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Abstract

This thesis proposes a novel technique for
radio frequency (RF) transmission sources
localization in outdoor environments
using a formation of autonomous Micro
Aerial Vehicles (MAVs) equipped with
a rotating directional antenna. Precise
localization of sources of transmission is
required in numerous defense, security,
industry, and civil applications. The
proposed technique uses a fusion of RSSI
and angle of arrival (AoA) data gained
from measured radiation patterns of a
variable number of directional antennas
mounted on each MAV in order to reliably
determine targets positions. A UKF-
based approach is then used for sensor
data fusion and for estimation of targets
positions during each localization step.
The MAV formation actively reacts to
current position estimate and repositions
itself to achieve optimal localization
results. The proposed method has
been verified in simulations of noisy and
inaccurate measurements in the Gazebo
robotic simulator. The performance
of the proposed approach has been
further evaluated in several successful
real-world outdoor deployments of the
system employing multiple cooperatively
working MAVs equipped with a rotating
directional antenna connected to XBee
wireless device.

Keywords: RFID localization, micro
aerial vehicles, unscented kalman filter,
directional antenna, radio frequency
transmission sources localization

Supervisor: Ing. Martin Saska, Dr. rer.
nat.

Abstrakt

Tato práce se zabývá novou technikou
lokalizace zdrojů radiového vysílání ve
venkovních prostorech pomocí formace
bezpilotních helikoptér vybavených
otočnou směrovou anténou. Přesná
lokalizace zdrojů radiového vysílání má
uplatnění v mnoha oblastech, ať už jde o
použití v obraně, zabezpečení, průmyslu
nebo běžném životě. Metoda navržená
v této práci využívá kombinaci údajů
o intenzitě a úhlu příchozího signálu,
získaných z naměřených směrových
charakteristik proměnlivého počtu
směrových antén připevněných na
každé použité helikoptéře. Pro fúzi
dat a odhad polohy hledaného objektu
je v každém kroku lokalizace použit
Unscented Kalman Filter. Formace
helikoptér aktivně reaguje na aktuální
odhad polohy a upravuje svou polohu
pro dosažení optimálních výsledků
lokalizace. Funkčnost navržené metody
byla ověřena v simulacích zašuměných a
nepřesných dat v robotickém simulátoru.
Chování algoritmu bylo dále otestováno
v několika úspěšných reálných pokusech
se systémem několika spolupracujících
helikoptér vybavených otočnou směrovou
anténou připojenou k radiovému modulu
XBee.

Klíčová slova: RFID lokalizace,
bezpilotní helikoptéry, Kalmanův filtr,
směrová anténa, lokalizace zdrojů
radiového vysílání

Překlad názvu: Lokalizace zdrojů
vysílání formací helikoptér vybavených
otočnou směrovou anténou
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Chapter 1

Introduction

Fast and precise radio frequency (RF) transmission sources localization is a
challenging task utilized in many different fields and industries. Active radio
frequency identification (RFID) chips are commonly used in many industrial
applications, such as finding working tools or machinery in construction sites
or localization and identification of stock items in warehouses. Likewise, an
RF beacon can be connected to a sensor that wishes to establish a high-rate
data link. Similarly, RFID can be conveniently used in agriculture for livestock
tracking in order to monitor cattle health, prevent cattle rustling or localize
lost animals. Tracking of endangered species is another widespread use of
RFID chips. Furthermore, RF localization brings an undeniable benefit to
searching for people during natural disasters or search and rescue operations
(such as localizing people in avalanches using special RF devices or looking
for missing people by tracking their mobile phones). Military applications
include localizing wounded soldiers on the battlefield or using RF localization
to substitute the GPS system in case of GPS jamming or operating in indoor
spaces. In all of these cases, the speed, precision, and reliability of the
localization are extremely important.

