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Abstrakt / Abstract

Představujeme uživatelskou aplikaci
pro simulaci interaktivní eroze, jež apli-
kuje její tři základní typy: termální,
kinetickou a hydraulickou. Je postavena
na principu vrstvové reprezentace a
umožňuje definovat a spravovat vícero
materiálů a ukládání terénů do souboru.

Klíčová slova: úprava, nástroj, terén,
eroze, simulace, interaktivní, kinetická,
hydarulická;

Překlad titulu: Interaktivní eroze
(Intuitivní uživatelské rozhraní pro kon-
strukci a simulaci virtuálních terénů)

We present a user oriented interactive
erosion application employing three ba-
sic erosion types: thermal, kinetic and
hydraulic. It operates on a layered ter-
rain representation and allows for defini-
tion and management of multiple mate-
rials and saving and loading of data via
image files.

Keywords: editing, tool, terrain, ero-
sion, simulation, interactive, kinetic, hy-
darulic;
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Chapter 1
Introduction

This application primarily sets out to design a user-friendly interface for people not
intricately familiarized with the study of erosion simulation. While none of the ero-
sion techniques are unique, it is notable that certain standardized GPU data exchange
processes have been slightly modified.

1.1 Goals
The goal of this project was to implement an application that would deliver an intuitive
way of handling terrain height maps and applying erosion algorithms to them. Such
an application should consist of a user interface that renders the current state of the
terrain, provides the user with a selection tool and lets them apply a chosen form of
erosion to the world. A natural requirement is also the inclusion of some sort of camera
navigation within the 3D space.

1.2 Design Overview
The core design principle employed in our solution is the strict differentiation between
frontend and backend of the application. With increasing terrain sizes the time con-
ducting simulation can quickly reach unresponsive levels as the complexity of each step
rises with O(n2). A user unfamiliar with the internal workings of the application may
for instance get the impression that they are handling it inappropriately. We opted to
not include any research references to a multi-threaded frontend-backend application
design as we understand it to be a relatively well understood principle.

The inclusion of GPU parallelism in this scenario is well justified as the vast majority
of erosion algorithms may be broken down into per-cell computations. A user oriented
application requires a convenient access to data manipulation. We will include a mix
of custom UI systems and a third-party UI library to deliver a smooth experience.

1.3 Paper Overview
In the firs part of this thesis we explore the data representation possibilities and es-
tablished techniques for simulating terrain erosion on a theoretical level. Namely we
explore thermal weathering, a water simulation model and two water based erosion
techniques utilizing it. Afterwards, we list some popular existing tools and finally dis-
cuss the principle of the 3D rendering pipeline. In the next section we cover the layout
of our application, discuss rendering, simulation structure and finally the implementa-
tion of the aforementioned erosion techniques. In the last chapter we conduct a user
testing and evaluate the feedback.
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Chapter 2
State of the Art

Before constructing a simulation system of our own it is necessary to take a step back
and take note of the key elements which current entertainment and research implemen-
tations focus on. The simulation of complex natural phenomena is presented with a
number of obstacles when striving for accuracy, however modern parallel computing
capabilities and pipelines seem almost crafted for the task once the formulation of the
problem is processed and adjusted. Erosion simulation models generally recognize two
main families of erosion effects which applied together provide the most satisfactory
results. Each of the techniques emulates a different source of displacement within the
natural environment.

2.1 Discretization
The strongest boundary for realism is the necessary discretization of space and it’s
properties. The current hardware lacks both the memory and computational speeds to
accurately simulate every single particle of material.

Voxel based discretization is a popular technique in systems which focus on intricate
rock formations involving complex phenomena such as cave systems and overhangs in
general. [1] These generally fall into two major categories, so called euclidean voxel grids
with a fixed size cubic voxel as their base unit. Certain implementations also experiment
with irregular grid systems. A potential benefit to this might be the reduction of
aliasing and other emergent properties caused by a regular data representation, while
the counter effect is the increased complexity of any algorithm attempting to traverse
such non-uniform space. [2] presents and application employing such a system. The
obvious drawback of any voxel based technique is that the data set remains relatively
massive with a complexity rising with O(N3).

An alternative approach to simulating terrain, especially at larger scale is utilized
by [3] involving terrain layers. Instead of encoding a three dimensional grid with large
amounts of homogeneous cells on top of one another, we may use a collection of flat
two dimensional grids which store the amount of material in each of them. This rep-
resentation forces us to assume that the sediment has homogeneous properties all the
way through, which in most land masses will generally be correct.

2.2 Material Based Erosion
The first major group of erosion algorithms originates from the internal processes within
the studied material. Prime examples of this would be thermal erosion[4], slippage
and mass wasting. These methods generally have a straightforward implementation
depending on how the terrain data is being represented and expand towards realism
by increasing the defining characteristics of each cell, such as calculating ground water
levels to better determine stability. [5] The common denominator in these approaches
is the effect of gravity being the main driver behind displacement.

2
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Figure 2.1. Eroding two materials with different thermal rate.

2.2.1 Thermal Erosion
The general task of computing erosion under any model constitutes computing the
volumes of entering and leaving material on each simulation step. This may be expressed
through a straightforward differential equation[6]:

Qin −Qout = δS

δt

where Qin and Qout respectively are the entering and leaving volumes. S being the
volume inside said cell and t the time interval of a step. Depending on the hardness
of the material the rate of this process may vary which is denoted through a thermal
erosion constant which the user is allowed to modify. Additionally each material has
it’s own talus angle, which is the angle of a slope under which the material will become
internally stable and no longer slip. Musgrave proposes that even material properties
such as erosion rate or the talus angle could be non-uniformly calculated in a map to
increase simulation precision. [7]

We will utilize the thermal erosion algorithm as described in [6]. Denoting the height
of the eroded element by h and all the surrounding neighbor elements through indexes
hi = {1, 2, ..., 8}. A significant value is the maximal difference of heights between h
and any lower hi denoted as H. With the area of the element being a and mt being
the mask determining the strength of the operation the resultant volume to be moved
∆S = a ∗mt ∗ H/2. The division by two ensures stability of the entire algorithm. If
more volume were to be transferred the mass could begin to oscillate with each step.

Once the transported volume is determined it is subsequently proportionally dis-
tributed among all lower lying neighbors fulfilling the talus angle limiting condition.
Let’s denote the collection as A = {hi, h − hi > 0 ∧ (h − hi)/d > tg−1(α), i = 1, ..., 8}
where d denotes the distance between the two cells and α is the aforementioned talus
angle. A is essentially the list of neighboring cells without the cells which are not low
enough to receive any material. Then the expression for finding the amount of material
entering a neighbor cell with the index i is as follows:

∆Si = ∆S hi∑
∀hk∈A hk

3
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Figure 2.2. Thermal erosion - green cells will receive material, red will not.

The update itself proceeds by subtracting the ∆S from each respective cell and
adding up ∆Si values from each direction to each i− th element. Coordinates outside
of the boundaries are ignored. They do not receive any material and are not listed in
A. We can clearly see that for each cell ∆Si add up to ∆S and therefore the total mass
of the material in the world is preserved with each step.

2.3 Medium Based Erosion
The second group of erosion algorithms is centered around a medium influencing our
material from the outside. Any water or air based erosion model would belong into
this category. Executions of these systems vary greatly between various projects, as
there exists a plethora of ways to approach both the simulation of fluid movement and
a number of ways the material may become suspended in it. We will be describing two
hydraulic methods working in parallel.

The most general principle under which the logic of medium based material trans-
portation operates is as follows. A medium based algorithm consists of an erosion and
a deposition function. In each simulation step some amount of the material is either
dissolved in the medium or deposited as is governed through these relationships. Sub-
sequently, the dissolved material is transported with the flow of the medium. This is
how medium based erosion fits into the the previously described general erosion task.

2.3.1 Fluid Discretization
Due to the nature of computational hardware certain degree of discretization is nec-
essary when working with fluids. On an atomic level the flow of liquid media is the
result of kinetic impacts between individual particles. At macroscopic levels this be-
havior has been redefined as a scalar value know as pressure. Due to how hard it
is to compress liquids under normal circumstances simulations often operate with an
ideal uncompressible fluid instead. This assumption means that we may transfer any
pressure generated at one end of some container of liquid to the other immediately.
The discretization logic we employ is that we subdivide space into a collection of con-
tainers and treat water in each one of them as being homogeneous. Any hydro-static
pressure or force effect is applied to the cell as a whole. There are multiple ways to
separate the space. In the case of a regular orthogonal grid we refer to the system as

4
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euclidean [1]. An irregular grid is also a plausible approach despite presenting certain
algorithm traversal complications even allowing for a very similar use of multiple step
semi-Lagrangian algorithms. [2]

2.3.2 Fluid Simulation
The proper generalized way to express the fluid transport model is through the use of
a partial differential equation: [8]

δ~u

δt
= −(~u · 5)~u− 1

ρ
5 p+ ~f

where p is pressure, ρ is the material density and f stands for any external force. Our
main goal is simulating and estimating the velocity vector ~u.

