
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 30, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Bitcoin Wallet for Android with TREZOR Hardware Wallet Support

 Student: Matouš Skála
 Supervisor: Mgr. Jan Starý, Ph.D.
 Study Programme: Informatics
 Study Branch: Computer Science
 Department: Department of Theoretical Computer Science
 Validity: Until the end of summer semester 2018/19

Instructions

1) Describe key derivation in a hierarchical deterministic wallet as defined by the BIP-0032 specification
2) Describe the Bitcoin transaction structure and signing workflow when using the TREZOR hardware
wallet
3) Design an Android library for communication with TREZOR over an USB interface
4) Implement a Bitcoin Wallet for Android with at least the following functionality:
 a) Load the wallet content from TREZOR
 b) Create a transaction, sign with TREZOR and broadcast to the Bitcoin network
 c) Account, address and transaction labeling compatible with the SLIP-0015 standard

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Bachelor’s thesis

Bitcoin Wallet for Android with TREZOR
Hardware Wallet Support

Matouš Skála

Supervisor: Mgr. Jan Starý, Ph.D.

14th May 2018

Acknowledgements

I would like to thank to Jǐŕı Charvát for introducing me to Bitcoin in the
first place, to Mgr. Pavol Rusnák for consultation regarding the mechanics
of communicating with TREZOR, to SatoshiLabs s.r.o. for providing testing
TREZOR devices, and finally to Mgr. Jan Starý, Ph.D. for giving continuous
feedback during the whole process.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 14th May 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c• 2018 Matouš Skála. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Skála, Matouš. Bitcoin Wallet for Android with TREZOR Hardware Wallet
Support. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2018.

Abstrakt

Tato práce se zabývá návrhem Bitcoinové peněženky pro OS Android, která
využ́ıvá zař́ızeńı TREZOR jako úložǐstě privátńıch kĺıč̊u. Navržená aplikace
umožňuje zobrazit seznam transakćı, vytvořit novou transakci, podepsat ji
pomoćı zař́ızeńı a odeslat do śıtě. Vedleǰśım př́ınosem této práce je navržeńı
Android knihovny pro usnadněńı komunikace se zař́ızeńım TREZOR.

Kĺıčová slova mobilńı aplikace, Android, Bitcoin, kryptoměna, hardwarová
peněženka, TREZOR, kryptografie, Kotlin

Abstract

The goal of this thesis is to design a Bitcoin wallet for the Android OS, us-
ing the TREZOR device as a secure private key storage. The implemented
application allows to see transactions history, to compose a new transaction,
sign it and broadcast it to the network. The secondary contribution of this
thesis is designing an Android library simplifying the communication with the
TREZOR device.

Keywords mobile application, Android, Bitcoin, cryptocurrency, hardware
wallet, TREZOR, cryptography, Kotlin

vii

Contents

Introduction 1

1 Analysis and design 3
1.1 Public Key Cryptography in Bitcoin 3
1.2 Hierarchical Deterministic Wallet 8
1.3 Transaction Structure . 12
1.4 Transaction Scripts . 14
1.5 Segregated Witness . 16
1.6 TREZOR Hardware Wallet . 19

2 State of the art 23
2.1 Existing Wallets with TREZOR Support 23
2.2 TREZOR Communication Library for Android 25

3 Realisation 27
3.1 TREZOR Intents Library . 28
3.2 Account Discovery . 30
3.3 Bitcoin Network Connection . 30
3.4 Transaction Composition . 31
3.5 Bitcoin Metadata . 35

Conclusion 39
Future Work . 40

Bibliography 41

A Screenshots 45

B Acronyms 51

C Contents of enclosed SD 53

ix

List of Figures

1.1 Addition of points P and Q on an elliptic curve 4
1.2 Base58Check Encoding . 6
1.3 Hierarchical Deterministic Wallet 9
1.4 Signature workflow for TX with N inputs and M outputs 22

2.1 Mycelium . 24
2.2 Sentinel . 25

A.1 Initialization . 46
A.2 PIN Request . 46
A.3 Accounts List . 47
A.4 Transactions List . 47
A.5 Receiving Addresses . 48
A.6 Transaction Composition . 48
A.7 Address Detail . 49
A.8 Transaction Detail . 49

xi

List of Tables

1.1 Transaction Format . 13
1.2 Transaction Output Format . 13
1.3 Transaction Input Format . 13
1.4 P2PKH scriptSig Execution . 15
1.5 P2PKH scriptPubKey Execution 15

xiii

List of Source Codes

1 Parent public key to child public key derivation 11
2 Construction of a P2SH-P2WPKH address from a public key . 18
3 FIFO Coin Selector . 34
4 An example metadata JSON object 35

xv

Introduction

Cryptocurrencies have been a frequently discussed topic recently. They are
revolutionary mainly because they allow nearly instant, costless funds transfer
between users worldwide. Importantly, it can all be done without the need to
trust any intermediaries.

However, with increasing cryptocurrency popularity among users, there is
also an increasing risk of having the funds stolen as a result of insu�cient
system security. To deal with this issue, hardware wallets have emerged,
allowing users to keep private keys stored on an o�ine device, separately from
a vulnerable operating system. When sending a transaction, the user has to
connect the device to a computer over the USB interface and confirm the
transaction signature by physically pressing a button. The signing process
happens in the device itself and the private key never leaves the device.

The outcome of this thesis will be beneficial to users who own the TREZOR
hardware wallet produced by SatoshiLabs and would like to manage their
Bitcoin wallet from an Android smartphone.

I have chosen this topic because of my interest in decentralized systems,
cryptography and particularly cryptocurrencies. Even though some Android
wallets with TREZOR support already exist, they usually support only a sub-
set of features from the full-featured desktop wallet and do not reflect recent
Bitcoin development.

This thesis is dealing with a design and implementation of an Android
application, which serves as a Bitcoin wallet and supports signing transactions
with TREZOR. The app supports a hierarchy of accounts and a new SegWit
transaction format. It also enables the user to label accounts, addresses, and
transactions and synchronizes these metadata with Dropbox cloud storage.

The project begins with an analysis of Bitcoin wallets technology, a trans-
action structure and TREZOR signature process. Secondly, a library for com-
munication between an Android device and TREZOR is designed. Finally,
the Bitcoin wallet is implemented, demonstrating the usage of the library.

1

Chapter 1
Analysis and design

1.1 Public Key Cryptography in Bitcoin
Public key cryptography, or asymmetrical cryptography, is the foundation of
computer security. In a public key cryptography system, the user owns a pair
of keys: a private key known only by the owner, and a public key that can be
shared with other parties. Such a system can be used either for encryption,
where only the private key can be used to decrypt a message encrypted with
the paired public key, or authentication, where a public key can verify if the
message has been signed with the paired private key.

In Bitcoin [1], cryptography is used to control the ownership of funds.
The user owns a private key, which is stored in a file called a wallet. Each
private key has a corresponding public key that is used to derive a Bitcoin
address. When the user wants to receive funds, he shares his address with
a counterpart, who uses it as an output in a new transaction and broadcasts
the transaction to the network.

When the user wants to spend the received funds, he can use them as an
input in a next transaction. To prove ownership, he has to sign the transaction
with his private key and provide the signature along with the corresponding
public key. All network participants can then validate the authenticity of the
transaction.

Contrary to popular belief, encryption is not a part of Bitcoin and all trans-
action details are publicly available in the blockchain (an immutable linked list
of transaction blocks). To protect users’ privacy, other cryptocurrencies have
emerged, e.g. Zcash1 or Monero2. In future, it’s possible to further enhance
Bitcoin anonymity with the implementation of Confidential Transactions [2],
which ensure that the amount of funds transferred is visible only to the parti-
cipants of the transaction while preserving the ability of the network to verify
the transaction validity.

1https://z.cash/
2https://getmonero.org/

3

1. Analysis and design

1.1.1 Elliptic Curve Cryptography
Elliptic curve cryptography [3] is a type of asymmetric cryptography based on
the algebraic structure of elliptic curves over finite fields. An elliptic curve is
a plane curve consisting of the points satisfying the equation y

2 = x
3 +ax+ b,

along with a point at infinity O.
We can define an addition operation for points on the curve. Given two

points P and Q on the elliptic curve, there is a third point R = P + Q, also
on the elliptic curve. Geometrically, R can be calculated by drawing a line
between P and Q. The line will intersect the elliptic curve in exactly one new
point R

Õ = (x, y). We reflect that point over the x-axis and get the point
R = (x, ≠y).

Figure 1.1: Addition of points P and Q on an elliptic curve

If P and Q are the same point, the line between them is a tangent on the
curve at that point. It will intersect the curve in exactly one new point. If
P and Q have the same x values but di�erent y values, the tangent will be
vertical and in such case, we set R = O (the point at infinity). If P = O, then
P + Q = Q. This shows how O acts like zero for addition.

We can also define a scalar multiplication as repeated addition of a point
on the curve. Given a point P on the elliptic curve and a whole number k, we
can calculate

k ú P = P + P + ... + P (k times)
For cryptographic purposes, elliptic curves over finite fields, instead of real

numbers, are used. Those are elliptic curves that consist only of the points
having coordinates in a finite field Fp.