The use of Micro Aerial Vehicles (MAVs) has recently experienced a
great surge in popularity and new applications for MAV use emerge every
day. Because of their ability to quickly reach distant or dangerous places,
the possibility to carry various sensors, devices and cargo, and their easy
accessibility, they quickly found their use for example in terrain mapping,
delivery of cargo, photography and video recording, surveillance and manipulation
of objects. Their abilities also make them ideal for utilization in RF localization.
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1. Introduction .....................................
There are many different approaches to RF localization with variable

requirements in terms of needed infrastructure and cost of required equipment
and with variable localization speed and precision. This thesis proposes a
localization method which uses combined Received Signal Strength Indication
(RSSI) and Angle of Arrival (AoA) data obtained from directional antennas
mounted on multiple MAVs flying in a close formation. This approach enables
the use of cheap and easily available sensors and utilizes the ability of an
MAV formation to quickly change its position and shape in order to quickly
and precisely determine the position of the localized object without the need
of a long preparation.

This thesis is built upon previous research conducted at Multi-robot Systems
group at Czech Technical University, Department of Cybernetics. The
thesis [1] deals with the topic of RF localization using RSSI data, Bluetooth
Low Energy (BLE) technology and Extended Kalman Filter (EKF). The
proposed approach has been proven to work but the used technology had low
range and the method was susceptible to RSSI measurement disturbance and
multipath effects. In [2] a combined UKF and trilateration approach is used
for localization from RSSI data measured by Xbee 2.4 GHz devices and an
adaptive formation control algorithm for localization is proposed. In [3] the
aforementioned approaches are described along with more experiments and
an AoA approach which uses a directional antenna and a Weighted Robust
Least Squares method. Furthermore, this thesis builds upon previous research
on MAV formation control [4] [5] and relative localization [6] [7].

1.1 State of the Art

The utilization of MAVs and other mobile robot systems for RF localization
has already been explored multiple times in literature and a number of
different approaches exist.

The simplest approach is the use of RSSI values measured by a simple
omnidirectional antenna. This method requires no complicated infrastructure
or sensors and cheap and easily available RF devices are enough to produce
results using this method. However, it requires knowledge of parameters
of signal propagation in the given environment and if used on its own it
is susceptible to radio disturbance, multipath effects, shadowing and other
effects influencing radio transmission propagation.

This method is explored in [8] which deals with the use of MAVs in RFID

2



................................... 1.1. State of the Art

localization for environmental monitoring. Specifically, it uses an RSSI-based
multilateration approach, which estimates the position of the localized chip
using a least-squares method. [9] researches the use of a particle filter on
RSSI data measured by a UAV sweeping a large outdoor area. Similarly,
[10] proposes a method for Wi-Fi devices localization in a large region using
UAVs to collect RSSI data. A Bayesian optimization based on Gaussian
process regression is then used for the localization itself. In [11], tracking
of an intermittent RF source using a UAV swarm measuring RSSI data
is researched. Two algorithms for localization are compared - EKF and a
recursive Bayesian estimator. Furthermore, the paper compares two trajectory
planning algorithms for RF localization - steepest descent posterior Cramer-
Rao lower bound path planning and a bio-inspired heuristic path planning.

Another possible approach is the use of AoA information estimated from
the radiation pattern of a directional antenna. This approach is used in [12],
where a directional antenna is mounted on top of an MAV, which rotates
around its vertical axis, and a particle filter is used for RF source localization.
In [13], autonomous navigation of a mobile ground robot to an RF source
using AoA information and a particle filter is explored. Similarly, directional
RSSI-based localization using a mobile robot carrying a corner reflector
antenna and an online statistical filter is researched in [13].

In order to decrease the influence of multipath effects on successful localization,
the aforementioned approaches can be combined and used together (as is the
case with this thesis). In [14] and [15], methods for localization in Non Line
of Sight condition from coupled RSSI and AoA measurements using a particle
filter and a multi-step Gaussian filtering approach, respectively, are proposed.

