
Create a system for note taking, management and synchronization. The
design should be based on an analysis of existing solutions addressing their
main shortcomings. It should clearly separate notes management and storage
from user interface so different user interfaces could be built allowing multiple
different user interfaces to access the same notes storage. The core function-
ality will include:

• notes storage and organization

• notes taking using markdown format together with rendering using ap-
propriate graphical user interface

• notes indexing with full text search support

• indexing of to-do items within notes

• notes synchronization allowing one to access notes on multiple devices

The implementation should be realized with appropriate web technologies
following the standard software engineering best practices including testing
and documentation.

Master’s thesis

Shere - Notes and Document Management
Application

Bc. Marek Foltýn

Department of Software Engineering
Supervisor: Ing. Filip Křikava, Ph.D.

May 8, 2018

Acknowledgements

I would like to thank my supervisor Ing. Filip Křikava, Ph.D. for his con-
sultations and ideas during the work on the thesis. I want also thank my
wife Veronika for her support, my daughter Štěpánka for preventing me from
sleeping too long and my whole family. Last, but not least, I would like to
thank all teachers at FIT CTU for their enthusiasm and knowledge that I
could gain from them.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 8, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Marek Foltýn. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Foltýn, Marek. Shere - Notes and Document Management Application. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2018.

Abstrakt

Tato diplomová práce se zabývá tvorbou aplikace pro psańı poznámek. Součást́ı
práce je analýza existuj́ıćıch aplikaćı pro tvorbu poznámek a rozbor jejich ne-
dostatkǔ. Návrh implementované aplikace je vytvořen na základě této analýzy
a řeš́ı nalezené nedostatky.

Kĺıčová slova poznámky, markdown, editor, parsováńı, indexováńı, fulltex-
tové vyhledáváńı

Abstract

The main purpose of this thesis is to create a note taking application in order
to improve note taking experience. The thesis contains the analysis of exist-
ing note taking software, the discussion of their shortcomings and also the
implementation. Its design is based on the analysis and addresses the main
shortcomings.

Keywords note taking, markdown, editor, parsing, indexing, full-text search

vii

Contents

Introduction 1

1 Note Taking Evaluation Criteria 3
1.1 Note Workflows . 3
1.2 Notes Organization . 6
1.3 Search . 6
1.4 Markdown . 7
1.5 Supported Platforms . 10
1.6 User Interface . 10
1.7 Notes Storage . 11
1.8 Pricing . 11
1.9 Summary . 11

2 Existing Applications 13
2.1 Evernote . 13
2.2 Microsoft OneNote . 18
2.3 Bear . 22
2.4 Dropbox Paper . 25
2.5 Typora . 28
2.6 Comparison . 31
2.7 Shortcomings analysis . 31
2.8 Summary . 32

3 Shere development 35
3.1 Requirements . 35
3.2 Architecture . 36
3.3 Development Introduction . 44
3.4 Core Library Fundamentals . 45
3.5 Actions . 45
3.6 Callbacks . 46

ix

3.7 Core Backend . 47
3.8 Storage . 48
3.9 Markdown . 51
3.10 Note Editing . 58
3.11 Indexing . 58
3.12 Search . 60
3.13 MacOS Application Architecture 62
3.14 Editor View . 63
3.15 Sidebar . 68
3.16 Note list . 69
3.17 Testing and Documentation . 69
3.18 Evaluation criteria . 71
3.19 Future Development Ideas . 73

Conclusion 75

Bibliography 77

A Contents of enclosed CD 83

x

List of Figures

11 Note using creative, data and agenda workflow 5
12 Markdown formatting . 8
13 Example of side-by-side approach 9
14 Example of syntax highlighting . 9
15 Markdown seamless preview example 10

21 Search inside images in Evernote 15
22 Evernote window on macOS . 16
23 Non-intuitive row delete in Evernote 17
24 Distracting UI elements . 17
25 OneNote window in macOS . 19
26 Comparison of OneNote and OneNote 2016 in Microsoft Windows 20
27 Bear user interface . 22
28 Bear tag usage . 23
29 Dropbox Paper . 26
210 Diagram syntax and rendering in Typora 29
211 Typora window . 30

31 Differences of cross-platform approaches 37
32 Architecture candidates . 43
33 Shere hourglass architecture . 44
34 Shere Core Actions . 45
35 Shere Core Callbacks . 46
36 Example of Action-Callback usage 46
37 Using Actions and Callbacks in Core 47
38 Example of a note stored in the NSS structure 50
39 Storage class hierarchy . 51
310 Generic parsing loop . 56
311 Markdown editing process . 59
312 Simplified structure of indexing module 60

xi

313 Data structure for parsed search query 61
314 Structure of search module . 62
315 Key classes in GUI application . 62
316 Shere window . 63
317 Caret handling . 66
318 Comparison between different rendering techniques 67
319 Shere sidebar . 68
320 Sidebar and note list . 69
321 Catch2 integrated into CLion . 70
322 Unit test example using Catch2 . 70

xii

List of Tables

21 Analysed applications for taking notes 13
22 Score-based comparison of note taking applications 32

31 Cross-platform approach comparison 37
32 Native GUI libraries and supported languages 39
33 Markdown tokens implemented in Shere 57

xiii

Introduction

People write down notes to free their minds. They need to keep ideas, tasks or
other information in order to reach their work goals. People can write down
their notes on paper or post-it sticky notes. When they require notes to be
saved in a digital form, computers and mobile devices can be used. There
are many applications usable for creating notes: simple programs such as
Notepad, generic word processors (for example Microsoft Word) or specialized
software for managing notes and documents such as Evernote. Note taking
applications offer different features for writing and organizing notes, support
different platforms etc. Because that users do not have the same note taking
styles, they require different of features for work with notes and thus they feel
comfortable with different applications.

This thesis is focused on specialized note taking applications. It analyses
existing note taking software based on a set of defined criteria. The main
goal of the thesis is to create a note taking application based on this analy-
sis. Chapter 1 defines a set of criteria for evaluating note taking applications.
Chapter 2 analyses existing note taking applications using the criteria, de-
scribes their features, advantages and disadvantages. The analysis will be
used for creating a set of requirements for the software project Shere in Chap-
ter 3 which describes the implementation of the project.

My personal motivation to this topic is that I could not find appropriate
note taking application offering minimalist non-disturbing user interface, quick
note formatting and easy notes organization, but efficient with large number
of notes. I spent a long time comparing note taking software and searching
for the best application. Based on the comparison and found disadvantages,
I decided to create my own application.

1

Chapter 1
Note Taking Evaluation Criteria

To be able to choose or create a note taking application, it is necessary to
describe how users work with notes and which features help them to manage
their work efficiently. To create a note in general, various data types can be
used: rich text documents, web page links, media files, tabular data, calendar
events, tasks etc. Each type of data has its own purpose and format. In real
world, data with different types can be related to each other, but also can
be stored on different locations (local computer, web page, cloud, ...). Users
need to store or to reference these documents to keep them easily reachable
to stay oriented in their work. One of the features that differ note taking
applications from writing notes on a paper is that they allow linking other
notes and different data types. They serve as a digital brain for digital data.
Some applications even extend this abilities with sharing the notes with other
users which is difficult using paper or sticky notes.

When searching for the optimal note taking application, users need to
consider many aspects of the software such has what data types can be stored
in notes, how are note organized, which platforms are supported, how does
the application look and how comfortable it is for them etc. Also, users have
to consider the type of their work and their personal habits.

This chapter defines a set of evaluation criteria for comparing note taking
applications. It compares software attributes of applications that can be lim-
iting for some users, but beneficial to others and thus help to decide better.
These criteria will be used for comparison of several existing applications in
Chapter 2.

1.1 Note Workflows

The first aspect of note applications is the support of note workflows. I divided
how users work with notes and documents into four workflows:

• creative workflow

3

1. Note Taking Evaluation Criteria

• data workflow

• agenda workflow

• sharing workflow

This categorization helps to understand different note taking activities. As
described further in 2, applications have different levels of support these work-
flows. Each workflow requires a different set of features, but multiple work-
flows are usually used together.

Creative workflow stands for creative activities. Users write down their
ideas to keep them outside of their brain and thus freeing their mind. It
helps them remember things about actual activity, stimulates creativity and
helps think about difficult problems. Some complex ideas require some form
of visualisation or linking among other ideas. Typical features suitable for
creative workflow are:

• Text formatting (highlighting, colors, bold, ...)

• Drawings (diagrams, sketches, ...)

• Links to other notes

Data workflow is mainly related to knowledge. Notes store information
gained from an external sources: files, web links, personal notes about a science
book, etc. There is a difference between including and linking to the data.
When including, the external data become the part of the note. A good
example is inserting an image into a note or writing notes during a lecture.
When linking to a PDF file with presentation of the lecture, the file’s location
is not changed. Both ways have advantages and disadvantages and are suitable
for different use cases. Features supporting data workflow include:

• Links to other notes.

• Web links

• Images

• File attachments

Notes combining creative and data workflows are very common. Users often
write ideas or knowledge and link them to other existing data.

Notes created using agenda workflow contain organizational content: tasks
and events. For users using organization data only, a calendar app is more suit-
able than note taking app, but in a combination with idea and data workflows,
agenda in a note taking application can become very powerful productivity
tool. Tasks can be part of the note, they can be aggregated and efficiently
linked to the data required for the tasks. The main used element is a to-do

4

1.1. Note Workflows

Figure 11: Note using creative, data and agenda workflow

item. A good example of a note combining first three note taking areas is the
note in Figure 11.

The fourth workflow is sharing workflow. It contains activities and allowing
sharing notes with other devices or people. We can split notes sharing into
two different ways. The first is personal sharing: users want to access notes
on multiple devices. This is commonly known as synchronization. The second
way is sharing with other people. Users might want to share notes for example
when they want to collaborate with team members, they want to publish it
as a part of a project etc. Features that support sharing workflow include:

• Note synchronization to multiple devices

• Export a note to a file (PDF, HTML, Markdown, ...)

• Share a note via web link

• Realtime collaboration

Sharing workflow is conceptually orthogonal to the other workflows, because
all data related to creative, data and agenda workflows can be shared.

Different applications have different support for note workflows. Some
applications support one workflow more than others, some try to support each
equally. The following list contains examples of applications that supports
mainly one single workflow:

• Ideas: graphical mind-map application

• Data: wiki pages

• Agenda: calendar application

5

1. Note Taking Evaluation Criteria

• Sharing: file synchronization software

Personal note taking applications usually support 2-4 workflows (with different
emphasis on each). There are also applications that offer almost equal support
for all workflows. This software is usually suitable for teams in companies
rather than individuals: knowledge, organization and collaboration systems.

1.2 Notes Organization

When working with large number of notes, it can become hard to keep notes or-
ganized. Note taking applications offer different ways of how to organize notes.
This criterion evaluates which of them are available. There are two main ap-
proaches to organizing notes, in this thesis they are called tree-organization
and tag-organization.

Tree-organization is based on hierarchy similar to filesystem folders: each
note belong to a particular folder and a folder can contain notes or other
folders. Using folders and subfolders, hierarchical tree structure is created.

Tag-organization allows notes to have a set of some form of a tag: text
label, a color tag etc. The main difference from tree-organization is that a note
can have multiple tags and thus can belong to multiple sets of notes. Using
tags is more flexible for gathering notes across different areas of work that
have the same attributes (for example gathering all notes related to solved
issues with Android programming across different projects).

There is also a combined way of notes organization, we can call it nested-
tag-organization. This approach mixes both previous ways: a note can have
multiple tags, which can be hierarchically organized. Nested-tag organization
seems to be the most universal approach as it unifies two different ways of
organization in a very elegant way. Users can choose more precise hierarchy
or more

1.3 Search

Search functionality enables faster access to large number of notes. Sometimes
users need to find specific information, but they do not remember which notes
contain that information. Full-text search engines provide fast way how to
retrieve data searching by words. More advanced search engines allows also
querying and filtering based on other content attributes.

Generally, fast and precise searching is a very complex problem, there
are many algorithms available: primitive sequential search, inverted index [1],
advanced fuzzy search [2], attempts to use neural networks [3] and many more.
In note taking applications, this evaluation criterion can be limited to check
if the simple full-text search is present and if some advanced filtering options
can be used.

6

1.4. Markdown

1.4 Markdown

One of the common features appearing in text editors is text formatting.
It allows users to change properties of the text (e.g. font size, weight) or
create semantic elements such as lists, headings, links, etc. Text editors have
different approaches for text formatting support. An example of an application
with rich text formatting options is Microsoft Word. In contrast, editors
without text formatting support use plain text only (for example Notepad).
An approach between these two is to use formatted plain text using special
text characters for quick formatting. In order to write formatted plain text, a
specification of special characters and its syntax is required. This specification
is called markup language. The main benefit of markup languages is that they
enable quick and consistent formatting.

Markdown1 is a lightweight markup language created in 2004 by John
Gruber [4]. The main design goal of the language is to make text both easy to
write and easy to read in plain text and to allow conversion of markdown text
to HTML. The syntax is inspired by formatting conventions from email and
usenet conversations. After years, many Markdown derivatives were created.
They define ambiguous corner cases missing in the original specification or
extend the specification with additional elements such as tables, task list items
etc. The following list contains examples of popular markdown derivatives:

• CommonMark [5]

• GitHub Flavored Markdown [6]

• GitLab Flavored Markdown [7]

• Markdown Extra [8]

Markdown was initially developed as a text-to-HTML conversion tool for
web writers [4]. Figure 12 shows plain text using markdown compared to the
same text converted to HTML.

Nowadays, markdown is used by various applications including note tak-
ing software. There are different approaches to markdown editing and ren-
dering. We can differentiate four types of markdown editor implementation
approaches:

• Side-by-side views

• Syntax highlighting

• WYSIWYG2 extension
1In this thesis, all Markdown derivatives are referenced as markdown (with lowercase

m). Some documents and web pages use Markdown with capital M as the reference to the
original specification by John Gruber [4].

2WYSIWYG is an acronym for what you see is what you get. [9]

7

1. Note Taking Evaluation Criteria

(a) Markdown formatted text

A First Level Header

A Second Level Header

Now is the time for all good men to come to the
aid of their country. This is just a regular
paragraph with bold and italic words.

The quick brown fox jumped over the lazy
dog’s back.
Second list item

Header 3

This is a link to Google

(b) Markdown text converted to HTML

Figure 12: Markdown formatting

• Seamless realtime preview

Side-by-side views is one of the most simple ways how implement mark-
down editor. There are usually two panes of an editor in an app, one contain-
ing plain text and the other showing the formatted text (usually converted
to HTML). It is easily implementable as there are only three requirements: a
plaintext field, web view and markdown-to-HTML convertor. However, from
the user’s point of view, seeing the text two times on both sides can be dis-
tracting and space-vasting. An example of using side-by-side approach is web
application WriteMe [10] shown in Figure 13.

Syntax highlighting is more advanced way how to render markdown. There
is only one text view that contain markdown text, which is formatted ac-
cording to tokens used in the text, especially special characters are usually
underemphasized, headings font size is increased and so on. All the special
markdown characters are always visible. An example of application using syn-
tax highlighting is StackEdit [11] shown in Figure 14. This application also
offers combination of side-by-side view and syntax highlighting: the first pane
shows syntax-highlighted text and the second pane shows the text converted
to HTML.

WYSIWYG extension allows to use markdown in editors that show for-
matted text only. Usual behaviour is that after writing special characters,
the characters disappear and the format is applied (for example: after writing
bold text, the asterisks disappear and bold text is displayed). This ap-
proach is beneficial for users that want to see the formatted text only (without
special characters). However, there is also an option to format text manually
using UI buttons or keyboard shortcuts in case that users do not know mark-
down syntax.

