from measured 3D points,

µi = 1
n

n∑
k=1

zk, (3.7)

Ci = 1
n− 1

n∑
k=1

(zk − µ)(zk − µ)T , (3.8)

where zk is k-th point in the i-th voxel and n is total amount of the points in
that voxel.

3.2.1 Computation of NDT parameters

If we worked in aggregation process directly with µ and C and we would
like to update some 3D map, we would have to keep in memory all inserted
points which would have negative impact on speed and memory performance.
Therefore, we will use the Recursive Sample Covariance (RSC) method
proposed in [SASL13].

If in the text a sample mean µ and a sample covariance matrix C is
mentioned, then it means that it was derived from T and S, respectively.

11



3. Aggregation of 3D data ................................
3.2.2 Computation of inverse covariance matrix

In most cases, to compute inverse matrix C−1 for covariance matrix C,
standard methods can be used. But there are two main problems which we
need to handle. Firstly, in the case that points are coplanar or colinear, C is
singular and then it is not possible to obtain C−1. Secondly, due to problem
with rounding when floating points are used in calculation on computers,
it can be impossible to C−1 even for nearly singular matrix. To overcome
these issues, we have common solution for both problems and it is based on
eigenvalues decomposition mentioned in [Mag09]:..1. Test the ratio between the largest eigenvalue λ3 of C and the other

eigenvalues λ1 and λ2...2. If λ1 is ω-times smaller than λ3, replace it with λ′1 = λ3
ω . Do the same

analogically for λ2...3. After that, compose a new covariance matrix

C ′ = V Λ′V −1, (3.9)

where V contains eigenvectors of C and

Λ′ =

λ′1 0 0
0 λ′2 0
0 0 λ′3

 . (3.10)..4. Then compute C−1 using C ′ applying any standard method.

3.2.3 Relative distance between ray and mass

One of the advantages of using NDT model is the possibility to compute a
relative distance between points located in particular voxel and ray (repre-
senting miss evidence) which goes through that voxel. This knowledge is used
to determine if the ray interferes with the voxel’s mass or not.

The first part of this procedure is to obtain point xML which lies on the
ray within the voxel and have maximal value of likelihood p(xML|N(µ,C)),
where N(µ,C) represents normal distribution of points in the voxel. This is
done by analytical solution in chapter 3.4.1 in [SASL13]. When we know the
position of xML we compute its likelihood [SASL13],

p(xML|N(µ,C)) ≈ exp(−0.5(xML − µ)TC−1(xML − µ)). (3.11)

For our work, we define function dR(r,N) which computes relative distance
between ray r and voxel’s NDT property N by two-step procedure described
above.

12
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0.40657

0.021165

0.83221
1

Figure 3.4: An illustration of relative distance between ray and mass. Rays are
plotted in blue color and points with maximal value of likelihood p(xML|N(µ,C))
are shown as red circle. 2-D Gaussian, representing the voxel’s mass, is plotted
as set of ellipses with standard deviation 1 and 2.

3.3 Implementation details

For handling the division of the space into voxels we use octree data structure
(based on the OctoMap library [HWB+13]), which every leaf node corresponds
to one voxel. Besides the original properties from the OctoMap framework,
we also store in each node of the octree additional properties which are listed
in Table 3.2. Because basic belief masses for {F,O} and {F,D} are for both
evidences zero (see subsection 3.1.2) and are zero after initialization (see
subsection 3.3.1), too, their value will always be zero (see Equation 3.4).
Therefor, we can omit them to decrease memory consumption.

We named this data structure as Normal Distribution Transform Belief
Map (NDT-BM), which reflects 2 main ideas behind it – Normal Distribution
Transform model and Transferable belief model.

One parameter of NDT-BM should be mentioned, namely octree’s reso-
lution δ (i.e., length of voxel’s edge). The result and performance of 3D data
aggregation is strongly dependent on the value of δ – with decreasing value
of δ, the quality of result map will increase, but also the run-time and the
memory consumption.

