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Abstract
This thesis presents methodologies for
modeling and motion control of a Ball-
riding robot (further BRB). The LEGO
Mindstorm EV3 building kit is used to cre-
ate this robot, which is driven by three om-
nidirectional wheels (further omni-wheels)
with a bowling ball serving as a balanc-
ing ball. Lagrangian mechanics is used
to derive a dynamic model of the robot
moving on a flat plane. To achieve stabi-
lization in both the equilibrium point and
general motion control, an LQR controller
is developed and tuned.
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LEGO Mindstorms EV3
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Abstrakt
Tato bakalářská práce prezentuje metody
pro modelování a ovládání pohybu Ball-
riding robotu. K sestavení robotu je po-
užita LEGO Mindstorm EV3 stavebnice.
Robot je poháněn třemi všesměrovými
koly a jakožto koule k balancování slouží
bowlingová koule. Lagrangeovská mecha-
nika je použita k získání dynamického
modelu robotu, pohybujícího se na ploché
rovině. K dosažení stabilizace v rovno-
vážném bodě a v celkovém pohybu, LQR
regulátor je vytvořen a vyladěn.

Klíčová slova: Bakalářská práce,
Ball-riding robot, Lagrangeova
mechanika, LQR, LEGO Mindstorms
EV3

Překlad názvu: Využití robota LEGO
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Chapter 1
Introduction

1.1 Why this thesis was created

At the beginning of the fifth semester of my studies at the Czech Technical
University in Prague, I started looking for the topic of my bachelor thesis. As
I have always been interested in the concept of robots, and there were several
modules on the topic throughout my studies, I decided to create my own. I
wrote to one of the lecturers of these subjects and asked if we could agree
on a topic for my work. After receiving a warm reply, and meeting with the
guarantor, the theme was agreed upon. My task is to design and realize a
"Ball-riding robot", further BRB, for promotional purposes. Thus the thesis
is a report of an accomplishment of this difficult challenge and presented as
my final work, ending my three-year undergraduate study.

1.2 Thesis structure

The thesis consists of 7 chapters. Each chapter addresses an important issue
and is divided into several sections and subsections. In the first chapter, an
introduction to the subject takes place. The reason for creating this thesis
has already been clarified, and the BRB system will be discussed in this
chapter. The "2D model" chapter aims at modeling the BRB in decoupled
plains and describes a reduced dynamic model and the basics of linearization.
The reduced dynamic model is the main element in deriving the complex
model used in the "3D model" chapter. After obtaining such a model, the
linearization is done again and an appropriate controller is designed in the
following chapter: "Controller design". The design of the robot and its two
parts - the body and the ball - is listed in the "Robot design" chapter. In the
chapter "Controller implementation", it is shown how the controller designed
in the fourth chapter can be applied to a realistic robot. A conclusion is
presented followed by the Appendices which contain derivations, a list of the
content of the enclosed CD and finally an overview of all bibliography.
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1. Introduction .....................................
1.3 What is a BRB?

Figure 1.1: Simplified model of the BRB system

BRB, as already mentioned, is an abbreviation of Ball-Riding roBot. Ball-
riding robots are robots which balance on top of a ball. Driving the ball
and balancing the robot is done using multiple omni-wheels (usually 3 or 4)
and angular sensors attached to the body of the robot. In our case, three
omni-wheels will be used along with two gyroscopes for each axis to estimate
angular rates and angles of the body. The velocity and the position of the ball
is derived by mathematical operations using the angles of the omni-wheels.
Due to the lack of a transmission between the omni-wheel and the motor,
the rotation angle of a single motor is equal to the rotation angle of a single
omni-wheel.

1.4 Previously created BRBs

The BRB is not a new concept in technical spheres. Several studies have
been done by multiple universities, including:. Carnegie Mellon University (CMU) in the United States developed the

first BRB (shown in Fig. 1.2a) in 2006. The robot is human sized, and
aimed at interaction with humans. In the final version of the robot, a
pair of arms were added, and a total of 5 DC motors were needed to
maintain system balance despite the fact that the robot was not able to
rotate around the vertical axis z. The relevant references are [1], [2], [3],
[4], and [5].. Tohoku Gakuin University (TGU) in Japan developed a BRB (shown
in Fig. 1.2b) in 2008. Only three motors were needed to complete the
goals of the CMU robot as well as allowing rotation around the vertical
axis z. This robot is able to carry loads in excess of 10kg. References
are [6] and [7].

2



...................................1.5. Main thesis goals

. The University of Adelaide (UA) in Australia developed a BRB using
LEGO Mindstorms NXT (shown in Fig. 1.2c) in 2009. This robot is a
small sized robot built completely out of LEGO. It uses a pair of normal
wheels to balance on a plastic ball, which limits its performance and
makes pivoting around the vertical axis z impossible. More in [8].. The Swiss Federal Institute of Technology in Zurich (ETH) in Switzerland
developed a BRB (shown in Fig. 1.2d) in 2010. The BRB was named
Rezero and is the result of work by several students. Similar to the
TGU robot, Rezero uses three omni-wheels to drive. In references [9],
[12] a video is included, which demonstrates the robot’s high dynamic
robustness and the future goals for the project.. The National Chung Hsing University (NCHU) in Taiwan developed a
BRB (shown in Fig. 1.2e) in 2012. This robot is very similar to the
TGU robot. It is about the same size, construction, and also uses three
omni-wheels to perform drive actions. Corresponding references are [10].. The University of Twente (UT) in Enschede in the Netherlands developed
a BRB (shown in Fig. 1.2f) in 2014. The robot also uses only three
omni-wheels, and is designed for use in fairs. The original text is given
in [11].

When equations and procedures derived and developed in these studies have
been used in this thesis, the original source was referenced in IEEE standard.

1.5 Main thesis goals

The goals of this bachelor thesis are: to describe system dynamics, derive a
linearized model, develop a controller for point stabilization and trajectory
tracking, build a robot from the LEGO EV3 building kit, adjust the bowling
ball, and successfully implement the developed controller.

3



1. Introduction .....................................

(a) : BRB CMU (b) : BRB TGU

(c) : BRB UA (d) : BRB ETH

(e) : BRB NCHU (f) : BRB UT

Figure 1.2: An overview of previously created BRBs
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Chapter 2
2D model

This chapter aims to describe the system structure and physical model of
the BRB. The dynamic model with equations of motion is derived using
Lagrangian mechanics and is then converted into a linearized model. While
linearizing, an equilibrium point in a balancing position is used. While the 2D
model is insufficient as an overall control solution, it does allow for a better
understanding of dynamic problems, and serves as a basis for the 3D model.

2.1 Assumptions

Note that everything in this chapter is based on the following assumptions:.Rigid bodies
The BRB is composed of two rigid bodies: the body and the ball.
Deformation of these bodies is negligible..Rigid floor
Deformation of the floor is negligible..Horizontal floor
The BRB moves only on horizontal floor, thus the ball has no potential
energy.. Friction
Besides static friction, which guarantees the "No slip" assumption, all
other types of frictions are negligible..No slip
There is no slip between the body and the ball and between the ball and
the floor..Omni-wheels
Using 2-row omni-wheels with more than one contact point can be
modeled as 1-row omni-wheels with a single contact point..Negligible time delay
The time delay between the measurements of the sensors and the control
of the motors is negligible.

5



2. 2D model ......................................
. Independent vertical planes

The two designed vertical planes (x-z, y-z) are assumed to be independent.

These or similar assumptions can be found in references up to [11].

2.2 Model description

To obtain a 2D model of a 3D system some simplifications, as done in [6], [9],
[10], and [11], are needed. The first is that the whole model is divided into
three planes (shown in Fig. 2.1): two vertical (x-z, y-z) and one horizontal
(x-y). Each plane describes, using its generalized coordinates, a 2D motion
which takes place within the plane. Secondly, the omni-wheels together with
motors and shafts are modeled as virtual wheels. Each plane is affected by
one virtual wheel, which rotates around the orthogonal axis to that plane.
For the vertical planes, the ball is modeled as a disk, which rotates around
the orthogonal axis to the plane. The virtual wheel and the centre of mass
(further COM) of the body are attached to the rotation axis of the disk with a
rigid rod. The body rotates around the rigid rod independent of the rotation
of the disk, creating an inverted pendulum system (shown in Fig. 2.2a). For
the horizontal plane, the ball is also modeled as a disk and rotates around the
orthogonal axis to the plane. The virtual wheel is attached to the rotation
axis of the disk with a rigid rod. The COM of the body is attached to the
rod and shares the same coordinate system as the centre of the disk (shown
in Fig. 2.2b). Lastly, the independence of rotational motion is assumed.

x− y

x− z y − z

y

x

z

Figure 2.1: Illustration of 2D planes in 3D space
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..................................... 2.3. Coordinates

IS

IW

IB

θx

ψx
φx

l

rS

rW

x

z

(a) : Sketch of the y-z plane

IS

IW,xy

IB,xy

ψz

rS

φz

x

y

(b) : Sketch of the x-y plane

Figure 2.2: Sketches of 2D planes - inspired by [11]

2.3 Coordinates

It is necessary to define the coordinates for future procedures. The coordinates
will be defined as they are shown in Fig. 2.2.

2.3.1 Minimal coordinates

From Fig. 2.2, it can be seen that the vertical planes have two DOFs (Degrees
of Freedom - the rotation of the ball and the body) and the horizontal plane
has only one DOF (the rotation of the body). Hence the minimal coordinates
can be defined as:

~qyz =
[
θx
ψx

]
(2.1)

~qxz =
[
θy
ψy

]
(2.2)

~qxy =
[
ψx
]

(2.3)

2.3.2 Cartesian coordinates for the y-z/x-z planes

The position of the ball expressed in Cartesian coordinates:[
yS
zS

]
=
[
rSθx

0

]
(2.4)

Of the body: [
yB
zB

]
=
[
rSθx + l sin(ψx)

l cos(ψx)

]
(2.5)

7



2. 2D model ......................................
Of the virtual wheel:[

yW
zW

]
=
[
rSθx + (rS + rW ) sin(ψx)

(rS + rW ) cos(ψx)

]
(2.6)

For the x-z plane the Cartesian coordinates have the same form, substituting
x for y and vice versa.

These equations, along with Eq. (2.7), appear in many texts, but their
acquisition is considered to be elementary and familiar. Hence no reference is
quoted.

2.3.3 Cartesian coordinates for the x-y plane

The body in the x-y plane only rotates, making its position invariable. There-
fore, only the position of the virtual wheel needs to be determined:[

xW,xy
yW,xy

]
=
[
(rS + rW ) cos(ψz)
(rS + rW ) sin(ψz)

]
(2.7)

2.4 Conversion of virtual parameters

Before the equations of motion can be looked at, it is necessary to clarify the
relation between torques of virtual wheels and torques of real omni-wheels
and vice versa. As in [9] and [11], it can be shown that the resulting torque
of the body is conserved. Mathematically:

~τB,x + ~τB,y + ~τB,z = ~τB,1 + ~τB,2 + ~τB,3 (2.8)

Where ~τB,i; i = 1, 2, 3 is the torque vector of the body, generated by the i-th
omni-wheel with size of τi and the ~τB,j ; j = x, y, z is the torque vector of the
body, generated by the virtual wheel in the direction of the j-th axis.

In the next figures, ~FB,i is a force generated by the torque of the i-th omni-
wheel, orthogonal to the ~τB,i, and ~rB,i is a vector from the center of the plane
disk to the beginning of the force. Parameter α denotes the angle for vertical
position of the omni-wheels and β the angle for horizontal position of the first
omni-wheel. The omni-wheels are placed with equal spacing (120 degrees)
between them.