Bitcoin uses a specific elliptic curve called secp256k1 defined in Standards
for E�cient Cryptography [4]. It specifies the curve parameters as a = 0, b =
7, therefore the curve can be defined by the equation y

2 = x
3 +7 over Fp. The

finite field is defined by the prime order p = 2256
≠232

≠29
≠28

≠27
≠26

≠24
≠1.

The specification also defines a generator point G.

4

1.1. Public Key Cryptography in Bitcoin

1.1.2 Private and Public Keys
In Bitcoin, the private key k is a 256-bit number, usually picked at random or
derived from a random seed. The public key K is calculated from the private
key using elliptic curve multiplication:

K = k ú G

where k is the private key, G is the generator point and K is the resulting
public key, represented by a point on the elliptic curve. It’s important to
note that the elliptic curve multiplication is a cryptographic one-way function,
therefore while it’s easy to calculate the public key from the private key,
it’s nearly impossible to calculate the private key from the public key. The
reverse operation, also known as the discrete logarithm problem, is as di�cult
as a brute-force search.

1.1.3 Bitcoin Address
A bitcoin address [5] is a string of alphanumeric characters representing a pos-
sible destination for a Bitcoin payment and can be shared with anyone who
wants to send you money. There are currently three address formats in use:

1. P2PKH (Pay to Public Key Hash), starting with the number 1

2. P2SH (Pay to Script Hash), starting with the number 3

3. Bech32, a native SegWit address format, starting with bc1

Let’s start with the first case, where an address represents an owner of
a private/public key pair. We can derive an address from the public key using
a hash function. A hash function is a cryptographic one-way function that
produces a fingerprint of an arbitrary-sized input. The specific algorithms used
are SHA256 (Secure Hash Algorithm) and RIPEMD160 (RACE Integrity
Primitives Evaluation Message Digest).

Starting with a public key K, we first apply the SHA256 function, then
calculate RIPEMD160 and end up with a 160-bit number:

A = RIPEMD160(SHA256(K))

Finally, the address is encoded using the Base58Check encoding, which uses
58 characters and a checksum to improve readability and to protect against
errors in address transcription.

1.1.4 Base58Check Encoding
To represent long numbers in a compact way, many computer systems use
representations with a base higher than 10. For example, Base64 represent-
ation uses both lowercase and capital letters, numerals and two additional

5

1. Analysis and design

characters. Numbers encoded in such a way are more compact than those in
decimal representation, as each Base64 digit represents exactly 6 bits of data.

For usage in Bitcoin, a new encoding scheme called Base58 has been de-
veloped. It is similar to Base64, but it uses only alphanumeric characters and
some letters that look ambiguous have been omitted. Compared to Base64,
the following characters are excluded: 0 (zero), O (capital o), I (capital i),
l (lower case L), + (plus) and / (slash).

Base58Check is an encoding format extending Base58 with a version num-
ber and an error checking code. To convert a number into the Base58Check
format, we first add a prefix called the version byte, identifying the type of
data encoded. For a P2PKH address, a 0x00 prefix is used, resulting in a pre-
fix of 1 when encoded with Base58. For P2SH addresses, the version byte is
0x05, resulting in a prefix of 3.

Next, we compute a double hash of a version byte concatenated with the
actual data (a payload):

hash = SHA256(SHA256(version + payload))

We take only the first 4 bytes of the resulting hash and append it as
a checksum. Finally, we encode the result consisting of three items (the ver-
sion, the payload, and the checksum) using Base58 encoding. The whole
encoding process is visualized in Figure 1.2.

Figure 1.2: Base58Check Encoding

payloadversion

0x05 0x585970c377c7378ff1d
00a7104d13edf9d71ffd0

39kAXrkGwPR2jajMGFqd8SV6gvJRYRj8Ja

0x60fd

payloadversion checksum

SHA256

SHA256

Base58 Encode

first 4 bytes

During the decoding process, we calculate the checksum from the data and
compare it to the checksum included in the code. If they do not match, an
error has been introduced and the data is invalid.

6

1.1. Public Key Cryptography in Bitcoin

1.1.5 Digital Signatures

A digital signature is a scheme that is used to ensure message authenticity.
It proves that the message came from the stated sender and has not been
modified. The scheme consists of two components – a signing algorithm and
a verification algorithm.

Given a message m and a private key k, the signing algorithm produces
a digital signature s.

The verification algorithm then takes a message m, a signature s, a public
key K and verifies whether the private key corresponding to the public key K

has been used to produce the signature s of the message m. If a di�erent key
was used or the provided message does not correspond to the signed message,
the verification fails.

In Bitcoin, Elliptic Curve Digital Signature Algorithm (ECDSA) is used
to ensure that funds can be spent only be their owners. To sign a message m

with a private key k, using an elliptic curve over Fp with a generating point
G of order n, these steps are followed:

1. Calculate a hash z of the message m

2. Select a random number t from [1, n ≠ 1] which is used as an ephemeral
(temporary) private key

3. Generate an ephemeral public key P = t ú G

4. Set R to be the x coordinate of the ephemeral public key P

5. S = t
≠1

ú (z + k ú R) mod p

6. The signature is the pair (R, S)

To verify the signature, an inverse function is used to calculate a value P

from the signature (R, S), a public key K, a message hash z and a generator
point G:

P = S
≠1

ú z ú G + S
≠1

ú R ú K

If the x coordinate of the calculated point P is equal to R, the signature
is valid, otherwise it’s not.

It’s crucial to make sure the number t is randomly generated. If a single
ephemeral private key was used to sign multiple messages, it would be trivial to
calculate the private key given the signature and the public key. An improper
random-number generator initialization has led to some serious security flaws
in the past. [6]

7

1. Analysis and design

1.2 Hierarchical Deterministic Wallet
A Bitcoin wallet is a program that manages user’s keys and addresses, allows
to track the balance and to create and sign transactions. It’s a common
misconception that the wallet stores user’s bitcoins, while it only keeps track
of his private and public key pairs. Therefore, it would be more accurate to
refer to it as a keychain. The coins itself are represented by the outputs of
transactions stored in the blockchain and they can be unlocked by providing
a valid signature.

In the early days of Bitcoin, the wallets generated all private keys ran-
domly, which meant that for each new address, a new key pair had to be
generated and stored independently. That made wallets di�cult to back up,
as with each new generated key, a new backup had to be created. Such a wallet
is called nondeterministic, or JBOK 3.

To make the wallet backup easier, an idea of a deterministic wallet has
been introduced, in which all private keys are generated from a single root seed.
It is enough to back up the seed during the wallet initialization and then all
keys can be recreated at any time just by providing the seed. Moreover, thanks
to elliptic curve mathematics, a parent public key can generate a sequence of
child public keys without knowing the private key. This enables a concept of
watch-only wallets and it is particularly useful when combined with a hardware
wallet.

The most advanced wallet form is a hierarchical deterministic (HD) wal-
let defined by the BIP-0032 standard [7], where keys are derived in a tree
structure, such that each parent key can generate a sequence of child keys,
as shown in Figure 1.3. The advantage of the tree structure is that di�erent
branches can be used for di�erent purposes, e.g. one branch for incoming
payments and another one to receive change from outgoing payments. Ad-
ditionally, a structure of multiple accounts can be set up, e.g. to distinguish
a personal and savings account, or to represent di�erent accounting categories
or departments in corporate settings.

1.2.1 HMAC

HMAC [8] stands for a key-hashed message authentication code. It’s defined
as a cryptographic hash of a message m combined with a secret key K:

HMAC(K, m) = H((K ü opad||H((K ü ipad)||m))

H can be any cryptographic hash function, ipad and opad are predefined
constants, || denotes concatenation, and ü represents XOR. Usually, HMAC
is used as a mechanism for message authentication, but in our context, it’s
a building block of key derivation functions.

3Just a Bunch Of Keys

8

1.2. Hierarchical Deterministic Wallet

Figure 1.3: Hierarchical Deterministic Wallet [5]

1.2.2 Master Key Generation

Keys in an HD wallet are generated from the root seed, which can be a 128-,
256- or 512-bit random number. The root seed is first hashed with HMAC-
SHA512, taking the “Bitcoin seed” string as the key. The resulting 512-bit
hash is used to create a master private key m and a master chain code c

by taking its left 256 bits and right 256 bits, respectively. A master public
key M is then generated from the master private key using elliptic curve
multiplication: M = m ú G.

1.2.3 Extended Keys

The chain code is used to introduce entropy in the child key derivation func-
tion. We define an extended private key (k, c) as a private key k extended
with a chain code c. An extended public key (K, c) is defined as a public key
K extended with a chain code c.

Given a parent extended key and a child index i, it is possible to compute
the corresponding child extended key. Each extended key has 231 normal child
keys and 231 hardened child keys. The normal child keys use indices 0 to 231

≠1
and hardened child keys use indices 231 to 232

≠ 1.

1.2.4 Key Derivation

The child derivation function definition depends on whether we are working
with public or private keys and whether these keys are hardened. An extended
private key can be used to derive any child private and public keys (both
hardened and normal), whereas an extended public key can derive only normal
(non-hardened) child public keys.