For our levels of accuracy and complexity we will utilize a relatively intuitive hydraulic
pipe model.[1] This model belongs into the category of shallow water models, which are
ideal for our scenario as we mostly want to simulate river flows in active motion anyway.
Essentially any water simulation solution is plausible here and its accuracy will impact
the resulting accuracy of the material transport model. The basic working principle of
this method uses space subdivided into Euclidean constant area square cells. Each cell
is connected to it’s four perpendicular neighbors only via virtual pipes. The pipe is
effectively the entire cross section over which the neighbors touch each other, but the
significance of this distinction is having a representation of such connection within our
model.

Figure 2.3. Four neighboring cells accelerating water based on surface height.

Unlike the thermal erosion scenario where each step was independent from the pre-
ceding ones, the pipe model preserves velocity information for each pipe in between
steps. The updates of this model happen at discrete time steps. During each update
the hydro-static pressure within each cell is computed and appropriate acceleration on
the neighboring pipes is applied dictated by the formula:

~aij = ∆Pi,j

ρl

where ∆Pi,j is the difference in pressure between cells i and j, ρ is the density of the
fluid and l is the length of the pipe in question – within a discretized scenario it is the

5
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distance between the centers of cells i and j. Once the accelerations are computed the
pipes draw upon their neighboring cells transferring water in the appropriate direction
with flow equal to:

~f t+∆t
i,j = ~f t

i,j + ∆tC~ai,j

where C is the cross section area of the pipe – In this model equal to C = l2. As
seen from this account such solution is very convenient for a GPU implementation and
in practice resulted in a very pleasant water behavior, although the relatively limited
count of connecting pipes does result in some visible emergent behavior when studied
closely. Sometimes the material prefers to travel in the orthogonal directions.

To find the pressure at cell i, Pi we simply use the standard hydrostatic equation.
Then the pressure difference between that cell and a neighboring cell j would be:

∆Pi,j = ρg(hi − hj)

where ρ is the density of water, g the gravitational constant and ha marks the heights
of cell a. Note that Pi,j = −Pj,i holds for any two cells i, j. This will prove useful
during implementation. The height of a cell is considered at the water surface level,
therefore it is equal to:

ha = wa +
∑

n

ta,n

where wa refers to the current water level and ta,i is the amount of material at the i-th
layer on cell a. We assume that the water does not enter in between the terrain levels
and remains on the surface similarly to how we do not allow the material layers to slide
under one another.

2.3.3 Kinetic Erosion
The first actual medium based erosion algorithm we are going to analyze is kinetic
erosion, also know as force-based erosion.[4] Water moving across the terrain surface
loosens sediment particles and moves them along. A key value for simulation is the
sediment transport capacity of the flow Sm

i,k which is defined by:

Sm
i,k = ||~vi||Cksin(αi)

where ~vi is the velocity vector at cell i, Ck stands for the sediment capacity constant
unique to each layer material k and αi is the maximal slope of the local terrain at
i. [4] proposes that a hard rocky material would have Ck = 0.0001 while sand about
Ck = 0.1.

Since the water transport model we are using consists of water pipes, we actually
need to solve for ~vi before proceeding with the computation. Since our pipes run in
two perpendicular directions vertically and horizontally we may solve these directions
separately for their respective velocities and then use those values as elements of the
vector ~vi. Let us denote the four neighboring cell indexes n,e,s,w based on the names
of the cardinal directions which should make this section easier to follow. Next we need
to define where the positive direction will be – in our case we start numbering cells
with [0, 0] in the north-west so the positive flow will be headed in the south-eastern
direction.

vx = Wi,x

lw̄i

where Wi,x is the amount of water passing through i per unit of time horizontally and
w̄i the average water level at the cell found as:

w̄i = wt
i + wt−∆t

i

2

6
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.
We solve for the passing amounts Wi,x, Wi,y in the following way:

Wi,x = fw,i + fi,e

2 ,Wi,y = fn,i + fi,s

2

~v =
~(
Wi,x

Wi,y

)
With the knowledge of the sediment transport capacity we may proceed to the erosion

step itself. During each update the current dissolved sediment volume S′i is compared
to the capacity. If the sediment level is lower than the capacity, material is dissolved
under some material-specific ratio. If the sediment level exceeds the capacity then the
excess is deposited. After this the transportation step is executed2.3.5. As the material
is shifted around and water levels change the landscape will begin to shift.

2.3.4 Hydraulic Erosion
Hydraulic erosion – also known as dissolution-based erosion – describes a very similar
effect to kinetic erosion governed by a slightly different capacity. The phenomenon in
question here is water penetrating the land mass and forming a heavy soaked regolith
on the bed. As long as the area is covered by water this layer remains malleable and will
be dragged around by the currents. Once the water level drops the capacity decreases
and sedimentation occurs.

Unlike the force-based erosion, the capacity to form regolith for material k on cell i
equals:

Ri,k = min(wi, ck)

where ck is a material-specific constant dictating maximal thickness of regolith. [4] the
amount of dissolved regolith is always maximal. This means that there is no rate of
being dissolved.

2.3.5 Material Transportation
Material transportation surprisingly isn’t nearly as straightforward as the pipe model
used in our water simulation. The common approach borrows the same method used in
rendering applications when scaling and transforming raster images – advection. The
transport of material in general terms is expressed as:

δS′

δt
= −(~v · 5)S′

In our case we will be applying a semi-Lagrangian backward advection method. This
means that in essence we are taking the velocity vector ~v in the given cell and instead
of shifting the material off somewhere, we look backwards in the direction of −~v. We
set the amount of material in our cell at tn+1 to that of the advected cell at tn. Most
of the time this will not land on a specific cell so a simple bilinear weight interpolation
on the four nearest cell centers is taken instead.

The first obvious problem with this method is that it does not guarantee preservation
of material. [9] describes a semi-Lagrangian method which does conserve mass between
steps. The second potential issue is that single step semi-Lagrangian methods are not as
accurate even when increasing the state space resolution massively. [8] If our simulation
were to be very accuracy dependent then the best approach would be applying a higher
order semi-Lagrangian MacCormack equations. [4] In a nutshell these methods take

7
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Figure 2.4. Semi-Lagrangian backward advection

one step backwards, center at the nearest rounded vertex and then take another step
backwards from there resulting in a much more detailed flow of particles. We haven’t
used either one of these techniques in our implementation, since accuracy wasn’t the
priority, however, we provide reference to them to show the proper way for expansion.

2.3.6 Application within the Layered Model
So far we have been talking about the material involved in the simulation in general
terms, however an issue arises once we start looking into the step by step application
of the aforementioned equations. What happens once we start shifting and exposed
piece of rock over some soil and dust layered on top of it in the neighboring cells? The
material cannot realistically be deposited back into the rock layer. One potentially
plausible way of addressing such scenario would be adding a new rock layer on top.
However, such an approach might soon result in memory overflow shall a scenario arise
where two different materials are fighting to be placed in the cell resulting in new layers
being placed with each update.

The most usual interpretation which circumvents this issue is assuming that an eroded
hardened rock [or any other harder material] would not have the capacity to immedi-
ately reshape into it’s original sturdiness.[4] While the erosion step removes material
as expected using the properties of the respective materials, deposition activities place
everything into the topmost layer only alleviating representation complications. An
extension of such system adds realism by keeping track of the time for which each
cell remained unaffected by dissolving effects and slowly shifting some portion of the
material down to the lower more hardened layers.

2.3.7 Order of Application
So far we have described a number of independent models. The way they are put to-
gether, first come water inputs and removal. If we designate some cells to be springs
or drains this is where they apply their changes. Secondly, water pipes compute ac-
celerations and shift water. Then velocity fields are calculated and both kinetic and
hydraulic erosion perform their deposition / erosion step. In the end, thermal weath-
ering is applied, moving any unstable overhangs back into balanced position.