A more precise method is the use of Time Difference of Arrival (TDoA),
which is based on the measurement of the difference in time between the
arrival of the transmission to multiple receivers. This approach is accurate
and resistant to multipath effects but requires more complicated devices. RF
localization using TDOA measurements from 2 UAVs and a comparison of
an EKF and UKF approach are described in [16]. Similarly, [17] proposes
a dual-EKF algorithm used to localize an RF emitter from TDoA data
measured by two UAVs. [18] proposes a TDOA-based method utilizing a least
squares approach for localization using UAVs in battlefield environments as a
substitute for Global Navigation Satellite Systems (GNSS).

3



1. Introduction .....................................
1.2 Problem Statement

The localization system in its basic form consists of three autonomous
cooperatively working MAVs flying in a formation and of a variable number
of beacons to be localized. Positions of the beacons are completely unknown
beforehand. The beacons are active RFID chips capable of communication
with directional antennas mounted on each MAV.

The antennas are able to send a message to each beacon and measure
RSSI of the beacon’s response. The antenna is able to rotate itself to a
specific position around its vertical axis and using this feature it is possible
to measure the current radiation pattern of the antenna in 360 degrees.
Using this measured radiation pattern it is possible to estimate distance
and angle (bearing) between each MAV and the beacon currently being
localized. The environment where the localization is performed is assumed
to be without obstacles which eliminates the influence of shadowing on
transmission propagation.

For purpose of the localization, it is further assumed that the beacon is
placed on the ground, at zero altitude, which reduces the localization task
to two dimensions. This simplification is made because bearing information
is independent of beacon’s altitude and dependence of transmission RSSI
on distance is on its own too influenced by radio disturbance and multipath
effects to be able to reliably determine beacon’s altitude. Furthermore, the
estimation of beacon’s altitude is not required by the possible applications of
this method (as listed in Chapter 1).

Moreover, it is assumed that positions of the MAVs are accurately known,
e.g. using GPS. The goal of this work is to reliably and precisely estimate
the current position of each beacon using information obtained from each
antenna and position of each MAV.

4



Chapter 2

Used hardware description

2.1 MAV platform

MAV platforms built by the CTU Multi-robot System group were used in
the experiments. Each used MAV is a hexacopter controlled by a Pixhawk1

unit running Robot Operating System2 (ROS). Real-time kinematic (RTK)
positioning in combination with Global Navigation Satellite System (GNSS)
is used in order to get high-precision position data for each MAV. Every
MAV offers approximately 15 minutes of flight time depending on flight
conditions. The real world experiments were performed either with the use of
a single drone or a formation of 3 MAVs. More information about the used
MAV hardware can be found in [19] and [20]. Information about the Model
Predictive Control (MPC) used to control the MAVs can be found in [21],
and [22]. The MAVs use a decentralized collision avoidance system [23] in
order to enable a safe execution of real experiments.

2.2 Beacon description

XBee S2C radio module with an integrated wire antenna shown in Figure
2.1a is used as the localized beacon. XBee modules are used in a number

1https://pixhawk.org/
2http://www.ros.org/

5

https://pixhawk.org/
http://www.ros.org/


2. Used hardware description ...............................

(a) : XBee S2C RF module (b) : Rotating antennas used for
localization

Figure 2.1: Hardware used for localization

Specification Value
Indoor/urban range Up to 60 m

Outdoor RF line-of-sight range Up to 1200 m
Transmit power output (maximum) 3.1 mW (+5 dBm), normal mode

Receiver sensitivity -100 dBm, normal mode
Supply voltage 2.2 V - 3.6 V

Operating frequency band ISM 2.4 - 2.5 GHz

Table 2.1: Technical specifications of XBee S2C module

of various applications ranging from receiving data from wireless sensors to
remote control of mobile robots. Technical specifications of XBee S2C module
can be found at3, while a summary is included in Table 2.1.

During collection of each sample to be used for localization, the antenna
transmits a short message to the beacon and the beacon responds. Measured
RSSI of the received response is then used by the localization algorithm.