8

1.4. Markdown

Figure 13: Example of side-by-side approach

Figure 14: Example of syntax highlighting

9

1. Note Taking Evaluation Criteria

Figure 15: Markdown seamless preview example

Seamless realtime preview combines the last two approaches. Basically, the
text is highlighted in the same way as in syntax highlighting. The difference
is that after cursor is moved away from the text, special characters disappear
and only formatted text is visible. Figure 15 illustrates the seamless preview
in markdown editor Typora [12]: when the cursor approaches to the link, the
markdown link token is expanded and can be edited. After the cursor leaves
the link, the URL is hidden and the link text is displayed only.

1.5 Supported Platforms

Supporting more platforms is a big advantage. In combination with syn-
chronization features, it allows users to access their notes using the same
application on different devices. On the other hand, developing and maintain-
ing multiple platforms requires significantly more effort. Some applications
have different features available in different platforms. This criterion eval-
uates which platforms are supported and how an application differ on each
platform. The following platforms are included into the analysis:

• Windows

• macOS

• Linux

• Android

• iOS

• Web

1.6 User Interface

A proper user interface design is an important part of the user experience with
the application. For note taking purposes, this criterion evaluates the aspects
of the UI that have impact on work with notes. Firstly, it is described if the UI
support users to stay focused on notes. Showing too many UI elements can be
overwhelming and can distract users when they need to be focused to write or
read notes. Non-distracting interface highlights the actual note content rather
than the number of features that the application offers. Secondly, compliance

10

1.7. Notes Storage

with platform design recommendations helps users understand the interface by
using UI paradigms they already know. Note taking applications are targeted
to be used often or every day, so it is important for users to feel familiar with
the interface. Thirdly, a part of this criterion is a subjective evaluation note
taking experience.

1.7 Notes Storage

This criterion concerns how and where are notes stored. It discusses used data
format and location of notes.

Open or proprietary data format can be used. Using open formats allow
notes to be accessed and modified outside particular application by third-party
software. Open storage structure can be for example: file and folder structure
on a filesystem, an open-source database (e.g. SQLite) with published data
model description. Using proprietary storage structures does not allow direct
note storage access. On the other hand, it reduces risk that an external
application corrupt the storage. There is always a trade-off between using
open or proprietary storage, but using published storage format mitigates the
risk of vendor lock-in.

The second part of the criteria concerns where the notes are stored. Usu-
ally, they are stored in a local filesystem, or in a cloud service. Saving notes
in local filesystem allows to access them without internet connection. On the
other hand, online storage enables notes to be instantly available everywhere
on devices with working internet connection. However, using online-only stor-
age limits users to work without internet connection. The optimal method
is combination of online and offline storage: notes are stored locally and also
synchronized to an online repository.

1.8 Pricing

Pricing is the last criterion used for evaluating note taking apps in this thesis.
It compares pricing models of applications. If the applications offers a free
plan, both free and paid plans are compared.

1.9 Summary

In this chapter I described a set of criteria for evaluating note taking applica-
tions. These criteria will be used for analysis existing note taking software in
Chapter 2.

11

Chapter 2
Existing Applications

There are many existing note taking applications [13]. In this chapter, I will
focus on five representatives that will be described in this thesis using the
criteria defined in the previous chapter. Each selected application meets at
least one of these requirements:

• It is widely used among users (based on the number of active users or
downloads)

• There is an outstanding feature related to one or more evaluation criteria

Table 21 introduces the analysed applications, their authors and project
web page.

Name Author Web page
Evernote Evernote evernote.com
Microsoft OneNote Microsoft onenote.com
Bear Shiny Frog bear-writer.com
Dropbox Paper Dropbox paper.dropbox.com
Typora Abner typora.io

Table 21: Analysed applications for taking notes

2.1 Evernote

Evernote [14] is one of the most popular note taking applications in the world.
Besides note taking, it offers simple organizational features and efficient multi-
user collaboration. Evernote was launched in 2008. In 2017, it reached 220
million users. [15] Today, Evernote ecosystem supports many platforms and
3rd-party extensions.

13

2. Existing Applications

2.1.1 Note Workflows Support

Evernote supports all workflows but with different quality. The lowest support
(but still high quality) is for creative workflow. The application lacks creative
features as diagrams or other visualisation tools. However, text formatting is
well supported. Editor allows to use classic features as bold, italic, lists, colors,
font size etc. Advanced tables are also supported, including cell coloring and
rich text content inside cells.

Evernote has also a wide range of features supporting data workflow, e.g.
links, images and file attachments. There are also buttons for direct sound
record, camera photo and attach a file from Google Drive. A big advantage is a
web plugin allowing to convert a web page or its part into a note. Additionally,
premium subscription offer business card scanning.

At default, agenda workflow support is basic only. There are only sim-
ple to-do tasks available. There are no advanced organizational capabilities
as task deadline date or tasks overview. On the other hand, with 3rd-party
applications that use Evernote API, new features can be added. There are ap-
plications that automatically export tasks from Evernote to specified calendar
etc.

Workflow with the highest quality of support is sharing workflow. There
are many tools for publishing notes and collaboration with other users:

• Share notes via sharable link

• Export notes to other formats (HTML, ENEX3)

• Collaborative editing

• Comments in notes

• Chat with other users

2.1.2 Notes organization

There are three ways of how to organize notes in Evernote. The most impor-
tant one is using notebooks and stacks. A notebook contains a list of notes.
Multiple notebooks can be stacked together using a stack. This approach cor-
responds to tree-organization. However, there is no option to use more than
two levels of hierarchy.

The second way to organize notes is using tags. Each note contains a list
of text tags attached to it (outside the note content). Notes can be filtered by
tag using search or from the sidebar.

When users often access some notes or notebooks, they can use Shortcuts.
In the sidebar, there is a list of notes and notebooks that were added to
Shortcuts which makes them quickly accessible.

3ENEX - Evernote XML note format

14

2.1. Evernote

Figure 21: Search inside images in Evernote

2.1.3 Search

Searching through notes is very powerful in Evernote. There is support for
full-text search, filtering results based on many parameters (note content, tags,
notebooks, date and many more). To improve results relevance, there is even
artificial intelligence involved in searching algorithms [15]. Besides note text
indexing, text in attached files and even text found in images (using embedded
OCR) is indexed. Figure 21 shows text retrieval from an image stored in a
note.

2.1.4 Markdown

Markdown support is very limited. It is implemented as WYSIWYG exten-
sion. Only few elements are supported: lists, code block, line separator, task
and link. Other elements as bold, heading, etc. have to be formatted using
GUI buttons or keyboard shortcuts. The application does not offer import/-
export of markdown text.

There exist alternative approaches how to use markdown in Evernote: us-
ing 3rd-party applications. These applications implement markdown editing
on their own and then modify notes via Evernote API. An example of such
app is Marxico [16]. However, using another software only for enabling mark-
down is not comfortable, because two separate applications for note taking
are required.

2.1.5 Supported Platforms

Evernote supports all platforms analysed in this thesis except Linux. In past,
even more platforms were supported (Windows Phone and Blackberry), but
they were discontinued in 2017. [17]

15

2. Existing Applications

Figure 22: Evernote window on macOS

2.1.6 User Interface

Each supported platforms uses native UI following recommended design guide-
lines. There is a sidebar on the left side that contains created notebooks and
the list of tags. Next to the sidebar is a note list containing notes from selected
notebook or containing selected tag. The rest of the window is occupied by
the editor.

However, during analysis I found several caveats:

• When working with tables on macOS app. I couldn’t find how to delete
entire row. I tried the same approach as in most applications working
with tables: select the row by click on the header on the left side and click
delete. This only cleaned the row content. Contextual click (right-click)
did not work at all. However, the working solution was non-intuitive:
the row can be delete from contextual menu of a single cell, as shown in
Figure 23.

• Desktop application suffers from large number of UI elements, especially
in editor view as shown in Figure 24. Some editing features are more
suitable for rich text document rather than note taking application, for
example many different font sizes, text alignment and different fonts.

16

2.1. Evernote

Figure 23: Non-intuitive row delete in Evernote

Figure 24: Distracting UI elements

There are also features that stand out above other applications. For ex-
ample presentation mode. The window can be switched into fullscreen pre-
sentation showing opened note. This enables easy notes presenting without
distractions by editing elements. Another advantage of the UI is its rich
customization options: sidebar’s content can be customized, there are many
options how to show the note list (e.g. card view, snipped view) as well as
many sorting options.

2.1.7 Notes Storage

Notes in Evernote are stored in a proprietary format. On desktop platforms,
all notes are stored on disk and synchronized with Evernote servers. As men-
tioned before, there is possibility to export them to HTML or ENEX. Mobile
platforms offer both online and offline ways of note storage depending on
subscription plan.

Notes are available for external manipulation via Evernote API. However,
it requires communication with Evernote servers and thus being online, so
external note storage manipulation is not supported when being offline.

17

2. Existing Applications

2.1.8 Pricing

Evernote is a closed-source application. It offers three subscription plans:

• Free - Usage without paid subscription has several limitations. There is
possible to upload only 60MB of data per month. Synchronization can
be active across 2 devices only.

• Premium - Limit on uploads is increased to 10GB, synchronization is
allowed for unlimited number of devices. There are more features avail-
able including presentation mode, offline notebook access in mobile apps,
and search inside PDF and Office documents. There is also customer
support available via chat. The subscription price is 69.99 USD per year.

• Business - This plan is suitable for companies. It enables central user
administration, better collaboration and priority business support. The
subscription price is 12 USD per user per month.

2.1.9 Summary

Evernote is a very successful application with many note taking features. Wide
range of supported platforms, rich collaboration functions and high quality
search engine help with everyday work. Ecosystem around Evernote API is
also an important advantage. On the contrary, user interface is sometimes non-
intuitive and distracts while reading and writing. There is also very limited
markdown support and the subscription plans have high prices.

2.2 Microsoft OneNote

OneNote is a note taking application created in 2003 by Microsoft [18]. Ini-
tially, it was a part of Microsoft Office suite. In 2014, OneNote was announced
as a standalone application. [19] In Windows 10, OneNote comes pre-installed
at default.

2.2.1 Note Workflows Support

The creative workflow has the biggest support in OneNote. The reason is
that the editor does not use traditional page-layout, but there is an unlimited
canvas where text and other elements can be placed freely. There are also
features that support creative work: standard text formatting, drawing with
pen, inserting shapes as rectangle, arrows, and other. In a combination with
the canvas, these features are very useful for visualisation and creativity.

Data workflow is also well supported. OneNote supports images, files
attachments, tables mathematical equations, sound record and embedding
PDF files or YouTube videos.

18

2.2. Microsoft OneNote

Figure 25: OneNote window in macOS

A big disadvantage is that OneNote lacks support for almost entire agenda
workflow. Only simple tasks are available. The only option how to show all
unfinished tasks is using show all marks command. However, this command
is available in Windows version only4.

Similarly as other Microsoft Office products, OneNote offers many ways
of sharing notes with other users: export as PDF, create shareable link and
since 2015, OneNote offers also collaborative editing. Considering all these
features, the application offers rich support for the sharing workflow.

2.2.2 Notes organization

Only way how to organize notes is based on tree-organization. There are three
types of note containers:

• Notebook

• Section group

• Section

A notebook contains sections or section groups. A section contains notes
only. A section group can contain sections or another section groups and thus
allowing infinite section group nesting.

4Only OneNote 2016 for Microsoft Windows supports find tags command. Note that
there are two windows versions of OneNote, as described in Section 2.2.5

19

2. Existing Applications

Figure 26: Comparison of OneNote and OneNote 2016 in Microsoft Windows

Lack of a non-hierarchical note organization is a disadvantage of OneNote.
Notes can be tagged, but filtering by tag is done in a non-intuitive way and
it is present in OneNote 2016 in Windows only.

2.2.3 Search

OneNote offers simple full-text search only. There are no advanced filtering
options or special syntax that allows more precise querying. Only OneNote
2016 for windows offer also searching in text, similarly as in Evernote.

2.2.4 Markdown

Unfortunately, OneNote does not support markdown at all. Text can be for-
matted using UI buttons or keyboard shortcuts. This disadvantage is prob-
lably related to that OneNote was a part of Microsoft Office product family -
no Office software supports markdown.

2.2.5 Supported Platforms

On every platforms listed in Section 1.5 except Linux, OneNote can be in-
stalled. For Microsoft Windows, there are even two versions: OneNote and
OneNote 2016. The first one is a standalone application that comes pre-
installed on Windows 10, whereas OneNote 2016 is a part of Microsoft Office.
Visual comparison of these two alternatives shows Figure 26

However, not all features are available in all platforms. There are some
differences. OneNote 2016 (for Windows) offers more features that other plat-
forms, e.g. tag filtering, showing previous versions of notes, embedding Mi-
crosoft Excel spreadsheet and searching text in images. Although macOS ver-

20

2.2. Microsoft OneNote

sion supports mathematical equations, there are no sample equations available
from the user interface as in Windows version.

Besides native applications, OneNote offers external interoperability using
OneNote API. It is a part of Microsoft Graph API, which interconnects many
Microsoft products. [20]

2.2.6 User Interface

On desktop platforms, user interface is consistent with other Microsoft Office
products. The Ribbon is a dominant GUI element - a control bar that con-
tain sections with buttons. As mentioned in Section 2.2.5, user interfaces of
the two windows versions are different. OneNote 2016 looks similar as other
Office 2016 products for Windows, whereas OneNote follows new design that
appears for example in the web version of Microsoft Office. This new design
is used also in mobile platforms. The main difference in OneNote is that note-
books, sections and pages are now stacked in left sidebars. In OneNote 2016,
notebooks are in a sidebar on the left side, sections are above the editor and
pages are in the right sidebar.

OneNote’s canvas-editing approach has great benefits when working with
creative notes, because it allows elements to be non-linearly ordered. However,
when using multiple different screen sizes, the canvas is not comfortable for
wide long notes - user have to scroll both horizontally and vertically.

Mobile platforms efficiently combine the new design with platform-specific
design guidelines. Notebooks and sections are in separate views, but the
animation direction after going from notebook to a section to a note helps to
understand that the leftmost are notebooks etc.

2.2.7 Notes Storage

The main unit of notes storage is a notebook. The whole notebook is stored
in a single file with .one file extension. Using a single file for the notebook
allows easy backup and note transferring. A big advantage of OneNote is
that the notebook file format is published. [21] On the other hand, having the
whole notebook in a single file is not suitable for complex tasks using external
software. For this use cases, using OneNote API is better approach.

Notes are saved in local filesystem with ability to synchronize them in
cloud using Microsoft OneDrive storage.

2.2.8 Pricing

OneNote for desktop (not OneNote 2016) and mobile platforms is a free closed-
source application. Web application is a part of Office 365 which costs from
69.99 USD per year. OneNote 2016 is a part of Microsoft Office 2016, so the
whole Office suite must be purchased for 149.99 USD.

21

2. Existing Applications

Figure 27: Bear user interface

2.2.9 Summary

OneNote is a complex note taking application that works best for creative
and sharing workflow. Collaboration features support teamwork and many
supported platforms enable using OneNote on multiple devices. On the other
hand, the application lacks advanced agenda support and markdown support
at all.

2.3 Bear

Bear is a lightweight note taking application created in 2016 by Italian com-
pany Shiny Frog [22]. Main differences from other applications are very clean
user interface and unique notes organization approach.

2.3.1 Note Workflows Support

Bear editing is based on markdown. It offers classic features for creative
workflow as standard text formatting. Bear application for iOS even offers
embedding hand-written sketches into notes.