For simplification, to refer node’s properties, we will use directly the
symbol of the property with the node’s index (e.g., for node ni we will use
bbmsi, Xi, ...).

13



3. Aggregation of 3D data ................................
Property Initial value Description

B

m(∅) 0 bbm of null set
m(F ) 0 bbm of free proposition
m(O) 0 bbm of occupied proposition
m(D) 0 bbm of dyn. occupied proposition

m({O,D}) 0 bbm of {O,D} proposition
m(U) 1 bbm of unknown proposition

P

p(F ) 1
3 pignistic probability of F

p(O) 1
3 pignistic probability of O

p(D) 1
3 pignistic probability of D

N

n 0 counter of processed points
X ∅ set for storing unprocessed points

T null vector for continuous
update of sample mean µ

S null matrix for continuous
update of sample covariance matrix C

s U current node’s state
α 0 counter of hit evidences
β 0 counter of miss evidences

Table 3.2: List of additional properties of NDT-BM’s node

3.3.1 Node initialization

Every time, when new NDT-BM’s node is created, properties are initialized
as it stated in Table 3.2. These values are based on fact, that in the time of
initialization we have no evidences about voxel’s state, so its state is unknown
for us.

3.3.2 Workflow

The core part of this process is the proposed aggregation algorithm (ALG-
AGG) (see Algorithm 1) which is basically composed of three stages – hit
evidences integration, computation of NDT model and miss evidences integra-
tion. The 2D visual example of aggregation process is shown in Figure 3.5.

14
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Figure 3.5: An illustration of 3 stages of aggregation process. (Left) At first, hit
evidences – red dots – are integrated into voxels they belong to. (Middle) Then
NDT models – green ellipses – are computed (two upper voxels) or recomputed
(lower voxel) for each voxel which contains new hit evidences. (Right) At the
end, miss evidences – blue squares – are integrated.

Start

m(∅) == 0

s == U

m(F ) >
m(O)

Set s = FSet s = O

Handling
of conflict

p(O) > p(F )
AND

p(O) > p(D)

Set s = O

p(F ) > p(O)
AND

p(F ) > p(D)

Set s = F Set s = D

End
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no
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yes

no

yes

no

yes
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Figure 3.6: Flowchart of node’s state updating process.
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Algorithm 1 ALG-AGG
Input: point cloud P, NDT-BM octree O, source 3D positions S, parame-

ter τR
Output: octree O

1: if O is null then
2: initialize O as new NDT-BM octree;
3: end if
4: for all xi ∈ P do . Hit evidences integration
5: Find node nj ∈ O within which xi lies;
6: Bj ← conjunction of Bj with Bhit;
7: Pj ← compute pignistic probabilities from Bj ;
8: αj ← αj + 1;
9: Update state of nj using process from Figure 3.6;

10: Xj ← Xj ∪ xi;
11: end for
12: for all ni ∈ O and ni is leaf node do . Computation of NDT
13: Compute parameters of Ni (see 3.2);
14: Xi ← ∅;
15: end for
16: for all xi ∈ P do . Miss evidences integration
17: Take xs 3D position of corresponding source from S;
18: Cast ray ri from xs to xi;
19: for all nj ∈ O and ri goes through nj do
20: Btmp ← conjunction of Bj with Bmiss;
21: if m(∅)tmp>0 then
22: Compute relative distance dR between ri and Nj (see 3.2.3);
23: if dR > τR then
24: continue;
25: end if
26: end if
27: Bj ← Btmp
28: Pj ← compute pignistic probabilities from Bj ;
29: βj ← βj + 1;
30: Update state of nj using process from Figure 3.6;
31: end for
32: end for
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Chapter 4
Change detection in vehicle neighborhood

The second part of our work is to develop method for on-line segmentation of
new 3D measurements into known scene and a new objects. As in previous
chapter, we would like to introduce overall flow of change detection process
(see Figure 4.1), before the details are described.