8



............................ 2.4. Conversion of virtual parameters

~τB,x

~rB,xα

y

z

(a) : Side view

~τB,1

β
~FB,1

~τB,2

~FB,2

~τB,3

~FB,3

x

y

(b) : Top view

Figure 2.3: Sketches of torques generated by the real drive system - inspired by
[11]

For the virtual case, ~FB,j is defined as a force generated by the torque of the
j-th virtual wheel, orthogonal to the ~τB,j and also having ~rB,j as a vector
from the centre of the plane disk to the beginning of the force.

~τB,x

~rB,x

~FB,x

φx

y

z

(a) : Side view

~τB,x ~rB,z

~FB,z
φz

x

y

(b) : Top view

Figure 2.4: Sketches of torques generated by the virtual drive system - inspired
by [11]

With upper definitions, the torque vectors can be calculated using the following

9



2. 2D model ......................................
relationships:

~τB,i = ~rBi × ~FBi ; i = 1, 2, 3 (2.9)

~τB,j = ~rBj × ~FBj ; i = x, y, z (2.10)

Note that the following equations are taken from [11].

2.4.1 Torques generated by the real drive system

The vectors in the real drive system can be derived from the omni-wheels
torques as shown in Fig. 2.3 as:

~FB,1 = τ1
rW

 sin(β)
− cos(β)

0


~FB,2 = τ2

rW

 sin(β + 2π
3 )

− cos(β + 2π
3 )

0


~FB,3 = τ3

rW

 sin(β − 2π
3 )

− cos(β − 2π
3 )

0



(2.11)

~rB,1 = rS

sin(α) cos(β)
sin(α) sin(β)

cos(α)


~rB,2 = rS

sin(α) cos(β + 2π
3 )

sin(α) sin(β + 2π
3 )

cos(α)


~rB,3 = rS

sin(α) cos(β − 2π
3 )

sin(α) sin(β − 2π
3 )

cos(α)



(2.12)

After substituting Eq. (2.11) and (2.12) into Eq. (2.9), the torque vectors of
the body generated by the real drive system can be obtained as:

~τB,1 =


rS cos(α)τ1 cos(β

rW
rS cos(α)τ1 sin(β

rW

− rS sin(α)τ1
rW



~rB,2 =


rS cos(α)τ2 cos(β+ 2π

3 )
rW

rS cos(α)τ2 sin(β+ 2π
3 )

rW

− rS sin(α)τ2
rW



~rB,3 =


− rS cos(α)τ3 cos(β− 2π

3 )
rW

rS cos(α)τ3 sin(β− 2π
3 )

rW

− rS sin(α)τ3
rW



(2.13)
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............................ 2.4. Conversion of virtual parameters

2.4.2 Torques generated by the virtual drive system

In the virtual drive system (shown in Fig. 2.4), the vectors can also be derived
from wheels torques, in this case from the torques of the virtual wheels as:

~FB,x = τx
rW

 0
−1
0


~FB,y = τy

rW

1
0
0


~FB,z = τz

rW

 sin(β)
− cos(β)

0



(2.14)

~rB,x = rS

0
0
1


~rB,y = rS

0
0
1


~rB,z = rS

cos(β)
sin(β)

0



(2.15)

Now substituting Eq (2.14) and (2.15) into Eq. (2.10), the torque vectors of
the body, generated by the virtual drive system, can be worked out as:

~τB,x =


rSτx
rW
0
0


~rB,y =

 0
rSτy
rW
0


~rB,z =

 0
0

− rSτz
rW



(2.16)

2.4.3 Conclusion

Substituing previously derived equations of torque vectors into Eq. (2.8) and
solving for the torques generated by the real drive system and the virtual
drive system separately yields two equations. These equations describe the
relationship between the two drive systems and serves for conversion between

11
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them. τ1

τ2
τ3

 = J ·

τxτy
τz

 (2.17)

τxτy
τz

 = JT ·

τ1
τ2
τ3

 (2.18)

Where J is a Jacobian matrix and JT its transposition:

J =


2 cos(β)
3 cos(α)

2 sin(β)
3 cos(α)

1
3 sin(α)

− cos(β)+
√

3 sin(β)
3 cos(α) − sin(β)+

√
3 cos(β)

3 cos(α)
1

3 sin(α)

− cos(β)+
√

3 sin(β)
3 cos(α) − sin(β)+

√
3 cos(β)

3 cos(α)
1

3 sin(α)

 (2.19)

JT =

cos(α) cos(β) − cos(α)[cos(β)+
√

3 sin(β)]
2 − cos(α)[cos(β)−

√
3 sin(β)]

2
cos(α) sin(β) − cos(α)[sin(β)−

√
3 cos(β)]

2 − cos(α)[sin(β)+
√

3 cos(β)]
2

sin(α) sin(α) sin(α)


(2.20)

2.5 Equations of motion for the y-z/x-z planes

Equations of motion will be obtained using Lagrangian mechanics. Hence
minimal coordinates, kinetic and potential energy, and external torques are
needed. The minimal coordinates were already derived in Subsec. 2.3.1. The
rest will be derived below.

2.5.1 Kinetic and potential energy

The basic formula for kinetic energy is defined as the sum of translational
and rotational energy:

T = 1
2mv

2 + 1
2Iθ̇

2 (2.21)

For potential energy:
V = mgh (2.22)

Using these two equations and references [9] and [11] the next subsections
were created.

Energy of the ball

For the ball, Eq. (2.21) becomes:

TS,yz = 1
2mS~v

T
S,yz · ~vS,yz + 1

2IS θ̇x
2 (2.23)

12



........................2.5. Equations of motion for the y-z/x-z planes

mS is defined as the mass of the ball, ~vS,yz as the velocity of the ball, IS as
already mentioned is the moment of inertia of the ball, and ~vTS,yz · ~vS,yz is
defined as:

~vTS,yz · ~vS,yz = |vS,yz|2

= ẏ2
S + ż2

S

= r2
S θ̇

2
x

(2.24)

Hence the final form of the kinetic energy of the ball is:

TS,yz = 1
2mSr

2
S θ̇

2
x + 1

2IS θ̇x
2 (2.25)

Due to Assumption 3, the potential energy of the ball is equal to zero:

VS,yz = 0 (2.26)

Energy of the body

Similarly, the kinetic energy of the body is defined as:

TB,yz = 1
2mB~v

T
B,yz · ~vB,yz + 1

2IBψ̇x
2 (2.27)

Where mB is the mass of the body, ~vB,yz the velocity of the body, IB the
moment of inertia of the body mentioned earlier and ~vTB,yz · ~vB,yz is defined
as:

~vTB,yz · ~vB,yz = |vB,yz|2

= ẏ2
B + ż2

B

= r2
S θ̇

2
x + 2rSlθ̇xψ̇x cos(ψx) + l2ψ̇2

x

(2.28)

(A more detailed calculation can be found in Appendix A.)

The equation in its final form is:

TB,yz = 1
2mB

(
r2
S θ̇

2
x + 2rSlθ̇xψ̇x cos(ψx) + l2ψ̇2

x

)
+ 1

2IBψ̇x
2

= 1
2mB

(
r2
S θ̇

2
x + 2rSlθ̇xψ̇x cos(ψx)

)
+ 1

2(IB +mB + l2)ψ̇x
2

= 1
2mB

(
r2
S θ̇

2
x + 2rSlθ̇xψ̇x cos(ψx)

)
+ 1

2I
′
Bψ̇x

2

(2.29)

Where I ′B is the moment of inertia of the body around the axis the body
rotates (axis through the centre of the wheel).

The potential energy of the body is calculated as:

VB,yz = mBgl cos(ψz) (2.30)
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Energy of the virtual wheel

The kinetic energy in this case is defined as:

TW,yz = 1
2mW~v

T
W,yz · ~vW,yz + 1

2IW φ̇x
2 (2.31)

Where mW is the mass of the virtual wheel, ~vW,yz the velocity of the virtual
wheel, IW the moment of inertia of the virtual wheel, and ~vTW,yz · ~vW,yz is
defined as:

~vTW,yz · ~vW,yz = |vW,yz|2

= ẏ2
W + ż2

W

= r2
S θ̇

2
x + 2rS(rS + rW )θ̇xψ̇x cos(ψx) + (rS + rW )2ψ̇2

x

(2.32)

And where:
φ̇x = rS

rW
(θ̇x − ψ̇z) (2.33)

(Appendix A contains the in-depth calculation.)

Therefore the kinetic energy of the virtual wheel is:

TW,yz = 1
2mW

(
r2
S θ̇

2
x + 2rS(rS + rW )θ̇xψ̇x cos(ψx) + (rS + rW )2ψ̇2

x

)
+ 1

2IW
( rS
rW

(θ̇x − ψ̇z)
)2 (2.34)

The potential of the virtual wheel is calculated as:

VW,yz = mW g(rS + rW ) cos(ψz) (2.35)

2.5.2 External torques

Using Eq. (2.33) from reference [11], the relationship between velocities can
be established.

φ̇x = J
[
θ̇xψ̇z

]
(2.36)

Where

J =
[
rS
rW

− rS
rW

]
is the Jacobian matrix which maps joint velocities to the virtual wheel velocity.

Torque of the virtual wheel is only applied torque. Because it has a sin-
gle component in x direction, τx is the input and the external torques are:

~τext =
[
τθx
τψx

]
= JT τx

=
[

rS
rW
− rS
rW

]
τx

(2.37)
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2.5.3 Lagrangian mechanics

The Lagrangian is defined as a function of minimal coordinates and their
derivations:

L(θx, ψx, θ̇x, ψ̇x) = TS,yz + TB,yz + TW,yz − VS,yz − VB,yz − VW,yz (2.38)

Euler-Lagrange equations distribute the Lagrangian to external torques as:

d

dt

( ∂L
∂θ̇x

)
− ∂L

∂θx
= τθx

d

dt

( ∂L
∂ψ̇x

)
− ∂L

∂ψx
= τψx

(2.39)

This can be rewritten into a matrix form:

M(~qyz)~̈qyz + C(~qyz, ~̇qyz)~̇qyz + G(~qyz) = ~τext (2.40)

Where M is a matrix of inertial forces due to accelerations, C is a matrix of
Coriolis and centrifugal forces, and G is a matrix of gravitational forces.

After computations in Matlab programming language, these matrices were
calculated as:

M(~qyz) =

IS + r2
Smtot + r2

S

r2
W
IW rSλ cos(ψx)− r2

S

r2
W
IW

rSλ cos(ψx)− r2
S

r2
W
IW r2

totmW + r2
S

r2
W
IW + I ′B


C(~qyz, ~̇qyz) =

[
0 −rSλψ̇x sin(ψx)
0 0

]

G(~qyz) =
[

0
−λg sin(ψz)

]
Where:

rtot = rS + rB
mtot = mS +mB +mW

λ = mW (rS + rW ) +mBl

These matrices are similar to the result in [11], therefore the acquisition
process is considered as correct.

2.5.4 Linearization

A linear model needs to be created to lessen the difficulty of controlling tasks.
This is done by linearizing equations of motion, which were derived in a
previous section. Firstly, the state vector needs to be determined as:

~x =
[
~qyz
~̇qyz

]
=


θx
ψx
θ̇x
ψ̇x

 (2.41)
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Secondly, the input needs to be decided upon. This was done as follows:

u = τx (2.42)

The linearization will be done at the equilibrium point, which is in an unstable
position on the top of the ball. At this point, all states and inputs are equal
to zero:

~̄x =


0
0
0
0


ū = 0

(2.43)

A well known state-space form is defined as:

~̇x = A~x+ Cu
~y = C~x+ Du

(2.44)

Where D is a 4x1 zero matrix and the rest of matrices are obtained by:

A =


0 0 1 0
0 0 0 1
∂θ̈x
∂θx

∂θ̈x
∂ψx

∂θ̈x
∂θ̇x

∂θ̈x
∂ψ̇x

∂ψ̈x
∂θx

∂ψ̈x
∂ψx

∂ψ̈x
∂θ̇x

∂ψ̈x
∂ψ̇x


(~x,u)=(~̄x,ū)

B =


0
0
∂θ̈x
∂u
∂ψ̈x
∂u


(~x,u)=(~̄x,ū)

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(2.45)

As shown in [11], after substituting the equilibrium point (2.43) into Eq.
(2.40) and partially deriving it by each coordinate, the following reduction
can be made:(

∂M(~qyz)
∂xi

~̈qyz + M(~qyz)
∂ ~̈qyz
xi

+ ∂C(~qyz, ~̇qyz)
∂xi

~̇qyz + ∂G(~qyz)
∂xi

)
(~x,u)=(~̄x,ū)

= 0

(
M(~̄qyz)

∂ ~̈qyz
xi

+ ∂G(~qyz)
∂xi

)
(~x,u)=(~̄x,ū)

= 0

(2.46)

Where i denotes the i-th element of the state vector ~x.