2.3 Antenna description

The receiver was designed by Matouš Vrba from Multi-robot Systems group
at CTU within his work on RFID chips localization [3]. Two more antenna
devices were constructed for the purpose of this thesis by its author. All three
antennas can be seen in Figure 2.1b. The antenna rotating device consists of
XBee S2C module with a CW8DPA patch directional antenna connected to
XBee via RP-SMA connector. The antenna gain is 8 dBi and its operating

3https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf

6
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................................. 2.3. Antenna description

Figure 2.2: MAV with directional antenna

frequency band is 2.4 - 2.5 GHz.

The antenna and RF module are mounted on a 28BYJ-48 step motor
that is used for rotating the antenna. An Arduino Nano is used to control
the step motor. The step motor is capable of rotating the antenna to 128
different positions which equals a step of approximately 2.8◦. The Xbee
device is connected to a CP2102 USB to UART converter. USB ports are
then used to connect the XBee and the step motor to the MAV control unit.
For localization purposes, the antenna is mounted below the MAV as can be
seen in Figure 2.2.

7
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Chapter 3

System model

State-space representation of the localization system is defined in Section 3.1.
The equations used for modeling the dependency of RSSI on the distance
between localized beacon and each antenna are described in Section 3.2. The
estimation of angle of arrival (AoA) of the signal to the respective directional
antenna is described in Section 3.3.

3.1 State-space representation of system

A discrete state-space model of the localization system for m MAVs and one
beacon is used as

~xk+1 = A~xk + ~vk, (3.1)

~zk = ~h(~xk, ~uk) + ~wk, (3.2)

where ~xk is the 2-dimensional state of the system at timestep k containing
Cartesian coordinates of the localized beacon (the localization task has been
reduced to two dimensions as described in Section 1.2), ~vk is the state noise
process vector, ~zk is the observation vector, ~h is the measurement function,
~uk is the input vector containing x, y and z coordinates of the currently used
MAV and ~wk is the measurement noise. Matrix A is a 2-dimensional identity
matrix which represents that position of the localized beacon is static.

A =
[
1 0
0 1

]
(3.3)

9



3. System model ....................................
The process and measurement noise vectors are defined as

~vk ∼ N (0,Qk),

~wk ∼ N (0,Rk),

where Qk is the process noise covariance matrix and Rk is the measurement
noise covariance matrix. The state vector, input vector and measurement
vector are defined as

~xk = [xB, yB]T ,

~uk = [xM , yM , zM ]T ,

~zk = [RSS, θ]T ,

where xB and yB denote the Cartezian coordinates of the localized beacon.
xM , yM , zM are the coordinates of the MAV whose sensor data are currently
used for localization. RSS is the average RSSI of the radiation pattern
measured by the MAV and θ is the estimated AoA obtained from the MAV.
The measurement function is defined as

~h =
[
P0 − 10γlog10(

√
(xM − xB)2 + (yM − yB)2 + (zM − zB)2)

atan2(yB − yM , xB − xM )

]
.

where atan2 is the four-quadrant inverse tangent defined as

atan2(x, y) =



arctan( yx) if x > 0
arctan( yx) + π if x < 0 and y ≥ 0
arctan( yx)− π if x < 0 and y < 0
+π

2 if x = 0 and y > 0
−π

2 if x = 0 and y < 0
undefined if x = 0 and y = 0.

The first row of the measurement function vector contains RSSI calculation
from 3D distance between the beacon and the MAV according to equation
(3.7) and the second row of the function contains calculation of estimated
MAV-beacon angle from position of the beacon and the MAV. It can be
seen that the measurement function is highly nonlinear which highlights the
necessity of using a type of Kalman filter designed for nonlinear systems.

The localization system contains m MAVs, each passing measured data
to the filter in every position of measurement. The measured data (vectors
~uk and ~zk) are passed to the filter sequentially resulting in m filter steps for
every formation measurement position.