9

1. Analysis and design

For the purpose of our Bitcoin wallet, we will only need to derive child
public keys from a parent public key. The derivation algorithm starts by
checking if the child index is non-hardened. Then, a parent public key is
encoded and concatenated with a child index. The resulting string is hashed
with HMAC-SHA512, using a chain code as the key. The left 256 bits are used
to create a child public key by multiplying the generator point and adding it
with the parent public key. The right 256 bits are representing the child chain
code. There is an implementation in the Kotlin language provided in Source
Code 1.

1.2.5 Multi-Account Hierarchy for Deterministic Wallets

Keys in an HD wallet are identified by a path that was used for their derivation.
To make di�erent wallets compatible with each other, the BIP-0043 [9] and
BIP-0044 [10] standards have been proposed, defining the logical hierarchy
that should be used for key derivation.

BIP-0043 proposes that the first level of the tree structure should serve as
a purpose. The purpose determines the further structure beneath that node.
Each derivation scheme should be described in a separate BIP and its number
should be used in the purpose field.

BIP-0044 defines the following 5 levels:

m / purpose’ / coin_type’ / account’ / change / address_index

An apostrophe in the path indicates that the hardened derivation is used,
so a private key is required to derive the child node.

Each level in the path has a special meaning:
Purpose is a constant set to 44, indicating that the path is following the

scheme defined by the BIP-0044 specification.
Coin type specifies a cryptocurrency type, as one master seed can be used

for multiple cryptocurrencies. A list of registered coin types is maintained in
SLIP-0044 [11] and Bitcoin is defined as 0.

Account allows separating funds similarly to bank accounts. The wallet
never mixes coins across di�erent accounts. Accounts are numbered from
the index 0. The wallet should prevent the creation of a new account if the
previous account has no transactions history.

Change is a constant of 0 for an external chain (publicly available ad-
dresses for receiving payments) and a constant of 1 for change addresses.

Index specifies an address index, numbered from 0 in an increasing man-
ner. The wallet should not allow creating more than 20 (address gap limit)
consecutive addresses without any transaction history.

10

1.2. Hierarchical Deterministic Wallet

fun deriveChildKey(parentKey: ExtendedPublicKey, index: Int):
ExtendedPublicKey {

if (isHardened(index)) {
throw IllegalArgumentException(

"Defined only for non-hardened child keys")
}

val key = parentKey.chainCode
val data = ByteBuffer.allocate(37)
data.put(parentKey.publicKey.getEncoded(true))
data.putInt(index)
val i = hmacSha512(key, data.array())

// Split 64-bit i into two 32-bit sequences

val il = BigInteger(1, Arrays.copyOfRange(i, 0, 32))
val ir = Arrays.copyOfRange(i, 32, 64)

val curveParams = CustomNamedCurves.getByName(SECP256K1)

if (il > curveParams.n) {
throw InvalidKeyException(

"il is larger that the curve order")
}

val childPublicKey = FixedPointCombMultiplier()
.multiply(curveParams.g, il)
.add(parentKey.publicKey)

if (childPublicKey.isInfinity) {
throw InvalidKeyException(

"Child public key point is at infinity")
}

return ExtendedPublicKey(childPublicKey, ir)
}

Source Code 1: Parent public key to child public key derivation

11

1. Analysis and design

1.3 Transaction Structure
A transaction is the fundamental part of Bitcoin. It serves as a transfer of
Bitcoin value between users. Once the user creates and signs a transaction,
it can be broadcast to the network. After that, it is validated by all full
nodes, added to the unconfirmed transactions pool (mempool) and eventually
included in a block by miners. There is a new block mined approximately
every 10 minutes. The miner who created the block receives a block reward
(currently 12.5 BTC, halving every 4 years) and the transaction fees of all
included transactions.

1.3.1 Transaction Outputs and Inputs
The basic building block of a transaction is a transaction output. It represents
an indivisible amount of Bitcoin recorded in the blockchain. Outputs that
have not been spent yet are known as unspent transaction outputs, or UTXO.
All Bitcoin full nodes keep track of the UTXO set and use it for validating
incoming transactions. Every transaction spends some previously unspent
outputs and creates new ones.

A transaction can have any number of inputs and outputs. Each output
specifies an amount and has an associated locking script (scriptPubKey),
which specifies the conditions under which the output can be spent. An input
contains a reference to some previous transaction output, also known as an
outpoint (a structure consisting of a transaction hash and an output index).
The input also provides an unlocking script (scriptSig) that satisfies the
conditions placed by the corresponding output locking script.

The transaction output value is indivisible, which means it has to be spent
in whole. If the output is larger than the desired value of the transaction,
a change output is created, sending the remaining value back to the sender’s
address. As an example, Alice sends 5 BTC to Bob. Later, Bob wants to send
1 BTC to Charlie. He has to use the whole 5 BTC output as a transaction
input and create 2 transaction outputs – 1 BTC output going to Charlie and
4 BTC change output going back to Bob’s wallet.

All transactions are stored and transferred in a binary format described in
Table 1.1, 1.2 and 1.3. All multi-byte integers are in little-endian order.

1.3.2 Transaction Fees
It can be seen that there is no field for specifying a transaction fee in the
transaction structure. Instead, the fee is calculated implicitly as a di�erence
between the sum of transaction inputs and the sum of transaction outputs:

fee = sum(inputs) ≠ sum(outputs)

The fee serves two purposes. Firstly, it’s an incentive for miners to actually
include transactions into blocks, instead of just mining empty blocks. Today,

12

1.3. Transaction Structure

Size Field Description
4 bytes version Transaction version number, currently 1
1–9 bytes inputs count Number of transaction inputs
variable inputs Transaction inputs
1–9 bytes outputs count Number of transaction outputs
variable outputs Transaction outputs
4 bytes lock time A timestamp or block number

Table 1.1: Transaction Format

Size Field Description
8 bytes amount Value in satoshis (10≠8 BTC)
1–9 bytes locking script size The length of the locking script in bytes
variable locking script Conditions for spending the output

Table 1.2: Transaction Output Format

Size Field Description
32 bytes transaction hash Pointer to TX containing the UTXO
4 bytes output index The index of the output to be spent
1–9 bytes unlocking script size The size of unlocking script in bytes
variable unlocking script A script that satisfies the locking script
4 bytes sequence number Used for updating unconfirmed TX

Table 1.3: Transaction Input Format

fees represent only a fraction of miner’s income, but as the block reward
is gradually decreasing over time, fees will eventually become the primary
incentive for miners.

Secondly, it’s a protection against a flood attack, in which an attacker
would flood the network with spam transactions, preventing real transactions
from being included in blocks. Each block can only fit 1 MB of transactions.
When miners are deciding which transactions to include in the next block,
transactions are sorted by fee per byte and those with the highest fee are
prioritized. That makes the flood attack expensive and ine�ective.

The fee is dependent on the actual transaction size in bytes rather than its
value, so transactions with multiple inputs and outputs will be usually more
expensive than a simple transaction with a single input.

13

1. Analysis and design

1.4 Transaction Scripts
In the previous section, we have mentioned the concept of the locking and
unlocking scripts. Now we will introduce the script language and explain how
these scripts are executed during the transaction validation.

Both locking and unlocking scripts are written in a language called Script [5].
It’s a stack-based language similar to Forth. Scripts are processed from left to
right and they consist of constants and operators. Constants are pushed onto
the stack. Operators can pop one or more items from the stack, perform an
operation with them and push the result back onto the stack.

When a transaction is being validated, for each input, a locking script
is executed together with the corresponding unlocking script to check if the
spending conditions are satisfied. The transaction is valid if the result on the
stack is TRUE, any non-zero value or if the stack is empty.

This scripting language is the reason why Bitcoin is sometimes being re-
ferred to as programmable money. It can be used to express a vast amount
of conditions, but it’s intentionally not Turing-complete. It does not contain
any loops to make execution times predictable because each transaction must
be validated by all nodes in the network.

1.4.1 Pay to Public Key Hash (P2PKH)

Most of the transactions nowadays are based on Pay to Public Key Hash
script, which locks the output to a public key hash:

OP_DUP OP_HASH160 <Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG

To unlock such an output, an unlocking script must provide a signature
and a public key corresponding to the private key used to make that signature:

<Signature> <Public Key>

Tables 1.4, 1.5 show a step-by-step execution of the P2PKH locking and
unlocking script.

1.4.2 Pay to Script Hash (P2SH)

Pay to Script Hash transaction type was standardized in BIP-0016 [12].
It allows the user to send funds to the hash of the locking script, which is
here being referred to as a redeem script. Usually, the recipient constructs the
redeem script and provides its hash to the sender. No matter how complex
the script itself is, the sender just needs to know its hash to construct the
locking script:

OP_HASH160 <Redeem Script Hash> OP_EQUAL

14

1.4. Transaction Scripts

Stack Remaining Script Description
<Signature>
<Public Key>

<Signature> <Public Key> <Signature> pushed
onto the stack.

<Public Key>
<Signature>

<Public Key> pushed
onto the stack.

Table 1.4: P2PKH scriptSig Execution

Stack Remaining Script Description
<Public Key>
<Signature>

OP DUP
OP HASH160
<Public Key Hash>
OP EQUALVERIFY
OP CHECKSIG

<Public Key>
<Public Key>
<Signature>

OP HASH160
<Public Key Hash>
OP EQUALVERIFY
OP CHECKSIG

The top stack item
duplicated.

