
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

Tomáš Velecký

Cooperative Filming of a Moving Ground Object
by a Group of Unmanned helicopters

Department of Cybernetics

Thesis supervisor: Ing. Viktor Walter

May 2018





Author statement for undergraduate thesis

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Kongens Lyngby, 11th May 2018 ..................................





BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

457241Personal ID number:Velecký TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

RoboticsBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Cooperative Filming of a Moving Ground Object by a Group of Unmanned Helicopters

Bachelor’s thesis title in Czech:

Kooperativní filmování pozemního pohybujícího se objektu skupinou bezpilotních helikoptér

Guidelines:
The goal of the thesis is to design, implement in ROS (Robot Operating System), and experimentally verify in Gazebo
simulator an algorithm for filming a visually-localized object by a formation of mutually stabilized unmanned aerial vehicles
(UAV). The following tasks will be solved:
1. To implement a method [1], which uses distributed vision-based flying cameras to film a moving target, and integrate it
into the UAV control system of the MRS group at CTU.
2. To use a method of visual detection of objects denoted by an artificial pattern [2,4] for detection of the moving target
and for mutual localization of neighboring vehicles.
3. To extend the method in [1] by considering the knowledge of the ground profile measured by distance sensors onboard
of UAVs and by considering the complete state of the UAVs into the control rules.
4. To verify the method and compare it with original approach in a realistic Gazebo simulator.
5. To prepare the system for experimental verification with the multi-UAV platform of the MRS group [4] (the real experiment
will be realized in case of available HW based on decision of the thesis advisor).

Bibliography / sources:
[1] F. Poiesi and A. Cavallaro. Distributed vision-based flying cameras to film a moving target. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015.
[2] J. Faigl, T. Krajník, J. Chudoba, L. Preucil, and M. Saska, "Low-cost embedded system for relative localization in robotic
swarms," in Proc. of IEEE International Conference on Robotics and Automation, 2013.
[3] T. Krajnik, M. Nitsche, J. Faigl, P. Vanek, M. Saska, L. Preucil, T. Duckett and M. Mejail. A Practical Multirobot Localization
System. Journal of Intelligent & Robotic Systems 76(3-4):539-562, 2014.
[4] T. Baca, P. Stepan and M. Saska. Autonomous Landing On A Moving Car With Unmanned Aerial Vehicle. In The
European Conference on Mobile Robotics (ECMR), 2017.

Name and workplace of bachelor’s thesis supervisor:

Ing. Viktor Walter, Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 16.01.2018

Assignment valid until: 30.09.2019

_________________________________________________________________________________
prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Viktor Walter
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



Acknowledgements

I would like to thank many people in the MRS group for the online technical support, my
Czech supervisor, my “Danish supervisor” Nils Axel Andersen, my parents, and the Euro-
pean Union, who all made it possible to do the thesis in the Kingdom of Denmark.





Abstract

This thesis implements an algorithm for vision-based ground target following
by a formation of unmanned aerial vehicles described by F. Poiesi and
A. Cavallaro [1]. Various modifications were made to account for the specific
properties of the platforms used by the Multi-robot Systems (MRS) group [2].
These changes comprised of adjustment of the outputs to the setpoint-based
control scheme and high processing speed of the platform. Additionally
methods for suppression of formation oscillations and temporary loss of line-
of-sight with the target. Another contribution of the thesis is the development
of a method for estimation of the slope of the ground on which the target
is positioned, that allows for refinement of the target position on a natural
terrain. These algorithms were implemented as a node for the Robot
Operating System, in order to ensure compatibility with other subsystems
used by the MRS. The implemented algorithms were tested in a simula-
tion environment and partially in real-world experiments with physical UAVs.

Keywords: ground object, object following, target, formation, swarm, why-
con, ROS, UAV, unmanned helicopters

Abstrakt

Tato bakalářská práce implementuje algoritmus pro sledováńı pozemńıho
ćıle formaćı bezpilotńıch helikoptér (UAV) vybavených běžnou kamerou
popsaný F. Poiesim a A. Cavallarem [1]. Byly provedeny úpravy umožňuj́ıćı
využit́ı helikoptér skupiny Multi-robotických systémů (MRS) [2]. Jedná
se zejména o úpravu výstupu algoritmu pro ř́ızeńı na relativńı pozici
a pro vysokou výpočetńı frekvenci platformy. Dodatečně byly přidány
nástroje pro potlačeńı oscilaćı a práci s dočasnou ztrátou ćıle. Byla vyvinuta
metoda pro odhad náklonu povrchu pod formaćı, umožňuj́ıćı zpřesněńı
pozice ćıle umı́stěného v přirozeném prostřed́ı. Zmı́něné algoritmy byly
implementovány jako node pro Robot Operating System (ROS), aby byla
zaručena kompatibilita s ostatńımi subsystémy už́ıvanými skupinou MRS.
Algoritmy byly odzkoušeny v simulátoru Gazebo a částečně pomoćı experi-
ment̊u s reálnými helikoptérami.

Kĺıčová slova: pozemńı objekt, sledováńı objektu, ćıl, formace, swarm,
whycon, ROS, UAV, bezpilotńı helikoptéry





CONTENTS

Contents

List of Figures iii

1 Introduction 1

1.1 Implementation Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Algorithm Description 3

2.1 The Original Algorithm by F. Poiesi and A. Cavallaro . . . . . . . . . . . . 3

2.1.1 Formation Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Individual Error Processing . . . . . . . . . . . . . . . . . . . . . . 5

2.1.4 Individual Velocity Setting . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Formation Velocity Agreement . . . . . . . . . . . . . . . . . . . . . 8

2.1.6 Formation Shape Preservation . . . . . . . . . . . . . . . . . . . . . 9

2.2 Differences Necessary for Our Implementation . . . . . . . . . . . . . . . . 10

2.2.1 Minor Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Determining the Rotation of the UAV . . . . . . . . . . . . . . . . 11

2.2.3 UAV Control Specifics . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Omitting of the Position Prediction . . . . . . . . . . . . . . . . . . 12

2.2.5 Suppression of Oscillations . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.6 Formation Shape Verification Condition . . . . . . . . . . . . . . . 14

2.2.7 Behaviour in the Case of No Target Detection . . . . . . . . . . . . 15

2.3 Exact Thrust Direction Computation . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Camera Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Reprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Relative Position Usage . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Setpoint Mixing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Adjustment for a Ground Target . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



CONTENTS

3 Simulation results 25

4 Hardware and Software Description 29

4.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 The Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Experimental Results 33

5.1 Target Following with One UAV . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 The Setpoint Mixing Algorithm with a UAV as the Target . . . . . 33

5.1.2 The Setpoint Mixing Algorithm with the UGV as the Target . . . . 36

5.1.3 The Exact Algorithm with the UGV as the Target . . . . . . . . . . 37

6 Conclusion 39

Bibliography 41

Appendix A CD Content 43

Appendix B List of abbreviations 45

Appendix C Photographs of the used platforms 47

Appendix D Configuration Files Used in the Experiments 49

Appendix E Plots from the Simulations 53

ii



LIST OF FIGURES

List of Figures

1 Possible initial states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Side view of initial shape (one of the UAVs and the target is shown), with
formation altitude 5 m, target altitude 2 m . . . . . . . . . . . . . . . . . . 5

3 Magnitude distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Intersection rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Formation shape varification . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 An oscillating formation of three UAVs . . . . . . . . . . . . . . . . . . . . 13

7 The new formation shape criterion . . . . . . . . . . . . . . . . . . . . . . 15

8 Illustration of the planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 Slope profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10 The relative localization of the neighbours . . . . . . . . . . . . . . . . . . 25

11 The trajectory of the formation centre with the original algorithm . . . . . 26

12 The testing environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

13 The experiment with 3 UAVs, the exact algorithm, α = 1.5, β = 1.0 . . . . 27

14 The experiment with 3 UAVs, the mixing algorithm, w = 0.0, β = 1.5,
moving upwards on a slanted plane . . . . . . . . . . . . . . . . . . . . . . 28