Therefore:
∂ ~̈qyz
xi

= −M−1(~̄qyz)
∂G(~qyz)
∂xi (~x,u)=(~̄x,ū)

(2.47)
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.......................... 2.6. Equations of motion for the x-y plane

For the input, the reduction has the form of:(
M(~qyz)

∂ ~̈qyz
u

)
(~x,u)=(~̄x,ū)

=
(
∂~τext
∂u

)
(~x,u)=(~̄x,ū)

M(~̄qyz)
∂ ~̈qyz
u

=
(
∂~τext
∂u

)
(~x,u)=(~̄x,ū)

(2.48)

And therefore:
∂ ~̈qyz
u

= M−1(~̄qyz)
(
∂~τext
∂u

)
(~x,u)=(~̄x,ū)

(2.49)

Using Eq. (2.47) and Eq. (2.49), the elements of matrices A and B can be
calculated. After substituing the remaining uncalculated parameters, the
final state-space form is:

~̇x =


0 0 1 0
0 0 0 1
0 −23.1180 0 0
0 48.9145 0 0

 ~x+


0
0

136.9568
−127.3498

u (2.50)

~y =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ~x+


0
0
0
0

u (2.51)

The controllability and observability of this system can be evaulated using
equations:

con = rank
[
B AB A2B A3B

] ?= 4 (2.52)

obs = rank
[
C CA CA2 CA3

] ?= 4 (2.53)

Since the conditions of both equations have been met, the system is fully
controllable and observable.

2.6 Equations of motion for the x-y plane

2.6.1 Kinetic and potential energy

Energy of the ball

Due to Assumption 5, the kinetic energy of the ball is equal to zero:

TS,xy = 0 (2.54)
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Energy of the body

Because the body only rotates, the kinetic energy will consist purely of
rotational energy:

TB,xz = 1
2IB,xyψ̇

2
x (2.55)

Energy of the virtual wheel

The kinetic energy in this case is defined as:

TW,yz = 1
2mW~v

T
W,xy · ~vW,xy + 1

2IW,xyφ̇z
2 (2.56)

Where:

~vTW,xy · ~vW,xy = |vW,xy|2

= ẋ2
W,xy + ẏ2

W,xy

= (rS + rW )2ψ̇2
z

(2.57)

And where:
φ̇z = − rS

rW
ψ̇z (2.58)

(The entire calculation can be found in Appendix A.)

Therefore the kinetic energy of the virtual wheel is:

TW,xy = 1
2mW (rS + rW )2ψ̇2

z + 1
2IW,xy

(
− rS
rW

ψ̇z
)2

= 1
2

(
mW (rS + rW )2 + IW,xy

( rS
rW

)2
)
ψ̇2
z

(2.59)

The potential energy in all cases is equal to zero.

2.6.2 External torques

The only input in the x-y plane is τz. From Eq. (2.58), the Jacobian is
already known. Hence, the relationship between external torques and τz can
be rewritten as:

τext,xy = JT τz

τext,xy = − rS
rW

τz
(2.60)

2.6.3 Lagrangian mechanics

The Lagrangian in this case is:

L(ψz, ψ̇z) = TB,yz + TW,yz (2.61)
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Euler-Lagrange equation distributes the Lagragian to external torques as:

d

dt

( ∂L
∂ψ̇z

)
− ∂L

∂ψz
= τext,xy (2.62)

In the matrix form:
M(~qyz)~̈qyz = τext,xy (2.63)

Where:
M(~qyz) = IB,xy +mW (rS + rW )2 + IW,xy

( rS
rW

)2
(2.64)

2.6.4 Linearization

The state vector is defined as:

~x =
[
ψz
ψ̇z

]
(2.65)

With the input:
u = τz (2.66)

Solving Eq. (2.63) for ψ̈z yields:

ψ̈z = − rSu

IB,xyr2
W +mW (rS + rW )2r2

W + IW,xyr2
S

(2.67)

After deriving and substituing, the state-space form is:

~̇x =
[
0 1
0 0

]
~x+

[
0

−28006.1898

]
u (2.68)

~y =
[
1 0
0 1

]
~x+

[
0
0

]
u (2.69)

Also in this case, the controllability and observability was checked. The
system is fully controllable and observable.

2.7 Calculation of parameters

In previous sections, many of the parameters were listed. This section aims
to calculate them exactly or with an acceptable error.

2.7.1 Moment of inertia of the ball

The moment of inertia of the full ball with mass m and radius r is defined as:

I = 2
5mr

2 (2.70)

Thus the moment of inertia of the used ball is:

IS = 2
5mSr

2
S (2.71)
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2. 2D model ......................................
2.7.2 Moment of inertia of the body

Because the body can not be exactly described geometrically, an approxi-
mation is made. The body is indentified as a cuboid with mass mB, width
wB, height hB, and COM as height rB. The computation of the moment of
inertia of the cuboid rotation around the axis through its COM is:

I = 1
12m(w2 + h2) (2.72)

Therefore the moment of inertia in the y-z/x-z planes is defined as:

IB = 1
12mB(w2

B + h2
B) (2.73)

For the calculation of the moment of inertia about the axis the body rotates
around, as in [11] the parallel axis theorem [13] is used. It states that:

I ′ = I +ml2 (2.74)

Where l is in our case defined as the height difference between the COM of
the ball and the COM of the body. Hence:

l = rS + rB (2.75)

And the moment:
I ′B = IB +mBl

2 (2.76)

In the x-y plane, the moment of inertia of the body is defined as:

I = 1
6mw

2 (2.77)

Therefore:
IB,xy = 1

6mBw
2
B (2.78)
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2.7.3 Moment of inertia of the virtual wheel

ωOW1
ωOW1,x

ωOW1,y

φx

φz

α
α

x

z

(a) : Side view

ωOW1
ωOW1,x

ωOW1,y

ωOW2

ωOW2,x

ωOW2,y

ωOW3

ωOW3,x

ωOW3,y

π/3
π/3 x

y

(b) : Top view

Figure 2.5: Sketches of the angular rates of the omni-wheels - inspired by [11]

As shown in Fig. 2.5, the angular rates of the virtual omni-wheels are split
into individual components in the direction of the axis. This task is done
according to [6], [9], [10], and [11].

The angular rates around the x axis are:

ωOW1,x = φ̇x cos(α)

ωOW2,x = ωOW3,x = cos
(π

3
)
(−φ̇x) cos(α)

= −1
2 φ̇x cos(α)

(2.79)

Around the y axis they are:

ωOW1,y = 0

ωOW2,y = sin
(π

3
)
φ̇y cos(α)

=
√

3
2 φ̇y cos(α)

ωOW3,y = sin
(π

3
)
(−φ̇y) cos(α)

= −
√

3
2 φ̇y cos(α)

(2.80)

And finally around the z axis they are:

ωOW1,z = ωOW2,z = ωOW3,z = cos
(π

2 − α
)
φ̇z

= sin(α)φ̇z
(2.81)
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2. 2D model ......................................
The moment of inertia of the solid cylinder is defined as:

I = 1
2mr

2 (2.82)

Thus the moment of inertia of the omni-wheel is calculated as:

IOW = 1
2mOW r

2
OW (2.83)

For decomposition, calculations are needed (fully listed in Appendix A). The
result is:

IW = IW,x = IW,y = 3
2 cos(α)2(IOW + k2IM )

IW,xy = IW,z = 3 sin(α)2(IOW + k2IM )
(2.84)

Where k is gearbox reduction and IM is the inertia of the rotor in the real
motor.

2.7.4 Mass of the virtual wheel

The mass of the virtual wheel consists of three parts: the mass of the motor,
the mass of the shaft, and the mass of the omni-wheel.

mW = mM +mSh +mOW (2.85)

2.7.5 Angle α

As shown in Fig. 2.5, the angle α denotes the position of the omni-wheels on
the ball. This angle determines the geometrical transcription between the
angular velocities of the omni-wheels and the angular velocity of the ball. A
lot of research was done (especially in [6] and [11]) to estimate the best angle
for driving the ball. When α = 90◦, the rotation around the x and y axes is
impossible, while rotation around the z axis is elementary. The opposite is
the case with α = 0◦, the rotation around the x and y axes should be simple
and rotation around the z axis should be impossible. However, due to missing
a supporting triangle, the robot falls down. Hence an angle of α = 45◦ is
chosen, which gives the robot the ability to balance and rotate around the x,
y, and z axes.

2.7.6 Overview of parameters

For clarity, in the following table, all used parameters are listed.
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............................... 2.7. Calculation of parameters

Parameter Description Value

rS Radius of the ball 0.108 [m]

wB Width of the body 0.15 [m]

hB Height of the body 0.24 [m]

rB Half of the height of the body 0.12 [m]

rOW Radius of the omni-wheel 0.024 [m]

rW Radius of the virtual wheel 0.024 [m]

l Distance between ball’s COM and body’s COM 0.228 [m]

mS Mass of the ball 2.722 [kg]

mB Mass of the body 1.07 [kg]

mM Mass of the motor 0.076 [kg]

mSh Mass of the shaft 0.0034 [kg]

mOW Mass of the omni-wheel 0.038 [kg]

mW Mass of the virtual wheel 0.1174 [kg]

α Angle of the omni-wheels 45 [deg]

IS Moment of inertia of the ball 0.0127 [kgm2]

IB Moment of inertia of the body in y-z/x-z 0.0071 [kgm2]

I ′B Moment of inertia of the body about rotation axis 0.0628 [kgm2]

IB,xy Moment of inertia of the body in x-y 0.004 [kgm2]

IM Moment of inertia of the motor 1 · 10−5 [kgm2]

IOW Moment of inertia of the omni-wheel 1.0944 · 10−5 [kgm2]

IW Moment of inertia of the virtual wheel in y-z/x-z 1.5708 · 10−5 [kgm2]

IW,xy Moment of inertia of the virtual wheel in x-y 3.1416 · 10−5 [kgm2]

g Gravitational acceleration 9.81 [m/s2]

k Reduction of the gearbox 1 [-]

Table 2.1: Table of 2D parameters
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2. 2D model ......................................
2.8 Simulations

With computed parameters, the simulations of the physical and linearized
models can be made. Simulations are carried out to see whether the linearized
model is a good replacement for the physical model, as well as to see whether
there are any deviations and determine their size. Because the model is
identical in y-z and x-z planes, only y-z plane with x-y plane are simulated. In
the first simulation, the initial condition of the angle ψx was set 0.1◦. Below
the courses for angles are shown:
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Figure 2.6: Physical model - course of θx - ψx(t = 0) = 0.1◦
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Figure 2.7: Comparison for θx - ψx(t = 0) = 0.1◦
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Figure 2.8: Physical model - course of ψx - ψx(t = 0) = 0.1◦
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Figure 2.9: Comparison for ψx - ψx(t = 0) = 0.1◦

In Fig. 2.6 and 2.8 oscillations can be seen. The robot falls through the floor
and starts to oscillate around the centre of the ball. This is due to a lack
of floor definition. In Fig. 2.7 and 2.9 a limit angle of 10◦ is observed (see
Subsec. 4.3.2 for more information on the limit angle).
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2. 2D model ......................................
In the second simulation, the input of each system was changed to 0.01N/m.
As before, the angles θx and ψx were inspected for both systems.
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Figure 2.10: Comparison for θx - u = 0.01N/m
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Figure 2.11: Comparison for ψx - u = 0.01N/m
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Thirdly, the x-y plane was observed with an input of 0.001N/m.
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Figure 2.12: Comparison for ψz - u = 0.001N/m
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Figure 2.13: Comparison for ψ̇z - u = 0.001N/m

From these observations a conclusion can be made. The linearized model is a
satisfactory replacement for the physical model within the controlling limits.
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Chapter 3
3D model

This chapter aims to describe the structure of the system and physical model
of the BRB. As before, the dynamic model with equations of motion is derived
using Lagrangian mechanics and converted into a linearized model. While
linearizing, an equilibrium point in a balancing position is used. However, the
3D model cancels the assumption that the vertical planes are independent.
Therefore an approach is difficult and the calculations quite demanding.