2.4 Interaction Methods
Even though the field of terrain simulation has experienced substantial development
over the last several decades, there haven’t been any notably distinct selection or ma-

8
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nipulation tools introduced yet. Most modern terraining approaches for commercial use
focus on node-based terrain synthesis using 2D heightmap layers connected via opera-
tors similar to modern shader designs in tools such as Blender or 3dsMax. These tools
are not as much interested in terrain simulation itself, but rather in the synthesis of
entirely new terrains for use in games or movies. Applications dedicated to simulation
of particle systems more akin to our hydraulic erosion processes usually come bundled
in as a subsystem of an overarching engine. For this reason I also included game level
editor and image editing software features in my list of references.

Figure 2.5. Layered terrain representation.

The first natural inclusion is a projected mouse cursor. For terrain shaping, creation
of entities, masking or any other localized activity a cursor is an essential system to
have. The logic behind projecting cursors is explored further in 2.7.3. Out of the other
presented tools, the ability to mask out the influence of our erosion effects seems very
useful. A Gaussian falloff brush lends itself as it will result in smoother transitions than
a plain circular selection with no gradient. A so called polygonal lasso tool is also a
popular choice for selection among digital artists. Generally, due to the nature of our
layered terrain representation we may perceive any raster editing tool as a convenient
accessory. We don’t want to delve too deep into painting tools, but during the imple-
mentation it turned out that being able to step in and add material in places while
simulating makes the working process much more interesting. In a similar way we also
allow the user to manually paint in bodies of water.

9
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Application Name Tool Description
Earth Sculptor 1 grab tool for terrain
Adobe Photoshop 2 Magic wand

Toggling continuous selection
Growing and shrinking selection

Fractal Terrains 3 3 Deterrace, fill basin
Lithosphere Terrain Generator 4 Mathematical operators on terrain layers
PnP TerrainCreator 5 Support for pressure sensitive pen tablets

Splatted and texturemap terrain texturing
Terragen 4 6 Georeferencing
VUE xStream 2016 7 Heightfield Terrains

Spline Terrain Effect
LOD drawing

World Creator 2 8 Curve Editor, Smart Scribbles
World Machine 9 Terrain synthesis from shapes.

Table 2.1. Table of some noteworthy features found in popular editing applications.

An entity placement and deletion system enables the implementation of sprinklers –
locations within the map that output water with each update step. In many scenarios
these can simulate natural springs, rivers and much more.

2.5 Polygon Lasso Mathematics
To implement the polygon lasso tool on a discrete grid we need an algorithm to tell us
whether we are inside or outside of the selection. We are using a raycasting algorithm
counting the number of polygon side intersections. This way even non-convex polygons
are accounted for. The algorithm is casting the ray in the direction of one of the axis to
simplify the computations. If the ray’s y is too high or too low we continue, otherwise
we determine on which side of the line the point x resides. By aligning A to always
have greater y coordinate we will resolve this for each segment with the same frame of
reference. In the end we check whether the number of intersections is odd or even. The
algorithm is as follows.2.6

2.6 Spacial Navigation Methods
With regards to the spacial navigation we utilize a semi-locked camera with two degrees
of freedom. This means that the user is able to change the yaw and pitch, but the roll
remains fixed. Since we are assembling a terrain editing tool, there is never a need to

1 http://www.earthsculptor.com/manual/index.htm
2 https://www.adobe.com/products/photoshop.html
3 https://secure.profantasy.com/products/ft_features.asp
4 http://lithosphere.codeflow.org/
5 http://pnp-terraincreator.com/user.php
6 https://planetside.co.uk/
7 https://info.e-onsoftware.com/vue
8 www.world-creator.com
9 http://www.world-machine.com/features.php
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for( each segment AB in the polygon path ) do:
A = end point with greater y value;
B = end point with lower y value;
intersects = 0;
if( y > A.y & y > B.y ) || ( y < A.y & y < B.y ) then

continue;
end
//checks whether x of the studied point is on one side of the line.
intersects += x > [ B.x + (y - B.y) * (A.x - B.x)/(A.y - B.y) ]?0:1;

end

Figure 2.6. Pseudocode describing how the raycasting algorithm

rotate the environment sideways. As a result the lack of roll control does not have a
constraining feel to it.

In fact, a common issue that 3D manipulation tools for modeling and sculpting have
to deal with is conveying the navigational point of view to the user clearly. While it is
possible to descend beneath the plane and make a 180 vertical flip we do not run the
risk of confusing the sense of up and down as the user is never incentified to focus their
attention to elements that would guide them that way.

The camera movement was initially facilitated by the classical first-person specta-
tor view with AWSD and looking around by holding down the right mouse button.
However, testing has shown that most of the time users find themselves struggling to
simultaneously use keyboard and mouse inputs for navigation. We ultimately reserved
the left mouse button for tools and let the right mouse button look around, wheel
zoom and wheel press drag the camera. This way, all degrees of freedom are facilitated
through the mouse and keys are reserved to mode switching operations.

Smart scribbles seem to be a very intuitive input method for unfamiliar users to
quickly generate terrain. They allow the user to lay down splines atop the terrain and
model either ridges or valleys along their path. Since our application is compiled for
Windows we have access to much tighter controls with mouse and keyboard, so we
primarily focused on mouse sculpting, however, smart scribbles would be high on our
list of features to add in future expansions.

An absolute necessity is the ability to load and store terrain data in a file. For that
reason we include interface for loading and saving individual layers encoded as color
intensities into raster images. Operating systems natively support options for viewing
common image types, such as bmp, jpg and png and users are generally familiar with
them. Furthermore the encoded data will display the terrain map in a comprehensi-
ble way and even provide a thumbnail preview in the folder resulting in convenient
handling.

2.7 Display Computation
In order to construct an efficient 3D application it is necessary to gain some insight
into the mathematical background of how spacial projection operates. The processes
discussed in this section are general and are applied in every 3D rendering engine.

2.7.1 Data Representation
The most common data representation technique in 3D computer graphics is the polyg-
onal envelope. This means that only the surface of the rendered body is stored in mem-
ory. Additionally the surface of the body is represented by faces – polygons stretched
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out between vertexes. Ultimately a shape is fully defined as an ordered collection of
vertexes and a collection of lists of indexes pointing to them, each index list forming one
face of the shape. Triangular polygons are the most common as they yield a number of
conveniences during implementation such as each face always being flat. For each set
of 3 vertexes there always exists a plane going through them in a 3 dimensional space.

Polygonal representation suits our situation very well. Even though our data is semi-
voxel represented, due to the assumption of it being homogeneous throughout a layer
the only really valuable information is the height in each column. It should be noted
that other implementations have been equally successful with a ray casting voxel based
renderer. [6]

2.7.2 3D Rendering Pipeline
The rendering pipeline of a polygonal mesh consists of layered projections between
spaces of different dimension. Namely we aim to project the simulated terrain from its
internal coordinates to the pixel coordinate space of the user’s monitor screen. Let’s
assume that we have vertex ~a represented as a 3 dimensional vector in the coordinates
of the world. Additionally we define the position of the camera ~c and it’s viewing
direction ~d as 3 dimensional vectors as well. We are easily able to calculate a 3x3 linear
transformation matrix C together with a 1x3 offset vector ~b to express ~a in terms of
the orthogonal base situated at our camera location.

~a′ = C~a+~b

For the sake of being able to chain projections like this with just a single matrix
multiplication, the coordinate system is in practical applications augmented into an
4x4 affine transform matrix which encompasses both the linear transformation and the
translation. The 4th dimension of the position vector is set to 1 which serves the
purpose of providing a way of encoding the translation step mathematically. Notice
that this matrix multiplication is invertable up to this point which becomes essential
later on.

Once the scene we want to render is expressed in terms of the camera-based coordi-
nates a so called perspective matrix multiplication is applied. This step on a mathemat-
ical level distorts the geometry with distance to form a cone shape. There are multiple
ways to express the parameters dictating the properties of this cone, but what they
refer to is basically the same thing. Either the width and height of a projection plane
are used which carries some convenience in implementation or a field of view angle is
entered. Each can be used to solve for the other. Afterwards, dividing the x and y
coordinates by the z component yields a projected 2D affine space vector coordinate in
terms of the projection space base.

