
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 31, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: OpenPonk: an Implementation of a Parser and Interpreter of OCL

 Student: Jakub Svoboda

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2018/19

Instructions

1. Acquaint yourself with the OCL language, the Pharo language and environment and the OpenPonk
platform.
2. Design and implement an OCL parser for Pharo, including appropriate tests.
3. Integrate the parser into the OpenPonk platform.
4. Demonstrate the parser on a case study of ensuring OntoUML model constraints.

References

http://pharo.org
https://openponk.github.io
https://modeling-languages.com/ocl-tutorial/
http://www.omg.org/spec/OCL/

Bachelor’s thesis

OpenPonk: an Implementation
of a Parser and Interpreter of OCL

Jakub Svoboda

Department of Computer Science

Supervisor: Ing. Robert Pergl, Ph.D.

May 14, 2018

Acknowledgements

I would like to sincerely thank my supervisor, Ing. Robert Pergl, Ph.D., for
providing me with valuable feedback and guiding me throughout the whole
implementation and writing process. I am also grateful to Bc. Peter Uhnák
for helping me with OpenPonk and Pharo. Finally I owe my deepest gratitude
to my parents, Ivo and Zuzana, for their never-ending support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as school work under the
provisions of Article 60(1) of the Act.

In Prague on May 14, 2018 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2018 Jakub Svoboda. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Svoboda, Jakub. OpenPonk: an Implementation
of a Parser and Interpreter of OCL. Bachelor’s thesis. Czech Technical Uni-
versity in Prague, Faculty of Information Technology, 2018.

Abstrakt

Tato bakalářská práce se zabývá návrhem a implementaćı syntaktické analýzy
a interpreta OCL jazyka pro OpenPonk modelovaćı platformu v prostřed́ı
Pharo. Nejdř́ıve se v práci popisuje OCL jazyk, algoritmy syntaktické analýzy,
nástroje pro syntaktickou analýzu, které jsou dostupné ve Pharo prostřed́ı
(PetitParser, SmaCC). Dále se práce zabývá analýzou problémů a řešeńı, které
vedly k výsledné implementaci OCL interpreta. Nakonec se funkčnost OCL
interpreta ukáže na dodržováńı OntoUML modelových omezeńı.

Kĺıčová slova OCL, parser, interpret, Pharo, Openponk, OntoUML,
SmaCC, PetitParser

vii

Abstract

This bachelor thesis covers the creation of an OCL parser and interpreter for
OpenPonk modeling platform in the Pharo environment. We describe the
OCL language, parsing algorithms and parsing frameworks avaiable in Pharo
(PetitParser, SmaCC). We then analyze problems and approaches that led
to the final implementation of the OCL interpreter. In the end we show the
interpreter functionality on OntoUML metamodel constraints.

Keywords OCL, parser, interpreter, Pharo, Openponk, OntoUML,
SmaCC, PetitParser

viii

Contents

Introduction 1
Goal . 1
Thesis Structure . 2

I Review 5

1 Object Constraint Language 7
1.1 Expressions . 7
1.2 Context Declarations . 9
1.3 Standard Library . 11
1.4 Type Conformance . 14

2 Parsing 15
2.1 LL parsers . 16
2.2 LR parsers . 16
2.3 Parser Combinators . 17
2.4 Scannerless Parsers . 17
2.5 Parsing Expression Grammars 18
2.6 Packrat Parsing . 18

3 Pharo 19
3.1 Syntax . 19
3.2 Development Environment . 21

4 Pharo’s parser frameworks 23
4.1 PetitParser . 23
4.2 SmaCC . 24

ix

II Practical Part 29

5 Analysis and Design 31
5.1 Using an LL parser . 31
5.2 Using PetitParser . 32
5.3 Using SmaCC . 32
5.4 Final solution . 33

6 Implementation 37
6.1 Core Package . 38
6.2 CST Package . 38
6.3 AST Package . 39
6.4 AST-Expressions Package . 40
6.5 AST-Types Package . 41
6.6 AST-Values Package . 42
6.7 ErrorHandling Package . 42
6.8 Testing Package . 43
6.9 Interpreting . 43

7 Testing 47
7.1 Unit and Integration Tests . 47
7.2 OntoUML Use Case . 49

Conclusion 55

Bibliography 57

A Handwritten OCL Grammar 59

B Acronyms 65

C User Guide 67
C.1 Linux . 67
C.2 Windows . 67
C.3 Mac . 68

D Contents of enclosed USB 69

x

List of Figures

3.1 The System Browser . 21
3.2 The Inspector . 22

4.1 The PetitParser Browser . 24
4.2 The SmaCC Parser Generator . 25

6.1 The activity diagram of the OCL interpretation process 45

7.1 Pharo Test Runner running the implemented tests 49
7.2 Inspecting result of evaluating a valid model 52
7.3 Modified model . 52
7.4 The error message when evaluating the constraint on the modified

model . 53

xi

List of Tables

3.1 Showcase of Pharo syntactical elements 20

xiii

Introduction

Conceptual modeling is an important part of the analysis, design and im-
plementation life-cycle of any moderately complex software product. Things
being modeled range from business processes, use cases, database and class
architectures to system overviews and more. One of the most widespread stan-
dard for creating these models and diagrams is the Unified Modeling Language
(UML) developed by the Object Managment Group (OMG).

One problem with UML (and basically any graphical notation) is that there
is no way to express some of the more complex relationships, constraints or
invariants that are important in the system or concept being modeled. The
answer to this problem is the Object Constraint Language (OCL) also devel-
oped by OMG. It enables the modeler to specify conditions and invariants on
the model using expressions and context declarations. These can range from
simple conditions on instance models to complex definitions and invariants
performed on metamodels.

There are many applications that help with the creation of UML models. One
of them is the OpenPonk modeling platform that is implemented in Pharo.
OpenPonk is being developed by the Center for Conceptual Modeling and
Implementation (CCMi) group at the Faculty of Information Technology at
the Czech Technical University. What the OpenPonk platform lacks in its
current state, is an OCL interpreter that could evaluate OCL expressions and
constraints. Which brings us to the goal of this thesis. . .

Goal

The goal of this thesis is to implement a functional OCL interpreter in the
Pharo environment. Then integrate the interpreter in the OpenPonk modeling
platform and showcase the interpreter on a case study of ensuring OntoUML

1

Introduction

model constraint. After a discussion with the thesis supervisor, we came to a
conclusion that it is enough to create an interpreter that is capable of parsing
and evaluating a subset of all the OCL language expressions. Creating an
interpreter, that could parse and evaluate any and all OCL expressions and
context declarations, would be too time consuming and out of the scope of this
thesis. What is necessary is to show that creating a fully featured interpreter
can be reasonably accomplished if given enough time and provide a foundation
that could be extended upon.

Thesis Structure

In this section we look on the overall structure of the thesis and a short
description of the topics for each chapter.

Object Constraint Language

In this chapter we shortly describe the purpose of OCL. We look into what
OCL expressions are possible, what context declarations there are and what
is their function. Finally we look into the OCL standard Library which has
to be avaiable for any OCL interpreter to be successfully implemented. The
purpose of this chapter is for the reader to get familiar with the OCL language
good enough, so that he or she is capable of reading and telling the meaning
of OCL expressions or context declarations.

Parsing

In this chapter we learn about the basic theory necessary to understand what
is going on behind the scenes of parsers and parser frameworks. We learn
about the more traditional Left to right, Leftmost derivation (LL) parsers
and Left to right, Rightmost derivation (LR) parsers and LR variants like
Look-Ahead LR (LALR) parsers and Generalized LR (GLR) parsers. We also
look into some alternative methodologies.

Pharo

Here we briefly introduce Pharo and its environment. We mainly go over its
syntax and some of the development tools.

Pharo’s parser frameworks

In this chapter we get familiar with the two avaiable parser frameworks used
in Pharo, PetitParser and Smalltalk Compiler-Compiler (SmaCC). We look
into how they are used and what their debugging tools are. We go a little more
in depth with SmaCC as it comes with its own syntax for writing a language
grammar.

2

Thesis Structure

Analysis and design

Here we go over the thought process that lead to the final design and imple-
mentation of the OCL interpreter. We talk about approaches that were tried
during the implementation and why some of them did not work.

Implementation

In this chapter we look on the final implementation architecture. We go
over the packages that the implementation is divided in and the classes these
packages contain and how they are used. After that follows an overview of
the interpretation process.

Testing

In the final chapter we discuss unit and integration tests that were imple-
mented. We also describe OntoUML and demonstrate the OCL interpreter
functionality on upholding an OntoUML metamodel constraint of our selec-
tion.

3

Part I

Review

5

Chapter 1
Object Constraint Language

To implement an interpreter for the OCL language we first must know what
the OCL language is. What does the syntax looks like? What expressive
power does the language offer us? To answer these questions we will introduce
the OCL language in this chapter. We will go over the different kinds of
the language expressions and context declarations. We will also introduce
some basic types, collection types and predefined iterators which make up the
standard library. In this chapter I have been using information from the OCL
specification [16], other sources will be explicitly referenced.

The OCL language is used with UML models as a complement to help specify
constraints like context invariants and operation preconditions and postcondi-
tions. It can also specify the results and bodies of operations and specify how
a certain attribute’s value can be derived from the model. With this a designer
can more concretely specify aspects of the system that would be impossible
with pure UML. This can then help in model-driven engineering (MDE), bet-
ter quality code generation or expressing well-formdness rules. It helps solve
the natural langugage ambiguity and the graphical notation limitations. [7]
[8]

The OCL language is a declarative language without side-effects, that means
that a model is in the same state as it was before evaluating any OCL code.

1.1 Expressions

Expressions are a way of referencing or computing a value. Every expression
has a type. They are used in all of the context declarations.

7

1. Object Constraint Language

1.1.1 Literal Expressions

Literals directly represent a value. They are instances of some type, or in the
case of a type literal expression they can also be a reference to an instance
of a metatype. There are numeric, boolean, null, invalid, string, collection,
enum and type literals.

Example: 5, true, ’string’, 90.4, null, Integer

1.1.2 Navigation Calls

Navigation calls are used to access attributes and associations of objects and
types. Their value and type is computed from the attribute value of the
current instance.

Example: anObject.attribute, aCollection->attribute

1.1.3 Operation Calls

Since OCL is a side-effect free language, operation calls cannot call just any
operation. The only permitted operations are queries, which are side-effect
free. Every operation has a return type, which is the resulting type of the op-
eration call. The value of the operation call is the resulting value of the query.
Operations can have one or more arguments, which is a comma separated list
of expressions.

Example: anObject.operation(), aCollection->operation(4, true)

1.1.4 Collection Iterators

Collection iterators provides us with the ability to perform high-level itera-
tions on collections. Iterator expressions have two optional iterator variables.
Some iterator expression require two to be explicitly declared. Most iterator
expressions work with one iterator variable, which can be implicit. The itera-
tor expressions are predefined in the standard library. The resulting value and
type depends on the return value and type of the iterator itself, also defined
in the standard library.

