
prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague July 27, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: The Stack Clash Attack

 Student: Petr Heřmánek

 Supervisor: Ing. Josef Kokeš

 Study Programme: Informatics

 Study Branch: Information Technology

 Department: Department of Computer Systems

 Validity: Until the end of winter semester 2018/19

Instructions

1) Research the issues of SW memory attacks and their security aspects.
2) Study and describe the Stack Clash attack (https://blog.qualys.com/securitylabs/2017/06/19/the-stack-
clash).
3) Explain the conditions affecting an execution of the attack and evaluate the effectiveness of common
memory protections.
4) Evaluate the possibility of execution of the attack under various operating systems.
5) Prepare a virtual environment allowing a simple demonstration of the attack.
6) Discuss the results.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Bachelor’s thesis

The Stack Clash Attack

Petr Heřmánek

Supervisor: Ing. Josef Kokeš

11th May 2018

Acknowledgements

I would like to thank my supervisor Ing. Josef Kokeš, without his assistance
and guidance this thesis would not have been accomplished.

Then I would like to thank the Qualys Security Advisory team for writing
up the Stack Clash security advisory and personally answering my emails
regarding the Stack Clash vulnerability.

Finally I want to thank my family and friends for their support throughout
my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 11th May 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Petr Heřmánek. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Heřmánek, Petr. The Stack Clash Attack. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2018.

Abstrakt

Stack Clash je označeńı pro nedávno objevenou slabinu programové paměti na
několika operačńıch systémech. Současné výchoźı ochrany nejsou dostačuj́ıćı
a Stack Clash tak představuje závažnou hrozbu ve formě svévolného spuštěńı
kódu, úniku informaćı a elevace oprávněńı. Ćılem této práce je vysvětlit
základy paměti procesu, včetně útok̊u a dostupných ochran s následnou demon-
straćı slabiny Stack Clash. Principy zneužit́ı slabiny jsou vysvětleny a před-
vedeny v útoku na jednoduchou demonstračńı aplikaci. Práci uzav́ırá diskuze
vlastnost́ı operačńıch systémů, konkrétně jejich vliv na proveditelnost a zmı́r-
něńı následk̊u útoku.

Kĺıčová slova Stack Clash, paměť procesu, útoky na paměť, ochrana paměti,
Linux, zásobńık, halda, poč́ıtačová bezpečnost, automatické rozš́ı̌reńı zásobńıku

ix

Abstract

Stack Clash is a software memory vulnerability recently exposed on a vari-
ety of operating systems. Current default Stack Clash protections are not
satisfactory and pose a serious threat, such as arbitrary code execution, in-
formation disclosure and privilege escalation. In this thesis we demonstrate
the Stack Clash attack as well as explain the necessary process memory back-
ground along with possible exploitation techniques and protections. Stack
Clash principles are then explained and demonstrated on a proof of concept.
We then discuss the operating system features which make the attack possible
and propose mitigation techniques.

Keywords Stack Clash, process memory, memory attacks, memory protec-
tion, Linux, stack, heap, computer security, automatic stack expansion

x

Contents

Introduction 1

1 Process memory 3

1.1 Process . 3

1.2 Address space . 3

1.3 Processor registers . 4

1.4 Memory regions . 4

2 Software memory attacks 11

2.1 Stack buffer overflow . 11

2.2 Heap buffer overflow . 13

2.3 Denial of service by memory exhaustion 16

2.4 Heartbleed . 17

2.5 Protection . 17

3 Stack Clash 21

3.1 Problems of Automatic stack expansion 21

3.2 Guard Page . 22

3.3 Exploitation . 23

3.4 Protection . 25

4 Demonstration 27

4.1 Memory structure preparation 27

4.2 Jumping over stack guard page 28

4.3 Exploiting the cross section . 29

4.4 Shellcode . 30

5 Discussion 33

5.1 ASLR . 34

5.2 DEP . 35

xi

5.3 StackGuard . 35
5.4 Stack guard page . 36
5.5 Stack probing . 36
5.6 Tools . 37

Conclusion 39

Bibliography 41

A Acronyms 45

B Contents of the enclosed SD 47

xii

List of Figures

1.1 Stack frame structure . 6
1.2 Glibc heap overview [4] . 7

2.1 Stack buffer overflow . 12
2.2 Heap unlink exploited chunk . 14
2.3 Heartbleed explanation. 18

xiii

List of Tables

3.1 Page faulting . 22

xv

Introduction

Program memory based attacks exploit the underlying design of memory lay-
out and cause unintended behavior by altering its vulnerable structure and
its contents. Consequences of a successful exploitation include, for example,
arbitrary code execution, information disclosure, and privilege escalation.

As the protections improved, the attacks had to adapt and become more
sophisticated. In case of recently reexposed memory vulnerability – the “Stack
Clash”, protections enabled by default on many operating systems are not
satisfactory and the attack poses a serious threat. Stack Clash has been found
to affect many systems including Linux, BSD descendants and Solaris, on i386
and amd64 platforms.

The goal of this thesis is to explain software memory attacks with focus
later being on Stack Clash principle and exploitation.

Motivation

Attackers often look for unexpected scenarios and attack vectors to bypass
state-of-the-art protections. More sophisticated attacks leave fewer traces
and could have devastating consequences; being able to bypass all enabled
protection mechanisms and to gain full control over the affected machine is
especially dangerous in the age of rapid digitalization and cryptocurrencies on
the rise.

Common attack vectors are nearly impossible to execute if all state-of-
the-art protections are enabled. Stack Clash capitalizes on security measures
present on a vast majority of systems. For that reason, a functional Stack
Clash exploit is a powerful tool in any computer security researcher’s arsenal,
especially if it is applicable to typically built-in binaries.

1

Introduction

Goal

The goal of this thesis is to explain software memory attacks and the inner
workings of Stack Clash as well as demonstrate its exploitation on a vulnerable
operating system.

First we need to research the process memory structure and its main com-
ponents. Based on that we discuss commonly occurring software memory
attacks and protections against them. The next step is to research the Stack
Clash vulnerability and describe conditions affecting its behavior.

After establishing the theoretical background, we move on to a Stack Clash
proof-of-concept demonstration. The attached custom virtual machine con-
tains a set of files developed to exploit Stack Clash vulnerability using pre-
defined execution commands. Lastly we discuss key steps required for suc-
cessful exploitation and showcase their implementation in attached files.

2

Chapter 1

Process memory

Process memory represents a complex platform maintained by the operating
system, used mainly to store data related to the running computer process.
Developers (especially in higher level languages) may not know how process
memory is formed, maintained, and protected as familiarity with this concept
is not always required to successfully implement an application.

Not only does this lack of knowledge decrease the overall code quality, but
it also leaves users of poorly written applications vulnerable to hackers who
understand their inner workings and vulnerabilities.

It is necessary to have at least a basic understanding of how process
memory is organized and maintained in order to write safer applications and
to look under the hood of attacks exploiting its weak spots.

1.1 Process

A program in execution is called a “process”. It does not necessarily have
to be a program the user wrote or knowingly launched; a large number of
running processes belong to the operating system and are responsible for its
behavior.

In order to get a process up and running, it’s required that we satisfy
quite a few conditions. The one this thesis revolves around is the space where
to put our executable code and data we operate with. The optimal medium
providing such space is the computer memory, which amongst other things
contains program instructions and data to read from or write to.

1.2 Address space

Each process has its own virtual address space used to store program data.
For a process, the virtual address space is a set of virtual memory addresses it
can use. The address space of each process is private and cannot be accessed

3

1. Process memory

by other processes unless it is shared.[23] Virtual memory is an abstraction
that provides each process with the illusion that it has an exclusive use of the
main memory.[6]

Addressing and overall maintenance is mostly handled by the the operating
system. Elements like hardware, operating system, compiler or the launched
program all play a big part in process memory structure and behaviour.

1.2.1 Further segregation

To provide protection from malicious intentions, the operating system further
separates virtual memory into user space and kernel space.

User space is where the process and a few other drivers are executed
whereas kernel space runs the core of the operating system. For a usual user
process, the access to kernel space is provided by system calls (requests in a
Unix-like operating system meant for kernel services).

1.3 Processor registers

Numerous processes also use memory storage wired specifically in the CPU to
ensure high speed access – the processor registers.

Registers are primitives used in hardware design that are also visible to
the programmer when the computer is completed, so we can think of registers
as the bricks of a computer construction.[27] Their limiting factor is a small
size, and not all are meant for general purpose. Registers often contain critical
values, e.g. base pointer used to correctly locate data in virtual memory or a
program counter determining executed instructions.

It is important to keep in mind that most processor registers have their
contents regularly pushed to process memory and back. If hackers were to
control what flows into any of the previously mentioned registers, it would be
possible to execute arbitrary code or damage data integrity.