3.1 Assumptions

The assumptions for the 3D model are identical to those for the 2D model
except the assumption of independent vertical planes. Shortly:.Rigid bodies

.Rigid floor

.Horizontal floor

. Friction

.No slip

.Omni-wheels

.Negligible time delay

Detailed information can be found in Sec. 2.1.
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3. 3D model ......................................
3.2 Model description

As with the 2D model, the 3D model consists of two rigid bodies - the ball
and the body. The body is modeled as a solid cuboid and the omni-wheels as
solid disks. The COM of the body (together with omni-wheels) is estimated
experimentally.

Figure 3.1: 3D illustration of the BRB

3.3 Coordinates

It is also necessary to define the coordinates for the 3D model. The coordinates
will be based on the DOFs of the system. To calculate DOFs, a closer look at
the system is required. Due to the no slip assumption, only the translation
of the ball is relevant. Therefore two DOFs are obtained. For the body,
orientations are also observed, which yield three more DOFs.

3.3.1 Minimal coordinates

The minimal coordinates are therefore defined as:

~q =
[
xS yS ψx ψy ψz

]T
(3.1)

Where xS and yS denote the translation of the ball along the x and y axes
and ψx, ψy, and ψz indicate the orientation of the body.

3.3.2 Coordinate frames

To describe the position of the ball and the orientation of the body, as in
[11], coordinate frames are used. For the orientation of the body, Tait-Bryan
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..................................... 3.3. Coordinates

(Yaw-Pitch-Roll) angles, a special case of Euler angles, are used. In total, six
coordinate frames are defined:. Inertial frame I

The basic inertial frame..Coordinate frame 1
Translation of the inertial frame with xS along its x axis..Coordinate frame 2
Translation of the coordinate frame 1 with yS along its y axis. Note that
this frame is located in the COM of the ball..Coordinate frame 3
Counterclockwise rotation of the coordinate frame 2 with ψz around its
z axis..Coordinate frame 4
Counterclockwise rotation of the coordinate frame 3 with ψy around its
y axis..Coordinate frame 5
Clockwise rotation of the coordinate frame 4 with ψx around its x-axis
together with translation of value l along its z-axis.

Figure 3.2: Illustration of coordinate frames - taken from [11]
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3. 3D model ......................................
3.3.3 Transformations

In [11], homogeneous matrices are also used to describe transformations
between established frames. The homogenous matrix from the frame Ψi to
the frame Ψj is defined as:

Hj
i =

[
Rj
i ~oji

~01×3 1

]
(3.2)

Where Rj
i is the rotation matrix from Ψi to Ψj , ~oji represents the position of

origin of Ψi expressed in Ψj and ~01×3 =
[
0 0 0

]
. Therefore:

H1
I =


1 0 0 −xS
0 1 0 0
0 0 1 0
0 0 0 1

 (3.3)

H2
1 =


1 0 0 0
0 1 0 −yS
0 0 1 0
0 0 0 1

 (3.4)

H3
2 =


cos(ψz) sin(ψz) 0 0
− sin(ψz) cos(ψz) 0 0

0 0 1 0
0 0 0 1

 (3.5)

H4
3 =


cos(ψy) 0 sin(ψy) 0

0 1 0 0
− sin(ψy) 0 cos(ψy) 0

0 0 0 1

 (3.6)

H5
4 =


1 0 0 0
0 cos(ψx) − sin(ψx) 0
0 sin(ψx) cos(ψx) −ů
0 0 0 1

 (3.7)

Using these matrices, transformation between any of the frames can be made.

3.4 Variables

The last step in obtaining equations of motion is to derive the variables
that will be used. As shown in [11], this is possible with defined coordinate
frames and transformations between them. Note that the procedure in this
section draws on the mentioned reference. For clarification, an overview of
all markings used in this thesis can be found in the following table.
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Marking Description

Hj
i Homogeneous matrix form Ψi to Ψj

Rj
i Rotation matrix form Ψi to Ψj

~oji Position of origin of Ψi expressed in Ψj

~ri,jk Position of Ψk w.r.t. Ψj , expressed in Ψi

~vi,jk Linear velocity of Ψk w.r.t. Ψj , expressed in Ψi

~ωi,jk Angular velocity of Ψk w.r.t. Ψj , expressed in Ψi

~T i,jk Twist of Ψk w.r.t. Ψj , expressed in Ψi

IiO Inertia tensor of an object O around its COM chosen in Ψi

~IO Moment of inertia of an object O around its COM
~I ′O Moment of inertia of an object O around its rotation axis

AdHj
i

Adjoint matrix of Hj
i that maps twist from Ψi to Ψj

Table 3.1: Table of markings

Where w.r.t. stands for "with relation to".

The twist vector is defined as a conjunction of the angular velocity vec-
tor and of the linear velocity vector:

~T i,jk =
[
~ωi,jk
~vi,jk

]
(3.8)

A coordinate change of a twist ~T i,jk to coordinate frame n is defined as:

~Tn,jk = AdHn
i
· ~T i,jk (3.9)

With the adjoint matrix:

AdHn
i

=
[

Rn
i 03×3

õni ·Rn
i Rn

i

]
(3.10)

Where 03×3 is 3x3 zero matrix and:

õni =

 0 −oz oy
oz 0 −ox
−oy ox 0

 (3.11)

The elements of this matrix are obtained from:

~oni =
[
ox oy oz

]T
(3.12)
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3.4.1 Velocities of the ball

Linear velocity of the ball w.r.t. ΨI , expressed in the same frame, is marked
as the linear velocity of Ψ2 w.r.t. ΨI , also expressed in the same frame:

~vI,I2 =

ẋSẏS
0

 (3.13)

Due to the lack of rotation of Ψ2 w.r.t. ΨI , the angular velocity ~ωI,I2 is equal
to zero:

~ωI,I2 =

0
0
0

 (3.14)

Note that this angular velocity is not the angular velocity of the ball.
Hence the twist ~T I,I2 w.r.t ΨI , expressed in ΨI is:

~T I,I2 =



0
0
0
ẋS
ẏS
0


(3.15)

Using this twist, the twist Ψ2 w.r.t. ΨI , expressed in Ψ2 can be introduced
as:

~T 2,I
2 = AdH2

I
· ~T I,I2 (3.16)

For later calculations, the twist Ψ2 w.r.t. ΨI , expressed in Ψ5 is needed. The
definition is as follows:

~T 5,I
2 = AdH5

I
· ~T I,I2 (3.17)

Now the angular velocity of the ball remains to be clarified.
With help of the auxiliary vector:

~rT =

 0
0
rS

 (3.18)

And basic formula for the angular velocity:

~ω = ~r × ~v
|~r|2

(3.19)

The angular velocity of the ball w.r.t ΨI , expressed in Ψ2 is calculated as:

~ω2,I
S = ~rT × ~v2,I

2
|~rT |2

=


ẏS
rS
− ẋS
rS
0

 (3.20)
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3.4.2 Velocities of the body

The twist of the body w.r.t. ΨI , expressed also in ΨI is marked as the twist
of the frame Ψ5 w.r.t. ΨI , expressed in ΨI . Therefore:

~T I,I5 = J · ~̇qj (3.21)

Where J is the Jacobian matrix, which maps the joint velocities to the body
of the BRB. Due to Tait-Bryan angles, the velocities are defined as:

~̇qj =
[
ẋS ẏS ψ̇z ψ̇y ψ̇x

]T
(3.22)

and the Jacobian as:

J =
[
~T I,I1

~T I,12
~T I,23

~T I,34
~T I,45

]
=
[
~T I,I1 AdH1

1
· ~T I,12 AdHI

2
· ~T 2,2

3 AdHI
3
· ~T 3,3

4 AdHI
4
· ~T 4,4

5

] (3.23)

The twists for its computation, using Fig. 3.2, are derived as:

~T I,I1 =
[
0 0 0 1 0 0

]T
~T 1,1

2 =
[
0 0 0 0 1 0

]T
~T 2,2

3 =
[
0 0 1 0 0 0

]T
~T 3,3

4 =
[
0 1 0 l 0 0

]T
~T 4,4

5 =
[
−1 0 0 0 l 0

]T
(3.24)

Where the linear velocity of the twist ~T 3,3
4 is computed as:

~v3,3
4 =

(
~ω3,3

4 ×R3
4 ·~lT

)
And respectively, the linear velocity of the twist ~T 4,4

5 as:

~v4,4
5 =

(
~ω4,4

5 ×R4
5 ·~lT

)
Where ~lT =

[
0 0 l

]T
.

Having solved Eq. (3.21), the twist of the body w.r.t. ΨI , expressed in
Ψ5 can be calculated:

~T 5,I
5 = AdH5

I
· ~T I,I5 (3.25)

3.4.3 Angular velocities of the omni-wheels

Due to assumption 5, the circumferential velocity of the omni-wheel is identical
to the circumferential velocity of the ball in the direction of that omni-wheel.
Let us define φi as the angular velocity of the i-th omni-wheel with a positive
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3. 3D model ......................................
counterclockwise rotation. Therefore, with Eq. (2.12) (derived in Sec. 2.4)
and setting angle β = 0◦, the vectors from the centre of the ball to each
omni-wheel are defined as:

~rW,1 = rS

sin(α)
0

cos(α)


~rW,2 = rS

−
1
2 sin(α)√
3

2 sin(α)
cos(α)


~rW,3 = rS

 −
1
2 sin(α)

−
√

3
2 sin(α)
cos(α)



(3.26)

Together with unit vectors in the direction of each omni-wheel:

~uW,1 =

0
1
0


~uW,2 =

−
√

3
2
−1

2
0


~uW,3 =


√

3
2
−1

2
0



(3.27)

The circumferential velocities can be calculated and the angular velocity of
the omni-wheel defined as:

φ̇irW = (~ω5,5
S × ~rW,i) · ~uW,i

φ̇i = 1
rW

(
(~ω5,5
S × ~rW,i) · ~uW,i

) (3.28)

Where i = 1, 2, 3 and:

~ω5,5
S = ~ω5,I

S − ~ω
5,I
5

= R5
2 · ~ω

2,I
S − ~ω

5,I
5

(3.29)
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3.5 Equations of motion

As for the 2D model, the equations of motion will be also obtained using
Lagrangian mechanics. The kinetic and potential energy for relevant parts of
the BRB and external torques are listed below.

3.5.1 Kinetic and potential energy

In the case of the 3D system, the energies were obtained using [11].