Again, vehicle is equipped with set of LiDARs and navigation platform.
A reduced version of the 3D map (described in chapter 3) for desired part of
the environment is available. During the ride, LiDAR continuously collects its
3D measurements until it made one rotation, then the collection of raw points
is transformed into global coordinate system. These registered 3D points,
denoted as packet, are processed by proposed change detection algorithm
(ALG-DET), which use knowledge about the environment from received 3D
map to segment points in input packet to those, which are close enough to
some known object in the map, and those which are too far from all objects
in the map. This process is repeated during the whole ride.

4.1 3D map reduction

To decrease memory usage and processing time, we separate subset of voxels
Mocc from input 3D map M (created by ALG-AGG), which are occupied,
and which contains enough hit evidences (i.e., α >= αmin). Then we create
an instance of kd-tree data structure K which nodes corresponds to the mean
value µi stored in Ni property of every voxel vi ∈ Mocc. Moreover, in each
node we save covariance matrix C as auxiliary information.
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3D map

Packet ALG-DET ChangesRegistration
LiDAR’s 3D
measurement
from 1 rotation

Vehicle’s position

3D map
reduction

Figure 4.1: Overall workflow of change detection process. At first, 3D measure-
ments from one LiDAR’s rotation are registered into global coordinate system
(packet). Then change from packet’s points is detected proposed change detection
algorithm (ALG-DET). This process is repeated during the whole ride. Red and
blue frame denote the part of the process running on the side of the vehicle and
server, respectively.

4.2 Points segmentation

Mahalanobis segmentation. Each input packet P we need to divide into
two subsets Pclose (points which are classified as close) and Pfar (points which
are classified as far), while P = Pclose ∪ Pfar, Pclose ∩ Pfar = ∅.

Basic idea how to do that is to find for each point ~pi ∈ P closest Gaussian
in kd-tree K and by thresholding decide if its close enough (~pi ∈ Pclose) or
not (~pi ∈ Pfar). To determine the distance between point ~pi and 3D gaussian
(normal) distribution represented by mean µ and covariance matrix C we
chose Mahalanobis function [Mah36],

dM (~pi, ~µ) =
√

(~pi − ~µ)TC−1(~pi − ~µ). (4.1)

To obtain inverse of covariance matrix we use process from subsection 3.2.2.

Euclidean segmentation. The calculation of dM and C−1 for each of the
point ~pi may have negative impact on the speed of the change detection. For
this reason, we decide to add filtering step which will precede to Mahalanobis
segmentation and which is based on following assumption. Kd-tree K is
constructed directly from voxels in map M , so we can assume that every
node in K represents distribution of mass in the same position and within the
same boundaries as gaussians in voxels. And because of that, if the Euclidean
distance

dE(~pi, ~µ) =
√

(~pi − ~µ)T (~pi − ~µ). (4.2)

between point ~pi and mean of the closest Gaussian distribution in K is greater
than parameter τupper

E >= δ, we can say that this point ~pi do not belong
to any static object in map M . Also, if dE between point ~pi and nearest
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.............................4.3. Change clustering and tracking

𝝉𝑬
𝐥𝐨𝐰𝐞𝐫

𝝉𝑬
𝐮𝐩𝐩𝐞𝐫

𝝉𝑴

Figure 4.2: An illustration of points segmentation process. On the top left
image, input packet with non-labeled points (marked as white dots) and 3D
map (as green ellipses) are shown. Euclidean segmentation is shown in top right
image, where points, distant more than τupper

E , are labeled as far (red dots) and
points, distant less than τ lower

E , are labeled as close (blue dots). Mahalanobis
segmentation is illustrated in the bottom right image, where points, distant
more than τM , are labeled as far, the rest as close (gray dots highlight already
classified points). In the bottom left image, result of segmentation is shown.
Each point is either classified as close - blue dots - or as far - red dots, is in
bottom left image. Note, the grid is shown only for presentation purpose.