1.4 Memory regions

Process address space is divided into various regions. It is necessary to be
aware of their functionality and structure to understand the Stack Clash – or
any other process memory attack, for that matter. Different types of regions
follow different structural and behavioural patterns and thus contain different
sets of weak spots and pitfalls.

1.4.1 Stack

Stack is an abstract data type which operates in LIFO (Last In First Out)
format. In terms of virtual memory management, its main function is to store

4

1.4. Memory regions

frames of program subroutines. Formation of such frame has a predefined
order and gets initialized as soon as a subroutine is called.[14].

1.4.1.1 Frames

Each frame contains subroutine arguments, a backup of previously used base
pointer, the return address and sometimes a chunk of memory for local vari-
ables.[33] Data placed on the stack are not erased when freed; for this reason,
all variables located on the stack should be explicitly initialized.

Proper orientation is ensured through two pointers (described in para-
graphs below) which hold the necessary information about data residing in
the memory.[11] Figure 1.1 shows the structure of two adjacent frames.

1.4.1.2 Base Pointer

Base pointer contains an address which separates local variables from other
important frame data. Its current value is stored in the base pointer processor
register (EBP in x86 assembly language) and gets backed up on stack whenever
subroutine nesting occurs.

1.4.1.3 Stack Pointer

Stack pointer marks the end of memory storing all currently available local
variables and sometimes of the stack itself. No usable data for any subroutine
is located beyond this point. Automatic stack expansion mechanism in Linux
as well as many other features rely on a properly functioning stack pointer.

Processor register used to store the stack pointer address is called the stack
pointer register (ESP in x86 assembly language).

1.4.1.4 Stack expansion

Expansion of stack occurs when currently reserved stack memory is not large
enough to satisfy the program’s needs. The operating system then undertakes
various steps to address more stack space and move the stack pointer to a new
location.

Most Linux distributions follow a lightweight solution which maximizes the
potential of a previously defined stack pointer. The user space of a process is
automatically expanded by kernel if stack pointer reaches the lowest address
of this memory region and the unmapped memory pages below. The attempt
to access the unmapped memory pages raises a “page-fault” exception which
gets handled by the page-fault handler. Either the process is terminated with
a SIGSEGV signal in case of expansion failure or the bounds of user-space
extend.[29]

In Microsoft Windows, each new thread receives its own stack space con-
sisting of both reserved and initially committed memory.[22] Thread creation

5

1. Process memory

Figure 1.1: Stack frame structure

fails if there is not enough memory to reserve or commit the number of bytes
requested. The default stack reservation size used by linker to satisfy most
subroutines is 1 MiB.

1.4.2 Heap

By far the most dynamic segment is the heap. Memory chunks of various sizes
can be allocated, resized and freed during program runtime. Such flexibility
comes with the drawback of possible fragmentation as there are no limitations
set on when certain blocks can be freed. Popular usage includes priority

6

1.4. Memory regions

queues, heap sort and arrays with unknown size during program compilation
process.[7]

Figure 1.2: Glibc heap overview [4]

1.4.2.1 Arenas

Heap differs from implementation to implementation but the core principles
are usually the same. For instance, the highest level of Glibc’s heap imple-
mentation consists of structures known as arenas. Arena is a heap space
belonging to one or multiple threads while each arena has its own memory re-
gions containing allocated and freed chunks from the associated thread(s).[4]
Figure 1.2 represents a sample heap overview.

1.4.2.2 Chunks

Chunk is the building block of many high level heap structures and contains
the actual data. Freed chunks, as the name suggests, are no longer in use. In
most scenarios, when a chunk gets freed, the chunk’s data stays at the same
location as before, and its data is not deleted nor overwritten.[4] Arenas,
chunks and other important structures are linked using a series of pointers.

7

1. Process memory

1.4.2.3 Bins

Freed chunks are linked together to form bins. A bin can be seen as a container
for freed chunks that always belongs to a specific arena. The size of maintained
chunks affects the bin category as well as their implementation. Glibc uses
the following specifications.[4][32]

Fastbin: size 16 to 80 bytes, single linked list, LIFO, no coalescing (free ad-
jacent chunks are not combined into single free chunk), faster allocation
and deallocation.

Small bin: size less than 512 bytes, circular double linked list, FIFO, coales-
cing.

Large bin: size greater than or equal to 512 bytes, circular double linked list,
coalescing, slower than small bins in memory allocation and deallocation.

Unsorted bin: no size restriction, circular double linked list, contains freed
small or large chunks, speeds up allocation and deallocation.

1.4.3 mmap()

Mmap system call implemented in the Unix kernel provides an interface for
applications to map a file directly into memory with custom options. It is
possible to specify a preferred address and offset for mapped file which makes
this a wild card in collisions with other memory segments.

Special region created via mmap() worth mentioning is an anonymous
mmap. Anonymity is ensured through not backing the mapping by any
file – its contents are initialized to zero and the file descriptor argument is
ignored.[1][20]

1.4.4 Others

Less known segments relevant to the Stack Clash attack are listed bellow.

ld.so read-write segment reserved for dynamic linker/loader

PIE read-write segment containing position-independent executable

[29]

1.4.5 Inner workings

Maintenance, expansion and addressing of stack is hidden from programmers
and users as long as both the compiler and kernel encounter no issues. One
pitfall important to remember is that not respecting the boundaries of local
arrays or any other data structures has severe consequences.

8

1.4. Memory regions

The best case scenario occurs when the kernel becomes aware of improper
memory manipulation. The process at fault ends up terminated with corres-
ponding exception thrown. On the other hand, if the impact of such an action
is invisible to the kernel it will damage frame integrity and cause undefined
program behaviour.

9

Chapter 2

Software memory attacks

Most software memory attacks follow common philosophy when it comes to
their execution. The main goal is to exploit the underlying design of process
memory and either execute arbitrary code or alter specific data.

To prevent such attacks, operating systems implement various memory
management techniques and protections to harden their environment, causing
the exploitation of memory vulnerabilities to differ significantly.

Attack vector is heavily affected by differences in application design and
compilation process. Relying on external data to control program behavior,
usage of unsafe libraries, or incorrect assumptions about program behaviour
could create exploitable weak spots in process memory.

When a weak spot is found, it comes down to recreating a previously
discovered scenario and exploiting the occurring vulnerability. Exploitation
depends on the attacker’s intentions; if the goal is to gain control over program
execution flow, masking a malicious sequence of instructions as user input
(shellcode) could influence memory management enough to force it to execute
injected instructions.

Editing local variables is also possible through overflowing data structures
(buffer overflow, data type overflow). In this case, the overflow is designed to
overwrite memory spots reserved for adjacent values.

Unsafe libraries or ignorance of best practices, e.g. not specifying format
for printf() function, could lead to buffer over-read vulnerability, opening pos-
sibilities to print generally inaccessible data.

2.1 Stack buffer overflow

Buffer overflow is probably the best known form of software security vulner-
ability. Stack variation of buffer overflow occurs when one or more bytes are
written past the end of a buffer which is allocated on the stack.[26] Common
causes are improper manipulation with external data, usage of unsafe libraries,
and insufficient input validation.

11

2. Software memory attacks

Overflowing a buffer allows to edit adjacent values and cause unintended
program behaviour. According to [11], a technically inclined attacker would
usually exploit stack buffer overflow in two ways (note that [19] lists structured
exception handlers as Windows specific).

1. By overwriting the return address in a stack frame. Once the function
returns, execution will resume at the return address specified by the
attacker.

2. By overwriting a function pointer, or structured exception handler, which
is subsequently executed.

Figure 2.1: Stack buffer overflow

This stack buffer overflow image shows how parsing input larger than the reserved
container invalidates other values.

12

2.2. Heap buffer overflow

2.1.1 Shellcode

The term shellcode refers to a carefully crafted sequence of instructions used
to gain control over a vulnerable application. This sequence is often inserted
into the application’s weak spot as external data.

Shellcode development requires functioning assembly code to perform the
desired task. This can also be achieved by converting a code snippet from dif-
ferent programming language to assembly. Length and complexity of suitable
shellcode is based on the size of the vulnerable buffer and currently available
instruction set.

In terms of operating systems, Windows shellcode pushes arguments of
exploited function on the stack and follows up with a CALL instruction to
a function’s address, whereas Linux typically stores function arguments in
various CPU registers first, and then uses a special instruction (INT 80h,
SYSENTER (x86), SYSCALL (x64)) which executes the desired function.[18]
The Stack Clash demonstration attached to this thesis contains a Makefile
with commands to form a custom shellcode from scratch.

It is important to keep in mind that third-party shellcode requires proof-
reading as it may contain potentially harmful instructions. Running hard to
read shellcode in a properly secured and separated virtual machine may also
uncover unwanted behavior.

