
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Efficiency Improvement of
Domain-Independent Planning by
Integration of Solvers for Euclidean
Sub-Problems

Petr Bergmann

Supervisor: Ing. Antonín Komenda, Ph.D.
Field of study: Open Informatics
Subfield: Computer and Information Science
May 2018

ii

%$&+(/25µ6 7+(6,6 $66,*10(17

,� 3HUVRQDO DQG VWXG\ GHWDLOV

������3HUVRQDO ,' QXPEHU�%HUJPDQQ 3HWU6WXGHQW
V QDPH�

)DFXOW\ RI (OHFWULFDO (QJLQHHULQJ)DFXOW\ � ,QVWLWXWH�

'HSDUWPHQW � ,QVWLWXWH� 'HSDUWPHQW RI &\EHUQHWLFV

2SHQ ,QIRUPDWLFV6WXG\ SURJUDP�

&RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFH%UDQFK RI VWXG\�

,,� %DFKHORU¶V WKHVLV GHWDLOV

%DFKHORU¶V WKHVLV WLWOH LQ (QJOLVK�

(IILFLHQF\ ,PSURYHPHQW RI 'RPDLQ�,QGHSHQGHQW 3ODQQLQJ E\ ,QWHJUDWLRQ RI 6ROYHUV IRU (XFOLGHDQ

6XE�3UREOHPV

%DFKHORU¶V WKHVLV WLWOH LQ &]HFK�

=YêãHQt HIHNWLYLW\ GRPpQRY� QH]iYLVOpKR SOiQRYiQt SRPRFt LQWHJUDFH VROYHU$ SUR (XNOLGRYVNp

SRGSUREOpP\

*XLGHOLQHV�

7KH VWXGHQW ZLOO LQWHJUDWH HIILFLHQW GRPDLQ�VSHFLILF VROYHUV LQWR D GRPDLQ�LQGHSHQGHQW SODQQHU LQ RUGHU WR LPSURYH LWV
HIILFLHQF\� 7KH LQWHJUDWLRQ ZLOO VHDPOHVVO\ DOORZ WR H[WHQG D ODQJXDJH IRU GRPDLQ�LQGHSHQGHQW SODQQLQJ IRU WKH GRPDLQ�VSHFLILF
IUDJPHQWV�
�� 6WXG\ OLWHUDWXUH LQ WKH DUHD RI DXWRPDWHG SODQQLQJ� ERWK FODVVLFDO DQG GRPDLQ VSHFLILF IRU WKH (XFOLGHDQ SUREOHPV �HVS�
VKRUWHVW DQG PXOWL�JRDO SDWKV LQ SODQDU JUDSKV��
�� 3UHSDUH DQG LPSOHPHQW SODQQLQJ SUREOHPV �LQFO� YDULRXV SDUDPHWHUL]DWLRQV� FRPSDWLEOH ZLWK ERWK SODQQLQJ DUHDV�
�� 7KHRUHWLFDOO\ DQDO\]H VLPLODULWLHV DQG GLIIHUHQFHV LQ WKH SODQQLQJ DOJRULWKPV� VSHFLILFDOO\ W\SH RI VHDUFK DQG KHXULVWLF
IXQFWLRQV XVHG�
�� %DVHG RQ �� DQG ��� LPSOHPHQW LQWHJUDWLRQ RI WKH GRPDLQ�VSHFLILF VROYHUV LQWR D GRPDLQ�LQGHSHQGHQW SODQQHU VR WKDW
RQH XQLILHG SUREOHP VSHFLILFDWLRQ ODQJXDJH FDQ EH XVHG�
�� ([SHULPHQWDOO\ FRPSDUH HIILFLHQF\ RI WKH GRPDLQ�LQGHSHQGHQW SODQQHU ZLWKRXW DQG ZLWK WKH GRPDLQ�VSHFLILF VROYHUV
XVHG�

%LEOLRJUDSK\ � VRXUFHV�

>�@ 0DOLN *KDOODE� 'DQD 6� 1DX� 3DROR 7UDYHUVR� $XWRPDWHG SODQQLQJ � WKHRU\ DQG SUDFWLFH� (OVHYLHU ����� ,6%1
������������������
>�@ 6WHIDQ (GHONDPS� 6WHIDQ 6FKURHGO� +HXULVWLF 6HDUFK� 7KHRU\ DQG $SSOLFDWLRQV� 0RUJDQ .DXIPDQQ� ����� ,6%1
������������������

1DPH DQG ZRUNSODFH RI EDFKHORU¶V WKHVLV VXSHUYLVRU�

,QJ� $QWRQtQ .RPHQGD� 3K�'�� $UWLILFLDO ,QWHOOLJHQFH &HQWHU�)((

1DPH DQG ZRUNSODFH RI VHFRQG EDFKHORU¶V WKHVLV VXSHUYLVRU RU FRQVXOWDQW�

'HDGOLQH IRU EDFKHORU WKHVLV VXEPLVVLRQ� ����������'DWH RI EDFKHORU¶V WKHVLV DVVLJQPHQW� ����������

$VVLJQPHQW YDOLG XQWLO� ����������

BBB
SURI� ,QJ� 3DYHO 5LSND� &6F�

'HDQ¶V VLJQDWXUH
GRF� ,QJ� 7RPiã 6YRERGD� 3K�'�

+HDG RI GHSDUWPHQW¶V VLJQDWXUH
,QJ� $QWRQtQ .RPHQGD� 3K�'�

6XSHUYLVRU¶V VLJQDWXUH

� ý987 Y 3UD]H� 'HVLJQ� ý987 Y 3UD]H� 9,&&987�&=�=%3�������

iv

Acknowledgements
I would like to thank to my supervisor
Ing. Antonín Komenda for sharing his
knowledge and for his perfect guidance.
Last but not least, my thanks go to my
family for their support during my studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 2. May 2018

v

Abstract
The purpose of this thesis is to increase ef-
ficiency of domain-independent planning.
A solver for pathfinding on map back-
ground and solver for travelling salesman
problem was integrated into a translator
level. Thanks to that, huge runtime im-
provement was achieved. The results of
the measurements and implementation
are presented in the thesis. The result
of the whole thesis is a much faster plan-
ner that accepts very simple extension of
the input file format.

Keywords: Automated planning,
Domain-independent planning,
Domain-specific planning, Shortest path
problem, Travelling salesman problem

Supervisor: Ing. Antonín Komenda,
Ph.D.

Abstrakt
Tato práce se zabývá zvýšením efektivity
doménově nezávislého plánování. Solver
pro hledání tras na mapovém podkladu a
solver na problém obchodního cestujícího
byly integrovány do úrovně překladače.
Tím bylo dosaženo výrazného urychlení
celého plánování. V práci jsou předloženy
výsledky měření a způsob implementace.
Výsledkem je mnohanásobně rychlejší plá-
novač příjmající velmi jednoduché rozší-
ření formátu vstupního souboru.

Klíčová slova: Automatizované
plánování, Doménově nezávislé plánování,
Doménově specifické plánování, Problém
nejkratší cesty, Problém obchodního
cestujícího

vi

Contents
1 Introduction 1
1.1 Domain description 2
1.2 OpenStreetMap 4
1.3 Chosen domain-specific solver . . . 4
1.4 Chosen domain-independent
planner . 4

2 Domain-specific planning 5
2.1 Uninformed search 5
2.1.1 Dijkstra’s algorithm 6

2.2 Informed search 6
2.2.1 A* algorithm 7

3 Domain-independent planning 9
3.1 Classical representation 9
3.2 PDDL . 10
3.3 State-space planning 10
4 Comparison of speed 13
4.1 Measurement 13
4.1.1 Measurement 1 14
4.1.2 Measurement 2 14
4.1.3 Measurement 3 15

4.2 Results . 16
5 Test of domain-specific planner
on larger data sets 17
5.1 Measurement 17
5.2 Results . 18
6 Integrating GraphHopper results
into SymBA* planner 21
6.1 Preprocessor and translator 22
6.2 Measurement with own
preprocessor 22

6.3 Creating input PDDL from
GraphHopper 23
6.3.1 Implementation 24
6.3.2 Measurement 24

6.4 Integration into translator 25
6.5 Measurement with integrated
GraphHopper 27

7 Extensions of logistics domain 29
7.1 Capacity . 30
7.2 Depots . 30
7.3 Truck-plane 31
7.4 Intercity transport 31
7.5 Driverlog . 32

8 Travelling Salesman Problem 33
8.1 Problem specification 33
8.2 Implementation 34
8.3 Measurement 35
8.4 Upper bounds 36
9 Logistics with TSP 39
9.1 The domain 39
9.2 Comparison of planners 40
9.3 Large domains 41
9.3.1 Measurement 41
9.3.2 Results 42

10 Conclusion 43
A Used PDDL domains 45
A.1 Capacity . 45
A.2 Depots . 46
A.3 Truck-plane and Intercity
transport . 46

A.4 Driverlog . 47
A.5 Peddler . 48
B CD contents 49
C Bibliography 51

vii

Chapter 1

Introduction

A problem of planning is solved in this thesis. It is a part of a field of the
artificial intelligence. The planning searches for complex plans in space with
deterministic transitions between states. These plans are sequences of steps
that are necessary to be made, in order to reach a goal state from some
initial state. We recognize two types of planning, domain-independent and
domain-specific planning.

Domain-independent planning is an approach that excels in its domain
versatility. Any modifications of a planned problem are made in a very short
time. There is no need to rewrite a code of a planner as well as there is
no need for a new time-consuming debugging. However, this adaptability
takes its toll on a running time. It would be great if this handicap could be
suppressed while the versatility was preserved.

