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Abstract

This thesis focuses on elementary signal
processing algorithms. Its main focus is
on various forms of modulations, coding
and synchronisation. Its goal is creation
of working digital communication models
in MATLAB environment and verifying
their functionality.

Keywords: Modulation, Coding,
Viterbi algorithm

Supervisor: prof. Ing. Jan Sýkora, CSc.

Abstrakt

Tato bakalářská práce se zabývá elemen-
tárními algoritmy pro zpracování digitál-
ních signálů. Zaměřuje se především na
různé formy kódování, modulace a syn-
chronizace. Jejím cílem je vytvoření funkč-
ních modelů digitální komunikace v pro-
středí MATLAB a ověření jejich funkč-
nosti.

Klíčová slova: Modulace, Kódování,
Viterbiho algoritmus
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Chapter 1

Introduction

The goal of this work is to design group of selected digital signal processing
algorithms. Visualise them and test their performance in computer simulation.
Main focus is on algorithms describing channel encoding, modulation, channel,
demodulation and decoding parts of digital communications model. Although
these building block are not completely isolated and frequently overlap, we
will try to describe them separately where possible. First part of this thesis
describes mechanisms and theoretical background of these algorithms. Second
part shows their implementation in MATLAB environment, visualizes how
they operate and builds functioning digital communication models. Third part
verifies algorithm performance and shows the effectivity of various modulation
and coding combinations.
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Chapter 2

Theory

2.1 Source encoding

First step in digital data communication is making sure the data we want to
transmit are actually digital. If not, It is necessary to employ source encoding,
also called data compression, Its goal is to reduce the overall number of
bits while preserving the information that is being transmitted by reducing
redundancy present in the source or interpreting arbitrary data in the form
of bits. As an example we can look at analog source of information. To get
the data in binary form, it is necessary to quantize the source’s range. When
encoding each state into n bits, we can differentiate between up to 2n states
of the source. To measure the amount of data being sent, we use bit rate and
symbol rate. Bit rate shows the amount of bits sent per second.

Rb = 1
Tb

(2.1)

The symbol rate shows the amount of symbols sent through the channel per
second. For modulations with two states, the Bit rate is equal to symbol
rate. For modulations which have more than two states the symbol rate is
smaller than bit rate as every data symbol of modulation with 2n possible
states contains within itself n data bits.

3



2. Theory .......................................
2.2 Channel encoding

Channel encoding, also called error-correcting coding or forward error cor-
rection (FEC) coding differs from the source encoding both in purpose and
methods. While source encoding reduces the amount of bits being sent.
The channel encoding codes parts of bit stream into codewords by adding
additional bits, called parity bits. These bits improve our ability to find and
correct errors introduced by noisy or unreliable communication channel.

The two main types of FEC codes are block codes and convolutional codes.
Block codes work with fixed amounts of bits and convolutional work with bit
streams of arbitrary length.

2.2.1 Finite Field

Finite field with q elements is a set with defined arithmetic for a limited
number of elements. All finite fields are in the form qn, where q is a prime
number and n is a positive integer and are denoted as GF(qn). Arithmetic
operations within such field are defined modulo(qn). Our focus will be mainly
on the smallest galois (finite) field, GF(2) with elements called one and zero
which we will directly asociate with 1 and 0 values of data bits. In the table
2.1 are the addition and multiplication operations for GF(2).

+ 0 1
0 0 1
1 1 0

. 0 1
0 0 0
1 0 1

Table 2.1: Addition and multiplication operations for GF(2)

The additive identity of GF(2) is zero and the multiplicative identity is
one.

2.2.2 Linear codes

Linear codes are codes for which any linear combination of codewords is also
a codeword. In this thesis we will work with two biggest families of linear

4



.................................. 2.2. Channel encoding

codes, block codes and convolutional codes. In linear block codes, we use
the Generator matrix G which generates codewords of set length n from
segments of the data input vector of length k by adding m parity bits. The
relationship between n and k is called code rate and is defined as

R = n

k
(2.2)

Every generator matrix can be reduced to its systematic form, which is defined
as:

G =
[

P
Ik

]
(2.3)

Where Ik is an Identity matrix of size k × k and P is a matrix which governs
the added parity bits. The generator matrix can be built in a way that the
original sequence of bits is a part of the created codeword. Codes that possess
this property are called systematic. Parity bits help us with decoding from
uncertainties introduced by the channel. The rows of the generator matrix
form the basis of a linear code and the codewords are its linear combinations.
This combined with the fact that equivalent codes are codes that differ only by
permutation of codeword elements [Sý05], makes every linear code equivalent
to linear systematic code. From generator matrix we can construct the parity
check matrix H. For generator matrices in systematic forms, the parity check
matrix is:

H =
[
In−k PT

]
. (2.4)

With −PT being the transpose of the P matrix. The parity check matrix of
a linear code is a generator matrix of its dual code.

The main difference between convolutional and block codes is that con-
volutional coders require memory. Bits encoded are dependent on several
previous incoming bits. The general form of a linear convolutional code is

cn =
K∑
i=0

Gibn−i (2.5)

Where K is called constraint length and shows us by how many previous
bits is the coding of the current bit affected. Convolutional codes can be
described by their generator matrices, state tables or by graphical diagrams:
code tree, trellis or state diagram.
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2. Theory .......................................
2.2.3 Code properties

Quality of linear codes is dictated by their codeword weight and free distance
ρfree. Codeword weight is the codeword’s Hamming distance from zero
codeword, free distance is smallest Hamming distance between two codewords.
Hamming distance is defined as the number of bits in which the two codeword
differ.[HV94]

2.3 Complex envelope

Complex envelope, also called a complex baseband is a frequency shifted
analytic representation of real signal. For an arbitrary non-stationary real
signal s(t), its Fourier transform has Hermitian symmetry around f = 0.