2.1.2 Return-Oriented Programming

Return-Oriented Programming is a technique used to bypass certain stack pro-
tections. The building blocks of ROP exploits are short instruction sequences
called “gadgets”, mainly used to manipulate data already loaded in process
memory. Each gadget ends with a ‘return’ or ‘jump’ instruction, which is used
to chain together several such gadgets to alter the program’s behavior.[16]

No code injections occur during a ROP chain construction. This ensures
undetectability of the running chain under commonly used security measures.
The real downside of ROP is its complexity, as causing a serviceable arbitrary
action using gadgets only is comparably more difficult than doing the same
thing with a shellcode.

2.2 Heap buffer overflow

Since heap structure is different from the one used in stack, other techniques
are required to control program execution flow. Heap buffer overflow is based
on overflowing a heap-located buffer with external data, thus corrupting con-
tent of nearby structures or memory management directives.

Exploits based on heap buffer overflow derive from currently used memory
manager. Memory chunks typically contain memory management information
(referred to as chunkinfo) alongside the actual data (chunkdata).[35] This

13

2. Software memory attacks

positioning could cause chunkinfo to be overwritten by an overflowing buffer
allocated in a preceding chunk.

The image 2.2 showcases the heap structure in a simple unlink attack
scenario where we overflow heap-located buffer to trick free() into assuming
that the chunk right next to our target is unused. If we forge critical directives
properly we cause GOT (Global Offset Table, see below) entry of free() to
be overwritten with shellcode address. Thus, whenever free() is called, the
shellcode is executed.

By overflowing heap located buffer we alter directives responsible for keep-
ing size of the next chunk as well as size of current chunk. These are used by
free() in the consolidation process and cause the next chunk to appear unoc-
cupied. Injecting, for example, address of free() GOT entry offset by 12 bytes
masked as fd (pointer to the next chunk) and shellcode address as bk (pointer
to the previous chunk) alters GOT to execute our shellcode every time free is
invoked.[31]

Figure 2.2: Heap unlink exploited chunk

14

2.2. Heap buffer overflow

2.2.1 Global Offset Table

One of the protections described later in the thesis requires the running code to
be position-independent, that is why absolute virtual addresses are no longer
viable.

A common solution is having each process reference its own global offset
table when looking for a specific position-independent address. GOT holds
absolute addresses in private data. Those are therefore available without com-
promising the position-independence and shareablity of a program’s text.[25]

2.2.2 Procedure Linkage Table

Similarly to GOT, Procedure Linkage Table ensures position independence
of the executed binary. This time the focus is on function calls rather than
virtual addresses. Link editor causes the program to hand over the control to
entries in the PLT where the redirection to absolute locations occurs.[24]

Procedure Linkage Table and Global Offset Table are ideal targets for
many exploits because it is possible to redirect an entry in either table to an
arbitrary or permission-restricted code.

2.2.3 Double free

The function responsible for deallocating heap structures is called free. It
accepts a pointer as a parameter and performs the following operations:

• The block of memory pointed to by the pointer is unreserved and given
back to the free memory on the heap. It can then be reused by later
new statements.

• The pointer is left in an uninitialized state, and must be reinitialized
before it can be used again.[5]

Scenario where the same structure is freed twice results in the same chunk
address being listed twice in the bin. Malloc then returns the same address
twice, since this was provided by the gradually unlinked bin. This leads to one
chunk being claimed by two separate structures, thus allowing attackers who
control either structure to read or manipulate originally inaccessible data. [17]

2.2.4 Data type overflow

A frequently overlooked aspect of data types is the fact that they also differ
in the number of bits they require in memory. Like many other memory
allocated structures, even data types can overflow and cause damage. Data
type overflow is an attempt to store a value in a variable which is too small
to hold it.

15

2. Software memory attacks

Unfortunately, this operation may very well be hidden, as there are no
options for process to check the result of computation once it has happened. At
that point there may already be an inconsistency between the final calculation
and the correct result.

If the overflown variable were to affect, for example, write or read oper-
ations within the virtual address space, it would become possible to bypass
memory bounds check by using an unexpected value as pointer address or for
an array index range.

According to ISO C99, operations including unsigned variables can never
overflow. Instead, if we were to add two unsigned variables, the final result is
reduced by modulus of the maximum possible value plus one.

Allocating heap memory is often parametrized by custom calculations to
provide dynamic buffer sizes. Overflowing one of the operands responsible
for array range calculations opens up additional attack vectors. Stack Clash
relevant vector relies on filling up stack memory to reduce the distance between
the stack and the nearest memory structure.

Other array index range manipulations are often the cause of involuntary
information disclosure (e.g. Heartbleed1).

Both unsigned and signed data types are indistinguishable from the com-
puter’s perspective, for that reason interpreting signed data as unsigned or
vice versa causes major inconsistencies across the memory. Comparisons or
arithmetic operations where the programmer may not realize that some func-
tions require their arguments to be specifically signed or unsigned are able to
cause such scenarios.

If the variable holding an array size was an integer and later passed to
memcpy function to mark the number of bytes to copy, it would be interpreted
as unsigned integer (size t), which results in negative values being perceived
as large positive numbers.

For these and many other reasons, input verification methods need to
check for possible inconsistencies between the expected value and the pro-
cessed one.[3]

2.3 Denial of service by memory exhaustion

Memory-inefficient operations can be used to exhaust all available memory of
the system, therefore leaving it unstable and incapable of handling any more
requests. For example, allowing a single web server request to consume large
amount of memory causes a decrease in the number of requests attackers have
to form in order to fully swamp the server.

Other than causing a complete rejection of incoming requests, it is pos-
sible to destabilize any system where the memory overcommit technique is
enabled (either for virtualization or Linux swapping). Overcommit refers to

1http://heartbleed.com/

16

http://heartbleed.com/

2.4. Heartbleed

the practice of giving out virtual memory with no guarantee that the physical
storage for it exists.[10] When kernel fails to find physical memory to sat-
isfy all system demands, it reclaims already used memory by killing highly
consuming processes. Such a system falls apart under the heavy load. CVE-
2011-3192 2 showcases memory exhaustion vulnerability in older versions of
Apache HTTP Server. Available public exploitations of CVE-2011-3192 often
attempt to destabilize the system.

2.4 Heartbleed

Information disclosure of data already located in the process memory may also
happen due to insufficient security measures applied when giving out memory
contents. One of the basic examples is using the printf function with no format
specifiers. Should the printed variables contain formatting strings – let’s say
’%x’ – printf would start printing out normally inaccessible data in unsigned
hexadecimal integer form.

The Heartbleed bug is a popular vulnerability affecting some OpenSSL
versions. Attackers can forge so-called heartbeat messages (sent by the client
as a verification of ongoing connection) to trick the server into thinking it
received up to 64K bytes of data while only one byte was sent. This causes
the server to return a message containing forbidden data from its memory,
potentially leaking account credentials or secret keys.[15]

What makes Heartbleed so powerful is its ability to leak unprotected data,
originally meant to be encrypted by the OpenSSL toolkit during its transmis-
sion. Leaking secret keys allows the attacker to decrypt any past and future
traffic to protected services.

Heartbleed-like consequences may also rise from the previously described
data type overflow vulnerability, or insufficient user input verification. If the
size of returned memory chunk was determined by an overflown or maliciously
altered variable, the chance of involuntarily leaking memory contents is signi-
ficant. To better understand the principle of such information disclosure, see
image 2.3.

2.5 Protection

Hardening the environment of every running program greatly reduces the ex-
ploitability of man-made vulnerabilities in the code. For example, problems
with shellcode execution through stack buffer overflow grow significantly with
applied security measures.

Certain security mechanisms cause the virtual address space to be un-
predictable every time the process is executed. Others disallow execution of

2http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2011-3192

17

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2011-3192

2. Software memory attacks

Figure 2.3: Heartbleed explanation from https://xkcd.com/1354/

injected instructions in ordinary regions, or ensure the stack frame integrity
by adding exception triggers. When combined, the application requires an
experienced attacker with a lot of time on their hands.

18

https://xkcd.com/1354/

2.5. Protection

2.5.1 Input validation

Several protections wouldn’t be necessary if all external data went through
a proper validation process. Having a strictly defined input format sets the
guidelines for incoming data and allows to build the application around them.

It is necessary for data of any length and format not to cause unpredictable
program behaviour when being worked with. This is achieved by specifying
the expected input length in data loading functions and applying predefined
filters afterwards.

Data post-processing requires application of the same rules; securing code
that comes directly in contact with unfiltered data is pointless if the remaining
operations are not suited to operate with already filtered values, eg. wrong
choice of data type or unsupported character encoding.

2.5.2 ASLR

Address Space Layout Randomization is automatically provided by the oper-
ating system and eliminates absolute addressing from any running process. A
specific address in memory becomes impossible to explicitly target as it points
to a different place every execution. Compiled binaries have to be position
independent in order to function as intended.