Example: aCollection->collect(iterator | iterator.attribute)

1.1.5 Let Expression

The let expression allows us to define helper variables for one following expres-
sion. The defined variables only exist in the scope of this following expression.
Also the type and value of the let expression is the resulting type and value
of the following expression.

8

1.2. Context Declarations

Example: let x: Integer = 0 in x + x

1.1.6 If Expression

The if expression allows us to do control flow. It evaluates the condition
expression which must conform to Boolean (Type conformance is described in
1.4). If the condition expression’s value is true, the resulting value and type
are computed from the then expression, otherwise they are calculated from
the else expression.

Example: if true then 1 else 0 endif

1.1.7 Message Expression

A special expression that is avaiable only in operation postconditions (dis-
cussed in subsection 1.2.2). There are two variants of the message expressions,
one with the following syntax: objectˆoperate(1, true), which results in
true if the operation operate was called with the arguments 1 and true on
the object during the execution of the context operation, false otherwise.
Second variant is the objectˆˆoperate(1, true), which returns a collection
of a special OCL type OclMessage. The OclMessage can be then queried for
result information for example.

1.1.8 @pre

The @pre expression can also be only used in operation postconditions. If we
want to access an attribute’s original value, before the context operation was
called, we just write the @pre after the attribute name.

Example: anObject.speed @pre

1.2 Context Declarations

Context declarations are used to specify some constraints or define some ad-
ditional attributes or operations on a context. The context can be a domain-
specific element or it can be a metamodel-specific element like a Classifier or
an Operation. The context declarations are bound to this element which is
referred to as the context type.

1.2.1 Invariants

Context invariants are used to define some constraints on a context type.
They are used to constraint the type’s attributes and and the attributes of
any reachable association. For a context invariant to be true the constraint

9

1. Object Constraint Language

must be valid for every instance of the type. The invariant expression’s type
must conform to Boolean.
context ContextName
inv OptionalInvariantName: OCLExpression

Listing 1.1: Context invariant declaration

1.2.2 Operation Conditions

Operation pre- and postconditions are used to define operation contracts.
What is specified in a precondition must be true when the operation is being
called. The postcondition must be true when the given operation returns.
Each operation can have more than one pre- and postcondition defined. The
conditions can have an optional name. The condition expression’s type must
conform to Boolean.
context ContextName::OperationName(ArgumentName: Type, ...): Type
pre OptionalPreName: OCLExpresion
post OptionalPostName: OCLExpression

Listing 1.2: Operation pre- and postcondition

1.2.3 Operation Bodies

Operation body is used to specify the result of an operation. Since the whole
body is an OCL expression, that means that the operation is without side
effects and thus is a query. Because queries can be used in OCL expressions,
any operation with a defined operation body can be used in other OCL expres-
sions as well. The type of the result must conform to the operation’s return
type.
context ContextName::OperationName(ArgumentName: Type, ...): Type
body: OCLExpression

Listing 1.3: Body declaration

1.2.4 Initial and Derived Values

With this context decleration we can specify initial and derived values for
attributes of the context type. With an initial value we specify what value
the attribute must have upon creation of the context type instance. With
a derived value we specify the value of the attribute at any given time. An
attribute can have both initial and derived value specified, but in that case
they must not be contradictory. The initial and derived expression’s type
must conform to the attribute’s type.

10

1.3. Standard Library

context ContextName::AttributeName: Type
init: OCLExpression
derive: OCLExpression

Listing 1.4: Initial and derived value declaration

1.2.5 Operation and Attribute Definitions

Definitions allow us to define a helper attribute or an operation on the context
type. Definitions can be instance scoped or static.
context ContextName
def: AttributeName: Type = OCLExpression
static def: OperationName(ArgumentName: Type, ...): Type = OCLExpression

Listing 1.5: Attribute and operation defined on Classifier

1.3 Standard Library

The standard library defines number of types and their operations. For col-
lection types it also defines a number of predefined iterators. Every type is
an instance of some metatype. Any complete implementation of the OCL
language must include this library.

1.3.1 Basic Types

1.3.1.1 Real

Represents a real number. Instance of the PrimitiveType metatype (from
UML).

Example operations: +, -, *, /, floor()

1.3.1.2 String

Represents a sequence of characters. The characters can consist of non-Roman
alphabet characters. Instance of the PrimitiveType metatype (from UML).

Example operations: concat(), size(), substring()

1.3.1.3 Boolean

Represents a boolean. The only two instances are true and false. Instance
of the PrimitiveType metatype (from UML).

Example operations: and, not, xor, or, implies

11

1. Object Constraint Language

1.3.1.4 Integer

Represents an integer number. Instance of the PrimitiveType metatype (from
UML).

Example operations: +, -, *, /, abs()

1.3.1.5 UnlimitedNatural

Represents any whole non-negative number. Used to represent the multiplicity
of an association. It differs from an Integer in that it can hold the value *,
which means unlimited. Instance of the UnlimitedNaturalType metatype.

Example operations: +, /, *

1.3.1.6 OclAny

OclAny acts as supertype to all the other types in the way that all types
conform to it and also any property that is defined on OclAny is also defined
on all the other types, without them actually inheriting from OclAny. OclAny
then represents any object. Instance of the AnyType metatype.

Example operations: oclIsKindOf(), oclType(), oclAsType()

1.3.1.7 OclInvalid

Contradictory to OclAny, the OclInvalid type is a type that conforms to all
the other types. The only instance is invalid. The rule is that any navigation
or operation call on invalid results in invalid. The operations defined on
OclAny and logical operators are an exception to this rule. Represents an
invalid value that can be the result of some error, e.g. not all types in an
expression conform correctly (e.g. we cannot compare a Boolean with an
Integer). Instance of the InvalidType metatype.

1.3.1.8 OclMessage

Represents the result of calling and operation on or sending a signal to an ob-
ject. The type itself is templated. The types are specified with the operation.
Because there is an infinite number of possible operation signatures, there is
also an infinite number of the OclMessage types. Instance of the metatype
MessageType.

Example operations: hasReturned(), result(), isOperationCall(),
isSignalSent()

12

1.3. Standard Library

1.3.1.9 OclVoid

OclVoid is a type that conforms to all the other types, except OclInvalid.
The only instance is null. As with OclInvalid any navigation or operation
call performed on null results in invalid, except the properties defined on
OclAny and the logical operators. Represents an unassigned or undefined
value.

1.3.2 Collection Types

All the collection types are parametrized template types. They have an el-
ement type template argument. The element type can be any other type
including collections themselves. That means that all the possible collection
types cannot be instantiated at once, since we can keep recursively defining
the element type as some collection type.

1.3.2.1 Collection(T)

An abstract superclass to the four other collection types. Defines common
attributes and operations. Instance of the metatype CollectionType.

Example operations: size(), includes(), isEmpty()

1.3.2.2 Set(T)

Represents a mathematical set, i.e. no element is contained in the set more
than once. Instance of the metatype SetType.

1.3.2.3 Bag(T)

A bag can contain more than one occurence of the same element and does not
order its elements in any way. Instance of the metatype BagType.

1.3.2.4 Sequence(T)

The Sequence type allows duplicates, but orders its elements. Instance of the
metatype SequenceType.

1.3.2.5 OrderedSet(T)

A set whose elements are ordered. Altough it shares the properties of a Set
and a Sequence it inherits from neither. Inherits from Collection. Instance of
the metatype OrderedSetType.

13

1. Object Constraint Language

1.3.3 Predefined Iterators

Important part of the standard library is the definition of iterators for the
collection types. As have been previously stated they allow us to do high-level
iteration operations on collections and except a few(like the union) most are
defined on all collection types. Some examples of the predefined iterators:
any, select, reject, collect, exists, forAll, isUnique, union.

1.4 Type Conformance

OCL is a statically typed language and each expression has its own type. An
expression where all the types conform is a valid expression. When a type A
conforms to a type B it means that the instance of type A can be substituted
in place of an instance of type B.

The type conformance rules for domain specific classes are the following:

• A type conforms to itself
• A type conforms to its supertype
• Type conformance is transitive, i.e. if type T1 conforms to type T2 and

T2 conforms to type T3, then T1 conforms to T3

Collection types Set(T1), OrderedSet(T1), Bag(T1) and Sequence(T1) con-
form to any Collection(T2) under the condition that T1 conforms to T2.

Integer conforms to Real. UnlimitedNatural conforms to Integer, except when
the value of the UnlimitedNatural is *.

14

Chapter 2
Parsing

An interpreter is a program that reads a source code of some program and
executes operations depending on the commands specified by the input source
code. The interpreter maps its input, the source code, to an output, the
executed operations. During the mapping process the interpreter needs to
know the underlying syntactical structure of the source code. It uses a parser
(also known as a syntax analyzer) that parses the input to determine the
structure. [1]

Parsing can be thought of as transforming data from one representation to
another. In the context of parsing programming languages, parsing would be
the transformation of a source code from its textual human-readable represen-
tation to a syntactical representation. This syntactical representation usually
is a Concrete Syntax Tree (CST) (also known as a parse tree) or an Abstract
Syntax Tree (AST). The tools used to do these transformations are called
parsers. [21]

Very often a parser is coupled together with a scanner (also known as a toke-
nizer or a lexer). The scanner’s job is to go over the source code and recognize
syntactical tokens. The tokens represent numbers, strings and other literals,
keywords, identifiers, etc. The tokens are passed from the scanner to the
parser, which uses them to create a parse tree.

The scanner must know what tokens to look for, and the parser must know
what the syntactical structure is composed of. Both the tokens and the struc-
ture are defined using a grammar. A grammar is a set of terminal and non-
terminal symbols, production rules that describe the syntax and a starting
non-terminal (or a state). The production rules consist of a production head
(a nonterminal) and a production body (a sequence of nonterminals and ter-
minals). There are many formalisms for describing grammars. The most

15

2. Parsing

common one used for programming languages is the context-free grammar
(CFG). [1]

There are many kinds of parsers. Among the most traditional ones are the LL
and LR parsers and their modifications. Other ways of parsing include using
parser combinators or parsing expression grammars (PEGs).