Then we have a domain-specific planning. Domain-specific solvers are able
to solve problems much faster. On the other hand, these solvers are finely
tuned for a specific task. For even a simple change in a domain input, large
modifications in a planner’s code are needed.

That being said, there is a space for a third approach. Some hybrid way
that would simultaneously use both planning types. Domain-independent
planning for large scope and domain-specific planning for certain subproblems.
And that is the goal of this thesis. We want to integrate a domain-specific
solver into a domain-independent planner. This should drastically improve
running time of the planner. However, this approach will work when certain
condition on a domain is met. The domain needs to be separable into two

1

1. Introduction
parts. Subproblems that are solvable in the domain-specific way and a main
problem containing these subproblems. Needless to say, that this superior
problem will be solved by the domain-independent planner. Luckily, most of
the common domains meet this condition.

In this thesis, the logistics was selected as the primary domain. This
planning domain offers multiple benefits for this type of research. Most
importantly, it is a common real-life problem, that is solved by dozens of
companies worldwide. Furthermore, this problem can be easily separated into
those needed two parts. Specifically, those parts are the domain-specific one,
route planning in Euclidean space, and the domain-independent one, finding
the optimal path with respect to the smallest distance travelled or least time
spent en route. Finally, a huge benefit is that this simple logistics problem
can be easily extended by many additional conditions and restrictions. Some
of these extensions are shown in next parts.

Last, but not least we would like to present an elegant way of extending
a domain description language so it takes into account integrated solvers.
This will guarantee ease of use with current planners and allow further
implementation of this hybrid planning.

Now, let us describe the domain of the research more in-depth. More
information about domain-specific planning are located in following Chapter 2
and about domain-independent planning in Chapter 3. Finally, in Chapter 4
starts a part about our implementation and measurements.

1.1 Domain description

As was stated, primary focus is on logistics. In the simplest form, a hypo-
thetical company that have some trucks (let us call them universally vehicles)
is considered. This company delivers packages between many depots. The
depot itself can be either warehouse or the final customer. Every package
has its starting location and can relate to some goal depot. Our task is to
find optimal path of vehicle fleet for delivering all the packages to their final
destinations. The issue is that every depot has its own GPS coordinate in
the city, so, for solving the task, the shortest paths between all the depots
must be found throughout the process. The preview of a domain in Planning
Domain Definition Language (PDDL) is on Listing 1.1.

There are four predicates. Road predicate describes if there is a road

2

..................................1.1. Domain description

(define (domain t ran spor t)
(:requirements : a c t i o n − c o s t s)

(:predicates
(road ? l 1 ? l 2)
(at ?v ? at)
(package−at ?p ? at)
(package−in ?p ? in)

)

(:functions
(road− length ? l 1 ? l 2)
(to ta l−co s t)

)

(:action dr ive
:parameters (? v ? l 1 ? l 2)
:precondition (and

(at ?v ? l 1)
(road ? l 1 ? l 2)

)
: e f f e c t (and

(not (at ?v ? l 1))
(at ?v ? l 2)
(i n c r e a s e (to ta l−co s t)

(road− length ? l 1 ? l 2))
)

)

(:action load
:parameters (? v ?p ? where)
:precondition

(and (at ?v ? where)
(package−at ?p ? where))

: e f f e c t
(and (not

(package−at ?p ? where))
(package−in ?p ?v))

)

(:action unload
:parameters (? v ?p ? where)
:precondition

(and (at ?v ? where)
(package−in ?p ?v))

: e f f e c t
(and (not

(package−in ?p ?v))
(package−at ?p ? where))

)
)

Listing 1.1: PDDL logistics domain.

between two locations. So, for example, expression (road house mall) implies
there is a road from the house to the mall. Predicate at defines the position
of a vehicle on some location. Last predicates package-at and package-in
defines location of package and if it is carried by vehicle, respectively.

The functions are needed for minimization of the road travelled. Function
road-length defines length of road between two locations and function total-
cost is the cost minimized by planner.

Action drives moves vehicle from one location to the other. It can be
applied when the car is on the start location and road between these two
location exists. Second action load transports a package from the ground to
the vehicle. The precondition is that the vehicle and the package are at the
same location. Third action unload works in the same manner as the action
load, only it transports the package from the vehicle to the ground.

Additional information about PDDL are provided in Chapter 3.

3

1. Introduction
1.2 OpenStreetMap

To be able to solve the task, it is necessary to use some map background.
From this map intersections will be exported and added to our planner
thereafter. OpenStreetMap has been chosen to provide this data. This
project is most probably the biggest free map database. The maps are
created on collaborative base by volunteers all over the world. The maps are
formatted in so called OSM XML file format and its advantage is that it is
widely supported by both planning libraries and map exporters. However, the
map does not contain only routes, but also landscape and points of interest.
Because of that, preprocessing of the whole map will be required to be able
to plan the route with our domain-independent planner. This leads us to the
next section.

1.3 Chosen domain-specific solver

For route planning, GraphHopper solver [8] was selected. This domain-specific
solver is an open source route planning Java library. It uses OpenStreetMap
as map resource and therefore it perfectly suits our needs. Furthermore, this
library is core of paid product GraphHopper Directions API that is widely used
for route optimization and planning by companies, such as Deutsche Bahn,
FlixBus or Norwegian post Posten [9]. In default settings, GraphHopper is
able to plan either vehicle or bike route with respect to total time travelled or
total distance travelled. Additionally, it supports multiple routing algorithms
like Dijkstra, A* or its bidirectional variant. More information about these
routing algorithms is in next section.

1.4 Chosen domain-independent planner

From the field of domain-independent planners, we have chosen SymBA*
planner [1]. This optimal planner has won several awards, among others,
International Planning Competition 2014 [12] and it has proven its capability
to solve numerous domains. Being an optimal planner, SymBA* satisfies our
need for minimization of total distance or time spent en route, as input file
SymBA* accepts Planning Domain Definition Language (PDDL format). As
a result, all of the domain-independent problems and domain descriptions
will be in this language through the whole thesis.

4

Chapter 2

Domain-specific planning

As stated in the Introduction, the focus will be put on domain specific
planning in Euclidean space. From now on, let us restrict ourselves only to
the planning in Euclidean space and let us offer more in-depth analysis.

Into mentioned subset belong many real-life path planning problems. In-
cluding logistics, domain described in Chapter 1. Other very popular problems
are Vehicle Routing Problem and Travelling Salesman Problem. Both of them
are strongly connected to the logistics. Although Vehicle Routing Problem
will not be solved in this thesis, Travelling Salesman Problem solver will be
integrated into the domain-independent planner in Chapter 8.

2.1 Uninformed search

In the area of search, two types, informed and uninformed search, are recog-
nized. As the name suggests, uninformed search algorithms do not use any
information about the problem. They work in brute force manner. The whole
search is reduced into plainly generating successor states of visited nodes.
Therefore, it is not as efficient as it can be. However, this does not mean that
all of the uninformed search algorithms have to be primitive. An example of
more sophisticated algorithm is Dijkstra’s algorithm. [5]

5

2. Domain-specific planning................................
2.1.1 Dijkstra’s algorithm

Dijkstra’s algorithm is one of the algorithms used by GraphHopper library.
Named after its inventor Edsger W. Dijkstra, the algorithm uses a greedy
search strategy for weighted graphs. Given a source node and a graph, it is
used for finding the minimal cost path from the source node to every other
node in the graph. Obviously, after a small modification, this algorithm
can also be used for finding the shortest path just between two nodes. Not
every node in the whole graph. It is important that Dijkstra’s algorithm
is optimal in contrast to some of the other uninformed search algorithms
like Breadth first search. Another advantage of this algorithm is its time
complexity O(|E|+ |V | log |V |), where |E| is a number of edges and |V | is a
number of vertices in given graph.

The procedure is quite straightforward. Initially, the distance to every
node except the source one is initialized to infinity. Then in loop the node
with the smallest distance is selected and for every neighboring unvisited
node new distance is calculated. If new shorter distance was found, the
node’s value is updated. The formula for the calculation is distance(u) =
distance(v) + edge_length(v, u), if the node v is the current one and the
node u is a successor node [5]. This repeats until all of the nodes in the graph
are visited. When the algorithm is finished, the shortest distance to every
node is calculated.

To conclude, this algorithm expands search space based on the distance
from the start. Choosing the closest nodes ensures inability to select node
with path worse than optimal. Although this approach is optimal and quite
fast, it might be more effective to expand search space using approximate
distance from the goal. And this leads us to the second type of search.

2.2 Informed search

The second type of search is informed search. Search strategy that uses
knowledge about the domain. It uses heuristic function to determine the
shortest path to the goal. Thanks to this approximate value, the search space
can be expanded more effectively. The expansion of nodes that are closer to
the goal will be prioritized and the ones that are further will be left intact. It
is important to emphasize that the heuristic gives us only the approximation
of the smallest distance. It is not necessarily the real value itself. In this
context, concept of an admissible heuristic is recognized. It has the following

6

................................... 2.2. Informed search

definition: "An estimate h is an admissible heuristic if it is a lower bound for
the optimal solution costs; that is, h(u) ≤ δ(u, T), for all u ∈ V ." [5, p.18],
where δ is a distance function.

2.2.1 A* algorithm

The very best example of an algorithm that uses this type of search is A*.
Algorithm that is also used by the GraphHopper library. A* is an algorithm
that was first described in 1968. [10] As said, it belongs to the informed search
class and it is an extension of Dijkstra’s algorithm with time complexity
O(|E|), where |E| is the number of edges in the graph. For the search itself
it uses both cost to reach goal and the estimated cost to get to the goal.
Formula f(u) = g(u) + h(u), where f(u) is estimated cost of the cheapest
solution through node u and h(u) is heuristic value, the cost to get from node
u to the goal. The value g(u) is the cost to reach the node u and it is the same
value as the value distance(u) in the formula for Dijkstra’s algorithm in the
previous section. [18, p.93] Except that, the algorithm works similarly to the
Dijkstra. The only difference is that instead of distance(u), f(u) is calculated.
The node with the lowest f is always selected and f is recalculated for all of
the neighboring nodes. This process is repeated until the goal state is found.