ASLR adds random offset to the virtual memory layout of each program,
making it harder for attackers to predict target memory address that they
wish the vulnerable program to return to.[12] To check the status of ASLR
on Linux, see contents of /proc/sys/kernel/randomize_va_space file. The
available states are:[2]

• 0 - No randomization. Everything is static.

• 1 - Conservative randomization. Shared libraries, stack, mmap(), VDSO
and heap are randomized.

• 2 - Full randomization. In addition to elements listed in the previous
point, memory managed through brk() is also randomized.

For Microsoft Windows the ASLR directive is often stored in a registry key
located at HKLM\SYSTEM\CurrentControlSet\Control\SessionManager\

MemoryManagement\MoveImages.[34]

2.5.3 Data execution prevention

Data execution prevention represents another system-level memory protection,
this time the process is terminated after violating the applied measures.

DEP enables the system to mark one or more pages of memory as non-
executable. Marking memory regions as non-executable means that code can-
not be run from that region of memory, which makes it harder for the exploit-
ation of buffer overruns.[21]

19

/proc/sys/kernel/randomize_va_space

2. Software memory attacks

Special virtual memory protection attributes are required to be set in
order to run code from allocated space. Any attempt to execute code from
the default heap or stack space raises an access violation exception, resulting
in process termination unless handled.

Exploits against data execution prevention disable DEP by forming a ROP
chain or shellcode targeting various API calls, mostly SetProcessDEPPolicy.

2.5.4 Overcommit accounting

To avoid overcommit leaving the system unstable due to exhausted memory
resources, it is required to either account for all allocated memory or reserve
some free memory so that the system administrator can log in.

Linux enables adjusting these features by sysctl files admin_reserve_

kbytes and overcommit_memory. Flags available for overcommit_memory af-
fect how system operates within virtual memory:

0 free memory is estimated after each request

1 do not take available physical memory into account when assigning virtual
memory

2 the kernel uses a “never overcommit” policy that attempts to prevent any
overcommit of memory

Additionally, admin_reserve_kbytes adjusts the amount of free memory
in the system that should be reserved for users with the capability cap-
sys admin.[30] The reserved amount should guarantee a successful login of

the system administrator even when all available memory is consumed. Care-
fully choosing the size of the reserved block is critical for previously mentioned
“never overcommit” policy.

2.5.5 Stack Guard

Unlike any previously described protections, Stack Guard is a compiler exten-
sion. Programs compiled with Stack Guard contain a canary word between the
return address of each subroutine and its local variables. Detecting changes
to the canary word marks current execution as compromised and results in
the immediate termination of the process.

In order to bypass Stack Guard detection, the attacker has to simulate the
randomized canary value or be lucky enough to create a situation where the
canary fills one of the holes in an unaligned array of structures, thus making
it possible to skip the canary.[8]

StackGuard has many derivatives which modify the technique but main-
tain the principle. For example, Stack Smashing Protector only allocates
buffers specifically after the pointers to prevent any damage from a buffer
being overrun.

20

admin_reserve_kbytes
admin_reserve_kbytes
overcommit_memory
overcommit_memory
admin_reserve_kbytes

Chapter 3

Stack Clash

Stack Clash is a vulnerability first presented by Gael Delalleau in 2005 [9] and
reexposed on modern operating systems in the 2017 paper ’The Stack Clash’
by Qualys Security team [29]. This particular exposure showcases multiple
shortcomings in memory management and protections found on Linux, Sol-
aris and BSD-based systems. The possible exploitation is a form of process
memory attack that capitalizes on a fragile stack expansion mechanism and
poor security measures implemented to prevent stack from colliding with other
memory regions.

Current Stack Clash exploitation is still considered to be local only as
a remote exploitation has not been demonstrated yet. Automated scenarios
mostly utilize a set of privilege escalation vulnerabilities (CVE-2017-10003643,
CVE-2017-10003654 and CVE-2017-10003675, to name a few) on well mapped
built-in binaries. The demonstration attached to this thesis showcases the
possibilities of an ideal scenario for attackers, and steps required for arbitrary
code execution.

3.1 Problems of Automatic stack expansion

Linux kernel handles stack expansion requests automatically using a page-fault
handler and simple mechanisms to gain space.

Whenever the stack pointer reaches the lowest address of stack memory
region or the unmapped memory pages below, a “page-fault” exception is
raised. This signals to the kernel that the stack needs to be expanded in order
to continue process execution. If there is enough space available for the stack
to grow, the user-space of the requesting process is expanded by moving the
stack pointer to mark newly addressed stack space. No memory left means
that SIGSEGV signal is sent and the process is terminated.

3http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000364
4http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000365
5http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000367

21

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000364
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000365
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000367

3. Stack Clash

Table 3.1: Page faulting

Exception Type Action

Region valid, but page not al-
located

Minor Allocate a page frame from
the physical page allocator.

Region not valid but lies next
to an expandable region like
the stack

Minor Expand the region and alloc-
ate a page.

Page swapped out to backing
storage

Major Find where the page with
information is stored in the
PTE (page table entry) and
read it from disk.

Page write when marked read-
only

Minor If the page is a COW (Copy-
on-write) page, make a copy
of it, mark it writable and as-
sign it to the process. If it is in
fact a bad write, send a SIG-
SEGV signal.

Region is invalid or process
has no permissions to access

Error Send a SIGSEGV signal to the
process.

The table 3.1 displays actions taken for some variants of page fault excep-
tions as they are described in [13]. Major types represent actions where data
has to be read from disk, the rest is referred to as minor.

Reliance on page-fault exceptions backfires when the stack pointer ends
up in another memory region located directly next to the stack. The kernel in
a vulnerable environment has no way of knowing this ever happened and the
stack now uses another memory region as its own. The only way to notify the
kernel about stack claiming forbidden memory is by triggering an exception
as a result of both regions operating in collided memory space.

However, if the attacker is aware of stack automatically expanding into
other memory regions, cautious manipulation in the vulnerable section results
in consequences far greater and harder to detect.

3.2 Guard Page

One way to prevent Stack Clash and other overflows from happening is by
using guard pages. Guard pages are automatically created during memory
allocation operations as additional inaccessible memory blocks and represent
unmapped pages placed between all allocations of memory one page or larger
in size.[28] Any attempt to access a guard page raises an exception similar to
Windows ’STATUS GUARD PAGE VIOLATION’ and the process is killed.

The main issue with guard pages is memory inefficiency as they fragment

22

3.3. Exploitation

the kernel’s memory map and increase usage of virtual space. Unfortunately
for operating systems vulnerable to Stack Clash, the virtual space usage was
not sufficient as the stack guard page used to protect stack from reaching into
other regions was only few kilobytes in size. Forming a buffer or stack frame
large enough to swallow stack guard page without ever accessing it defeats the
whole design.

3.3 Exploitation

Exploitation of Stack Clash breaks down to several steps necessary to fully
take advantage of a vulnerable system. First it is required to clash the stack
with other memory region. These other memory regions, according to [29] can
be:

• the heap

• an anonymous mmap()

• the read-write segment of ld.so

• the read-write segment of a Position-Independent Executable

Clash is achieved by allocating enough memory on either stack or in an-
other memory region growing towards it to cause them to be as close as pos-
sible in terms of process memory. Yet again, clashing is fully dependent on ap-
plication design; the only requirement for memory allocated in other memory
regions is for it to not be freed before the stack guard page is jumped over, as
it would trigger page-fault exception.

Attackers don’t usually have the means of allocating large amounts of
memory on demand. It often comes down to exploiting memory leaks or,
as the Qualys Security team suggests, one can get a good start with mega-
bytes of command-line arguments and environment variables. Although, on
Linux, each resource is limited by its soft and hard limit. These are defined
by the rlimit structure and manipulated using the getrlimit() and setrlimit()
system calls. Stack has its limit represented by the environment variable
RLIMIT STACK and a quarter of that is used as a size restriction to the
team’s suggested approach.

Stack pointer serves as the reference point for operations requiring stack-
located data, hence the exploit gets easier when stack pointer is at its lowest
address possible (stack grows from higher addresses to lower) as it guarantees
the stack guard page to be mapped right beneath.

In some cases the stack pointer does not point to the end of the reserved
stack space. For example, when kernel finalizes the vm area struct, it first
handles the arg pages in function setup arg pages(). This function relocates
the stack to properly store the program argument array and adds some extra

23

3. Stack Clash

stack space as demonstrated in the following lines of code taken from the
Linux kernel.

stack expand = EXTRA STACK VM PAGES ∗ PAGE SIZE ;
s t a c k s i z e = vma−>vm end − vma−>vm start ;
/∗
∗ Align t h i s down to a page boundary as expand s tack
∗ w i l l a l i g n i t up .
∗/

r l i m s t a c k = r l i m i t (RLIMIT STACK) & PAGE MASK;
#ifde f CONFIG STACK GROWSUP

i f (s t a c k s i z e + stack expand > r l i m s t a c k)
s t a ck ba s e = vma−>vm start + r l i m s t a c k ;

else
s t a ck ba s e = vma−>vm end + stack expand ;

#else
i f (s t a c k s i z e + stack expand > r l i m s t a c k)

s t a ck ba s e = vma−>vm end − r l i m s t a c k ;
else

s t a ck ba s e = vma−>vm start − stack expand ;
#endif

r e t = expand stack (vma , s t a ck ba s e) ;

To jump over the stack guard page, it is required to move the stack
pointer into the virtual address space of following memory region. This can
be achieved by requesting space for a stack-located buffer large enough to
swallow the stack guard page. If successful, no exceptions are raised due to
the unfortunate design of the automatic stack expansion mechanism and the
buffer provided now covers both the guard page and the following memory
region.