Energy of the ball

The kinetic energy of the ball is defined as:

TS = 1
2
~T 2,IT

2 ·
[

I2
S 03×3

03×3 mSI3×3

]
· ~T 2,I

2 + 1
2~ω

2,IT
S · I2

S · ~ω
2,I
S

= 1
2~ω

2,IT
2 · I2

S · ~ω
2,I
2 + 1

2mS~v
2,IT
2 · ~v2,I

2 + 1
2~ω

2,IT
S · I2

S · ~ω
2,I
S

= 1
2mS~v

2,IT
2 · ~v2,I

2 + 1
2
(
R2
I · ~ω

I,I
S

)T
· I2
S ·
(
R2
I~ω

I,I
S

)
(3.30)

Where I3×3 is a 3x3 identity matrix.

Also in the 3D model, Assumption 3 causes the potential energy of the
ball to be equal to zero.

VS = 0 (3.31)

Energy of the body

For the body, the kinetic energy is defined similarly as:

TB = 1
2
~T 5,IT

5 ·
[

I5
B 03×3

03×3 mSI3×3

]
· ~T 5,I

5

= 1
2~ω

5,IT
5 · I5

B · ~ω
5,I
5 + 1

2mB~v
5,IT
5 · ~v5,I

5

(3.32)

The potential energy has the form:

VB = mB

[
0 0 g

]
RI

5

0
0
l

 (3.33)

Energy of the omni-wheels

The energy of i-th omni-wheel is denoted by its rotational energy as:

TWi = 1
2IOW φ̇

2
i + 1

2IM (kφ̇i)2 (3.34)

And the potential energy is equal to zero.

VWi = 0 (3.35)
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3.5.2 External torques

For further computation, external torques need to be defined. As shown
in Subsec. 2.4.3, in the case of the 2D plane, it is possible to describe the
transformation between the external torques and the real torques using the
Jacobian matrix. Therefore, as shown in [11], the definition:

φ̇1
φ̇2
φ̇3

 = J ·


ẋS
ẏS
ψ̇x
ψ̇y
ψ̇z

 (3.36)

can be made and and calculated using Eq. (3.28). The result is obtained
using an inversion of the Jacobian matrix:

~τext = JT ·

τ1
τ2
τ3

 (3.37)

Due to its complicated form, the transposition is represented only symboli-
cally.

3.5.3 Lagrangian mechanics

With these external torques, energies, minimal coordinates, and the La-
grangian, the Euler-Lagrange equations can be created.

L(~q, ~̇q) = TS + TB + TW − VS − VB − VW (3.38)

d

dt

(∂L
∂q̇i

)
− ∂L

∂qi
= τexti (3.39)

Where i = 1, 2, 3, 4, 5. For simplification, the same matrix notation as in the
2D case is used here.

M(~q)~̈q + C(~q, ~̇q)~̇q + G(~q) = ~τext (3.40)

Where M is a matrix of inertial forces due to accelerations, C is a matrix of
coriolis and centrifugal forces, and G is a matrix of gravitational forces.
The full forms of the matrices are not listed here, due to their complexity.

3.5.4 Linearization

Let us define the state vector for the 3D case as:

~x =
[
~q

~̇q

]
=
[
xS yS ψx ψy ψz ẋS ẏS ψ̇x ψ̇y ψ̇z

]T
(3.41)
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............................... 3.6. Calculation of parameters

and the input vector as:

~u =

τ1
τ2
τ3

 (3.42)

As before, the linearization will be done on an unstable equilibrium point on
the top of the ball, with all states and inputs equal to zero.

~̄x =
[
0 0 0 0 0 0 0 0 0 0

]T
~̄u =

[
0 0 0

]T (3.43)

The state-space representation is given by:

~̇x = A · ~x+ C · ~u
~y = C · ~x+ D · ~u

(3.44)

Where C is a 10x10 identity matrix, D is a 10x3 zero matrix, and other
matrices are computed in the same way as in Subsec. 2.5.4. Therefore, after
substitusions and calculations, their forms are:

A =



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 −1.8433 0 0 0 0 0 0
0 0 −1.8433 0 0 0 0 0 0 0
0 0 14.3425 0 0 0 0 0 0 0
0 0 0 14.3425 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



B =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 7.0841 −7.0841

−8.1800 4.0900 4.0900
3.6237 −1.8119 −1.8119

0 −3.1383 3.1383
−684.4921 −684.4921 −684.4921



(3.45)

Further calculations show that the system is fully controllable and observable.

3.6 Calculation of parameters

In the previous section, many parameters were used. The majority of them
have been listed in Tab. 2.1. Two of them, however, still need to be defined
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3. 3D model ......................................
and calculated [11].

3.6.1 Intertia tensor of the ball

Let us define the inertia tensor of the ball as:

I2
S =

IS 0 0
0 IS 0
0 0 IS

 (3.46)

Where IS is the moment of inertia of the ball (listed in the reference table
2.1).

3.6.2 Intertia tensor of the body

We define the inertia tensor of the body as:

I5
B =

IB,x 0 0
0 IB,y 0
0 0 IB,z

 (3.47)

Where IB,i is the moment of inertia of the body about the i-th axis of the
coordinate frame of its COM.

Defined in Subsec. 2.7.2, the moment of inertia of a cuboid of width w
and heigth w, about the x or y axis is given by:

Ix,y = m(w2 + h2

12 (3.48)

And about the z axis as:
Iz = mw2

6 (3.49)

Therefore, the moments of inertia of the body about the i-th axis of the COM
are:

IB,x = 1
12mB(w2

B + h2
B)

IB,y = 1
12mB(w2

B + h2
B)

IB,z = 1
6mBw

2
B

(3.50)

Note that the total mass of the body consists of the mass of the frame, motors,
shafts, and omni-wheels.

3.7 Simulations

Several simulations determine the accuracy of the linearized model were made.
Similar to simulations of the 2D model, two basic tests were done.

The first test is with initial condition of ψx = 0.1◦:
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Figure 3.3: Comparison for ψx - ψx(t = 0) = 0.1◦
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Figure 3.4: Comparison for yS - ψx(t = 0) = 0.1◦

As can be seen, even after the limit angle is exceeded, the linearized model is
a very accurate replacement of the physical model.
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3. 3D model ......................................
The second test is with constant imnput uy = 0.01N/m and zero initial
conditions:
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Figure 3.5: Comparison for ψx - uy = 0.01N/m

t [s]

0 0.5 1 1.5

d
is

ta
n
c
e
 [
m

]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Comparison of models

y
S
 -physical model

y
S
 -linearized model

Figure 3.6: Comparison for yS - uy = 0.01N/m

Even with constant input, the linearized system acts accurately and can be a
satisfactory substitution for the physical model for the limits in which the
BRB operates.
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Chapter 4
Controller design

In this chapter a controller is designed using the 3D model derived in the
previous chapter. The main aims of the controller are to keep the robot stable
on the top of the ball and track its trajectory.

In the first section, the methods used in contemporary literature are de-
scribed. The second section discusses the controller requirements and design
approach. Lastly, a Linear-Quadratic Regulator (LQR) controller is designed
in the third section.

4.1 Controllers of previously created BRBs

.CMU
Balancing controller: PID controller
Position controller: PID controller with offline trajectory planning.TGU
Balancing and position controller: Two PD controllers.UA
Balancing and position controller: LQR controller with full state feedback
and two extra Integral states. ETH
Balancing controller: Non-linear controller based on LQR theory
Position controller: Non-linear controller based on LQR theory with
feedforward.NCHU
Balancing and position controller: LQR controller with full state feedback.UT
Balancing and position controller: LQR controller with full state feedback
and later SISO controller

43



4. Controller design ...................................
4.2 Requirements and approach

At first, an assumption needs to be made: that the linearized model is
approximately equivalent to the nonlinear model in the proximity of the
equilibrium point. The proof can be seen in Figures 3.3 - 3.6. Contemporary
literature often shows that the angles of the body and position of the ball
can be controlled by a single linear controller. Thus this paper also aims to
design such a controller, using the same procedure as in [11], and adapting
it to the requirements of this project. So firstly, the controller requirements
need to be defined.

4.2.1 Design requirements

A well-designed controller is considered to be one that satisfies the following
rules:. the system is internally stable - all the Closed Loop (CL) poles have a

negative real part. the sensitivity function attenuates disturbances up to 2Hz down by at
least 80%

mag2db(0.2) = −14dB

. the CL transfer function attenuates frequencies above 250Hz down by
at least 80% (-14 dB), due to Nyquist-Shannon sampling theorem and
sampling frequency 500Hz. the settling time of the step response of pitch and roll angle is between
two and four seconds for stabilization. the torque saturations of motors are minimized.

4.2.2 Design approach

Due to the short project length, simplicity is more important than performance.
The LQR design method was therefore chosen due to its short calculating
time, despite the fact that finding an optimal controller with LQR theory is a
difficult task. However, a suboptimal controller can be found relatively easily.

4.3 LQR controller design

In this section a LQR controller is designed to control the angles of the body
and position of the whole robot at the same time.
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.................................4.3. LQR controller design

4.3.1 LQR control theory

LQR is an acronym for Linear-Quadratic Regulator. A special type of
proportional derivative controller with feedback and a single gain matrix K,
implemented as ~u = K~e in the state-space form (3.44), where ~e is an error
vector defined as ~e = ~xref − ~x. This results in the CL system shown in Fig.
4.1, with state representation expressed by the following equations:

~̇x = (A−BK)~x+ BK~xref

~y = C~x
(4.1)

Torques States

Plant

Errors Torques

Controller

1

x_ref

1

y

x

Figure 4.1: The closed loop system

As has been mentioned, the implementation of the control matrix K is
~u = K~e. The calculation of this matrix is done by minimizing the quadratic
cost function given by:

J(~u) =
∫ t1

t0
(~eTQ~e+ ~uTρR~u)dt (4.2)

With Q defined as NTQ′N, where N defines the plant outputs which need to
be controlled and Q′ is the weighting matrix of the controlled outputs. Matrix
R is the weighting matrix of controller outputs, ρ is a positive constant, and
the time interval bounds are t0 = 0, t1 =∞.

As there is no way to find the optimal matrices Q, R, and constant ρ,
Bryson’s rule [14] is used to estimate the initial values of matrices Q′ and R.
Diagonal elements of these matrices are chosen as follows:

Q′ii = 1
e2
i,max

(4.3)

Rjj = 1
u2
j,max

(4.4)

Where ei,max is the maximum possible value of the error with respect to the
reference value of the state i, and uj,max is the maximum possible value of
the input j. Moreover the parameter ρ also needs to be estimated. When
ρR >> Q, the control effort cost function is dominant. Similarly when
ρR << Q, the error cost function is dominant. A mid-point between these
two extremes is needed, so the controller focuses on minimizing both extremes.
For the beginning state of design, ρ = 1 was chosen and further adjusted to
satisfy the requirements given in 4.2.1.
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4. Controller design ...................................
4.3.2 Application on the BRB

Due to the linearized model of BRB in Subsec. 3.5.4, all states are controlled.
Thus matrix N is a 10x10 identity matrix. The maximum possible values of
the errors were set approximately to:

eSx,Sx = eSy ,Sy = 0.5 [m]
eψx,ψx = eψy ,ψy = 10 [deg]

eψz ,ψz = 360 [deg]

and their derivatives to three times the previous values:

eṠx,Ṡx = eṠy ,Ṡy = 1.5 [m/s]
eψ̇x,ψ̇x = eψ̇y ,ψ̇y = 30 [deg/s]

eψ̇z ,ψ̇z = 1080 [deg/s]

Hence the matrix Q′ can be extimated as:

Q′ =



1
0.52 0 0 0 0 0 0 0 0 0
0 1

0.52 0 0 0 0 0 0 0 0
0 0 1802

(10π)2 0 0 0 0 0 0 0
0 0 0 1802

(10π)2 0 0 0 0 0 0
0 0 0 0 1802

(360π)2 0 0 0 0 0
0 0 0 0 0 1

1.52 0 0 0 0
0 0 0 0 0 0 1

1.52 0 0 0
0 0 0 0 0 0 0 1802

(30π)2 0 0
0 0 0 0 0 0 0 0 1802

(30π)2 0
0 0 0 0 0 0 0 0 0 1802

(1080π)2


(4.5)

For driving the omni-wheels, three EV3 Large Servo Motors are used, one
for each wheel. The maximum torque for a motor of this type is 30 oz/in,
which equals roughly 0.21 N/m [21]. The omni-wheels are directly attached
to the motors without a transmission. Thus, the maximum torque of a single
omni-wheel is identical to the maximum torque of a single motor. Therefore,
the matrix R is estimated as:

R =

 1
0.212 0 0

0 1
0.212 0

0 0 1
0.212

 (4.6)

The parameter ρ now needs to be tuned. For this purpose, nine values were
chosen and nine LQR controllers computed with them. The requirements
stated in 4.2.1 have been complied with, and the best controller was chosen.