15 Overall view of one of MRS UAVs . . . . . . . . . . . . . . . . . . . . . . . 29

16 The non-id Whycon pattern mounted on the UGV . . . . . . . . . . . . . . 30

17 The camera distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

18 A Whycon pattern with ID information . . . . . . . . . . . . . . . . . . . . 32

19 Following of another UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

20 The trajectories in the first experiment . . . . . . . . . . . . . . . . . . . . 34

21 The error in xW and yW coordinates from the ideal position of the target . 34

22 The setpoint coordinates in time . . . . . . . . . . . . . . . . . . . . . . . . 35

23 A photograph of the inital state with 3 UAVs . . . . . . . . . . . . . . . . 35

24 Following of the Cameleon UGV . . . . . . . . . . . . . . . . . . . . . . . . 35

25 The trajectory of the observing UAV . . . . . . . . . . . . . . . . . . . . . 36

26 The setpoints coordinates in time . . . . . . . . . . . . . . . . . . . . . . . 36

27 The trajectory of the observing UAV . . . . . . . . . . . . . . . . . . . . . 37

28 The setpoints coordinates in time . . . . . . . . . . . . . . . . . . . . . . . 37

29 The MRS drone from above . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



LIST OF FIGURES

30 The Mobius camera and its holder from profile . . . . . . . . . . . . . . . . 47

31 Profile of the cameleon UGV . . . . . . . . . . . . . . . . . . . . . . . . . . 48

32 A side view of the cameleon UGV . . . . . . . . . . . . . . . . . . . . . . . 48

33 The version of the configuration file used in the experiment 5.1.1 . . . . . . 49

34 The version of the configuration file used in the experiment 11 . . . . . . . 51

35 The version of the configuration file used in the experiment 37 . . . . . . . 52

36 The experiment with 3 UAVs, the exact algorithm, α = 1.25, β = 1.5 . . . 54

37 The experiment with 3 UAVs, the mixing algorithm, w = 0.0, β = 1.5 . . . 55

38 The experiment with 3 UAVs, the mixing algorithm, w = 0.5, β = 1.5 . . . 56

39 The experiment with 3 UAVs, the mixing algorithm, w = −0.5, β = 1.5 . . 57

40 The experiment with 4 UAVs, the exact algorithm, α = 1.0, β = 2.0 . . . . 58

41 The experiment with 4 UAVs, the mixing algorithm, w = 0.0, β = 1.5 . . . 59

42 The experiment with 4 UAVs, the mixing algorithm, w = 0.5, β = 1.5 . . . 60

iv



1 INTRODUCTION

1 Introduction

This thesis is based on the article Distributed vision-based flying cameras to film a moving
target by Fabio Poiesi and Andrea Cavallaro from 2015 [1]. The authors propose an algo-
rithm for following a moving target by a group of unmanned helicopters. It is assumed that
each helicopter is equipped with a single camera and a detection system, so that the coor-
dinates of the target in the camera image are known. The unmanned aerial vehicles (UAVs)
in the formation are also assumed to know the relative positions of their closest neighbours.
The main advantage of using more than one UAV is the extention of the area covered by
cameras of the formation. If some of the UAVs are unable to detect the target, it is still
not lost by the whole formation.

The original approach is based on following these restrictive assumptions: the target is al-
ways moving in a plane, at a constant altitude; all the UAVs with the cameras are also
at a constant altitude. In the initial state, all the UAVs are able to detect the target;
the environment is without obstacles, the ground is flat; and each UAV can communicate
only with two of its neighbours. The algorithm does not aim to cope with air disturbations
(wind).

The algorithm was already proven in Matlab by the authors with 6, 8, 10, and 12 UAVs
in a formation [1]. In this thesis, the algorithm was tested in the Gazebo simulator. This
implementation aims to be compatible with the UAVs currently used by the MRS group.

1.1 Implementation Specifics

The algorithm is based on relative localization of the UAVs in a formation. However,
the simulation system used by Multi-robot Systems group provides absolute coordinates.
The real-world platform used by the MRS group relies on Global navigation satelite system
(GNSS) real-time kinematic (RTK) for the control of the UAVs movement. It is therefore
possible to test the algorithm with data from an odometry system. Moreover, as the pro-
gram is only allowed to send absolute or relative positions to the model predictive controller
(MPC) at this level of control without a model of the UAV, it would not be possible to test
the programme completely without RTK.

The program is able to process the data from odometry, completely simulating both the tar-
get detection and relative localization of neighbouring UAVs using the Whycon1 system.
It is also able to work with the target coordinates provided by a Whycon node but to use
the odometry data for relative localization of other UAVs, at the same time. Both methods
of target detection were tested experimentally – using one UAV as a target and another one
UAV as the follower, and an unmanned ground vehicle (UGV) with a Whycon pattern fol-

1For information about Whycon system, see [3], [4], [5], [6].

1/60



1 INTRODUCTION

lowed by a UAV. A system for relative localization of other UAVs using a Whycon pattern
detection was only succesfully tested in the simulator.

The algorithm from [1] expects a control system able to set the relative position of a UAV
in a very short time horizon (the authors used 0.04 s in simulations), whereas the UAVs
of MRS group can only be controlled by setpoints or sequences of setpoints with 0.2-
second steps. This is addressed in section 2.2. Other authors propose algorithms taking
data from target detector, directly producing more low-level setpoints (eg. yaw, pitch, roll
and altitude in [7]).

1.2 Related Works

Another system for following a moving target was presented in an article from 2012. Only
a single UAV was used, with the camera not being fixed and with a known distance
to the target. They proposed a two-layer framework to control a pan/tilt servomecha-
nism of the camera to keep the target in the centre of the image and to follow the target
by the UAV using a vision feedback [8]. Another article [9] also uses pan/tilt camera mech-
anism.

Several articles aim to keep the target in the center of the camera image, either by con-
trolling the rotation of the camera ([8], [9], or [10] in the case of a UGV), or directly
by controlling movement of the whole UAV ([1] and [7]).

The approach in [7] is not based only on the knowledge of the coordinates of the target
in the camera image. A proportional integral controller (PI) was used for movement control,
with “detection size, out of plane rotation and estimated object position” as its inputs.

The article [11] concernes with the controller for the UAV position in the x-y plane. Both
[1] and [11] were verified in a MATLAB simulation only.

In [12], the authors also use a regular polygon formation shape, while assuming a limited
field of view (FOV) of cameras, and their “robots rely only on their onboard visual sensor
without external input”. In addition to assumptions in [1], they assume unicycle kinematics
for both the UAVs and the target.

In [13], a gimbal camera and an extended Kalman filtering based target state estimator is
used.

2/60



2 ALGORITHM DESCRIPTION

2 Algorithm Description

The algorithm this thesis is based on is summarized in the subsection 2.1, called original
below.

For implementation in Gazebo, some modifications had to be made. These are described
in subsection 2.2. The modified algorithm is referred to as Gazebo-adjusted algorithm.

In the subsection 2.3, a more explicit way of computing the covariance matrix used in both
original and Gazebo-adjusted algorithms is described. This will be referred to as the explicit
algorithm.

Subsection 2.4 shows a simple algorithm using a mixture of target position error and “in-
tersection rule error” as the control input, thereafter called the mixing algorithm. (The in-
tersection rule is explained in 2.1.6.)

2.1 The Original Algorithm by F. Poiesi and A. Cavallaro

2.1.1 Formation Shape

The algorithm works with any number of UAVs in formation greater than two members.
For an illustration, let us assume there are three UAVs in a formation (also observing
UAVs). Let us denote them uav1, uav2, and uav3. In the original algorithm the target
(also moving object) is in a constant altitude. In this case, it can be another UAV. We can
label it uav4 or target.

The initial state of the formation is an equilateral triangle with lengths of its sides a.
The target is in the centre, in a different altitude. Each observing UAV is pointed towards
the centre.

It is not necessary to use an equilateral triangle. Generally, there could be different default
distances between UAVs, e.g. a12, a23, and a31. Nevertheless, it is suggested that with this
shape, the area covered by the fields of view of individual cameras is maximal.

Analogically, with higher number of UAVs, a regular polygon would be used.

An example of initial state seen from above is shown in figure 1a. The symbols xw, yw
denote x- and y-axis of the world coordinate system. The initial state of 5-UAVs formation
is in figure 1b.

A side view of the formation is shown in figure 2.

3/60



2 ALGORITHM DESCRIPTION

(a) Initial formation shape and position, a12 =
a23 = a31 = a = 10 m

xw

yw

(b) Initial formation shape for 5 UAVs
and their positions, a12 = a23 = a34 = a45 =
a51 = a = 7 m

Figure 1: Possible initial states

2.1.2 General Notation

There are N UAVs in the formation, i ∈ N will be used for indexing of the UAVs. In this
case, N = 3 and i ∈ {1, 2, 3}.

One UAV is allowed to communicate only with two adjacent UAVs. These UAV will be
called neighbours, i.e. every UAV has two neighbours. For example, in case of the three-
UAVs formation, uav1 has neighbours uav3 and uav2. The uav2 has neighbours uav1 and
uav3, etc.

Unlike in [1], most variables will be named in a such way that it is easy to implement
from the point of view of one UAV of the formation. Initial (default) distances of neigh-
bouring UAVs are therefore dLi,init, dRi,init – initial distance from a UAV to neighbour seen
by i-th UAV on the left side, and the right side. In the case of the formaton in figure 1b,
for uav2: dL,init = a12,init, dR,init = a23,init.

Additionally, discrete time k ∈ N0 will be used instead of continuous time.

All variables define the position in the UAV’s coordinate frame unless the letter W is
in the superscript, denoting the world coordinate system. Analogically, the letter r in the su-
perscript denotes a frame with its origin in the respective UAV but with axis directions
coincident with the world frame.

A position of the target in time step k in the world coordinate system is xt[k] ∈ R3.
Similarly, the position of an observing UAV i in time step k in the world coordinate

4/60



2 ALGORITHM DESCRIPTION

system is xW
i [k] ∈ R3.

yw

zw

ψ

Figure 2: Side view of initial shape (one of the UAVs and the target is shown), with
formation altitude 5 m, target altitude 2 m

2.1.3 Individual Error Processing

Each observing UAV has a static camera. Therefore, translation and rotation matrices
defining its position with respect to the UAV coordinate system TUAV

camera and RUAV
camera are

known. The rotation can be also defined by roll-pitch-yaw angles. We will denote the angle
defining how is the forward tilt of the camera as ψ, as in seen in figure 2.