7

8

Chapter 3

Domain-independent planning

In this chapter, short summary of the domain-independent planning is given.
As in the chapter about the domain-specific planning, this summary will
be primarily focused on the planning needed in the following research and
techniques used by the chosen planner SymBA*. And now let us introduce
the representation of the problem in the domain-independent planning.

3.1 Classical representation

To represent a planning problem in more sophisticated way than enumerating
all possible states, few equally expressive representations were invented. Clas-
sical representation, state-variable representation and set-theoretic represen-
tation are the most prominent ones. In this text, the classical representation
will be discussed as this is the representation SymBA* planner uses.

The classical representation contains states and actions. Both of them
are represented as a set of predicates and logical connectives. The planning
problem is represented by three items: initial and goal states and a domain.
The classical planning domain contains set of all possible states, set of actions
and a transition function that changes current state by applying an action.
For an action to be applicable, its preconditions must be fulfilled. If an action
is applied, the current state is modified by its positive and negative effects [5].

9

3. Domain-independent planning
3.2 PDDL

To describe classical representation for planner, Planning Domain Definition
Language (PDDL) was developed in 1998. The PDDL is a standardized
language for describing classical planning problems in the classical representa-
tion. It uses two separated files, one for the domain and one for the problem
encoding. The domain file consists of descriptions of all possible actions and
standard predicates known from first-order logic. Where all of the actions
have their own parameters, preconditions and effects. On the other hand, in
the problem file there are actual objects, and the initial state and the goal
state. Both states use predicates from the domain file.

All in all, use of the PDDL for planning is quite straightforward and simple.
Due to this simplicity of the PDDL structure, the language can be easily
extended. There are several successful extensions of the PDDL. For example,
PPDDL used for probabilistic planning [19] or MA-PDDL for multi-agent
planning [14]. This simplicity of the PDDL is the primal reason why the
PDDL was selected as the primary domain description language for this thesis.
Our own extensions of the PDDL will be introduced in Chapters 6 and 8.

3.3 State-space planning

So far, the representation of the domain and its description for planners was
introduced. Let us explain how do those planners actually work.

Planning algorithms in the classical representation fall into one of two
big classes. The first one is a plan-space planning where a search space
consist of partially specified plans and arcs are plan refinement operations
that completes the plan. This representation will not be described any further
as SymBA* planner uses the second planning class, state-space planning.
For this type of planning, the search space is a set of all states and arcs are
possible actions. The required plan is a path in a search space from initial
state to the goal state.

For finding this plan, among others, a forward search is used. The procedure
of this search strategy is fairly simple. Three steps are repeated. At first, it
is checked if the goal state was not already found. Then all possible actions
applicable in this state are enumerated. And finally, all possible successors

10

................................. 3.3. State-space planning

are computed. The only real problem is with choosing the correct action.
This is the place where heuristics come to play. Without heuristics in the
worst case the whole state space could be searched before finding the goal [5].
As the planning itself is at least PSPACE-complete [6], research of heuristic
functions is ongoing.

Most of the optimal planners uses A*, algorithm described in previous
chapter, for exploring states. As in Euclidean space, admissible heuristic is
necessary for optimal planner. Specificaly SymBA* planner use symbolic
bidirectional variant of the A*. That is an A* that progresses from initial
and from goal state at once, as the heuristic functions it uses several types of
abstraction heuristics. These heuristics use mapping from state space into
an abstract space. This mapping must preserve costs between states and
improves the search time [2] [13].

11

12

Chapter 4

Comparison of speed

In the last two chapters, theory about domain-specific and domain-independent
planning was discussed. Let us now dive more deeply into the comparison
of these types of planning towards our goal, integrating the domain-specific
solver into the domain-independent planner.

First of all, it would be useful to show the difference between these types of
planning in terms of running time. It was stated in Chapter 1 that domain-
specific planner dominates domain-independent planner when they solve
the same task. This difference is due to different asymptotic complexities.
The domain-independent planning is PSPACE-complete, yet algorithms like
Dijkstra or A* has polynomial complexity.

This hypothesis should be proven before moving any further. In case of
refutation of this claim, integrating domain-specific solver into the domain-
independent planner would not make any sense as it would not be an improve-
ment. On the other hand, confirmation would give us first glimpse of scale of
possible improvement and it would open the way for further investigation.

4.1 Measurement

For our measurement, six locations in Prague were randomly selected. Planner
will search for the shortest route between three pairs of those locations.

13

4. Comparison of speed
Before the planning itself it is required to crop the map so it contains

only intersections in neighborhood of starting location. These intersections
and distance between them will be then added into PDDL file describing
the problem. Those distances are easily obtained from difference of GPS
coordinates from .osm file using simple relationship [7]. This neighborhood
export can be done only with breadth first search with depth limit. With
neighborhood exported we can rebuild .osm file for GraphHopper and export
PDDL containing routes between intersections and their corresponding length
for SymBA*.

4.1.1 Measurement 1

First route is from Resslova crossroad with Václavská to Spálená crossroad
with Národní. Goal is in depth 69 and the total length of road is 1591 m.
The results for this measurement are in Tables 4.1 and 4.2.

SymBA* planning Total
Depth To PDDL Translator Preprocessor Search [s]
100 2.13 25 14 1 42.13
150 2.15 200 126 2 330.15
200 2.65 299 261 3 565.65

Table 4.1: SymBA* results for Measurement 1.

Depth Init Search Total [s]
100 0.56 0.03 0.59
150 1.16 0.04 1.20
200 1.16 0.02 1.18

Table 4.2: GraphHopper results for Measurement 1.

4.1.2 Measurement 2

In the Tables 4.3 and 4.4, are results for route number two. This route is from
Strakonická crossroad with Hořejší nábřeží to Jindřicha Plachty crossroad
with Nádražní. Goal is in depth 23 and the total length of road is 1188 m.

14

.................................... 4.1. Measurement

SymBA* planning Total
Depth To PDDL Translator Preprocessor Search [s]

50 2.11 1 0 0 3.11
100 2.18 21 3 0 26.18
150 2.11 107 37 0 146.11
200 2.20 - - - -

Table 4.3: SymBA* results for Measurement 2.

Depth Init Search Total [s]
50 0.32 0.03 0.35
100 0.50 0.03 0.53
150 0.72 0.03 0.75
200 1.03 0.03 1.06

Table 4.4: GraphHopper results for Measurement 2.

4.1.3 Measurement 3

Last route is from Ječná crossroad with Karlovo náměstí to Ječná crossroad
with V Tůních. Goal is in depth 16 and the total length of road is 482 m.
The results are shown in Tables 4.5 and 4.6.

SymBA* planning Total
Depth To PDDL Translator Preprocessor Search [s]

25 2.07 0 0 0 2.07
50 2.14 2 0 0 4.14
100 2.18 55 10 0 67.18
150 2.23 230 88 0 320.23
200 2.22 295 150 0 447.22

Table 4.5: SymBA* results for Measurement 3.

Depth Init Search Total [s]
25 0.27 0.03 0.30
50 0.35 0.03 0.38
100 0.59 0.03 0.62
150 0.87 0.03 0.90
200 1.34 0.05 1.39

Table 4.6: GraphHopper results for Measurement 3.

15

4. Comparison of speed
4.2 Results

From Tables 4.1-4.6 and Figure 4.1, it is clearly visible that the hypothesis
was correct. The difference in running times in respect to number of nodes is
especially seen in the Figure 4.1. It shows this dependence of running time in
logarithmic scale. GraphHopper increases polynomialy and in the graph is
nearly constant. On the other hand, SymBA* grows exponentially and much
faster than the GraphHopper. This is exactly the behaviour expected as the
domain-independent planning was supposed to be PSPACE-complete and
domain-specific solver has polynomial asymptotic complexity.

GraphHopper is by far faster than the domain-independent planner. It will
be shown in Chapter 6 how this problem can be tackled, but first, allow us
to check how fast domain dependent planner really is.

0 50 100 150 200

Depth

10
-1

10
0

10
1

10
2

10
3

T
o
ta

l
ti
m

e
 [
s
]

Measurement 1

Measurement 2

Measurement 3

Figure 4.1: Graph of measurements run time. On the vertical axis there is total
time on a logarithmic scale.

16

Chapter 5

Test of domain-specific planner on larger
data sets

In the previous chapter, running times of SymBA* and GraphHopper were
compared. Results were decisive, GraphHopper was faster than the domain-
independent planner. This has confirmed the hypothesis stated in the in-
troduction that domain specific solver will solve problems with polynomial
complexity and domain-independent planner with exponential complexity.

However, the decisiveness of the last test did not provide us any data about
possible upper bound of GraphHopper planning capabilities. Knowing this
data would be useful for following measurements as they would provide useful
insight of possible size of planned problems.

5.1 Measurement

In this new measurement we are looking for a boundary on size of input
problem. Boundary, when the GraphHopper starts to return data in approxi-
mately four hundred seconds as SymBA* in the last measurement did. For
this experiment, multiple data sets highly differing in size were prepared:

On every map, several locations were selected to determine speed of the
planner. The selected paths are shown in Table 5.1.