10



.................................3.2. Signal strength model

3.2 Signal strength model

Friis transmission equation (3.4) describes the dependency of received signal
strength on certain properties of transmitter and receiver and on the distance
between them under ideal conditions. Power Pr received by the antenna in
decibel-milliwatts (dBm) can be obtained as

Pr = Pt +Dt +Dr + 20log10( λ

4πd), (3.4)

where Pt is the power delivered to the transmitter in dBm, Dt is transmitting
antenna isotropic gain in the direction of the receiver antenna in decibels
isotropic (dBi), Dr is receiver antenna isotropic gain, λ is the transmission
wavelength in meters, and d is the euclidean distance between transmitter
and receiver in meters.

This idealized equation applies only under certain conditions. It is assumed
that d << λ which means that both the receiving and transmitting antenna
are in each other’s far field. Furthermore, both antennas must be correctly
aligned and equally polarized. The equation does not account for any
multipath effects caused by signal reflection from the ground and obstacles,
shadowing and other propagation effects occurring under real-world conditions.
A brief summary of effects influencing the transmission propagation can be
found at [24]. To account for these influences the Log-distance path loss
model

PL(d) = PL(d0) + 10γlog10( d
d0

) + χ (3.5)

is used. The Received signal strength then equals

Pr = Pt − PL (3.6)

where Pr is the power received by the receiver antenna in dBm, and Pt is
the power delivered to the transmitting antenna. PL(d) is the path loss in
dB at distance d, PL(d0) is the mean path loss at reference distance d0 and
γ is the path loss exponent. χ ∈ (0, σ2) is normally (Gaussian) distributed
random variable with zero mean and standard deviation σ that represents the
effects of multipath, shadowing and radio disturbance on the transmission.
By combining equation (3.6) and (3.5) and substituting d0 = 1 a dependency

Pr = P0 − 10γlog10(d) + χ (3.7)

of RSSI Pr on distance d between transmitter and receiver which contains two
parameters P0 and γ is obtained. These parameters depend on transmitter
and receiver properties and on the environment where the signal spreads and
can be experimentally identified by measuring the dependency of RSSI on
transmitter-receiver distance and fitting the function (3.7) to the data using
a least squares method.
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Figure 3.1: Radiation pattern measured on MAV 39 m away from the beacon
and 3.5 m above the ground.

3.3 Antenna radiation pattern and MAV-beacon
bearing

Antenna radiation pattern refers to a mathematical function or a graphical
representation of the radiation properties of the antenna as a function of space
coordinates [25], which is mostly represented as a function of the directional
coordinates. A 2D radiation pattern cut can be measured by rotating the
antenna around a fixed axis and measuring received/transmitted power in a
particular direction. Portions of the radiation pattern bounded by regions of
relatively weak radiation intensity are called radiation lobes. Usually, they
are subclassified into main, side and back lobes. The main lobe is defined
as "the radiation lobe containing the direction of maximum radiation"[25].
A directional antenna is defined as an antenna which radiates or receives
greater power in specific directions. An important property of the antenna is
called gain in dBi (decibels isotropic). It represents the ratio of the radiation
intensity in a given direction to the radiation intensity of a lossless isotropic
antenna (radiating equally in all directions). Specifically, the antenna used in
this thesis has a gain of 8 dBi in the direction of the main lobe. An example
of a measured radiation pattern can be found in Figure (3.1).

The angle θ representing the bearing from the particular antenna to the
beacon being localized can be estimated from the location of the main lobe
in the measured horizontal radiation pattern cut. The angle θ is defined as
the horizontal angle in the x-y plane, θ = 0 corresponds to positive half of
the x axis, and θ is positive in the direction of the positive half of the y axis.

12



Chapter 4

Localization algorithm with uncertainty
estimation

A localization algorithm with a novel approach to uncertainty estimation
will be proposed in this chapter. The localization algorithm accepts RSSI
data measured by the directional antenna along with information about the
bearing where the current RSSI was measured as described in Section 4.1.
A radiation pattern is constructed from a set of these measurements. This
pattern is then preprocessed, used for calculation of average RSSI of the
whole pattern and estimation of transmission AoA as described in Section
4.2. Furthermore, an uncertainty of this AoA estimation is calculated using
algorithm shown in Section 4.3. Unscented Kalman filter described in Section
4.4 is then used to estimate the position of the localized beacon.