There is standard support for data workflow: images, links and limited
support for file attachments, for example: files included in a note can’t be

22

2.3. Bear

Figure 28: Bear tag usage

renamed.
For agenda workflow, there is similar support as in OneNote: to-do items

are the only organizational elements available. Compared to the OneNote,
Bear has better support of filtering to-do items in search, as described in
Section 2.3.3.

For notes synchronization with multiple devices, iCloud API is used, so
the application has to be linked to an iCloud account. For teamwork only
note import/export can be used. There is no collaboration feature available.

2.3.2 Notes Organization

Bear is the only analysed application that organizes notes using nested-tag
organization. This approach combines hierarchical organization with tagging.
A note can contain any number of tags. These tags are composed with two
components: a pound character # and a tag path. Tag paths are similar to
filesystem paths: they contain words (tags) separated by slashes. Figure 28
describes how the tag relates to the hierarchical outline view in sidebar. This
approach allows very elegant note organization. Since notes can have more
than one tag, multiple custom hierarchies can be included. It is very efficient,
when for example a note relates to multiple distinct areas (e.g. work and
school).

2.3.3 Search

Bear allows full-text search with additional commands. There are two search
command categories that extends search functionality:

• Search operators: the operator exact word sentence allows searching for
exact phrase composed with multiple words. The desired sentence needs
to be placed inside quotes, e.g.: "John Appleseed was here". The
second search operator is the minus symbol. It filters notes that do
not contain search command after the minus character, e.g.: recipes
-broccoli finds all notes containg word recipes, but not containing word
broccoli.

23

2. Existing Applications

• Special Searches: Bear has defined a set of search tokens that can be
used for note filtering. All the tokens begin with @ symbol: @todo finds
all notes containing at least one unfinished tasks, @files shows notes
containing a file. Token @today filters notes that was edited today.
There are many other tokens: @tagged, @untagged, @code, @done, ...

Combining these possibilities, complex search queries can be constructed, for
example: #school/math @today -@images "Example of derivation" fil-
ters notes from school subject math that were today modified, do not contain
any images and contain phrase ”Example of derivation”.

2.3.4 Markdown

Markdown editing is the only way how to format notes. Bear implements cus-
tomized markdown syntax called Polar [23]. It is a lightweight syntax inspired
by CommonMark [5]. In user interface, markdown is implemented as modified
syntax-highlighting: special markdown characters are visible all the time, but
they have different (usually less visible) appearance. The modification means
that some parts of tokens are hidden or have extended control, for example
headings. Instead of showing number of pound characters, a single button
containing header level info (H1, H2, ...) is displayed. In a link, the URL is
also replaced with a button. URL modification can be changed after clicking
on the button. In a task, a checkbox is displayed instead of the plain text
characters.

2.3.5 Supported platforms

For notes synchronization, Apple’s iCloud service is used. It implies that only
Apple platforms are supported. There is an application for both macOS and
iOS. Comparing these two versions, iOS application has support for hand-
written sketches. Except that, both applications offer the same features.

2.3.6 User interface

One of the most important Bear advantages is that is has very clean and
minimalist user interface. There are three main sections in a Bear window: a
sidebar containing tag hierarchy, a note list and an editor view. The sidebar
and the note list can be collapsed and thus non-distracting editing environment
can be created. iOS version has almost the same design as the macOS.

2.3.7 Notes storage

Notes in Bear are stored in a proprietary way. During my analysis I found
out that the note text is stored in a SQLite database. However, the structure
is not officially documented and thus not suitable for external use. There is

24

2.4. Dropbox Paper

no API provided which implies that there is no comfortable way how to work
with notes using external software.

2.3.8 License and pricing

Bear is a closed-source application which offers both free and paid plans. There
are several features unlocked with paid subscription:

• Note synchronization - this is the most important paid feature. In the
free plan, there is no possibility to synchronize notes with other devices.

• More themes - there are 2 different themes available for free. Subscrip-
tion adds 10 more themes.

• Export to more formats in addition to export to markdown: PDF,
HTML, RTF, DOCX, JPG.

The price for Bear Pro subscription is 1.49 USD per month.

2.3.9 Summary

Bear is a lightweight and minimalist note taking application with innovative
notes organization approach. It combines fast markdown editing with clean
user interface. The main disadvantages are that only Apple platforms are
supported and no external access to notes is available.

2.4 Dropbox Paper

Dropbox Paper is a document-editing application with minimalist interface
and supporting rich collaboration. It was created in 2016 by Dropbox. The
main goal of the project is to empower collaboration in a way that does not
reduce creativity [24].

2.4.1 Note Workflows Support

Dropbox supports all workflows. For creative workflow, following features are
available: text formatting, links to other notes and hashtags. Unfortunately,
there is no advanced features like diagrams drawing or handwritten sketching.

However, this little disadvantage is compensated with data workflow sup-
port. Besides classic links and images, there is big support for embedding
content from 27 external sites including, Facebook, YouTube, Trello, GitHub,
Spotify and Dropbox. This feature greatly simplifies access to external con-
tent.

Agenda workflow is also well supported. As in other apps, the main unit
of organizing is a task. In Dropbox Paper, tasks can have (in addition to text

25

2. Existing Applications

Figure 29: Dropbox Paper

description and done-status) specified deadline date and a list of people that
are related with the task. These abilities make Paper very powerful in team
organization. Tasks attached to the user can be aggregated from all notes and
viewed from sidebar. There is also one more agenda feature: a note can have
a calendar event attached. The calendar can be from Google or Office 365.

As mentioned above, sharing workflow is one the core features of Dropbox
Paper. There are export options to markdown and DOCX and more important
realtime collaboration. The collaboration is extended with ability to comment
parts of documents which is important when discussing about the document
content or the particular work activity.

2.4.2 Notes Organization

Notes are organized using tree-organization system that uses traditional fold-
ers. A folder can contain notes or other folders. In addition to this, a note
or a folder can be starred for quick accessibility. List of starred items can be
accessed from the main page.

26

2.4. Dropbox Paper

2.4.3 Search

Dropbox Paper includes standard full-text search. There are few advanced
search abilities: click on a hashtag to search notes with this hashtag or click
on a mentioned team member to search notes created by this member.

2.4.4 Markdown

Markdown in Dropbox Paper is supported as WYSIWYG extension. Except
links, all elements are supported including task extension, e.g. [] buy food.
Except standard markdown, there two more features available. Very useful
extension is LATEXsupport, especially for mathematical expressions. The sec-
ond feature is emoji support. After writing a colon, a pop-up window with
many available emojis is displayed.

2.4.5 Supported platforms

In 2016, Dropbox Paper was introduced as a web application. Nowadays, na-
tive mobile platforms (iOS, Android) are also supported. Mobile platforms
have one advantage when compared with the web application: they support
offline mode: when a mobile device has no internet connection, user can still
create new or access and edit starred and recently modified documents. How-
ever, this is usable only for short moments without the internet, because no
existing (not opened) notes can’t be loaded. For most of the time an internet
connection is needed for smooth work.

2.4.6 User interface

User interface and work with the editor is what make Dropbox Paper different.
The editor is minimalist and clean, yet easy to understand. There is very
well-crafted UI for work with both mouse and keyboard-only: there are no
formatting buttons visible in order to keep the UI clean. When a part of text
is selected, a ribbon with formatting buttons is showed above the selection.
This approach is useful for users that use keyboard shortcuts because it does
not distract them and still elegant and accessible for users that want to use
mouse and UI buttons.

2.4.7 Notes storage

Notes in Dropbox Paper are stored in a proprietary way on Dropbox servers.
As mentioned above, in mobile platforms, only recent and new documents are
stored locally for offline access.

However, there is an API available for document manipulation. It is a
part of Dropbox API. It includes advanced functionality like full-text search,
thumbnails and sharing. [25]

27

2. Existing Applications

2.4.8 License and pricing

Dropbox Paper is tightly related to Dropbox application - file synchronization
software. It is a closed-source application that has three different pricing plans
including a free plan. Dropbox Paper is can be used in every pricing plan,
only thing that differs (except Dropbox specific features that are not related
to Paper) is maximum storage capacity. In the free plan, each user has 2GB
available. This capacity can be increased by inviting other users via a web
link up to 16GB. Both Dropbox Plus and Professional pricing plans offer 1TB
of capacity. Dropbox Plus costs 8.25 EUR per month. Dropbox Professional
costs 16.58 EUR per month.

2.4.9 Summary

Dropbox Paper is an excellent document-writing and organizational tool. Al-
though it is focused mainly on team collaboration, it can be successfully used
as a personal note taking application. Main advantages are rich support for
embedding external content and very comfortable user interface. The disad-
vantage is that the documents can’t easily be stored in computers.

2.5 Typora

The last application analysed in this thesis is Typora. [12] It is not a note
taking application per se rather a generic markdown editor. The reason why I
included it into the analysis is that it is the only editor found that implements
realtime seamless preview. However, using the integrated directory explorer
enables Typora to be used as a simple note taking application.

2.5.1 Note Workflows Support

Although Typora is just a markdown editor, it offers some advanced features
for some workflows. For creative workflow, standard editing features are avail-
able, e.g. text formatting, tables, lists. However, there is also support for
diagrams using js-sequence syntax [26]. Figure 210 code shows diagram syn-
tax example with rendering of the diagram image.

For data workflow support, Typora includes links to other notes, images,
tables and embedding LATEX. However, there is no support for embedding or
linking files. No additional content types as embedded videos are supported.

Agenda workflow has very basic support. Only feature available is using
markdown tasks using GFM5 syntax. These tasks can not be aggregated nor
they have any additional parameters as deadline date etc.

Sharing workflow is limited to import/export documents. On the other
hand, since Typora uses Pandora for importing and exporting, the number of

5GitHub Flavored Markdown

28

2.5. Typora

‘ ‘ ‘ sequence
Al ice−>Bob : How are you , Bob?
Note l e f t o f Bob : Bob th inks
Bob−−>Al i c e : I am good , thanks !
‘ ‘ ‘

Figure 210: Diagram syntax and rendering in Typora

supported formats is large: PDF, HTML, DOCX, RTF, ePUB, LaTeX, Media
Wiki and more.

Another way how to achieve note sharing is to synchronize the whole stor-
age. More information about this approach is in Section 2.5.7.

2.5.2 Notes Organization

Typora does not uses any custom document organization system, it relies
on the filesystem: any folder structure can be used as document-tree. Typora
includes simple tree-view file browser in the sidebar so the notes can be created,
opened and deleted directly from the Typora window. There is no support
for tags or other organization methods.

2.5.3 Search

Unfortunately, Typora does not support searching through notes at all. Only
search inside the opened note is available. Absence of such feature complicates
work with large number of notes.

2.5.4 Markdown

Support for markdown is the most important feature of Typora. Editor ren-
ders markdown using seamless realtime preview. Complete Markdown syntax
is supported including additional optional elements as subscript and super-
script, strikethrough and emojis using two colons wrapping (e.g. :smile:).
In addition to usual markdown elements, tables, diagrams and mathematical
expressions are supported.

2.5.5 Supported platforms

Typora supports all three major desktop platforms: Windows, macOS and
Linux. There is no support for web or mobile platforms. Since Typora is

29

2. Existing Applications

Figure 211: Typora window

written using cross-platform library Electron [27], the same features are avail-
able in all platforms.

2.5.6 User interface

Typora GUI is the same on all platforms. The only difference is the appearance
of the window-buttons (exit, minimize and maximize) in the main window.
Using Electron frameworks impacted consistency with the platform design
recommendations - elements in HTML have different design, and the logical
parts of the GUI are placed on unexpected places. For example, menubar in
the sidebar is placed on the bottom in Typora, which is confusing in macOS.
Elements have custom styles which do not correspond with any supported
platform.

2.5.7 Notes storage

As mentioned in Section 2.5.2, Typora uses plain files and folders. This makes
any folder usable as note storage. In Typora window, open a folder command
is available that shows the folder content in the sidebar. Using this approach
have several advantages:

• When the folder with notes is placed inside a folder synchronized by an
external software like Dropbox, a simple note synchronization can be

30

2.6. Comparison

achieved.

• Notes can be easily accessed and modified by external applications.

• Note organization structure is not dependent on used tools.

2.5.8 License and pricing

Typora is a free closed-source software. The project page [12] says that the
application is free only during beta. However, no non-beta version has been
released until the analysis.

2.5.9 Summary

Typora is a markdown editor with innovative rendering approach that makes
markdown content both easy to write and easy to read. It does not offer
advanced organizational, sharing or structure features, its main focus is in
editing plain text files.

2.6 Comparison

Every application analysed in this chapter is included in the comparison table
22. For each evaluation criterion, a score number is provided. The score
range is from 0 (no support / very bad quality) to 3 (rich support / excellent
quality).

The comparison table quantifies the analysis and for each criterion, it
shows which application has the best score. If there are more applications
with the same best score for a certain criterion, the emphasized one means
that this application is slightly better.

There is an interesting fact that can be seen in the table 22: each applica-
tion is the best at least in one criterion. Also, even the applications differ in
their best features, the total score is nearly similar for each app. It can mean
that the applications have comparable quality, but they have different main
focus.

2.7 Shortcomings analysis

After the analysis, we can point out several shortcomings that were found in
note taking applications:

• Open-source: all analysed application are closed-source. Although there
are many open-source note taking projects, none of them has such quality
to be used for daily basis or at least to be analysed in this work. [13]

31

2. Existing Applications

E
ve

rn
ot

e

M
ic

ro
so

ft
O

ne
N

ot
e

B
ea

r

T
yp

or
a

D
ro

pb
ox

P
ap

er

Note workflows support 2 2 1 1 3
Notes organization 2 1 3 1 2

Search 3 1 2 0 2
Markdown 1 0 2 3 2

Supported platforms 3 3 2 2 2
User interface 2 2 3 1 3
Notes storage 1 2 1 3 1

Pricing 2 2 1 2 2
Total 16 13 15 13 17

Table 22: Score-based comparison of note taking applications

• Cross-platform apps: using the same application on multiple devices is
a feature that is not supported by all analysed applications.

• Note and storage format specification: when saving notes into propri-
etary storage, users lose control over their data and without API, they
can’t easily use their notes via external applications or migrate to other
note taking software. Using publicly specified note and storage format
and accessible data storage solve these problems.

• Markdown realtime preview: there is no note taking application that
seamlessly previews markdown except Typora (which is an editor only).
Using this approach is very suitable for taking notes, because it is both
easy to read and easy to write.

These disadvantages are one of the reasons why I chose this topic as my
master’s thesis. I believe that creating an application resolving these will
improve user experience of taking notes and allows them have more control
about of their personal data.

2.8 Summary

In this chapter, I worked with the evaluation criteria that were used to analyse
and compare existing note taking applications. We can see that each appli-

32

2.8. Summary

cation has different set of high quality features. Based on the analysis, most
important shortcomings were discussed.

33

Chapter 3
Shere development

This chapter contains description of the practical part of this thesis: a note
taking application called Shere. At the begining of the chapter, software
requirements for the project are defined. Next parts contain description of
software architecture, software modules, discussion of testing, documentation
and future development possibilities.

3.1 Requirements

The goal of software requirements is to specify the properties of the project
and to define the functions necessary for the purpose of the system. [28]

Requirements for Shere are based on the analysis of the existing applica-
tions and the shortcomings listed in Section 2.7.