2.7.3 Inverting the Pipeline
In case we would like to let our user interact with the world they see on their screen
we run into a little complication. The mouse only provides us with information in
the screen space with reduced dimension. A projection reducing the dimension of our
vectors is inherently irreversible as it takes away information. However knowing the 2D
screen space coordinate vector a′′ in combination with the parameters used to originally
project into perspective enables us to reconstruct a line coming from the camera origin
[0,0,0] through our known 2D point a′′ cast into the camera coordinate system. If we
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Figure 2.7. Rendering coordinate systems (taken from learnopengl.com)

Figure 2.8. Perspective projection transformation (taken from learnopengl.com)

additionally recorded the previous z coordinate of a′ – which is a common practice in
application for all sorts of purposes – we may solve for an intersect of a plane parallel
to our projection plane at the distance z and the line. This fully reconstructs the
pre-flattening camera space coordinate with a unique solution in scenarios that we
are concerned with. From that point onward the perspective transformation and all
preceding affine projections are fully revertible. Note that by adjusting the z coordinate
we may in fact solve for points other than just the visible projected one.
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Chapter 3
Application Design

In this chapter we will break down the decision process behind individual elements of
the design. In order to deliver a smooth end user experience the design is built on top of
a set of interlocking threads and mutexes which facilitate the necessary communication
between the frontend and the backend. 3.7 shows an outline of how these individual
components are connected.

3.1 Tools Used
We have developed our application in C++ compiled under Cuda 8.0 for the Windows
environment exclusively. The libraries used are only Freeglut [10], AntTweakBar [11]
and CImg[12]. FreeGLUT provides an up to date GLUT implementation with both
convenient OpenGL access and window context environment with update, render and
callback loops. AntTweakBar operates on both OpenGL and DirectX and provides a
lightweight UI utility for relatively advanced user inputs ranging from numerical values
to value sliders and color pickers. CImg is an extremely light weight C++ image library
which provides access to quick loading and saving of images.

3.2 OpenGL Rendering (Frontend)
The OpenGL section of the application is essentially a self-contained receiver unit. It
holds its buffers and periodically renders, occasionally receiving vertex data updates
through a mutex protected CUDA interlop.

3.2.1 View Modes
There are three major view points available – Texture, Mask and Analytical. Texture
mode will render textures based on the visible materials. This mode is suitable for
examining the composition of the terrain and erosion processes. The Mask mode exists
mostly to visualize current selection without any obstructions from other communicat-
ing element. Finally, the analytical mode attempts to visualize depth by overlaying
the terrain with contours and lightening the color with height. Additionally a trace of
the the mask will be shown tinting the terrain either red or green. The contours have
proven to be an invaluable tool especially while working with water flows as they draw
out the optimal shoreline. While viewing water at an angle on a slope it is sometimes
hard to estimate depth without these guidelines.

3.2.2 Geometry
The rendering of the terrain height map is executed via a single glDrawElements as a
glTriangleStrip call with the use of a trick to link up the indexes together demonstrated
in figure 3.2. There is one glVertexBuffer holding the xyz positions accompanied by
a mask and texture glVertexBuffers. These are all bound and mapped as inputs for
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Figure 3.1. The texture, analytical and mask views in order.

Figure 3.2. GLTriangleStrip trick allowing for drawing planes within a single strip.

the shaders. As the application only allows us to remove layers from the top down, a
single surface spanning the terrain is more than sufficient. UV texturing coordinates
are created based on world coordinates within the vertex shader itself and therefore
require no designated buffer.

In a similar fashion the water surface is represented. The water shader variables are
in fact an exact copy of those used in the terrain one. The selection mask buffer has
been re-purposed as the amount of sediment dissolved on this cell and the texture buffer
holds depth information. Shallow water is rendered progressively less opaque reaching
0 in dry areas. This smooths out shores significantly and subtly solves the issue of
Z-fighting which would otherwise occur.

The sides of the terrain are a little bit more complicated as they change their polygon
count with the number of visible layers. The indexing of the side panels is winding the
triangle strip segments in a spiral like fashion upwards one level at a time. This way
we pass height information to all vertexes with no need to change the structure of the
buffer of break up the call. We simply multiply the number of drawn triangles per layer
by the number of layers to display from the bottom up.

3.2.3 Vertex Shader
As is usual, the vertex shader mainly serves to pass arguments to the tessellation and
rasterization. An effective trick mentioned in 3.2.2 is defining the texturing coordinates
based on world coordinates Texcoord = vertexPositionModelspace.xz ∗0.03/0.4;. Be-
sides this there isn’t much happening in our vertex shaders.
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3.2.4 Fragment Shader

The fragment shader uses the modulo operation mod(pos.x; interval) < width on the
texturing coordinates to generate a grid over the terrain.3.3 Depth perception is a vital
element even when working with a grid locked element like our terrain. Mode and
pointer indicators are all passed through a uniform and used in an if statement to
switch between textures and colors. Furthermore, the selection polygon and sprinkler
locations are passed through a uniform array of fixed size 100 as well. So far, this
amount of uniforms has not proven problematic.

When it comes to displaying the polygons there are two major elements. The con-
necting lines and the vertexes themselves. Vertexes are rendered as squares to ease the
computation.3.4 In the case of the lines we are basing our calculation on the equation
for the distance of a point from a line defined by two points:

dist(P1, P2, (x0, y0)) = |(y2 − y1)x0 − (x2 − x1)y0 + x2y1 − y2x1|√
(y2 − y1)2 + (x2 − x1)2

However this equation represents the distance from a line and not the segment,
for this reason we additionally compute the distance between the position pos of the
currently rendered point and both points A and B. If pos is further away from either
one of those points then is their distance it means that pos is outside of the segment
and therefore should not be painted as the line. This test is computed for each line of
the polygon.

if (mod(Texcoord.x,1)<0.02 || mod(Texcoord.y,1)<0.03) {
color = vec4(0.2+max(0.8-maskVert*0.8,0),0.2+(maskVert*0.8),1,opacity);

} else if (mod(Texcoord.x*3,1)<0.01 || mod(Texcoord.y*3,1)<0.015) {
color = vec4(0.2+max(0.8-maskVert*0.8,0),0.2+(maskVert*0.8),1,opacity);

} else if (mod(Texcoord.x*6,1)<0.01 || mod(Texcoord.y*6,1)<0.02) {
color = vec4(0.2+max(0.8-maskVert*0.8,0),0.2+(maskVert*0.8),1,opacity);

}

Figure 3.3. Displaying an overlay grid across the terrain with modulo.

//Grabbing points for polygons
for(int i = 0; i < polygonLength; ++i) {

float diffx = polygon[i].x-pos.x+0.5;
float diffz = polygon[i].z-pos.z+0.5;

if(diffx > 0 && diffx < 1 && diffz > 0 && diffz < 1) {
color = vec4(1,1,0.9,1);
return;

}
}

Figure 3.4. Rendering selection squares around vertexes from an array.

3.2.5 UI Layout
The logic behind the UI layout is to visually separate all the logically connected options
into their respective sections. In the top left and right corners we have big buttons for
toggling view modes and editing tools respectively. Bellow the actions there is the
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//Polygon rendering
for(int i=1; i<polygonLength+connectPoly-1;++i) {

//Distance between points A and B.
float distAB = ( (polygon[i].x-polygon[i-1].x)*

(polygon[i].x-polygon[i-1].x)+
(polygon[i].z-polygon[i-1].z)*
(polygon[i].z-polygon[i-1].z) );

//distance of point pos from the line.
float linedist = abs( (polygon[i].z-polygon[i-1].z)*pos.x-

(polygon[i].x-polygon[i-1].x)*pos.z+
polygon[i].x*polygon[i-1].z-
polygon[i].z*polygon[i-1].x )/sqrt(distAB);

//Distance between point pos and point A.
float distA = ( (pos.x-polygon[i].x)*(pos.x-polygon[i].x)+

(pos.z-polygon[i].z)*(pos.z-polygon[i].z) );
//Distance between point pos and point B.
float distB = ( (pos.x-polygon[i-1].x)*(pos.x-polygon[i-1].x)+

(pos.z-polygon[i-1].z)*(pos.z-polygon[i-1].z) );
//Clamp the line only to the segment between A and B.
if(linedist<0.1 && distA<distAB && distB < distAB) {

//close means rendering the line.
close = true;

}
}

Figure 3.5. Rendering connecting lines of a polygon

fixed global setting / erosion bar. This element may not be minimized and contains
all the settings not related to materials and layers. Finally the movable Layer and
Material panels initialized to the bottom left. The fixed position tools and erosion
settings are located on the right mainly to use up screen space efficiently while scaling
the application window since the display context is centered at top left. Arguably the
erode action itself could warrant being a big button, but most of the time erosion is
toggled with the spacebar anyway and the slot underneath all the options solidifies the
role of the overall panel.