2.1 LL parsers

LL parsers process the input from left to right, and always perform the leftmost
derivation. When we perform a derivation, we replace some non-terminal with
a production rule body, where the head of the production rule is the non-
terminal. LL parsers are top-down, this means that they build the parse tree
from the root of the parse tree to its leaves. LL parsers are predictive, they
look some amount of tokens ahead in the input and decide what production
rule to perform. LL parsers are implemented via recursive functions, where
each function represents a non-terminal. Each non-terminal function calls
other non-terminal functions according to the production rules. The most
common LL parser is the LL(1), which looks at most one token ahead in
the input to decide which non-terminal function to call next. Because LL
parsers are predictive parsers, the ambiguities we are concerned with are the
FIRST-FIRST and FIRST-FOLLOW ambiguities. [1]

2.2 LR parsers

LR parsers process the input from left to right, and always perform the right-
most derivation. LR parsers employ a bottom-up strategy, they build the
parse tree from the leaves to the root. They start with the terminals and
perform either of two actions, shift or reduce, until there are no terminals left
in the input and at the root of the parse tree is the starting non-terminal.
The parser shift when it takes a terminal token from the input and puts it
on a stack. The parser reduces when it replaces a sequence of both terminal
and non-terminal symbols, that corresponds to a production rule body, on the
stack with a non-terminal, that corresponds to the production rule head. To
make a decision which action to perform, the parser can look at a token that is
ahead in the input. Because the implementation of LR is very complex, they
are almost never made by hand. Instead parser generators are used, which
can generate the parser from a grammar description. [1]

Ambiguity in LR parsers comes in the form of shift/reduce and reduce/reduce
conflicts. A shift/reduce conflict occurs when we are in a state where we
can perform either a shift or a reduce action on the same lookahead token.

16

2.3. Parser Combinators

A reduce/reduce conflict occurs when the sequence of symbols on top of the
stack matches multiple production rules’ bodies.

LALR parsers are a modification of LR parsers. Compared to LR parsers,
LALR parsers do not require as many internal parser states, which makes
them more compact and easier to generate. [1]

GLR parsers are a modification of LR parsers, that allows shift/reduce and
reduce/reduce conflicts to exist. If a conflict is encountered, the GLR parser
forks the stack into multiple stacks and tries out all the possible actions in a
breadth-first order. If some fork leads to a situation where no action can be
taken, the GLR parser discards the entire fork. If more than one fork perform
a successfull parse of the whole input, the GLR parser returns all the possible
parse trees. [14]

2.3 Parser Combinators

Parser combinators are a functional way of constructing parsers. As the name
suggests, parser combinators build parsers by combining less complex parsers
together. This is usually achieved through higher order functions. One of
the benefits is that parser combinators naturally mimic the structure of a
grammar. That is beneficial for the developer, because he can design the
grammar and implement the parser at the same time, using just one language.
[20]

2.4 Scannerless Parsers

As the name suggests, scannerless parsers are parsers that are not coupled to a
separate scanner. Instead the parser directly reads the input. The advantages
of this approach [22]:

• No scanner. Eliminates the need to implement the scanner and the
interface between the scanner and the parser.

• One common grammar for both lexical tokens and syntax.

• More expressive power when defining lexical tokens.

• Context guided scanner. Scanner does not try and match tokens that
are not valid in a given context.

The disadvantages [22]:

17

2. Parsing

• Worse maintanance. Lexical tokens are defined in the production rules
of the grammar. This makes it less readable and the size of the grammar
increases as well.
• Lower efficiency.

2.5 Parsing Expression Grammars

PEG is a formalism used to describe grammars. It may also be viewed as a
way to describe a top-down parser. Its focus is on describing grammars of
programing languages. Its advantage over a CFG grammar is the fact that
it never introduces ambiguity. Instead of nondeterministic selection between
alternatives in CFG, PEG is composed of ordered choices. [12]

2.6 Packrat Parsing

Packrat parsing is way of providing better parse time complexity to back-
tracking parsers, while making their memory complexity worse. With PEGs
packrat parsing enables linear time parsing. The better time complexity is
achieved through memoization, i.e. the parser remembers the result of every
action that was previously executed at a given point in the input. [11]

18

Chapter 3
Pharo

Pharo is an open-source language and environment inspired by Smalltalk. It
is fully object-oriented, e.g. primitives like numbers are objects, methods
are objects and even classes are objects. It is a dynamically typed language.
Pharo offers a live programming environment. You do not have to compile to
see the changes in your code. You can inspect and modify anything in the
environment while it is running. [2]

Pharo is cross-platform. The supported operating systems are: OS X, Win-
dows, Linux, Android, iOS and Raspberry Pi. This is achieved via a virtual
machine (VM) (which itself is written in Pharo). Thanks to this Pharo has
found application in many diverse projects and fields including multimedia,
educational and commercial. [5]

Pharo strives for small incremental updates and is driven by the support and
feedback from the community. Everyone can have a say in Pharo’s direction
and success.[5]

3.1 Syntax

The syntax of Pharo is very, very simple. The syntax of the Smalltalk language
from which it takes inspiration can fit on a single postcard [3] and so does
Pharo’s own syntax.

3.1.1 Syntactical Elements

In table 3.1 we can see almost all of Pharo’s syntactical elements [5]. The only
thing that is missing is the method syntax, which consist of the method name,
arguments names and a body that consists of elements from the 3.1 table.

19

3. Pharo

Syntactical element Description
startPoint a variable name
Transcript a global variable name
self pseudo-variable
1 integer
2r111 integer in radix 2 (binary)
1.5 floating point number
2.4e10 exponential notation
$a a character a literal
’String’ a string
#Symbol a symbol
#(1 2 3) a literal array
{2 . 1 + 1 } a dynamic array
”a comment” a comment
|x y | declaration of variables x and y
x := 1 assign 1 to x
[:x |x + 2] a block closure with an argument x
〈primitive : 1〉 a virtual machine primitive or an annotation
3 factorial unary message factorial sent to integer 3
3 + 4 a binary message + send
1 to: 3 a keyword message to: send
ˆ true return the value true from a method
x printString . x := 4 the expression separator .
col add: 1; yourself the message cascade operator ;

Table 3.1: Showcase of Pharo syntactical elements

3.1.2 Message Sends

Everything in Pharo happens via sending messages, for example creating a
subclass of a class happens by sending the #subclass: message to the class.
Here are the three kinds of message sends ordered in precedence from highest
to lowest:

1. unary message 5 asString
2. binary message 1 - 1
3. keyword message Transcript show: ’Hello world!’

Message sends with the same precedence are evaluated from left to right.
There are no other rules. It is necessary to understand that common arith-
metic and logic operator precedence does not apply in Pharo, for example the
expression 8 - 2 * 3 gets evaluated to 18.

20

3.2. Development Environment

3.2 Development Environment

The most useful tools that aid the development in Pharo are the: System
Browser, Playground, Inspector, Debugger. [5]

3.2.1 System Browser

The System Browser can be opened by selecting it from the World Menu. The
World Menu appears if you click on the Pharo window background.

Figure 3.1: The System Browser

The System Browser is where most of the development process takes place.
In figure we can see the System Browser. The System Browser is made up of
several panes. The top four panes are in order from left to right: the package
pane, the class pane, the protocols pane and the methods pane. The pane in
the middle serves to implement a method or to declare a class. The pane in
the bottom is for warnings and suggestions.

3.2.2 Inspector

The Inspector is a window that shows the details of an object, like attribute
values, and allows to evaluate Pharo code on the object. It can be opened

21

3. Pharo

by evaluating Pharo code with Ctrl/Alt + i or by selecting the Pharo code,
right-clicking and selecting Inspect it from the popup menu.

Figure 3.2: The Inspector

22

Chapter 4
Pharo’s parser frameworks

There are not many parsing frameworks avaiable for Pharo. The only two
robust and feature-full frameworks are the PetitParser and SmaCC parsing
frameworks.

4.1 PetitParser

PetitParser uses a combination of scannerless parsing, parser combinators,
PEGs and packrat parsers. This combination of different parsing method-
ologies is what makes PetitParser expressive in what languages it can parse.
The benefits of using PetitParser is that we can write the grammar using
Pharo code. That makes it easier to debug, modify and extend and fits more
naturally into the Pharo environment. [4]

In listing 4.1 we can see a definition of a parser that parses and evaluates an
expression made out of numbers and additions.
|num exp|

num:= #digit asParser plus flatten ==> [:str | str asNumber].

exp := (num , $+ asParser trim , num ==> [:nodes |
nodes first + nodes last

]) / num.

exp parse: ’4 + 3 + 2’ ” parses and evaluates to 9”
Listing 4.1: Example of PetitParser grammar fragment

PetitParser comes with a PetitParser Browser tool that integrates grammar
visualization, development and debugging in one. We can see it in figure
4.1. In the left pane we have a list of all PetitParser parsers avaiable in the

23

4. Pharo’s parser frameworks

image. In the top middle-right part of the browser we can see the list of parser
methods that each represent a production rule in a grammar. Then we have
features like grammar tree visualization, looking at the first and follow sets.
The bottom middle-right part is saved to evaluation language snippets and
debugging.

Figure 4.1: The PetitParser Browser

4.2 SmaCC

SmaCC is a LR parser generator originally for Smalltalk created by John
Brant and Don Roberts for the VisualWorks 7, Dolphin 6.0 Professional, and
VASmalltalk 8.6.1 platforms. SmaCC is able to parse ambiguous grammars,
left and right recursion, and overlapping scanner tokens. It is also capable of
GLR parsing as well. The creators of SmaCC used it to write many migration
and code tranformation tools, e.g. they used SmaCC to migrate 1.5 million
lines of code from Delphi to C#. [6]

SmaCC was ported to Pharo and is actively mainted by Thierry Goubier. It
also received several updates and new features, like the capability to generate
LALR parsers and a better debugger.[13]

24

4.2. SmaCC

4.2.1 SmaCC Parser Generator

SmaCC provides an UI tool to write down and develop our grammar, we can
see it in figure 4.2. It can be opened from the World Menu→ Tools→ SmaCC
Parser Generator. The first of the three fields at the top serve to input our
package name, where the parser and scanner will be generated. The second
and third one are the names of our scanner and parser, respectively. Under
the three fields, there are buttons for saving, loading, reverting to a previous
version and generating either a LR parser or a LALR one. Under the buttons
is the main text field where we input all of our grammar together with parser
declarations and token definitions. There are four tabs under the text area.
These provide useful features for testing and debugging our grammar. The
messages tab prints SmaCC warnings, including AST generation warnings
and ambiguity warnings. Item sets tab corresponds to the LR item sets. The
symbol tab prints all used terminals and non-terminals. The test tab is where
we can input a string and parse it with our parser either inspecting the parsed
result or opening a modified debugger that can go through the whole parsing
process.

Figure 4.2: The SmaCC Parser Generator

25

4. Pharo’s parser frameworks

4.2.2 SmaCC Syntax

4.2.2.1 Scanner Tokens

Scanner tokens must be defined before they are used for the first time. The
token definition syntax is:

"<" TokenName ">" ":" Definition ";"

Example: <IfKeyword>: if; defines an if token named IfKeyword.

In the Definition part of the syntax we can use regular expressions. All the
possible regular expressions are defined in [13].

Example: <Number>: (0 | [1-9][0-9]*);

In our grammar rules we can also define scanner tokens by putting a string in
double quotes. Regular expressions do not work in the double quotes.