3.1.1 Functional Requirements

Functional requirements are specified in the following list:

1. Application allows creating and editing text notes.

2. Application uses nested-tag notes organization.

3. Application implements markdown editing (the syntax can be customized)
using seamless realtime preview.

4. Markdown syntax supports to-do items

5. Markdown syntax supports tags and sub-tags for notes organization.

6. Full-text search is supported.

7. To-do items can be aggregated from all notes.

8. Application uses note storage structure with published specification.

35

3. Shere development

3.1.2 Non-functional Requirements

Non-functional requirements complement the functional. They specify not
what the system will do, but how and other properties, e.g. reliability, porta-
bility, performance etc. They are usually not easily measurable and thus
evaluated subjectively [28]:

1. Application-logic code is portable allowing to be easily reused in multiple
platforms.

2. User interface is minimalist and non-distracting.

3. Application is published as an open-source project.

3.2 Architecture

Software architecture describes structures used in an application, their prop-
erties and relations among others. It is a high-level view of the application.
In Shere, the architecture is separated into the two components: shared code
architecture and GUI architecture. Considering all the requirements, it turned
out that two aspects the most significantly influenced the GUI architecture:
cross-platform approach and the GUI programming language support. Both
aspects are described in the following sections.

3.2.1 Cross-platform Approach

Because the application logic must support multiple platforms, a cross-platform
approach needs to be selected. We can differentiate three basic cross-platform
approaches [29]:

1. Native: separate development for each platform

2. Universal: Using a cross-platform toolkit with a single codebase

3. Hybrid: A part of the code is cross-platform and is reused in separate
projects for each platform.

Each approach has advantages and disadvantages. Using native application for
each platform enables using all platform-specific features, but it requires the
most effort and the logic code is duplicated on every platform. Using universal
cross-platform toolkits allows writing code single time that is used in every
supported platform. On the other hand, supported features are limited by
the used toolkit and sometimes native look and feel is affected. Using hybrid
approach shares a part of the code that is used in separated native project.
It allows a part of the code to be written only once and in platforms as well
as using native features and GUI. Hybrid approach combines the advantages

36

3.2. Architecture

A runtime
and libraries

Application
code for

platform A

Application
code for

platform B

B runtime
and libraries

B runtime
and libraries

Application
code for

platform A

Application
code for

platform B

(c) Hybrid approach(b) Universal approach(a) Native approach

usesuses

Shared code

Platform
runtime

and libraries
(A or B)

Cross-platform
Framework

Application
code

A runtime
and libraries

Figure 31: Differences of cross-platform approaches

of both previous approaches, but increases complexity with connecting the
shared code. Also, separate projects still have to be created. Table 31 com-
pares the approaches based on a subset of the criteria specified in [29]. Each
approach also contains examples of technologies using this approach.

Native Universal Hybrid
Ease of de-
velopment

Slow, each plat-
form separately

Fast, single code
works everywhere

Moderate, sepa-
rate projects with
shared code

Look and
feel

Best as using na-
tive GUI libraries

Limited to used
technology, often
non-native

Best as using na-
tive GUI libraries

Supported
platforms

Every platform
with separate
project variant

Limited to used
technology

Every platform
with ability to use
the shared code

Main-
tainability

Bad, repeating
changes on all
platforms

Very good,
changes made
only once

Moderate, shared
code changed
once, the rest is
duplicated

Technology
examples

Cocoa, WinAPI,
Android

Electron, Qt,
GTK+

Djinni, C/C++
bindings to other
languages

Table 31: Cross-platform approach comparison

Technical differences of the approaches are illustrated in Figure 31. For
the purpose of Shere, native approach can be excluded. Creating a separate
application for each platform is not efficient, it would require big effort and

37

3. Shere development

even then it would lead to bad code maintainability. Universal approach works
well for fast development requirement. Since there is only single codebase
for all platforms, the maintainability is very good. However, using universal
frameworks limits using only features implemented in the used framework.
There can be required features that can not be implemented (or it is difficult to
implemented them in a cross-platform way). When the whole project depends
on a certain GUI framework, it can complicate the development in a future.
Also, the application cannot be extended to other platforms, if the framework
supports only some of them. The most flexible solution seems to be the hybrid
approach. It combines the best from the previous approaches. However,
more effort than using universal approach is needed, because the shared code
linking must be linked to the separate parts and separate projects (usually
with additional code) must be maintained. So, for Shere project I selected the
hybrid approach. A cross-platform library containing application logic and
shared functionalities will be implemented. This library will be then used in
platform-specific projects.

It is efficient to share as much code as possible to avoid code duplicities.
The ideal is to achieve that the shared code contains all common features
except platform specifics. The biggest difference among platforms is the GUI
- systems provide different libraries with different features and formats for
layout specification. This leads to the following approach: implement all
functionalities and logic in the shared part of the code except the GUI. User
interfaces for each platform will be created separately using its native tools
and libraries. The interfaces will be then linked to the shared code. This is
the approach that will be used in Shere.

3.2.2 GUI Programming Language Support

For note taking application, supporting all major platforms (Windows, ma-
cOS, Linux, iOS, Android and web) is a great benefit. This fact has to be
also considered before architecture specification. Because Shere is planned to
be developed even after thesis finish, used architecture and the programming
language should not exclude any of the mentioned platforms. However, shar-
ing code with these platforms reduces the number of available programming
languages. Each of the platforms supports a limited number of languages that
can be used to create native GUI. Table 32 compares frameworks provided by
different platforms and programming languages they support.

From the table we can see, that there is no language that can be directly
used in every platform. However, some languages are interoperable with C
or C++ so C and C++ can be candidates to be used for the shared code.
In Microsoft Windows, both C and C++ native libraries are provided, so
including the shared source (or linking a library) is enough.

In macOS and iOS, C code can be used in Objective-C code, because
Objective-C is a superset of the C language. This applies for Objective-C++

38

3.2. Architecture

Framework Supported languages

Windows

Windows API C
Microsoft Foundation Classes C++
Windows Forms C#
Windows Presentation Foun-
dation

C# and XAML

macOS Cocoa Objective-C, Objective-C++,
Swift

Linux Xlib C
Android (embedded UI framework) Java

iOS Cocoa Touch Objective-C, Objective-C++,
Swift

Web (none) HTML, CSS, JavaScript

Table 32: Native GUI libraries and supported languages

and C++ in the same way [30].
Linux is a bit different, because it does not have a single GUI library6.

However, there are many GUI libraries written in C or C++ that can be
used [32].

In Android, things get more complicated. GUI programming is available
in Java only, so there is necessary to use Java Native Interface [33]. JNI is
a technology that enables interoperability between Java and C/C++ using C
interface. Using JNI, the shared code in Shere can be used in Android. The
disadvantage of this technique is that it requires additional code for linking
the languages. However, this code can be automatically generated using tools
as Swig [34] or Djinni [35].

The most problematic platform is web. Only languages usable for creating
GUI is HTML combined with CSS and JavaScript, because these are the only
languages supported in web browsers. Using C/C++ code can be done using
a library that bridges between these languages, for example CppCMS [36] or
Wt [37]. Because the code runs on a server, there can be delays caused by
network layer between the client and the server. Another alternative is to use
C++ in a server only and provide an API allowing use the shared code. A
separate web application would then communicate with the server using the
API. Both approaches increase complexity of the application, but it is still
possible to reuse the shared code.

6In Linux, the graphical user interface is not a part of the operating system. The
graphical user interface found on most Linux desktops is provided by software called the X
Window System, which defines a device independent way of dealing with screens, keyboards
and pointer devices. X Window defines a network protocol for communication, so any
program can use it. There is a C library called Xlib that makes it easier to use this protocol,
so Xlib is kind of the native GUI API. [31]

39

3. Shere development

Based on this analysis, it is possible to used C or C++ for shared code.
Difficulty of the usage with other languages is not equal on every platform,
but it is possible. For the shared code in Shere, I selected C++ because
of these reasons: performance is not critical (so it is not necessary to use
low-level language as C), C++ has more features than C and it allows faster
development.

3.2.3 GUI Architecture candidates

From the two previous sections, the following requirements helped design ap-
propriate application architecture:

• Use hybrid cross-platform approach: there will be a shared codebase
containing the logic and separate implementation of the GUI for each
platform.

• Shared codebase written in C++: in order to remain portable to all
major platforms, the logic will be implemented in a portable way using
C++.

One of the widest architectural pattern used in GUI applications is Model-
View-Controller (MVC) [38]. It separates the data representation, application
logic and the views in order that a change in one of them should have minimal
impact on the others. The wide usage among applications is the reason why
I considered using this pattern for the overall Shere architecture. To figure
out whether the MVC pattern is suitable for Shere, it must be decided which
components will be included in the shared code and which in the platform-
specific code. Including Model only in shared code, it would require custom
controllers for each platforms and thus large part of the application would
be duplicated across platforms. Sharing controllers in every platform is not
reusable, because different platforms use different views and thus needs dif-
ferent controllers. These complications caused that using MVC pattern for
the overal application architecture is not suitable for hybrid cross-platform
application.

As mentioned in Section 3.2.1, the more code is possible to reuse among
platforms, the better is the code maintainability. The best case is that GUI
code only will be separated from the shared codebase. So the second approach
how to design the architecture was to reach the following goal: the shared code
is independent on used native views and controllers. The native GUI is sepa-
rated from the logic and communicates with the shared code in a way that is
not dependent on the used GUI elements, e.g. specific views (as buttons, ta-
bles) and layouts, rather than in a domain-specific way. The following example
illustrates the difference: In a note taking application, when a new note is cre-
ated, a new GUI element is appended into the list of notes in the sidebar. So
when an user clicks o na button new note, the application calls the shared code

40

3.2. Architecture

logic as illustrated in the following pseudocode: sharedCode.createNote().
When the note was successfully created, some code processing the success
should be executed. In the approach dependent on used GUI elements, the
callback sharedCode.onUpdateSidebar would be called and as an argument,
a list of notes would be specified. This callback would be directly related to
the GUI element Sidebar and for example sidebar.updateList(noteList)
would be called. The second (more abstract) approach has the callback called
sharedCode.onNoteCreated which does not tells anything about used GUI
elements. This approach is more flexible, because it allows use different GUI
elements in different platforms (not all platforms now are not forced to con-
tain a sidebar for example). Secondly, it enables coordination with multiple
elements. Returning back to the example: after a note is created, the sidebar
is not the only element that might be updated. Also other GUI element might
be modified, e.g. an empty editor view might be shown to be able to edit the
created note. Here goes the non-trivial bridging: when a new note is created,
a new entry in the sidebar is placed and an empty editor view is shown. The
logic that creates the notification about the note creating is separated from
the logic that adds a new element into the sidebar. This approach is described
as a Presentation-Abstraction-Control (PAC) pattern. [38] In context of PAC,
terms agents and layers are used. An agent is a software component that
can have its own state, functionality and relations to other agents. Using
the create note example once more, there are four agents: sharedCode agent
containing the note manipulation and storage functions, sidebar and editor
view agents and onCreateNoteCoordinator which is the bridging between
the shared code and the views. These agents are hierarchically organized in
layers that the agents have transitive access to agents in higher layers (the
onCreateNoteCoordinator can access the views, but the views do not know
anything about the coordinator). Using PAC in Shere, the lowest-level agent
would contain the shared code and its main task would be to link agents
one layer higher. The agents in non-shared code would be only GUI-related,
e.g. views and bridge-classes that coordinate multiple views. This architec-
ture seems more promising than MVC, because it allows easy decoupling of
different user interfaces and the logic.

There is also a third approach of the architecture. In PAC pattern, data
flow from the top-level agents (native GUI views) through lower levels to the
shared code and vice versa. Usually two or more layers would be required
in the non-shared code (the views and the bridges). During research if these
layers could be reduced, an architecture using Observer [38] pattern and sep-
arate agents was considered: the shared code would be encapsulated in an
observable object. GUI elements as sidebar, editor etc. would be independent
components communicating with the shared code via sending commands and
listening (observing) for changes they are interested in and behave according
to them. The following example illustrates using Observer pattern in Shere:
sharedCode.onNoteCreated.addObserver(sidebar). Inside the sidebar ob-

41

3. Shere development

ject, a method dispatching successful note creation would be implemented.
Using observer and separate GUI elements reduce the coordination layers as
in PAC, because each element handles its own behaviour independently on
others. However, this architecture has also several limitations:

• The independent GUI elements contain state information, for example:
a sidebar with notes organization structure (e.g. tags) contains informa-
tion about actually selected tag. There are situations that are dependent
on a certain state. If a component containing a list of notes wants to load
the list, it has to know, which tag in sidebar is selected and show notes
containing this tag. One solution can be communication between the
sidebar and the note list, but this would introduce dependency between
the components which is not desirable. Another solution can be com-
munication through the shared code. However, similarly as using MVC,
this would introduce dependency to the GUI into the shared code and
thus it limits usage on multiple platforms with different user interface
design.

• The architecture using Observer pattern seems that it reduces bridging
layers between the shared and the native code. However, it would only
split these layers into smaller parts included in each independent GUI
element. Each of them would still require some way of linking with
the shared code: if a new note is created, both the sidebar and the
editor view must have sort of a controller that adds a new entry into the
sidebar, resp. shows the empty editor. It would be the similar amount
of code required.

Considering the limitations, it turned out that they prevent using Observer
pattern from being used in Shere architecture. It would unnecessarily compli-
cate cooperation with multiple GUI elements and the code amount optimiza-
tion would be negligible.

Figure 32 visualises the architecture candidates. As mentioned above, the
architecture using PAC pattern was selected for Shere GUI, because it offers
a good trade-off between the data flow control and the amount of non-shared
code.

3.2.4 Shared Code Architecture

For the shared code architecture, it was only stated that it should contain
as much non-GUI code as possible. It should also provide information nec-
essary for showing GUI, but in an UI-independent way. In order to design
the architecture properly, it is necessary to outline modules which will be re-
quired based on the software requirements. I divided the shared code into
three sections:

42

3.2. Architecture

Shared
code

Platform
specific
GUI code

(a) Observer

notifes
observes,
commands

Observer. . .Observer

Observable

(a) Presentation-Abstraction-Control

. . . bottom-level
agents

Data agent

middle-level
agents. . .

Bridge agent

. . .

top-level agents

View agentView agent

modifies

manipulates
user actions

Controller

View

(a) Model-View-Controller

Model

uses
data
f rom

Figure 32: Architecture candidates

• Actions provide a public interface of the shared code. Actions are meth-
ods that can be called to initiate a task (from both inside and outside
the shared code). They cover tasks related to the process logic of taking
notes, e.g. create a note, find notes containing a specific tag, show all
unfinished tasks etc. Actions are the main application-logic units. They
coordinate functional modules to manage their tasks and call callbacks
or other actions.

• Callbacks enables to run custom code when an certain event occurs, e.g.
a note was created, search results are available and so on. The reason
why I separated the initiation of an action from getting the result is
that the code that calls the action does not have to check errors and the
results explicitly. This helps to hide the logic into the share code, because
the GUI only starts and action and process a result. For example: when
a note is successfully created, onNoteCreated callback is called. When
an error occurs (for example a new file could not be created due to limited
write access), onNewNoteFailed callback is called containing the error
information. If the GUI has set up the error callback, for example a
dialog describing the error is displayed.

• Functional modules contain all non-logic functionalities, for example
storage, parsing and indexing features. The modules are hierarchically
organized in a way that bottom-level module does not have access to
higher-level modules.

Given these three sections, we can built the architecture as follows: the top-
level modules are the Actions and Callbacks. The user lower-level Functional
modules that are also hierarchically layered.

43

3. Shere development

GUI code

Shared code

...

Indexing

...

Sidebar EditorNote list

TagTree
Bridge

Note
Bridge

Actions & Callbacks

ParsingStorage

Markdown
Parser

Figure 33: Shere hourglass architecture

3.2.5 Summary

When the shared code multi-layer architecture is joined with the PAC archi-
tecture for the GUI, the structure corresponds to the hourglass architecture
as shown in Figure 33.