<Public Key Hash>
<Public Key>
<Signature>

<Public Key Hash>
OP EQUALVERIFY
OP CHECKSIG

The top stack item
hashed with SHA256
and RIPEMD160.

<Public Key Hash>
<Public Key Hash>
<Public Key>
<Signature>

OP EQUALVERIFY
OP CHECKSIG

<Public Key Hash>
pushed onto the stack.

<Public Key>
<Signature>

OP CHECKSIG Equality of the two top
stack items is checked.
The script fails if not
equal.

TRUE The transaction is
hashed and with the
two top stack items as
a public key and a
signature, the signature
is verified.

Table 1.5: P2PKH scriptPubKey Execution

15

1. Analysis and design

To unlock the output, an unlocking script must provide the signatures
satisfying the redeem script conditions, together with the serialized redeem
script:

<Signatures>... <Redeem Script>

The validation is performed in two steps. First, the redeem script is run
together with the locking script to check if the hash matches. If the hash
matches, then the unlocking script is executed on its own.

E�ectively, P2SH transactions move the responsibility of providing the
spending conditions from the sender to the recipient. One common use of
P2SH is for multisignature transactions, where M of N signatures are required
to spend the output (an implementation of Shamir’s secret sharing scheme
[3]). With P2SH, instead of providing all N public keys to the sender, the
recipient creates a multi-signature script on his own and provides only its
hash in form of a P2SH address. This simplifies the process of composing the
transaction and reduces a transaction fee for the sender because the hash is
much shorter than the original script.

1.5 Segregated Witness

Segregated Witness, abbreviated as SegWit, is a Bitcoin protocol upgrade
that was activated in 2017 as a softfork (a backward-compatible change) and
comes with several improvements.

It adds a new structure called a witness, which contains unlocking scripts
previously present in transaction inputs. The witness is stored in blocks sep-
arately from the transaction structure and it is not counted towards the 1 MB
block size limit. That results in a larger e�ective block size and lower trans-
action fees.

However, the main motivation behind SegWit was to fix the transaction
malleability [13], a design flaw that allowed an attacker to change the hash of
an unconfirmed transaction by altering the unlocking script. Even though the
transaction is signed, the signature does not contain all data, specifically the
unlocking script, which contains the signature itself. However, the unlocking
script is included in the serialized transaction that is used to compute the
transaction hash. Therefore, it’s possible to tweak the unlocking script in
a way that the transaction is still valid, but has a di�erent hash. SegWit fixes
that by segregating the unlocking script (witness) into a separate structure
not included in the transaction hash.

There is a new signature algorithm for SegWit scripts [14]. Previously, the
signature did not involve an amount spent by the input. This was a prob-
lem especially for hardware wallets because they had to request and hash all
transactions referenced by inputs to verify the amount spent and to reliably

16

1.5. Segregated Witness

calculate the transaction fee. Now, as the amount is included in the signa-
ture, a hardware wallet can use the amount value from an untrusted source.
In case an invalid value is provided, the signature is invalid and no funds are
lost. This makes the signature process faster and easier to implement.

Another benefit is an introduction of script versioning. Every SegWit
script begins with a version number, so it will be easier to introduce new
operators in future. A locking script that consists of a number followed by 20
or 32 bytes of data has a new meaning. The value of the first number is called
the version byte, the data following are called the witness program. [15]

1.5.1 Pay to Witness Public Key Hash (P2WPKH)

If the version byte is 0 and the witness program is 20 bytes, it is interpreted
as a Pay to Witness Public Key Hash (P2WPKH) program:

0 <Public Key Hash>

The witness must consist of a signature and a public key:

<Signature> <Public Key>

The HASH160 of the public key must match the 20-byte witness program.
The signature is then verified using the public key.

1.5.2 Pay to Witness Script Hash (P2WSH)

If the version byte is 0 and the witness program is 32 bytes, it is interpreted
as a Pay to Witness Script Hash (P2WSH) program:

0 <Script Hash>

The witness must consist of an input stack satisfying the script conditions,
followed by the serialized script (the witness script):

<Signatures>... <Witness Script>

SHA256 of the witness script must match the 32-byte witness program.
Then the script is deserialized and executed with the remaining witness stack.
It must result in exactly a single TRUE on the stack.

17

1. Analysis and design

1.5.3 Pay to Witness Public Key Hash Nested in P2SH
(P2SH-P2WPKH)

For P2WPKH and P2WSH payments, both sender’s and recipient’s wallet
must have support for SegWit. The sender’s wallet has to be able to create
SegWit type outputs, while the recipient’s wallet must be able to spend these
outputs by constructing a SegWit transaction. Because Segregated Witness
is a backward-compatible upgrade, there will be a period where both non-
upgraded and upgraded clients exist. That brings some compatibility issues
we have to solve.

First, there needs to be a way for a legacy wallet to send a payment to
a wallet with SegWit support. The recipient’s wallet can construct a P2SH
address that embeds the witness script inside it. For a sender, it appears as
a regular P2SH address, however, the recipient is able to spend such an output
in a SegWit transaction. The type of P2SH script that embeds P2WPKH or
P2WSH script is noted as P2SH-P2WPKH or P2SH-P2WSH. [15]

We construct the P2SH-P2WPKH address as follows. First, we construct
a witness program consisting of the version number and a 20-byte public key
hash. Then, we hash the witness program with HASH160, producing a 20-
byte hash. Finally, the script hash is converted to a P2SH address. The
implementation in Kotlin is provided in Source Code 2.

fun getSegwitAddress(publicKey: ECPoint): String {
val publicKeyEncoded = publicKey.getEncoded(true)
val publicKeyHash = hash160(publicKeyEncoded)
val scriptSig = ByteArray(publicKeyHash.size + 2)
scriptSig[0] = 0x00 // version 0

scriptSig[1] = 0x14 // push 20 bytes

System.arraycopy(publicKeyHash, 0, scriptSig, 2,
publicKeyHash.size)

val scriptSigHash = hash160(scriptSig)
return encodeBase58Check(scriptSigHash, 5)

}

Source Code 2: Construction of a P2SH-P2WPKH address from a public key

1.5.4 Derivation Scheme for P2SH-P2WPKH Based
Accounts

A new key derivation scheme is introduced for generating SegWit addresses in
HD wallets, to distinguish between SegWit and non-SegWit accounts. BIP-
0049 [16] specifies the purpose field in a derivation path to be 49’ for SegWit
accounts. The rest of the path is the same as for BIP-0044 [10] accounts,
which are now called legacy. Having a di�erent derivation path for SegWit

18

1.6. TREZOR Hardware Wallet

accounts instead of just using the same path with di�erent address encoding
prevents issues when an account with SegWit transactions would be imported
into a wallet not yet supporting SegWit.

1.5.5 Native SegWit address

Once more of the wallets become compatible with SegWit, it will be better
to use witness scripts directly instead of embedding them in P2SH. However,
we still need a way to make sure that both sender’s and recipient’s wallet
support SegWit. For this reason, a new address format has been proposed in
BIP-0173 [17]. As opposed to the Base58Check encoding used in the original
address format, the new format uses a Bech32 encoding, which is Base32
with a BCH4 code checksum. It is more e�cient to encode in a QR code
because an alphanumeric mode can be used due to the fact it does not contain
mixed letter case. The BCH code is error-correcting, which means it can not
only detect introduced errors but also correct them. Even though a wrong
address should not be corrected automatically, it is useful for highlighting an
incorrectly entered part of the address in the UI.

1.6 TREZOR Hardware Wallet
TREZOR5 is a device developed and produced by SatoshiLabs, a Czech
company headquartered in Prague. The first model, TREZOR One, was intro-
duced in 2013 as the world’s first hardware wallet. While its original purpose
was to serve as a hardware Bitcoin wallet, over the years, with firmware up-
dates it evolved into a more generic cryptographic device. Today, it supports
several cryptocurrencies and can be used for other purposes as well, e.g. for
two-factor authentication or to encrypt passwords in a password manager.

In 2018, the next-generation TREZOR Model T was released, featuring
a touchscreen, USB-C port, microSD card slot and a new firmware based on
MicroPython6.

1.6.1 TREZOR API

TREZOR communicates using a synchronous request–response protocol. In
practice, the computer sends a request message and waits for the response from
TREZOR. The response can be a success, a failure or a message containing the
requested data. Furthermore, the response can also be a request for entering
a PIN, passphrase or pressing a button. In that case, the computer should
send an acknowledgment message with the requested information and wait for
the next response. [18]

4Bose–Chaudhuri–Hocquenghem
5https://trezor.io/
6https://micropython.org/

19

1. Analysis and design

The messages are serialized using Protocol Bu�ers7 and exchanged over
a USB HID8 interface. Since the introduction of a USB host support in An-
droid 3.1, TREZOR can be connected to any supported mobile device or tablet
using a USB On-The-Go (OTG) cable.

1.6.2 Pin Matrix

Most of the requests require the user to enter a PIN to unlock the device.
When a PIN is needed, TREZOR responds with a PinMatrixRequest message
and shows a PIN matrix (a 3 ◊ 3 grid with digits arranged at random) on its
display. The computer should present the user with an empty 3 ◊ 3 grid.
The user then looks at the matrix on TREZOR and presses the corresponding
matrix items on the computer. This prevents keyloggers from capturing the
PIN, as the matrix arrangement is di�erent each time.