We also know the angle of view of each camera, the focal length, . . . , the distortion coeffi-
cients and the camera projection matrix.

The most important property used for calculation of the covariance matrix (explained
below) is the resolution of the camera image. An image plane

[
−W

2
, W

2

]
×
[
−H

2
, H

2

]
, where

W stands for width, and H stands for height, is assumed. I.e., the centre of the image has
coordinates [0, 0]. Both in the simulator and with real cameras, the resolution W = 1280 px
and H = 720 px is used (cameras are described in section 4.3)

Coordinates of the target in the camera image of i-th UAV are denoted as x̃t,i[k] ∈ R2.

Since the coordinates of the target in the camera plane and altitudes of both the target
and observing UAV are known, it is possible to steer a UAV to follow it. As the camera

5/60



2 ALGORITHM DESCRIPTION

centre has the coordinates
[
0 0

]T
, we can call x̃t,i[k] the error vector. The first part

of the algorithm is based on two simple ideas:

1. the bigger the deviation vector is, the faster observing UAV should move,

2. the deserved motion of the observing UAV depends on the direction of the error
vector. The observing UAV should follow the error of the target from its ideal relative
positon to the UAV.

In order to implement the first idea, a mapping M : R2 → R is defined for calculating
a magnitude. Let us define a covariance matrix Σm ∈ R2×2 which can be used to regulate
the trend of M . The magnitude for i-th UAV is:

mi [k] = M (x̃t,i [k]) = 1− exp

(
−1

2
· x̃t,i[k]T · Σ−1m · x̃t,i[k]

)
. (1)

An example of the mapping M values for the image resolution 1280 px × 720 px and
the covariance matrix shown in equation (2) is plotted in figure 3. Notice that the trend
of M in y-axis of the image is sharper to reflect the camera inclination. This is ensured
by the covariance matrix:

Σm =

[
80000 0

0 24000

]
(2)

To implement the second idea, formulas (3) and (4) are used:

ax,i[k] = sgn (x̃t,i [k]) ·mi [k] , (3)

ay,i[k] = sgn (ỹt,i [k]) ·mi [k] . (4)

It is assumed here, that the camera heading is aligned with heading of the UAV. In [1],
more general formulas are considered:

ax,i[k] = sgn (x̃t,i [k] · ex,i) ·mi [k] , (5)

ay,i[k] = sgn (x̃t,i [k] · ey,i) ·mi [k] , (6)

where ex,i, ey,i are unite vectors rotated the same way as the camera frame to the UAV
frame is: ex,i = Rc,i · [1, 0, 0]T, ey,i = Rc,i · [0, 1, 0]T.

This leads to a bounded set of possible vectors ai[k]. Firstly, the length is in 〈0, 1〉. Secondly,
there are only 8 possible directions. In view of the UAV: forwards, backwards, to the right
and to the left, and the diagonal variations thereof. As follows from the signum function
definition, the former four are rarely used (only in case of x̃t,i = 0 or ỹt,i = 0).

6/60



2 ALGORITHM DESCRIPTION

-800 -600 -400 -200 0 200 400 600 800
x-axis coordinate [px]

-400

-300

-200

-100

0

100

200

300

400

y-
a
x
is

 c
o
o
rd

in
a
te

 [
p

x
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3: Magnitude distribution

2.1.4 Individual Velocity Setting

First of all the UAV candidate velocity v′i is computed.

At this point, its useful to transform the thrust which was computed in the individual UAV
reference frame to the world frame. Even without the RTK, the UAV has enough sensors
to obtain its rotation. Therefore we can use the yaw angle ω (the rotation of the UAV
around its z-axis). Other angles defining rotation are insignificant here.

aW
i [k] =

[
cos(ω) −sin(ω)
sin(ω) cos(ω)

]
· ai[k] =

[
cos(ω) −sin(ω)
sin(ω) cos(ω)

]
·
[
ax,i[k]
ay,i[k]

]
(7)

In order to decide when to stop the thrust action, time derivative of thrust is estimated as:

ȧWx,i[k] =
∣∣aWx,i (k)

∣∣− ∣∣aWx,i (k − τa)
∣∣ , (8)

ȧWy,i[k] =
∣∣aWy,i (k)

∣∣− ∣∣aWy,i (k − τa)
∣∣ , (9)

where τa is a small multiplication constant, e.g. 20, which is used to regulate the reaction
speed. Larger values of τa may cause oscillations, while smaller values may lead to the loss
of a fast-moving target.

7/60



2 ALGORITHM DESCRIPTION

The UAV candidate velocity in the world frame is then:

v′Wx,i [k] =

{
α · aWx,i[k] + vWx,i[k − 1], if ȧWx,i[k] > 0,

v′Wx,i = vWx,i[k − 1], otherwise;
(10)

v′Wy,i [k] =

{
α · aWy,i[k] + vWy,i[k − 1], if ȧWy,i[k] > 0,

vWy,i[k − 1], otherwise.
(11)

The constant α affects the reaction of the UAV to the target dynamics. The bigger the α,
the more aggressive the behaviour is.

2.1.5 Formation Velocity Agreement

If the target is visible to all the neighbours of a UAV, the desired/predicted velocity is
equal to the arithmetic mean of the predicted velocities of its two neighbours:

vW
i [k] =

1

2

(
v′WL [k] + v′WR [k]

)
. (12)

If the target is not detected by one of the neighbours, its predicted velocity is not taken
into account:

vW
i [k] = v′WL [k] or vW

i [k] = v′WR [k], respectively. (13)

What is not explicitly mentioned in [1], is that if the target is detected by the corresponding
UAV only, its desired velocity is used. (In a case of N = 3, not using this rule would result
in a strong deceleration of the whole formation.)

In the remaining case (target is not detected either by any of the neighbours nor by
the UAV itself), and in the case of a bad formation shape (defined by expression 19),
a UAV is controlled according to the subsection 2.1.6 below.

If the velocity vW
i [k] is known, then a desired trajectory candidate point is computed:

xW,c
g,i [k] = xW

i [k − 1] + vWi [k] ·∆k, (14)

where ∆k is the sampling time. Whether it will be used is decided in later steps.

8/60



2 ALGORITHM DESCRIPTION

2.1.6 Formation Shape Preservation

In the remaining cases, another desired position is used. First of all, an ideal position
of the UAV is calculated as the intersection of two circles (see figure 4). Radii of the circles
are the initial distances of uav1 from its neighbours, dL1,init for k3 and dR1,init for k2.
Centres are in the predicted positions of the neighbours. From these two intersection points,
the closer one is selected, denoted pW,c

i [k]. This is the new desired position for the UAV,
xg,i[k].

option1

option2

Figure 4: Intersection rule

This can be expressed as:

pW,c
i = arg min

x

{∥∥∥x− xW,c
g,i [k]

∥∥∥} ,
x ∈ Γ(xW,c

g,Li
, dLi,init) ∩ Γ(xW,c

g,Ri
, dRi,init),

(15)

where Γ(c, r) is a circle of radius r with the centre in c.

After computing the desired velocity, formation shape is verified. To do this, each UAV
computes ζL and ζR (see figure 5):

ζLi
[k] =

∥∥∥xW,c
g,i [k]− xW,c

g,Li
[k]
∥∥∥− dLi,init, (16)

ζRi
[k] =

∥∥∥xW,c
g,i [k]− xW,c

g,Ri
[k]
∥∥∥− dRi,init. (17)

9/60



2 ALGORITHM DESCRIPTION

dRi,init

ε

ζRi

dLi,init

ε
ζLi

xW,c
g,Li

xW,c
g,Ri

xW,c
g,i

Figure 5: Formation shape varification

The “good formation shape” criterion is defined as

ζLi
< ε ∧ ζRi

< ε, (18)

where ε is the distance threshold in metres. If this condition is valid, it is considered that
the UAV is in a good position (the fromation has a good shape from point of view of this
UAV) and the candidate trajectory point is used. Otherwise, the UAV is sent to the closer
of the two circle intersections. In other words:

xW
g,i[k] =

{
xW,c
g,i [k], if ζLi

< ε ∧ ζRi
< ε,

pW,c
i [k], otherwise.

(19)

2.2 Differences Necessary for Our Implementation

2.2.1 Minor Changes

The changes not influencing the control mechanism were already included in the previous
section:

10/60



2 ALGORITHM DESCRIPTION

• simpler equations (3) and (4) instead of (5) and (6) are used,

• to use the output as an input for MRS movement controller, ai[k] must be rotated
to the world frame, leading to aW

i [k]. Consequently, ȧW
i [k] and v′Wi [k] are then used

instead of ȧi[k] and v′i[k].

2.2.2 Determining the Rotation of the UAV

What is not explicitly described in [1], is the desired heading of the UAV.