3.3 Development Introduction

After the architecture explanation, the development process and the imple-
mentation details will be described. Firstly, I will describe the development
environment and used tools. Secondly, the Shere Core library will be intro-
duced describing the overall concepts as well as individual modules used in
the Core. After that, macOS application and its GUI components will be de-
scribed. The last sections will contain other development information: testing,
documentation and a discussion of future development.

Since my primary computer is MacBook Pro, I decided that Shere will be
developed for macOS in this thesis. The GUI code is built using the Cocoa
Framework [39]. The shared code is created as a C++ library called Shere
Core (or shortly Core) that will is linked by the GUI application.

The GUI was created using Xcode. It is the default IDE created by Apple.
The Core was created using CMake, an open-source tool for building, testing
and packaging software, and CLion, a C/C++ IDE created by JetBrains [40].

44

3.4. Core Library Fundamentals

Gui

- convertNoteToHtml(text)

Error

- noteNotCreated(...)
- noteNotLoaded(...)
- noteNotSaved(...)
- noteNotDeleted(...)
- reindexFailed()

System

- log(...)
- shutdown()

Tasks

- loadTasks()

Notes

- createNote()
- loadNote(id)
- editNote(id, ...)
- deleteNote(id)
- search(query)
- reindex()

Shere::Core

Figure 34: Shere Core Actions

3.4 Core Library Fundamentals

The first part of the development description is dedicated to the Core library
description. As already described, it is a C++ library that contains note
taking application logic and all functionalities required for working with notes.
Its interface is provided in header files so the library could be easily linked.

There are three fundamental objects provided in the public library inter-
face: Core, NoteInfo and iTagTree interface. Core class encapsulates all the
functionalities using Actions and Callbacks. In runtime, an single instance of
this class is used. NoteInfo is a simple class containing basic info about a
single note (e.g. an identifier of the note, a title, ...). iTagTree is an interface
providing methods for querying about the notes organization data structure
(TagTree).

3.5 Actions

Actions provide a way how to initiate an application-logic task. They are
implemented as public methods inside the Core containing zero or more argu-
ments and returning void value. Actions in Core are divided into five sections
according to the area of usage. Figure 34 lists all the actions and its hierarchy.

45

3. Shere development

Error

- onNoteNotCreated
- onNoteNotLoaded
- onNoteNotSaved
- onNoteNotDeleted
- onReindexFailed

Tasks

- onTasksLoaded

Notes

- onNoteCreated
- onNoteLoaded
- onNoteEdited
- onNoteChanged
- onNoteDeleted
- onSearchResult
- onTagTreeChanged

Shere::Core

Figure 35: Shere Core Callbacks

// Set up c a l l b a c k
core . notes . onNoteCreated = [&] (s t r i n g noteId)
{

std : : cout << ” Created : ” << noteId << std : : endl ;
} ;

// Execute the a c t i o n
core . notes . createNote () ;

Figure 36: Example of Action-Callback usage

3.6 Callbacks

Callbacks represent result values of Actions (or an event that occurs without
the Action invocation). They are implemented in Core as member variables
having std::function type. This implies that only one function can be bound
to as the callback for a specific task. Unlike the Observer patter (which could
be used here - registering multiple functions for the same callback), using a
single function keeps the callback dispatching in a single place and helps to
control data flow and simplifies debugging. In Core, the Callbacks are divided
in the same was as Actions. Figure 35 lists all the callbacks and its hierarchy.

Combining Actions and Callbacks tasks can be performed and the results
can be processed. For example, if an user wants to created a new note, the
following sequence is performed: Shere.notes.createNote() is called. If the
creation was successful, Core.notes.onNoteCreated callback is called. In
case an error occurs during the note creating, Core.error.noteNotCreated
callback is called. This process visualises Figure 37. Note that the initiation
of creating new note is separated from the handling the result. However, this
approach makes relations between the Actions and Callbacks not obvious. To
explain how the Actions and Callbacks are used in code, Figure 36 shows a
code example.

46

3.7. Core Backend

Error dialog displayed Note list updated,
empty editor displayed

"new note" button click

Core.error.onNoteNotCreated(noteId, ...) Core.notes.onNoteCreated(noteId)

Core.notes.createNote()

create note
failed

note successfully
created

Figure 37: Using Actions and Callbacks in Core

Because of the non-explicit relation between Actions and Callbacks, this
pattern is not suitable for situations when an Action have many different
possible results (and thus many different callbacks required). It would make
the Action-Callback processes too complex and hardly readable. In Shere,
simple tasks are designed that many of them are understandable even without
checking the implementation or documentation. They usually have one or two
possible callbacks (success and error).

3.7 Core Backend

Actions and Callbacks are not the only part of the Core class. There also pri-
vate components not accessible from the external code: the functional modules
and the event loop. The functional modules are described in the following sec-
tions. The event loop is a mechanism that dispatches the actions and callbacks:
when an action is initiated from the GUI, it is not processed directly in the
public method in Core, but it is queued and processed in a background thread
separately from the GUI. Also the callbacks are executed in the Core thread.
Executing the logic separately from the GUI does not block the main thread
which is benefitial for user experience in case of long-running tasks. The Core
event loop is implemented around asio library. It is a cross-platform C++

47

3. Shere development

library for network and low-level I/O programming that provides a consistent
asynchronous model [41].

Using asynchronous model in Core corresponds to the overall architecture
since it separates GUI threading and application logic threading. On the
other hand, in order to use the same data in multiple threads, some form
of data synchronization must be implemented to avoid data races. Two main
approaches can be used: locking the data using mutexes or sharing immutable
data copy. In Shere, the second approach is optimal, because one thread in
Shere usually produces the data and the second thread then consumes them
without modification. For example: when a note is loaded, a std::string
instance containing the note text is created. This string is then sent into the
callback onNoteLoaded and no further modified. The background thread does
not need this string anymore. In fact, the background task finished after a
callback is finished, so there is no reference to the string anymore. So this
string is safe to be used in the GUI thread. However, even that, two data
synchronizations are needed: when enqueuing a task into the queue, it can be
done from a GUI thread (e.g. after a button click) and simultaneously, the
background thread can take a task from the queue. So more than one thread
accesses the same data variable and thus a synchronization is required. In
Shere, this is already implemented in asio in io_service class. The second
synchronization is needed on the other side - in the GUI. If a Core callback
needs to update the interface, is is usually not possible to do it from a back-
ground thread. In macOS Cococa GUI framework, an error is shown in the
debugger when trying to modify the GUI from background thread. To be able
to modify views from callbacks, we have to ensure that the modifying code
will be executed in the main thread. This can be done in a similar way as
in asio, because user interfaces use the same queue concept (usually called
event loop). To sum it up, data synchronization between threads in Shere
are constructed using two concurrent queues containing runnable tasks with
immutable data.

3.8 Storage

Notes created in Shere are stored on disk. As stated in the functional require-
ments, this storage must be published so other applications could be built
using the same note storage. In this section, the note storage specification
will be defined. This specification is then implemented in Shere in the Storage
module.

3.8.1 Note Storage specification

This section contains the specification of the notes are stored on a disk. It is
built around plain files and directories so any external application could easily
work with notes without additional dependencies except filesystem access. The

48

3.8. Storage

structure is inspired by the Git objects structure [42]. The main structure in
the specification is a note. Notes have two attributes:

• Identifier is a 20 byte long sequence represented as a text string in
Base64 encoding. It uniquely identifies the note. It is created as a
SHA-1 hash of the time the note was created.

• Content is the text that users need to store. It is formatted using
the Shere Markdown syntax (described in Section 3.9). Note content
is stored directly in a plain text file.

All notes are stored in a user-specified directory. This directory contains a
subdirectory notes. To avoid very large number of files in this directory, the
following directory structure is defined: there are three levels of subdirectories
created from the note identifiers. First two characters define the name of the
first subdirectory and the next two characters define the name of the second
subdirectory. The rest of the characters define the name of the third subdi-
rectory. In the third subdirectory, file _note.md containing the text note is
placed. In future, also file attachments and images will be placed in the folder
so all the files belonging to one note are in the same directory. Figure 38 shows
where a note with identifier a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
is stored using the specification.

Note that the folder structure is not the same as the user-defined note
organization structure. In applications that use tree-organization this can be
easily done, because the notes organization structure can always correspond
to the notes storage structure. When using nested-tag organization, this is
not possible, because one note can belong to multiple tags. It would have
to be duplicated or soft-links would have to be used. The first solution is
data-inefficient and increases complexity when for example deleting a note.
The second solution introduces dependency on filesystem types that support
soft-links.

One of the advantages of using files and directories is that it is possible to
use data synchronization software independent on the note taking applications.
When the storage directory is synchronized via generic file synchronization
software (as Dropbox, Google Drive, etc.), the notes will be available across
the synchronized devices.

In future, including images and files into notes is planned, so this NSS
would have to be extended to enable attachments retrieval and storage. An
idea is to append the attachment filename after the note identifier separated by
a slash: a94a8fe5ccb19ba61c4c0873d391e987982fbbd3/dog.jpg. However,
using note attachments was not implemented yet and thus will not be discussed
in this thesis.

49

3. Shere development

notes
a9...first subdirectory level

4a second subdirectory level
8fe5ccb19ba61c4c0873d391e987982fbbd3

note.md Note content
attachment.pdf File attachment
dog.jpg........................Image included in the note

Figure 38: Example of a note stored in the NSS structure

3.8.2 Storage classes

Note Storage Specification in Shere is implemented in a Storage module. The
note storage can be simply viewed as a key-value store. The key is the note
identifier and the value is the note text. Based on this observation, iStorage
interface containing all methods required for note storage manipulation was
created. The interface is independent on a real storage, which allows to cre-
ate multiple implementations using different storage. In Shere, three classes
implementing the iStorage interface was created:

• RamStorage: it was the first implementation of the interface. All the
data are stored in RAM only. This causes data lost after the application
is terminated so this class could be used for development purpose only.
The real implementation was very easy: simply std::map<string,string>
was wrapped around the iStorage interface.

• Storage: this class implements filesystem access using boost::filesystem
library. Each modification is immediately saved into the filesystem.

• CachedStorage: to avoid writing the entire note on the disk after a single
character changes, a cached variant of the storage was created. It both
previous implementations. If a note is modified, it is not immediately
written on a disk, but it is temporarily keeped in RAM. After a certain
period of time, all modified notes are saved. This reduces writing and
optimizes performance of recently modified notes. Saving notes can be
also forcen to happen immediately, which is required when for example
the application terminates and there are still unsaved notes. Cached
storage and the timing was implemented using the asio library.

Figure 39 shows the iStorage interface and its hierarchy. Note that
CachedStorage does not inherits from Storage, but it includes its instance,
because it reuses filesystem functions and extends them with a caching layer.

50

3.9. Markdown

Boost
filesystem

asio
library

CachedStorageStorageRamStorage

iStorage

- createNote()
- setNote(noteId, text)
- getNote(noteId)
- removeNote(noteId)
- listNotes()

Figure 39: Storage class hierarchy

3.9 Markdown

There are several requirements for Shere related to markdown. The applica-
tion has to implement markdown rendering using seamless realtime preview
technique, the syntax have to support to-do items and tags and the to-do
items can be aggregatable. These requirements imply that the implementa-
tion of markdown functionalities is one of the fundamental parts of the Shere
development. It is also one of the biggest difficulties. Many parts have to
be designed: which components will be used, where they will be placed in
code (GUI or Core) which libraries will be used and how the tags and to-
do items will be extracted from the notes (for notes organization and tasks
aggregation). Using seamless realtime preview also increases complexity of
the implementation, because the markdown special characters must be dy-
namically hidden and displayed based on the cursor position. To understand
the decisions made in Shere development, the analysis foregoing to the used
approach has to be described.

3.9.1 Architecture analysis

During the research about markdown parsing and rendering, it turned out
that several aspects affect the design of the markdown functionalities. The
first thing I analysed was how markdown notes are displayed in the existing ap-
plications; how the approaches differ in cross-platform and non cross-platform

51

3. Shere development

applications and which technologies and libraries are used. It turned out that
all applications mentioned in Chapter 2 that support markdown (Evernote,
Bear, Typora and Dropbox Paper) render the note content using HTML. It
is not surprising in Typora, because it is written using web technologies only.
However, even that Evernote and Bear and mobile versions of Dropbox Paper
are native applications, they contain an embedded web view that renders the
note content using HTML, JavaScript and CSS. There also exist libraries for
converting markdown text into platform-specific views, for example: Cocoa-
Markdown [43] is a library for markdown parsing and rendering for iOS and
macOS. It transforms a markdown string into NSAttributedString, which
is a structure for rich text in Apple operating systems. However, the advan-
tage of using web views is obvious: HTML rendering allows cross-platform
text styling, allows using existing web frameworks and libraries and (unlike
rich-text only approaches as NSAttributedString) any content as in a classical
web pages can be included in the note: custom-designed elements, images,
videos, forms,... Because of the flexibility and the fact that embedded web
views can be used in all platforms7, writing an editor view and using in all
platforms in their respective web views seems to be the efficient approach how
to avoid editor code duplicates and still be able to adapt the UI for the each
platforms separately. In fact, the whole application can be written using web
technologies only. However, it would complicate using native design guidelines
so the optimal trade-off is to create editor as a web view component (because
the editor may look the same on all platforms) and the rest of the GUI using
native frameworks.

The second aspect that needs to be considered relates to code placement
of the component that converts the plaintext into HTML. One approach is
to use JavaScript parser inside the web view. The editor view would receive
a plain-text string and it would convert it into HTML. The second approach
is to include the parsing code inside the Core. The editor component would
receive a string containing the note converted into HTML. Using JavaScript
library inside the web view seems as an efficient solution, because and there
are many extendable javascript parsing libraries and the same JavaScript code
could be used in every platform. [44]

The third aspect of markdown usage analyses how the text would be edited.
This supports using JavaScript parser, because the rendering, parsing and
editing logic could be integrated inside the editor view. It would allow create
the editor as a standalone web component with simple interface that receives
plain-text as an input and provides plain-text representing the modified note.

Without to-do and tagging requirements, using JavaScript for all markdown-
related features is ideal. However, the application has to be able to index to-do
items and tags. Both of this elements are a part of the Shere markdown syn-

7In macOS, iOS and Linux, WKWebView from WebKit is available; Microsoft Windows
provides MSHTMLWebView and Android offers a WebView class

52

3.9. Markdown

tax. For indexing purposes, the application has to be able to extract tags
and to-do items. A simple solution seems to be extending the used JavaScript
markdown parser to include to-do and tagging tokens. A disadvantage of
this solution is that the Core would be dependent on the JavaScript parser
which would break the entire architecture. Additionally, these features relate
to application logic. These facts cause that the markdown parsing has to be
implemented in the Core.

Considering the aspects from the previous paragraphs, the following con-
cept is created: the editor component is a web component that receives a
HTML string (converted markdown note) and implements the realtime seam-
less preview technique. The HTML string is created in Core by the markdown
parsing and conversion module. This module can be also used for extracting
tags and to-do items for indexing purposes. The last thing that needs to be
designed is the Core module responsible for markdown functions. This mod-
ule is responsible for conversion a markdown-formatted string to HTML and
extraction of tags and to-do items from the string.

The last thing that needs to be prepared before the actual implementation
is to select a markdown parsing library and to design the extension of the
parser. Because new elements are required, the library has to allow extending
markdown syntax with new tokens. Even there are many markdown parsing
libraries [44], few of them is written in C or C++ and none of them is written in
a modular way to easily support custom extensions (instead of some libraries
written in JavaScript). After this research I decided that I will implement
markdown parser on my own.