Fs(f) = F∗s (−f) (2.6)

This symmetry allows us to discard the negative frequencies of the spectrum
without any loss of information. For this purpose an analytical representation
of the original signal is formed. It consists of the original signal s(t) and its
Hilbert transform ŝ(t) = s(t) ∗ 1

πt . Hilbert transform shifts components on
positive frequencies by −π

2 and components on negative frequencies by π
2 .

sa(t) = s(t) + jŝ(t) (2.7)

This abandons the negative frequencies and the signal becomes complex.

To represent modulated signals we will be using the constellation diagrams.
For that it is useful to show the analytical signals of sine and cosine waves.

sa(t) = cos(2πf0t) + jH[cos(2πf0t)] = cos(2πf0t) + j sin(2πf0t) = e2πf0t

(2.8)
sa(t) = sin(2πf0t) + jH[sin(2πf0t)] = sin(2πf0t)− j cos(2πf0t) = −je2πf0t

(2.9)
Complex envelope is then created from the analytical signal by a shift in
frequency towards 0 Hz.

x(t) = sa(t)e−j2πf0t (2.10)

Where f0 is called carrier frequency which is an arbitrary real positive number.
The carrier frequency and complex envelope together fully represent both
analytical and the original signals. The complex envelopes of sine and cosine
waves can be respectively interpreted as real and imaginary components of
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.................................. 2.4. Digital modulation

linearly modulated signal displayed in the signal space at the symbol sampling
instants. The real part is called In-phase component and the imaginary is
called quadrature component The restoration of original signal from complex
envelope can be done with the knowledge of the carrier frequency.

s(t) = R[x(t)] cos(2πf0t)− I[x(t)] sin(2πf0t) (2.11)

Given that complex envelope and carrier frequency fully represent real signal,
we will perform our simulations on complex envelopes.

2.4 Digital modulation

Digital modulators allow us to map a series of binary data symbols into
continuous signal waveforms. This process is separated in modulator into two
parts which often overlap. First is the discrete part which maps incoming
data message d to channel symbols q. For modulators with memory, state σ
of modulator is also used. Second half of modulator is expansion part where
channel symbols are assigned modulation pulses with finite energy. This
system can be described as:

s(t) =
∑
n

g(dn, σn, t− nTs) =
∑
n

g(qn, t− nTs) (2.12)

Where dn is the n-th data symbol, qn is the n-th channel symbol and σn is
the corresponding modulator state.[Sý16]

Channel symbol qn is one out of channel symbol alphabet Aq = {q(i)}Mq−1
i=0

with qi ∈ C. Mean symbol energy is calculated as follows

ĒS = 1
2 lim
L→∞

1
L
E

[∫ ∞
−∞
|sL(t)|2dt

]
(2.13)

Free distance ρ2
free is a property determines resistance to noise of chosen

modulation. It is defined as a half of the smallest distance between two
constellation points.

ρ2
free = 1

2mini 6=i
′ |q(i) − q(i′)|2 (2.14)

Where q(i) and q(i′) are two different channel symbols. Free distance shows
us the minimal distance between two channel symbols. This quality is useful
while demodulating signals.
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2. Theory .......................................
2.4.1 Signal space

Signal space is a Hilbert space with orthonormal basis
{ζn,i(t)} = {ζi(t− nTS)}Nsi=1 (2.15)

where n is the position in sequence and i is the modulation dimension index.
Modulated signal can be decomposed into orthogonal basis functions. [Sý16]

sn,i =
∫ ∞
−∞

s(t)ζ∗i (t− nTS)dt (2.16)

2.4.2 Modulation pulse

In this thesis we will be using some of the most commonly used modulation
pulses. The main reason for their usage are their favourable spectral properties.
We want these pulses to fulfill the Nyquist intersymbol interference criterion.
In time domain Nyquist criterion is defined as orthogonality w.r.t. sequence
position [Sý05]

REg1,g2[m− n] =
∫ ∞
−∞

= g1(t− nTs)g∗2(t−mTs)dt = 0 ∀m 6= n (2.17)

Another option is to choose a pulse which best conforms with the Nyquist
criterion in frequency domain

1
Ts

∞∑
k=−∞

H
(
f − k

Ts

)
= 1 ∀f (2.18)

In which Ts is the symbol period and H(f) is the Fourier transform of
the impulse response. In order to minimise intersymbol interference we
will use rectangular (REC), raised cosine spectrum (RCS) and root raised
cosine spectrum (RRC) pulses. The Rectangular pulse is a pulse of constant
amplitude and finite energy. The raised cosine spectrum pulse is defined in
frequency domain[Sý16].