Depending on the situation, two scenarios are possible. The attacker either
requests more stack space to avoid interfering with guard page or they carefully
operate within the chunk addressing clashed memory region.

At this point, the situation is unfavourable for victim operating system
as these two regions have full access over each other within the cross section
(including critical memory management directives).

Disrupting invaded non-stack region can be achieved by using only certain
sections of the buffer when reaching over. Content put into these sections
compromises foreign memory content or results in attacker controlling the
instruction flow.

Attacking the stack from the clashed region uses the same principle as
every stack buffer overflow exploitation. Except now, instead of overflowing
a vulnerable buffer, the attacker gets to cherry-pick values to overwrite. The
ability to target specific values in stack frame bypasses almost every stack
protection, if done right.

Qualys did an amazing job with their “local-root exploit against Exim”,
“local-root exploit against Sudo (Debian, Ubuntu, CentOS)”, “local-root ex-

24

3.4. Protection

ploit against /bin/su”, “local-root exploit against ld.so and most SUID-root
binaries (Debian, Ubuntu, Fedora, CentOS)”, “local-root exploit against /us-
r/bin/rsh (Solaris 11)”, and handful of other proof of concepts.[29] Many of
these have been fixed by now but the demonstrated principle can still affect
multiple programs.

3.4 Protection

So far we’ve seen that all protections in vulnerable systems were insufficient
under certain circumstances. In fact, on a few systems, some steps described
above are not necessary as the memory management is different, memory
regions already clash or protections are disabled by default (e.g., stack guard
page on FreeBSD).

To harden the system against stack clash, it is recommended to increase
the size of the stack guard page to avoid stack pointer jumping over, compile
all code using the stack probing option (-fstack-check), and make sure that
running binaries are not capable of filling process memory in an exploitable
way.

3.4.1 Guard Page improvement

Guard pages are unpopular due to two factors, one of them being the size
of memory space they occupy, the other being memory space fragmentation.
Trade-off between performance, invested time, resources, and security result
in pages being insufficiently small and less frequent. That way, instead of
posing a major obstacle in, for example, stack overflow, they ironically only
consume and fragment process memory without providing any protection.

To fix this issue (CVE-2017-10003646), Debian, Red Hat and other affected
vendors released a kernel fix which increases the guard page gap from one page
to 1 MiB. This does not eliminate the possibility of Stack Clash but rather
makes it difficult to replicate the crucial guard page leap.

3.4.2 Stack probing

Stack probing is the most efficient and also the most expensive protection to
implement. The combination of memory probing and guard pages represents
a bulletproof protection against Stack Clash exploitation.

The principle of memory probing lies in writing a word into every memory
page that is about to be allocated. It is impossible not to access stack guard
page when trying to expand into other memory regions.

The drawback of stack probing is performance. If the goal is to execute
code as fast as possible, then stack probing – just like any security compiler

6https://access.redhat.com/security/cve/cve-2017-1000364

25

https://access.redhat.com/security/cve/cve-2017-1000364

3. Stack Clash

extension – poses an unwanted slowdown. To activate stack probing for gcc,
use -fstack-check option.

26

Chapter 4

Demonstration

The virtual image attached to this thesis contains a vulnerable Debian 8.5
i386 (32 bit) system, including a set of files designed to demonstrate the stack
clash vulnerability in a controlled environment and educate about failing pro-
tections. To learn about how to import Virtual Box Appliance and use the
contained code, please see the README.txt file in attached archive.

The victim system is in its factory state, meaning no security measures
were explicitly disabled or enabled. The custom application responsible for
setting up vulnerable memory structure (/root/Stack_Clash/main.c) is also
capable of delivering malicious payload into the critical memory section.

The compilation process only uses -O0 and -g options to ease GDB in-
spection. They are not relevant to the actual execution of the attack. All
files and commands necessary to form a usable payload are located within
/root/Stack_Clash/shellcode directory.

4.1 Memory structure preparation

The exploitable application first allocates as much heap memory as possible
to reach the stack guard page. The simplest way to achieve this is by looping
heap memory allocations of fixed size buffers until a null pointer is returned
(no space left). Pointers marking position of allocated blocks are stored in an
array for later use.

char ∗ heap po in t e r s [HEAP POINTERS BOTTLENECK] ;
int pointer amount = 0 ;
// Leak the heap memory to reduce the d i s t a n c e between r e g i o n s
do
{

heap po in t e r s [pointer amount] = f i l l h e a p u p (SIZE) ;
} while (heap po in t e r s [pointer amount++]) ;

// Throw away the l a s t u n s u c c e s s f u l p o i n t e r .
pointer amount−−;

27

/root/Stack_Clash/main.c
/root/Stack_Clash/shellcode

4. Demonstration

At this point one of the stored heap pointers is mapped directly beneath
the stack guard page. It does not necessarily have to be the chunk allocated
last, as this solely depends on buffer size and the syscall used during memory
allocation.

By default, for sizes larger than 128KiB, glibc’s malloc uses the mmap()
syscall, this causes the heap to grow downwards – away from the stack. In
order for heap to grow towards the stack, requested sizes have to be smaller
than 128KiB. However, kernel may still switch to the brk() syscall in case the
mmap() allocation is blocked.

We found the brk() syscall to work better for this exploitation as smaller
chunks are more flexible. That is partially why the last allocated pointers in
exploited application are placed to spare locations anywhere in the process
memory.

4.2 Jumping over stack guard page

Our vulnerable application takes any file on input and splits its contents into
separate files (1.4 MiB each to fit a floppy disk7). Before all this happens, the
heap is already bordering on the stack guard page. When the process requests
for 1.4MiB buffer to be ready in a newly created stack frame, the following
leap is more than enough to ignore the 4KiB guard page and land the stack
pointer inside heap address space.

Providing an empty file leaves this buffer unused and causes further stack
expansion requests to invade even further into the attacked memory region.

No other system protection is now preventing the exploitation.

char body [BODY SIZE] ; // s i z e o f (body) −> 1440824 b y t e s

p r i n t f (”> Please ente r path to your f i l e : \n”) ;
f g e t s (f i l e p a t h , s izeof (f i l e p a t h) , s td in) ;
f i l e p a t h [s t r c spn (f i l e p a t h , ”\n”)] = 0 ;

FILE ∗ptr R = fopen (f i l e p a t h , ” rb”) ;

. . .

for (int i = 0 ; i >= 0 ; i++)
{

s i z e t byte s l oaded = 0 ;
byte s l oaded = f r ead (body , 1 , s izeof (body) , ptr R) ;

i f (byte s l oaded <= 0)
break ;

. . .

7The actual floppy disk size is 1,44 megabytes, we decided to use a close approximation
instead.

28

4.3. Exploiting the cross section

By not providing an empty file, the attacker would risk accessing the guard
page which occupies a small percentage of the buffer meant to hold the splits
of the input file. Memory operations affecting structures established after the
leap happen both on stack and heap at the same time.

4.3 Exploiting the cross section

After the file is split, the function responsible for storing the user feedback
is called, thus creating a stack frame in the vulnerable cross section. Now
all memory directives as well as the buffer meant to store the user input are
accessible from the heap. That way we can pass our custom shellcode as user
feedback, knowing it will be stored in a place we can later locate using one or
more previously allocated heap buffers.

char s h e l l c o d e [SHELLCODE SIZE] ;

// Load the s h e l l c o d e .
p r i n t f (”> How would you ra t e my performance ? (26 c h a r a c t e r s)
\n”) ;

f g e t s (she l l c ode , s izeof (s h e l l c o d e) , s td in) ;

To locate our shellcode in the heap, we use the linear search method.
Checking each element of buffers allocated near the stack guard page will
eventually lead us to the exploitable cross section.

for (int i = pointer amount − 1 ; i >=
HEAP POINTERS BORDERLINE; i−−)

{
p = heap po in t e r s [i] ;

for (long unsigned int j = 0 ; j < h e a p a r r a y s i z e ; j++)
{

i f (p [j] != s h e l l c o d e [k])
k = 0 ;

else
{

k++;
i f (s h e l l c o d e [k] == ’ \0 ’)

// Found a match !
. . .