Example: "else" defines an else scanner token .

4.2.2.2 Grammar Rules

Grammar rules consist of non-terminals and their production rules which con-
sist of other non-terminals and scanner tokens. The syntax is:

NonTerminal ":" ProductionRule ("|" OtherProductionRule)* ";"

Example: Expression: <Number> "+" <Number> | <Number>; a parser
with this rule could parse ’21 + 21’ or ’42’ substring .

Without these rules being annotated by actions or parse tree declarations, the
parser will return a collection of SmaCCTokens. Each SmaCCToken contains
information about the string value of the parsed substring they correspond
to. Additionaly they contain the substring start and end position, and an
internal scanner token id.

4.2.2.3 Actions

Actions allow us to do something with the parsed result, i.e. allow us to
do something with the collection of SmaCCTokens. We can see an example in
listing 4.2. Inside the action braces we can use regular Pharo code. We named
the tokens and non-terminals so that we can reference them in the Pharo code.
We could also reference them with a string containing a number depending
on the order they appear in the production rule, but that is not a good style.
It mainly causes problems when we change the rule later.

26

4.2. SmaCC

Expression
: Number ’left’ ”+” Number ’right’ {left + right}
| Number ’num’ {num}
;

Number
: <Number> ’tok’ {tok value asNumber}
;

Listing 4.2: Actions example

The result of parsing a string ’21 + 21’ would now be the number 42.

4.2.2.4 Directives

There is a large number of SmaCC directives and we can find the whole list
in [13]. We will list few important ones:

• %root Name; sets the root of the parse tree class hierarchy to Name.
The Name can be any existing non-terminal or a new name and in that
case SmaCC will generate a new class for it. We will look at Parse trees
in 4.2.2.5.
• %left ScannerToken; important tool with dealing with shift/reduce

conflicts, tells the parser to reduce if it encounters the ScannerToken
token.
• %right ScannerToken; same as %left, but the parser will perform a

shift
• %glr; tells the compiler to generate a GLR parser.
• %unicode; tells the compiler to generate a scanner that can handle

unicode strings.
• %start NonTerminal (NonTerminal)*; tells the compiler to generate

starting states for the non-terminals. Useful for debugging or incremen-
tal grammar development.
• %hierarchy NonTerminal "(" ListOfNonTerminals ")"; the non-

terminals in the ListOfNonTerminals are going to be generated as
subtypes of the NonTerminal.

4.2.2.5 Parse Tree

Instead of actions we can annotate production rules with Parse tree node
declaration. For the tree node declarations to work we have to have the com-
piler directive %root set. In listing 4.3 we removed the action braces and
replaced them with double braces. We can put a name in the double braces,
which will then be used as a base for the generated parse tree class. If the

27

4. Pharo’s parser frameworks

double braces are empty it means the generated class name base will be the
name of the corresponding non-terminal. The generated tree hierarchy will be
ParseRootNode, ParseAdditionNode and ParseNumberNode. The ParseAd-
ditionNode will have two instance variable: left and right. Smacc also
generates a tree visitor for the generated parse tree class hierarchy and an
accept method for each of the tree classes.
%root Root;
%prefix Parse;
%suffix Node;

<Number>: (0 | [1-9][0-9]∗);

Expression
: Number ’left’ ”+” Number ’right’ {{Addition}}
| Number ’num’
;

Number
: <Number> ’tok’ {{}}
;

Listing 4.3: Actions example

28

Part II

Practical Part

29

Chapter 5
Analysis and Design

To implement an OCL interpreter we need several things: a grammar that
describes the language, a scanner (we do not need a scanner with scannerless
parsers), a parser and an implementation of the standard library.

The OCL specification[16] offers a complete grammar in the EBNF format.
My intention at first was to use this grammar as there are guarantees that it
can be used to generate the language correctly, since it is provided through
official channels. It would also be great for future development. If somebody
else would start working on the interpreter, he or she would find most of the
needed information in the specification.

5.1 Using an LL parser

Since I already had some experience with creating LL parsers, I was look-
ing into the possibility of creating a handmade LL parser. This would have
the benefits of being completely familiar with the whole system and since LL
parsers are relatively simple to implement it would not be such a problem.
Nevertheless I soon realized that this will not be an option, because the gram-
mar contains many ambiguities and left-recursion. The transformations that
would have to be done to get rid of these ambiguities would be managable,
but the grammar would change to the point where the original motivation for
using the official grammar would be gone. What is even a bigger problem is
the left-recursion. The commonly used algorithms for removing left-recursion
in the worst case increase the amount of production rules and symbols expo-
nentially[15]. This would make the resulting grammar almost impossible to
implement and maintain.

31

5. Analysis and Design

5.2 Using PetitParser

There were two options at this point, either write my own grammar or look
for some tool or framework that can handle both left-recursion and ambiguity.
There were only two avaiable parsing frameworks for Pharo, PetitParser and
SmaCC. I chose PetitParser at first, because it appealed to me with the fact
that you write down the grammar using Pharo code. That would mean that
there would not be any delay caused by grammar compilation as it is with
SmaCC. And because we could utilize the entirity of Pharo, any semantics
check or input sanitization could be done directly in the parser without the
need to do it later outside of the parser.

There is just one problem. PetitParser cannot actually deal with left-recursion.
What made me think that it could and waste time is this line in [4]: “Packrat
Parsers give linear parse-time guarantees and avoid common problems with
left-recursion in PEGs”. Since PEGs cannot deal with left-recursion at all
and there exist Packrat parser modifications that allow it to deal with left-
recursion[23], this made me believe that PetitParser can actually deal with
left-recursion. What the the sentence in the quote was actually refering to
is the PEGs’ problem with backtracking, which could make the parsing time
proportionaly exponential to the input size. Packrat parsers deal with the
backtracking problem through memoization. Since [4] is one of the very few
full-length sources for PetitParser in Pharo, I deemed neccassary to warn
against the poor choice of words in the quoted sentence.

5.3 Using SmaCC

Since SmaCC generates LR or LALR parsers it can deal with left-recursion.
Ofcourse with LR and LALR there are different kinds of ambiguities then
with top-down parsers. With shift/reduce ambiguities SmaCC deals using
the %left and %right directives which tell the parser whether it should shift
or reduce on certain tokens (reduce for %left, shift for %right). By default
SmaCC shifts. With the use of the SmaCC directive %glr we can turn on
GLR parsing and deal with reduce/reduce ambiguities. With GLR parsing
SmaCC tries all possible parses. If more parses are valid SmaCC raises a
SmaCCAmbiguousResultNotification exception which can be caught and the
ambiguity dealt with.

This means that I could use the official OCL grammar. The idea was to rewrite
the whole grammar from the specification’s format to the SmaCC’s format.
Both of the formats are very similiar, but it still was a lot of work, mainly
because of naming all the important symbols in the production rules, creating
appropriate parse tree classes, dealing with SmaCC quirks (e.g. SmaCC not

32

5.4. Final solution

being able to handle unicode characters with values over FFFF, grammar
idioms that resulted in changing up some of the rules, etc.).

My plan to deal with the ambiguities was to have the parser try and parse
the whole input and return all possible parse trees . Since SmaCC provides a
parse tree visitor class, I wanted to subclass this visitor and walk all the parsed
trees and invalidating those that would not be correct. To decide which tree
was not valid we would need context information, like what types, variables
or implicit attributes are avaiable. To give an example of an ambiguity, if we
parse the string ’identifier’ we do not know whether it is a variable, an
attribute of an implicit variable, or if it is a type. SmaCC by default throws
the ambiguity exception as soon as it can. This is a problem, because then
I do not have the information about variable declarations, implicit/explicit
iterators or context definition declarations. To resolve this issue I emailed the
author of Pharo’s SmaCC port, Thierry Goubier. We exchanged few emails
and he suggested several possible solutions, among them one was exactly what
I needed. To force SmaCC to parse the input all the way we need to initiate the
parsing through parseAll:startingAt: method, which takes the input string
and the starting state that corresponds to a non-terminal in the grammar.
Altough it worked for smaller OCL snippets of code, when I tried to parse
the context invariant discussed in subsection 7.2.2 the whole Pharo image
froze. I underestimated the quantity of ambiguities present in the official
OCL grammar.

I emailed Thierry Goubier once more and he mentioned that he is, together
with his student, working on improving the handling of ambiguities. Their
plan is to, instead of throwing the ambiguity exceptions, program the parser
to insert ambiguity nodes, which would contain the different parse possibilities,
into the parsed tree which could then be subsequentially handled by a visitor.
This would solve my problem as there would be only one tree. But this feature
is currently only in development.

5.4 Final solution

At the end I decided to let go of my idea to use the official OCL grammar,
instead I would write my own grammar.

Because I lost a lot of time with all my previous attempts I was forced to limit
what I could support in the final interpreter. I had to support everything that
would be needed for the final OntoUML usecase (discussed in section 7.2).
That includes:

• context invariant syntax
• SimpleName for variables, types, implicit attribute navigations

33

5. Analysis and Design

• SimpleName(Arguments) for implicit object operation calls
• OCLExpression.SimpleName for explicit attribute navigations
• OCLExpression.SimpleName(Arguments) for explicit object operation

calls
• OCLExpression->SimpleName(Arguments) for collection operation calls
• OCLExpression->IterationName(VariableDeclarations | Arguments)

for collection iterator expressions
• Let expression syntax, for helper variables
• If expression syntax
• Unary and Binary operator syntax
• Primitive and Type Literals
• Variable declaration syntax
• Arguments list syntax

This is the extent of the syntax the interpreter supports. What it does not
support:

• most of the context declarations: context definitions, derivation and init
values, operation pre- and postconditions, operation body
• messages and signals
• @pre to access pre-operation call attribute values in postconditions
• SimpleName[index] and OCLExpression.SimpleName[index] for at-

tributes that are of a collection type and associations
• Enum, collection, null and invalid literals
• Path names for namespace specification
• Iterate expression
• Collection shorthands

Extending the interpreter to support these expressions is just a matter of
writing the syntax, ensuring it is not ambiguous and creating the appropriate
AST classes.

The whole syntax is shown in appendix A. It is worth mentioning that the
grammar does contain ambiguities. It does not contain any shift/reduce con-
flict that could not be taken care of through a SmaCC directive. It also
contains reduce/reduce conflicts, but there is always only one valid parse tree
that the GLR can return. I always made sure that this is true using the
SmaCC Parser Generator’s Messages tab, which prints any shift/reduce and
reduce/reduce conflicts. In the current state of the grammar the Messages
tab is empty. It is always a good idea to check this tab when extending the
grammar as there were numerous times where I was certain that my grammar
extension does not introduce any ambiguity only to be proven wrong by a
warning message.