17

5. Test of domain-specific planner on larger data sets
. Prague center.Whole Prague. Central Bohemian Region. Czech Republic

In this measurement, it is no longer needed to crop the map to neighborhood
of start. The whole map is used because of an expectation that runtime won’t
be affected much by just few crossroads. Additionally, different map sizes
will act as neighborhood size did in previous experiment.

5.2 Results

After conducting measurement, results shown in Table 5.2 were obtained.

Test No. Map Road
1 Prague center Ječná - Ječná
2 Prague center Strakonická - Jindřicha Plachty
3 Prague center Reslova - Spálená
4 Whole Prague Vyšehradská - Rohanské nábřeží
5 Central Bohemia Rohanské nábřeží - Mladá Boleslav
6 Czech Republic Praha - Brno
7 Czech Republic Praha - Krnov
8 Czech Republic Aš - Jablunkov

Table 5.1: Paths corresponding to measurements.

Test No. Map Size Search time [s]
1 Prague center <55 MB 1.382
2 Prague center <55 MB 1.059
3 Prague center <55 MB 1.179
4 Whole Prague 55 MB 8.570
5 Central Bohemia 976 MB 56.051
6 Czech Republic 8 GB 418.023
7 Czech Republic 8 GB 432.979
8 Czech Republic 8 GB 441.022

Table 5.2: Results of test of GraphHopper on larger data sets.

18

....................................... 5.2. Results

Right now, it is clearly visible how significant time improvement can be
achieved using integrated planner like GraphHopper into domain-independent
planner for solving subproblems. Planning over the whole Czech Republic
took approximately the same time as when planning with SymBA* over an
area with radius of not even few thousand meters.

19

20

Chapter 6

Integrating GraphHopper results into
SymBA* planner

In the previous chapter, we have measured the difference in running time of the
planning with SymBA* and GraphHopper. Additionally, we have found the
approximation of the maximum problem size using GraphHopper. And now,
it is time for our main task. The process of integrating the domain-specific
solver into the domain-independent planner.

This integration will significantly speedup the whole planning process.
The integration itself will be conducted in several steps. First of all, the
SymBA*’s preprocessor and translator will be completely bypassed using
separate preprocessor with integrated GraphHopper. Secondly, GraphHopper
will be called to parse the input file and create the PDDL for the planner.
And finally, the GraphHopper will be integrated into the core of the translator
of SymBA*.

These separate steps will give us bigger insight on possible approaches and
their total speedup. These steps are from the least robust to the most robust
implementation (integration int the translator) as no heuristic function in
these steps are skipped.

21

6. Integrating GraphHopper results into SymBA* planner...................
6.1 Preprocessor and translator

In Chapter 4, initial measurement of domain-independent planner was con-
ducted. In the measured data, it is clearly visible that the computational time
is primarily spent in translator and preprocessor part of planning. The search
itself does not take much time. This trend is due to numerous heuristics and
functions, outlined in Chapter 3, that SymBA* tries to apply on the data in
those first two parts.

However, this whole process can be omitted. It is possible to make stan-
dalone program that will output the same file as SymBA* preprocessor does,
yet no additional functions will be applied. This approach has one big advan-
tage. Our knowledge about the domain can be used. Thanks to it the whole
process will be much faster.

SymBA* preprocessor is taken over from Fast Downward planner. The first
part of the format is the same as a format of translator output. This translator
format is clearly specified by Fast Downward authors [16]. Additionally, there
are three types of generated graphs that are used to speed up the search.
They are Domain Transition Graph, Causal Graph and Successor Generator.
All of these graphs are necessary to be created in order that the search is
working.

6.2 Measurement with own preprocessor

Standalone preprocessor was implemented as an external Java program. Its
output is the same as the original output format. The only difference is that
there is no extra preprocessing like finding unreachable states etc. Although
it speeds up the subproblem of path finding, it will become disadvantage if
this approach on the whole logistics domain would be used. Thus, later on,
better solution has to be found.

However, results for pathfinding are pleasant. Referring to the original
measurement, search phase contributed in most cases with less than one second
across all tests. Now, even though our preprocessor transfers computational
time towards the search phase, satisfactory results were gained.

22

........................ 6.3. Creating input PDDL from GraphHopper

Previous Conversion
Depth result [s] to PDDL Search Total [s] Ratio [%]

Measurement 1
100 42.132 2.349 22 24.349 57.792
150 330.152 2.339 51 53.339 16.156
200 565.646 2.370 57 59.370 10.496

Measurement 2
50 3.105 2.138 0 2.138 68.857
100 26.175 2.206 4 6.206 23.710
150 146.107 2.211 10 12.211 8.358
200 417.203 2.333 14 16.333 3.915

Measurement 3
25 2.071 2.219 0 2.219 107.146
50 4.138 2.075 1 3.075 74.311
100 67.177 2.205 4 6.205 9.237
150 320.23 2.360 7 9.36 2.923
200 447.221 2.328 7 9.328 2.086

Table 6.1: SymBA* results for measurement with our own preprocessor.

From Table 6.1 it is clear that the search itself is indeed longer, but the
planning as a whole is much shorter and this difference is getting better and
better with larger search space.

6.3 Creating input PDDL from GraphHopper

To get rid of the disadvantage described above, a slightly different approach
must be used. Up to this point the search space concept was used. Meaning
every intersection is saved in the PDDL and SymBA* planner finds both
fastest paths and optimal logistics plan. Let us use not only our knowledge
about domain but use the whole GraphHopper on the input of the SymBA*.
This is the next step in integrating domain-specific and domain-independent
planners.

As a first step, precomputed paths and corresponding distances can be
simply saved from GraphHopper into the input PDDL. Thanks to this ap-
proach SymBA* will not need to look for optimal routes between depots. In
this task, it has proven to be dominated by the domain-specific planner in
all tests up to this point. Additionally, SymBA* will still be able to make
complete preprocessing on the problem. This will be proven useful especially

23

6. Integrating GraphHopper results into SymBA* planner...................
on more complicated domains.

6.3.1 Implementation

For this approach, the small notation language was created. It contains
only three specific constructs and the filepath to the OSM file on the first
line of the file. First of those constructs is a word depot that is followed by
latitude and longitude, second construct is package that is followed by two
numbers: number of starting depot and number of goal depot. The depots
are numbered in order of appearance in the input file. The last construct is
vehicle, that is followed by number of depots where vehicle starts. Again,
number of depots are in order of appearance.

Having this notation language, a PDDL precompiler was implemented in
Java. It contains parser that handles reading of the input file and creates
formal encapsulation of this file for further use. This file encapsulation
uses three additional classes, one per language construct, and they provide
functions for easier handling of these constructs.

Second part of the precompiler is an implementation of the GraphHopper
library. It operates over the library core and calls the appropriate functions
needed for calculation of the shortest paths in map. All of this is done during
the parsing of the input in previous part of the precompiler.

After all of these steps, the shortest routes between every pair of depots are
calculated and the final appropriate PDDL is exported by simple routine. This
PDDL is completely standard and SymBA* does not need any modifications
to work with it.

6.3.2 Measurement

With this implementation of our own PDDL precompiler, results in Table 6.2
were measured. It is necessary to point out that from now on our measure-
ments are conduct on the logistics domain as described in Chapter 1. This
change is due to fact it is no longer needed to compare domain-independent
and domain-specific planner. Domain-independent planner with integrated
domain-specific planner and the one without are compared instead. All the

24

............................... 6.4. Integration into translator

previous measurements were just comparing abilities in finding the shortest
paths on the map as was previously stated.

Without With
Depth Export GraphHopper Export GraphHopper

Measurement 1
20 0.298 81.298 0.398 2.398
30 0.390 146.390 0.488 2.488
40 0.352 264.352 0.599 2.599
50 0.392 422.392 0.703 2.703
60 0.402 1628.402 0.743 2.743

Measurement 2
20 0.298 1415.298 0.398 2.398
30 0.390 3655.390 0.488 2.488
40 0.352 4569.352 0.599 2.599
50 0.392 6702.392 0.703 2.703

Table 6.2: SymBA* results for measurement with creating GraphHopper PDDL
input.

From the results in Table 6.2, it is apparent that with integrated Graph-
Hopper into SymBA* huge speed up was obtained. Let us check if the whole
process can be neater.

6.4 Integration into translator

Although it has been proven that PDDL files with precomputed ways are
effective the necessity of having external program is limiting. Thus, it would
be huge benefit if GraphHopper was completely integrated into SymBA*
translator.

The implementation works as follows. New requirement :osm is defined. It
is recognized by SymBA* in a domain PDDL file. If this tag is present then
problem file is expected to have :osm definition. This definition has following
syntax. Whole block is bounded by brackets and contains :osm tag, path to
program with GraphHopper and is followed by n components. For every two
objects inside, one component path and path-length predicate will be created
from GraphHopper. This component definition has syntax like this: at the
first place, there is component keyword and then m triplets containing in this
order object latitude and longitude. Example of definition is in Listing 6.1
and corresponding graph is in Figure 6.1.

25

6. Integrating GraphHopper results into SymBA* planner...................
Listing 6.1: Example of osm PDDL extension.

(define . . .
(:objects
depot1 depot2 depot3 depot4 depot5 depot6
. . .

)
. . .
(:osm . . / graphhopper /map . osm

(component
(depot1 50.078349 14 .448512)
(depot2 50.082220 14 .449245)
(depot3 50.080798 14 .452959)

)
(component

(depot3 50.080798 14 .452959)
(depot4 50.086275 14 .434750)

)
(component

(depot4 50.086275 14 .434750)
(depot5 50.084492 14 .413531)
(depot6 50.075970 14 .435111)

)
)

)

This :osm segment is then parsed, objects and their locations are extracted.
Afterwards the GraphHopper implementation on specified file path is called.
It needs to be pointed out that GraphHopper is able to use contraction
hierarchies. With this setting on, library precomputes data about map and
can reuse it in every following search. This feature speeds up the process of
pathfinding even more.