3.9.2 Parsing-expression Grammar

During analysis which algorithm is suitable for parsing markdown, the initial
idea was to specify context-free markdown grammar and use an existing parser
to parse the text using this grammar. [45] However, it turned out that the
output using CFG parser would be ambiguous. For example: during parsing
this text it would be not possible to decide in which order should
bold and italic tokens be parsed. This is the reason why many parsers use
an modified alternative to context-free grammars called parsing-expression
grammar. In computer science, a parsing expression grammar, is a type of
analytic formal grammar, i.e. it describes a formal language in terms of a set of
rules for recognizing strings in the language. The formalism was introduced by
Bryan Ford in 2004 [46] and is closely related to the family of top-down parsing
languages introduced in the early 1970s. Syntactically, PEGs also look similar
to context-free grammars (CFGs), but they have a different interpretation: the
choice operator selects the first match in PEG, while it is ambiguous in CFG.
This is closer to how string recognition tends to be done in practice, e.g. by a
recursive descent parser. Formally, a parsing expression grammar consists of:

53

3. Shere development

• A finite set N of nonterminal symbols.

• A finite set Σ of terminal symbols that is disjoint from N.

• A finite set P of parsing rules.

• An expression eS termed the starting expression.

Each parsing rule in P has the form A→ e, where A is a nonterminal symbol
and e is a parsing expression. A parsing expression is a hierarchical expression
similar to a regular expression, which is constructed in the following fashion:

1. An atomic parsing expression consists of:

• any terminal symbol,
• any nonterminal symbol, or
• the empty string ε.

2. The Given any existing parsing expressions e, e1, and e2, a new parsing
expression can be constructed using the following operators:

• Sequence: e1e2

• Ordered choice: e1/e2

• Zero-or-more: e∗
• One-or-more: e+
• Optional: e?
• And-predicate: &e

• Not-predicate: !e

An example of constructing rules for markdown heading look like this:

L→ ’##?#?’ heading levels 1-3
S → ’ ’ single space
N → ’\n’ new line
A→ (!N)∗ sequence of any characters except new line
H → LSAN complete heading structure

The fundamental difference between context-free grammars and parsing
expression grammars is that the PEG’s choice operator is ordered. If the first
alternative succeeds, the second alternative is ignored. Thus ordered choice is
not commutative, unlike unordered choice as in context-free grammars. This
makes PEG suitable for markdown parsing. Each token will be represented
as a grammar rule and the order of the rules would solve ambiguities.

54

3.9. Markdown

3.9.3 Parser architecture

The basic idea of markdown parsing is to generate an abstract syntax tree
using the markdown PEG and convert the syntax tree to HTML. In Shere,
markdown parsing is implemented in Parser module. This module contains
four types of classes:

• Token: this classes represent the markdown elements: bold, heading,
link, etc. Each specific token has its own attributes: for example heading
contains the information about the heading level and the text, the link
contains the text and the URL.

• Tokenizer : the purpose of tokenizers is to found its respective token in
the provided text and generate a Token instance. This classes implement
resolution of the expressions from the grammar.

• Parser : it is a wrapper that contains a list of tokenizers and implements
the generic parsing algorithm: for each tokenizer a part of the text is
provided. If the tokenizer finds a token, the loop is repeated starting
from the first tokenizer. The list of tokenizers is the fundamental part
of the PEG implementation, because the order of tokenizers in the list
implies the priorities of tokenizers and thus corresponds to the PEG rule
priorities.

• Convertor : after the abstract syntax tree is created, convertors are used
for traversing the tree and generating HTML (or other data) from it.

• Parsing context: It contains all the information for tokenizers during
parsing: the original text, the abstract syntax tree and a cursor - a
number specifying the position of the first unparsed character in text.

Using these class types, we can design the complete markdown parsing
module architecture and create specific classes. Firstly, an abstract code
skeleton can be created even without specific tokens and tokenizers using
class GenericParser and abstract class aToken and interface iTokenizer.
GenericParser implements the parsing loop. This loop is the fundamental
part of markdown parsing. Figure 310 shows the code snippet of the loop.

The design of markdown parsing in Shere is very flexible. Having the
abstract algorithm implemented, specific markdown tokens can be developed
independetly using the following procedure:

1. aToken subclass must be created, e.g.: BoldToken, TagToken, ...

2. A tokenizer implementing iTokenizer interface must be implemented
(for example TagTokenizer, ...). It has to properly find and create its
token.

3. The tokenizer has to be added into tokenizer lists in the module.

55

3. Shere development

shared ptr <aToken> Gener icParser : : pa r s eSubs t r ing (
const s t r i n g & text ,
unsigned long s t a r t ,
unsigned long l en)

{
ParseContext ctx (t ex t) ;
ctx . cu r so r = s t a r t ;
auto cursorEnd = s t a r t + len ;

while (true)
{

for (const auto & t o k e n i z e r : t o k e n i z e r s)
{

i f (ctx . cu r so r >= cursorEnd)
return ctx . f i r s tToken () ;

bool tokenFound = token i ze r−>parse (ctx) ;
// Token i s a l r e a d y appended i n t o in AST
// (r e s p o n s i b i l i t y o f t o k e n i z e r s)

i f (tokenFound) break ;
}

}
}

Figure 310: Generic parsing loop

Note that the last step relates to more than one tokenizer lists. It has not
been not mentioned yet, but it relates to the specific token types. There are
three basic types of tokens implemented in Shere: inline, container and block
tokens. Container tokens represent a text separated by a new line character.
It can be a text paragramph a list entry and so on. Container tokens contains
subtokens - inline tokens, for example italic text, a link or a plain text. Block
tokens can span more than one line (e.g. code block). In Shere, there are
planned to be implemented in future. Container tokenizers have their own to-
kenizer list that contains inline tokenizers. If a new inline tokenizer is created,
it has to be appended in all container tokenizers that should recognize this
token. Using this procedure, markdown tokens in table 33 were implemented.

Using tokens, tokenizers and the parsing loop, an abstract syntax tree
can be constructed. To be able to convert the syntax tree to HTML, extract
tags and to-do tokens from it, convertor classes has to be implemented. A
convertor is a class that traverses the syntax tree and for each token a method

56

3.9. Markdown

Token Syntax Additional info
ItalicToken *italic text* Standard italic text
BoldToken **bold text** Standard bold text
HeadingToken ## heading There can be 1-3 pound

characters indicating
the heading level

InlineCodeToken ‘inline code‘ The code inside
the backticks uses
monospaced font

UnorderedListToken * Unordered list Standard unordered list
TaskToken - todo item Unfinished todo item.

If the task is finished,
plus sign is used instead
of minus sign.

TagToken #tag/subtag Tag path. Each sub-tag
is divided by a slash.

LinkToken [link text](link URL) Link to a note or a web
page.

TextToken plain text Unformatted text
ParagraphToken (none) Container token for

text.

Table 33: Markdown tokens implemented in Shere

based on the token type is invoked which imply that the visitor pattern [38] is
a suitable approach to convertors design. The most simple convertor in Shere
is aConvertor which provides default (empty) visit methods for every token.
In order to create a custom convertor, aConvertor class must be subclassed.
Using method overriding, custom methods for tokens can be created. In Shere,
four convertors were implemented:

• HtmlConvertor converts the abstract syntax tree to HTML code suitable
for rendering in the web view.

• TagExtractor ignores every token type except TagToken. After travers-
ing the whole syntax tree, a set of tags is returned.

• TaskExtractor ignores every token type except TaskToken. It returns
a list of tasks.

• WordExtractor returns a set of words that are in the note text. A word
is recognized as a sequence of characters separated by a space. The
purpose of this class is further described in Section 3.11.

57

3. Shere development

The whole markdown parsing functionality is wrapped in Parser class.
The main method for parsing is shared ptr<aToken> parseNote(const string
& text);. It returns a pointer to the root of the abstract syntax tree (the
first token). In order convert the syntax tree to HTML, method string
convert(shared ptr<aToken> firstToken); from class HtmlConvertor can
be used.

3.10 Note Editing

According to the architecture specified in Section 3.9.1, the web component
responsible for the seamless realtime markdown preview receives already con-
verted note in HTML. Its responsibility is to show the note content in HTML
and to implement special characters displaying and hiding based on the cur-
sor position (the seamless realtime preview). Because of the fact that the web
view does not work with plain-text note content, it is not possible to edit the
text in the web component only. Another fact is that when an user edits the
text, the formatting has to be reparsed, because the changed text can have
different meaning (for example deleting the space from the # heading should
create a tag token #heading. This forces note editing features to be inside
the Core. Since the note content is in plain-text, the only data required for
successful editing is the selection indices and the edit string. The selection
indices are two numbers describing the range selected by the GUI caret. The
plain-text selection can be computed from the HTML converted text, because
we know, how many characters the elements have in plain-text. The computa-
tion of the selection indices is more explained in Section 3.14. The edit string
contains the information about the text change that the user performed. Gen-
erally, there are two main types of change: insertion or removal. The insertion
is represented by the string to be inserted. If the users wants to perform a
removal, the edit string contains backspace or delete character only (in ASCII,
characters with code 8 or 127).

With note editing features, the complete markdown editing functionality
can be achieved. When an editing occurs, Core.notes.editNote action is
called with all the necessary information for editing (note identifier, selec-
tion indices and the edit string), the note is modified and the new content is
parsed and rendered back in the web view. The overall editing process and
all markdown-related components are illustrated in Figure 311.

3.11 Indexing

Indexing is a technique that reduces search time by extracting metadata from
the data and storing them in data structures optimized for fast retrieval. It is
usually used for large datasets where the scanning of the entire dataset takes
a long time. In Shere, there are three types of data that have to be indexed:

58

3.11. Indexing

Rendering the
new HTML
content

Core GUI

Edit the plain-text

Parser Core
Actions

Web View

Core.notes.onNoteEdited
converted HTML string

HTML

parseNoteToHtml(modifiedNote)

Core.notes.editNote
noteId: ...

selectionStart: 0
selectionEnd: 3

editString: "hi bro"

Figure 311: Markdown editing process

to-do items, tags and words. To-do items indexing allows to show all tasks
from the entire collection of notes without repeated loading of all these notes.
After the initial scan, the tasks are keeped in RAM and quickly accessible.
For each note with tasks, a list of its tasks is stored in RAM. Indexing tags
is required for fast navigation through notes organization using nested tags.
The index is stored in the opposite way as in the note storage: for each tag,
its notes and sub-tags are stored in RAM. Indexing words is used for full-text
searching, as described in Section 3.12.

The entry to the indexing features in Shere is class NoteIndex. It pro-
vides methods for reindexing notes, removing a note from index and getting
indexed data. NoteIndex class contains three classes: TaskIndex, TagIndex
and FulltextIndex. They are responsible for indexing their respective meta-
data from notes. The indexing in these classes uses convertors for extracting
the data from notes as described in Section 3.9.3.

All indexing classes are built around the NoteInfo class. It is a simple data
structure dat encapsulates basic information about a note. For the memory
efficiency, there is always a single NoteInfo instance for each note. These
instances are shared among the indices. Each index then contains a form of a
key-value data structure where the values are NoteInfo instances. TagIndex
contain a TagTree structure. This tree structure keeps for each node its name
(name of the tag), list of NoteInfo instances (notes that belong to the tag)
and a set of sub-tags. TaskIndex contains a simple key-value map that for
each note identifier (with at least one task) stores a list of its tasks. And the
FulltextIndex contains a prefix tree [1] that for each word contains a set of
notes that contain this word. The structure of the indexing module in Shere

59

3. Shere development

NoteInfo

- note id
- t i t le
- tags

FulltextIndex

word -> note ids

TaskIndex

note id -> tasks

TagIndex

tag name -> subtags, notes

NoteIndex

update(noteId, ast)
remove(noteId)
findNoteById(noteId)
notesWithTodo()
notesByTag(tagPath)
notesWithoutTag()
notesByWords(words)
getTagTree()

Figure 312: Simplified structure of indexing module

is visualised in Figure 312.

3.12 Search

The last module implemented in the Core is the search module. It filters
the indexed data by the search query. In a simple full-text search engine,
the search query contains only words separated by space. Using an advanced
search engine, special search tokens can be used for more precise query specifi-
cation. For example, as descripted in Section 2.3.3, several special tokens can
be used in Bear: @todo, @image, etc. To implement this feature, splitting the
search query by space is not enough, the query needs to be parsed to recognize
the special tokens. In Shere, I decided to create similar search feature as in
Bear. In this thesis only three special tokens was created:

• @todo: search only notes that have at least one unfinished to-do item.

• @untagged: search only notes without tags

• #tag/subtag: search only notes containing this tag (or its sub-tags))

The searching process then has to have to phases: firstly, the search query
must be parsed to recognize the words and special tokens. Secondly, the
indexed data must be filtered and to get the search result.

60

3.12. Search

struct Shere : : SearchQuery
{

bool todo ;
bool untagged ;
std : : vector<std : : s t r i ng > tags ;
s td : : vector<std : : s t r i ng > words ;
std : : vector<std : : s t r i ng > phrases ;

} ;

Figure 313: Data structure for parsed search query

Since the generic parsing code is already written, it can be reused to parse
the search query. The extension procedure (as described in Section 3.9.3)
can be used. New aToken subclasses WordQueryToken, TodoQueryToken and
UntaggedQueryToken were created as well as their tokenizers. SearchEngine
class was constructed, which contains a GenericParser instance with the
search tokenizers to be able to parse search query. It also contains a reference
to the NoteIndex instance to have access to the indexed data.

After the search query is parsed, the notes are filtered to retrieve only notes
that fits into the query parameters. For this purpose, the search query has to
be transformed into a data structure more suitable for data filtering than an
abstract syntax tree. Using the visitor pattern again, the abstract syntax tree
of the query is traversed and a SearchQuery instance is created. SearchQuery
is a simple object that holds all the information about the searching, as de-
scribed in Figure 313.

Using the prepared query information, the indexed data can be filtered.
For each indexed NoteInfo structure, comparing the query parameters with
the indexed data decides if the note belongs to the search result set. Using
this algorithm a set of successful NoteInfo instances is created as a search
result.

Note that this algorithm scans each indexed NoteInfo. For many cases this
would not be necessary, for example: if there is a @todo token part of the query
string, we are interested only in notes with to-do items. The starting set could
be then only to-do notes. If the number of all notes in the storage is orders of
magnitude bigger than the number of notes with unfinished to-do items, this
optimization can speed up the searching. However, this optimization was not
implemented yet, but is is planned in future, as mentioned in Section 3.19.

Search feature is accessible from the Core.notes.search Action. It re-
ceives a search query string. The search result is provided as a callback
Core.notes.onSearchResult containing a set of found notes. The overall
architecture of the search module is shown in Figure 314.

61

3. Shere development

TodoQueryTokenizerWordQueryTokenizer

UntaggedQueryTokenizerTagTokenizer

GenericParser SearchQuery

NoteIndex

SearchEngine

Figure 314: Structure of search module

ShereApp

Editor

NoteList

Sidebar

Window

UserInterface

MainMenu

TaskBridge

NoteBridge

Core
TagBridge

Figure 315: Key classes in GUI application

3.13 MacOS Application Architecture

Next part of the development is to create the GUI application using the Core
library. In this thesis, I decided to create an application for macOS using its
GUI framework called Cocoa. It supports Swift and Objective-C languages.
The language used for writing the GUI code was chosen Objective-C++, be-
cause it allows interchangeability between C, C++ and Objective-C and thus
makes the easiest to link the Core with the GUI.