In the program, the yaw ω (about the z-axis of the UAV frame) is always set so that
the UAV faces the centre of the connecting line of the neighbours Si = [Sx,i, Sy,i]

T:

Sx,i =
xcg,Li

+ xcg,Ri

2
, (20)

Sy,i =
ycg,Li

+ ycg,Ri

2
, (21)

ψi = atan2(Sy,i, Sx,i), (22)

where xc
g,Li

, xc
g,Ri

are the candidate positions of the neighbours in its frame.

2.2.3 UAV Control Specifics

As stated in [11], a “hierarchical control approach is common for quadrotors, with the lowest
control level being control of the rotor rotational speed. The next level is control of vehicle
attitude, and the top level is control of a quadcopter position. . . ”. The motion controller
of the UAV is not an exception, and using the topmost level of the control is preferred
(e.g. the collision avoidance is already implemented in this level). It accepts as its input
one of following:

1. a single setpoint consisting of the x, y, and z coordinates and optionally also ψ
in the world coordinate system,

2. a sequence (trajectory) of absolute setpoints defined above, distributed with spacing
of 0.2 seconds,

3. a single setpoint of the same format, relative to the current position of UAV.

The second option makes it possible to set the velocity by using regularly distributed
points. Problems with the collision avoidance mechanism occured due to the trajectories

11/60



2 ALGORITHM DESCRIPTION

being long and occasionally stepping in the safety zones of the other UAVs. As the control
mechanism is based on relative localization, the third option was chosen in the end.

Instead of xW,c
g,i [k] from equation (14) or pW,c

i [k] defined in (15), forms relative to the UAV
position must be used:

xr,c
g,i[k] = vWi [k] ·∆k, (23)

pc
i = arg min

x

{∥∥x− xc
g,i[k]

∥∥} ,
x ∈ Γ(xc

g,Li
, dLi,init) ∩ Γ(xc

g,Ri
, dRi,init),

(24)

pr,c
i [k] =

[
cos(ω) −sin(ω)
sin(ω) cos(ω)

]
· pc

i [k], (25)

xr
g,i[k] =

{
xr,c
g,i[k], if ζLi

< ε ∧ ζRi
< ε,

pr,c
i [k], otherwise.

(26)

The sampling time used is small compared to the one used by the high-level motion con-
troller. For this reason, setting very small setpoints computed in (23) results in no move-
ment.

The further setpoint is sent to the MPC, the faster the UAV will move. To amplify the out-
put, we will be using the constant β:

x′
r
g,i[k] = β · xr

g,i[k]. (27)

2.2.4 Omitting of the Position Prediction

Again, because of the processing rate of the program (25 Hz), it is admissible not to predict
the position of the neighbours. This is because the change in the output of the control
algorithm will not have a significant effect.

In the algorithm, only the current positions of both the UAV and the neighbours are used
in (15)/(24):

12/60



2 ALGORITHM DESCRIPTION

xg,i instead of xc
g,i,

xg,Li
instead of xc

g,Li
,

xg,Ri
instead of xc

g,Ri
.

(28)

Additionally, equations (16), (17) are used in following form:

ζLi
[k] = ‖xg,i[k]− xg,Li

[k]‖ − dLi,init, (29)

ζRi
[k] = ‖xg,i[k]− xg,Ri

[k]‖ − dRi,init. (30)

2.2.5 Suppression of Oscillations

target

UAVs

Figure 6: An oscillating formation of three UAVs

In simulations, the oscillations of both the individual UAVs and the formation as a whole
(see figure 6, a screenshot from RViz2) were observed. In the figure, the red arrows represent
odometry data. The turquoise, green and pink spirals consist of the respective setpoints.
Therefore, some tools to suppress them were added to the program.

2RViz is a ROS package for topics visualization, see http://wiki.ros.org/rviz.

13/60

http://wiki.ros.org/rviz


2 ALGORITHM DESCRIPTION

The main tool is an exponential filter. The output is modified as follows:

x′′
r
g,i[k] = q · x′rg,i[k] + (1− q) · x′′rg,i[k − 1], (31)

where q ∈ 〈0, 1〉 is a constant.

The reference change of the yaw angle for the MPC is descreased by multiplying a γ
constant (γ ∈ (0, 1)) because of the same reason.

As an anti-windup filter, the predicted velocity is limited. Mathematically:

v′′Wx,i [k] =

{
v′Wx,i [k], if v′Wx,i [k] < vmax,

vmax, otherwise.
(32)

In pogram, there is additionally an option to apply a deadband:

x′
r
g,i[k] =

{
[0, 0]T , if |mi[k]| < mmax,

xr
g,i[k], otherwise.

(33)

In order not to switch between target following and approaching the intersection point too
often, a hysteresis condition was added. The UAV follows the intersection point as long as

• bad formation shape was detected,

• bad formation shape has been detected up to distanceTimeout seconds ago.

2.2.6 Formation Shape Verification Condition

For small formations, the formation shape verification condition (see equation (18)) does
not work properly. It allows the UAVs to go very close to their neighbours. The difference
is in the ideal distance dn,ideal of the neighbours of the UAV:

• for N = 3, dn,ideal = a,

• for N = 4, dn,ideal = a
√

2,

• for N →∞, dn,ideal → 2a.

14/60



2 ALGORITHM DESCRIPTION

There is always a “corridor” between the neighbours, where the UAV can be and where
it is still considered a good formation shape. Whereas in the case of N →∞, it is only 2ε
broad, in case of N = 3, it is wider more than the ideal distance dn,ideal itself.

Another rules is therefore used. Formation shape is considered to be wrong, if and only if:

∣∣∣∥∥∥xW,c
g,i [k]− xW,c

g,Li
[k]
∥∥∥− dLi,init

∣∣∣ > ε ∨
∣∣∣∥∥∥xW,c

g,i [k]− xW,c
g,Ri

[k]
∥∥∥− dRi,init

∣∣∣ > ε. (34)

the left
neighbour

the right
neighbour

the UAV

Figure 7: The new formation shape criterion

A graphical explanation is shown in figure 7. It shows a situation of the ideal formation
shape for N = 3, a = 6 m, ε = 1 m. The green area represents all the positions of the UAV
where 34 is false.

2.2.7 Behaviour in the Case of No Target Detection

In case of no target detection, the current velocity is sent to its neighbours.

Provided that the target is not detected, in cases of neighbours undetection (or simply when
the intersection does not exist), the relevant UAV positions itself according to the only
detected neighbour (an ideal position for the formation is computed beforehand), or stays
in the current place.

The rules up to this point describe the original algorithm.

15/60



2 ALGORITHM DESCRIPTION

2.3 Exact Thrust Direction Computation

This subsection describes the exact algorithm.

2.3.1 Motivation

In the original algorithm, the control input is converted into the acceleration vector using
the matrix Σm and changes of direction (equations (3)–(4) or (5)–(6), and (7)).

It does not deal with “temporary” UAV rotations in pitch and roll directions. “As the dis-
turbance, the movement of the UAV has a big influence on the performance of the track-
ing system. These disturbances should be compensated to improve the tracking perfor-
mance. [9]”

For example, if the target is detected in the upper part of camera image, the UAV will
move forward. Because of the nature of UAV (e.g. quadro- or hexacopter) motion be-
haviour, in order to move forward, it must to lean forward. This leaning shifts the target
in the camera image downwards a lot, even though the UAV might have moved forward
only a short distance.

For another example, when the camera angle is changed, the covariance matrix should be
changed to keep the algorithm working properly. This can be done either experimentaly,
in a naive way, or we can prepare one covariance matrix and modify it with transformation
matrices later which saves time.

We can compute the position of the target relative to the UAV (from camera matrix and
current rotation matrix of the UAV) first, and use this value for computation of the accel-
eration.

2.3.2 Camera Simulation

In order to test the formation algorithms independently of computer vision, we use a helper
ROS node. It takes as input the odometry data of an observing UAV and of the tar-
get in the world frame from relevant topics and computes the coordinates of the target
in the camera image. From the target odometry, it uses only the position, represented as
the vector xW

t . Homogeneous coordinates will be used:

xW
t =


xWt
yWt
zWt
1

 , TW
UAV =


1 0 0 xWt
0 1 0 yWt
0 0 1 zWt
0 0 0 1

 , (35)

16/60



2 ALGORITHM DESCRIPTION

where TW
UAV is translation matrix of the UAV with respect to the world coordinate system.

Analogically, RW
UAV is a matrix defining rotation of the UAV with respect to the world

frame. Matrices defining the pose of the camera to the UAV frame are denoted TUAV
camera,

RUAV
camera. For example, these were used in experiments:

TUAV
camera =


1 0 0 0.211 m
0 1 0 0.0 m
0 0 1 −0.05 m
0 0 0 1

 , RUAV
camera =


cos(0.7 rad) 0 sin(0.7 rad) 0

0 1 0 0
− sin(0.7 rad) 0 cos(0.7 rad) 0

0 0 0 1

 . (36)

One of the coordinate systems for an image used in computer vision (CV) is that with origin
in the upper-left corner, x-axis to the right and y-axis heading down. To represent this
change, there are special matrices

Rcamera
x,CV =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 , Rcamera
z,CV =


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 , (37)

representing two simple rotations by right angles around x- and z-axis.