Gaussian distribution in K is lower than parameter τ lower
E < δ, we can assume

this point ~pi is reflection from static object in map M .

4.3 Change clustering and tracking

After registration step, packet can contains separate points or even whole
stripes of incorrectly transformed raw measurements which can be falsely
segmented as change. To make our change detection method more robust,
we decided to do following.

Clustering. After the segmentation of packet described in section 4.2, we
take points in Pfar and cluster them using algorithm DBSCAN [EKSX96]
(which requires two parameters ε and pmin). As its output, we get label for
each point, to which cluster si ∈ S it belongs, or if the point is noise. For
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4. Change detection in vehicle neighborhood ........................
each cluster si ∈ S, we compute normal distribution parameters, mean µi and
covariance matrix Ci (see section 3.2), which will serves as cluster’s descriptor
Ni(µi, Ci).

Tracking. By clustering in previous paragraph, outliers are eliminated. To
detect and discard groups of points which occur in packets irregularly, we will
check if object represented by cluster si ∈ S is appeared in previous packets
or not. To be able to track recurrent clusters, we will keep in memory all
clusters Sprev obtained from the previously processed packet and. Then for
every si ∈ S we find the least distant cluster sprev

min ∈ Sprev. If their distance
is lower then the threshold τB, we consider that both clusters belong to the
same object and points in si can be reported as change. Otherwise, we cannot
be sure if si represents new object, which is observed by LiDAR for the first
time, or if these points are error.

The similarity between two clusters sA and sB represented by their
descriptors NA(µA, CA) and NB(µB, CB) is based on Bhattacharyya distance
[Bha46] between two multivariate normal distributions,

dB (sA, sB) = 1
8(µA − µB)TC−1(µA − µB)

+ 1
2 ln

( detC√
detCA detCB

)
,

(4.3)

where C = CA+CB
2 .

4.4 Implementation details

The classification process to detect changes in car’s surrounding described in
previous sections is illustrated in Figure 4.2 and is summarized into algorithm
ALG-DET (Algorithm 2).
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Algorithm 2 ALG-DET
Input: packet P , 3D mapM, clusters Sprev, parameters k, τB, τupper

E , τ lower
E ,

τM and αmin
Output: set of 3D points Pclose and Pfar

1: Create empty kd-tree K . 3D map preparation
2: for all mi ∈M do
3: if si = O and αi >= αmin then
4: Create element e with position µ and with auxiliary information C;
5: Insert e into K;
6: end if
7: end for
8: Initialize Pclose = ∅ and Pfar = ∅; . Points segmentation
9: for all ~pi ∈ P do

10: T ← find k-nearest nodes to ~pi from K;
11: dmin ← nearest node to ~pi from T ;
12: if dmin > τupper

E then
13: Pfar ← Pfar ∪ ~pi;
14: continue;
15: end if
16: if dmin < τ lower

E then
17: Pclose ← Pclose ∪ ~pi;
18: continue;
19: end if
20: for all tj ∈ T do
21: Compute Mahalanobis distance dM between ~pi and Nj ;
22: if dM < τM then
23: Pclose ← Pclose ∪ ~pi;
24: continue;
25: end if
26: end for
27: Pfar ← Pfar ∪ ~pi;
28: end for
29: S ← DBSCAN(Pfar); . Change clustering and tracking
30: for all si ∈ S do
31: d← min

∀sk∈Sprev
dB(si, sk);

32: if d < τB then
33: report si;
34: end if
35: end for
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Chapter 5
Experiments

In our work we proposed two different algorithms. The aim of the first one
(ALG-AGG) was to create 3D map of car’s surrounding using information
from LiDAR sensor (chapter 3). And the purpose of the second one (ALG-
DET) was to detect changes in the car’s environment (chapter 4) using the
3D map (output of the ALG-AGG).