34

5.4. Final solution

Now for the AST. The AST hierarchy is inspired by the OCL specification.
The two main differences are:

• the implemented AST does not support every type that is specified and
it does not support every operation on the types that are supported.
• the AST hierarchy in the specification is at some point integrated into

the UML hierarchy, now this was not possible for me to do. Most of
my time on this thesis was spent digging through the 262 pages long
OCL specification to understand it enough so I could implement the
interpreter. The idea that I would go through the official UML speci-
fication[17] that is almost 800 pages long was out of the scope of this
thesis. It would be more suitable for someone who already has a deep
understanding of the UML specification or maybe it would fit a master’s
thesis scope.

Again I included just what was necessary for the OntoUML constraint.

Since the OntoUML constraint is a constraint expressed on the metamodel,
I only included the ability to interpret metaOCL constraints on a instance
of a OPUMLModel. I believe that to extend the interpreter to handle domain-
specific cosntraints, one would have to solve the problem with integrating the
OCL AST hierarchy into UML, since to find all the constraints defined on the
model elements, to lookup all instances and to type-check every expression,
etc., one would need types, attributes and values that are defined in the UML
model itself.

Integration into OpenPonk was done by adding a metaOCL instance variable to
the OPUMLMetaElement class and adding a gtInspectorMetaOCLIn: method
that extends the inspector opened on any OPUMLMetaElement instance includ-
ing the instance of OPUMLModel by adding a text field where you can input
the OCL constraint source code and save it either via a button or by pressing
Ctrl/Alt+s. The control character (Ctrl or Alt) depends on the operating
system that is used to run Pharo. You can then evaluate the OCL source code
by calling the OPOCLInterpreter method evaluateMetaOCLOnModel: on the
model instance. The most convenient place to do this is in the inspector’s
Raw tab, where you can evaluate Pharo code.

As a final note of this chapter I would like to mention that it would be possible
to write a grammar that would not be left recursive and without ambiguities,
that would be managable and therefore it would be possible to implement an
LL parser for it by hand or use PetitParser. But since I was constrained by
time at this point, it did not seem viable to spend more time to write a more
complicated grammar.

35

Chapter 6
Implementation

In this chapter we will look at the final state of the implementation. We will
look at the packages, important classes and the interpretation process. Since
all the classes are commented in the code and I kept most of the methods small
and self-explanatory, I will just provide a short description of each package
and its most important classes.

During the implementation of the interpreter I used:

• Pharo version: 6.1
• SmaCC version: not avaiable
• OpenPonk version: master 105

All the classes and packages are in the OP-OCL-Interpreter package. The
package does not actually contain other packages, instead it is subdivided
using Pharo tags, but I will refer to these as packages as well. The packages
are:

• OP-OCL-Interpreter-Core
• OP-OCL-Interpreter-CST
• OP-OCL-Interpreter-AST
• OP-OCL-Interpreter-AST-Expressions
• OP-OCL-Interpreter-AST-Types
• OP-OCL-Interpreter-AST-Values
• OP-OCL-Interpreter-ErrorHandling
• OP-OCL-Interpreter-Testing

I will be referring to the packages without the OP-OCL-Interpreter- prefix.

37

6. Implementation

6.1 Core Package

The core package only contains the class representing the OCL interpreter.

6.1.1 OPOCLIntepreter

Class representing the OCL interpreter. This is the main class in the imple-
mentation. It drives the whole interpreting process.

Instance variables:

• environment = Instance of OPOCLEnvironment. The interpreter uses it
to store instances of and references to classes from the AST-Types pack-
age. The interpreter also manages the OCL self context variable. This
environment is then passed to an instance of OPOCLASTBuilder which
uses the types in the environment for expression type conformance.
• model = Reference to the OPUMLModel instance that the interpreter was

called on.
• instances = An instance of Dictionary. Keeps track of all the in-

stances in the model to be later used in context declarations. In the
current implementation just stores the model.

An important method is the evaluateMetaOCLOnModel: which takes a model
instance as an argument an evaluates the OCL constraint that is defined in
the model.

6.2 CST Package

The CST package contains classes related to parsing and the CST. It con-
tains the entire hierarchy of classes that represent nodes in the CST, visitor
classes for the CST nodes. It has the class that represents the environment
and also the OCL parser and scanner classes. Except the OPOCLASTBuilder
and OPOCLEnvironment classes, most of the classes in this package are auto-
generated with only minor modifications. They are auto-generated by SmaCC
based on the handwritten grammar described in appendix A.

6.2.1 OPOCLParser

This class represents the OCL parser. This is a GLR, LALR parser.

The parser is used via the parse: method. It takes a string argument, that
represents the OCL source code. By default the starting state of this method
is the topmost production rule’s head non-terminal. In this case it is the
ContextInvariant non-terminal.

38

6.3. AST Package

Handmade modifications to the parser:

• It is important to extend the instance side tryAllTokens method and
return true so that when the scanner matches the next input to more
tokens, our parser tries them all.
• Added multiple class side parse* methods for testing purposes, e.g.

parseExpression:, parseVariableDeclaration:. These behave
as the parse: method with the starting state set to a different
non-terminal.

6.2.2 OPOCLEnvironment

Responsible for keeping track of all the avaiable types and variables in a
given scope. An environment can have another parent environment. This
is used to create nested variable scopes. All the variables, type, methods
and attribute lookup methods work recursively. First we check in the cur-
rent environment(scope) and then try to perform the lookup on the parent
environment.

6.2.3 OPOCLASTBuilder

This class inherits from the auto-generated OPOCLNodeVisitor. Responsi-
ble for traversing the CST tree and constructing a corresponding AST tree.
During the construction of the AST, the builder has to lookup variables and
types in its OPOCLEnvironment currentEnvironment instance variable and
perform type conformance checks. After setting the builder’s environment it
can be called on a instance of OPOCLCSTNode via the accept: method.

6.2.4 OPOCLCSTNode

The root of the CST class hierarchy. Represents a node in the CST. Every
node has an ast instance variable that represents the corresponding AST
node. This variable is set by the OPOCLASTBuilder.

6.3 AST Package

The AST package contains classes that did not fit into any of the other AST
packages. The classes in the AST* packages, in general, are classes that either
represent nodes directly in the AST, classes that are used by these nodes, or
visitor classes.

39

6. Implementation

6.3.1 OPOCLAttribute

Represents an attribute of OPOCLType classes. The attribute has a string
identifier and a type. The type is an instance of the OPOCLTypeIdentifier
class. Used by OPOCLType, OPOCLEnvironment and OPOCLASTBuilder.

6.3.2 OPOCLContextInvariant

Represents the OCL context invariant. Instance variables:

• contextName = A string representing the context in which the invariant
is declared.
• invariantConstraint = An instance of OPOCLOCLExpression. This

expression is evaluated by the interpreter to check if the constraint is
valid.
• invariantName = An optional string representing the invariant name.

Used only in user feedback, e.g. error messages.

6.3.3 OPOCLOperation

Represents an operation signature. Used in OPOCLType classes to describe the
methods the particuliar type can perform. Instance variables:

• identifier = Instance of a string. Represents the method’s name.
• returnValueTypeIdentifier = The OPOCLTypeIdentifier of the re-

turn value. Used in type conformance checks when building the AST.
• argumentsTypeIdentifier = An array of OPOCLTypeIdentifier rep-

resenting the operation’s arguments.

6.3.4 OPOCLTypeIdentifier

Represents a type identifier. The reason why this class exists, instead of using
a string, is because of collection types, which have nested element types. I
could neither use an instance of an OPOCLType, because the concrete types in
the interpreter get instantiated right before the interpreting process begins.
This is because each instance of the OPOCLInterpreter has to have its own
types, since OCL allows to modify even the standard library types through
the context definition declaration.

6.4 AST-Expressions Package

Except the OPOCLExpressionVisitor classes, the classes in this package rep-
resent the OCL expressions described in 1.1.

40

6.5. AST-Types Package

6.4.1 OPOCLExpressionEvaluator

This class visits the expression tree and computes the value of the ex-
pression nodes. It also keeps track of the avaible variable values in its
variableInstances instance variable. The evaluator does not do any type
checking or method avaiability. This is all done in the OPOCLASTBuilder.

6.4.2 OPOCLOCLExpression

Represents an OCL expression. The root of the expressions hierarchy. Each
expression has a type instance variable. The type is an instance of an
OPOCLType class, not the OPOCLTypeIdentifier. The type is set by the
OPOCLASTBuilder.

The expressions hierarchy mimics the expressions hierarchy in the official OCL
specification [16].

6.5 AST-Types Package

Classes in this package represent the type hierarchy. As with the expressions,
the types hierarchy mimics the types hierarchy in the official OCL specification
[16].

6.5.1 OPOCLType

The types are used throughout all the main classes. They describe type
names, attributes and methods. They are used by: OPOCLOCLExpression,
OPOCLInterpreter, OPOCLASTBuilder, OPOCLEnviroment, OPOCLValue and
OPOCLExpressionEvaluator classes. Instance variables:

• oclName = Instance of a string. Represents the type name in OCL, e.g.
OPOCLBooleanType’s oclName is Boolean.
• attributes = A dictionary of OPOCLAttribute instances. Represents

the type’s attributes.
• operations = A collection of OPOCLOperation instances. Represents

the type’s operations.

6.5.2 OPOCLCollectionType

Collection types additionally have an elementType instance variable that rep-
resents the OPOCLType of the collection elements.

Collection types are also used differently by the OPOCLInterpreter,
OPOCLEnvironment and OPOCLASTBuilder. Thanks to the elementType
there is an infinite number of different collection types. That is why the

41

6. Implementation

interpreter stores the collection type classes, and not their instances, in its
metatypes dictionary. When the OPOCLASTBuilder encounters a collection
type that has not yet been instantiated but its metatype is present in the
environment a new collection type is instantiated and added.

Example: The OPOCLASTBuilder encounters a Bag(Integer), it looks up the
Bag(Integer) in its currentEnvironment. The environment does not have
an instance of the Bag(Integer) type yet, but it has the Bag metatype stored,
so the environment automatically instantiates a new Bag(Integer) collection
type and returns it to the builder. The OPOCLASTBuilder can then continue.

6.6 AST-Values Package

Classes in this package represent expression, instance and variable values.

6.6.1 OPOCLValue

Represents the values that are either computed from expressions, or belong to
the model element instances or variables. Each OPOCLValue class has a corre-
sponding OPOCLType class. Whereas the OPOCLType classes contain a descrip-
tion of what attributes and methods the type has avaiable, the OPOCLValue
classes actually implement these methods and attribute getters/setters. In-
stance variables:

• instanceValue = A reference to some Pharo object. The implemented
methods then manipulate this object. In the case of collection values,
their instanceValue is a Pharo collection object, whose elements are
instances of a OPOCLValue. This is important for expressions where the
collection’s elements are accessed, e.g. in an iterator expression.
• typeInstance = An instance of a OPOCLType. Represents the value’s

type.