Knowing also a camera matrix P (see [14]), it is possible to compute the normalized coor-
dinates N of the target:

N = P·
(
Rcamera

x,CV

)−1 ·(Rcamera
z,CV

)−1 ·(RUAV
camera

)−1 ·(TUAV
camera

)−1 ·(RW
UAV

)−1 ·(TW
UAV

)−1 ·xW
t (38)

Coordinates in pixels, denoted u, v, are then calculated ([15], also follows from [14]):

u =
N1

N3

,

v =
N2

N3

.

(39)

2.3.3 Reprojection

We are looking for an intersection of a horizontal plane assuming that the target has
constant altitude with a vector.

17/60



2 ALGORITHM DESCRIPTION

To express the task in language of the matrices introduced in the previous subsection, we
can rewrite the equation 38 in a reverse order. As we want to know the relative position
of target to the UAV, matrices TW

UAV and RW
UAV must be removed:

xr
t = TUAV

camera · RUAV
camera · Rcamera

z,CV · Rcamera
x,CV · P−1 ·N . (40)

Rotating by the yaw angle, we get the point in the frame of the UAV

xt =


cosω 0 sinω 0

0 1 0 0
− sinω 0 cosω 0

0 0 0 1

 · xr
t . (41)

Using following notation:

xt = M ·N , (42)

xt =


xt
yt
zt
1

 , N =


N1

N2

N3

1

 , M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

 , (43)

equations for the normalized coordinates (39), and knowing that zt is a constant value, we
can solve equation (42) as a system of 6 linear equations with 5 unknowns. The solution
is:

N3 =
−zt −m34

m31 · u+m32 · v +m33

, (44)

xt = m11 · u ·N3 +m12 · v ·N3 +m13 · c+m14,

yt = m21 · u ·N3 +m22 · v ·N3 +m23 · c+m24.
(45)

2.3.4 Relative Position Usage

The relative target position xt from subsection 2.3.3 is then used in the same way as the po-
sition in camera image x̃t is. I.e., instead of (1), the following equation is used:

18/60



2 ALGORITHM DESCRIPTION

mi [k] = M (xt,i [k]) = 1− exp

(
−1

2
· xt,i[k]T · Σ−1m · xt,i[k]

)
. (46)

(Specifically, the program uses xt,i in millimeters.)

Another difference of this algorithm with respect to the original is how we determine
the direction of a. We rotate it by the angle of target error vector:

ν = atan2(yt,i, xt,i), (47)

a =

[
cos(ν) − sin(ν)
sin(ν) cos(ν)

]
·
[
mi[k]

0

]
=

[
mi[k] · cos(ν)
mi[k] · sin(ν)

]
. (48)

2.4 Setpoint Mixing Algorithm

The algorithm described in this section is reffered as to the mixing algorithm.

2.4.1 Motivation

When the UAV controller according to the previous two algorithms detects that it is
in a wrong relative position with respect to its neighbours, it completely switches from fol-
lowing the target to following a virtual point defined by the position of its neighbours, even
though its neighbours can still be following the target, as opposed to keeping the forma-
tion shape. This point therefore may be delayed, the UAV follows a point which follows
the neighbours, while it may take a long time to detect the target again for this UAV.

2.4.2 Mathematical Description

In order to mitigate this effect, the setpoint mixing algorithm takes the relative target posi-
tion, the position of the closer intersection (both in x-y plane), and computes the weighted
arithmetic mean. The result is multiplied by the constant β introduced in subsection 2.2.3:

xg,i[k] = β ·
(1 + w) · xc

t,i [k] + (1− w) · pc
i [k]

2
, (49)

xW
g,i[k] =

[
cos(ω) −sin(ω)
sin(ω) cos(ω)

]
· xg,i[k], (50)

19/60



2 ALGORITHM DESCRIPTION

where w ∈ 〈−1, 1〉 is a constant.

If one of the points can not be computed, the remaining point is used:

xg,i[k] =


xc
t,i [k] , if it exists,

pc
i [k] , if it exists,

[0, 0]T , if neither one exists.

(51)

2.5 Adjustment for a Ground Target

Up to this point, only a target flying in a constant altitude or a ground target moving
on a flat ground were considered. Nevertheless, one of the aims of this thesis is to follow
a ground target while the ground may not be perfectly flat.

One way to do so is to keep the formation in a horizontal plane of a constant altitude,
measuring the distance from the ground and using this for correction of the target position
estimate. As the MRS drones have different behaviour, another approach was chosen.
The MRS drones are keeping a constant height individually, with respect to the ground
under them.

This means the UAVs follow the surface. Flying above a slant surface results in a non-
horizontal formation. We will assume a gradually changing surface, so that the surface
of the ground covered by the formation can be always considered planar. It could also be
assumed that a ground target does not change its height. The same applies as a restriction
for a flying target, it also cannot change its height.

As a UAV does not know its absolute position, all the calculations will be done in its
reference frame. Since it tries to keep a constant distance from the ground, this will be
considered constant and known. To define a plane, three points are needed. For the purposes
above, positions of its neighbours are already detected. Hence we have three points defining
the plane of the formation (positions of the left and the right neighbour and the position
of the UAV itself as origin).

Considering the positions of the neighbours as vectors lying in the plane, it is easy to com-
pute the normal vector of the plane in view of i-th UAV:

ni[k] = [n1,i[k], n2,i[k], n3,i[k]]T = xRi
[k]× xLi

[k]. (52)

As both the formation and the target are keeping the same distance from ground, the dis-
tance of the formation and target plane should also be constant and they should be parallel.
In section 2.3, the relative position of the target was calculated, assuming the same planes
of the same distance with horizontal inclination. We can use this position as an orientation

20/60



2 ALGORITHM DESCRIPTION

xLi

xRi

formation plane

corrected
target plane

original
target plane

horizontal (ideal) ground plane

normal
vectors

the UAV i

left
neighbour

right
neighbour

slant (real)
ground plane

Figure 8: Illustration of the planes

vector and find the intersection of it with the slant target plane. All the planes are depicted
in figure 8.

The equation of a plane is:

n1 · xt + n2 · yt + n3 · zt + n4 = 0, (53)

where xt, yt, zt are target coordinates in the UAV’s frame. Constant n4 has to be calulated
— to make it an equation of the target plane, the coordinates xt, yt, zt must be substituted
with a point in the plane. (i in indices and the time step specification k is ommited here)
This can be the point directly under the UAV, [0, 0,−hinit]T, which leads to

n4 = hinit · n3. (54)

If we express the line defined directional vector parametrically (see figure 9):

x = t1 · p,
y = t2 · p,
z = t3 · p,

(55)

where t1, t2, and t3 are the original target coordinates computed in section 2.3, and we put
these into the plane equation, the parameter p is expressed as:

21/60



2 ALGORITHM DESCRIPTION

a neighbour

UAV i

formation plane

target plane

ground plane

original target
plane

hinit

hinit

[0,0,-hinit]T

directional vector
corrected
estimate

original
estimate

ta
rg

et
 h

ei
gh

t

zi
Wdistance of

the detected
point from
the ground

Figure 9: Slope profile

p =
n3 · hinit

−n1 · t1 − n2 · t2 + n3 · hinit
. (56)

Knowing the more precise target coordinates, these can be used in the explicit algorithm
or the mixing algorithm.

22/60



2 ALGORITHM DESCRIPTION

2.6 Implementation Details

A single ROS node which produces the desired trajectory of a corresponding UAV was
programmed. Accoring to passed parameters, it runs certain algorithm.

For simulations with a UAV as the target, another node was programmed, described in sub-
section 2.3.2.

For other simulations, a ROS version of the Whycon system (WhyCon-ROS) is used for de-
tection of the target as well as of the neighbours. As this version does not support differet
patterns (different IDs), the node decides what detected object is the target, left neighbour,
or the right neighbour. This is done in a naive way, based on areas of the image. The target
is expected to be in the lower area of the image, the left neighbour in upper left area, and
the right neighboour in the upper right area. The areas are adapted to the inclination
of the UAV and if the detected patterns are not in the expected positions (eg. a neighbour
is too close to the target), an error is reported.

Additionally, this detector has has problems when attempting to detect a certain number
of patterns in an image where a lower number is visible. It it is the case, it takes a long
time to produce an output. Therefore, there are multiple nodes run simultaneously, each
set to detect a different number of patterns in the image. Close detections close to each
other (there is 1 m distance threshold) are then grouped and averaged.

A version of Whycon able to distinguish among patterns was modified to produce ROS
messages. However, this version produces a large number of false detections to the effect
that multiple were assigned IDs to the same pattern for pattern sizes and distances used
in simulations.

23/60



2 ALGORITHM DESCRIPTION

24/60



3 SIMULATION RESULTS

3 Simulation results

For testing of the algorithms, a simple trajectory for the followed UAV was chosen. It
consists of regularly distributed points so that the UAV velocity is about 0.8 m/s most
of the time. There is a 10-seconds-long pause in a turning point starting in t = 40 s.
The complete trajectory length is 60 s.