After the PIN is entered, the computer sends a PinMatrixAck message
with the positions of the pressed matrix elements.

1.6.3 Passphrase

A passphrase serves as an optional additional security level. The passphrase
can be any string up to 50 characters long. It is never stored in TREZOR.
Instead, it acts as a part of the root seed used to generate the keys. That
means there is no wrong passphrase, but every passphrase gives access to
a di�erent wallet.

When enabled, TREZOR asks for a passphrase after entering the PIN by
sending a PassphraseRequest message. After the user enters the passphrase,
the computer sends it in a PassphraseAck message.

1.6.4 Button

TREZOR can require the user to press the button to confirm a sensitive
operation. In that case, it will reply with a ButtonRequest message. The
computer should immediately send a ButtonAck message to acknowledge the
request and display instructions in the UI. Once the user presses the button,
TREZOR continues by sending the response to the previous request.

1.6.5 Get Public Key

A GetPublicKey message can be used to export a public key from TREZOR
by specifying its derivation path in the address n field. The device responds
with a PublicKey message containing the requested public key node. It does
not require any user interaction if TREZOR has been previously unlocked.

7https://developers.google.com/protocol-bu�ers/
8Human Interface Device

20

1.6. TREZOR Hardware Wallet

1.6.6 Sign Transaction
A general transaction signature workflow is shown in Figure 1.4. Because the
transaction size can be larger than the memory of the device itself, it has to
be split into parts and those parts are being sent separately as they are being
requested by TREZOR.

The signing workflow starts by sending a SignTx message specifying the
transaction metadata in tx.version, tx.lock time, tx.inputs cnt and tx.
outputs cnt fields. If TREZOR has not been previously unlocked, it requests
a PIN and a passphrase as described in previous sections.

Then the whole flow is managed by TREZOR. It keeps sending TxRequest
messages, requesting parts of the transaction to be signed. It can also request
information about a transaction referenced by a non-SegWit input to calcu-
late the input amount. The requested information should be provided by
a computer in a TxAck message.

There are several request types that can be specified by the request type
field of the TxRequest message:

• TXMETA requests the metadata of a referenced transaction specified by
its TXID in the details.tx hash field. A computer should respond
with TxAck containing tx.version, tx.lock time, tx.inputs cnt and
tx.outputs cnt.

• TXINPUT requests the information about a transaction input with an
index of details.request index. The reply should fill tx.inputs[0]
with prev hash, prev index and sequence. For a referenced transac-
tion (when details.tx hash is set), script sig must be set. Oth-
erwise, the path to the private key should be specified in address n
and script type should describe the type of the corresponding output
locking script. For SegWit inputs, also the amount field must be filled,
matching the amount of the input transaction in satoshis.

• TXOUTPUT requests the information about a transaction output with an
index of details.request index. For a referenced transaction (when
details.tx hash is set), tx.bin outputs[0] must be filled. Other-
wise, tx.outputs[0] must be filled with the output data. For a change
output, the address should be specified by its path in address n and
script type should describe the locking script type. Otherwise, the
address should be filled and script type set to PAYTOADDRESS.

• TXFINISHED notes a message containing the last chunk of the signed
transaction. A computer should not respond with TxAck to this message.

The TxRequest messages can contain chunks of the signed transaction in
the serialized.serialized tx field. Those chunks have to be concatenated
to form the serialized signed transaction.

21

1. Analysis and design

Figure 1.4: Signature workflow for TX with N inputs and M outputs

User

User

Computer

Computer

TREZOR

TREZOR

SignTx

PinMatrixRequest

enter a PIN

PinMatrixAck

PassphraseRequest

enter a passphrase

PassphraseAck

loop [N*]

loop [N*]

TxRequest(TXINPUT)

TxAck

loop [M*]

TxRequest(TXOUTPUT)

TxAck

alt [is first sign]

ButtonRequest

ButtonAck

press the button

TxRequest(TXFINISHED)

22

Chapter 2
State of the art

2.1 Existing Wallets with TREZOR Support
In this chapter, we will list currently existing Bitcoin wallets supporting
TREZOR in any way, explore their features and analyze the weak points
that could be improved on.

2.1.1 TREZOR Wallet (Web)
TREZOR Wallet9 is the o�cial wallet for TREZOR developed by Satoshi-
Labs. It supports not only Bitcoin but also some of its forks and several other
cryptocurrencies. It provides a user-friendly interface and it’s probably the
most complete wallet for TREZOR supporting all its features, including:

• multiple legacy and SegWit accounts

• sending to P2PKH, P2SH and Bech32 addresses

• advanced sending options (multiple recipients, lock time...)

• account, transaction and address labels synchronized with Dropbox10

It is a web-based app supporting Google Chrome and Firefox browsers. It
can use either TREZOR Bridge11 or the WebUSB12 standard to handle
the communication between the web browser and the TREZOR device.

Upon the first visit, the user has to connect TREZOR over the USB in-
terface to load the public key and initialize the wallet. When the device is
disconnected, the user can either choose to forget it, or to save the public key
and continue using the wallet as watch-only. In a watch-only mode, the user
can see transactions history, but cannot send new transactions.

9https://wallet.trezor.io/
10https://www.dropbox.com/
11https://wallet.trezor.io/#/bridge
12https://wicg.github.io/webusb/

23

2. State of the art

2.1.2 Electrum (Linux, Windows, macOS)

One of the most widely used Bitcoin wallets is Electrum13, a multi-platform
wallet available for Linux, Windows and macOS. It can be used on its own
or in combination with various hardware wallets, including TREZOR. The
setup is a little bit complicated for an average user because it cannot perform
account discovery and each account has to be added manually by defining the
derivation path. It has SegWit support since version 3.

2.1.3 Mycelium (Android)

Mycelium14 is a Bitcoin wallet for Android supporting multiple hardware
wallets. After connecting TREZOR, it loads the accounts list and allows to
import them one by one. At the moment, it is the only wallet for Android
that allows signing transactions with TREZOR. However, it only supports
legacy accounts and does not have support for SegWit. The user can label
accounts and transactions, but the labels are only stored locally and cannot
be synchronized in any way.

Figure 2.1: Mycelium

2.1.4 Sentinel (Android)

Sentinel15 is a watch-only wallet for Android. An account is imported by en-
tering an extended public key (xpub). To get an xpub for a TREZOR account,

13https://electrum.org/
14https://wallet.mycelium.com/
15https://samouraiwallet.com/sentinel.html

24

2.2. TREZOR Communication Library for Android

the user can scan a QR code available in the web TREZOR Wallet. Sentinel
then loads transactions history and alerts the user whenever it detects a new
transaction on any of its addresses. It also allows generating a new address
for receving a payment. Both legacy and SegWit accounts are supported.

Figure 2.2: Sentinel

2.1.5 TREZOR Manager (Android)
TREZOR Manager16 is an Android app by SatoshiLabs allowing to ini-
tialize a new TREZOR device, update the firmware, change the PIN, set up
a passphrase, and customize some other things. However, it does not serve as
a wallet and does not have any Bitcoin-specific features.

2.2 TREZOR Communication Library for Android
There is a trezor-lib16 library developed by SatoshiLabs that facilitates com-
munication between TREZOR and an Android device. However, the library
handles the communication only to the extent of establishing the connection
and exchanging messages. The API workflow and the UI for entering the PIN
and a passphrase must still be implemented by the app developer.

Both Mycelium and TREZOR Manager are using this library to commu-
nicate with TREZOR. We will use it as a basis for building a higher-level
library in the next chapter.

16https://github.com/trezor/trezor-android

25

Chapter 3
Realisation

We will now take advantage of the principles introduced in the first chapter
and build a Bitcoin wallet as an application for Android OS. Because we
are concerned with security, the app should not store any private keys on
a mobile device, as its storage is potentially insecure and we would risk keys
compromise. Instead, the app should only store public keys and utilize the
TREZOR device as a secure private key storage.

For a long time, Java was the only supported language for writing native
Android apps. At Google I/O 2017, Google announced o�cial support for the
Kotlin17 language on Android. Kotlin is a statically typed language developed
by JetBrains. It provides a concise syntax, a null safety, higher-order functions
to allow functional programming style and it is interoperable with Java. It’s
expected to overtake Java as the most used language for Android development
in 2018. [19] For these reasons, Kotlin has been chosen as the language for
implementing our Android app.

Android uses the Bouncy Castle18 library to implement some crypto-
graphic functions in the java.security package. However, it uses an old,
stripped-down version of the library and the implementation can di�er across
di�erent Android versions. Moreover, there is a 128-bit key length limit set
in Java Cryptography Extension, but we will need a 256-bit key for metadata
encryption in Section 3.5. Thus, we bundle the latest version of Bouncy Castle
with the app. The library provides a collection of cryptography APIs includ-
ing RIPEMD160, SHA256 hash functions, an elliptic curve cryptography and
AES encryption.