When paths are computed, from final distances new predicates path and
path-length are constructed. These predicates are for SymBA* the same as if
they were read from standard PDDL. Thus, SymBA* is still able to use all
heuristic and pruning force to optimize resulting problem and preprocess it
for the best performance on logistics problem.

26

....................... 6.5. Measurement with integrated GraphHopper

Dep1

Dep2

Dep3 Dep4

Dep5

Dep6

Figure 6.1: Graph corresponding to extended osm PDDL.

6.5 Measurement with integrated GraphHopper

Number of Number of Number of Total
Test No. Vehicles Depots Packages time [s]

1 1 5 5 5
2 2 5 5 5
3 3 5 5 6
4 1 7 7 5
5 2 7 7 8
6 3 7 7 13
7 1 10 10 9
8 2 10 10 29
9 3 10 10 272

Maximum values
10 1 14 14 1645
11 2 13 13 1995
12 3 11 11 935

Table 6.3: SymBA* results for measurement with integrated GraphHopper.

Right now, we have experimentally shown, that SymBA* is able to plan quite
extensive problems in short time. Much better performance than any other
previous implementation. In fact, it is no longer possible to even compare
results with pure SymBA* because their computation simply takes too long.

To sum up, full integration of the domain-specific planner into the domain-
independent one was achieved. It uses the very best of both worlds. Speed of
domain-specific planning and versatility of domain-independent one. Solution
of logistics problem is quite neatly split into subproblem of finding the
shortest path and the main problem of optimal distribution of packages
between depots.

27

6. Integrating GraphHopper results into SymBA* planner...................
In the next chapter application of this enhancement on slightly different

and more complicated domains will be presented.

28

Chapter 7

Extensions of logistics domain

Logistics was the primary field of previous chapters. In this part, other
domains will be the subject of the research. It is important to stress out that
none of these domains needed any additional change in planner code. The
only modification is in adding :osm part to problem file instead of explicit
enumeration of all possible roads. This approach strictly corresponds to
the topic of this thesis. The integration is seamless and does not bring any
complicated requirements on the user side. Especially, the capability of the
PDDL extension for definition of multiple components in the graphs is very
advantageous in reformulating original tasks and thus easing the work with
the language extension.

Some of the benchmark domains used for the optimal planning at IPC were
selected as example domains. These domains have publicly available PDDLs.
From original PDDL, after few changes and integrating :osm requirement,
usable domains with GraphHopper were obtained. All of them are extensions
of basic logistics problem thoroughly described in Chapter 1.

In next sections, every domain will be described with according measured
data comparing performance with and without integrated GraphHopper.

Two of the domains, Depots and DriverLog, are taken from the Third
International Planning Competition [15].

29

7. Extensions of logistics domain
7.1 Capacity

This small extension of logistics adds capacity limit for every vehicle. In
previous domain truck was able to carry infinite number of packages. Up to
this moment it was not possible to specify any limit. Results are in Table 7.1.

Test No. Translator Preprocessor Search Total [s]
Pure SymBA*

1 0 1 161 162
2 1 0 2022 2023
3 1 0 191 192

SymBA* with GraphHopper
1 2 0 0 2
2 0 0 0 <1
3 1 0 0 1

Table 7.1: SymBA* results for measurement of capacity extension.

7.2 Depots

Depots problem is an extension of logistics towards the domain-independent
planning. The previous task is expanded with modelling of crates containing
packages and hoists that lifts and drops the crates and packages in every depot.
Therefore, this domain is less route planning based and more focused on
operations needed in the whole supply chain. Final results of this measurement
are in Table 7.2.

Test No. Translator Preprocessor Search Total [s]
Pure SymBA*

1 0 0 15 15
2 0 0 67 67
3 0 1 1586 1587

SymBA* with GraphHopper
1 0 0 1 1
2 1 0 1 2
3 0 0 5 5

Table 7.2: SymBA* results for measurement of depots extension.

30

..................................... 7.3. Truck-plane

7.3 Truck-plane

Truck-plane extension adds new type of transport, airplanes. Thanks to
it more complexity of problem is achieved. Moreover, it is more common
problem in practice where multiple types of transportation is used in delivery
chain. The problem itself is often divided in small enclaves of depots in every
city. These groups of depots are connected via airfields.

In our OSM extension the division into enclaves is achieved thanks to
component predicates. Every component is detached from the others and
no connection between them is constructed. Measurement’s outcome is in
Table 7.3.

Test No. Translator Preprocessor Search Total [s]
Pure SymBA*

1 1 0 7 8
2 1 0 3123 3126
3 0 0 159 159

SymBA* with GraphHopper
1 0 0 0 <1
2 0 0 0 <1
3 0 0 0 <1

Table 7.3: SymBA* results for measurement of truck - plane extension.

7.4 Intercity transport

This domain is created from truck plane domain by little twist. The objective
is to plan inter city transportation. There are some cities. Every city contains
its own distribution network. But the whole transport between cities is
handled by second type of network.

The main difference from previous domain is that all networks are handled
by GraphHopper (the airplanes could not use it). As was proven in Chapter 5,
GraphHopper is able to successfully plan routes over big distances, thus the
planning will benefit in huge manner in respect to pure SymBA*. Results
are in Table 7.4.

31

7. Extensions of logistics domain
Test No. Translator Preprocessor Search Total [s]

Pure SymBA*
1 1 0 4 5
2 1 0 125 126
3 1 0 1752 1753

SymBA* with GraphHopper
1 0 0 0 <1
2 0 0 0 <1
3 0 0 0 <1

Table 7.4: SymBA* results for measurement of intercity transport extension.

7.5 Driverlog

Driverlog domain is modelling logistics from the perspective of one driver
and not the company itself. Driver has locations from and where to ride.
Additionally, the driver is able to leave the truck and walk onto additional
locations. For example, the situation like this can be modelled. Driver must
deliver packages between three locations, he must go for lunch, toilet and go
shopping. The sequence, in which these tasks will be completed, is only up
to him.

Driverlog problem contains two separate types of GraphHopper planning.
Primarily the plan of driving to deliver packages and secondly plan of walk
in each location. Final results of this measurement are in Table 7.5.

Test No. Translator Preprocessor Search Total [s]
Pure SymBA*

1 0 1 3 4
2 0 1 617 618
3 0 1 1586 1587

SymBA* with GraphHopper
1 0 0 1 1
2 0 1 0 1
3 1 0 0 1

Table 7.5: SymBA* results for measurement of driverlog extension.

32

Chapter 8

Travelling Salesman Problem

Previous chapters were focused on logistics and the GraphHopper library was
used as the extension of SymBA* planner. This approach was thoroughly
explored. Initially on basic logistics domain and on the modified domains
afterwards.

It would be beneficial to prove that it is possible to integrate different
domain-specific solvers into domain-independent planner. This would show
robustness and portability of the previous integration principle. And the goal
of the current chapter is verification of this possibility.

8.1 Problem specification

As a next domain Travelling Salesman Problem (TSP) was selected. This,
well-known and thoroughly surveyed, problem has following formal definition:
’Given a distance matrix between n cities, a tour with minimum length has
to be found, such that each city is visited exactly once, and the tour return
to the first city.’ [5, p.25]

The TSP belongs to NP-complete problem class. Since formulation in the
1930s, heuristics and exact algorithms are still evolving. Despite superpolyno-
mial increase of running time with the number of cities, current heuristics are
capable of approximately solving large problems with very small deviation.

33

8. Travelling Salesman Problem..............................
As an example one can take World TSP solution, where approximation of a
path through 1.9 million cities had length at most 0.049% longer than the
optimal path. [11]

8.2 Implementation

Domain-specific planner Concorde [4] with use of QSopt [3] linear program-
ming solver has been chosen for the implementation. Concorde is a widely
used TSP solver capable of solving all TSPLIB problems. Regarding the
domain-independent planning. SymBA* planner, that was used even in
previous parts of the work, will still be used as domain-independent planner.

As a domain for domain-independent planning following problem was
selected. Imagine a company that delivers leaflets to all of the apartment
houses in a neighborhood. Every household has specific product preferences,
carefully determined by market research. All of the company’s peddlers must
deliver all of the leaflets to all of the specified flats. And achieving this by
walking as short distance as possible. To promote the TSP nature of this
domain, every flat can be visited only once, otherwise the customers would
be upset.

The TSP solver is used to find the shortest path through all of the flats
in every apartment house. Afterwards, flats in every house are substituted
by one PDDL object representing interior. The distance needed to go from
the house entrance through the interior and back again to the house entrance
is the distance obtained from the TSP solver. Visualisation is on Figure 8.1
and Figure 8.2.

To integrate Concorde into SymBA* it is necessary to extend the original
notation of PDDL problem files. We do so by introducing new TSP description
(: TSP (house1 interior1 ./h1) (house2 interior2 ./h2) ...). After :TSP tag
there are n 3-tuples containing (in this order): house object, substituting
object of interior and path to corresponding TSP file of house interior. For
sake of simplicity, the TSP file is in TSPLIB file format [17] that is one of
the supported input formats of Concorde solver. Crop of example PDDL is
on Listing 8.1.

34

.................................... 8.3. Measurement

Office House1 Flat1

Flat2

Flat3

Flat4
5 0

10

100 100

10

10 10

Figure 8.1: Example graph corresponding to original problem. TSP solution
has blue color.

Office House1 Interior
10

40

0

Figure 8.2: Converted example from Figure 8.1 using PDDL extension.