Figure 10: The relative localization of the neighbours

The configuration file for testing of the original algorithm can be seen in figure 34. The tra-
jectory of the formation centre with the original algorithm is shown in the figure 11.

The algorithms were mostly tested with the computed target coordinates and neighbours lo-
calization from the odometry data in a planar environment: the results are shown in the fig-
ures 13, 36 (formations of 3 UAVs controlled by the exact algorithm), 37, 38, 39 (forma-
tions of 3 UAVs controlled by the mixing algorithm), 40 (a formation of 4 UAVs controlled
by the exact algorithm), and 41 and 42 (4 UAVs, the mixing algorithm). For all of them,
a = 6 was set. The basic configuration file is shown in the figure 35, the important distinc-
tions are described in the corresponding captions.

Target estimation was tested in a world with hill surface and a desk with pattern simulating
a UGV, see the figure 12. An experiment from this environment is shown in the figure 14.
Additionally, the functionality of the localization of the neighbours using the Whycon
system was verified in the simulations (see figure 10).

25/60



3 SIMULATION RESULTS

Figure 11: The trajectory of the formation centre with the original algorithm

Figure 12: The testing environment

26/60



3 SIMULATION RESULTS

(a) The target and the formation centre trajectories

(b) The setpoints of uav1

(c) Overall view (all trajectories)

(d) The mutual distances of the neighbours

Figure 13: The experiment with 3 UAVs, the exact algorithm, α = 1.5, β = 1.0

27/60



3 SIMULATION RESULTS

(a) The target and the formation centre trajec-
tories

(b) The setpoints of uav1
(c) Overall view (all trajectories)

(d) The mutual distances of the neighbours

Figure 14: The experiment with 3 UAVs, the mixing algorithm, w = 0.0, β = 1.5, moving
upwards on a slanted plane

28/60



4 HARDWARE AND SOFTWARE DESCRIPTION

4 Hardware and Software Description

4.1 Simulator

For simulations, the Gazebo multi-robot simulator3, version 7.0.0, was used. Simulations
were carried out on two desktop computers connected via a router, each with Ubuntu
16.04.4 LTS GNU/Linux operating system and the Kinetic Kame version of ROS4. One
PC is equipped with 8-core Intel Core i7-7700 3.60GHz CPU and of 16 GB of RAM,
the other with 4-core Intel Core i5-4570 3.20GHz CPU and 8GB RAM.

The advantage of using the ROS is particularly the high modularity, allowing usage of the same
programe for both the simulations and experiments in the real world.

Figure 15: Overall view of one of MRS UAVs

3http://gazebosim.org/
4Robot Operating System, http://www.ros.org/

29/60

http://gazebosim.org/
http://www.ros.org/


4 HARDWARE AND SOFTWARE DESCRIPTION

4.2 The UAVs

For real world experiments, the drones of the MRS group were used, see figure 15. They are
based on the DJI Flame Wheel 550 construction5 with 6 propellers. For a view from the above
(29), see the appendix C where other photographs are available.

Modules on the drone include the Intel NUC onboard computer (5th generation Core-i7,
8 GB of RAM)[16], a camera (more in subsection 4.3), a ZigBee antenna, a GPS receiver,
a WiFi client, and the Pixhawk embedded controller [2]. A 5GHz WiFi access point was
stationary located in an altitude of approximately 3 metres, through which the UAVs were
communicating to each other. All the communication was mediated by multimaster6.
Further information about the platform can be found on the web page of the MRS group 7.

4.3 The Cameras

As a vision sensor, the Mobius 1 ActionCam monocular camera was used. It is capable
of producing a 5–60 FPS video in a resolution of 1280×720 px. It was connected to the on-
board computer with a USB cable. The camera mounted on one of the UAVs can be seen
in figure 30.

Figure 16: The non-id Whycon pattern mounted on the UGV

5https://www.dji.com/flame-wheel-arf/spec
6http://wiki.ros.org/multimaster
7http://mrs.felk.cvut.cz/mbzirc2019proposal

30/60

https://www.dji.com/flame-wheel-arf/spec
http://wiki.ros.org/multimaster
http://mrs.felk.cvut.cz/mbzirc2019proposal


4 HARDWARE AND SOFTWARE DESCRIPTION

4.4 Camera Calibration

In the experiments, new cameras were used. From the camera output, an appreciable
distorition effect was notioned (see figures 17a and 17b). On that account, the cam-
era calibration was carried out to update the configuration files containing information
for the camera_info topic, and the undistortPoints()8 function from the OpenCV
library was added into the node velecto1_copter to undistort the received position
of the target from the whycon node.

(a) An original photograph of the checkerboard (b) The undistorted photograph

Figure 17: The camera distortion

The camera calibration was carried out using the cameracalibrator.py node from the ROS
package camera_calibration9 according to the tutorial on ROS Wiki page10 with a stan-
dard checkerboard.

Image resolution is 1280× 720 px. The camera matrix:

Cci
.
=

652.245476 0 632.510830
0 736.408955 356.789219
0 0 1

 (57)

The distortion coefficients:

Dci
.
=
[
−0.291999 0.055179 0.002330 −0.001738 0.000000

]
(58)

The projection matrix:

Pci
.
=

409.210114 0 628.670987 0
0 679.166016 357.901673 0
0 0 1 0

 (59)

8https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#

undistortpoints
9http://wiki.ros.org/camera_calibration

10http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

31/60

https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#undistortpoints
https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#undistortpoints
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration


4 HARDWARE AND SOFTWARE DESCRIPTION

4.5 Target

As the ground target the Cameleon UGV11 was used. Its dimensions are in table 1.

Table 1: The Cameleon UGV dimensions

dimension value [cm]
length 67
width 52
height 19

Some of the Whycon versions12 use only a simple circular patter, some are able to de-
tect multiple patterns having bars in additional inner circle (see figure 18), assigning
an ID to each. As mentioned in section 2.6, only a non-id version was used.

Figure 18: A Whycon pattern with ID information

A non-id Whycon pattern was printed with the outer radius of the black circle being 40 cm.
It was mounted on the UGV as seen in figures 16, 31, and 32. With the mounted pattern,
the height of the UGV was approximately 50 cm in the front and 45 cm in the back.

11https://www.ecagroup.com/en/solutions/cameleon-e-ugv-unmanned-ground-vehicle
12https://github.com/lrse/whycon

32/60

https://www.ecagroup.com/en/solutions/cameleon-e-ugv-unmanned-ground-vehicle
https://github.com/lrse/whycon


5 EXPERIMENTAL RESULTS

5 Experimental Results

In the real-world experiments, the camera simulator and of the target detection using
the Whycon system were tested. The setpoint mixing algorithm and the exact algorithm
were used for this purpose. The formation behaviour was not tested in a real-world exper-
iment due to technical difficulties.

5.1 Target Following with One UAV

Figure 19: Following of another UAV

5.1.1 The Setpoint Mixing Algorithm with a UAV as the Target

The figure 19 shows the view of the observing UAV when following another UAV.

The trajectories observed in this experiment are shown in figure 20. The arrow denotes
the heading of the observing UAV. The figure 20b shows the whole trajectories, the 20a
shows a state in the course. In the 20a, the target is in the field of view of the observing
UAV, while at the end, the target is lost (null setpoints can be seen in the figure 22 after
t = 10 s). In the figure 21, coordinates of the error of the ideal position of the observing
UAV from the target are shown in time.

33/60



5 EXPERIMENTAL RESULTS

(a) A state of the UAV and the target (b) A situation after the target turn

Figure 20: The trajectories in the first experiment

Figure 21: The error in xW and yW coordinates from the ideal position of the target

34/60



5 EXPERIMENTAL RESULTS

Figure 22: The setpoint coordinates in time

Figure 23: A photograph of the inital state with 3 UAVs

Figure 24: Following of the Cameleon UGV

35/60



5 EXPERIMENTAL RESULTS

5.1.2 The Setpoint Mixing Algorithm with the UGV as the Target

Figure 25: The trajectory of the observing UAV

Figure 26: The setpoints coordinates in time

The course of this experiment is plotted in figures 25 and 26. The UGV in this experiment
covered approximately 10 meters roughly on a line with a changing velocity. Oscillations
of the UAV are visible. The view from the UAV is shown in the figure 24.

36/60



5 EXPERIMENTAL RESULTS

5.1.3 The Exact Algorithm with the UGV as the Target

Figure 27: The trajectory of the observing UAV

Figure 28: The setpoints coordinates in time

In this experiment, the UGV has covered a similar trajectory to the previous experiment.
The trajectory of the UAV is plotted in the figure 27 and its setpoints are shown in 28.
By watching the recorded videos of the onboard camera, one may say that this algorithm
and its parameters leads to less smooth behaviour of the UAV in comparison with the pre-
vious one. It is visible in the setpoints plots — while both the algorithms cause oscillations,
the setpoints plot of the former one is harmonic-shaped, the plot of the latter one con-
tains an amount of sharp edges. On the other hand, while the trajectory of the UAV
controlled by the former algorithm contains small loops, the trajectory plot of the latter
one is smoother.