FvRCS (f) =


Ts, for |f | < 1−α

2Ts
Ts cos2

(
πTs
2α

(
|f | − 1−α

2Ts

))
, for 1−α

2Ts ≤ |f | ≤
1+α
2Ts

0, for 1+α
2Ts ≤ |f |

(2.19)
where α is the roll-off factor (0 < α < 1). Another, similar pulse is the root
raised cosine spectrum pulse. It is defined in frequency domain as

FvRRC (f) =


√
Ts, for |f | < 1−α

2Ts√
Ts cos

(
πTs
2α

(
|f | − 1−α

2Ts

))
, for 1−α

2Ts ≤ |f | ≤
1+α
2Ts

0, for 1+α
2Ts ≤ |f |

(2.20)
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.................................. 2.4. Digital modulation

These pulses are defined in frequency domain due to their unique spectral
properties. When using their perfect time domain representations, they
achieve the Nyquist condition in frequency domain. However, achieving this
would require the usage of infinite duration pulses which would violate causal-
ity. As such we have to work finite and causal discrete time approximations
g′[k].[Sý16]
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Figure 2.1: Impulse response of filter g′[k]

Finiteness is accomplished by applying rectangular masking function and
causality is accomplished by shifting the pulse by half of its length. Applying
rectangular masking function and thus shortening the pulse causes power
spectrum density changes.
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Figure 2.2: Frequency response of shortened RRC pulse
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2. Theory .......................................
2.4.3 Linear modulators

Modulators with modulation dimension one are called linear and their com-
plete signal space basis is

{ζn,1(t)}n = {g(t− nTS)}n (2.21)

Linear modulators are divided according to the characteristic of carrier signal
that they alter. One of the carrier signal characteristics that modulators can
alter is its amplitude. These modulators assign differing values of amplitude
to different data symbols.

1

I

Q

0

I

Q

0

Figure 2.3: OOK and 4ASK constellations

The simplest amplitude modulation is the On-Off keying (OOK). OOK
modulators have only two channel symbols, one and zero. These symbols
represent the states in which the sent signal is turned on and off. They may
be mapped directly to incoming data symbols. Another group of modulators
changing amplitude are the Amplitude Shift Keying (ASK) modulators.
These modulators map groups of N data symbols to 2N possible channel
symbols. Possible channel symbols for M-ary amplitude shift keying are
qn = {±1,±3, ...± (Mq − 1)}

One of the most popular modulations is the quadrature amplitude shift
keying (QASK).Sometimes also called modulation Quadrature Amplitude
modulation (QAM) which consists of superposition of two amplitude shift
keying modulations.[Sý05] In the signal constellation space the quadrature
amplitude modulation is represented by a rectangular raster.

10



.................................. 2.4. Digital modulation

I

Q

0

Figure 2.4: 16QAM signal constellation

Another characteristic of the carrier signal that can be modulated is its
phase. Modulation method which change the phase of carrier signal are
classified as Phase Shift Keying (PSK) modulations. M-ary phase shift keying
modulation usually has channel symbols qn{e

j 2π
Mq

i}Mq−1
i=0 and mean symbol

energy ĒS = 1
2

−1 1

I

Q

0 −1 1

I

−1

1
Q

0

Figure 2.5: BPSK and 4PSK constellations

It is also possible to combine these two modulation methods. Such approach
is called Amplitude-Phase Shift Keying (APSK) [Sý16].

Another way to classify linear modulations is into memoryless modulations
and modulations with memory. All of the modulations described above are
memoryless. An example of modulation with memory is the Differential
Phase Shift Keying (DPSK). This phase modulation encodes the information
by the change of constellation phase.
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2. Theory .......................................
2.5 Channel

Channel is the medium between one or more transmitters and one or more
receivers. Channel effect on the sent data is prepresented by channels Input-
Output relation between input signal y(t) and output signal x(t) with channel
operator H[.].

y(t) = H[x(t), θ] (2.22)

Where θ is introduced channel parameter. Channels can be classified according
to their time domain behaviour to time-invariant or time-variant channels,
by their frequency domain behaviour to frequency selective and non-selective
(flat), by their stochastic behaviour to deterministic and random, by their
linearity or by their input and output dimensionality. Composite channels
are composed from several channel models. The most common channel is
the Additive White Gaussian Noise (AWGN) model. Used to simulate the
random processes affecting real signals, this model adds to the transmitted
data noise with uniform power across the whole spectrum. In time domain
the noise has normal distribution and zero mean. This noise is added to
any other channel model. The relation of channel operator with AWGN w(t)
parameter can be represented as

y(t) = x(t) + w(t) (2.23)

Another channel model used is frequency non-selective (flat) Linear Time-
Invariant (LTI) channel. This model multiplies the signal by α which repre-
sents the loss of power over the distance, shifts it in time by τ and in phase
by φ. These channel parameters change during the observation very little
or not at all. Thanks to that we can consider them constant. This channel
model also does not distort the signal shape. [Sý05].

y(t) = αejφx(t− τ) (2.24)

2.6 Demodulator

In demodulator, we try to compensate the effect of channel to successfully
recover sent data by finding the data message estimate d̂ and mapping from
the observation space into data message space. For this we use minimum
error probability detector (MEP) which minimises mean message error and
symbol error probabilities by maximising the probability of correct detection
over all possible mappings ď.[Sý16]

d̂ = argmax
ď
Pr{d = ď} (2.25)
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.....................................2.6. Demodulator

2.6.1 Synchronisation

In order to compensate for the phase shift introduced by channel, it is
necessary to know by how much the signal was shifted. One of the possible
ways and the one we will be using to determine the size of the shift is to
use pilot signal. Before transmitting the data message we will transmit
unmodulated pulse and determine its phase shift.

x(t) = g(t− Ts)ejφ + w(t) (2.26)