To be able to evaluate correctness of proposed algorithms, two different
datasets were selected – raw data from the KITTI Vision Benchmark Suite
(KITTI) [GLSU13] and The University of Michigan North Campus Long-Term
Vision and LIDAR Dataset (NCLT) [CBUE15].

5.1 Description of used datasets

Both used datasets have several features in common. Their data were obtained
by moving vehicle in real-world urban environment. The vehicle was equipped
among others with LiDAR and navigation sensors (providing vehicle’s position
during the time) and are freely available online.

Each of the dataset consists of several recordings. Every such recording
represent one ride of vehicle and contains set of LiDAR’s 3D measurements
called point cloud.

5.1.1 KITTI

From KITTI, we selected recording 2011_09_26_drive_0017 (KITTI-17)
and 2011_09_26_drive_0018 (KITTI-18). Both recordings capture the same
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5. Experiments .....................................
Recording Map part Shortcut

2012-02-04 P01 NCLT-02-P01
P02 NCLT-02-P02

2012-04-29 P01 NCLT-04-P01
P02 NCLT-04-P02

2012-06-15 P01 NCLT-06-P01
P02 NCLT-06-P02

2012-09-28 P01 NCLT-09-P01
P02 NCLT-09-P02

Table 5.1: Selected NCLT recordings

crossroads. In the first one, car is waiting at the traffic lights. In the second
recording, after a while, the green light is turned on and the car turns left.

5.1.2 NCLT

The main reason why we decided to use NCLT dataset is the fact, that its
recordings are captured in the same area but in different time (in the range of
15 months). Because of that, some changes are present in the area, and it is
possible to test the behavior of the data aggregation algorithm (see chapter 3)
when data from multiple rides are available (in contrast with KITTI) and see
how the changes in urban environment are reflected in the aggregated map.

For our experiments we chose four recordings (see Table 5.1) and we
selected two small parts from the whole map, which we found suitable for
testing purpose. First part, denoted as P01, is a straight path between two
buildings, whereas one of them is under construction, which cause arising
of new static objects (e.g., fence). Second part, P02, is a straight road with
pavements on its both sides, which yields occurrences of dynamic objects
(e.g., cars, pedestrians).

5.2 Parameters setup

In both proposed methods, several parameters were defined. They are listed
in Table 5.2 with assigned values, which were used during all experiments
presented in this chapter, unless otherwise stated.

5.3 Proposed methods evaluation

To evaluate correctness of ALG-AGG and ALG-DET we prepared several
test scenarios which should simulate some of the situations which could occur
when our methods were used in real autonomous car.
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Parameter Value Description
ρL 0.25 lower and upper threshold defining interval

in witch ρ is taken as similar for both evidence typeρU 0.50
λO 0.60

parameters of Gaussian function for m(O)hitµO 1
σO 0.20
λhit
D 0.40

parameters of Gaussian function for m(D)hitµD 0.38
σhit
D 0.10

λhit
OD 0.40

parameters of Gaussian function for m({O,D})hitµOD 0.38
σhit
OD 0.10
λF 0.60

parameters of Gaussian function for m(F )missµF 0
σF 0.20
λmiss
D 0.25

parameters of Gaussian function for m(D)missµD 0.38
σmiss
D 0.10
λmiss
OD 0.10

parameters of Gaussian function for m({O,D})missµOD 0.38
σmiss
OD 0.10
ε 0.75 parameters of DBSCAN algorithm

pmin 10

αmin 20 minimal number of hit evidence in voxel
to be used as map element in change detection

δ 0.50 resolution of NDT-BM’s grid
τB 0.35 threshold used in Mahalanobis segmentation
τ lower
E 0.5 lower threshold used in Mahalanobis segmentation
τupper
E 0.08 upper threshold threshold used in Mahalanobis segmentation
τM 8 threshold used in Mahalanobis segmentation
τR 0.5 threshold used for relative distance between ray and mass
ω 1000000 lowest possible resolution for inverse covariance matrix
K 3 number of nearest neighbors, used in ALG-DET

Table 5.2: List of all used parameters and their values used in proposed methods.