37/60



5 EXPERIMENTAL RESULTS

38/60



6 CONCLUSION

6 Conclusion

The algorithm for following a moving target described by F. Poiesi and A. Cavallaro
in the article [1] was successfuly implemented for the UAV platform of the MRS group.
Albeit there is a number of notable modifications, the principles — namely the intersection
rule and the predicted velocity communication — were preserved.

To achieve a higher clarity and modularity, another layer was added to the original algo-
rithm, creating the exact algorithm. That takes into account the effects of tilting, common
in movement of the multirotor UAVs.

In order to allow all the UAVs in the formation to move smoothly, the mixing algorithm
was proposed. It transforms the binary choice of behaviour from the original algorithm
into a weighted average of the target-following and the formation-preserving actions.

The functionality of all the three algorithms to follow a moving target was proven in ex-
periments in the simulated environment. In the simulations, the Whycon system was used
successfully for both the target detection and for the detection of the neighbours.

The results of the experiments with the individual UAVs indicate that running any of the al-
gorithms in the real world should be possible using the odometry data and even with the tar-
get detection using the Whycon system or a similar vision-based detector.

Due to technical difficulties, only limited experimentation has been performed in real-world
environment. These tests have shown that for the algorithms to work with a pure vision-
based localization of both the target and the neighbours, a different camera configuration
would likely be necessary to modify the field of view of the UAV accordingly.

Additionally, in order to address the drawbacks stemming from the assumption of a com-
pletely flat terrain for the original algorithm, a method for a ground inclination estimation
based on observed relative positions of the neighbouring UAVs with fixed vertical distances
from the ground has been proposed.

39/60



6 CONCLUSION

40/60



BIBLIOGRAPHY

Bibliography

[1] F. Poiesi and A. Cavallaro. Distributed vision-based flying cameras to film a moving
target. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2453–2459, Sept 2015.

[2] Tomáš Báča, Petr Štěpán, and Martin Saska. Autonomous landing on a moving car
with unmanned aerial vehicle. In ECMR, 2017.

[3] T. Krajńık, M. Nitsche, J. Faigl, T. Duckett, M. Mejail, and L. Přeučil. External
localization system for mobile robotics. In 16th International Conference on Advanced
Robotics (ICAR), Nov 2013.

[4] Tomáš Krajńık, Mat́ıas Nitsche, Jan Faigl, Petr Vaněk, Martin Saska, Libor Přeučil,
Tom Duckett, and Marta Mejail. A practical multirobot localization system. Journal
of Intelligent & Robotic Systems, 2014.

[5] Matias Nitsche, Tomáš Krajńık, Petr Č́ıžek, Marta Mejail, and Tom Duckett. Whycon:
An efficent, marker-based localization system. In IROS Workshop on Open Source
Aerial Robotics, 2015.

[6] Jan Faigl, Tomas Krajnik, Jan Chudoba, Libor Preucil, and Martin Saska. Low-
cost embedded system for relative localization in robotic swarms. In International
Conference on Robotics and Automation (ICRA), pages 993–998. IEEE, 2013.

[7] R. Fonseca and W. Creixell. Tracking and following a moving object with a quad-
copter. In 2017 14th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pages 1–6, Aug 2017.

[8] F. Lin, X. Dong, B. M. Chen, K. Y. Lum, and T. H. Lee. A robust real-time em-
bedded vision system on an unmanned rotorcraft for ground target following. IEEE
Transactions on Industrial Electronics, 59(2):1038–1049, Feb 2012.

[9] Z. Li and J. Ding. Ground moving target tracking control system design for uav
surveillance. In 2007 IEEE International Conference on Automation and Logistics,
pages 1458–1463, Aug 2007.

[10] TS Jin, JW Park, and JM Lee. Trajectory generation for capturing a moving object
in predictable environments. Jsme International Journal Series C-Mechanical Systems
Machine Elements and Manufacturing, 47(2):722–730, 2004.

[11] A. Razinkova and H. C. Cho. Tracking a moving ground object using quadcopter uav
in a presence of noise. In 2015 IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), pages 1546–1551, July 2015.

41/60



BIBLIOGRAPHY

[12] G. López-Nicolás, M. Aranda, and Y. Mezouar. Formation of differential-drive ve-
hicles with field-of-view constraints for enclosing a moving target. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 261–266, May
2017.

[13] H. Cheng, L. Lin, Z. Zheng, Y. Guan, and Z. Liu. An autonomous vision-based
target tracking system for rotorcraft unmanned aerial vehicles. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1732–1738,
Sept 2017.

[14] Radim Šára. Homography, perspective camera. Lecture slides for 3D Computer
Vision course at CTU FEE, http://cmp.felk.cvut.cz/cmp/courses/TDV/2017W/
lectures/tdv-2017-02-annotated.pdf, Feb 2017.

[15] OpenCV development team. OpenCV documentation, 2.4.13.6 edition, 2014.
See https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_

and_3d_reconstruction.html.

[16] Tomas Baca, Daniel Hert, Giuseppe Loianno, Martin Saska, and Vijay Kumar.
Model predictive trajectory tracking and collision avoidance for reliable outdoor de-
ployment of unmanned aerial vehicles. http://mrs.felk.cvut.cz/data/papers/

ral2018mpctracker.pdf, 2018.

42/60

http://cmp.felk.cvut.cz/cmp/courses/TDV/2017W/lectures/tdv-2017-02-annotated.pdf
http://cmp.felk.cvut.cz/cmp/courses/TDV/2017W/lectures/tdv-2017-02-annotated.pdf
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://mrs.felk.cvut.cz/data/papers/ral2018mpctracker.pdf
http://mrs.felk.cvut.cz/data/papers/ral2018mpctracker.pdf


APPENDIX A CD CONTENT

Appendix A CD Content

In table 2, there are listed names of the most important directories on CD.

Table 2: CD Content

Directory name Description
workspace src/ros nodes ROS nodes sources
workspace src/scripts scripts for running simulations
workspace src/sources additional files
workspace src/sources/Calibration ROS the Mobius camera configuration file
workspace src/sources/Holder OpenSCAD model of camera holder
workspace src/sources/Screen exponential Matlab scripts which generated fig. 3
thesis the thesis in pdf format
thesis sources LATEX source codes
velecto1-uavproject scripts used for experiments
whycon-mix an ID version of whycon
models the box with the pattern and real terraing

model for Gazebo

43/60



APPENDIX A CD CONTENT

44/60



APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

In table 3 are listed abbreviations used in this thesis.

Table 3: Lists of abbreviations

Abbreviation Meaning
FOV field of view
FPS frames per second
GNSS Global navigation satelite system
MPC model predictive control
MRS Multi-robot Systems (group)
PI proportional-integral (controller)
PID proportional-integral-derivative (controller)
ROS Robot Operating System
RTK real-time kinematic
UAV unmanned aerial vehicle
UGV unmanned ground vehicle

45/60



APPENDIX B LIST OF ABBREVIATIONS

46/60



APPENDIX C PHOTOGRAPHS OF THE USED PLATFORMS

Appendix C Photographs of the used platforms

Figure 29: The MRS drone from above

Figure 30: The Mobius camera and its holder from profile

47/60



APPENDIX C PHOTOGRAPHS OF THE USED PLATFORMS

Figure 31: Profile of the cameleon UGV

Figure 32: A side view of the cameleon UGV

48/60



APPENDIX D CONFIGURATION FILES USED IN THE EXPERIMENTS

Appendix D Configuration Files Used in the Experi-

ments

The configuration file parameters used in the first real-world experiment (section 5.1.1) is
shown in the figure 33. A newer version, used for the experiment shown in the figure 37, is
in the figure 35. The explanations of the parameter names is summarized in the table 4.

1 formationSize: 1

2 formationAltitude: 7.0

3 tau_a: 20

4 rate: 30

5 c11: 80000

6 c12: 0

7 c21: 0

8 c22: 24000

9 samplingTime: 333.33

10 defaultDistance: 4

11 distanceThreshold: 0.8

12 alpha: 1.0

13 beta: 1.0

14 formationShapeWeight: 0.5

15 neighbourPositionType: ’odometry’

16 targetPositionType: ’fake’

17 whyconSet: ’all’

18 controlInput: ’relativeDifference’

19 controlOutput: ’relativeMove’