The phase estimation will be corrupted by the AWGN. One way to decrease
the influence of additive noise is to increase the length of pilot signal. Phase
shift changes in time very slowly or not at all allowing us to write:

E[x] = E[ejφ] + E[W (t)] = ejφ (2.27)

2.6.2 Matched filter

In this thesis we will work with a matched filter demodulator. The name
comes from the fact that the impulse response of these filters has the same
shape as the modulating pulse. One of the demodulation methods is the use
of matched filters which maximise the output signal to noise ratio[Pro95].
For an arbitrary complex signal s(t), the definition of its matched filter is
given by its time inverted complex conjugate impulse response which has the
following form

h(t) = s∗(T − t) (2.28)

The response to a signal t(s) is then

y(t) =
∫ t

0
s(τ)s∗(T − t+ τ)dτ (2.29)

Which is essentially an autocorrelation function of signal s(t), achieving peak
at time t = T . Given that the length of convolution of two signals is the sum
of their lengths minus one and that we convolve two signals of same length,
we can see that the perfect time for symbol sampling is at t = T and that its
final part at time t = 2T − 1 does not interfere with sampling of next symbol
at time 2T .

13



2. Theory .......................................
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Matched filter response to raised cosine pulse of length T=20

Figure 2.6: Matched filter response to RCS pulse unaffected by noise

2.7 Decoder

2.7.1 Hard and Soft decision decoding

When decoding data after demodulation, we use the parity bits introduced
into the data stream earlier by encoders. They tell us whether what we have
received is a valid codeword or whether we were unable to correctly determine
the originally sent data. To this end we use two decoding methods. Hard and
soft decision decoding. Hard decision decoding discards any information from
the demodulator other than its constellation threshold-based decision and
maximises the probability of decoding correctly by picking a valid codeword
with smallest Hamming distance. Soft decision decoding works directly with
demodulator output and chooses the replacement codeword with smallest
Euclidean distance. This allows for more flexibility with cases near thresholds
which Hard decision decoding may interpret incorrectly.

2.7.2 Syndrome-based decoding

Linear block codes can be decoded by using their syndrome. Syndrome
decoding uses the fact that parity matrix H is a generator matrix to the dual
code of the one generated by G and therefore

HTG = 0 (2.30)

14



.......................................2.7. Decoder

This property can be exploited when decoding data with possible errors
because matrix multiplication is distributive. Then for received codeword
z = x + e, where x is the original codeword and e is the introduced error,
applies [Sý05]

HT z = HTx+ HT e = HT e. (2.31)

With a precomputed table mapping He to e we know exactly which bit to
repair.

2.7.3 Viterbi decoding

Given that convolutional encoder uses preceding data symbols to determine
state of the coder, It can be described as finite-state machine. Optimum
decoder is then maximum-likelyhood sequence estimator [Gol07]. Method
which we will use to find this sequence is called Viterbi algorithm. Viterbi
algorithm searches through the trellis for the most probable series of events
that led to the current state of the code. The metric used to represent the
most probable path ending in state m is called path metric pm and the
metric for determining likelyhood of transitions between states n and m is
called branch metric bn>m. We are looking for paths which maximise the
probability of decoded sequence being correct. Such paths are those that
minimise the probability of erroneous detection. Therefore, we are looking
for allowed paths with lowest distances incoming data. Soft decision decoding
uses euclidean distances and Hard decision decoding uses hamming distances.
Viterbi algorithm works in two phases. In first, forward phase, the algorithm
checks upcoming state m and looks at all branches that lead into it. Then
compares the sums of branch metrics bn>m and corresponding path metrics
pn. Out of these, the path with optimum metric is chosen and set as the new
path metric pm and the chosen branch is called survivor. Rest of the paths
leding into this state are discarded as they are no longer able to beat the
survivor path.

15



2. Theory .......................................

Figure 2.7: Viterbi algorithm forward step

This is done for all possible states m. After each stage there is only one
surviving path per decoder state. When the algorithm reaches the end of
data sequence, first phase ends and out of the terminal paths the one with
optimum metric is chosen as the definitive coder state sequence. With the
sequence to be decoded selected, second, backward phase begins. Starting
with the last state, algorithm looks where did the survivor path leading into
it came from and tracks the survivor paths back to the start.

Figure 2.8: Viterbi algorithm backwards phase

Decoding is then just a matter of comparing the state sequence with
precomputed state table.

16



Chapter 3

Practical

This section describes MATLAB implementations of used signal processing
algorithms. Algorithms are banded together according to their role in digital
signal communication which allows us to build observation models depending
on one’s goals. In this thesis we will first describe standalone signal processing
algorithms, then describe building blocks such as modulator or coder. In
the end we will build several observation models from these blocks. One
for computing performance of given algorithms and one for possible data
visualisation.

3.1 Signal Processing algorithms

In addition to helping visualise the function of these algorithms they are also
built in a way which allows for their possible reproduction in other program-
ming languages, namingly in C. Given this role most of the algorithms are
built without the use of any advanced functions with the sole exceptions being
fast Fourier transform (FFT) and functions generating random sequences.
First exception is due to FFT libraries being commonly found in many pro-
gramming languages and second is due to being necessary for simulating
values which would given in real applications (source data and additive white
gaussian noise).

17



3. Practical.......................................
3.1.1 Convolution

First function is discrete time convolution.