3.2.6 UI Implementation

As foreshadowed the UI coding consists of two major elements. The AntTweakBar
library is used to allow the user to control numeric inputs, load texture and toggle
booleans. On top of this however, there is a custom UI system in place consists of big
clickable buttons fixed against the borders of the screen. While the TweakBar could
suffice all the functionality on its own, the tool buttons stand out much better this
way and help to reduce the clutter that is slowly building up with both the layer and
material panel dragged out and being used. Additional screen management options
come with the fact that the TweakBar enables dragging and minimizing windows.

3.3 Simulation Structure (Backend)
On the other side of the spectrum is the data representation. This part of the code
operates entirely within the CUDA memory allocation space.
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Figure 3.6. UI view upon loading the application. Manual at B.

3.3.1 Terrain Representation

At the core of the backend lies the SimMap class. It holds an std::vector of both
SimLayers and SimMaterials and facilitates many of the calls requesting the addition
or removal of either one. During initialization or runtime a SimLayer may be assigned
data from a file. This transfers it directly to the GPU device memory avoiding any
storage of data on the host. SimMap additionally holds about 14 SimLayers designated
to tracking statistics such as water levels, water velocities, added sums of heights for
fast rendering and sediment or regolith deposits. One of the problems when calling
kernels with this many parameters is that the parameter memory is depleted resulting
in a crash. To allow the SimMap to potentially scale indefinitely both layer and material
pointer lists are copied into an array on the device. Then each kernel only receives a
pointer to that list of pointers within a single argument. It is the task of the SimMap
class to keep these references up to date. To help with this, the SimMap also holds a
pointer to it’s Windows mutex HANDLE.

A SimLayers device data storage is a 1D float array. All grid indexing is done through:
idx = row * width + column. SimLayers do not actually hold any data regarding
their behavior on their own, instead they refer to an id of a SimMaterial. This fetching
of references causes additional memory access during parallel computation, however the
primary focus of our application design is to open up the possibilities for the user to
freely tweak as many options as possible. From the user perspective this allows them to
entirely delete layer’s data without losing their material settings or even reuse the same
material on several layers. A convenient way of untangling these array index references
when working with them is including a define header with each of the kernel defi-
nitions which turns something opaque such as dTerrainData[dIntParams[3]][idx]
into SEDIMENT[idx].
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3.4 Thread Structure
In order to ensure a run without memory access collisions we introduce two major
mutexes. One for the SimMap and one for the OpenGL buffers. These together with
wait guards cover all critical points in our program and do not clog on the user side
even while blocking the SimMap by updates with minimal interval set to 1ms.

Figure 3.7. Diagram showing the layout of classes and calls.

We utilize the default GLUT update and render functions to do their respective
things. Since GLUT only provides onClick, onRelease and onDrag callbacks, the intu-
itively expected behavior of holding down the mouse button to apply a tool repeatedly
has to be done through the update loop checking the mouse state. Instead of taking
the straightforward route and implementing the kernel calls within the body of this
function we set up worker threads to do this instead.

Each activity that the user can take has its own separate CUDA file which launches
a perpetual worker thread on the background during initialization and puts it to sleep
immediately afterwards. All of this thread infrastructure is hidden away behind a
unique namespace to avoid contaminating the global namespace with common function
names such as initThread(). Once the user issues a command, necessary variables
regarding the cursor position and tool options are stored in a struct. The worker thread
is woken up and enters the mutex request state. At this point the update function and
user navigation proceeds as usual with no further interruptions. Only once the worker
thread receives the hold on the SimMap mutex it refreshes all data memory pointers,
in case the user has taken a host based editing action in between.

Once all the pointers are up to date the kernel procedure is launched. Notice that at
this point both the GL Mutex and main GLUT update thread are unlocked. Naturally,
the GPU hardware cannot simultaneously render and compute on the same physical
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processing units, but this way we are delegating this decision to the driver and most
importantly of all the CPU activities are not blocked. After the kernel call finishes, the
mutex is unlocked and the thread loops back to the beginning awaiting another wake
call.

This sort of thread separation carries its own set of drawbacks and advantages. First
of all, the order of operation is not entirely deterministic once multiple threads request
access to edit the SimMap. Most of the time, this barely matters as none of the available
editing tools really change their outcomes when applied in reversed order. Unless your
application aims to implement hundreds of activities each with their separate kernel.
The general format of how these services are implemented is presented bellow:

instructionParam::myCudaParam_t params;
std::mutex m;
std::condition_variable cv;
unsigned int requested = 0;
bool active = true;
volatile bool activityRequest = false;

void worker_thread()
{

while (true) {
std::unique_lock<std::mutex> lk(m);
// wait until user requests this activity

cv.wait(lk, [] {return activityRequest; });
// escape sequence for termination

if (!active) { lk.unlock(); return; }
activity(); // the function calling the kernel.
lk.unlock();
activityRequest = false;

}
}

void killThread() {
printf("Terminating Thermal Thread\n");
active = false;
cv.notify_one();

}

void initThread() {
printf("Initing Thermal Thread\n");
std::thread worker(worker_thread);
worker.detach();

}

void erodeThermal(float x, float y, float z, int idx,...) {
simMap->passMaterialListPointers();
params = { x,y,z,toolRadius, toolStregth*dir, idx, simMap,... };
// ping thread

activityRequest = true;
cv.notify_one();

}

Figure 3.8. Example of a worker thread calling activity();
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3.4.1 Editable Data
User defined parameters do have their host representation. This means that there is a
variable in computer memory which holds their value. This variable is passed to the
AntTweakBar interface via a pointer and designated for editing. Before each erosion
call, after the mutex is locked, each worker thread is responsible for refreshing the
device counterparts to these variables. This way we circumvent the issue of the ui layer
attempting to write into GPU memory during an ongoing computation.

3.5 Computation Implementation Overview
The usual approach to computing update steps in CUDA is similar to how OpenGL
paints to the screen with the use of two swap buffers being switched back and forth.
This way each element is stored in the memory twice and during each update step
the instances take turn being the read or written buffer. In our implementation we
attempted a slightly different approach with an in-between buffer. We only define
one SimMap and have a blank working memory buffer provided to the kernel. Deltas
are written into this buffer and the kernel finishes up or synchronizes threads. In the
subsequent step the computed delta values are applied to the original memory. In
certain scenarios, such as adding up incoming material during thermal erosion, this
is also an unavoidable measure to prevent memory write race conditions, as atomic
add operations for floats and doubles have not been implemented in CUDA as of now.
Processes such as advection which do not require this middle-step do so reusing the same
buffer from the previous water transport simulation and therefore are not as taxing in
terms of memory allocation. Due to the nature of how material transports are treated
in our model, there never is a need to express movement of more than a single layer of
data. In a scenario where up to 20 layers are allowed even when using 9 variables per
tile at a time the delta value solution is more memory efficient than having a dual swap
buffer for each of the 20 layers.

3.5.1 Helper Functions
There are two major device functions defined in each kernel definition file. Because of
how CUDA source files are being linked [in version 8.0] there doesn’t seem to be a clean
way of including CUDA functions in a way that separates definition and implementa-
tion. [13] This introduces a minor redundancy in the code as certain frequently used
device functions need to be pasted within each instruction file separately.

The first useful utility is a boundary checking function to prevent unauthorized mem-
ory access:

__device__
bool isOutside(int c, int r, int w, int h) {

return ((c < 0) || (r < 0) || (c >= w) || (h >= h));
}

Figure 3.9. Device function checking bounds.

The second most noteworthy device function is the Gaussian falloff specifically crafted
for the use in our application to be parameterized through the radius of the active area.
Expressed mathematically the equation is

val = e
−((x−cx)2+(y−cy)2)∗4

r2
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where cx and cy are the position of the center of the Gaussian effect, x and y are the
position of the examined point and r is the radius of the brush. The cutoff with 0.01
is included to prevent placing minuscule amounts of material everywhere on the map
when using a localized brush like this.

__device__
float gaussFalloff(float x, float y, float cx, float cy, float radius) {

float val = expf(-((((x - cx)*(x - cx) + (y - cy)*(y - cy)) * 4) /
(radius*radius)));
return val < 0.01 ? 0 : val;

}

Figure 3.10. Device function computing 2D Gaussian falloff.

Figure 3.11. Gaussian falloff demonstrated in 2D for r=1 and r=4. radius is denoted by
the x coordinate of the point A.