Knowing the stack frame structure, we expect the subroutine return ad-
dress to be slightly above the upper boundary of the user input buffer. In-
serting the shellcode starting address to heap array addressing such location
results in an arbitrary code execution as the function returns. We achieve
this by overwriting 6 values located above the shellcode terminating symbol
(explained in the following chapter).

29

4. Demonstration

for (int g = 1 ; g < 24 ; g=g+4)
{

int o f f s e t = 8 ;
p [j + k + g + 3 + o f f s e t] =

s h e l l c o d e a d d r e s s [0] ;
p [j + k + g + 2 + o f f s e t] =

s h e l l c o d e a d d r e s s [1] ;
p [j + k + g + 1 + o f f s e t] =

s h e l l c o d e a d d r e s s [2] ;
p [j + k + g + 0 + o f f s e t] =

s h e l l c o d e a d d r e s s [3] ;
}

return ;

4.4 Shellcode

The shellcode prepared in the Makefile directive is 26 bytes long and launches
Linux shell via the execve() system call with privileges inherited from the
parent process.

Having a zero stored somewhere in memory is useful in many shellcodes
as it could fill unwanted arguments or terminate strings. Here, applying XOR
on the same register and pushing the result on stack serves as the terminating
symbol for the string that comes afterwards.

; EMPTY EAX
xor eax , eax ; EAX=’0 x00000000 ’ => NULL
push eax

It is possible to launch any other program by inserting its path as the first
execve() argument. Stack grows from higher addresses to lower addresses, thus
the string needs to be reversed to ensure correct interpretation. Also ASCII
representation of program path does not fit the directly executable machine
code format (hexadecimal conversion is required).

In this case “/bin/sh” is only 7 characters long and adjusting it to be a
multiple of four keeps the memory alignment intact. Adding an extra slash in
front of Linux paths is harmless and can serve as filler.

Then by storing the current stack pointer address into the EBX register,
we now have a register containing the pointer to the program path, just as
the execve() requires its first argument to be.

; LOAD EBX(ARG 1 −> cons t char ∗ f i l ename) WITH ’/ bin / sh ’
push 0 x68732f6e ; ”n/ sh ”
push 0 x69622 f2 f ; ”// b i ”
mov ebx , esp

30

4.4. Shellcode

The binary to be executed can be provided with additional environmental
variables and arguments. That is exactly what the other two execve() argu-
ments represent. However, “/bin/sh” does not need additional environmental
values passed; storing an address pointing to zero into EDX register acts as
NULL pointer passed to execve(). The reason we do that is because EAX
notifies the kernel about which syscall the program wants to make, so at the
very end it is necessary to insert execve() syscall number into EAX.

; LOAD EDX(ARG 3 −> char ∗ cons t envp []) WITH ’NULL ’
push eax
mov edx , esp

Even though no arguments are required to launch the shell, common con-
vention requires the first argument to be the filename. In our case, due to the
preceding EAX push, we have the filename pointer already stored in EBX as
well as the NULL pointer signaling no additional shell arguments.

; LOAD ECX(ARG 2 −> char ∗ cons t argv []) WITH ’/ bin /sh , NULL’
push ebx ; PUSH ’// bin /sh , NULL ’ ADDRESS
mov ecx , esp ; LOAD ’// bin /sh , NULL ’ ADDRESS TO ECX

As stated earlier, in order for the kernel to know which system call is
expected, the EAX register has to contain a valid syscall number. A popular
trick amongst security researchers is to access only the lowest bytes of the
zeroed out EAX register and move the system call number there.

To access the lowest byte use %AL reference, to access the lowest two bytes
use %AX reference instead. The highest byte in %AX is referenced by %AH.
When done, interrupt signal 80h (int 80h) invokes the system call stored in
EAX.

; LOAD EAX(execv SYSCALL) WITH ’11 ’
; AL => lower 8 b i t s r e g i s t e r
mov al , 0xb
int 0x80 ; INVOKE INTERRUPT => SERVES AS EXIT

While this shellcode is fairly simple and short, that may not always be
the case. The shellcode complexity scales with task specificity since more
operations and strings are required.

31

Chapter 5

Discussion

In this section we consider the main factors affecting a successful Stack Clash
exploitation in real life scenarios. Since the memory structure is often guarded,
we also discuss the effectiveness and possible bypasses of commonly used pro-
tections. Finally, we talk about helpful tools which make Stack Clash exploit-
ation easier.

Before any tasks of surgical precision take place, it is required to clash
the stack with another memory region. In real scenarios this depends on the
attacked application and the environment it is running in. First of all, it is
helpful to know how large the gap between stack and the nearby memory
region is (this information can be found using /proc/$PID/maps). This way
we know how much memory needs to be allocated and we can proceed with
looking for ways of doing so.

As far as the stack is concerned, it is important to remain cautious while
expanding as the stack guard page could be unintentionally accessed. Common
application flaws misused for desired stack allocations are recursive function
calls, array size data type overflows, or any other exploitable memory handling.
Looking up already discovered and unpatched CVEs for vulnerable libraries
or practices may also suffice in many scenarios.

Not every leak or vulnerability will directly shape the stack structure;
different storing rules apply for files, libraries, dynamic linker, local variables,
or large buffers allocated via malloc. It is important to know which memory
regions are going to be affected and how.

Once the memory regions are bordering one another, it is time to jump
over the stack guard page. In other words, making the subroutine stack frame
large enough to end up in the adjacent memory region.

There are numerous ways to enlarge an ordinary stack frame – passing
large function arguments, requesting copious amounts of local variables and
arrays, or making them consume as much memory as possible.

The fact that two memory regions are adjacent does not mean the stack
pointer is right at their borderline. Being exactly at the border is not necessary

33

/proc/$PID/maps

5. Discussion

if the leap is large enough to swallow the reserved stack space along with the
guard page. However, it is important to know the outline of process memory
at all times. This way we know how the different overhead sizes affect further
exploitations. The rule we followed was, the bigger the leap, the smaller the
chance of alerting the kernel. Allocating an array the size of stack guard page
may not be sufficient to successfully jump into, or let alone exploit adjacent
memory region.

If the application does not allow for another memory allocation after the
leap is done, we have to make sure nothing accesses the addresses for stack
guard page. This means checking whether the process automatically reaches
for certain parts of allocated memory or that the expected safe cross section
address space is correct.

Exploitation is probably the most dynamic part as it relies solely on how
the previous steps were executed and on the current environment set up. The
attacker has two options, either exploit the stack structure by accessing the
invaded region or exploit the invaded region by accessing stack.

Stack exploitation follows the same principles as stack buffer overflow ex-
ploitations. The main important difference is the absence of general direction
limit for data being loaded into buffers. We control most of the section which
is shared with the other region, therefore it is possible to aim at specific dir-
ectives, bypass buffer overflow protections or alter any exposed data.

In reality, the cross section is not always fully editable. Variables and
regions we cannot modify represent the only inaccessible addresses (these ad-
dresses have to be unavailable from both memory regions).

Before exploiting any memory directives, it is necessary to find the address
range mapping stack overlap and identify variables capable of operating within
it. We have to distinguish variables that have been placed in spare memory
parts from the ones allocated in the critical section. Yet again the listed tools
provide hints on how the process fills spare memory; knowing this we can trace
variables matching critical spots.

Unless an attack scenario allows for only successful Stack Clash attempts
due to possible consequences rising from alerting the system, we could fill-in
recognizable values to ease application analysis through the hooked debugger
and narrow down the list of variables.

The danger of the kernel finding out does not end with jumping over the
stack guard page. Since the exploitations are often inspired by common soft-
ware memory attacks, they are also affected by common memory protections
(although bypassing them is often much easier).

5.1 ASLR

ASLR proves to be a universal memory protection because our exploit can-
not rely on specific addresses determined beforehand. It is always required

34

5.2. DEP

to either recalculate the address based on current randomization scheme or
reference commonly used memory waypoints (stack pointer, base pointer, or
other registries).

Not only does ASLR affect the shellcode structure, but also the ever-
changing addresses may disrupt our search for the vulnerable cross section.
The layout of the randomized memory space is crucial to break ASLR protec-
tion, for this reason the /proc/$PID/maps file is available only to the process
and its owner.

5.2 DEP

Data execution prevention restricts where we can inject executable code. Cer-
tain memory regions are flagged as non-executable either by the NX bit or by
additional memory segmentation.

Disabling DEP on Linux is not as easy as on Microsoft Windows. Data
execution prevention directives are stored in the system boot configuration and
require reboot with altered parameters to disable it. However, it is possible to
mark stack as executable by, for example, recompiling the code using gcc and
passing ’execstack’ keyword to linker (’gcc -z execstack vulnerable code.c’).

Execstack is a standalone program which sets, clears, or queries execut-
able stack flag for ELF binaries and shared libraries. It exists partially for
compatibility reasons, to avoid breaking binaries requiring executable stack.