8.3 Measurement

To measure the efficiency of the planner enhancement, several testing problems
were created. Most of them contain three houses with different number of
flats and one peddler to deliver the leaflets. The measurement focus on path
planning itself, so there are no tasks for the peddler to accomplish other
than delivering all of the leaflets. But the possibilities are immense due
to domain-independent planning. The whole measurement ended up very
decisively, as SymBA* with integrated Concorde scored run-time lower than
one second for every problem.

Size of TSP Pure SymBA* With Concorde
Test No. subproblems Total [s] Total [s]

1 5-4 2 <1
2 5-7 11 <1
3 6-5-5 242 <1
4 5-5-5 392 <1
5 6-5-6 832 <1
6 7-5-5 1654 <1
7 3-3-3-5 195 <1

Table 8.1: SymBA* results for TSP measurements.

35

8. Travelling Salesman Problem..............................
Listing 8.1: Example of PDDL extension for SymBA* with Concorde.

(define . . .
(:domain . . .)
(:objects
house1 hou s e 1 i n t e r i o r
house2 hou s e 2 i n t e r i o r
l e a f l e t 1 l e a f l e t 2
. . .

)
(: i n i t
. . .

)
(:goal
(l e a f l e t− a t l e a f l e t 1 hou s e 1 i n t e r i o r)
(l e a f l e t− a t l e a f l e t 2 hou s e 2 i n t e r i o r)
. . .

)
. . .
(:TSP
(house1 hou s e 1 i n t e r i o r . . / tsp_input /houseMap1 . tsp)
(house2 hou s e 2 i n t e r i o r . . / tsp_input /houseMap2 . tsp)

)
)

8.4 Upper bounds

The previous measurement in Table 8.1 did not provide us any upper bound
on runtime dependence on number of rooms in a house. Thus, additional
data about how long planning takes are needed. The data in Table 8.2 are
average values of Concorde’s running time. It is the average time of five
measurements. These measurements were randomly generated as Euclidean
problem of specified size. Their files are given as symmetric succession
matrix with distance values between 1 and 100 in TSPLIB file format. These
measurements are sent as an input directly to the Concorde solver with no
middle layer like SymBA*.

Number of rooms Time [s]
100 0.078
250 0.734
500 3.446
750 10.232
1000 20.252
1500 28.966

Table 8.2: Concorde running time for domains of different sizes.

36

.................................... 8.4. Upper bounds

Given this data we can estimate runtime needed for planning on domain
containing houses of some size. As the Concorde planner is called from within
the SymBA*, the translator time will increase by corresponding value from
Table 8.2. To support this claim the additional measurement is provided
in Table 8.3. Every measurement contains three houses of the same size
and once again leaflet delivery is required. Comparing those two tables, the
dependence is clearly visible. Time of the translator phase is every time
roughly three times the number of Concorde’s planning.

Rooms SymBA* planning Total
per house Translator Preprocessor Search [s]

100 0 0 0 <1
250 6 0 0 6
500 9 0 0 9
750 30 0 0 30
1000 57 0 0 57
1500 85 0 0 85

Table 8.3: Concorde running time for leaflet problem having three houses with
the same number of rooms.

Having defined upper bounds, from now on it is known how big domain
can be planned in reasonable time. From now on, we can approximately
predetermine the time needed for solving specific domain. In the next chapter,
the full connection between our original logistics domain and the TSP domain
will be shown.

37

38

Chapter 9

Logistics with TSP

In previous parts, two PDDL extensions were successfully created. First one
uses GraphHopper for finding the shortest route on a map. Second one uses
TSP solver for finding optimal solution for delivering leaflets in a house. Up
to this point, these extensions were used separately, but in this chapter, we
will take a look on their simultaneous performance for solving more robust
tasks.

9.1 The domain

The domain used in this chapter will be the same as the one used for the
TSP. Again, leaflets will be delivered to neighboring houses. However, this
time houses will be placed on a location on the OSM map. This change will
result in much more complex planning problem.

The measurement will be conducted in two parts. In the first part, the mea-
surement will focus on comparison of pure SymBA* with enhanced SymBA*
with integrated Concorde and GraphHopper. For reasonable comparison, the
problems will be small in size. However, in the second measurement results
of extended SymBA* on large scale domains will be presented.

39

9. Logistics with TSP
9.2 Comparison of planners

As was stated, this measurement compares original SymBA* with extended
planner. For this measurement, small OSM extracts varying in size were
selected. The OSM extracts are from part of Prague Horni Pocernice. This
area was selected because no one-way streets are present in this district.
One-way streets are limiting the planner on small area as some depots might
have no escape. All of the extracts have the same origin and the starting
location is always on the same place.

Results of the measurement are in Table 9.1. Every measurement has
its corresponding depth of OSM extract and size of placed houses for TSP.
Every measurement that have the same distribution of houses but differing
in size of problem have all of the houses placed on the same place for better
comparison.

Size SymBA* planning Total
Depth of houses Translator Preprocessor Search [s]

25 3 0 1 4 5
50 3 5 69 72 146
100 3 9 150 96 255
25 3-4 0 4 80 84
50 3-4 6 248 537 791
100 3-4 10 345 1377 1732
25 3-3-3 0 7 219 226
50 3-3-3 8 322 1409 1739
25 3-4-3 0 8 515 523

Table 9.1: Results of planning on small problems with TSP and OSM back-
ground.

Results are very decisive. Very large improvement has been made because
every measurement was calculated in less than one second. The success is
not only time-wise, but even in simplicity of the input problem PDDL. Just
for outlining the difference, a number of lines of the largest PDDL problem
file is 9160 lines. The corresponding file for extended SymBA* has 36 lines.

Having compared the original and extended planners, let us check how
extended SymBA* plans on domains much bigger in size.

40

.................................... 9.3. Large domains

9.3 Large domains

To determine the possible size of large domains, our previous measurements
offers good upper bounds on reasonable planning time. Three of them
are especially prominent. Primarily, Table 5.2 contains dependence of the
GraphHopper’s running time on the size of the input OSM file. Secondly,
results of the measurement in Table 6.3 gives us a good estimate on maximum
number of nodes in the whole problem. And finally, in Table 8.2 there are
average running times of Concorde solver for given number of rooms.

Based on these limitations, the problem was created. The aim was to have
approximately ten buildings and each one with up to 1500 rooms. Based on
these restrictions, two problems were created.

9.3.1 Measurement

In the first one, the goal is to find a way between ten tallest buildings in
the New York City. OSM Extract with size of 1.1 GB was selected as the
map background and 10,000 rooms were evenly distributed between buildings
according to the size of the building. The second problem has same goal.
Only the location differs as this one is planned in the city of London. Map
has size of 600 MB and thus is half the size of the first map. Again 10,000
rooms were distributed between ten tallest buildings in London. The maps of
the selected buildings in both cases are in Figure 9.1.

The measurement was conducted in the SymBA* with both sub solvers,
GraphHopper and Concorde. The data of each part of planning are in
Table 9.2 for New York City and in Table 9.3 for London.

41

9. Logistics with TSP

(a) : New York City (b) : City of London

Figure 9.1: Map of planned problems with highlighted locations of skyscrapers.

Concorde GraphHopper Preprocessor Search Total [s]
175 99 0 997 1271

Table 9.2: Result of the measurement for the New York City experiment with
simultaneous use of GraphHopper and Concorde.

Concorde GraphHopper Preprocessor Search Total [s]
165 43 0 1370 1578

Table 9.3: Result of the measurement for the London experiment with simulta-
neous use of GraphHopper and Concorde.

9.3.2 Results

The experiment was very successful. It is important to stress out, that without
the solvers just from the OSM the domain would contain 8.2 million and 3.6
million nodes respectively. Additionally, 10,000 nodes would be necessary for
the TSP subproblem.

42

Chapter 10

Conclusion

Our goal was to find a way to improve the efficiency of the domain-independent
planning. The primary domain chosen for testing possible improvements
was logistics. The open-source path planning library GraphHopper was used
and integrated into SymBA* planner. Tests using this implementation have
proven themselves to be a huge success as an immense speedup in the planning
was accomplished. This increase was observable across all of the domain
variant, with practically no difference. The result was a planner that is still
domain-independent, yet has fast subsolvers for specific tasks. This planner
is therefore able to use different domains while not needing any changes in
its implementation, like the standard domain-specific solver would.

To test our approach more thoroughly, new domain and corresponding
solver were selected. The solver Concorde for Travelling salesman problem was
integrated in the same manner. Its results were as good as the GraphHopper
ones. Moreover, the domain that uses both of the solvers at the same time
was presented. On this domain, huge tests, based on real world data, were
conducted, and they provided a great insight of possible problem sizes.

Our primary goal have been successfully met and so our second task. The
integration into standardized planning language called PDDL is seamless and
offers comfort and large possibilities in defining various tasks.

To sum up, the goals have been met and hopefully this thesis will provide
a good starting ground for any following research or implementations on their
own.

43

44

Appendix A

Used PDDL domains

In this appendix, the summary of all main PDDL domains that was used
throughout the thesis is given. Every section contains domain of the problem
with corresponding name.