3.5.2 Kernel Parameters

Essentially all of our kernels share the same arguments making their comprehension
a one-time undertaking. Most of the arguments are pointers to arrays generated by
host-side simulation objects and when used in our code are referred to through their
more intelligible simplified names. List of all simplified names has been attached at the
end due to length.D

Due to the large amount of arrays in question we are using a modified naming con-
vention for variables that appear in both host and device code. This avoids the problem
of kernel code attempting to access d_ variable in host memory while remaining clear:

. h_ for host variable stored in host memory.. d_ for device variable pointer to h_ data stored in host memory. dd_ for device variable pointer passed as an argument

variable description
int* dd intParams Array lengths, selected layer index
float* dd floatParams Tool strengths, cursor position, evaporation
float** dd terrainData Pointers to individual SimLayer data fields
float* dd working Blank tmp memory to transfer data between calls
int* dd materialIndex Material index for each layer
float** dd materialData Pointer to erosion properties of each material

Table 3.1. Table of kernel parameters and their meanings.
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3.5.3 Common Opening Sequence

Besides the convenient use of \#define3.3.1 all of our device kernels share the same
opening sequence. It ensures that all subsequent operations have the same frame of
reference and protects against executing outside of the bounds when the data set is not
rounded to powers of 2:

//indexing
const int c = blockIdx.x*blockDim.x + threadIdx.x;
const int r = blockIdx.y*blockDim.y + threadIdx.y;
// Check whether we are within image bounds
if (isOutside(c, r, DW, DH))

return;
const int cudaindex = c*DW + r;

dd_working[] is the name of a preallocated temporary memory array. Its function
is to hold data between calculation steps during CPU synchronization which doesn’t
have a lasting memory address. Most commonly these are material or velocity deltas.

3.6 Thermal Kernel

The thermal erosion activity in our implementation consists of two kernels separated
by a CPU synchronization step and one device subroutine for iterative erosion of layers.

3.6.1 Setup

In the first step we locate neighbor indexes and check whether they are valid re-
cipients for erosion material and store this information in other\_valid[i]. The
idxs[i] >= 0 \&\& idxs[i] < DW*DH ensures that the neighbor resides within the
grid vertically, however because we are using a 1D array. we also need to check horizon-
tal boundaries which is what the rest of the if-clause denotes in the form of a maxterm.
We use the fact that the cells in specific directions have fixed position within idxs and
therefore we can filter them out just through their index alone. The condition reads
either the cell isn’t in the 0th column or the neighbor isn’t to the west. (-1 direction)
Similarly for the east wards +1 direction with a little less fortunate indexing.

idxs[8] = { cudaindex - DW, cudaindex - DW + 1, cudaindex + 1,
cudaindex + DW + 1, cudaindex + DW,
cudaindex + DW - 1, cudaindex - 1, cudaindex - DW - 1 };

bool other_valid[8];
for (unsigned char i = 0; i < 8; ++i) {

if (idxs[i] >= 0 &&
idxs[i] < DW*DH &&
(r > 0 || i < 5) &&
(r < DW-1 || (i!=1 && i !=2 && i!=3))) {

other[i] = SUMS[idxs[i]];
other_valid[i] = true;

} else {
other_valid[i] = false;

}
}
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3.6.2 Subroutine Iteration

With the invalid neighbor targets filtered out we may proceed to the material shifting
step as described in 2.3.3. We will erode for each material layer from the top until
we reach a point where a layer is either stable or we run out of layers. We allocate
several important arrays in the main kernel and pass them to the subroutine via point-
ers. other_valid[8] only checks whether the target is within bounds and this is an
information we would want to preserve for each iteration. validtmp[8] as the name
suggests is for the talus angle condition, other[8] is temporary memory for storing
the height differences and target[9] stores the the material to be distributed and the
material to be removed from our cell at the additional index.

bool validtmp[8] = { true,true, true, true, true, true, true, true };
float target[9] = {0,0,0,0,0,0,0,0,0};
float other[8] = {0,0,0,0,0,0,0,0};
float sum = 0, maxdif = 0;

With these variables the subroutine3.12 checks the conditions, increments target[]
where necessary. The routine returns true in case the current layer has satisfied it’s
desired offset. In case the layer would want to offset more than it currently holds it
means that the one underneath has been exposed. false is then returned and the next
cycle loops.

//Start eroding each layer from the top most:
for (int i = DLEN-1; i >= 0; --i) {

//If the layer is empty. Skip
if (dd_terrainData[i][cudaindex] == 0) { continue; }
//If the layer material was sufficient no further erosion takes place.
if (d_evalLayer(&myh, other, other_valid, dd_terrainData[i][cudaindex]

,MDATA[MATERIAL[i]]MTHERMAL, MDATA[MATERIAL[i]]MANGLE,
validtmp, &sum, &maxdif, target)) {

break;
}

}

After the subroutine iteration is finished we load up the results into the dd_working
and close the first kernel. This method does not lead to memory write race condition,
because each cell has a variable for each neighboring material source direction.

dd_working[cudaindex * 9] = target[8];
for (unsigned char i = 0; i < 8; ++i) {

if(other_valid[i])
dd_working[idxs[i] * 9 + 1 + i] = target[i];

}

3.6.3 Collection Step
The second step of the thermal algorithm is relatively straightforward as each cell only
accesses it’s own data index in it. The only complication is material removal with our
layered representation.

int tidx = cudaindex * 9;
int topidx = 0;
for (unsigned char i = 0; i < DLEN; ++i) {

if (dd_terrainData[i][cudaindex] > 0) {
topidx = i;
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}
}

finds the top most layer with some material in it. Once we have it, we start removing
material from the top down until the sum is satisfied. Afterwards we just add up the
incoming materials passed to us from neighbors during the previous step and increment
the topmost layer by that amount.

//remove material first
float sum = dd_working[tidx];
for (unsigned char i = DLEN - 1; i >= 0 ; --i) {

if (dd_terrainData[i][cudaindex] >= sum) {
dd_terrainData[i][cudaindex] -= sum;
break;

} else {
sum -= dd_terrainData[i][cudaindex];
dd_terrainData[i][cudaindex] = 0;

}
}
//Add up the deltas.
sum = 0;
for (unsigned int i = 1; i < 9; ++i) {

sum += dd_working[tidx + i];
}
DUST[cudaindex] += sum;

3.7 Hydraulic Kernel
The hydraulic kernel consists of four subsequent kernels for water pipe simulation, one
Kinetic, one Hydraulic and two kernels for semi-Lagrangian transport. If the user
disables either one of the simulations the water and semi-Lagrangian transports will be
computed as usual, however the deposition / erosion step will be omitted.. d_simWaterA (compare pressure, pass accelerations to pipes). d_simWaterB (add accelerations to pipes). d_simWaterC (compute transported amounts of water). d_simWaterD (set water to new levels)

if(a_kinetic == true). d_erodeWaterKinetic
if(a_hydraulic == true). d_erodeWaterHydraulic. d_erodeWaterSemiLag1 (look behind advection and bilinear interpolation). d_erodeWaterSemiLag2 (set fields to new values)

3.7.1 Water Simulation
The first thing of all is adding the water entering the system:

float val = 0;
for (unsigned int i = 0; i < DPOLY_SPR_LEN; ++i) {

val += DSPRINKLER_STR * d_gaussFalloff(c, r, POLY_SPR[i*3] * 2,
POLY_SPR[i*3+2] * 2, DSPRINKLER_RADIUS);

}
WATER[cudaindex] += val;
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/**thermal erodes a single layer of the terrain. Returns true if the
material in the layer has been sufficient and no further layer shall
be processed.*/
__device__
bool d_evalLayer(float* myh, float* other, bool* other_valid,

float layer_volume, float thermal_rate, float angle,
bool * out_valid, float * out_sum, float * out_maxdif,
float * out_target) {

bool retval = true;
*out_sum = 0;
*out_maxdif = 0;
//evaluate neighbours
for (unsigned char i = 0; i < 8; ++i) {

float diff = *myh - other[i];
//condition for thermal erosion
if (other_valid[i] && diff>0 &&

atan2f(diff, CELL_WIDTH) > (angle * PI) / 180) {
//storing the sum of differences
*out_sum += diff;
out_valid[i] = true;
//storing the maximal difference
if (diff > *out_maxdif) {

*out_maxdif = diff;
}

} else {
out_valid[i] = false;

}
}
//distribute material
float amount = thermal_rate * *out_maxdif / 2;
//check if enough material is present for our cell.
if (amount > layer_volume) {

amount = layer_volume;
retval = false;

}
//stop if nothing is being shifted
if (amount == 0) {

return true;
}
//distribute the available material proportionally among valid neighbors.
for (unsigned char i = 0; i < 8; ++i) {

if (out_valid[i]) {
out_target[i] += amount * ((*myh - other[i]) / *out_sum);
}

}
out_target[8] += amount;
//reduce the height for the next step.
*myh -= amount;
return retval;
}