Some of the OPOCLValue classes are basically mapping classes, e.g. the
OPOCLModelValue maps to the OpenPonk’s OPUMLModel. That means that
for example the OPOCLModelValue’s packagedElements method does just
this: ˆ instanceValue packagedElements.

6.7 ErrorHandling Package

The ErrorHandling package contains all the specialized exceptions thrown
during the interpreting process. There is also a general purpose visitor ava-
iable to be subclassed for better error message feedback. The description of
what exceptions and under what circumstances they are signaled, is avaiable
throughout the section 6.9.

42

6.8. Testing Package

6.8 Testing Package

As the name suggests this package contains the tester classes. The list of the
test classes and what they test:

• OPOCLParserTest: Since the methods in the parser are auto-generated
and complicated, this class tests the grammar rules itself. I decided to
prioritize this class in test coverage. It covers all of the production rules
defined in the grammar.
• OPOCLEnvironmentTest: Tests the environment’s add, lookup and

nested environment creation methods.
• OPOCLASTBuilderTest: Tests the functionality of the OPOCLASTBuilder

class. It tries to minimize dependency by creating SmaCCToken in-
stances and other CST classes by hand. Only the visitInteger: and
visitImplicitNavigation: methods are tested.
• OPOCLValueTest: Tests the OPOCLValue oclIsKindOf: method.
• OPOCLBooleanValueTest: Tests the OPOCLBooleanValue or: method.
• OPOCLExpressionEvaluatorTest: Tests the OPOCLBooleanValue or:

method.

Some further comments about the tests are in subsection 7.1.4.

6.9 Interpreting

In figure 6.1 we can see an overview of the whole interpreting process. When
the OPOCLInterpreter interpreter is called to evaluate OCL on a metamodel,
it first loads its types. This means that the interpreter creates instances of
the OPOCLType classes and stores them in its OPOCLEnvironment environment
instance variable.

The interpreter then loads its metatypes. Contrary to loading types, the
interpreter stores the OPOCLCollectionType classes themselves, not their in-
stances. It will instantiate and store instances of the OPOCLCollectionType
classes as is needed during evaluation. If the interpreter were to be extended,
this would be done for the tuple and template types as well.

The last step before processing the OCL constraint, is loading instances into
the Dictionary instances instance variable. In the current implementation
this just means storing the OPUMLModel instance, on which the interpreter is
being called. With a more complete implementation the parser would store
all instances of classifiers, associations, stereotypes, etc. for metamodel con-
straints. In domain specific constraints the interpreter would store instances of
the types defined in the model itself, this would require UML object diagrams.

43

6. Implementation

Next step is the parsing of the input and creating a CST. This is done by calling
the OPOCLParser parse: method that takes in a string, the source code for
the OCL constraint. If the source code is syntactically valid it returns the
CST root, otherwise it signals a SmaCCParserError.

The CST root is then passed to an instance of OPOCLASTBuilder which visits
every node of the CST. The builder performs disambiguating actions, complete
type conformance checks and creates corresponding AST nodes. During this
process new collection types are instantiated as they are encountered in the
tree. Examples of the errors the builder can encounter are: all expressions
do not have valid type conformance, a variable or a type is being referenced
that does not exist, trying to declare a variable with a name that is already
in the scope. Two exceptions can be signaled: OPOCLEnvironmentError or
OPOCLASTBuilderError.

The interpreter takes the context invariant (in the current implementation,
you can only define one invariant on a model, this is a shortcoming that could
be amended by extending the grammar’s context invariant production rule
and modifying the logic in the interpreter) and passes its invariant expression
to an instance of OPOCLExpressionEvaluator. The evaluator goes over all
the expressions in the AST and for each node returns an instance of the
OPOCLValue classes. There are three distinct ways that the evaluator calcu-
lates the values. When the evaluator visits a literal expression, it just returns
the value of the literal, which was created during the AST construction.
When the evaluator visits a variable expression, the evaluator looks for the
value in its variableInstances dictionary. Upon visiting the other types
of expressions, the evaluator computes the value by sending perform:with:
messages to the objects in the expression. The perform:with: is the Pharo’s
Object method that takes a string, which represents the method identifier,
and as a second argument takes an object. In this case it takes an array of ar-
guments. A special case is the iterator expression, where the evaluator sends a
performIteration: withPrimaryIterator: withSecondaryIterator:
withBody: usingEvaluator: message. This is the only case where a value
type has to do more than just passing a message to its instanceValue. I was
not able to design a cleaner solution. The problem is that the return value
type and thus the way the iteration is performed, and how many iterators the
iteration needs, depends on the specific type of the value and the iteration,
but since the evaluator is the only thing that can evaluate expressions, the
value needs a reference to the evaluator and use it to evaluate the iteration
body expression. When performing the iteration the value has to check for
the correct number of passed iterators. If the number of iterators is invalid,
the value signals an OPOCLEvaluationError.

44

6.9. Interpreting

After the evaluator has finished evaluating the invariant, the interpreter
checks whether the value is true. In that case the interpreter returns true to
the original caller. If the value is false then that means that the invariant
is invalid for the model instance. In that case the interpreter signals an
OPOCLEvaluationError, stating the invalid invariant name and the context
name of the invariant.

Figure 6.1: The activity diagram of the OCL interpretation process

45

Chapter 7
Testing

In the first section of this chapter we will look at what kind of automated
tests were written during the implementation process and what tool was used
to perform these tests. In the second section we will look at a use case and
showcase the OCL interpreter in action.

7.1 Unit and Integration Tests

During the development and maintanance of a software product it is very ben-
eficial to have a set of automized tests. It helps the developer with modifying
and/or extending the current codebase. Whenever a modification is made the
developer can run these automated tests and if they all pass, the developer
knows that he did not break any other part of the application. And in the
case that something actually breaks the developer at least knows about it
immiedietly.

7.1.1 Unit Tests

In [18] Roy Osherove says that unit testing is way of writing tests that has
been here since the beginning of Smalltalk, that is for almost 50 years. For
Osherove a unit test has the following traits:

• It is automated
• It tests one ”unit of work”, which is a method for example
• It asserts the result of the unit of work
• It is almost always written using a framework
• It should take almost no time to execute
• It should be readable, maintable and the result of the assertion should

not change unless the codebase does

47

7. Testing

The strength of unit tests lies in the fact that they test only one functionality
(a method) of the system and have little to no dependency on the rest of the
system. Unit tests should be run as frequently as possible.

7.1.2 Integration Tests

Integration tests contrary to unit tests test more than one thing and do not
care for dependency. Their purpose is to test the interactions between different
parts of the application. Integration tests should be executed on pieces of code
that were already unit tested.[19]

7.1.3 SUnit

SUnit is the main Pharo framework for helping developers write tests. As the
name tells SUnit was primarly developed for unit testing, but can also be used
for integration tests. It is very similiar to other xUnit testing frameworks.
The framework has 4 main classes: TestCase, TestSuite, TestResult,
TestResource. TestCase is the main testing class. It’s subclasses specify
a set of test for a particuliar class or a system. Each test is represented
by a method that starts with ’test’ prefix. The tests are run by creating a
new instance of the test subclass for every test method, running the setUp
method, executing the test method and finally running the tearDown method
for each of the test methods. [5] I did not need to use the TestSuite,
TestResult and TestResource in my tests, as these classes are used when
dealing with either limited resources (like database handles) or resources that
take a long time to set up.

7.1.4 Implemented Tests

All the test classes implemented as of now include:

• OPOCLParserTest
• OPOCLASTBuilderTest
• OPOCLEnvironmentTest
• OPOCLValueTest
• OPOCLBooleanValueTest
• OPOCLExpressionEvaluatorTest

The naming follows a common convention of suffixing the class that is tested
with the ’Test’ suffix. The test classes are stored in the OP-OCL-Interpreter
package under the Tests tag. We can categorize the test classes among unit
and integration tests. Unit tests: OPOCLEnvironmentTest, OPOCLValueTest,
OPOCLBooleanValueTest. The rest are integration tests. In figure 7.1 we can
see the Pharo Test Runner which is a SUnit browser of all avaiable tests in
the Pharo image. If we run the tests using the ’Run Coverage’ button seen

48

7.2. OntoUML Use Case

Figure 7.1: Pharo Test Runner running the implemented tests

in figure 7.1 and select the OP-OCL-Interpreter package as the packge to
count the coverage against, we get a total coverage of 43%, which certainly is
not great. If given more time it would be more than adequate to implement
more tests. One upside is that at least the OPOCLParserTest class tests all
the possible production rules in the handwritten grammar. I prioritized this
test class, because I assumed that there are more skilled Pharo developers
than there are SmaCC users and making changes to the grammar could be
daunting for someone unexperienced with SmaCC.

7.2 OntoUML Use Case

The last objective remaining from the thesis goal is the OntoUML use case,
where we show the ability of the interpreter to interpret an OntoUML con-
straint written in OCL and evaluate if the model does not violate the con-
straint. The OntoUML use case can be thought of as one large integration
test, that is testing the entirity of the implementation, using its every part
and subsystem.

7.2.1 OntoUML

OntoUML is an extension of UML used for conceptual modeling. OntoUML
is based on Universal Foundational Ontology (UFO). It takes inspiration from
different fields like: cognitive sciences, modal and mathematical logic, set
theory and relations. Even though it is an extension of UML it actually
removes lots of the UML defined terms. Its strength is in the fact that the
aspects it adds to the UML allows it to be much more expressive and readable
thus understandable. [9]

49

7. Testing

7.2.2 OntoUML Constraint in OCL

Without going into too many details, these are some of the class stereotypes
that OntoUML defines: Kind, Subkind, Role, Phase, Category, RoleMixin,
Mixin, Relator, Mode, Quality, Collective, Quantity. Each of these stereotypes
have a special purpose in an OntoUML model and define their own sets of
constraint that must hold true for an OntoUML model to be valid. [10]

I have chosen to test the OCL interpreter on upholding the Kind stereotype’s
three constraints. The OCL constraint now follows with description:

1 context Model
2 inv KindConstraints:
3 let kindElements: Bag(Class) = packagedElements->select(
4 each |
5 each.appliedStereotypes->exists(
6 stereotype |
7 stereotype.oclIsKindOf(Kind)
8)
9) in

10 kindElements->select(
11 each |
12 let parents: Bag(Class) = each.allParents in
13 ...

Listing 7.1: Context declaration for the OntoUML constraints

On line 1 of listing 7.1 we see the context to be declared on the Model itself,
since this is a metamodel constraint. On lines 3 to 8 we define a ’kindElements’
bag of UML classes that have at least one stereotype Kind applied. We then
go through each of these elements one by one and for each define a ’parents’
bag of classes that represents all the supertypes direct and indirect.