A.1 Capacity

(define (domain c a p a c i t y)
(:requirements :typing

: a c t i o n − c o s t s :osm)
(:types

l o c a t i o n t a r g e t l o c a t a b l e − o b j e c t
v e h i c l e package − l o c a t a b l e
capacity−number − o b j e c t

)

(:predicates
(road ? l 1 ? l 2 − l o c a t i o n)
(at ?x − l o c a t a b l e ?v − l o c a t i o n)
(i n ?x − package ?v − v e h i c l e)
(c a p a c i t y ?v − v e h i c l e

? s1 − capacity−number)
(c a p a c i t y − p r e d e c e s s o r

? s1 ? s2 − capacity−number)
)

(: functions
(road− length

? l 1 ? l 2 − l o c a t i o n) − number
(t o t a l − c o s t) − number

)

(:action d r i v e
:parameters

(? v − v e h i c l e ? l 1 ? l 2 − l o c a t i o n)
:precondition (and

(at ?v ? l 1)
(road ? l 1 ? l 2)

)
: e f f e c t (and

(not (at ?v ? l 1))
(at ?v ? l 2)

(i n c r e a s e (t o t a l − c o s t)
(road− length ? l 1 ? l 2))

)
)

(:action pick−up
:parameters

(? v − v e h i c l e ? l − l o c a t i o n
?p − package
? s1 ? s2 − capacity−number)

:precondition (and
(at ?v ? l)
(at ?p ? l)
(c a p a c i t y − p r e d e c e s s o r ? s1 ? s2)
(c a p a c i t y ?v ? s2)

)
: e f f e c t (and

(not (at ?p ? l))
(i n ?p ?v)
(c a p a c i t y ?v ? s1)
(not (c a p a c i t y ?v ? s2))
(i n c r e a s e (t o t a l − c o s t) 1)

)
)

(:action drop
:parameters

(? v − v e h i c l e ? l − l o c a t i o n
?p − package
? s1 ? s2 − capacity−number)

:precondition (and
(at ?v ? l)
(i n ?p ?v)
(c a p a c i t y − p r e d e c e s s o r ? s1 ? s2)
(c a p a c i t y ?v ? s1)

45

A. Used PDDL domains
)

: e f f e c t (and
(not (i n ?p ?v))
(at ?p ? l)
(c a p a c i t y ?v ? s2)
(not (c a p a c i t y ?v ? s1))
(i n c r e a s e (t o t a l − c o s t) 1)

)
)

)

Listing A.1: PDDL capacity domain.

A.2 Depots

(define (domain depot)
(:requirements :typing

: a c t i o n − c o s t s :osm)
(:predicates

(at ?x ?y) (on ?x ?y)
(i n ?x ?y) (l i f t i n g ?x ?y)
(a v a i l a b l e ?x) (c l e a r ?x)
(p l a c e ?x) (l o c a t a b l e ?x)
(depot ?x) (d i s t r i b u t o r ?x)
(truck ?x) (h o i s t ?x)
(s u r f a c e ?x) (p a l l e t ?x)
(c r a t e ?x) (road ?y ? z))

(: functions
(road− length ? l 1 ? l 2) − number
(t o t a l − c o s t) − number

)
(:types

l o c a t i o n t a r g e t l o c a t a b l e − o b j e c t
v e h i c l e package − l o c a t a b l e
capacity−number − o b j e c t

)
(:action d r i v e

:parameters (
?x ?y − l o c a t i o n ? z − l o c a t i o n)

:precondition
(and (truck ?x)

(at ?x ?y) (road ?y ? z))
: e f f e c t

(and (at ?x ? z) (not (at ?x ?y))
(i n c r e a s e (t o t a l − c o s t)

(road− length ?y ? z))
))

(:action l i f t
:parameters (?x ?y ? z
?p − l o c a t i o n)
:precondition

(and (h o i s t ?x) (c r a t e ?y)
(s u r f a c e ? z) (at ?x ?p)
(a v a i l a b l e ?x) (at ?y ?p)
(on ?y ? z) (c l e a r ?y))

: e f f e c t
(and (l i f t i n g ?x ?y) (c l e a r ? z)

(not (at ?y ?p))
(not (c l e a r ?y))

(not (a v a i l a b l e ?x))
(not (on ?y ? z))))

(:action drop
:parameters (?x ?y ? z

?p − l o c a t i o n)
:precondition

(and (h o i s t ?x) (c r a t e ?y)
(s u r f a c e ? z)
(at ?x ?p) (at ? z ?p)
(c l e a r ? z) (l i f t i n g ?x ?y))

: e f f e c t
(and (a v a i l a b l e ?x) (at ?y ?p)

(c l e a r ?y) (on ?y ? z)
(not (l i f t i n g ?x ?y))
(not (c l e a r ? z))))

(:action load
:parameters (?x ?y ? z

?p − l o c a t i o n)
:precondition

(and (h o i s t ?x) (c r a t e ?y)
(truck ? z) (at ?x ?p)
(at ? z ?p) (l i f t i n g ?x ?y))

: e f f e c t
(and (i n ?y ? z) (a v a i l a b l e ?x)

(not (l i f t i n g ?x ?y))))

(:action unload
:parameters (?x ?y ? z

?p − l o c a t i o n)
:precondition

(and (h o i s t ?x) (c r a t e ?y)
(truck ? z) (at ?x ?p)
(at ? z ?p) (a v a i l a b l e ?x)

(i n ?y ? z))
: e f f e c t

(and (l i f t i n g ?x ?y)
(not (i n ?y ? z))
(not (a v a i l a b l e ?x))))

)

Listing A.2: PDDL depots domain.

A.3 Truck-plane and Intercity transport

(define (domain truckPlane)
(:requirements : a c t i o n − c o s t s :osm)

(:predicates
(package ? obj)

(truck ? truck)
(a i r p l a n e ? a i r p l a n e)

(a i r p o r t ? a i r p o r t)
(airway ? a i r p o r t 1 ? a i r p o r t 2)
(road ? l 1 ? l 2)

(at ? obj ? l o c)
(i n ? obj ? obj))

(: functions
(road− length ? l 1 ? l 2)
(t o t a l − c o s t)

)

(:action load−truck
:parameters

(? obj
? truck
? l o c)

:precondition

46

...................................... A.4. Driverlog

(and (package ? obj) (truck ? truck)
(at ? truck ? l o c) (at ? obj ? l o c))

: e f f e c t
(and (not (at ? obj ? l o c))

(i n ? obj ? truck)))

(:action l o a d − a i r p l a n e
:parameters

(? obj
? a i r p l a n e
? l o c)

:precondition
(and (package ? obj)

(a i r p l a n e ? a i r p l a n e)
(at ? obj ? l o c)
(at ? a i r p l a n e ? l o c))

: e f f e c t
(and (not (at ? obj ? l o c))

(i n ? obj ? a i r p l a n e)))

(:action unload−truck
:parameters

(? obj
? truck
? l o c)

:precondition
(and (package ? obj)

(truck ? truck)
(at ? truck ? l o c)
(i n ? obj ? truck))

: e f f e c t
(and (not (i n ? obj ? truck))

(at ? obj ? l o c)))

(:action unload−airplane
:parameters

(? obj
? a i r p l a n e
? l o c)

:precondition
(and (package ? obj)

(a i r p l a n e ? a i r p l a n e)
(i n ? obj ? a i r p l a n e)

(at ? a i r p l a n e ? l o c))
: e f f e c t

(and (not (i n ? obj ? a i r p l a n e))
(at ? obj ? l o c)))

(:action drive−truck
:parameters

(? truck
? loc−from
? loc−to)

:precondition
(and (truck ? truck)

(road ? loc−from ? loc−to)
(at ? truck ? loc−from)

)
: e f f e c t

(and (not (at ? truck ? loc−from))
(at ? truck ? loc−to)
(i n c r e a s e (t o t a l − c o s t)
(road− length ? loc−from ? loc−to))))

(:action f l y − a i r p l a n e
:parameters

(? a i r p l a n e
? loc−from
? loc−to)

:precondition
(and (a i r p l a n e ? a i r p l a n e)

(a i r p o r t ? loc−from)
(a i r p o r t ? loc−to)
(airway ? loc−from ? loc−to)

(at ? a i r p l a n e ? loc−from))
: e f f e c t

(and (not (at ? a i r p l a n e ? loc−from))
(at ? a i r p l a n e ? loc−to)
(i n c r e a s e (t o t a l − c o s t)
(road− length ? loc−from ? loc−to))))

)

Listing A.3: PDDL truck-plane and
intercity transport domain.

A.4 Driverlog

(define (domain d r i v e r l o g)
(:requirements : s t r i p s :osm

:typing : a c t i o n − c o s t s)
(:predicates (OBJ ? obj)

(TRUCK ? truck)
(LOCATION ? l o c)

(d r i v e r ?d)
(at ? obj ? l o c)
(i n ? obj1 ? obj)
(d r i v i n g ?d ?v)
(road ?x ?y)
(path ?x ?y)
(empty ?v)

)
(:types

l o c a t i o n t a r g e t l o c a t a b l e − o b j e c t
v e h i c l e package − l o c a t a b l e
capacity−number − o b j e c t

)
(: functions

(road− length ? l 1 ? l 2) − number
(t o t a l − c o s t) − number

)

(:action LOAD−TRUCK
:parameters

(? obj
? truck
? l o c − l o c a t i o n)

:precondition
(and (OBJ ? obj) (TRUCK ? truck)
(at ? truck ? l o c) (at ? obj ? l o c))

: e f f e c t
(and (not (at ? obj ? l o c))

(i n ? obj ? truck)))

(:action UNLOAD−TRUCK
:parameters

(? obj
? truck
? l o c − l o c a t i o n)

:precondition
(and (OBJ ? obj) (TRUCK ? truck)

(at ? truck ? l o c)
(i n ? obj ? truck))

: e f f e c t
(and (not (i n ? obj ? truck))

(at ? obj ? l o c)))

(:action BOARD−TRUCK
:parameters

(? d r i v e r
? truck
? l o c − l o c a t i o n)

:precondition
(and (DRIVER ? d r i v e r) (TRUCK ? truck)
(at ? truck ? l o c) (at ? d r i v e r ? l o c)

(empty ? truck))
: e f f e c t

(and (not (at ? d r i v e r ? l o c))
(d r i v i n g ? d r i v e r ? truck)
(not (empty ? truck))))