(f [k] ∗ g[k])[i] =
∞∑

i=−∞
f [i]g[k − i] (3.1)

It is performed by function convo with input arguments being two vectors
that enter discrete time convolution and output being vector of their con-
volution. Code first extends one input vector by zeros to the length of
length(f)+length(g)-1. Then creates empty vector of identical length for
convolution output. The algorithm then keeps shifting the non-prolonged
input vector and one by one computes additions to the output vector.

function [z]= convo(f,g)
gn=[g zeros (1, length (f) -1)];
z=[ zeros (1, length (f)+ length (g) -1)];
for i=1: length (f)+ length (g) -1

for k=1: length (f)
if((i-k+1) >0)

z(i)=z(i)+f(k)*gn(i-k+1);
end

end
end

3.1.2 Periodogram

To compute the spectral density of signal we will use periodogram. Peri-
odogram is a power spetrum density estimate obtained as squared-magnitude
Fourier Transform of a signal divided by its length (in our case, the number
of samples).

SxT (f) = |XT (f)|2

2T (3.2)

This method of estimating power spectrum density works only for determinis-
tic signals as it operates only with one realization of random parameter. For
random signals there is necessary additional averaging of the periodogram.
This can be done by averaging over independent realizations or by sliding
window [Sý16].

Ŝx(f) = 1
KN

K−1∑
k=0
|X[k]|2 (3.3)

Where K is the number of segments over which we are averaging and N is
their length. Following code applies rectangular window of length N and
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..............................3.1. Signal Processing algorithms

performs Fourier transform on resulting signals. This method of estimating
power spectrum density by averaging estimates of non-overlapping segments
is called Bartlett’s method.

for K=1:N:( length (y)/N)
wnd= y(1,K:K+N -1);
yfft= fftshift (fft(wnd));
sum=sum+yfft

end
PSDE=sum /( length (ynew)/N);

3.1.3 Coding

In this thesis we will work exclusively with binary data and leave the analog-
to-digital conversion or the transformation from an arbitrary format to binary
of the input data to the user. First building block described here is the
channel coding part in which we introduce redundancy into the input data
stream by applying channel coding methods. It is called by function coding
with two input arguments, input data vector and chosen coding method.
Then it returns data vector of coded input data. Depending on the code
method chosen, this method may increase the amount of data to be sent and
thus reduces the rate at which the data are being transmitted.

3.1.4 Hamming code

For demonstration, we will be using a Hamming(4,7) code given by generator
matrix [Pro95]

G =



1 1 0 1
1 0 1 1
0 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(3.4)

We can see that this code is systematic (it contains identity matrix) and adds
three parity bits which are placed at the first three positions of the codeword.
This code has free distance of length three. Thanks to this it can repair
any defect that changes one bit. It can detect defect that causes two bits to
change but it will repair them incorrectly. Errors with Hamming distance
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3. Practical.......................................
equal to multiple of free distance cannot be detected nor corrected. In this
implementation the code checks the length of input data and if necessary
adds zeros to the end so the incoming data sequence has usable length. Then
the input vector is divided into blocks of length 4 and multiplies them with
Generator matrix. As we are computing within the GF(2), the result of
matrix multiplication is taken Modulo-2 and is put at the end of output
vector.

% Signal length adjustment
if mod( length (y) ,4) ~=0;

yc=[y zeros (1,4- mod( length (y) ,4))];
else

yc=y;
end
for i=1:4: length (yc)

%Block selection
Ax=yc(i:i+3 ,1)
Ax=[yc(1,i);yc (1 ,1+i);yc(1,i+2);yc(1,i+3) ];
A=mod(Ax '*G ,2);
yenc =[ yenc A];

end

3.1.5 Convolutional code

As an example of convolutional codes, we will use a simple code from: [HV94].

G0 =
[
1
1

]
, G1 =

[
1
0

]
, G2 =

[
1
1

]
(3.5)

which has a code rate of 0.5 and constraint length K = 3. Generalized code
for an arbitrary generator matrix G(m,n) is initialized by adding K − 1 zeros
before the bit sequence to calculate the codeword for first bits. Each incoming
bit then generates m bits at the output which are dependent on current and
n− 1 previous bits of the coded sequence.

G=[1 1 1;1 0 1];
m=size(G ,1);
n=size(G ,2);
y=[ zeros (1,n -1) y];
yenc=NaN (1,( length (y) -(n -1))*2);
for k=n: length (y)

for l=1:m
yenc (1,m*(k -1) -n+l -1)=mod(G(l ,:)*y(k:-1:k -2)

',2);
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......................................3.2. Modulator

end
end

3.2 Modulator

Modulator implementation consists of two parts. First one assigns each bit
combination one of n possible channel symbols. Second part upsamples data
stream to avoid intersymbol interference and convolves chosen channel symbol
with finite impulse response (FIR) filter with response in the shape of selected
modulation pulse. Function modulator.m assigns constellation space points.
Following code shows the implementation of Binary Phase Shift keying

yout =2*y-1

Assigning constellation space point 1 to bits with value 1 and constellation
space point -1 to bits with value zero. BPSK is identical with 2ASK. On-Off
keying is implemented in the same way. Only difference being bits with value
0 are assigned to constellaton point space 0. M-ary Phase shift keying assigns
values ej

2π
M
i to groups of bits. Code padds the input vector to aproppriate

length and assigns bits to constellation points. Following code shows the
implementation of 8PSK.