Figure 3.12. Device subroutine eroding a single terrain layer.
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Table 3.2. Diagram showing the indexing of pipes and cells

Then we initialize our idx[] list together with validity check. We do not need to
check whether the pipes themselves have a valid index, because each pipe connecting
our cell to another valid one is bound to be valid as well.

const int idx[4] = { cudaindex-1, cudaindex-DW,
cudaindex+1, cudaindex+DW };

bool valid[4] = { idx[0] >= 0, idx[1] >= 0,
idx[2] < DW*DH, idx[3] < DW*DH };

const int dir[4] = { -1, -1, 1, 1 };
const int pipeidx[4] = { cudaindex - 1, offset + cudaindex - DW,

cudaindex, offset + cudaindex };
float dif[4] = { 0,0,0,0 };

Here comes a big efficiency boost. Since we established that the difference in pressure
will be calculated the same looking from either direction unlike [4] we do not store pipe
flow value in both directions. Instead we only allow the higher of the two cells to
pass acceleration into the pipe. In the case that both cells have the same height the
acceleration field is initialized to 0 and neither one of them needs to write to it.

float myh = SUMS[cudaindex] + WATER[cudaindex];
for (unsigned char i = 0; i < 4; ++i) {

if (valid[i]) {
dif[i] = myh - SUMS[idx[i]] - WATER[idx[i]];
if (dif[i] < 0) { //do not write into higher slots.

dif[i] = 0;
valid[i] = false;

}
}

}

In the next step we add the calculated accelerations to water speeds. Then we look
at the source cell and scale down the speeds based on the amount of water present.
Without this precaution the terrain would keep its speed even if no water was present.
Upon reentry water would build up into walls and swirl in unjustified ways.

Once the pipe speeds are up to date it is time to start moving the water mass. Here,
we have to be careful and account for the fact that a cell may not hold enough water
in it to satisfy all the demand. Similarly to the thermal material distribution step we
sum the requests and the proceed to distribute the water proportionally.

if (amount > WATER[cudaindex]) {
amount = WATER[cudaindex];
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}
amount /= 2;

for (unsigned char i = 0; i < 4; ++i) {
if (pipevalid[i]) {
dif[i] = amount * (dif[i] / sum);
d_extra[idx[i] * 5 + 1 + i] = dif[i];

}
}
d_extra[extraidx] = amount;
//calculate overal cell flows for use in kinetic hydro-erosion
WATER_CELL_VERT[cudaindex] = dif[3] - dif[1];
WATER_CELL_HOR[cudaindex] = dif[2] - dif[0];

We are again using stride of 5 with 4 indexes for outgoing water and the last one
for the cell to store expelled material internally. Afterwards we also compute per-cell
velocities, since the simulation algorithm only records the pipe velocity.

In the last kernel we sum up the differences calculated previously. To address the
border conditions we set water, sediment and regolith levels along the border to 0.
After this we apply evaporation to all non-border cells and finish up by updating the
average water level – also necessary for the upcoming erosion equation.

if (isBorder(c, r, DW, DH)) {
WATER[cudaindex] = 0;
SEDIMENT[cudaindex] = 0;
REGOLITH[cudaindex] = 0;

} else {
float evaporate = DEVAPORATION/1000;
if (evaporate < 0) { evaporate = 0; }
WATER[cudaindex] += sum - evaporate;
if (WATER[cudaindex] < 0) { WATER[cudaindex] = 0; }

}
WATER_LAST[cudaindex] = (WATER[cudaindex] + WATER_LAST[cudaindex]) / 2;

3.7.2 Kinetic and Hydraulic Erosion
In the case of kinetic erosion we place a minimal value on the angle condition. This
ensures that the kinetic erosion effect isn’t zero on perfectly flat surfaces.

const float velocity = sqrt(WATER_CELL_VERT[cudaindex] *
WATER_CELL_VERT[cudaindex] +
WATER_CELL_HOR[cudaindex] *
WATER_CELL_HOR[cudaindex]);

//set minimal transport capacity angle.
float transportCapacity;
if (SLOPE_SIN[cudaindex] < 0.1) {

transportCapacity = velocity * 0.1 * 0.01;
} else {

transportCapacity = velocity * SLOPE_SIN[cudaindex] * 0.01;
}

Afterwards we repeat a similar process to how we pealed away at the layers during
the thermal erosion.

if (SEDIMENT[cudaindex] > transportCapacity) {
//deposit
float delta = SETTLE*(SEDIMENT[cudaindex] - transportCapacity);
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DUST[cudaindex] += delta;
SEDIMENT[cudaindex] -= delta;

} else {
//erode
float delta = DISSOLVE*(transportCapacity - SEDIMENT[cudaindex]);
//start removing material from the terrain.
float remaining = delta - SEDIMENT[cudaindex];
for (int i = DLEN - 1; i >= 0; --i) {

const float request = MDATA[MATERIAL[i]]MHYDRO * remaining;
if(request > dd_terrainData[i][cudaindex]) {

dd_terrainData[i][cudaindex] = 0;
remaining -= request;

} else {
dd_terrainData[i][cudaindex] -= request;
remaining -= request;
break;

}
}
SEDIMENT[cudaindex] += delta-remaining;

}

The hydraulic erosion utilizes the same model. the only difference is that the capacity
is dictated by a different constant and instead of sediment we store to regolith.

3.8 Material Transport
In the first step of the material transport we locate the previous location and then
floor it to the nearest whole cell. the difference between the floored and non-floored
coordinate denotes the weight. If we were to use a grid with a cell size other than 1 we
would have to divide:

const float oldx = c - (WATER_CELL_HOR[cudaindex]);
const float oldy = r -(WATER_CELL_VERT[cudaindex]);
const int foldx = floorf(oldx);
const int foldy = floorf(oldy);
float wx = oldx - foldx;
float wy = oldy - foldy;

With the weights we sum up the amounts of each respective component in a bilinear
fashion with some validity check before hand. In data passing section there is a missing
cell compensation step. The logic behind it is that if we are missing a cell in our um,
the weights do not technically add up to 1 and this would artificially decrease the mass
of material around the edges. Notice that we are offsetting the regolith values by the
length of the terrain in our temporary array.

float div;
if (valid[0]) { amountSediment += SEDIMENT[idx[0]] * (1 - wy)*(1 - wx);

amountRegolith += REGOLITH[idx[0]] * (1 - wy)*(1 - wx); }
if (valid[1]) { amountSediment += SEDIMENT[idx[1]] * (1 - wy)*(wx);

amountRegolith += REGOLITH[idx[1]] * (1 - wy)*(wx); }
if (valid[2]) { amountSediment += SEDIMENT[idx[2]] * (wy)*(1 - wx);

amountRegolith += REGOLITH[idx[2]] * (wy)*(1 - wx); }
if (valid[3]) { amountSediment += SEDIMENT[idx[3]] * (wy)*(wx);

amountRegolith += REGOLITH[idx[3]] * (wy)*(wx); }
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for (unsigned int i = 0; i < 4; ++i) {

if (valid[i]) {
++div;

}
}
//compensate for missing cells
if (div > 0) {

amountSediment *= 4 / div;
d_extra[cudaindex] = amountSediment;
d_extra[DW*DH+cudaindex] = amountRegolith;

}

The second step is only setting values from d_extra[] to either regolith or sediment
values. This concludes the description of erosion techniques.
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Chapter 4
Testing and Conclusion

4.1 Testing
In order to evaluate our application we put together an assignment for our testers.

4.1.1 Testing Assignment
They were tasked with recreating this provided landscape 4.1 the best they could with
the tools available. Their responses are listed in C. Th times taken were measured.
After the test they were asked to score the application on a scale from (1-5) in the
following categories:

. How easy was the presented task?. To what extent were you satisfied with your result?. How intuitive did you find the controls in general?. How easy was it to read the options?. How easy was it to navigate the scene?. To what extent did you feel in control of the editing?. How clear were the instructions?. How would you rate your overal enjoyment compared to other similar tools?

And additionally to answer these open ended questions:

. What was the most engaging part of the experience?. What was the least pleasant part of the experience?. Was there a feature you would welcome?. Was there a feature you struggled to grasp initially?. Do you have any additional remarks or suggestions?