20 addNoise: no

21 neighboursPxOffset: 100

22 neighboursMOffset: 2

23 NNpxRadius: 80

24 NNmRadius: 1

25 delayThreshold: 0.5

26 odometryDelay: 0

27 cx: 0.211

28 cy: 0.0

29 cz: -0.05

30 croll: 0.0

31 cpitch: 0.7

32 cyaw: 0.0

33 noDoZone: 0.1

34 trajectoryLength: 1

35 useTargetKalman: no

36 useNeighboursKalman: no

37 useLASER: no

Figure 33: The version of the configuration file used in the experiment 5.1.1

49/60



APPENDIX D CONFIGURATION FILES USED IN THE EXPERIMENTS

Table 4: Explanation of the parameters of the node

Parameter name Notation / Explanation
formationSize N [-] (the number of UAVs in the formation)
formationAltitude hi [m] (the distance which should

the UAVs keep from the ground)
cx, cy, cz the coordinates [m] defining the translation TUAV

camera

croll, cpitch, cyaw the Euler angles [rad] defining the rotation RUAV
camera

whyconSet what data to take from the Whycon system: both
for the target and for the neighbours all,
or for the target only (target_only)

controlInput switches between methods of a calculation (cameraCoords
for the original algorithm, and relativeDifference

for both the exact and the setpoint mixing algorithms)
controlOutput the algorithm choice: velocity for the original

and for the exact algorithm, relativeMove for the mixing
intersectionRule original or naive (for small formations)
useTargetKalman a trigger for smoothing and prediction of the position

of the target using a Kalman filter (it was
not tested properly, therefore is not described)

useNeighboursKalman analogical
useCorrectedTarget a trigger for refining of the target position
undistortTarget a trigger for undistortion of the coordinates

rate the processing speed [Hz]
tau_a τa
c11, c12, c21, c22 the Σm matrix elements
defaultDistance a [m]
distanceThreshold ε [m]
alpha α

noDoZone the deadband [m]
formationShapeWeight w [-]
yawDifferenceConstant γ [-]
distanceTimeout the timeout for the formation shape verification [s]
maxVelocity vmax [m/s]
beta β [-]
expFiltConst q [-]

targetPositionType how the target coordinates are obtained
neighbourPositionType how the relative positions of the neighbours are obtained

neighboursPxOffset a value used in the grouping of the data
from the Whycon nodes; the neighboursMOffset,
NNpxRadius, and NNmRadius are similar

delayThreshold a threshold for ignoring the outdated data

50/60



APPENDIX D CONFIGURATION FILES USED IN THE EXPERIMENTS

1 # FORMATION DESCRIPTION

2 formationSize: 3

3 formationAltitude: 7.0

4 supposedInitialHeight: 3.0

5 targetName: ’uav5’

6

7 # DRONE SETTINGS DESCRIPTION

8 cx: 0.22

9 cy: 0.0

10 cz: -0.07

11 croll: 0.0

12 cpitch: 0.7

13 cyaw: 0.0

14

15 # CONTROL TYPE

16 whyconSet: ’target_only’

17 controlInput: ’cameraCoords’

18 controlOutput: ’velocity’

19 intersectionRule: ’naive’

20 useTargetKalman: no

21 useNeighboursKalman: no

22 useCorrectedTarget: no

23 undistortTarget: no

24

25 # ORIGINAL ALGORITHM CONSTANTS

26 rate: 25

27 tau_a: 5

28 c11: 80000

29 c12: 0

30 c21: 0

31 c22: 24000

32 defaultDistance: 10

33 distanceThreshold: 2.0

34 alpha: 1.5

35

36 # ADDITIONAL ALGORITHM PARAMETERS

37 noDoZone: 0.0

38 formationShapeWeight: 0.5

39 yawDifferenceConstant: 0.13

40 partialMoveRatio: 0.5

41 distanceTimeout: 0.3

42 maxVelocity: 100.0

43 beta: 1.0

44 expFiltConst: 0.2

45

46 # SIMULATION PARAMETERS

47 targetPositionType: ’fake’

48 neighbourPositionType: ’odometry’

49 addNoise: no

50

51 # TRACKER PARAMETERS

52 neighboursPxOffset: 100

53 neighboursMOffset: 2

54 NNpxRadius: 80

55 NNmRadius: 1

56 delayThreshold: 0.8

57 odometryDelay: 0

Figure 34: The version of the configuration file used in the experiment 11

51/60



APPENDIX D CONFIGURATION FILES USED IN THE EXPERIMENTS

1 # FORMATION DESCRIPTION

2 formationSize: 3

3 formationAltitude: 7.0

4 supposedInitialHeight: 3.0

5 targetName: ’uav5’

6

7 # DRONE SETTINGS DESCRIPTION

8 cx: 0.22

9 cy: 0.0

10 cz: -0.07

11 croll: 0.0

12 cpitch: 0.7

13 cyaw: 0.0

14

15 # CONTROL TYPE

16 whyconSet: ’target_only’

17 controlInput: ’cameraCoords’

18 controlOutput: ’velocity’

19 intersectionRule: ’naive’

20 useTargetKalman: no

21 useNeighboursKalman: no

22 useCorrectedTarget: no

23 undistortTarget: no

24

25 # ORIGINAL POIESI ALGORITHM CONSTANTS

26 rate: 25

27 tau_a: 5

28 c11: 80000

29 c12: 0

30 c21: 0

31 c22: 24000

32 defaultDistance: 10

33 distanceThreshold: 2.0

34 alpha: 1.5

35

36 # ADDITIONAL ALGORITHM PARAMETERS

37 noDoZone: 0.0

38 formationShapeWeight: 0.5

39 yawDifferenceConstant: 0.13

40 partialMoveRatio: 0.5

41 distanceTimeout: 0.3

42 maxVelocity: 100.0

43 beta: 1.0

44 expFiltConst: 0.2

45

46 # SIMULATION PARAMETERS

47 targetPositionType: ’fake’

48 neighbourPositionType: ’odometry’

49 addNoise: no

50

51 # TRACKER PARAMETERS

52 neighboursPxOffset: 100

53 neighboursMOffset: 2

54 NNpxRadius: 80

55 NNmRadius: 1

56 delayThreshold: 0.8

57 odometryDelay: 0

Figure 35: The version of the configuration file used in the experiment 37

52/60



APPENDIX E PLOTS FROM THE SIMULATIONS

Appendix E Plots from the Simulations

In the last pages, there are the remaining figures from the simulated experiments.

53/60



APPENDIX E PLOTS FROM THE SIMULATIONS

(a) The target and the formation centre trajec-
tories

(b) The setpoints of uav1

(c) Overall view (all trajectories)

(d) The mutual distances of the neighbours

Figure 36: The experiment with 3 UAVs, the exact algorithm, α = 1.25, β = 1.5

54/60



APPENDIX E PLOTS FROM THE SIMULATIONS

(a) The target and the formation centre trajectories

(b) The setpoints of uav1

(c) Overall view (all trajectories)

(d) The mutual distances of the neighbours

Figure 37: The experiment with 3 UAVs, the mixing algorithm, w = 0.0, β = 1.5

55/60



APPENDIX E PLOTS FROM THE SIMULATIONS

(a) The target and the formation centre trajectories

(b) The setpoints of uav1

(c) Overall view (all trajectories) (d) The mutual distances of the neighbours

Figure 38: The experiment with 3 UAVs, the mixing algorithm, w = 0.5, β = 1.5

56/60



APPENDIX E PLOTS FROM THE SIMULATIONS

(a) The target and the formation centre trajectories

(b) The setpoints of uav1

(c) Overall view (all trajectories)
(d) The mutual distances of the neighbours

Figure 39: The experiment with 3 UAVs, the mixing algorithm, w = −0.5, β = 1.5

57/60



APPENDIX E PLOTS FROM THE SIMULATIONS

(a) The target and the formation centre trajectories

(b) The setpoints of uav1

(c) The mutual distances of the neighbours

Figure 40: The experiment with 4 UAVs, the exact algorithm, α = 1.0, β = 2.0

58/60



APPENDIX E PLOTS FROM THE SIMULATIONS

(a) The target and the formation centre trajectories

(b) The setpoints of uav1

(c) The mutual distances of the neighbours

Figure 41: The experiment with 4 UAVs, the mixing algorithm, w = 0.0, β = 1.5

59/60



APPENDIX E PLOTS FROM THE SIMULATIONS

(a) The target and the formation centre trajectories

(b) The setpoints of uav1

(c) The mutual distances of the neighbours

Figure 42: The experiment with 4 UAVs, the mixing algorithm, w = 0.5, β = 1.5

60/60


	List of Figures
	Introduction
	Implementation Specifics
	Related Works

	Algorithm Description
	The Original Algorithm by F. Poiesi and A. Cavallaro
	Formation Shape
	General Notation
	Individual Error Processing
	Individual Velocity Setting
	Formation Velocity Agreement
	Formation Shape Preservation

	Differences Necessary for Our Implementation
	Minor Changes
	Determining the Rotation of the UAV
	UAV Control Specifics
	Omitting of the Position Prediction
	Suppression of Oscillations
	Formation Shape Verification Condition
	Behaviour in the Case of No Target Detection

	Exact Thrust Direction Computation
	Motivation
	Camera Simulation
	Reprojection
	Relative Position Usage

	Setpoint Mixing Algorithm
	Motivation
	Mathematical Description

	Adjustment for a Ground Target
	Implementation Details

	Simulation results
	Hardware and Software Description
	Simulator
	The UAVs
	The Cameras
	Camera Calibration
	Target

	Experimental Results
	Target Following with One UAV
	The Setpoint Mixing Algorithm with a UAV as the Target
	The Setpoint Mixing Algorithm with the UGV as the Target
	The Exact Algorithm with the UGV as the Target


	Conclusion
	Bibliography
	Appendix CD Content
	Appendix List of abbreviations
	Appendix Photographs of the used platforms
	Appendix Configuration Files Used in the Experiments
	Appendix Plots from the Simulations