Bypassing DEP protection relies on the construction of a ROP chain or pla-
cing the arbitrary code into an executable memory region. Fully loaded glibc
library, too, allows arbitrary code execution through the system() function.
In any case, we need to control the return address of vulnerable subroutine
to either kick-start the ROP chain or redirect program flow to the arbitrary
code. Fortunately for system administrators, disabling DEP during run time
is impossible on most Linux distributions.

5.3 StackGuard

StackGuard inserts a canary word on stack just after the function return
address. This value is checked for edits before process initiates a subroutine
return. When overflowing any buffer, this poses a major threat as we would
be forced to guess the value and parse it into our shellcode or set up a scenario
where the memory alignment allows to ignore canary completely.

A vulnerable cross section allows us to access and edit specific addresses
without the restrictions of general direction for filling data into buffers on
stack. This requires locating the return address in memory region opposing
to stack and directly editing its value. That way the canary stays intact and
no exceptions are raised.

35

/proc/$PID/maps

5. Discussion

Canary is also relevant when invading stack into the clashed region. Any
operation (automatic or intentional) editing the canary results into process
termination, once the damaged subroutine stack frame tries to return control.

5.4 Stack guard page

Unlike any previous protections, Stack guard page was specifically designed to
prevent the stack from reaching into other memory regions. If stack pointer
ends up in the stack guard page and the page-fault handler cannot expand
the stack any further, the process is terminated.

In theory, this protection is sufficient when guard pages are large enough to
prevent stack from jumping over. Unfortunately, the current trade-off between
security and performance is responsible for performance downgrade as well as
no real protection being implemented.

Larger guard pages cause significant memory fragmentation and a lot more
consuming allocations after stack expands. On the other hand, a page of only
few kilobytes is easy to jump over and the allocations still slow down execution.

By increasing the stack guard page size the attack complexity also in-
creases. Exploited stack frame or buffer now has to scale in size in order
to successfully leap over it and that may not be possible in all applications.
Moving stack pointer as close to the stack edge as possible before attempting
the leap may be the deciding factor whether the leap is successful or not.

5.5 Stack probing

Stack probing in combination with Stack guard pages is the ultimate solution
to Stack Clash, however it is very expensive in terms of process execution
time.

If there is no guard page to probe into, the system can’t successfully detect
memory region breach as there is nowhere to the trigger kernel from, except
for other possible crucial directives in invaded regions.

As far as operating systems are concerned, the reason why Stack Clash
exploit was discovered and presented on many UNIX-based systems and not
Microsoft Windows, for example, is that stack is probed automatically on
Windows without the user or programmer having to explicitly say so. Another
big factor are the tools and information available. Microsoft does not have
their source code listed on-line except for the MSDN documentation, thus
making it harder for security researchers to look for specific loopholes allowing
such an exploitation.

36

5.6. Tools

5.6 Tools

The tools used to setup Stack Clash environment were GDB and the /proc/

$PID/maps file. Attaching GDB to the exploited binary helps with under-
standing the particular virtual address space. It is also possible to insert
breakpoints and manually control program steps, which enables monitoring of
specific values in a controlled manner.

Linux stores runtime system information in the /proc virtual filesystem;
directories named after process ID contain crucial information about the iden-
tified process, such as command line arguments or held memory. The /proc/

$PID/maps file is especially useful for Stack Clash exploitation as it contains
marked address range of heap and stack as well as memory maps to execut-
ables or library files.

37

/proc/$PID/maps
/proc/$PID/maps
/proc
/proc/$PID/maps
/proc/$PID/maps

Conclusion

We have researched the process memory structure as well as its core principles.
Research was focused on significant memory regions and their inner workings.

Later we have analyzed common software memory attacks and discussed
their effectiveness against known protection mechanisms. Discussed attacks
and protections inspire the actual Stack Clash exploitation.

We have researched the Stack Clash vulnerability and its exploitation vec-
tors. Conditions affecting the execution of the attack were discussed along
with evaluation of various software memory protections. We have described
the mechanisms allowing for Stack Clash to be exploited on various systems
and highlighted why some are not affected.

We have prepared a virtual image of Stack Clash vulnerable system con-
taining custom exploitable application. Results of our proof-of-concept demon-
stration show that the system has insufficient security measures applied by
default and it is possible to execute arbitrary code by exploiting Stack Clash
vulnerability. Custom application makes the demonstration easier to under-
stand and maximize Stack Clash potential. Key steps in the proof-of-concept
demonstration mentioned above and their real world variations were also dis-
cussed in the last chapters.

Due to the insufficient protections enabled on victim system, the automatic
stack expansion mechanism can move the stack pointer to adjacent memory
region. We have allocated all available memory for the heap memory structure
in order to clash stack with other region. That way, when a large stack buffer
is requested, it is possible to modify or read heap memory from the stack in
the shared memory chunk and vice versa.

By rewriting a stack frame return address located in shared memory sec-
tion using heap-addressed memory we executed a payload which was already
stored in the process memory as external input.

The payload used was written in machine code; it executes an avail-
able command line interpreter. A Makefile with commands to form custom
shellcode payload is also present in the shellcode directory as well as a C source

39

Conclusion

code available to test its functionality.
We have created another Makefile with commands to simplify the com-

pilation process of the vulnerable application and also to execute the proof-
of-concept demonstration. This Makefile could also manipulate with address
space layout randomization and application functionality by removing assist-
ing functions.

More advanced Stack Clash demonstration is a subject for future work.
Further improvements may be achieved by clashing two memory regions by
exploiting existing environment shortcomings rather than artificially filling
the virtual address space. Exploitation itself could be performed on a built-in
application to dismiss doubts about Stack Clash occurrence. Also, in fur-
ther analysis, bypassing all state-of-the-art protections used to prevent other
similar types of attacks can be achieved.

40

Bibliography

[1] MMAP(2) Linux Programmer’s Manual, 2017.

[2] Adrián. How Effective is ASLR on Linux Systems?, 2013. Accessed:
5th February 2018.
URL https://securityetalii.es/2013/02/03/how-effective-is-
aslr-on-linux-systems/

[3] blexim. Basic Integer Overflows, 2002. Accessed: 22nd April 2018.
URL http://phrack.org/issues/60/10.html

[4] Block, Frank and Dewald, Andreas. Linux memory forensics: Dis-
secting the user space process heap. Digital Investigation, 22:S66 – S75,
2017. ISSN 1742-2876. doi:https://doi.org/10.1016/j.diin.2017.06.002.
URL http://www.sciencedirect.com/science/article/pii/
S1742287617301895

[5] Brain, Marshall. The Basics of C Programming, 2000. Accessed: 24th
March 2018.
URL https://computer.howstuffworks.com/c29.htm

[6] Bryant, Randal E. and OHallaron, David R. Computer systems: a
programmers perspective. Pearson Education, 2016. ISBN 013409266X.

[7] Cormen, Thomas H. and Leiserson, Charles E. Introduction to al-
gorithms. 2009, 3rd ed. ISBN 9780262033848.

[8] Cowan, Crispin, Pu, Calton, Maier, Dave, Hintony, Heather, Wal-
pole, Jonathan, Bakke, Peat, Beattie, Steve, Grier, Aaron, Wagle,
Perry, and Zhang, Qian. StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-overflow Attacks. In Proceedings of the 7th
Conference on USENIX Security Symposium - Volume 7, SSYM’98, pp.
5–5. Berkeley, CA, USA: USENIX Association, 1998.
URL http://dl.acm.org/citation.cfm?id=1267549.1267554

41

https://securityetalii.es/2013/02/03/how-effective-is-aslr-on-linux-systems/
https://securityetalii.es/2013/02/03/how-effective-is-aslr-on-linux-systems/
http://phrack.org/issues/60/10.html
http://www.sciencedirect.com/science/article/pii/S1742287617301895
http://www.sciencedirect.com/science/article/pii/S1742287617301895
https://computer.howstuffworks.com/c29.htm
http://dl.acm.org/citation.cfm?id=1267549.1267554

Bibliography

[9] Delalleau, Gaël. Large memory management vulnerabilities, 2005. Ac-
cessed: April 23rd 2018.
URL https://cansecwest.com/core05/memory_vulns_delalleau.pdf

[10] Etalabs. What is Overcommit? And why is it bad? Accessed: 9th April
2018.
URL https://www.etalabs.net/overcommit.html

[11] Feifei, Liu. The principle and prevention of windows buffer overflow.
2012 7th International Conference on Computer Science & Education
(ICCSE), 2012. doi:10.1109/iccse.2012.6295299.

[12] Ganz, J. and Peisert, S. ASLR: How Robust Is the Randomness? In
2017 IEEE Cybersecurity Development (SecDev), pp. 34–41. 2017. doi:
10.1109/SecDev.2017.19.