The key classes in the GUI are depicted in Figure 315. It is clearly visible
that the bridge classes connect the Core with the user interface. They are
the only classes that implement the logic related to both Core and the user
interface. All classes contained in UserInterface class are not dependent
on Core and. They only contains logic for showing provided data to the user.
Using this architecture then allowed me to create highly modular code without
complex dependencies.

In the following sections, the fundamental components of the GUI are
described. For each component, its responsibilities are defined as well as
input and output interface. The user interface is designed as a single-window

62

3.14. Editor View

Figure 316: Shere window

application. The window containing all the GUI elements is shown in Figure
316.

3.14 Editor View

The most important graphical component is the note editor. Editor view
implements the seamless realtime preview of markdown text. Despite of the
name, it can not edit the markdown text directly, but it provides edit-events
to the Core. As previously described in Section 3.9.1, the GUI editor view
implements read-only access to the markdown text converted to HTML. In
the following section, these two functionalities are described: seamless realtime
preview and note editing.

3.14.1 Seamless realtime preview

Seamless realtime preview hides all markdown special characters (as asterisks
around a bold text, brackets around links and so on) and shows only special
characters around the actual caret position. Showing plain-text markdown
around the caret allows to edit notes with the pure markdown feeling while

63

3. Shere development

the rest of the note keeps easy to read, because the special characters are
hidden.

Showing certain parts of the markdown text formatted in HTML requires
that the editor can decide if the HTML element represents special characters
or a normal text. If the HTML would be used for syntax highlighting feature
only, using simple HTML tags would be enough. For example markdown text
Heading\n**hello** would be converted to

<h1># Heading</h1>
<p>

∗∗h e l l o ∗∗
</p>

and so on. However, for seamless preview, this approach is not enough. The
editor does not recognize the asterisks as special characters, they are only
a part of the bold text. More complex HTML structure needs to be de-
signed in order to be able to distinguish special characters. For this purpose,
HtmlConvertor class in Core needs to be modified: instead of wrapping the
whole token into a single HTML element, the token has to be divided into
separate elements based on their type - special or normal. The example has
to be converted into more complex structure:

<h1>
#
Heading

</h1>
<p>

∗∗
 he l l o
∗∗

</p>

Using separate classes for special and normal character allowed to pro-
gramatically hide all special characters. In the example, all elements with
class bold-asterisk can be treated as special characters. However, during
development it turned out that many tokens share the similar functionality
of showing and hiding the special tokens. It is not efficient to explicitly enu-
merate which classes should be hidable. To generalize this attribute of an
element, class hidable was created. The editor was implemented that each
HTML element having this class would be hidden if the caret is not near it.
It allowed to implement the hiding feature independently on specific tokens.
Using the example again, the converted code has to be modified:

<h1>
#

64

3.14. Editor View

Heading
</h1>
<p>

∗∗
 he l l o
∗∗

</p>

The second part of the seamless preview functionality is the caret han-
dling. The first thing needed is to enable caret functionality in HTML,
because at default, there is no caret in HTML documents. To enable it,
contenteditable="true" attribute has to be added to the top-level HTML
element. The next part of the caret handling is plain-markdown position com-
putation. Because is note possible to get the caret offset from the top HTML
element (window.getSelection() returns the selected node the plain-text
offset only), the markdown caret offset has to be computed manually. The
other problem is that some HTML elements have different number of char-
acters that the same elements in markdown. For example, a task prefix in
markdown is composed from the minus characters and a space. In HTML,
the task prefix is converted into a checkbox spanning one character. To be able
to determine the number of characters in plain-markdown in a general way in-
dependently on specific markdown elements, additional attribute data-width
can be added to HTML elements. Using this HTML structure, the compu-
tation is able to compute the plain-markdown caret position based on the
HTML-markdown caret position. The caret computation algorithm traverses
the DOM tree backwards starting from the selected node and increases the
offset with the length of the previous nodes. The algorithm is illustrated in
Figure 317.

However, contenteditable attribute enables direct editating of the HTML
content which is not desirable in Shere. To disable it, keydown events had to
be prevented using JavaScript. Using these algorithms and workaround it was
possible to implement seamless rendering with caret position mapping to plain
markdown.

Having the realtime preview implemented, it is possible to compare it with
syntax highlighting technique. The same markdown text was used in Shere
with both seamless preview and syntax highlighting (hiding special characters
was deactivated). In Figure 318, both approaches are shown. It is clearly
visible, that the realtime preview is more readable and non-disturbing.

3.14.2 Note editing

The second part of the editor functionality is sending edit events. When an
user wants to change a note, for example by removing the character before

65

3. Shere development

Selection start: 13
Selection end: 13

+ 2

2

+ 9

"he|llo""**"

.bold-text.bold-asterisk

b

ph 1

.editor

(c) Caret index computation

caret

9

2 7

8

8

2 24

"**""hello""**"

"Heading"

Heading
h|ello

.bold-text .bold-asterisk.bold-asterisk

b

p

.heading-text.heading-prefix

h 1

.editor

(b) HTML structure (DOM) with lengths

(a) Plain markdown

"# "

Figure 317: Caret handling

66

3.14. Editor View

(a) Syntax highlighting only (b) Realtime seamless preview

Figure 318: Comparison between different rendering techniques

the caret, the backspace click is detected and all information required for the
editating is sent to the Core. As introduced in Section 3.10, there are three
information required for the note editating:

• Note identifier

• Selection index (or indices, if the selection spans over multiple charac-
ters)

• Edit string

Note identifier is a string that is set when the note content is loaded. The
selection indices can be obtained using the traversing algorithm described in
previous section. The last piece of the required data is the editing string. This
string is created when the user clicks a key on the keyboard or wants to cut
or paste a selected text. This actions are in web view handled via JavaScript
events keydown, paste and cut. The code that prevents these events to edit
the HTML content directly (as mentioned in the previous section) has to be
extended to catch the keys and the content to be pasted or cut. When such
an event occurs, all the pieces of required data are gathered and sent to Core
as already explained in Figure 311.

3.14.3 Web view in macOS

The last important thing related to note editing that needs to be described
is the approach, how the web view communicates with the Core. Initial

67

3. Shere development

Figure 319: Shere sidebar

idea was to bridge the components using WebSockets, because both of the
languages supports it and it would be cross-platform. During studying Co-
coa framework and WebKit functionalities in macOS I found out, that the
web view in macOS (WKWebView class) supports direct communication be-
tween JavaScript code in the web view and Objective-C code. It is easier
than using WebSocket, only single setting up is required in Objective-C using
addScriptMessageHandler method to enable calling Objective-C code from
JavaScript. The second way, calling JavaScript code from Objective-C can be
done using evaluateJavaScript function in WKWebView.

A disadvantage of using native communication abilities instead of cross-
platform WebSocket is that it has to be implemented separately for each
platform. However, because the WebSocket implementation would require
additional WebSocket library and difficult connection handling, more efficient
solution seemed to use separate (but very easy to implement) platform-specific
methods.

3.15 Sidebar

Other GUI components complement the editor and provide functionalities
with tag tree. As shown in Figure 316, other components in Shere window are
the sidebar and the note list. The sidebar has three parts: search field, tree
view showing the tag tree and buttons on the bottom. More detailed view of
the sidebar is shown in Figure 319.

The tag tree structure is shown using NSOutlineView class which is the
optimal choice for showing hierarchical data. The bottom part of the sidebar
contains two buttons: the first allows to show list of notes that have no tag.
The second button shows the aggregated tasks from all notes.

68

3.16. Note list

Figure 320: Sidebar and note list

3.16 Note list

The third main GUI component is the note list. It shows notes containing
the tag selected in the sidebar or the results based on the search query. The
list is implemented using Cocoa’s NSTableView. Above the table view, an
new note button is placed. In the current implementation, when a new note
is created, the content is empty. In future, creating note with the same tag
as the currently selected tag is planned. The note list is shown in detail in
Figure 320.

3.17 Testing and Documentation

This section describes supporting parts of the development process: testing
and documentation. In this thesis, these parts are described after the imple-
mentation. However, both of them was done concurrently with the implemen-
tation.

3.17.1 Testing

Automated testing is the fundamental activity in Shere, because many Core
modules was developed before they were used in GUI, so without unit test it
would not be easily possible to verify the proper functionality. Tests provide
check the basic component usage and corner cases.

For Core testing, Catch2 unit testing library was used. [47] Its main advan-
tages are easy integration (single header file only), easy syntax and integration
with CLion. The code 322 shows an example of testing the indexing function-
ality. During the development, hundreds of assertions were created which
simplified debugging in many cases.

Another advantage of using Catch2 is the integration with CLion IDE. It
is easy to run the tests using custom target configurations. A big advantage
is to set up temporary filters to avoid running all the test during development
a single component. The integration is illustrated in Figure 321.

69

3. Shere development

Figure 321: Catch2 integrated into CLion

TEST CASE(”Note index ing ” , ” [index] ”)
{

NoteIndex index ;
Parser par s e r ;

auto ast1 = par se r . parseNote (”Some t i t l e \nHi bro ”) ;
auto ast2 = par se r . parseNote (”Other\note ”) ;
index . update (” note1 ” , ast1 , ”Some t i t l e ”) ;
index . update (” note2 ” , ast2 , ”Other ”) ;

SECTION(” Ret r i eve ”)
{

auto indexEntry = index . f indByNoteId (” note1 ”) ;
REQUIRE(indexEntry != n u l l p t r) ;
REQUIRE(indexEntry−>noteId == ” note1 ”) ;
REQUIRE(indexEntry−>t i t l e == ”Some t i t l e ”) ;

}
}

Figure 322: Unit test example using Catch2

70

3.18. Evaluation criteria

3.17.2 Documentation

Documentation is an integral part of the software product. It is a set of texts
and other data that are relevant to the whole project development. In Shere,
the most important parts of the documentation are the requirements, infor-
mation diagrams of the architecture and individual components and source
code documentation. In addition to this, compilation and launch instructions
are also part of the documentation.

The requirements are described in Section 3.1. It contains description of
the fundamental functionalities.

Source code comments improve the understandability of the code for de-
velopers. In definition of methods and interfaces, it explains the purpose of
their usage and helps, for example, to understand algorithms or complex parts
of code.

In addition to the text description, it is also important to illustrate the
relationships between the components and their cooperation. A properly de-
signed diagram can help to understand the code better than a large amount
of text. All the diagrams in the this thesis are thus part of the project docu-
mentation.

3.18 Evaluation criteria

To be able to decide if Shere has some benefits, the evaluation criteria from
previous chapter can be used. In this section, these criteria are used to evaluate
Shere. It is necessary to mention, that most of the existing applications has
many developers and it is not in the scope of this thesis to implement all
desired features. However, many ideas are planned in future development.

3.18.1 Note Workflows

For now, Shere offers creative workflow that is limited to text format only
and links to other notes. Advanced features as diagrams or drawing are not
supported, but it is possible to extend the application to support them.

To support data workflow, links to notes and webpages are implemented.
Images and files are not supported in GUI, but the note storage specification
is prepared for images and file attachment extension.

Agenda workflow is supported with to-do item feature. To-do items can
appear anywhere in note contents. Tasks can be aggregated and displayed all
from the whole note repository. An important future extension is to allow set
a deadline to a task and task-filtering features.

Sharing workflow offers the same capabilities as plain files sharing: using
a dedicated file sharing software. Other options as note exporting to various
formats as are planned.

71

3. Shere development

3.18.2 Notes Organization

Notes in Shere are organized using nested tags allowing both hierarchical and
non-hierarchical ways of organization in a simple way. Notes are appended
into a tag by writing the tag into the note content.

3.18.3 Search

In order to support search, full-text search engine is implemented. In addition
to filtering by words, special search tokens are available allowing filter for
example only notes with unfinished tasks or notes with specified tag.

3.18.4 User Interface

User interface of Shere uses native GUI library for macOS. It is minimalist
and shows only the most necessary features. It allows non-distracting both
writing and reading.

3.18.5 Markdown

Markdown is the only way how to format text, so it is well supported. Shere
uses custom syntax inspired by Polar syntax from Bear. For rendering the
text, realtime seamless preview technique is used, so the text is both easy to
read and easy to write. In future, more markdown tokens are planned to be
implemented.

3.18.6 Notes Storage

Notes in Shere are stored using plain text files and directories. The directory
structure is specified and published as a part of this thesis which allows the
storage to be used by other applications.

3.18.7 Supported Platforms

For now, only macOS is supported. However, the application logic is written as
cross-platform C++ library, so it is possible to efficiently create GUI for other
platforms. In future, Windows, Linux, iOS and Android and web application
are planned.

3.18.8 Pricing

Both the Shere parts (shere-mac and shere-core) are published on Git-
Lab [48] with permissive MIT license [49] that requires only preservation of
copyright and license notices. Licensed works, modifications, and larger works
may be distributed under different terms and without source code.

72

3.19. Future Development Ideas

3.18.9 Summary

As already mentioned, a lot of features in Shere are planned in the future.
Even that the project were developed for more than six months, it was not
possible to implement all desired features to create an application comparable
with note taking applications that are developed by many developers. In this
thesis, the main focus was to implement the fundamental concepts that are
further extendable, such as cross-platform core, markdown rendering web view
and modular parsing and indexing modules.

3.19 Future Development Ideas

As in every project, there is almost always a possibility to improve the software
by fixing errors or adding new features. In this section, the most important
areas of further development are listed and eventually more described. The
most important things to improve are related to notes content and manipula-
tion. Besides that, there are many features decreasing user experience. Some
of them are caused by lacking standard functions provided in most text editor,
others are ideas for improving the user interface or extending the note content
abilities:

• Undo / redo support: because the text editing does not rely on the em-
bedded contenteditable functionality, the default command history
can not be used and the undo/redo system has to be manually imple-
mented.

• Moving tasks and items: many editors offer ability to move a list item
of a task by mouse which prevents to cut and paste the desired notes
and thus simplifies work with items.

• Add more markdown tokens: there are some markdown elements that
are planned to be extended or added into the markdown syntax: code
block, horizontal line, set deadline to tasks, ordered list, quote element,
indent tasks and list elements and add images and files to notes.

• Open multiple notes: one of the future requirements related to GUI is
to be able to open multiple notes at once, which is not possible yet.

• To-do items sorting and filtering: the task aggregation view should be
able to select a subset of unfinished tasks, based on a tag, deadline date
and so on.

• Platform support: Supporting more platforms is also one of the fea-
tures required in future. Firstly, implementations for desktop platforms
(Windows, Linux) are planned and after that mobile platforms and web.

73

3. Shere development

Additionally, to enable scripting notes manipulation, command line in-
terface could be added to Shere.

• Save indexed data: to avoid slow reindexing the whole storage, the in-
dexed data could be saved on disk and loaded on launch to be able
quickly navigate through the notes. item Export to other formats: abil-
ities to convert notes to other format as PDF, HTML, DOCX or other
markdown flavors.

There are many more ideas and issues that can be created or fixed. In this
thesis, only the most important were mentioned.

74

Conclusion

In this thesis I defined the criteria set for note taking application evaluation,
analysed existing note taking software, their main benefits and shortcomings.
Based on the analysis I created a note taking application for macOS which
addresses the found shortcomings. Its main features are minimalist UI and
text rendering, markdown formatting, flexible nested-tag notes organization
and open storage format. The application logic can be easily used in other
platforms with native GUI. The code was covered by unit tests and docu-
mented. The project can be further developed by adding new features and
supporting more platforms.

During the work on the thesis I used knowledge gained through the study
on CTU, especially from software and web engineering. My personal benefits
were that I gained a lot of knowledge related to text parsing, indexing, rich
text formatting, GUI creating and many more. In future, I would like to
continue developing Shere to become a comfortable note taking open source
application.