(:action DISEMBARK−TRUCK
:parameters

(? d r i v e r
? truck
? l o c − l o c a t i o n)

47

A. Used PDDL domains
:precondition

(and (DRIVER ? d r i v e r) (TRUCK ? truck)
(at ? truck ? l o c)
(d r i v i n g ? d r i v e r ? truck))

: e f f e c t
(and (not (d r i v i n g ? d r i v e r ? truck))

(at ? d r i v e r ? l o c) (empty ? truck)))

(:action DRIVE−TRUCK
:parameters

(? truck
? loc−from − l o c a t i o n
? loc−to − l o c a t i o n
? d r i v e r)

:precondition
(and (TRUCK ? truck)

(DRIVER ? d r i v e r)
(at ? truck ? loc−from)
(d r i v i n g ? d r i v e r ? truck)
(road ? loc−from ? loc−to))

: e f f e c t
(and (not (at ? truck ? loc−from))

(at ? truck ? loc−to)
(i n c r e a s e (t o t a l − c o s t)
(road− length ? loc−from ? loc−to))))

(:action WALK
:parameters

(? d r i v e r
? loc−from − l o c a t i o n
? loc−to − l o c a t i o n)

:precondition
(and (DRIVER ? d r i v e r)

(at ? d r i v e r ? loc−from)
(path ? loc−from ? loc−to))

: e f f e c t
(and (not (at ? d r i v e r ? loc−from))
(at ? d r i v e r ? loc−to)))

)

Listing A.4: PDDL driverlog domain.

A.5 Peddler

(define (domain p e d d l e r)
(:requirements :typing : a c t i o n − c o s t s)
(:types

l o c a t i o n
l e a f l e t
postman

)

(:predicates
(road ? l 1 − l o c a t i o n

? l 2 − l o c a t i o n)
(at ?v − postman

? at − l o c a t i o n)
(l e a f l e t − a t ?p − l e a f l e t

? at − l o c a t i o n)
(l e a f l e t − i n ?p − l e a f l e t

? i n − l o c a t i o n)
(v i s i t e d ? l − l o c a t i o n)
(f l a t ? l − l o c a t i o n)

)

(: functions
(road− length ? l 1 − l o c a t i o n

? l 2 − l o c a t i o n) − number
(t o t a l − c o s t) − number

)

(:action walk
:parameters (? v − postman

? l 1 − l o c a t i o n ? l 2 − l o c a t i o n)
:precondition (and

(at ?v ? l 1)
(not (f l a t ? l 2))
(road ? l 1 ? l 2)

)
: e f f e c t (and

(not (at ?v ? l 1))
(at ?v ? l 2)
(i n c r e a s e (t o t a l − c o s t)

(road− length ? l 1 ? l 2))
)

)

(:action walk−to−f lat

:parameters (? v − postman
? l 1 − l o c a t i o n ? l 2 − l o c a t i o n)

:precondition (and
(at ?v ? l 1)
(f l a t ? l 2)
(not (v i s i t e d ? l 2))
(road ? l 1 ? l 2)

)
: e f f e c t (and

(not (at ?v ? l 1))
(at ?v ? l 2)
(v i s i t e d ? l 2)
(i n c r e a s e (t o t a l − c o s t)

(road− length ? l 1 ? l 2))
)

)

(:action t a k e − l e a f l e t
:parameters

(? v − postman ?p − l e a f l e t
? where − l o c a t i o n)

:precondition
(and (at ?v ? where)
(l e a f l e t − a t ?p ? where))

: e f f e c t (and (not
(l e a f l e t − a t ?p ? where))
(l e a f l e t − i n ?p ?v))

)

(:action d e l i v e r − l e a f l e t
:parameters

(? v − postman ?p − l e a f l e t
? where − l o c a t i o n)

:precondition
(and (at ?v ? where)
(l e a f l e t − i n ?p ?v))

: e f f e c t (and (not
(l e a f l e t − i n ?p ?v))
(l e a f l e t − a t ?p ? where))

)
)

Listing A.5: PDDL postman domain.

48

Appendix B

CD contents

. graphHopper.zip - Java implementation of GraphHopper library that is
capable of communicating with SymBA*. osmToPDDL.zip - A Java program that converts OSM files to PDDL
problem file or to translator SAS file or to preprocessor output. README.txt - Description of the usage of files on the CD. tasks.py - Changed python code of original SymBA* translator

49

50

Appendix C

Bibliography

[1] Álvaro Torralba, Vidal Alcázar, Daniel Borrajo, Peter Kissmann and
Stefan Edelkamp. 2014. SymBA*: A symbolic bidirectional A* planner.
In International Planning Competition, 105–108.

[2] Álvaro Torralba, Carlos Linares López, Daniel Borrajo: Abstraction
Heuristics for Symbolic Bidirectional Search. IJCAI 2016. 3272-3278.

[3] D. Applegate, W. Cook, S. Dash, and M. Mevenkamp. QSopt - linear
programming solver and library.

[4] David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook.
Concorde TSP solver. 2006.

[5] Stefan Edelkamp and Stefan Schrödl. Heuristic Search: theory and
applications. 1st ed. Morgan Kaufmann, July 2011. isbn: 978-0-12-
372512-7.

[6] Kutluhan Erol, Dana S Nau, and VS Subrahmanian. “On the complexity
of domain-independent planning”. In: AAAI. Vol. 1. 1992, pp. 381–386.

[7] Matin Ghaziani. “Improved Positioning By Distance-Based Differential
Gps”. Appendix A - Calculate Distance Between Two Set Of Coordinate.
MA thesis. Middle East Technical University, Sept. 2013.

[8] GraphHopper GmbH. GraphHopper repository. https://github.com/
graphhopper/graphhopper. [Online; accessed 20-December-2017].

[9] GraphHopper GmbH. Selected Customers. https://www.graphhopper.
com/. [Online; accessed 21-December-2017].

[10] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths”. In: IEEE Transac-
tions on Systems Science and Cybernetics 4.2 (July 1968), pp. 100–107.
issn: 0536-1567. doi: 10.1109/TSSC.1968.300136.

51

https://github.com/graphhopper/graphhopper
https://github.com/graphhopper/graphhopper
https://www.graphhopper.com/
https://www.graphhopper.com/
https://doi.org/10.1109/TSSC.1968.300136

C. Bibliography
[11] Keld Helsgaun. “An Effective Implementation of K-opt Moves for

the Lin-Kernighan TSP Heuristic”. In: DATALOGISKE SKRIFTER
(Writings on Computer Science) 109 (2006). Roskilde University.

[12] ICAPS. International Planning Competition 2014 results. https://
helios.hud.ac.uk/scommv/IPC-14/resDoc.html. [Online; accessed
20-December-2017].

[13] Michael Katz and Carmel Domshlak. “Optimal admissible composition
of abstraction heuristics”. In: Artificial Intelligence 174.12-13 (2010),
pp. 767–798.

[14] Daniel L. Kovacs. “A Multi-Agent Extension of PDDL 3.1”. In: Proceed-
ings of the 3rd Workshop on the International Planning Competition
(2012). Atibaia, Brazil, 25-29 June 2012, pp. 19-27.

[15] Derek Long. The Third International Planning Competition. https:
//www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-
html/node37.html. [Online; accessed 19-December-2017].

[16] MalteHelmert. Output of the Fast Downward translator. http://www.
fast-downward.org/TranslatorOutputFormat. [Online; accessed 18-
December-2017].

[17] Gerhard Reinelt. TSPLIB 95. http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/tsp95.pdf. [Online; accessed
25-Ferbruary-2018]. Im Neuenheimer Feld 294, D-69120 Heidelberg:
Universität Heidelberg - Institut für Angewandte Mathematik, 1995.

[18] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. 3rd ed. Prentice Hall, 2009. isbn: 978-0-13-604259-4.

[19] Hakan L. S. Younes and Michael L. Littman. “PPDDL1.0: An Exten-
sion to PDDL for Expressing Planning Domains with Probabilistic
Effects”. In: DATALOGISKE SKRIFTER (Writings on Computer Sci-
ence) (2004). Carnegie Mellon University.

52

https://helios.hud.ac.uk/scommv/IPC-14/resDoc.html
https://helios.hud.ac.uk/scommv/IPC-14/resDoc.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node37.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node37.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node37.html
http://www.fast-downward.org/TranslatorOutputFormat
http://www.fast-downward.org/TranslatorOutputFormat
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp95.pdf
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp95.pdf

	Introduction
	Domain description
	OpenStreetMap
	Chosen domain-specific solver
	Chosen domain-independent planner

	Domain-specific planning
	Uninformed search
	Dijkstra's algorithm

	Informed search
	A* algorithm

	Domain-independent planning
	Classical representation
	PDDL
	State-space planning

	Comparison of speed
	Measurement
	Measurement 1
	Measurement 2
	Measurement 3

	Results

	Test of domain-specific planner on larger data sets
	Measurement
	Results

	Integrating GraphHopper results into SymBA* planner
	Preprocessor and translator
	Measurement with own preprocessor
	Creating input PDDL from GraphHopper
	Implementation
	Measurement

	Integration into translator
	Measurement with integrated GraphHopper

	Extensions of logistics domain
	Capacity
	Depots
	Truck-plane
	Intercity transport
	Driverlog

	Travelling Salesman Problem
	Problem specification
	Implementation
	Measurement
	Upper bounds

	Logistics with TSP
	The domain
	Comparison of planners
	Large domains
	Measurement
	Results

	Conclusion
	Used PDDL domains
	Capacity
	Depots
	Truck-plane and Intercity transport
	Driverlog
	Peddler

	CD contents
	Bibliography