The app is based on Android Architecture Components19, a collection
of libraries by Google for implementing an MVVM (Model-View-ViewModel)
architecture. It helps to separate a UI and application logic and manage the
app lifecycle. The Room library is used to persist data in an SQLite database.

17https://kotlinlang.org
18https://www.bouncycastle.org
19https://developer.android.com/topic/libraries/architecture

27

3. Realisation

3.1 TREZOR Intents Library
We start by designing an Android library facilitating communication between
an Android app and TREZOR. The library should make integration with
TREZOR e�ortless, by abstracting away the whole communication workflow.
It provides the UI for entering a PIN, a passphrase and shows instructions
when waiting for the user to press the button.

The library is based on Intents, a part of Android SDK used for com-
munication between app components, or even di�erent applications. In our
context, we use Intent to represent a request to launch an activity managed
by the library. After performing the desired action, the launched activity
responds with a result Intent, sending the data back to the original activity.

3.1.1 Generic Request
From the application point of view, starting an Intent is as simple as:

val request = GenericRequest(
TrezorMessage.Initialize.getDefaultInstance())

val intent = TrezorActivity.createIntent(this, request)
startActivityForResult(intent, RC_INIT)

It says we want to send an Initialize message, without specifying any
fields. RC INIT can be an arbitrary integer constant representing a request
code, which is later used to match the request with a result.

Once TrezorActivity sends a request to TREZOR and receives a re-
sponse, it delivers the result back to the calling activity, which receives an
onActivityResult callback:

override fun onActivityResult(requestCode: Int, resultCode: Int,
data: Intent?) {

if (requestCode == RC_INIT && resultCode == RESULT_OK) {
val message = TrezorActivity.getMessage(data) as

TrezorMessage.Features
}

}

First, we check whether the result belongs to our request by comparing
the requestCode with a code used to start the activity. Then, we check
if the result is successful by comparing the resultCode with an Activity.
RESULT OK constant. Finally, we use a TrezorActivity.getMessage method
to extract the response message from the Intent.

These snippets can be used to obtain a response to almost any request mes-
sage supported by TREZOR. [20] The common messages PinMatrixRequest,
PassphraseRequest and ButtonRequest are handled by the library and are
never returned as a result.

28

3.1. TREZOR Intents Library

3.1.2 Transaction Signature

The library implements the transaction signature workflow described in Sec-
tion 1.6.1.5. All the app has to do is to provide a transaction to sign, and
a map of TXIDs to transactions referenced by non-SegWit inputs. The reason
why referenced transactions are needed is that TREZOR has to verify the in-
put amount. For SegWit inputs, this is not needed because the signature
already includes the amount, as previously discussed in Section 1.5.

An Intent for signing a transaction is started in the following way:

val inputs = mutableListOf<TrezorType.TxInputType>()
val outputs = mutableListOf<TrezorType.TxOutputType>()

inputs += TrezorType.TxInputType.newBuilder()
.addAllAddressN(address)
.setPrevHash(prevHash)
.setPrevIndex(prevIndex)
.setScriptType(scriptType)
.build()

outputs += TrezorType.TxOutputBinType.newBuilder()
.setAmount(amount)
.setScriptPubkey(scriptPubKey)
.build()

val tx = TrezorType.TransactionType.newBuilder()
.addAllInputs(inputs)
.addAllOutputs(outputs)
.setInputsCnt(inputs.size)
.setOutputsCnt(outputs.size)
.build()

val referencedTxs = mutableMapOf<String,
TrezorType.TransactionType>()

...

val request = SignTxRequest(tx, referencedTxs)
val intent = TrezorActivity.createIntent(this, request)
startActivityForResult(intent, RC_SIGN_TX)

In onActivityResult, the signed transaction serialized as a hexadecimal
string can be obtained in the following way:

val signedTx = TrezorActivity.getSignedTx(data)

29

3. Realisation

3.2 Account Discovery
On the first launch, the app asks the user to connect TREZOR to the mobile
device over a USB cable. Then, it performs an account discovery [10], a process
of searching for accounts having any transaction history. The algorithm works
as follows:

1. Get a public key for the first account by sending a GetPublicKey request
to TREZOR.

2. Derive a public key for the external chain.

3. Successively derive addresses on the external chain and scan them for
transactions. Stop scanning once 20 (address gap limit) unused ad-
dresses in a row are found.

4. If no transactions are found, stop discovery. If there are some transac-
tions, increment the account index and go to step 1.

The app then saves all discovered accounts, derived addresses, fetched
transactions and shows them in the UI.

3.3 Bitcoin Network Connection
To fetch transactions for a Bitcoin address, we need a way to connect to the
Bitcoin network. In general, there are three ways how apps can access the
blockchain:

• A full node fetches and stores the whole blockchain. This is the most se-
cure solution, but infeasible for a mobile app due to storage constraints.
The Bitcoin blockchain takes over 160 GB as of April 2018.

• An SPV (Simplified Payment Verification) node downloads the block
headers and then requests only transactions it is interested in by using
Bloom filters [5]. While it cannot validate transactions, it can prove
that the received transaction has been included in a block thanks to the
Merkle tree structure.

• A custom backend service that allows requesting information from the
blockchain over the REST API. A client using such a service cannot
perform any validation on its own, so it’s important it’s connecting to
a trusted backend.

We will use Insight API20, a Bitcoin blockchain REST and WebSocket
API developed by Bitpay. It is easy for implementation and provides consid-
erable security when connected to a trusted backend.

20https://github.com/bitpay/insight-api

30

3.4. Transaction Composition

By default, the app is connecting to the backend run by SatoshiLabs at the
address https://btc-bitcore1.trezor.io. For users especially concerned
with privacy who are willing to run their own backend service, there is an
option to set a custom backend address.

The app is using the following Insight API methods:

3.3.1 Transactions for Multiple Addresses

GET /addrs/[:addrs]/txs[?from=&to=]

Returns a list of transactions related to any of the specified addresses.
Multiple addresses can be provided, separated by a comma. Parameters from
and to are used for pagination.

3.3.2 Estimate Fee

GET /utils/estimatefee[?nbBlocks=]

Returns a recommended fee rate that should result in a transaction be-
ing mined within the next nbBlock blocks. Multiple block numbers can be
provided, seperated by a comma.

3.3.3 Transaction Broadcasting

POST /tx/send

Broadcasts a signed transaction to the network. The request should send
a serialized transaction encoded as a hexadecimal string in the rawtx para-
meter.

3.4 Transaction Composition
The process of composing a transaction consists of several steps. First, the user
enters a destination address. That can be done by typing it, pasting the
previously copied text or, most frequently, scanning a QR code. For QR code
scanning, we are using a scan Intent of the Barcode Scanner21 app. In
case the app is not installed, its listing on Google Play is opened.

The QR code usually encodes a Bitcoin URI scheme [21], which can contain
not only the address, but optionally also a requested amount and a message
describing the transaction:

bitcoin:3DvYRiEmqdQW1i4a27Pjm6vnsx2fKSFS1F&amount=100

21https://play.google.com/store/apps/details?id=com.google.zxing.client.android

31

3. Realisation

Then, the user enters the desired transaction amount, if it has not been
pre-filled from the QR code yet. The amount can be set either in BTC, or in
USD and automatically converted to BTC according to the current exchange
rate. We are using CoinMarketCap API22 to get the recent exchange rate,
which is calculated by taking the volume average of prices at several Bitcoin
exchanges.

3.4.1 Fee Estimation

The next step is specifying a transaction fee rate. All advanced wallets should
use some form of a dynamic fee that is calculated from the current network
congestion. The fee rate determines the time in which the transaction will be
included in a block.

In our wallet, we provide 4 recommended fee levels: high (included within
the next 2 blocks ≥ 20 minutes), normal (6 blocks), economy (25 blocks)
and low (50 blocks). The actual fee rate is fetched from the Insight API. Its
calculation is based on the fees of transactions included in the last few blocks
and the fees of unconfirmed transactions. [22] There is also an option to set
a custom fee rate.

3.4.2 Coin Selection

Then, the task of the wallet is to select UTXOs with a total value equal or
greater than the target (the amount to be spent). There are a few things to
consider during the process.

Firstly, we need to select enough coins to meet the target. Secondly, we
want to minimize transaction fees by selecting as few inputs as possible because
each input increases the transaction size. Lastly, we want to reduce the UTXO
set by creating less outputs than inputs because all full nodes have to keep the
UTXO set in memory to validate transactions and growth of the UTXO set
increases hardware requirements. This is an optimization problem with partly
opposed goals.

3.4.3 Subset Sum Problem

The optimal solution would be to find UTXOs with a total value closely match-
ing the desired amount, so we don’t have to generate a change output, as the
change output increases the size of the transaction (and consequently the fee)
and further fragments the UTXO set.

This is an instance of a subset sum problem, whose goal is to find a subset of
integers that sum up to a given target. However, the problem is NP-complete,
meaning there is no known algorithm that could solve it in a polynomial-time.

22https://coinmarketcap.com/api/

32

3.4. Transaction Composition

3.4.4 Coin Selection Strategies
There are several prevailing strategies that can be used for UTXO selection:

• FIFO (First In, First Out) algorithm accumulates UTXOs from the
oldest, until the target is reached or exceeded. This simple approach
produces stable results and it is used by TREZOR Wallet and Electrum.