25



5. Experiments .....................................

Figure 5.1: Visualization of the input point cloud (10% of points) of the recording
KITTI-18. There are two obvious track caused by moving vehicles.

5.3.1 Test scenario 1 (TS1)

Description. Purpose of TS1 to evaluate the correctness of the creation of
the initial 3D map using ALG-AGG and data from single ride through the
urban environment as its input. The condition for scenario success is that
moving objects in appropriate recording will not be included in the output
3D map, but all static object will be.

Evaluation. To run TS1, we selected recording, KITTI-18 (see Figure 5.1).
By comparing point cloud and aggregated map for KITTI-18 (see Figure 5.2
we see, that the ground forms compact surface. In the middle of the map
there is small trace leaved by moving cars. In this part of the map, our
car was waiting on traffic lights and several other cars were standing behind
it. When our car started move forward, it was followed by these other cars,
which bodies prevented LiDAR to shoot its ray through this part. Thus,
there was much more hit evidences then the miss evidences. However, one
issue arise from this scenario. KITTI-18 contains a lot of vertical objects with
width smaller than voxel’s resolution (street lamps, traffic lights etc.). And in
several cases their bottom parts were classified as dynamic (see Figure 5.3).

5.3.2 Test scenario 2 (TS2)

Description. Scenario TS2 should test how the 3D map is evolving over time
when appropriate recordings are iteratively used to update it (via ALG-AGG).

Evaluation. For TS2, we chose recordings NCLT-02-P01, NCLT-04-P01 and
NCLT-06-P01, because of changes which happen over time (see Figure 5.4).
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Figure 5.2: NDT-BM for recording KITTI-18. Occupied voxels are shown in
the top picture and their 3D Gaussian’s are visualized on the bottom picture
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Figure 5.3: Detail of the 3D map from Figure 5.2. Red cubes corresponds to
dynamic voxels, the others to occupied one.

As we can see, maps for all three recordings mostly correspond to their inputs.
Notice, that the new roof from the recording NCLT-06-P01 were integrated
as occupied just after one ride, but new walls occurring in recordings NCLT-
04-P01 and NCLT-06-P01 are still labeled as dynamic. Until recording
NCLT-06-P01, LiDAR’s rays went through this part without hitting any
object (i.e., did not return reflecting point), thereby there were not any
evidence. Thus, the roof were integrated faster than the walls.

There is another interesting point. In the right part of the NCLT-02-
P01, there are some trees and shrubs. Trees were more or less classified
as occupied, but shrubs were mostly classified as dynamic (see Figure 5.6).
This inconsistency can be caused by fact, that shrubs have smaller, thinner
branches than trees. So they can be more easily moved by wind to change
their position which leads to dissimilar evidences. With increasing number of
integrated recording, relevant voxels become occupied.

5.3.3 Test scenario 3 (TS3)

Description. The purpose of the TS3 is to verify if ALG-DET correctly
detects new static objects, which appeared in the known scene represented
by NDT-BM.

Evaluation. As the input 3D map, we used the one created from NCLT-02-
P01, and as input recording, we used NCLT-04-P01. By comparing their point
clouds (see Figure 5.4), there are several new static obstacles in NCLT-04-P01.
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Figure 5.4: Visualization of input point clouds for recordings (top) NCLT-02-
P01, (middle) NCLT-04-P01 and (bottom) NCLT-06-P01. In the middle and
bottom picture, static changes (compared to previous recording) are emphasized
by red frames.
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Figure 5.5: Evolution of NDT-BM created from recordings (top) NCLT-02-
P01, (middle) NCLT-04-P01 and (bottom) NCLT-06-P01. The pictures shows
occupied voxels only.
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Figure 5.6: NDT-BM generated from multiple recordings (NCLT-02-P01 and
NCLT-04-P01). Both pictures shows dynamic (semi-transparent red cubes) and
occupied (colorful) voxels. On bottom picture is detail of the map from top
picture.
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After running ALG-DET and analyzing its results (see Figure 5.7), it