C=[0 0 0;0 0 1;0 1 1;0 1 0;1 1 0;1 1 1;1 0 1;1 0 0];
if mod( length (y) ,3) ~=0

y=[y zeros (1,3- mod( length (y) ,3))];
end
for i=1:3: length (y) -2

for a=1:8
if y(1,i:i+2) ==C(a ,:)

yn((i+2) /3)=exp (1i*pi /4*(a -1));
end

end
end

As an example of mulations with memory here follows the implementation of
DPSK modulation in which data are modulated base modulator state.

state =1;
for i=1:2: length (y) -1

for a=1:4
if y(1,i:i+1) ==C(a ,:)
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3. Practical.......................................
yn((i+1) /2)=exp (1i*pi /2*(a -1));

end
end

yn((i -1) /2+1)=state*yn;
state=yn((i -1) /2+1);
end

Second function is Pulse. This function upsamples data stream by the entered
number of samples per pulse and adds a pilot signal of required signal before
the data. Instead of ideal pulses g[k] we have to work with their finite and
causal approximations g′[k]. Causality is accomplished by shifting the pulse
by half of its length. Finiteness is accomplished by applying rectangular
masking function u[k] = 0, k /∈ [0, ..., NS ].

g′[k] = g[k − NS

2 ]u[k] (3.6)

yUpsampled =[];
% Adding pilot signal
yn=[ ones (1, pilotlength ) yn];
% Upsampling by pulse length Ts
for i=1: length (yn)
yUpsampled =[ yUpsampled yn(i) zeros (1,Ts -1) ];
end
switch PulseType ;

...
%RCS pulse
span =2;
T=1;
x= linspace (-span*T,span*T,Ts);
alpha =0;
for i=1: Ts

z(i)=(T^3* sin(pi*x(i)/T)*cos(alpha*pi*x(i)...
/T))/(pi*x(i)*(T^2 -4* alpha ^2*x(i)^2));

end
% normalisation to unit energy
pow=sum(z.^2);
z=z/sqrt(pow);
...

end
%Pulse train creation
y=conv(yUpsampled ,Pulse);
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.......................................3.3. Channel

3.3 Channel

Here we add the white gaussian noise and introduce a phase shift to the
transmitted signal. Considering we are working with complex baseband
representations of real signals it is also necessary to work with complex noise.
To both I and Q signal components we will add a white gaussian noise with
variance N0. This will generate a noise of total variance 2N0. We also have
to take into account the number of samples Ts. Total noise added per sample
is

2N0
Ts

(3.7)

Following code calculates average symbol power and modifies the variance
to match given signal to noise ratio (SNR). Code rate R is also included, as
during observation, we are usually interested in the energy per useful bit.

pow =( yin*yin ')/( length (yin));
sigma=sqrt(Ts*pow ./(2*R*10^( snr /10)));
addnoise =( randn (1, length (yin))+1i*randn (1, length (yin

)))*sigma;
yout=yin+ addnoise ;

Where MATLAB function randn creates vector of random numbers with
variance equal to one and zero mean.

3.4 Demodulator

In the demodulator we will focus on successfully recognizing transmitted
symbols. Values received from sampling matched filter demodulator output
at appropriate times will be projected into the signal space. Demodulator
is divided into several functions. First one is MatchedF ilter with inputs of
noisy signal, number of samples per symbol, length of used pilot signal which
correlates incoming signal with complex conjugate time reversed version
of original pulse used, estimates phase shift introduced by channel and
compensates for it

%%Phase estimation
ph=y(1 ,1: Pilot*Ts);
pha=convo(ph ,Pulse);
for k=1: Pilot

phas(k)=pha(k*Ts);
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3. Practical.......................................
end
phas=sum(phas)/Pilot;
y=y/exp (1i*atan2(imag(phas),real(phas)));

Then works with the waveforms containing data and samples them at appro-
priate time.

matched =[ ones (1,Ts)];
c=convo(y, matched );
for p=1: length (y)/Ts

yz(p)=c(p*Ts)
end
yz=sqrt (2)*yz/sqrt(Ts);

Third part is function metric with two outputs: first is closest constellation
point and second is a matrix of euclidean distances from all possible con-
stellation points. Necessary inputs for function metric are input data and
modulation method chosen. Following sample code shows approach to 4PSK.

% preallocation
yout=NaN (1, length (yin));
ydist=NaN (4, length (yin));
for k=1: length (yin)

B=[-1 1 -1i 1i];
% finding euclidean distances
A=abs(yin(k)-B);
ydist (1: end ,k)=A;
% choosing the smallest
[~,b]= min(A);
yout(k)=B(1,b);

end

In case of choosing hard decision decoding there is another function mapper
which maps incoming channel symbols to data according to their closest
constellation space point. Its inputs are sequence of channel symbols and
appropriate type of modulation. Following snippet shows 16QAM segment of
mapper function. Matrices B and C contain constellation points and their
respective bit combinations.

yout=NaN (1 ,4* length (yz));
B=[ -1-1i 1+1i ...
C=[0 1 1 1;1 1 0 1;...
for k=1: length (yz)

for m =1:16;
if(yz(k)==B(1,m))
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.......................................3.5. Decoder

yout (1 ,(4*k -3) :4*k)=C(m ,:);
end

end
end

3.5 Decoder

3.5.1 Block codes decoding

Linear block codes coded by generator matrix G are decoded by their parity-
check matrix H. We will work with a parity-check matrix for the code defined
in 3.2.3. This code has the following parity-check matrix

H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

 (3.8)