[13] Gorman, Mel. Understanding the Linux Virtual Memory Manager. Up-
per Saddle River, NJ, USA: Prentice Hall PTR, 2004. ISBN 0131453483.

[14] Gribble, Paul. 7. Memory : Stack vs Heap, 2012. Accessed: 14th
March 2018.
URL https://www.gribblelab.org/CBootCamp/7_Memory_Stack_vs_
Heap.html

[15] Gujrathi, Siddharth. Heartbleed Bug: AnOpenSSL Heartbeat Vulnerab-
ility. International Journal of Computer Science and Engineering, 2(5),
2014. Accessed: 29th April 2018.
URL http://www.ijcseonline.org/pub_paper/IJCSE-00277.pdf

[16] Joshi, H. P., Dhanasekaran, A., and Dutta, R. Impact of software
obfuscation on susceptibility to Return-Oriented Programming attacks. In
2015 36th IEEE Sarnoff Symposium, pp. 161–166. 2015. doi:10.1109/
SARNOF.2015.7324662.

[17] Kapil, Dhaval. Heap Exploitation. Accessed: 20th March 2018.
URL https://heap-exploitation.dhavalkapil.com/attacks/
double_free.html

[18] Kokeš, Josef. Buffer overflow II. Accessed: 13th March 2018.
URL https://edux.fit.cvut.cz/courses/BI-BEK/en/tutorials/04/
start

[19] Lǐska, Martin. WindowsGCCImprovements. Accessed: 21st March 2018.
URL https://gcc.gnu.org/wiki/WindowsGCCImprovements

[20] Love, Robert. Linux systems programming. O’Reilly, 2007. ISBN
1449339530.

42

https://cansecwest.com/core05/memory_vulns_delalleau.pdf
https://www.etalabs.net/overcommit.html
https://www.gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html
https://www.gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html
http://www.ijcseonline.org/pub_paper/IJCSE-00277.pdf
https://heap-exploitation.dhavalkapil.com/attacks/double_free.html
https://heap-exploitation.dhavalkapil.com/attacks/double_free.html
https://edux.fit.cvut.cz/courses/BI-BEK/en/tutorials/04/start
https://edux.fit.cvut.cz/courses/BI-BEK/en/tutorials/04/start
https://gcc.gnu.org/wiki/WindowsGCCImprovements

Bibliography

[21] Microsoft. Data Execution Prevention. Accessed: 25th March 2018.
URL https://msdn.microsoft.com/en-us/library/windows/
desktop/aa366912(v=vs.85).aspx

[22] Microsoft. Thread Stack Size. Accessed: 20th March 2018.
URL https://msdn.microsoft.com/en-us/library/windows/
desktop/ms686774(v=vs.85).aspx

[23] Microsoft. Virtual Address Space. Accessed: 20th March 2018.
URL https://msdn.microsoft.com/en-us/library/windows/
desktop/aa366912(v=vs.85).aspx

[24] Oracle. Procedure Linkage Table (Processor-Specific), 2011. Accessed:
23rd March 2018.
URL https://docs.oracle.com/cd/E23824_01/html/819-0690/
chapter6-1235.html

[25] Oracle. Global Offset Table (Processor-Specific), 2013. Accessed: 23rd
March 2018.
URL https://docs.oracle.com/cd/E26505_01/html/E26506/
chapter6-74186.html

[26] OWASP. Buffer Overflow. Accessed: 21st March 2018.
URL https://www.owasp.org/index.php/Buffer_Overflow

[27] Patterson, David A., Hennessy, John L., and Alexander, Perry.
Computer organization and design: the hardware/ software interface.
Morgan Kaufmann, 2015. ISBN 0124077269.

[28] Plakosh, Daniel. Guard Pages, 2005. Accessed: 12th February 2018.
URL https://www.us-cert.gov/bsi/articles/knowledge/coding-
practices/guard-pages

[29] Qualys. Qualys Security Advisory - The Stack Clash, 2017. Accessed:
20th March 2018.
URL https://www.qualys.com/2017/06/19/stack-clash/
stack-clash.txt?_ga=2.150510975.857216057.1521568060-
220708518.1511971769

[30] Riel, Rik van and Morreale, Peter W. sysctl.
URL https://www.kernel.org/doc/Documentation/sysctl/vm.txt

[31] Sploitfun. Heap overflow using unlink, 2015. Accessed: 21st April
2018.
URL https://sploitfun.wordpress.com/2015/02/26/heap-
overflow-using-unlink/

43

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366912(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366912(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366912(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366912(v=vs.85).aspx
https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-1235.html
https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-1235.html
https://docs.oracle.com/cd/E26505_01/html/E26506/chapter6-74186.html
https://docs.oracle.com/cd/E26505_01/html/E26506/chapter6-74186.html
https://www.owasp.org/index.php/Buffer_Overflow
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/guard-pages
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/guard-pages
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt?_ga=2.150510975.857216057.1521568060-220708518.1511971769
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt?_ga=2.150510975.857216057.1521568060-220708518.1511971769
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt?_ga=2.150510975.857216057.1521568060-220708518.1511971769
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://sploitfun.wordpress.com/2015/02/26/heap-overflow-using-unlink/
https://sploitfun.wordpress.com/2015/02/26/heap-overflow-using-unlink/

Bibliography

[32] Sploitfun. Understanding glibc malloc, 2015. Accessed: 22nd April
2018.
URL https://sploitfun.wordpress.com/2015/02/10/
understanding-glibc-malloc/

[33] Stallman, Richard M. Debugging with GDB: the GNU source-level de-
bugger. GNU Press, 2003, 9th ed. ISBN 1882114884.

[34] Vaidyam, Aditya. How do you disable ASLR (address space layout
randomization) on Windows 7 x64? Accessed: 24th March 2018.
URL https://stackoverflow.com/questions/9560993/how-do-you-
disable-aslr-address-space-layout-randomization-on-windows-

7-x64

[35] Younan, Yves, Joosen, Wouter, and Piessens, Frank. Efficient Pro-
tection Against Heap-based Buffer Overflows Without Resorting to Ma-
gic. In Proceedings of the 8th International Conference on Information
and Communications Security, ICICS’06, pp. 379–398. Berlin, Heidel-
berg: Springer-Verlag, 2006. ISBN 3-540-49496-0, 978-3-540-49496-6.
doi:10.1007/11935308 27.
URL http://dx.doi.org/10.1007/11935308_27

44

https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://stackoverflow.com/questions/9560993/how-do-you-disable-aslr-address-space-layout-randomization-on-windows-7-x64
https://stackoverflow.com/questions/9560993/how-do-you-disable-aslr-address-space-layout-randomization-on-windows-7-x64
https://stackoverflow.com/questions/9560993/how-do-you-disable-aslr-address-space-layout-randomization-on-windows-7-x64
http://dx.doi.org/10.1007/11935308_27

Appendix A

Acronyms

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASLR Address Space Layout Randomization

BSD Berkeley Software Distribution

CPU Central processing unit

CVE Common Vulnerabilities and Exposures

DEP Data Execution Prevention

EAX Extended Accumulator register

EBP Extended Base pointer

ECX Extended Count register

EDX Extended Data register

EIP Extended Instruction pointer

ESP Extended Stack pointer

FIFO First In First Out

GDB GNU Project debugger

glibc GNU C Library

GOT Global Offset Table

KiB Kibibyte

LIFO Last In First Out

45

A. Acronyms

MiB Mebibyte

MSDN Microsoft Developer Network

PID Process identification number

ROP Return-Oriented Programming

URL Uniform Resource Locator

VDSO virtual dynamic shared object

XOR Exclusive Or

46

Appendix B

Contents of the enclosed SD

readme.md.....................................SD contents description
src..source files

proof of concept...........................implementation sources
code.....................................application related files

main.c application source code
Makefile....Makefile for operating with vulnerable application
empty image.svg....... empty file used in exploitation process
sample.txt.........file to test core function of the application

shellcode shellcode directory
shellcode execution.c.............code for shellcode testing
execve.nasm.............................. shellcode assembly
Makefile................Makefile for operating with shellcode

Debian 8.5 i386 - Stack Clash.ova......VirtualBox appliance
README.txt...............demonstration description and tutorial

thesis thesis LATEX source code
text..thesis text directory

thesis.pdf...................................thesis in PDF format

47

	Introduction
	Process memory
	Process
	Address space
	Processor registers
	Memory regions

	Software memory attacks
	Stack buffer overflow
	Heap buffer overflow
	Denial of service by memory exhaustion
	Heartbleed
	Protection

	Stack Clash
	Problems of Automatic stack expansion
	Guard Page
	Exploitation
	Protection

	Demonstration
	Memory structure preparation
	Jumping over stack guard page
	Exploiting the cross section
	Shellcode

	Discussion
	ASLR
	DEP
	StackGuard
	Stack guard page
	Stack probing
	Tools

	Conclusion
	Bibliography
	Acronyms
	Contents of the enclosed SD