is obvious that all of these object were successfully detected. One thing is
worth mentioning. As can be seen, in the top-right part of the map changes
were detected. This is related to 5.3.2, where we mentioned the problem
with aggregation of shrubs. In this case, the change detection itself is not
incorrect.

5.3.4 Test scenario 4 (TS4)

Description. Scenario TS4 should verify if ALG-DET correctly detects
moving objects, which appeared in the known scene represented by NDT-BM.

Evaluation. For evaluation of TS4, KITTI-18 and NCLT-04-P02 were used
as source to create 3D map, KITTI-17 and NCLT-09-P02 were used as source
of new measurements, respectively.

As it evident from KITTI-17’s point cloud (see Figure 5.8), there are
several moving vehicles and one moving track. According to results of ALG-
DET (see Figure 5.9 and Figure 5.10), all of these objects where successfully
detected throughout the ride.

Recording NCLT-09-P02 contains moving cyclist (see Figure 5.11) which
was successfully detected, clustered and tracked (see Figure 5.10).

5.4 Comparing ALG-AGG with OctoMap
framework

For comparison, we created 3D occupancy grid using original OctoMap (OM)
framework for recording KITTI-18 and grid’s resolution 0.5 m and 0.25 m.

If we compare output of our approach (see Figure 5.2) and output of OM
(see Figure 5.14), there are noticeable differences. In our map, the road surface
is almost completely solid and there is no trace caused by moving cars (except
the voxels of cars waiting on traffic lights, discussed in subsection 5.3.1), but
in both variant of OM, there are significant gaps and traces. Generating OM
with lower resolution then 0.25 m could leads to better result, but the smaller
the resolution is the higher is the memory consumption and processing time.
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Figure 5.7: Change detection of new static objects. On top picture, 3D map
aggregated from NCLT-02-P01 recording is visualized (as gray scaled ellipsoids)
together with detected changes from recording NCLT-04-P01 (as red dots). The
bottom picture captures same situation, but after clustering and tracking process.
Changes belonging to same cluster (i.e., new object) have same color. On the
both pictures, the current position of LiDAR sensor is represented by blue square
with white border.
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Figure 5.8: Visualization of the input point cloud (10% of points) of the recording
KITTI-17. There are several tracks caused by moving cars and one caused by
truck (top-right part of image).
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Figure 5.9: Moving objects segmentation during recording KITTI-17 using 3D
map generated from recording KITTI-18. Top image correspond to recording’s
fram no. 3 and the bottom image to frame no. 6. Changes are visualized as
red dots and the current position of LiDAR sensor as blue square with white
border.
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Figure 5.10: Moving objects clustering and tracking during recording KITTI-17
using 3D map generated from recording KITTI-18. Top and bottom picture
captures same situation as in top and bottom picture in Figure 5.9, respectively,
but after clustering and tracking process. Changes belonging to same cluster
(i.e., moving object) have same color. On the both pictures, the current position
of LiDAR sensor is represented by blue square with white border.

36



..................... 5.4. Comparing ALG-AGG with OctoMap framework

Figure 5.11: Visualization of the input point cloud (10% of points) of the
recording NCLT-09-P02. There are several tracks caused by moving cars and
one caused by truck (top-right part of image).