Multiplying a valid codeword by parity-check matrix would result in a zero
vector. Multiplying an invalid codeword will give us a vector of values. This
vector is the same as the n-th column of parity-check matrix. Then we assume
that the eror is appeared on the n-th symbol of the demodulated sequence and
it will be repaired. Another option is to repair bits according to precomputed
table.

for i=1:7: length (yc)
Ax=yc(1,i:i+6);
A=(Ax*H');
A=( mod(A ,2));
d=0;
% Syndrome check
for b=1:3

if mod(A(1,b) ,2) ~=0
d=d+1;

end
end
if d>0

% Searching which bit to repair
for a=1:7

if A '==H(:,a)
m=a;

end
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3. Practical.......................................
end

% Codeword correction
Ax(1,m)=mod(Ax(1,m)+1 ,2);
end

ydecoded =[ ydecoded Ax (1 ,1:4) ];% Parity bits disposal
end

This algorithm checks the output of matrix multiplication and if necessary,
compares it with columns fo parity check matrix and corrects resulting errors.
After the correction it discards the parity bits and passes the rest of the
codeword further. Soft decision decoding of the block code is implemented by
comparing the distances from all possible codewords and choosing the closest.
Following code shows the soft decision decoder implementation.

%list of all possible codewords
codewords =[0 0 0 0 0 0 0;0 0 0 1 0 1 1;...
codewords2 = codewords *2 -1;
for k=1:7: length (mfout)

A=NaN (1 ,16);
% calculating distance from all codewords
for m=1:16

A(1,m)=sum(abs(mfout (1,k:k+6) -codewords2 (m
,:)).^2);

end
[~,b]= min(A);
ydecoded =[ ydecoded codewords (b ,1:4) ];

end

3.5.2 Convolutional codes decoding

First step in decoding convolutional codes with the Viterbi algorithm is
comparison of incoming data with all possible paths and computing their
metrics. To this end we will use 2 functions to compute the Hamming and
Euclidean distances. First is HDist for computation of Hamming distance
between two input vectors.

for a=1: length (b)
if b(1,a)~=c(1,a)

dist=dist +1;
end

end
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.......................................3.5. Decoder

Second is function Softdist for computation of euclidean distance which
depends also on used type of modualion. Its input are two data vectors and
chosen modulation type. Following code snippet shows the computation of
euclidean distances for 4PSK modulations.

statetab =[0 0 1j;0 1 -1j;1 1 1;1 0 -1];
for a=1:4

if c== statetab (a ,1:2)
s=abs(b- statetab (a,end)).^2;

end

Following code performs the standalone Viterbi algorithm. Matrix C shows
the state sequences and their metrics. Each state has its row which will
always end in it. First position in a row is always the metric of the path.
Followed by a sequence of states which end by the nominal state.

C=[0 1 NaN (1,( length (yc)/2))];
C= repmat (C ,4 ,1);
for i=1:2: length (yc)

H=[];
for a=1:8 % computing branch metrics for one

step
c=[1 1 0 0;1 2 1 1;2 3 1 0;...
% initial state , ending state and branch

between them
f=[ yc(i) yc(i+1) ];
g=[c(a ,3) c(a ,4) ];
[b]= HDist(f,g);
H=[H;c(a ,1) c(a ,2) b];
% initial state , ending state and branch

metric
end

First part computes the distance of incoming data from all possible trellis
transitions. Second part looks at all path leading into a node and chooses
the one with lowest path metric. This path is then copied into new matrix of
paths Cn. This process is then repeated for all nodes until Cn is complete.
The C matrix is then replaced by Cn.

for e=1:4
comparison =[];
for m=1: size(H ,1)

if H(m ,2) ==e
comparison =[ comparison ;H(m ,1) H(m ,3)

+C(H(m ,1) ,1)];
end
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3. Practical.......................................
end

[amin ,bmin ]= min( comparison (: ,2));% Searching
optimum metric

Cn(e ,:)=C( comparison (bmin ,1) ,:);% preparing new
state table

Cn(e ,1)=amin;%new metric
Cn(e ,((i+1) /2) +2)=e; % comparison (bmin ,1);
end

%new state table
C=Cn;
end

Last part chooses the path with lowest overall metric and decodes it according
to precomputed table.

[~, minz ]= min(C(: ,1));
% choosing best path
Cfin=C(minz ,2: end);
% precomputed decoding table
DecTable =[0 1 NaN NaN;NaN NaN 0 1;0 1 NaN NaN;NaN

NaN 0 1];
for j=1:( length (yc)/2)

ydecoded (j)= DecTable (Cfin (1,j),Cfin (1,j+1));
end

3.5.3 Communication models

To demonstrate the manner in which data travel in digital communication
system we will build from aforementioned blocks two functioning models.
First one

%% Initialisation
CodeMethod ='convols ';
ModType ='4PSK ';
PulseType ='RCS ';
Ts =16;% symbol samples
yinitial =round(rand (1 ,200));
snr =6;
Pilotlength =1;
R=1
%% Modulation
[ ycoded ]= coding (yinitial , CodeMethod );
[ ymodulated ]= Modulator (ycoded , ModType );
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[ yenvelope ]= Pulse(ymodulated ,Ts ,PulseType ,
Pilotlength );

yenvelope ( length ( yenvelope )-Ts +2: length ( yenvelope ))
=[];

%% Channel
yphaseshifted =LTIch( yenvelope );
yshiftednoisy =Noise(yenvelope ,snr ,Ts ,R);
%% Demodulator
ymfoutput = MatchedFilter ( yshiftednoisy ,Ts ,PulseType ,