4.1 Radiation pattern measurement

The radiation pattern of the antenna, described in Section 3.3, is measured
by using the step motor to rotate the antenna in 360 degrees sampled into
128 positions around its z axis. In every position, several RSSI samples
are measured. From the performed experiments, it became clear that the
frequency of measured samples varies substantially. Therefore, the antenna
waits for a certain number of samples in each position set by the step
motor. Six samples per position were used during the real experiments
as a compromise between filtering as much random noise as possible and
doing as quick measurements as possible. Furthermore, the time spent in each
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4. Localization algorithm with uncertainty estimation ....................
position is limited by a timeout value to prevent the antenna from freezing in
a position where no transmission can be established. This timeout value was
set to 400 ms per position. The first position was set to have a larger timeout
of 2 s in order to give the antenna more time to establish communication.
Another approach to measuring the radiation pattern is rotating the whole
MAV while the antenna’s rotation relative to the MAV does not change. This
approach is described in Section 5.1.

4.2 Preprocessing of measurements

As mentioned before, the rotating antenna measures several samples in each
of 128 different rotations around its z axis in order to decrease the influence
of multipath propagation and other effects that cause random noise in the
measured RSSI. An average of the measured samples in each position is then
computed. The average RSSI per position k is calculated from n samples
using arithmetic mean described in equation (4.1) and the calculation of the
average angle is shown in equation (4.2). Although the samples are taken
in the same rotational position of the antenna, the angle can vary due to
changes in yaw of the whole MAV.

RSSk = 1
n

(
n∑
i=1

RSSki) (4.1)

αk = atan2(
n∑
i=1

sinαki,
n∑
i=1

cosαki) (4.2)

In case a static directional antenna is used (the MAV itself rotates in 360
degrees around its z axis), the approach of beacon position estimation stays
unchanged. The whole rotation is sampled into 128 positions and the average
values are calculated using the same equations for each particular angle step.

The computed RSSI values are then used to calculate the average RSS of
whole radiation pattern which is further used by the UKF for estimating the
beacon position.

Even after the measurement of multiple samples in each position the
measured pattern still contains an unacceptable amount of noise. To solve
this issue, a simple moving mean is used to further filter the data. A
moving mean, that uses n values, iterates through the data and for every
position computes an average of n2 previous positions, current position, and
n
2 subsequent positions. Furthermore, the moving mean fills in the missing
data in case there were no samples measured in a given position but the
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Figure 4.1: Preprocessing of measured radiation patterns

surrounding positions have been measured correctly. By analyzing the data
obtained from experiments, n = 7 samples were chosen as the appropriate
value to be used by the moving mean in each calculation step.

The RSSI values are rounded to whole decibels. Because of this, similar
RSSI values are treated as equal during the search for the angle with maximal
RSSI and the algorithm will choose the average of these angles rather than
one angle with a little higher RSSI than the others. This usually means
choosing an angle closer to the center of the main lobe which improves the
estimation accuracy. An example of a measured radiation pattern with results
after each preprocessing step can be seen in Figure 4.1.

The transmission AoA is then determined from this preprocessed radiation
pattern. The algorithm simply finds the angle with maximal RSSI in the data.
In case that multiple positions share the same maximal RSSI, the average
angle of these positions is calculated using equation (4.2) and returned as the
desired AoA.

4.3 Uncertainty of angle measurement estimation

After preprocessing the measured radiation pattern and estimating the angle
of arrival, an uncertainty of the current AoA measurement is estimated from
the shape of the radiation pattern. It serves as a weight of the measurement
in localization and is further used for determining whether the measurement
should be used in localization and then for construction of the measurement
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Figure 4.2: Radiation pattern with wide main lobe
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Figure 4.3: Radiation pattern with narrow main lobe

noise matrix R.