• FIFO with pruning extends the FIFO algorithm by adding a final pass
in which any small inputs not needed to fund the transaction are removed
from the candidate set. While it can benefit from lower transaction fees,
it also leads to a UTXO set bloated with small outputs. It is used by
Mycelium.

• Branch and Bound [23] tries to find the exact match, so a change out-
put is not needed. First, UTXOs are sorted by their value in descending
order. A binary tree is constructed, where each level denotes an inclu-
sion or omission of a UTXO. The tree is explored in a depth-first search
by randomly selecting nodes for expansion. Paths with a sum exceeding
the target are cut and not explored further. The search stops when an
exact match is found. As the tree grows exponentially with a number
of UTXOs, it is also useful to set a limit of tested combinations. If no
match is found, we fall back to a traditional algorithm. This strategy
has been recently implemented in Bitcoin Core.

In Source Code 3 we implement a simple FIFO coin selection strategy,
as it has been shown to produce stable results for di�erent use cases and it
is also being used in the TREZOR Wallet web app. In future, it could be
improved on by first trying to find the exact match using Branch and Bound,
with a fallback to FIFO.

3.4.5 Dust
A transaction output is labeled as dust when the cost of spending it would be
similar to its value. Bitcoin Core (the reference Bitcoin client) defines dust
as an output whose fees would exceed 1/3 of its value. When considering
a minimum fee of 1 sat/B, a typical P2PKH input of 148 bytes and P2PKH
input of 34 bytes, we get 3 ú (148 + 34) = 546 as a threshold for dust outputs.
If a change output should be less than that, we do not create it and instead
leave a higher transaction fee.

33

3. Realisation

fun select(utxoSet: List<TransactionOutput>,
outputs: List<TrezorType.TxOutputType>,
feeRate: Int, segwit: Boolean):
Pair<List<TransactionOutput>, Int> {

val target = outputs.sumBy { it.amount.toInt() }

val inputs = mutableListOf<TransactionOutput>()
var inputsValue = 0L

var fee = 0

for (utxo in utxoSet) {
// We have enough funds already

if (inputsValue >= target + fee) {
break

}

// Add UTXO to inputs

inputs += utxo
inputsValue += utxo.value

// Update the transaction fee

fee = calculateFee(inputs.size, outputs, feeRate, segwit)

// If a change output is needed, increase the fee

if (inputsValue - target - fee > DUST_THRESHOLD) {
fee += changeOutputBytes(segwit) * feeRate

}
}

// Not enough funds selected

if (inputsValue < target + fee) {
throw InsufficientFundsException()

}

return Pair(inputs, fee)
}

Source Code 3: FIFO Coin Selector

34

3.5. Bitcoin Metadata

3.5 Bitcoin Metadata
To keep track of your spending habits, it can be useful to label the trans-
actions and addresses, so you can easily identify the transaction subject and
participants later on. Most wallets have some sort of labeling, but they store
the labels either only locally, or allow to export them in a proprietary format.
To make various wallets compatible, there is a need for a common standard.
SatoshiLabs proposed a new format for Bitcoin metadata and its encryption
in HD wallets in the SLIP-0015 standard [24].

3.5.1 Data Format
Each account has its own metadata file with data stored in the JSON23 format.
The JSON object has the following fields:

• version: string – the metadata format version, currently 1.0.0

• accountLabel: string – the account label

• addressLabels: object – a map of addresses to labels

• outputLabels: object – a map of TXIDs to outputs labels

An example metadata JSON object is shown in Source Code 4.

{
"version": "1.0.0",
"accountLabel": "Savings Account",
"addressLabels": {

"3DvYRiEmqdQW1i4a27Pjm6vnsx2fKSFS1F": "My Donation Address"
},
"outputLabels": {

"2b13030bd5f79ffb44d09b2d4e9540e1029c36c25c02fb8403dc...": {
"0": "Money to Alice",
"1": "Money to Bob"

}
}

}

Source Code 4: An example metadata JSON object

The files are further encrypted with a password derived from a private
key located in the deterministic hierarchy. We are not encrypting with the
private key directly, so labeling can be used with a hardware wallet e�ortlessly
because the file encryption and decryption happens in the computer. The

23JavaScript Object Notation

35

3. Realisation

user only needs to connect the hardware wallet once to generate a master
key. We then use the master key to derive a filename and a password for
each account. The metadata should be encrypted with the password used as
a symmetric encryption key and stored in a file with the specific filename. The
encrypted files can be eventually backed up to any untrusted cloud storage
service, without its provider being able to read them.

3.5.2 Master Key
First, we derive the master key from a private key in the deterministic hier-
archy. When using TREZOR, we send a CipherKeyValue message defined
in SLIP-0011 [25]. Simply said, it encrypts a provided value with a private
key at the specified path in the deterministic hierarchy. Specifically, to get
the master key, we have to encrypt the value of a constant specified by the
standard using the key at the m/10015’/0’ path. The resulting master key is
a sequence of 32 bytes.

3.5.3 Account Key
We derive an account key for every account using the HMAC-SHA256 function.
We take the master key as the secret key and the account extended public key
(xpub) as the message. The result is converted to a string using the Base58
encoding:

account key = Base58(HMAC-SHA256(master key, xpub))

3.5.4 Filename and Password
We use the account key to derive the filename and password.

First, we use the HMAC-SHA512 function with the account key as the
secret key and the constant of 0123456789abcdeffedcba9876543210 as the
message. We get a 64-byte result.

The left 32 bytes are converted to a hexadecimal string, which is used as
the filename with the “.mtdt” extension. The right 32 bytes are representing
the password used for symmetric encryption.

3.5.5 Encryption
The AES-256-GCM algorithm is used for encryption. It’s the AES block cipher
with a 256-bit key, using Galois/Counter Mode (GCM) as a mode of opera-
tion. GCM combines the counter mode of encryption with the Galois mode of
authentication. [26] This form of encryption is called an authenticated encryp-
tion because it provides not only confidentiality but also authenticity of the
data. It ensures the data have not been modified by any third party during
transfer over an insecure connection.

36

3.5. Bitcoin Metadata

The authenticated encryption function takes a key, an initialization vector
and a plaintext on input. It produces a ciphertext and an authentication tag on
output. The authenticated decryption function takes a key, an initialization
vector, a ciphertext, an authentication tag and produces the plaintext or an
indication of inauthenticity.

The resulting metadata file consists of a random 12-byte initialization vec-
tor used for encryption, a 16-byte authentication tag and a ciphertext.

3.5.6 Dropbox Synchronization
We are using Dropbox cloud storage for metadata synchronization, to be com-
patible with the web TREZOR Wallet. In this way, the user can add labels
via the web wallet and see them in our Android wallet after synchronization,
and vice versa.

When the user wants to enable labeling, the app requests the user to lo-
gin with their Dropbox account and authorize the app. Then the app saves
a received OAuth token and uses it for synchronizing the metadata files us-
ing Dropbox Core SDK24. The metadata are stored in the /Apps/TREZOR
Wallet folder in the previously described format.

24https://github.com/dropbox/dropbox-sdk-java

37

Conclusion

The goal of this thesis was to design a library simplifying communication
between an Android app and the TREZOR device, and subsequently imple-
ment a Bitcoin wallet with TREZOR support to demonstrate the usage of the
library.

We used a low-level TREZOR Communication Library as a basis to build
a higher-level TREZOR Intents Library. With TREZOR Intents, an app
developer provides a message they want to send to TREZOR. The library
initiates the connection, sends the message and handles common requests
from the device such as a PIN or passphrase request, and returns the final
response received from TREZOR. The library also implements a transaction
signature workflow, which is a bit more complicated and consists of sending
several messages and concatenating the signed transaction from the received
messages. A developer just needs to specify the transaction to sign and receives
the signed transaction.

Next, we designed and implemented a Bitcoin wallet app. Upon the first
start, the user connects TREZOR, the app performs an account discovery,
saves public keys for all discovered accounts and presents the user with the
accounts list. It has support for both legacy and SegWit accounts. A list of
user’s receiving addresses is generated and all transactions received or sent
from those addresses are fetched using Insight API. The app calculates the
account balance using the fetched transactions.

The app serves not only as a watch-only wallet, but it also allows to com-
pose a new transaction. It allows the user to scan a Bitcoin address from
the QR code, enter an amount in BTC or USD and choose from a list of
recommended transaction fee rates. Finally, the transaction is signed with
TREZOR and broadcast to the Bitcoin network.

Finally, the user can add labels to accounts, addresses and transaction
outputs. Those metadata are synchronized in a standardized encrypted form
with Dropbox cloud storage. Therefore, when a label is added via the web
TREZOR Wallet, it is also visible in the Android app after synchronization.

39

Conclusion

The screenshots of the developed app are attached in Appendix A. The
source code along with the compiled APK file can be found on an enclosed
SD card or at https//github.com/MattSkala/trezor-wallet.

Future Work
While the app already provides all basic features of an Android wallet, there
is still room for improvement to provide even better user experience.

In future, Insight WebSocket API could be used to receive real-time notific-
ations about changes in the network. This would enable to show any incoming
transaction instantly, without need to manually synchronize via REST API.
The same principle could be applied to metadata synchronization, by using
Dropbox API to monitor file changes in a Dropbox folder.