Figure 4.2 below shows the settling time of the step response of pitch angle
for a step signal of size 10◦. For ρ = 0.5 and above the fourth requirement
was not met.
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Figure 4.2: Meeting the fourth requirement

4.3.3 Separation of torques

For the next stage in the process, separation of torques is required. This will
make distribution of matrix K into Proportional Derivative (PD) controllers
for each cordinate possible so that these controllers are independent and can
be applied in all directions.

This process was already discussed in relation to the 2D model in Sec. 2.4,
where the torque τz was defined as clockwise positive. In the 3D model, all
torques will be defined as counterclockwise positive. Thus the last column of
the matrix J from the Eq. (2.19) needs to be negative. Substituting α = 45◦
and β = 0◦ results in:

J =


2
√

2
3 0 −

√
2

3
−
√

2
3

√
6

3 −
√

2
3

−
√

2
3 −

√
6

3 −
√

2
3

 (4.7)

Torques τ1, τ2 and τ3 can now be separated as:τ1
τ2
τ3

 = J

τxτy
τz

 (4.8)

The new linearized system on which the tests for separated coordinates will
take place is defined as:

~̇x = A~x+ BJũ
~y = C~x

(4.9)

Where ũ = [τx, τy, τz]T .

Note that the coeficients of the controller (matrix K) in the fifth and tenth
columns are premultiplied by -1 to achieve counterclockwise positive rotation
of the torque τz.
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4. Controller design ...................................
4.3.4 Frequency domain requirements verification

The transfer function matrix of the state-space model is defined as:

P = C(sI−A)−1BJ (4.10)

where I is a 10x10 identity matrix.

The controller which controls the torques in x, y, and z directions is de-
rived by:

Kx,y,z = J−1K (4.11)

By summing up the combination of gains with relevant coordinates and their
derivatives, PD controllers are created. With these controllers and the transfer
function matrix, all needed system transfer functions can be calculated. Note
that the transfer functions of xS and yS are identical. The same is also the
case for the transfer functions of ψx and ψy.

At the beginning, a value of ρ = 0.01 was chosen due to its meeting the
fourth requirement. However, it can be seen in Figure 4.3 that the sensitivity
function for this value does not satisfy the second requirement.
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Figure 4.3: Meeting the second requirement (ρ = 0.01)

Thus, a new value was chosen to satisfy this requirement. The next two
figures show the sensitivity functions for ρ = 0.005 and ρ = 0.001.
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Figure 4.4: Meeting the second requirement (ρ = 0.005)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
a
g
n
it
u
d
e
 (

d
B

)

-30

-25

-20

-15

-10

-5

0

5

10

SxS , SyS

Sψx
, Sψy

Sψz

Sensitivity functions

Frequency  (Hz)

Figure 4.5: Meeting the second requirement (ρ = 0.001)

As can be seen, in Figure 4.4 the criterion is almost met. In Figure 4.5 the
criterion is met with a large margin. Therefore, the optimal value for ρ will
be between these two values. The answer to which value should be chosen is
hidden in satisfying the third requirement. Therefore the closed loop transfer
functions were obtained and their bode characteristics plotted.

49



4. Controller design ...................................

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
a
g
n
it
u
d
e
 (

d
B

)

-30

-25

-20

-15

-10

-5

0

5

10
T xS , T yS

T ψx
, T ψy

T ψz

CL transfer functions

Frequency  (Hz)

Figure 4.6: Meeting the third requirement (ρ = 0.005)
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Figure 4.7: Meeting the third requirement (ρ = 0.001)

While not meeting the second requirement, ρ = 0.005 satisfies the third
requirement with a large margin. As can be seen, ρ = 0.001 is unsatisfactory.
Thus the value of ρ will be a little less than 0.005. From these observations a
conclusion can be drawn: ρ = 0.004. Below, ρ = 0.004 is shown to meet the
second, third, and fourth requirements.

50



.................................4.3. LQR controller design

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
a
g
n
it
u
d
e
 (

d
B

)

-30

-25

-20

-15

-10

-5

0

5

10

SxS , SyS

Sψx
, Sψy

Sψz

Sensitivity functions

Frequency  (Hz)

Figure 4.8: Meeting the second requirement (ρ = 0.004)
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Figure 4.9: Meeting the third requirement (ρ = 0.004)
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Figure 4.10: Meeting the fourth requirement (ρ = 0.004)

Now it remains to verify the first and most important requirement - system
stability. To determine if the system is stable, the bode characteristics for
all three CL transfer functions need to be observed. For demonstration, only
the bode diagram for the first CL transfer function was plotted.
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Figure 4.11: Bode plot of the first CL transfer function

The transfer function has, in the Laplace transform, the form of:

Txy = 65.49
s+ 64.98 (4.12)

Because the transfer functions of coordinate xS and yS are the same, the pole
is doubled and rewritten in [rad/s] as:

p1 = −1.134
p2 = −1.134

52



.................................4.3. LQR controller design

The transfer function for the second CL transfer function is:

Tψx,ψy = 109.6
s+ 113.3 (4.13)

The transfer functions of coordinate ψx and ψy are the same. Therefore, the
pole is doubled and rewritten in [rad/s] as:

p3 = −1.9778
p4 = −1.9778

The last CL transfer function remains to be estimated. The approximation
yields a transfer function:

Tψz = 212.4
s+ 211.1 (4.14)

And a pole which can be rewritten in [rad/s] as:

p5 = −3.684

The first requirement of the system stability is met and the final form of
controller matrix is:

K =



0 4.6957 −4.6957
−5.4222 2.7111 2.7111
−73.4594 36.7297 36.7297

0 63.6177 −63.6177
−0.3051 −0.3051 −0.3051

0 4.6169 −4.6169
−5.3311 2.6655 2.6655
−20.1568 10.0784 10.0784

0 17.4563 −17.4563
−0.1032 −0.1032 −0.1032



T

. (4.15)

4.3.5 Simulations

Further simulations were made to demonstrate controller performance in point
stabilization and trajectory tracking. A disturbance signal for coordinates
ψx, ψy of sinus wave of amplitude 5π/180 [rad] and frequency π [rad/s] was
created.
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Figure 4.12: Disturbance sinus signal used for angles ψx and ψy

This signal was gradually applied to the respective angles and the torques
were monitored at the output of the controller.
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Figure 4.13: Torques for disturbance signal in ψx
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Figure 4.14: Torques for disturbance signal in ψy

In both cases, the applied torques did not exceed saturation values.

In the next figures, trajectory tracking related graphs are plotted. The
reference signal for both values xS and yS was chosen as a ramp with slope 1.
For xs a ramp with saturation over 2m was chosen, and for ys with saturation
over 1m.

t [s]

0 1 2 3 4 5 6 7 8 9 10

d
is

ta
n
c
e
 [
m

]

-0.5

0

0.5

1

1.5

2

2.5
Trajectory tracking

reference x
S

reference y
S

x
S

y
S

Figure 4.15: Tracking of given trajectory

The reference tracking acted slow but accurate - about half a second is
required for a reaction on a reference change. However, the tracking has an
approximately identical course with the reference, and is very accurate with
time tending to infinity. The applied torques were also observed.
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Figure 4.16: Torques for tracking of given trajectory

As in Figures 4.13 and 4.14, the torques were in acceptable range.

Due to this and previous results, the controller was found to be fully satisfac-
tory and implemented into a physical model.
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Chapter 5
Robot design

As the title suggests, this chapter is dedicated to the robot design. Firstly
the requirements are set. After that, the LEGO Mindstorms EV3 building
kit is introduced, followed by a description of the built robot. The building
instructions and other necessary steps are also listed.

5.1 Design requirements

Several requirements were stated in previous chapters. Together with request-
ing LEGO as a building material, the list of requirements is:.Position of the COM of the body

The COM of the body is located in the centre of horizontal plane, which
intersects the body at a reasonable height..Position of gyroscopes
Gyroscopes are located near the COM of the body, fixed at the same
height and oriented in the direction of x and y axes respectively..Position of omni-wheels
Omni-wheels are mounted to the body with a spacing of 120◦..Angle of omni-wheels
The angle between the body and each omni-wheel is 45◦..Building material
The whole body is built using the LEGO EV3 building kit.
The ball is a bowling ball.
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5. Robot design.....................................
5.2 LEGO Mindstorms EV3 building kit

5.2.1 What is LEGO?

LEGO is a well-known Danish construction toy with worldwide popularity.
Among its biggest advantages is the compatibility of all sets and clever
connection of parts. It is therefore possible to combine sets to create structures
of any type or dismantle already assembled creations and reuse bricks without
any additional costs. But there are also bad downsides, including: the weight
of the bricks, and the complexity of constructing non-rectangular structures.

5.2.2 What is Mindstorms EV3?

Figure 5.1: LEGO Mindstorms Education EV3 Core Set - Source [16]

Mindstorm is a branch of LEGO products for creation of robots. Both
hardware and software are provided for controlling the "intelligent" parts.
The EV3 stands for version of the platform. There are in total four platforms
[15], sorted from the oldest: RIS, NXT, NXT 2.0, and EV3. The EV3 is the
latest and was introduced in 2013. For the purpose of this project, the EV3
was choosen for its modernity and ability to run a selected programming
language.

5.2.3 Parts

Due to the robot’s complexity, together with the Core Set, the LEGO Mind-
storms Education EV3 Expansion Set is also used. A list of all parts contained
in these two sets can be found at [17]. Below, the most important parts are
described.
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...........................5.2. LEGO Mindstorms EV3 building kit

Intelligent Brick

Figure 5.2: EV3 Intelligent Brick - Source [18]

The intelligent brick is a programmable controlling part. Here the signals
from the sensors are processed, the calculations are made, and the motors are
controlled. Communication with other devices is also done here. A Linux-
based operating system allows the implementation and running of personal
Linux distributions, as well as providing a pre-defined distribution. The brick
is powered by six AA batteries or by the rechargable battery pack.

A short overview of the main features:. ARM 9 processor with Linux-based operating system. Four input ports for data acquisition of up to 1000 samples per/sec. Four output ports for execution of commands.On-board program storage including 16 MB of Flash memory and 64
MB of RAM.Mini SDHC card reader for 32 GB of expanded memory. Illuminated, three-color, six-button interface that indicates the brick’s
active state. Hi-resolution 178x128 pixel display enabling detailed graph viewing and
sensor data observation. High-quality speaker.On-brick programming and datalogging that can be uploaded into the
EV3 software. Computer-to-brick communication through on-board USB, or external
Wi-Fi or Bluetooth dongles

Reference [18]
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5. Robot design.....................................
Sensors

(a) : EV3 Touch Sensor (b) : EV3 Gyro Sensor

Figure 5.3: EV3 Sensors - Source [19], [20]

The touch sensor (shown in Fig. 5.3a) is very precise sensor, which can detect
multiple presses. The output of this sensor is logical one (pressed) or logical
zero (released).