Figure 4.1. Reference terrain presented to the testers.
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4.1.2 Testing Feedback

Some of our testers received a very early build of the application and experienced some
crashes during their testing. However, their early attempts helped us improve the
compatibility and ultimately fix all issues with the stability. In the second wave of tests
we have discovered that users prefer to control the camera with either mouse or the
keyboard. The AWSD and mouse control scheme comes from video game tools and
gameplay and is intuitive to those users who are familiar with the fps genre. Users who
play rhythm and strategic games had issues using both keys and mouse to navigate the
scene. This lead to discarding the idea of having the mouse wheel change the camera
speed and transitioning it to letting it zoom in and out instead. With this, the drag
and look around function, the user is fully capable of navigating the scene without a
keyboard which has proven to help inexperienced 3D application users a great deal.

Overall, the application turned out to have a much higher skill ceiling than it first
appeared. In the hands of tester C - one of our non-programmer testers - even the
process of navigating the scene became a herculean task. It is debatable to what
extent it is the task of our application to teach fundamental 3D space navigation to
complete beginners, however during the process the tester successfully employed the
rest of the utilities provided from a static perspective, proving that the tool control
itself is intelligible.

The testers generally stated that they would welcome more refined sculpting options
in order to achieve. A height fixating material brush was suggested which would elevate
a ridge, similar to what was discussed as smart scribbles at 2.1.

Figure 4.2. Terrains modeled by tester E and D respectively.

4.2 Evaluation
We have successfully developed an application fulfilling all the goals that we set out to
do. Combining the elements of GPU parallel computing, OpenGL rendering and multi-
threaded application has presented a number bottlenecks and challenges along the way,
which we have overcome. Thanks to the testing feedback we managed to pinpoint areas
where outside users may feel challenged and made a number of timely adjustments to
further improve the experience.
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Appendix B
Manual

Figure B.1. Interactive Erosion UI Manual

action description
right click (hold) camera look around
left click use selected tool
wheel scroll zoom camera
shift + wheel scroll camera movement speed

Table B.1. List of mouse controls

key description
W S camera forward / backward
A D camera left / right
Q E camera up / down
R shift + R increase / decrease tool radius
T shift+ T increase / decrease tool strength
F toggle fullscreen

Spacebar toggle erosion simulation

Table B.2. List of key controls

37



Appendix C
Tester Feedback

C.1 Point Ratings

Question A B C D E
How easy was the presented task? 2 4 3 4 3
To what extent were you satisfied 3 4 5 2 3
with your result?
How intuitive did you find the controls 3 4 4 4 4
in general?
How easy was it to read the options? 2 5 3 5 5
How easy was it to navigate the scene? 4 4 1 4 3
To what extent did you feel in control 4 5 5 3 3
of the editing?
How clear were the instructions? 4 4 3 5 4
How would you rate your overal enjoyment 3 . 5 5 4
compared to other similar tools?

Figure C.2. Tester ratings on a scale (1 little/hard - 5 a lot/easy)

C.2 Open-ended Questions

. Q1 - What was the most engaging part of the experience?. Q2 - What was the least pleasant part of the experience?. Q3 - Was there a feature you would welcome?. Q4 - Was there a feature you struggled to grasp initially?. Q5 - Do you have any additional remarks or suggestions?
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Build version: 1.0
Time taken: 1 hour
Former professional UI designer. Experienced programmer.

Q1 Painting rock formations quickly and fluidly.
Q2 Crashing while attempting to simulate, Trying to determine

how to use each material type.
Q3 Tooltips over buttons would make it much easier to understand

their function.
Q4 I still don’t know what the second tool on the right does, looks

like a waypoint tool.
Q5 A more dynamic random map generation would be nice. Be able

to just open and simulate immediately.

Figure C.3. Background and open-ended feedback of tester A.

Build version: 2.0
Time taken: 5 minutes
Computer Science student. Experienced programmer.

Q1 It’s really cool shaping the landscape and seeing it evolve,
erode and respond to its surroundings in real time.
Feels that in quite a short time, the process can be picked up.

Q2 The controls are a bit clunky - the camera, hotkeys and tool
descriptions could work a bit more smoothly.
We did however discuss changes that will make them a lot better.
Also, the analytical and mask views can be oversaturated
to the point of details being hard to see -
maybe tone that a bit down if it’s possible.

Q3 VR and AR controls :)
Q4 I haven’t yet used the polygon select and mask tools - they

might be easy to pick up, but I can’t judge, as I didn’t feel the
need to use them.

Q5 Very cool piece of sim software - iron out the control/presentation
quirks and it’ll be even better.

Figure C.4. Background and open-ended feedback of tester B.

Build version: 3.0
Time taken: 10 minutes
Graphic Design and Marketing student.

Q1 Playing around with the water.
Q2 Controlling the camera. I am not very good with 3D editing tools.
Q3 Better camera control.
Q4 Camera control.
Q5 Make the manual more fun.

Figure C.5. Background and open-ended feedback of tester C.
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Build version: 2.0
Time taken: 5 minutes
Computer Science student. Experienced programmer.

Q1 thinking through how to design the bedrock so it would erode into
the shape i want

Q2 failing to predict water flow
Q3 setting progressively harder edges on the tools
Q4 yes, i failed to understand masking at first, leading me to believe

the application was broken
Q5 no

Figure C.6. Background and open-ended feedback of tester D.

Build version: 3.0
Time taken: 15 minutes
Professional Illustrator.

Q1 Constructing the individual material layers.
Q2 Not having a maximal tool height option and mouse wheel not

zooming.
Q3 Many game engines offer the ability to level terrain or to drag out

ridges at an even height.
Q4 I would prefer to have the camera controls all dedicated to either

the mouse or the keyboard. Also the texture view could use the
same contour treatment as the second mode.

Q5 Overall, the application has a lot of convenient traits.
I would welcome more keyboard shortcuts.

Figure C.7. Background and open-ended feedback of tester E.
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Appendix D
Device Memory Mapping

#define DW dd_intParams[0] //Width of the terrain
#define DH dd_intParams[1] //Height of the terrain
#define DIDX dd_intParams[2] //Index of the selected layer
#define DLEN dd_intParams[3] //Length of the SimLayer list
#define DPOLY_SEL_LEN dd_intParams[4] //Length of the polygon
#define DPOLY_SPR_LEN dd_intParams[5] //Length of the sprinklers

#define DSTR dd_floatParams[0] //Tool strength
#define DRAD dd_floatParams[1] //Tool radius
#define DX dd_floatParams[2] //Cursor x
#define DY dd_floatParams[3] //Cursor y
#define DZ dd_floatParams[4] //Cursor z
#define DSPRINKLER_STR dd_floatParams[5] //Sprinkler strength
#define DSPRINKLER_RADIUS dd_floatParams[6] //Sprinkler radius
#define DEVAPORATION dd_floatParams[7] //Evaporation rate

#define DUST dd_terrainData[DLEN - 1] //upper most layer
#define WATER dd_terrainData[DLEN] //current water level
#define MASK dd_terrainData[DLEN+1] //selection mask
#define SUMS dd_terrainData[DLEN+2] //sum of heights in each cell
#define WATER_LAST dd_terrainData[DLEN+3] //average of water levels
#define REGOLITH dd_terrainData[DLEN+4] //regolith level
#define SEDIMENT dd_terrainData[DLEN+5] //sediment level
#define MISCOBJ dd_terrainData[DLEN+6] //unused
#define WATER_VERT dd_terrainData[DLEN+7] //verttical pipe speeds
#define WATER_HOR dd_terrainData[DLEN+8] //horrizontal pipe speeds
#define WATER_CELL_VERT dd_terrainData[DLEN+9] //per-cell vert. spd
#define WATER_CELL_HOR dd_terrainData[DLEN+10] //per-cell hor. spd
#define SLOPE_SIN dd_terrainData[DLEN+11] //sin of the max slope
#define POLY_SEL dd_terrainData[DLEN+12] //list of polygon vertexes
#define POLY_SPR dd_terrainData[DLEN+13] //list of sprinkler vertexes

//material of the selected layer
#define CUR_MATERIAL d_materialData[d_materialIndex[DIDX]]
#define MATERIAL dd_materialIndex //layer -> material index
#define MDATA dd_materialData //list of materials
#define MTHERMAL [0] //thermal erosion rate
#define MANGLE [1] //talos angle
#define MHYDRO [2] //hydraulic erosion factor
#define MSEDIMENT [2] //rate of kinetic sattling
#define MKINETIC [3] //rate of kinetic erosion

#define CELL_WIDTH 1 //Cell width for water calculations

Figure D.8. List of simplified decoded names for kernel parameters.
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