Figure 5.12: Segmentation of cyclist during recording NCLT-09-P02 using 3D
map generated from recording NCLT-04-P02. Changes are visualized as red dots
and the current position of LiDAR sensor as blue square with white border.
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Figure 5.13: Clustering and tracking of cyclist during recording NCLT-09-P02
using 3D map generated from recording NCLT-04-P02. Top and bottom picture
captures same situation as in top and bottom picture in Figure 5.12, respectively,
but after clustering and tracking process.
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Figure 5.14: Occupancy map created by OctoMap from KITTI-18. Top picture
shows result for grid with resolution 0.25 m and the bottom one shows result for
grid with resolution 0.5 m.
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Chapter 6
Conclusions

In this chapter, we summarize contributions and results of this thesis and
discuss known limitations and future directions of our work.

6.1 Summary

At the beginning of this thesis, we described and discussed principles of related
works. From this newly acquired knowledge we proposed new framework
consisting of two parts, 1) how to represent and obtain 3D map of urban
environment and 2) how to use this representation to detect changes in vehicle
neighborhood.

In the first part, we designed new data structure for 3D map and algorithm
for obtaining the map from 3D measurements. The form of our 3D map –
NDT-BM – were basically derived from NDT-OM [SASL13], where occupancy
mapping model were replaced by Transferable belief model [Sme94]. Using
TBM required to design appropriate way how to generate basic belief masses
for evidences and how to handle conflict, which can arise during aggregation.

In the second part, we formulated new algorithm, which aim is segmen-
tation of new incoming 3D measurements into known scene and new objects
(changes). Segmentation process is based on computation of Euclidean and
Mahalanobis distances between elements of NDT-BM and new points. We also
proposed procedure to overcome problem with noise in LiDAR’s measurement
from real-world datasets.

At the end, we proposed a series of experiments to test performance and
verify correctness of our methods. The tests have shown that our digital
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6. Conclusions .....................................
representation of 3D environment overcomes OctoMap and confirmed that
using NDT in grid mapping tasks is useful. We verified that using our
framework, it is possible to detect dynamic changes of various speed and size
and static changes as well.

6.2 Limitations and open problems

From provided experiments it can be concluded, that presented methods
offer decent results. Still, there are several limitations, which should not be
ignored.

Results of both proposed methods are highly dependent on values of
input parameters. It would be appropriate to run experiments on annotated
dataset to be able to objectively compare results for different configurations.
Thus, we would like to create own annotated dataset with precisely registered
3D measurements.

Proposed algorithm ALG-AGG has unsatisfying results when some ver-
tical object with width lower then voxel’s edge length needs to be mapped
(e.g., street lamps in TS1). Thus, we would like to focus on modeling of this
situation and refine the calculation of relative distance between mass and ray.

As was mentioned in subsection 5.3.2, there is a problem with integration
of vegetation into the map. This is caused by fact, that we focused on
modeling of solid objects. However, some of the LiDAR sensors are capable
to return position of the strongest reflection and the latest, too, which could
help to detect changeable objects like leaf, grass etc.

6.3 Future work

There are several ideas, which we would like to dedicate in the future, to
enhance output of our framework.

In TS2, we show, how our NDT-BM with parameters from Table 5.2
adapts on static changes in environment. It requires future research to
determine how fast should be static changes recorded into the map, but one
possible way could be Memory decay concept [Sme07], where credibility of
basic belief masses decaying over time.

To handle issue with noise in LiDAR’s measurements (especially in NCLT
dataset) we used heuristic approach. Therefore, it would be better to analyze
this problem deeply and formulate more general solution.

NDT-BM is consists of high number of Gaussian distributions which in
most cases represents part of some objects. Therefore it would be interesting
to cluster distributions (e.g., by P-Linkage alg. [LYT+16]) which correspond
to same object and then compress amount of the information, by merging
each of the cluster into one representative distribution. In case of success,
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..................................... 6.3. Future work

this would lead to decreasing of memory requirements.
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Appendix A
Contents of attached CD

Path Description

/thesis.pdf This thesis as PDF file.
/sw/ Folder containing all implemented and used source

codes.
/videos/ Folder containing set of videos from experiments.
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