The gyro sensor (shown in Fig. 5.3b) serves to measure rotation and angle
changes. The output is either angular velocity or its integration - angle of
inclination.

A short overview of the main features:. Angle mode measures angles with an accuracy of +/- 3 degrees..Gyro mode has a maximum output of 440 degrees/second.. Sample rate of 1 kHz

Reference [20]

LEGO also provides other types of sensors but they are not relevant for
this project. Hence their description is not necessary.
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...................................... 5.3. The body

Motors

Figure 5.4: EV3 Large Servo Motor - Source [21]

The large servo motor is a very strong motor with a tacho feedback feature.
This feature allows precise control, and the signa from the encoder can be
also used in brick computations.

A short overview of the main features:. Tacho feedback to one degree of accuracy. 160-170 rpm. Running torque of approximately 21 N/cm. Stall torque of approximately 40 N/cm

Reference [21]

The set also contains a medium version of this motor (EV3 Medium Servo
Motor), which is not specified further as it is not used in the construction of
this robot.

5.3 The body

This section describes body design. For clarity the body was divided into 5
parts which combine to create a whole. The design program LEGO Digital
Designer was used. Full building instructions can be found in Appendix B -
root\building_instructions.
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5. Robot design.....................................
5.3.1 Upper part

The upper part contains the intelligent brick and the touch sensor. They are
mounted on the middle part using additional small parts.

Figure 5.5: Composite upper part

5.3.2 Middle part

As required, the gyroscopes are placed on the central axis, where the COM
of the whole body is located. The other requirement, β = 120◦ is met by
forming imaginary triangles, on whose vertices the motors will be attached.

Figure 5.6: Composite middle part

5.3.3 Lower part

The lower part is composed of three identical parts, which are made of motors,
omni-wheels, and struts. The angle of the omni-wheels requirement is met,
and the mounting of the middle part on the lower part creates a supporting
triangle. for driving the ball. Note that due to the lack of a virtual model of
the omni-wheel the model uses a normal wheel as a substitute.
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...................................... 5.3. The body

Figure 5.7: Composite one piece of lower part

5.3.4 Frames

For better mass distribution and reinforcment of the joints, the inner and
outer frame is made. They are directly attached to the lower part as shown
in the ’connection’ subfolder.

(a) : Inner frame (b) : Outer frame

Figure 5.8: Composite frames

5.3.5 Omi-wheels

The Hitechnic Rotacaster Multi-directional wheel was chosen as a suitable
omni-wheel. Its diameter is 48mm, weight 39g, and maximum load 18kg.

Figure 5.9: Hitechnic Rotacaster Multi-directional wheel - Source [22]
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5. Robot design.....................................
5.4 The ball

As has been mentioned, the ball on which the robot balances is a bowling
ball. Experimental simulations with different inflatable balls show that the
robot bounces into the ball and has difficulty manipulating it. Therefore, the
bowling ball was chosen because it is a ball of evenly distributed weight with
a rigid surface. The mass of the ball was chosen to be 6Lbs and the brand as
shown in the following figure:

Figure 5.10: EBONITE: Maxim - Night Sky Bowling Ball - Source [23]

To minimize slip, the whole ball was rubberized. Firstly a base layer to
improve adhesion (Body Plasto Fix 340) was applied. Secondly, (Body 950
White) rubber spray was applied multiple times. Lastly, the blue CTU Logo
was created at the side of the ball using a conventional blue spray.
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Chapter 6
Controller implementation

After completing the assembly of the body, the previously derived LQR
controller needs to be implemented. For this, a programming language needs
to be chosen, and communication between the computer and the intelligent
brick established. The last step before implementing the controller is obtaining
the state vector ~x.

6.1 Programming language

After several considerations, the Matlab Simulink Visual Programming Lan-
guage (VPL) was chosen due to its support library for the LEGO Mindstorms
EV3, its low computational demands, and its well-arranged design. Like other
VPL’s, the Simulink lets users create programs by connecting pre-defined or
custom blocks. Therefore, the program is more clear for a wider audience.
For more information about Simulink, see reference [24].

6.1.1 List of functions

The LEGO Mindstorms EV3 Support from Simulink [25] provides multiple
blocks which implement many features. Full description of these features can
be found in Mathworks Documentation. For our purpose the following are
relevant:

Touch Sensor and Gyro Sensor blocks

The Touch Sensor block (shown in Fig. 6.1a) detects whether a selected EV3
Touch Sensor is being pressed. As stated before, logical one means ’pressed’
and logical zero ’released’.

The Gyro Sensor block (shown in Fig. 6.1b) measures the rate of rota-
tion in degrees per second of a selected EV3 Gyro Sensor.

Note that both sensors are working with a user defined sample time. This
time can be set to any number but no lower than the inverted value of the
limit frequency listed in Subsec. 5.2.3.
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Port 1

LEGO EV3

Touch Sensor

Port 1

LEGO EV3

Gyro Sensor

Figure 6.1: Used Simulink sensor blocks

Motor Control and Motor Encoder blocks

The Motor block (shown in Fig. 6.2a) controls the power and direction of a
selected EV3 Motor. The block input is a Pulse Width Modulation (PWM)
shown as an integer number from 100 to -100. Where 100 denotes full power
forward, 0 no power, and -100 full power reverse.

The Encoder block (shown in Fig. 6.2b) is actually also a sensor block.
It measures the cumulative rotation of a selected EV3 Motor in degrees. This
value does not wrap around after reaching 360 degrees and can be reset at
each sample time or by a user defined signal.

Port A

LEGO EV3

Motor

Port A

LEGO EV3

Encoder

Figure 6.2: Used Simulink motor blocks

6.1.2 Establishment of communication

To establish a communication between the computer and the intelligent brick
a WiFi dongle is used. However the brick only supports a few models. The
supported dongles are usually old versions with large bodies and low trans-
mission speeds. Therefore, a fan-made articles describing possible extensions
of supported devices were made. One of them [26] uses a custom firmware to
support the Edimax EW-7811Un WiFi Dongle. This small dongle more than
satisfies our speed and size requirements, and is therefore used for this project.
The full tutorial, including instalation of the firmware and connection of the
adapter is described in the above-mentioned reference.

Figure 6.3: Edimax EW-7811Un WiFi Dongle - Source [27]

The next step is setting the IP address of the brick in a Simulink model.
After connecting the brick into a local WiFi network, the IP address can be
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.................................... 6.2. State vector ~x

obtained from the brick (Settings Menu > Brick Info > IP Address). This
address needs to be entered into the field (Tools > Run on Target Hardware >
Prepare to Run... ’or’ Options... > Target hardware: ’LEGO MINDSTORMS
EV3’ > IP address: ’IP address of the brick’ > Apply) in the Simulink model.
When set, the programs can run in the brick directly.

(a) : The brick (b) : The Simulink model

Figure 6.4: Obtaining and setting the IP address

6.2 State vector ~x

6.2.1 Angles and angular velocities of the body

The state vector ~x consists of many elements. Two of the most important are
angles and angular velocities (rates) of the body. With the EV3 Gyro Sensor
there is an option to measure the angular velocity directly. However, the gyro
sensor has an offset and suffers from a gradual shift of this offset. Therefore, a
more complicated measurement method is used. The gyro sensor is calibrated
for one second and the base offset value is determined (shown in Fig. 6.6).
The robot needs to be at the equilibrium point and not move. This process is
indicated by a red LED light. After this, another block runs with the angle
and angular velocity computing, and the offset of the gyro sensor is updated
(shown in Fig. 6.7). This process is indicated by an orange LED light and is
executed for an indefinite period of time. With this measurement method
and a simple conversion between degrees and radians, the four elements of
the state vector (ψx, ψy, ψ̇x, ψ̇y) are computed.
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Display1

Figure 6.5: Measurement of the value of the gyro sensor

67



6. Controller implementation ...............................
Enable

ts

Gain

1

gyro_angular_rate [deg/s]

1

gyro_offset [deg/s]

Z-1

Delay

LEGO EV3

Status Light

2

Solid Red

Figure 6.6: Content of the Calibrate Offset block
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Figure 6.7: Content of the Compute Angle block

Due to the lack of the third gyro sensor, the angle ψz and the angular velocity
ψ̇z are computed directly from the angles of the omni-wheels. As shown in
[11], the possible way to compute these elements is to use the previously
derived angles and angular velocities of the body with the angles and angular
velocities of the motors.

In Subsec. 4.3.3 the relation between the angular velocities of the omni-
wheels and the decoupled angular velocities of the omni-wheels were defined
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and computed. Similarly, a reverse relationship can be defined as:φ̇xφ̇y
φ̇z

 = JT ·

φ̇1
φ̇2
φ̇3

 (6.1)

Where:
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 (6.2)

The integration of Eq. 6.1 yields:φxφy
φz

 = JT ·

φ1
φ2
φ3

 (6.3)

With the fact that the traveled distance of the ball is opposite to the decoupled
traveled distance of the omni-wheels, the relation between them can be made
as:

rS

θxθy
θz

 = −rW

φxφy
φz

 (6.4)

It is important to state that the angle θz is due to the No slip assumption,
equal to zero and in fact, only the body rotates around the z axis in the same
direction as the omni wheels. Therefore:

ψz = −θz
= rW
rW

φz
(6.5)

The angular velocity ψ̇z is the numerical derivation of this angle.

6.2.2 Positions and linear velocities of the ball

The other vector elements that remain to be determined are positions and
linear velocities of the ball. Similar to deriving ψz, the positions will be
derived using the inverted Jacobian.

Using Eq. (6.4), the position of the ball can be derived from the angles
as: [

xS
yS

]
=
[
rSθy
−rSθx

]
(6.6)

After substituting Eq. (6.3) into Eq. (6.6) the final form is:

[
xS
yS

]
=
[

0 −rW 0
rW 0 0

]
· JT ·

φ1
φ2
φ3

 (6.7)
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6. Controller implementation ...............................
Note that the xS and yS are defined in the coordinate frame ΨI . However,
the decoupled angles φx, φy, and φz are defined in the coordinate frame Ψ5.
Therefore, a conversion needs to be made. Due to the fact that the body is
balancing, the influence of ψx and ψy is negligible. But ψz determines the
orientation of the robot. Thus the equation is premultipled by the reduced
rotational matrix Rz which ensures a rotation around the z axis:

Rz =
[

cos(ψz) sin(ψz)
− sin(ψz) cos(ψz)

]
(6.8)

Therefore, the positions of the ball are obtained as:

[
xS
yS

]
= Rz ·

[
0 rW 0
−rW 0 0

]
· JT ·

φ1
φ2
φ3

 (6.9)

The linear velocities are the numerical derivations of these values.

6.3 Driving a single motor

The output of the controller are the torques, which need to be applied to the
motors. As shown in Subsec. 3.5.2 the torques acting on the model are in
fact the angular rates of the omni-wheels. However, the EV3 Large Servo
Motors are driven by the PWM signals. Therefore, a regulator for conversion
between the angular rate and the PWM is created.

PWM regulator

The design of such a regulator has been the subject of several articles. The
most common way was to identify motor parameters and then use these to
calculate the current, which was then used as the input to the system. With
the computed current a conversion to the desired voltage was made. The final
PWM was calculated using the desired voltage and the voltage of the battery
(Resources [29] and [?]). However, in our case, the main goal is to drive the
motor by the torque, which can actually be converted to the angular velocity.
Experiments show that a simple Proportional (P) controller with a gain of
size one and feedback can ensure system stability. Therefore the algorithm
for conversion between the angular velocity and the PWM is the following:
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Figure 6.8: PWM regulator

6.4 Touch sensor holder

As was mentioned before, the EV3 Touch Sensor returns the current state (1
or 0). However, for the purposes of this project, the logical one is needed after
an odd number of presses, and the logical zero after an even number. With
this functionality, a balancing loop can be started and stopped. Therefore, a
Sample and Hold block with negative feedback is added to provide the desired
functionality.