A QR code scanner could be integrated directly into the app, to get rid of
the dependency on the 3rd party Barcode Scanner app.

The wallet could also support more advanced sending features, such as an
option to add multiple recipients to a single transaction, to specify a transac-
tion lock time or to add OP RETURN output type allowing to store arbitrary
data in the blockchain in form of an unspendable output.

The next step should be to improve support for the new format of native
SegWit addresses using Bech32 encoding. While it’s already possible to send
transactions to Bech32 addresses, such transactions do not currently show the
target address in the UI because Insight API does not support the new address
format yet. Either the address could be extracted from the locking script on
the app side, or Insight API could be extended with Bech32 address support.

Currently, the app supports legacy (P2PKH) and compatibility SegWit
(P2SH-P2WPKH) accounts. In future, there will probably be need to also
add support for native SegWit (P2WPKH) accounts as defined in BIP-0084
[27], that use the Bech32 format for receiving addresses. However, this is not
supported even in the web TREZOR Wallet yet.

40

Bibliography

[1] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2009,
[Accessed: 5 December 2017]. Available from: http://bitcoin.org/
bitcoin.pdf

[2] Maxwell, G. Confidential Transactions. [Accessed: 27 February 2018].
Available from: https://people.xiph.org/˜greg/confidential_
values.txt

[3] Ho�stein, J.; Pipher, J.; et al. An Introduction to Mathematical Crypto-
graphy. Springer, 2008, ISBN 978-0-387-77994-2.

[4] Standards for E�cient Cryptography Group. SEC2: Recommended El-
liptic Curve Domain Parameters. [Accessed: 12 March 2018]. Available
from: http://www.secg.org/sec2-v2.pdf

[5] Antonopoulos, A. M. Mastering Bitcoin: Programming the Open Block-
chain. O’Reilly Media, second edition, 2017, ISBN 978-1491954386.

[6] Klyubin, A. Some SecureRandom Thoughts. [Accessed: 10 May 2018],
2013. Available from: https://android-developers.googleblog.com/
2013/08/some-securerandom-thoughts.html

[7] Wuille, P. Hierarchical Deterministic Wallets. [Accessed: 2 April
2018], 2012. Available from: https://github.com/bitcoin/bips/blob/
master/bip-0032.mediawiki

[8] Krawczyk, H.; Bellare, M.; et al. HMAC: Keyed-Hashing for Message
Authentication. [Accessed: 12 May 2018], 1997. Available from: https:
//tools.ietf.org/html/rfc2104

[9] Palatinus, M.; Rusnak, P. Purpose Field for Deterministic Wallets.
[Accessed: 2 April 2018], 2014. Available from: https://github.com/
bitcoin/bips/blob/master/bip-0043.mediawiki

41

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://www.secg.org/sec2-v2.pdf
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki

Bibliography

[10] Palatinus, M.; Rusnak, P. Multi-Account Hierarchy for Deterministic
Wallets. [Accessed: 2 April 2018], 2014. Available from: https://
github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

[11] Rusnak, P.; Palatinus, M. Registered coin types for BIP-0044. [Accessed:
2 April 2018], 2014. Available from: https://github.com/satoshilabs/
slips/blob/master/slip-0044.md

[12] Andresen, G. Pay to Script Hash. [Accessed: 7 April 2018], 2012.
Available from: https://github.com/bitcoin/bips/blob/master/
bip-0016.mediawiki

[13] Wuille, P. Dealing with malleability. [Accessed: 7 April 2018], 2014.
Available from: https://github.com/bitcoin/bips/blob/master/
bip-0062.mediawiki

[14] Lau, J.; Wuille, P. Transaction Signature Verification for Version 0 Wit-
ness Program. [Accessed: 8 April 2018], 2016. Available from: https:
//github.com/bitcoin/bips/blob/master/bip-0143.mediawiki

[15] Lombrozo, E.; Lau, J.; et al. Segregated Witness (Consensus layer).
[Accessed: 8 April 2018], 2015. Available from: https://github.com/
bitcoin/bips/blob/master/bip-0141.mediawiki

[16] Weigl, D. Derivation Scheme for P2WPKH-nested-in-P2SH based ac-
counts. [Accessed: 2 April 2018], 2016. Available from: https://
github.com/bitcoin/bips/blob/master/bip-0049.mediawiki

[17] Wuille, P.; Maxwell, G. Base32 address format for native v0-16 wit-
ness outputs. [Accessed: 8 April 2018], 2017. Available from: https:
//github.com/bitcoin/bips/blob/master/bip-0173.mediawiki

[18] SatoshiLabs. API Workflows. [Accessed: 14 April 2018]. Available from:
http://doc.satoshilabs.com/trezor-tech/api-workflows.html

[19] Realm Report Q4 2017. [Accessed: 5 December 2017]. Available from:
https://realm.io/realm-report/2017-q4/

[20] Rusnak, P.; et al. Messages for TREZOR communication. [Accessed:
16 April 2018]. Available from: https://github.com/trezor/trezor-
common/blob/master/protob/messages.proto

[21] Schneider, N.; Corallo, M. URI Scheme. [Accessed: 17 April
2018], 2012. Available from: https://github.com/bitcoin/bips/blob/
master/bip-0021.mediawiki

[22] Morcos, A. Bitcoin Core Fee Estimation Algorithm. [Accessed:
22 April 2018]. Available from: https://gist.github.com/morcos/
d3637f015bc4e607e1fd10d8351e9f41

42

https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/satoshilabs/slips/blob/master/slip-0044.md
https://github.com/satoshilabs/slips/blob/master/slip-0044.md
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0049.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0049.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
http://doc.satoshilabs.com/trezor-tech/api-workflows.html
https://realm.io/realm-report/2017-q4/
https://github.com/trezor/trezor-common/blob/master/protob/messages.proto
https://github.com/trezor/trezor-common/blob/master/protob/messages.proto
https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki
https://gist.github.com/morcos/d3637f015bc4e607e1fd10d8351e9f41
https://gist.github.com/morcos/d3637f015bc4e607e1fd10d8351e9f41

Bibliography

[23] Erhardt, M. An Evaluation of Coin Selection Strategies. [Accessed:
18 April 2018], 2016. Available from: http://murch.one/wp-content/
uploads/2016/11/erhardt2016coinselection.pdf

[24] Bilek, K. Format for Bitcoin metadata and its encryption in HD wallets.
[Accessed: 22 April 2018], 2015. Available from: https://github.com/
satoshilabs/slips/blob/master/slip-0015.md

[25] Rusnak, P.; Palatinus, M.; et al. Symmetric encryption of key-value pairs
using deterministic hierarchy. [Accessed: 22 April 2018], 2014. Available
from: https://github.com/satoshilabs/slips/blob/master/slip-
0011.md

[26] Dworkin, M. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. [Accessed: 23 April 2018],
2007. Available from: https://csrc.nist.gov/publications/detail/
sp/800-38d/final

[27] Rusnak, P. Derivation scheme for P2WPKH based accounts. [Accessed:
24 April 2018], 2017. Available from: https://github.com/bitcoin/
bips/blob/master/bip-0084.mediawiki

43

http://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
http://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
https://github.com/satoshilabs/slips/blob/master/slip-0015.md
https://github.com/satoshilabs/slips/blob/master/slip-0015.md
https://github.com/satoshilabs/slips/blob/master/slip-0011.md
https://github.com/satoshilabs/slips/blob/master/slip-0011.md
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://github.com/bitcoin/bips/blob/master/bip-0084.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0084.mediawiki

Appendix A
Screenshots

45

A. Screenshots

Figure A.1: Initialization Figure A.2: PIN Request

46

Figure A.3: Accounts List Figure A.4: Transactions List

47

A. Screenshots

Figure A.5: Receiving Addresses Figure A.6: Transaction Composition

48

Figure A.7: Address Detail Figure A.8: Transaction Detail

49

Appendix B
Acronyms

BTC Bitcoin

TX Transaction

UTXO Unspent Transaction Output

SegWit Segregated Witness

HD Hierarchical Deterministic

BIP Bitcoin Improvement Proposal

SLIP SatoshiLabs Improvement Proposal

API Application Programming Interface

SDK Software Development Kit

QR Quick Response

51

Appendix C
Contents of enclosed SD

src
trezor-wallet implementation source codes

README.md...............................installation instructions
app .. the wallet app
trezor-android

trezor-lib........................the communication library
trezor-intents........................... the intents library

thesisLATEX source codes of the thesis
build

trezor-wallet.apk..........................the compiled APK file
text

BP Skala Matous 2018.pdf............the thesis text in PDF format

53

	Introduction
	Analysis and design
	Public Key Cryptography in Bitcoin
	Hierarchical Deterministic Wallet
	Transaction Structure
	Transaction Scripts
	Segregated Witness
	TREZOR Hardware Wallet

	State of the art
	Existing Wallets with TREZOR Support
	TREZOR Communication Library for Android

	Realisation
	TREZOR Intents Library
	Account Discovery
	Bitcoin Network Connection
	Transaction Composition
	Bitcoin Metadata

	Conclusion
	Future Work

	Bibliography
	Screenshots
	Acronyms
	Contents of enclosed SD