Let’s now list the constraints definitions that we want to check[10] :

1. Kind cannot have an identity provider as their ancestor, that is: Kind,
Collective, Quantity, Relator, Mode and Quality.

2. Kind cannot have types that inherit identity as their ancestor, that is:
Subkind, Role, Phase.

3. Kind cannot have any anti-rigid type as their ancestor, that is: Role,
RoleMixin, Phase.

50

7.2. OntoUML Use Case

1 ...
2 parents->exists(parent |
3 parent.appliedStereotypes->exists(
4 stereotype |
5 stereotype.oclIsKindOf(Kind) or
6 stereotype.oclIsKindOf(Collective) or
7 stereotype.oclIsKindOf(Quantity) or
8 stereotype.oclIsKindOf(Relator) or
9 stereotype.oclIsKindOf(Mode) or

10 stereotype.oclIsKindOf(Quality)
11)
12) or
13 parents->exists(parent |
14 parent.appliedStereotypes->exists(
15 stereotype |
16 stereotype.oclIsKindOf(Subkind) or
17 stereotype.oclIsKindOf(Role) or
18 stereotype.oclIsKindOf(Phase)
19)
20) or
21 parents->exists(parent |
22 parent.appliedStereotypes->exists(
23 stereotype |
24 stereotype.oclIsKindOf(RoleMixin) or
25 stereotype.oclIsKindOf(Role) or
26 stereotype.oclIsKindOf(Phase)
27)
28)
29).size() = 0

Listing 7.2: Searching for ancestors that break the constraint

In listing 7.2 every parents->exists(...) corresponds to one of the con-
straint. We are basically searching for any parent that has a stereotype that
breaks the constraint and adding it into the collection. At the end we declare
that such a collection should have its size equal to zero.

7.2.3 Evaluating the OCL constraint

To evaluate the constraint we first have to type it in the Meta OCL of some
model. Let’s open OpenPonk’s OntoUML example model: World Menu →
OntoUML UFO-A Editor → Role Mixin. Now in the ’Model Tree’ on the
bottom-left right-click the ’OntoUML Model’ and select ’Inspect’. Go to
the ’Meta OCL’ tab and paste the OCL constraint there. Now go to the
’Raw’ tab and in the bottom pane write and evaluate ’OPOCLInterpreter
evaluateMetaOCLOnModel: self’

In figure 7.2 we see what happens if we open up an inspector on the result
of evaluating the OCL OntoUML constraint on a valid model. In figure 7.3
we modified the model so that the class Person which is of stereotype Kind

51

7. Testing

Figure 7.2: Inspecting result of evaluating a valid model

Figure 7.3: Modified model

inherits from the class Wrong Ancestor which is of stereotype Role clearly
breaking the 2nd and 3rd Kind constraint.

In figure 7.4 we see what happens if we evaluate the OCL constraint on the
modified model. An error pops up with the error message: ”OPOCLEvalu-
atorError: Context invariant ’KindConstraints’ in context of ’Model’ is not
valid for all instances of the given context!”. This error does not actually tells

52

7.2. OntoUML Use Case

Figure 7.4: The error message when evaluating the constraint on the modified
model

us where exactly the context invariant is invalidated, but that is because we
defined the invariant on the model itself, so we just know that the invariant
is invalid for the model. For future work, we should be able to define a Kind
related invariant on the Kind stereotype itself. Then the error would print the
concrete Kind, where the invariant is invalid.

We can see the OCL interpreter manages to evaluate whether the Kind con-
straints are upheld or not, and the demonstration was successfull.

53

Conclusion

The goal of this thesis was to create an OCL interpret capable of evaluating a
subset of the OCL language, integrating it in the OpenPonk platform, testing
it and showing that it is capable of ensuring an OntoUML model constraint.

First we looked at the OCL language as a whole, including the expressions,
context declarations and the OCL standard library. We studied parsers and
parsing algorithms, both traditional and alternative. We went over the basics
of the Pharo programming language and the Pharo environment. We got
familiar with Pharo’s parser frameworks, PetitParser and more throughly with
SmaCC. This concluded the research part of the thesis.

After research we went over some ideas, approaches and implementation at-
tempts that did not work out. We also explained why these approaches failed.
We then decided on the solution and what the OCL interpreter should sup-
port.

In the implementation part of the thesis we went over the packages, what the
general purpose of the classes in them is and listed a few important ones. We
also looked at the overview of the whole interpretation process.

With the implementation and tests done we successfully demonstrated the
functionality of the OCL interpreter on ensuring the OntoUML model con-
straint.

The goal of the thesis was accomplished. The final implementation has some
limitations and shortcomings, but those were met with suggestions and possi-
ble solutions, that could be implemented in the future. The OCL interpreter
as it is in its current state is a great basis for further improvement and could
be later used for improving the quality of models and modeling in general.
Overall I am satisfied with the results.

55

Conclusion

Future Development

There are many ways to extend and add features to the OCL interpreter. Here
is a list with some additional possible extensions:

• Right now the interpreter just evaluates OCL constraints that are de-
fined on a model. The interpreter should definitely have the ability to
evaluate OCL constraints that are defined on any model element.

• The handwritten grammar could be extended to handle more expression
types, context and package declarations.

• Similiarly the AST could be extended, which would be used by the
expression evaluator to handle the handwritten grammar extensions.

• Better integration in the OpenPonk platform itself, using Graphical User
Inteface (GUI) elements

• Integrating the expression and type packages into UML.

• Better error messages with more information and better user feedback
in general, including interactive errors that show what is wrong directly
in the UML model being evaluated.

• Enhance the quality of integration and unit tests. Increase test coverage.

56

Bibliography

[1] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools.
2nd ed. Greg Tobin, 2007. isbn: 9780321486813.

[2] Anon. Pharo The immersive programming experience. 2018. url: http:
//pharo.org/web (visited on 05/07/2018).

[3] Anon. Smalltalk Syntax In A Postcard. 2014. url: http://wiki.c2.
com/?SmalltalkSyntaxInaPostcard (visited on 05/07/2018).

[4] Alexandre Bergel et al. Deep Into Pharo. 1st ed. Lulu.com & Square
Bracket Associates, 2013. isbn: 9783952334164.

[5] Andrew P Black et al. Pharo by example. 1st ed. Lulu.com & Square
Bracket Associates, 2010. isbn: 9781365654596.

[6] John Brant. SmaCC. url: http://refactoryworkers.com/SmaCC.
html (visited on 05/08/2018).

[7] Jordi Cabot. Object Constraint Language (OCL) tutorial. 2012. url:
https : / / modeling - languages . com / ocl - tutorial (visited on
05/05/2018).

[8] Jordi Cabot. Why you need to learn OCL. 2012. url: https :
//modeling-languages.com/why-you-need-to-learn-ocl/ (visited
on 05/07/2018).

[9] CCMi. OntoUML. 2016. url: https://ccmi.fit.cvut.cz/metodiky/
ontouml/ (visited on 05/06/2018).

[10] OntoUML Community. OntoUML Wiki - Kind. 2017. url: https://
ontouml.org/ufo/wiki/kind (visited on 05/06/2018).

[11] Bryan Ford. “Packrat parsing:: simple, powerful, lazy, linear time,
functional pearl”. In: ACM SIGPLAN Notices. Vol. 37. 9. ACM. 2002,
pp. 36–47.

57

http://pharo.org/web
http://pharo.org/web
http://wiki.c2.com/?SmalltalkSyntaxInaPostcard
http://wiki.c2.com/?SmalltalkSyntaxInaPostcard
http://refactoryworkers.com/SmaCC.html
http://refactoryworkers.com/SmaCC.html
https://modeling-languages.com/ocl-tutorial
https://modeling-languages.com/why-you-need-to-learn-ocl/
https://modeling-languages.com/why-you-need-to-learn-ocl/
https://ccmi.fit.cvut.cz/metodiky/ontouml/
https://ccmi.fit.cvut.cz/metodiky/ontouml/
https://ontouml.org/ufo/wiki/kind
https://ontouml.org/ufo/wiki/kind

Bibliography

[12] Bryan Ford. “Parsing expression grammars: a recognition-based syntac-
tic foundation”. In: ACM SIGPLAN Notices. Vol. 39. 1. ACM. 2004,
pp. 111–122.

[13] Thierry Goubier et al. SmaCC: a Compiler-Compiler. https://github.
com/SquareBracketAssociates/Booklet-Smacc. Booklet. 2017.

[14] Scott McPeak and George C Necula. “Elkhound: A fast, practical GLR
parser generator”. In: International Conference on Compiler Construc-
tion. Springer. 2004, pp. 73–88.

[15] Bob Moore. “Removing Left Recursion from Context-Free Grammars”.
In: Association for Computational Linguistics, 2000. url: https://
www.microsoft.com/en-us/research/publication/removing-left-
recursion-from-context-free-grammars/.

[16] Object Constraint Language. formal/2014-02-03. Rev. 2.4. Object Man-
agment Group. Feb. 2014.

[17] OMG Unified Modeling Language (OMG UML). formal/2017-12-05.
Rev. 2.5.1. Object Managment Group. Dec. 2017.

[18] Roy Osherove. The Art of Unit Testing. 2nd ed. Manning Publications
Co., 2014. isbn: 9781617290893.

[19] Martyn A Ould and Charles Unwin. Testing in software development.
Cambridge University Press, 1986. isbn: 9780521337861.

[20] S Doaitse Swierstra. “Combinator parsing: A short tutorial”. In: Lan-
guage Engineering and Rigorous Software Development. Springer, 2009,
pp. 252–300.

[21] Gabriele Tomassetti. A Guide to Parsing: Algorithms and Technology
(Part 1). url: https://dzone.com/articles/a-guide-to-parsing-
algorithms-and-technology-part (visited on 05/12/2018).

[22] Eelco Visser et al. Scannerless generalized-LR parsing. Universiteit van
Amsterdam. Programming Research Group, 1997.

[23] Alessandro Warth, James R Douglass, and Todd D Millstein. “Packrat
parsers can support left recursion”. In: PEPM 8 (2008), pp. 103–110.