Port 1

LEGO EV3

Touch Sensor

In  S/H

Sample

and Hold

Line 1

LEGO EV3

Display

Z-1

Delay

NOT

Logical

Operator

Figure 6.9: Touch sensor holder block

6.5 Final program

The final program can be found in Appendix B and includes some minor
changes to the program diagrams above. Firstly, the calibration time of the
Gyro Sensors was extended to a duration of 3 seconds to provide better results.
Secondly, due to the smaller drift, the filter constant in the Offset Update
area in the Calibrate Offset block was changed to 0.001. Lastly, several Stop
blocks to stop simulation were added: one for the second press of the touch
Sensor and two for the pitch and roll angles to monitor the 10◦ limit.
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6.6 Real-time simulations

Finally, the real time simulations can be done. Three tests are created and
the robot reaction to them is observed. The first test was balancing without
any disturbance. Note that all tests were done with the stationary ball. See
the conclusion for more information.
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Figure 6.10: Balancing - angles ψx, ψy
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Figure 6.11: Balancing - angle ψz
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Figure 6.12: Balancing - angular rates ω1, ω2, ω3

As can be seen, the balancing is successful. The Pitch, Roll and, Yaw angles
were minimally deflected. In Fig. 6.12 the trembling of the omni-wheels
is visible. However, on the real model this disorder does not appear. The
trembling is further discussed in the conclusion.

The second test was balancing with disturbances. Two disturbances, first in
each of the axes (x and y) and second in the axis x were created by pushing
into the body of the robot.
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Figure 6.13: Balancing with disturbances - angle ψz
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Figure 6.14: Balancing with disturbances - angles ψx, ψy
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Figure 6.15: Balancing with disturbances - angular rates ω1, ω2, ω3

Also in this test the angles were minimal deflected. The disturbances are
visible in Fig. 6.14. In Fig. 6.15, it can be seen that the controller tries to
compensate for the disturbances and keep the system in equilibrium.

In the third test the reference tracking was observed. Due to the braked ball,
only a value of reference ψz was set to a non-zero value of 45◦.
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Figure 6.16: Pivoting - angles ψx, ψy
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Figure 6.17: Pivoting - angle ψz
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Figure 6.18: Pivoting - angular rates ω1, ω2, ω3

In Fig. 6.16 the reference tracking can be seen. The controller attempts to
achieve the angle of 45◦. However, due to the computation of ψz and the
missing Integral (I) regulator term, the tracking is only approximate but
satisfactory.

75



76



Chapter 7
Conclusion

The first goal of this bachelor thesis was to describe the system dynamics:
found in chapter 2 for the 2D model and chapter 3 for the 3D model. While
the 2D model is insufficient as an overall control solution, it does allow for a
better understanding of dynamic problems, and serves as a basis for the 3D
model. The 3D model is a full-featured solution to the problem.

The next goal was to derive a linearized model. A linearization was
successfully done on both models. Both linearized models were observed and
recognized as sufficient compensation of the physical models at the equilibrium
point on the top of the ball.

The third goal was to develop a controller for point stabilization and
trajectory tracking. A LQR controller was designed and needed to meet
several requirements. The controller fulfilled the requirements with great
success and was stated as a well-designed controller. Further simulations on
the linearized 3D model show that the controller can provide satisfactory
results.

The fourth goal, the creation of a LEGO robot, was also fulfilled. A
robot (the body of the BRB) was successfully created and satisfied all design
requirements. Together with the ajusted bowling ball (the ball of the BRB),
the whole BRB was created.

The last goal was to implement the developed controller. This task was
very difficult and required a number of complicated steps. Firstly, reliable
conversions between the hardware and software were needed. Therefore, the
Measurement of the value of the gyro sensor, PWM regulator, and Touch
sensor holder diagrams were created. Together with the derived positions
of the ball, linear velocities of the ball, angle ψz, and angular velocity ψ̇z,
the state vector ~x was created. Using this state vector, the LQR controller
with full state feedback of the real model could be formed and real-time
simulations done. As was mentioned before, the simulations were completed
using a stationary ball. The reason for such a move was the incapability
of the regulator to stabilize the body on the moving ball. The cause of
this behaviour is not known, but could be due to the limits of the LEGO:
the gyroscopes and encoders generate big errors which are brought into the
controller and which make a quick and smooth reaction impossible. Another
reason could be the weight of the robot. Many of the studies referenced used
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7. Conclusion......................................
robots which are heavier than the ball. However, the robot designed in this
thesis is lighter than the ball, and therefore the robustness of the dynamics
could be disturbed. One solution common to both problems could be to
use more accurate sensors and to create the robot from stronger parts to
improve load capacity. The design of the controller could also be a factor in
this behaviour. However, the simulations in the chapter on controller design
suggest that this is not the case. Therefore, at this point in time, the question
remains unanswered.

The trembling of the omni-wheels can be observed in any real-time simula-
tion. However, as mentioned before, the effect on the real model is minimal.
To reduce the trembling, more simulations would be needed, noise identified,
and filters (low pass and high pass) designed to filter the noise. Due to the
lack of time and a small consequence on the real model, this task remains to
be looked at in a future project.

Due to the stationary ball, the tracking of references (different to zero)
could be only tested on angle ψz and angular velocity ψ̇z. The simulation
with non-zero ψz reference was done with success. However, for a better
result, the Integral (I) regulator term for tracking the angle could be added in
future. The simulation with a non-zero ψ̇z reference failed, mainly due to the
angular velocity ψ̇z being derived from the angular rates of the omni wheel.
One solution to this problem would be to add a third gyro sensor to the robot
in the rotation of the axis z and obtaining the angle via flawless discrete
integrator and the angular velocity directly. Even with this failed simulation,
the pivoting at the stable angular rate can be achieved by removing the
feedback of the angle ψz and settings its reference to the non-zero value.
Future projects - having solved the stationary ball problem - could look at
changing the references wireless which would allow the robot to be easily
controlled to desired positions.
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Figure 7.1: BRB CTU
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Appendix A
Derivations

Derivation of ~vTB,yz · ~vB,yz

~vTB,yz · ~vB,yz = |vB,yz|2

= ẏ2
B + ż2

B

= [ d
dt

(rSθx + l sin(ψx))]2 + [ d
dt

(l cos(ψx))]2

= [rsθ̇x + lψ̇x cos(ψx)]2 + [−lψ̇x sin(ψx)]2

= r2
S θ̇

2
x + 2rSlθ̇xψ̇x cos(ψx) + l2ψ̇2

x cos2(ψx) + l2ψ̇2
x sin2(ψx)

= r2
S θ̇

2
x + 2rSlθ̇xψ̇x cos(ψx) + l2ψ̇2

x

(A.1)

Derivation of ~vTW,yz · ~vW,yz

~vTW,yz · ~vW,yz = |vW,yz|2

= ẏ2
W + ż2

W

= [ d
dt

(rSθx + (rS + rW ) sin(ψx))]2 + [ d
dt

((rS + rW ) cos(ψx))]2

= [rsθ̇x + (rS + rW )ψ̇x cos(ψx)]2 + [−(rS + rW )ψ̇x sin(ψx)]2

= r2
S θ̇

2
x + 2rS(rS + rW )θ̇xψ̇x cos(ψx) + (rS + rW )2ψ̇2

x cos2(ψx)
+ (rS + rW )2ψ̇2

x sin2(ψx)
= r2

S θ̇
2
x + 2rS(rS + rW )θ̇xψ̇x cos(ψx) + (rS + rW )2ψ̇2

x

(A.2)

Derivation of φx

The virtual actuating wheel rotates in a positive direction when the ball
rotates in a positive direction. Equating the traveled distance yields:

rWφx = rSθx (A.3)
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A. Derivations .....................................
Also, the virtual actuating wheel rotates in a positive direction when the
body rotates in a negative direction. Equating the traveled distance yields:

rWφx = −rSψx (A.4)

Combining Eq. (A.3) and Eq. (A.4) yields:

rWφx = rSθx − rSψx
= rS(θx − ψx)

(A.5)

Therefore, the derivation of φx is:

φ̇x = rS
rW

(θ̇x − ψ̇x) (A.6)

Derivation of ~vTW,xy · ~vW,xy

~vTW,xy · ~vW,xy = |vW,xy|2

= ẋ2
W,xy + ẏ2

W,xy

= [ d
dt

((rS + rW ) cos(ψz))]2 + [ d
dt

((rS + rW ) sin(ψz))]2

= [−(rS + rW )ψ̇z sin(ψz)]2 + [(rS + rW )ψ̇z cos(ψz)]2

= (rS + rW )2ψ̇2
z sin2(ψz) + (rS + rW )2ψ̇2

z cos2(ψz)
= (rS + rW )2ψ̇2

z

(A.7)

Derivation of φz

Due to the No slip assumption, the virtual actuating wheel only rotates in a
positive direction when the body rotates in a negative direction. Equating
the traveled distance yields:

rWφz = −rSψz (A.8)

Therefore, the derivation of φz is:

φ̇z = − rS
rW

ψ̇z (A.9)

Derivation of moments of inertia of virtual wheel

Energy equilibrium of rotational energies around the x axis:

1
2IW,xφ̇

2
x = 1

2IOW (φ̇2
x cos(α))2 + 1

2IM (kφ̇x cos(α))2

+ 2[12IOW (−1
2 φ̇x cos(α))2 + 1

2IM (−k1
2 φ̇x cos(α))2]

= 1
2[IOW cos(α)2]φ̇2

x + 1
2[IMk2 cos(α)2]φ̇2

x

+ 1
2[2IOW

1
4 cos(α)2]φ̇2

x + 1
2[2IM

1
4k

2 cos(α)2]φ̇2
x

(A.10)
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...................................... A. Derivations

Therefore:

IW,x = cos(α)2(IOW + k2IM + 1
2IOW + 1

2k
2IM )

= 3
2 cos(α)2(IOW + k2IM )

(A.11)

Energy equilibrium of rotational energies around the y axis:

1
2IW,yφ̇

2
y = 1

2IOW (1
2
√

3φ̇y cos(α))2 + 1
2IM (k1

2
√

3φ̇y cos(α))2

+ 1
2IOW (−1

2
√

3φ̇y cos(α))2 + 1
2IM (−k1

2
√

3φ̇y cos(α))2

= 1
2[2IOW

3
4 cos(α)2]φ̇2

y + 1
2[2IMk2 3

4 cos(α)2]φ̇2
y

(A.12)

Therefore:

IW,y = 3
2IOW cos(α)2 + 3

2IMk
2 cos(α)2

= 3
2 cos(α)2(IOW + k2IM )

(A.13)

Energy equilibrium of rotational energies around the z axis:

1
2IW,zφ̇

2
z = 3[12IOW (sin(α)φ̇z)2 + 1

2IM (k sin(α)φ̇z)2]

= 1
2[3IOW sin(α)2]φ̇z + 1

2[3IMk2 sin(α)2]φ̇z
(A.14)

Therefore:
IW,z = 3 sin(α)2(IOW + k2IM ) (A.15)

The derivations were taken from [11].
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Appendix B
Content of the enclosed CD

Below the folders and the most important files are listed:

root

building_instructions

upper_part

middle_part

lower_part

inner_frame

outer_frame

connection

programs

2d_model

3d_model

lqr

gyro_program

motor_program

touch_program

final_program

BRB.slx

website_czech

index.html

85



B. Content of the enclosed CD ..............................
Extra folder ’website_czech’ contains construction and programming guide
for the robot in Czech language at the request of thesis supervisor.
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