75

Bibliography

[1] Knuth, D. E. The Art of Computer Programming, Volume 3: (2Nd Ed.)
Sorting and Searching. Redwood City, CA, USA: Addison Wesley Long-
man Publishing Co., Inc., 1998, ISBN 0-201-89685-0.

[2] Bast, H.; Celikik, M. Efficient Fuzzy Search in Large Text Collections. Al-
bert Ludwigs University, [quot. 2018-04-18]. Available from: http://ad-
publications.informatik.uni-freiburg.de/TOIS_fuzzy_BC_2013.pdf

[3] Craswell, N. Neural Models for Full Text Search. In Proceedings of the
Tenth ACM International Conference on Web Search and Data Mining,
New York, NY, USA, 2017, ISBN 978-1-4503-4675-7, pp. 1–2.

[4] Gruber, J. Daring Fireball: Markdown. [quot. 2018-04-08]. Available
from: https://daringfireball.net/projects/markdown/

[5] MacFarlane, J. CommonMark Spec. [quot. 2018-04-12]. Available from:
http://spec.commonmark.org/0.27/

[6] MacFarlane, J.; GitHub. GitHub Flavored Markdown Spec. [quot. 2018-
04-12]. Available from: https://github.github.com/gfm/

[7] GitLab. GitLab Flavored Markdown. [quot. 2018-04-12]. Available
from: https://docs.gitlab.com/ee/user/markdown.html#gitlab-
flavored-markdown-gfm

[8] Fortin, M. Markdown Extra: Syntax. [quot. 2018-04-12]. Available from:
https://michelf.ca/specs/markdown-extra/

[9] Klatsky, S. A. WYSIWYG. Aesthetic Surgery Journal, volume 23,
no. 4, 2003: pp. 274–275, doi:10.1016/S1090-820X(03)00150-X,
[quot. 2018-04-10]. Available from: http://dx.doi.org/10.1016/S1090-
820X(03)00150-X

77

http://ad-publications.informatik.uni-freiburg.de/TOIS_fuzzy_BC_2013.pdf
http://ad-publications.informatik.uni-freiburg.de/TOIS_fuzzy_BC_2013.pdf
https://daringfireball.net/projects/markdown/
http://spec.commonmark.org/0.27/
https://github.github.com/gfm/
https://docs.gitlab.com/ee/user/markdown.html##gitlab-flavored-markdown-gfm
https://docs.gitlab.com/ee/user/markdown.html##gitlab-flavored-markdown-gfm
https://michelf.ca/specs/markdown-extra/
http://dx.doi.org/10.1016/S1090-820X(03)00150-X
http://dx.doi.org/10.1016/S1090-820X(03)00150-X

Bibliography

[10] Matt Stow. WriteMe.md - A simple Markdown editor. [quot. 2018-05-08].
Available from: http://writeme.mattstow.com/

[11] Benoit Schweblin. StackEdit – In-browser Markdown editor. [quot. 2018-
05-08]. Available from: https://stackedit.io/

[12] Abner. Typora - a markdown editor, markdown reader. [quot. 2018-04-23].
Available from: https://typora.io

[13] Wikipedia. Comparison of notetaking software - Wikipedia. [quot. 2018-
04-18]. Available from: https://en.wikipedia.org/wiki/Comparison_
of_notetaking_software

[14] Corporation, E. Evernote. [quot. 2018-04-04]. Available from: https:
//evernote.com/

[15] Shankland, S. Evernote now has 220 million users even af-
ter raising prices - CNET. [quot. 2018-04-04]. Available from:
https://www.cnet.com/news/evernote-raised-prices-got-more-
of-us-to-sign-up/

[16] Gock, G. Marxico - Markdown Editor for Evernote. [quot. 2018-04-19].
Available from: http://marxi.co/

[17] Evernote. Discontinued support for Evernote for BlackBerry and
Windows Phone. [quot. 2018-04-19]. Available from: https://
help.evernote.com/hc/en-us/articles/212280518-Discontinued-
support-for-Evernote-for-BlackBerry-and-Windows-Phone

[18] Zobec, M. Microsoft OneNote — Digitálńı poznámková ap-
likace pro vaše zař́ızeńı. [quot. 2018-04-19]. Available from:
http://www.michalzobec.cz/microsoft-office-onenote-2013-
pro-windows-zdarma-2760

[19] Zobec, M. Microsoft Office OneNote 2013 pro Windows zdarma. [quot.
2018-04-19]. Available from: http://www.michalzobec.cz/microsoft-
office-onenote-2013-pro-windows-zdarma-2760

[20] Microsoft. Overview of Microsoft Graph. [quot. 2018-04-19]. Avail-
able from: https://developer.microsoft.com/en-us/graph/docs/
concepts/overview

[21] Microsoft. [MS-ONE]: OneNote File Format. [quot. 2018-04-20]. Avail-
able from: https://msdn.microsoft.com/en-us/library/dd924743(v=
office.12).aspx

[22] Shiny Frog. Hello, I’m Bear. [quot. 2018-04-21]. Available from: https:
//blog.bear-writer.com/hello-im-bear-1d0476e957d2

78

http://writeme.mattstow.com/
https://stackedit.io/
https://typora.io
https://en.wikipedia.org/wiki/Comparison_of_notetaking_software
https://en.wikipedia.org/wiki/Comparison_of_notetaking_software
https://evernote.com/
https://evernote.com/
https://www.cnet.com/news/evernote-raised-prices-got-more-of-us-to-sign-up/
https://www.cnet.com/news/evernote-raised-prices-got-more-of-us-to-sign-up/
http://marxi.co/
https://help.evernote.com/hc/en-us/articles/212280518-Discontinued-support-for-Evernote-for-BlackBerry-and-Windows-Phone
https://help.evernote.com/hc/en-us/articles/212280518-Discontinued-support-for-Evernote-for-BlackBerry-and-Windows-Phone
https://help.evernote.com/hc/en-us/articles/212280518-Discontinued-support-for-Evernote-for-BlackBerry-and-Windows-Phone
http://www.michalzobec.cz/microsoft-office-onenote-2013-pro-windows-zdarma-2760
http://www.michalzobec.cz/microsoft-office-onenote-2013-pro-windows-zdarma-2760
http://www.michalzobec.cz/microsoft-office-onenote-2013-pro-windows-zdarma-2760
http://www.michalzobec.cz/microsoft-office-onenote-2013-pro-windows-zdarma-2760
https://developer.microsoft.com/en-us/graph/docs/concepts/overview
https://developer.microsoft.com/en-us/graph/docs/concepts/overview
https://msdn.microsoft.com/en-us/library/dd924743(v=office.12).aspx
https://msdn.microsoft.com/en-us/library/dd924743(v=office.12).aspx
https://blog.bear-writer.com/hello-im-bear-1d0476e957d2
https://blog.bear-writer.com/hello-im-bear-1d0476e957d2

Bibliography

[23] Shiny Frog. Polar Bear markup language. [quot. 2018-04-21].
Available from: http://www.bear-writer.com/faq/Markup%20:
%20Markdown/Polar%20Bear%20markup%20language/

[24] Dropbox Inc. Dropbox — Company Info. [quot. 2018-04-21]. Available
from: https://www.dropbox.com/news/company-info

[25] Dropbox Inc. Developers - Dropbox. [quot. 2018-04-23]. Available from:
https://www.dropbox.com/developers/paper-api-alpha

[26] Abner. Draw Diagrams With Markdown. [quot. 2018-04-23]. Available
from: http://support.typora.io/Draw-Diagrams-With-Markdown/

[27] GitHub Inc. Electron — Build cross platform desktop apps with
JavaScript, HTML and CSS. [quot. 2018-04-23]. Available from: https:
//electronjs.org/

[28] Foltýn, M. Interaktivńı ovládáńı PC hry pomoćı chytrého telefonu.
Bakalářská práce, Praha: České vysoké učeńı technické v Praze, Fakulta
informačńıch technologíı, 2016.

[29] Heitkötter, H.; Hanschke, S.; et al. Comparing Cross-platform Develop-
ment Approaches for Mobile Platforms. 2012, [quot. 2018-04-25]. Available
from: https://www.wi1.uni-muenster.de/pi/veroeff/heitkoetter/
Comparing-Cross-Platform-Development-Approaches-for-Mobile-
Applications.pdf

[30] Apple Inc. About Objective-C. [quot. 2018-04-25]. Available from:
https://developer.apple.com/library/content/documentation/
Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/
Introduction.html

[31] Gettys, J.; Scheifler, R. W.; et al. X Window System Standard. [quot.
2018-04-25]. Available from: https://www.x.org/releases/X11R7.6/
doc/libX11/specs/libX11/libX11.html

[32] Wikipedia. List of widget toolkits - Wikipedia. [quot. 2018-04-25].
Available from: https://en.wikipedia.org/wiki/List_of_widget_
toolkits

[33] Oracle and/or its affiliates. JavaTM Native Interface. [quot. 2018-04-25].
Available from: https://docs.oracle.com/javase/7/docs/technotes/
guides/jni/

[34] David Beazley. Simplified Wrapper and Interface Generator. [quot. 2018-
04-25]. Available from: http://www.swig.org/

79

http://www.bear-writer.com/faq/Markup%20:%20Markdown/Polar%20Bear%20markup%20language/
http://www.bear-writer.com/faq/Markup%20:%20Markdown/Polar%20Bear%20markup%20language/
https://www.dropbox.com/news/company-info
https://www.dropbox.com/developers/paper-api-alpha
http://support.typora.io/Draw-Diagrams-With-Markdown/
https://electronjs.org/
https://electronjs.org/
https://www.wi1.uni-muenster.de/pi/veroeff/heitkoetter/Comparing-Cross-Platform-Development-Approaches-for-Mobile-Applications.pdf
https://www.wi1.uni-muenster.de/pi/veroeff/heitkoetter/Comparing-Cross-Platform-Development-Approaches-for-Mobile-Applications.pdf
https://www.wi1.uni-muenster.de/pi/veroeff/heitkoetter/Comparing-Cross-Platform-Development-Approaches-for-Mobile-Applications.pdf
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://www.x.org/releases/X11R7.6/doc/libX11/specs/libX11/libX11.html
https://www.x.org/releases/X11R7.6/doc/libX11/specs/libX11/libX11.html
https://en.wikipedia.org/wiki/List_of_widget_toolkits
https://en.wikipedia.org/wiki/List_of_widget_toolkits
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://www.swig.org/

Bibliography

[35] Goundan, K.; Grue, T.; et al. Djinni. [quot. 2018-04-25]. Available from:
https://github.com/dropbox/djinni

[36] Beilis, A. CppCMS — High Performance C++ Web Framework. [quot.
2018-04-26]. Available from: http://cppcms.com/wikipp/en/page/main

[37] Emweb bvba. Wt, C++ Web Toolkit - Emweb. [quot. 2018-04-26]. Avail-
able from: https://www.webtoolkit.eu/wt

[38] Buschmann, F.; Meunier, R.; et al. Pattern-Oriented Software Archi-
tecture, A System of Patterns. Pattern-Oriented Software Architecture,
Wiley, 2013, ISBN 9781118725269.

[39] Apple Inc. About the Cocoa Document Architecture. 2012, [quot.
2018-04-24]. Available from: https://developer.apple.com/
library/content/documentation/DataManagement/Conceptual/
DocBasedAppProgrammingGuideForOSX/Introduction/
Introduction.html

[40] JetBrains s.r.o. A cross-platform IDE for C and C++. [quot. 2018-04-26].
Available from: https://www.jetbrains.com/clion/

[41] Kohlhoff, C. M. Asio C++ library. [quot. 2018-04-26]. Available from:
https://think-async.com/

[42] Git community. Git Repository Layout. [quot. 2018-04-27]. Available from:
https://git-scm.com/docs/gitrepository-layout

[43] Sadler, J. indragiek/CocoaMarkdown: Markdown parsing and render-
ing for iOS and OS X. [quot. 2018-04-27]. Available from: https://
github.com/indragiek/CocoaMarkdown/tree/master/CocoaMarkdown

[44] Sadler, J. Markdown Implementations - Markdown Community Group.
[quot. 2018-04-30]. Available from: https://www.w3.org/community/
markdown/wiki/MarkdownImplementations

[45] Ramirez, F. Writing a Markdown Compiler – Part 2. [quot. 2018-05-
01]. Available from: https://blog.beezwax.net/2017/08/10/writing-
a-markdown-compiler-part-2/

[46] Ford, B. Parsing Expression Grammars: A Recognition-based Syntac-
tic Foundation. SIGPLAN Not., volume 39, no. 1, Jan. 2004: pp.
111–122, ISSN 0362-1340, doi:10.1145/982962.964011. Available from:
http://doi.acm.org/10.1145/982962.964011

[47] GitHub Inc. catchorg/Catch2: A modern, C++-native, header-only, test
framework for unit-tests, TDD and BDD. [quot. 2018-05-07]. Available
from: https://github.com/catchorg/Catch2

80

https://github.com/dropbox/djinni
http://cppcms.com/wikipp/en/page/main
https://www.webtoolkit.eu/wt
https://developer.apple.com/library/content/documentation/DataManagement/Conceptual/DocBasedAppProgrammingGuideForOSX/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/DataManagement/Conceptual/DocBasedAppProgrammingGuideForOSX/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/DataManagement/Conceptual/DocBasedAppProgrammingGuideForOSX/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/DataManagement/Conceptual/DocBasedAppProgrammingGuideForOSX/Introduction/Introduction.html
https://www.jetbrains.com/clion/
https://think-async.com/
https://git-scm.com/docs/gitrepository-layout
https://github.com/indragiek/CocoaMarkdown/tree/master/CocoaMarkdown
https://github.com/indragiek/CocoaMarkdown/tree/master/CocoaMarkdown
https://www.w3.org/community/markdown/wiki/MarkdownImplementations
https://www.w3.org/community/markdown/wiki/MarkdownImplementations
https://blog.beezwax.net/2017/08/10/writing-a-markdown-compiler-part-2/
https://blog.beezwax.net/2017/08/10/writing-a-markdown-compiler-part-2/
http://doi.acm.org/10.1145/982962.964011
https://github.com/catchorg/Catch2

Bibliography

[48] Foltýn, M. Shere / shere-mac · GitLab. [quot. 2018-05-07]. Available from:
https://gitlab.com/shere/shere-mac

[49] GitHub Inc. MIT License — Choose a License. [quot. 2018-05-07]. Avail-
able from: https://choosealicense.com/licenses/mit/

81

https://gitlab.com/shere/shere-mac
https://choosealicense.com/licenses/mit/

Appendix A
Contents of enclosed CD

readme.txt the file with CD contents description
bin the directory with executables
src.......................................the directory of source codes
thesis.................the directory of LATEX source codes of the thesis
thesis.pdf..............................the thesis text in PDF format

83

	Introduction
	Note Taking Evaluation Criteria
	Note Workflows
	Notes Organization
	Search
	Markdown
	Supported Platforms
	User Interface
	Notes Storage
	Pricing
	Summary

	Existing Applications
	Evernote
	Microsoft OneNote
	Bear
	Dropbox Paper
	Typora
	Comparison
	Shortcomings analysis
	Summary

	Shere development
	Requirements
	Architecture
	Development Introduction
	Core Library Fundamentals
	Actions
	Callbacks
	Core Backend
	Storage
	Markdown
	Note Editing
	Indexing
	Search
	MacOS Application Architecture
	Editor View
	Sidebar
	Note list
	Testing and Documentation
	Evaluation criteria
	Future Development Ideas

	Conclusion
	Bibliography
	Contents of enclosed CD