58

https://github.com/SquareBracketAssociates/Booklet-Smacc
https://github.com/SquareBracketAssociates/Booklet-Smacc
https://www.microsoft.com/en-us/research/publication/removing-left-recursion-from-context-free-grammars/
https://www.microsoft.com/en-us/research/publication/removing-left-recursion-from-context-free-grammars/
https://www.microsoft.com/en-us/research/publication/removing-left-recursion-from-context-free-grammars/
https://dzone.com/articles/a-guide-to-parsing-algorithms-and-technology-part
https://dzone.com/articles/a-guide-to-parsing-algorithms-and-technology-part

Appendix A
Handwritten OCL Grammar

%glr;
%unicode;

Creates a starting state for each of these non-terminals, important for tests
%start ContextInvariant OCLExpression VariableDeclaration

VariableDeclarationList SimpleName Arguments Type IterationName;

SmaCC cannot deal with unicode greater than \xFFFF
<NameStartChar>

: [A-Z] | | $ | [a-z]
| [\xC0-\xD6] | [\xD8-\xF6] | [\xF8-\x2FF]
| [\x370-\x37D] | [\x37F-\x1FFF]
| [\x200C-\x200D] | [\x2070-\x218F] | [\x2C00-\x2FEF]
| [\x3001-\xD7FF] | [\xF900-\xFDCF] | [\xFDF0-\xFFFD]
;

<NameChar>: (<NameStartChar> | [0-9]);
<Identifier>: <NameStartChar> <NameChar>∗;
<Digit>: [0-9];
<LeadingDigit>: [1-9];
<IntegerLexicalRepresentation>: (0 | <LeadingDigit> <Digit> ∗);
<IntegerPart>: <IntegerLexicalRepresentation> ;
<FractionPart>: \. <Digit> + ;
<ExponentPart>: [eE] [\+\-]? <IntegerPart> ;
<RealLexicalRepresentation>: <IntegerPart> (

(<FractionPart> <ExponentPart>?) | (<FractionPart>? <ExponentPart>)
);
<Char>: [\x20-\x26] | [\x28-\x5B] | [\x5D-\xD7FF] | [\xE000-\xFFFD];
<EscapeSequence>: \\ (([btnfr\”\’\\]) | (x <Digit> <Digit>)
| (u <Digit> <Digit> <Digit> <Digit>));

<QuotedText>: \’ (<Char> | <EscapeSequence>) ∗ \’;

SmaCC ignores whitespaces by default
<whitespace>: \s+;
<comment>: (-- [ˆ\n] ∗) | (/\∗ [ˆ”∗/”]∗ \∗/);

These are defined, so we can set different
%left/%right directive to Binary/Unary

59

A. Handwritten OCL Grammar

<BinaryPlus>: \+;
<BinaryMinus>: -;
<UnaryPlus>: \+;
<UnaryMinus>: -;

Operator precedence and some shift/reduce conflicts solving directives
%left ”implies”;
%left ”xor”;
%left ”or”;
%left ”and”;
%left ”=” ”<>”;
%left ”<” ”>” ”<=” ”>=”;
%left <BinaryPlus> <BinaryMinus>;
%left ”∗” ”/”;
%right ”not” <UnaryMinus> <UnaryPlus> ” ” ;
%left ”.” ”->” ”ˆ” ”ˆˆ”;
%right <Identifier> <QuotedText>;

Setting the prefixes and suffixes of the generated
CST class hierarchy
%root CST;
%prefix OPOCL;
%suffix Node;

Makes unnamed tokens in production rules to be added
to the generated class, useful for debugging/error info
%annotate tokens;

Defining the CST hierarchy
%hierarchy OCLExpression (Navigation Call Literal Operator Let);
%hierarchy Navigation (ImplicitNavigation);
%hierarchy Call (ImplicitCall);
%hierarchy Literal (Integer UnlimitedNatural String Real Boolean);
%hierarchy Operator (BinaryOperator UnaryOperator);
%hierarchy Type (RegularType CollectionType);

Every CST class instance has to have an AST counter-part
%attributes CST (ast);

ContextInvariant
: ”context” SimpleName ’contextName’ ”inv” (SimpleName ’invariantName’)?

”:” OCLExpression ’invariantConstraint’ {{}}
;

OCLExpression
: Navigation
| Call
| Iteration
| Literal
| BinaryOperator
| UnaryOperator
| Parantheses
| Let

60

| IfThenElse
;

Navigation
: ImplicitNavigation
| OCLExpression ’origin’ ”.” SimpleName ’identifierName’ {{}}
;

ImplicitNavigation
: SimpleName ’identifierName’ {{}}
;

Call
: ImplicitCall
| OCLExpression ’origin’ ”.” SimpleName ’operationName’

”(” Arguments ’arguments’ ?”)” {{}}
| OCLExpression ’origin’ ”->” SimpleName ’operationName’

”(” Arguments ’arguments’ ?”)” {{}}
;

ImplicitCall
: SimpleName ’operationName’ ”(” Arguments ’arguments’ ? ”)” {{}}
;

Iteration
: OCLExpression ’origin’ ”->” IterationName ’iterationName’

”(” (VariableDeclaration ’iterator1’
(”,” VariableDeclaration ’iterator2’)? ”|”)?
OCLExpression ’bodyExp’ ”)” {{}}

;

IterationName
: ”select” ’nameToken’ {{}}
| ”exists” ’nameToken’ {{}}
;

SimpleName
: <Identifier> ’nameToken’ {{}}
| ” ” <QuotedText> ’nameToken’ {{}}
| SimpleName <QuotedText> ’nameToken’ {{}}
;

Literal
: Integer
| UnlimitedNatural
| String
| Real
| Boolean
;

Integer
: <IntegerLexicalRepresentation> ’integerValueToken’ {{}}
;

61

A. Handwritten OCL Grammar

UnlimitedNatural
: ”∗” ’unlimitedNaturalValueToken’ {{}}
;

String
: <QuotedText> ’textToken’ {{}}
| String <QuotedText> ’textToken’ {{}}
;

Real
: <RealLexicalRepresentation> ’realValueToken’ {{}}
;

Boolean
: ”true” ’booleanValueToken’ {{}}
| ”false” ’booleanValueToken’ {{}}
;

BinaryOperator
: OCLExpression ’leftExp’ <BinaryPlus> ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ <BinaryMinus> ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”∗” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”/” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”implies” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”xor” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”and” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”or” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”=” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”<>” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”<” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”>” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”<=” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
| OCLExpression ’leftExp’ ”>=” ’binaryOperatorToken’

OCLExpression ’rightExp’ {{}}
;

UnaryOperator
: ”not” ’unaryOperatorToken’ OCLExpression ’exp’ {{}}
| <UnaryPlus> ’unaryOperatorToken’ OCLExpression ’exp’ {{}}
| <UnaryMinus> ’unaryOperatorToken’ OCLExpression ’exp’ {{}}
;

62

Parantheses
: ”(” OCLExpression ’exp’ ”)” { ˆ exp }
;

Let
: ”let” VariableDeclarationList ’variableDeclarations’

”in” OCLExpression ’exp’ {{}}
;

IfThenElse
: ”if” OCLExpression ’condition’ ”then” OCLExpression

’thenExp’ ”else” OCLExpression ’elseExp’ ”endif” {{}}
;

VariableDeclarationList
: VariableDeclaration ’declaration’ {{}}
| VariableDeclarationList ”,” VariableDeclaration ’declaration’ {{}}
;

VariableDeclaration
: SimpleName ’variableName’ (”:” Type ’variableType’)?

(”=” OCLExpression ’initExp’)? {{}}
;

Type
: RegularType
| CollectionType
;

RegularType
: SimpleName ’typeName’ {{}}
;

CollectionType
: SimpleName ’collectionTypeName’ ”(” Type ’elementType’ ”)” {{}}
;

Arguments
: OCLExpression ’argument’ {{}}
| Arguments ”,” OCLExpression ’argument’ {{}}
;

Listing A.1: The entire handwritten grammar for the OCL language subset

63

Appendix B
Acronyms

AST Abstract Syntax Tree.

CCMi Center for Conceptual Modeling and Imple-
mentation.

CFG context-free grammar.
CST Concrete Syntax Tree.

GLR Generalized LR.
GUI Graphical User Inteface.

LALR Look-Ahead LR.
LL Left to right, Leftmost derivation.
LR Left to right, Rightmost derivation.

MDE model-driven engineering.

OCL Object Constraint Language.
OMG Object Managment Group.

PEG parsing expression grammar.

SmaCC Smalltalk Compiler-Compiler.

UFO Universal Foundational Ontology.
UML Unified Modeling Language.

VM virtual machine.

65

Appendix C
User Guide

This guide details how to run Pharo with the OpenPonk image containing the
OCL interpreter. For reference of the directory structure see at appendix D.

C.1 Linux

Copy the /exe/lin directory from the USB flash disk to a location on your
computer, where you have write privilages.

cd into the lin directory on your computer and run the command:

./vms/linux/pharo openponk.image

The version of the Pharo VM is 32-bit, as it is the most stable one. You may
have to install the 32-bit runtime libraries. Run the following commands to
install those:

sudo dpkg --add-architecture i386 sudo apt-get update
sudo apt-get install libx11-6:i386 libgl1-mesa-glx:i386 \
libfontconfig1:i386 libssl1.0.0:i386
sudo apt-get install libcairo2:i386

OpenPonk also requires libcairo to be installed (the 32-bit version). Run the
following command:

sudo apt-get install libcairo2:i386

C.2 Windows

Copy the /exe/win directory from the USB flash disk to a location on your
computer, where you have write privilages.

67

C. User Guide

In the File Explorer go to your copied win directory and double-click the
Pharo.exe file. This should automatically start Pharo with an image running.
If it prompts for an image, just select the openponk.image file in the same
directory.

C.3 Mac

For running Pharo on a Mac you can follow the guide on the http:
//pharo.org/download web page.

Then you can use the openponk.image file, that is stored in the /exe/img/
directory stored in the USB flash disk.

68

http://pharo.org/download
http://pharo.org/download

Appendix D
Contents of enclosed USB

readme.txt............description of the USB contents and a user guide
exe................................directory with Linux VM and image

lin directory with Windows VM and image
img.............directory with the OpenPonk OCL Interpreter image
win......................................directory with executables

src...directory of source codes
ocl_interpreter directory with Pharo file-outs

OP-OCL-Interpreter.st........OCL Interpreter package file-outs
OPUMLMetaElement.st............OpenPonk modification file-out

thesis..................directory of LATEX source codes of the thesis
text..thesis text directory

BP_Svoboda_Jakub_2018.pdf thesis text in PDF format
BP_Svoboda_Jakub_2018.ps thesis text in PS format

69

	Introduction
	Goal
	Thesis Structure

	Review
	Object Constraint Language
	Expressions
	Context Declarations
	Standard Library
	Type Conformance

	Parsing
	LL parsers
	LR parsers
	Parser Combinators
	Scannerless Parsers
	Parsing Expression Grammars
	Packrat Parsing

	Pharo
	Syntax
	Development Environment

	Pharo's parser frameworks
	PetitParser
	SmaCC

	Practical Part
	Analysis and Design
	Using an LL parser
	Using PetitParser
	Using SmaCC
	Final solution

	Implementation
	Core Package
	CST Package
	AST Package
	AST-Expressions Package
	AST-Types Package
	AST-Values Package
	ErrorHandling Package
	Testing Package
	Interpreting

	Testing
	Unit and Integration Tests
	OntoUML Use Case

	Conclusion
	Bibliography
	Handwritten OCL Grammar
	Acronyms
	User Guide
	Linux
	Windows
	Mac

	Contents of enclosed USB