Pilotlength );
[ysymbols ,~]= metric (ymfoutput , ModType );
yout= Mapper (ModType , ysymbols );
%% Decoder
[ ydecoded ]= decoding (yout ,CodeMethod , ymfoutput );
perf= PerfCheck (yinitial , ydecoded );

Where function Perfcheck is function counting the number of differences
between two input sequences of same length.
errorcount =0;
for i=1: length (y1)

if y1(i)~=y2(i)
errorcount = errorcount +1;

end
end

This composition allows for examination and visualisation of data at any
stage. As an examples Function of second model is to measure bit or symbol
error rates. It uses modified version of previous model. It runs the simulation
with given SNR until it reaches given amount of errors and returns the rate
at which they appear.
datalength =50;
n=30;
snrdb= linspace (-3,10,n);
plotprob =NaN (1,n);
for k=1:n

bitsent =0;
errors =0;
snr=snrdb(k);
while errors <100

yinitial = round(rand (1, datalength ));
bitsent = bitsent + datalength ;
...
...
...

29



3. Practical.......................................
...
newerrors = PerfCheck (ynew , ydecoded );
errors = errors + newerrors ;

end
perf (1,k)= errors / bitsent ;

end
semilogy (snrdb ,perf);
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Chapter 4

Performance

Let’s start by evaluating the error performance of BPSK modulation in
AWGN channel without coding. In binary modulation each channel symbol
carries information of about one data bit and there is only one possible
error which happens when added noise exceeds half of the distance between
constellation points. Since our noise has normal distrubution, the probability
of random variable achieving given value can be described by complementary
error function or by the Q-function with the latter defined as follows

Q(x) = 1√
2π

∫ ∞
x

exp
(
−u

2

2

)
du (4.1)

Amounf of noise that is introduced to the channel is described by γb.

γb = Eb
N0

= Es
N0 log2M

(4.2)

where γb and γs show the ratio between noise and energy dedicated to bit or
symbol. For BPSK modulation the energy per bit equal to energy per symbol
and the probability of error is:

Pberr = Q(
√

(2γs)) (4.3)

Following figure shows both predicted and simulated error probaility of BPSK
modulation.
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Figure 4.1: BPSK error probability

Now that we have confirmed that the basis works we can examine the
error performance of various coding methods. 4,7 Hamming code described
in previous chapters is a linear block code capable of correcting up to t = 1
errors. Probability of a block error for such a code is given as.

Pe =
n∑

j=t+1

(
n

j

)
pj(1− p)n−j (4.4)

Where p is the probability of bit error [Gol07]. Given the correcting capabili-
ties of our code it is preferable to calculate the probability of error through the
probability of correct detection which in our case is the sum of the probability
of all bits being detected properly and the probability of one bit error

Pblockerr = 1− Pc = 1− ((1− Pbiterr)7 + 7(1− Pbiterr)6Pbiterr) (4.5)

Following figure shows comparison of predicted and simulated block error
rate of Hamming(7,4) code.
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Figure 4.2: Block error probability for Hard decision decoding

The error rate can be improved by applying Soft decision decoding which
should perform better than Hard decision decoding especially at higher signal
to noise ratios. Following figure shows the effectivity of Soft and Hard decision
decoding of linear block code compared with uncoded transmission.
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Figure 4.3: Hamming code bit error rates

We can see that at low signal-to-noise ratios, coding can even be detrimental
as incorrect repairs introduce more errors. As the SNR increases, both coding
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4. Performance .....................................
methods pull ahead of uncoded transmissin with Soft decision decoding being
significantly more effective. The price for this improvement tends to lie in
more complicated implementation.

Second implemented code was a convolutional code decoded by the Viterbi
algorithm. Again, the decoding process was done in two versions. Once for
hard decision decoding and once for Soft decision decoding. Following figure
shows comparison of both methods together with uncoded transmission.
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Figure 4.4: Convolutional code bit error rates

Besides BPSK, also 4 and 8 PSK modulations were implemented. These
modulations, which were encoded into constellation space by Gray mapping
(close neighbours are Hamming distance one apart), have bit error rates
according to:

Pe = 2
log2M

Q

(√
2γb log2M sin

(
π

M

))
(4.6)

Following figure shows bit error rates comparison for various M values de-
pending on the γb.
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Soft decision decoding methods was also implemented for modulations
which encode bits in groups of two.
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Figure 4.6: 4PSK convolutional code bit error rates
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Chapter 5

Conclusion

This thesis was dedicated to creating coding and signal processing algorithms
and distributing them where possible according to their role in the com-
munication model into standalone blocks. From these blocks we have built
several functioning models which allow us to examine the path that data
takes and validate effectivity of built algorithms by comparing them with
theoretically predicted performance. Chosen approach created versatile and
highly customizable models which can be easily modified for given goal or
expanded upon. Possible expansions include adding more coding or modula-
tion methods or expansion for transmitting real signals instead of complex
envelopes.
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Appendix A

CD contents

Scripts:
-envelope.m
-errorateplotter.m
-Main.m
-Rx.m
-Tx.m

Functions:
-convo.m
-decoding.m
-HDist.m
-LTIch.m
-Mapper.m
-MatchedFiler.m
-metric.m
-Modulator.m
-Noise.m
-PerfCheck.m
-Periodo.m
-Pulse.m
-softdist.m
-Viterb.m
-Viterbs.m
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