This uncertainty σθ is calculated by finding the value that is furthest away
from the angle with maximal RSSI at the level of 2 dBm below maximal RSSI
value and calculating the subtraction of these angles. This effectively means
cutting the top of the radiation pattern and finding the width of the section
between the edge of the top and the estimated AoA. Examples of measured
radiation patterns with plotted border of the 2 dBm radiation pattern top can
be seen in Figures 4.2 and 4.3. The first figure contains a radiation pattern
with a very wide main lobe where the AoA estimation from maximal RSSI
failed to produce an accurate result. However, due to the width of radiation
pattern section above the plotted border, the weight of this measurement is
low. In the second figure, a radiation pattern with a narrow main lobe and
an accurate estimation of AoA is displayed. A large weight has been assigned
to this measurement.

The 2 dBm height of the radiation pattern top has been determined from
data obtained in real experiments in order to optimally estimate the credibility
of the measurements. By using a Student’s t-test, a correlation has been found
between the estimated angle uncertainty and the error in AoA estimation.
The correlation coefficient between the estimated angle uncertainty vector
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................................4.4. Unscented Kalman filter

and the AoA error vector is defined as

R ~X,~Y =

n∑
j=1

(Xj − X̄)(Yj − Ȳ )√
(
n∑
j=1

(Xj − X̄)2)(
n∑
j=1

(Yj − Ȳ )2)
, (4.3)

where ~X is the estimated angle uncertainty vector, ~Y is the real angle
estimation error vector, and X̄, Ȳ are means of these vectors. This correlation
coefficient is calculated in Chapter 7 for data gained from experiments to verify
the usefulness of estimating the angle uncertainty for every measurement as
opposed to choosing a constant parameter for all steps. Student’s t-test [26]
was used to calculate statistical significance of the discovered correlation.

The estimated AoA uncertainty is further used to determine whether the
measurement should be used by the UKF for localization. If the uncertainty
is larger than 3 radians, the algorithm throws the measurement away and
does not perform a filter step. This eliminates the measurements with very
large uncertainty which would decrease the filter performance.

Furthermore, the AoA uncertainty is used to construct the measurement
noise R matrix constructed as

R =
[
σ2
RSS 0
0 σ2

θ

]
.

The covariance between average RSSI and AoA measurement noise is assumed
to be zero and therefore R is a diagonal matrix. The average RSSI standard
deviation σRSS is a constant value identified from the performance of the filter
on real experimental data while estimated AoA uncertainty σθ is changed in
every step.

4.4 Unscented Kalman filter

Kalman filter (KF), described e.g. in [27], was used to fuse the measured
data from all MAVs and estimate the position of the localized beacon. KF
is a simple and robust state estimator algorithm with low computational
requirements which is proper for onboard use on MAV hardware. Due to
nonlinearities in the system model described in Section 3.1 a version of KF for
nonlinear systems is required. Two most common approaches are to use either
the Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF). The
performance of these two algorithms is compared for example in [28] and
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4. Localization algorithm with uncertainty estimation ....................
[29] for localization based on angle data and in [30] and [31] for localization
based on RSSI. The EKF works by computing a Jacobian of the nonlinear
function and therefore linearizing the nonlinear model about a working point.
Despite its widespread use, the EKF falls short while used for systems that
are highly nonlinear and requires computation of the Jacobian matrix for its
implementation. The UKF, described in [32], uses an unscented transform
which approximates the Gaussian distribution by choosing a set of sigma
points and by applying the nonlinear function to each point. This yields a
cloud of transformed points which is used for calculation of the new statistics.
Both the EKF and UKF have been implemented for the localization system
and compared in simulations with generated sensor data. Based on the
experimental comparison, in which the UKF performed slightly better the
UKF was chosen as the estimation algorithm used for the localization. The
UKF implementation is in detail described in [33].

Although all MAVs in the formation measure their respective radiation
patterns approximately at the same moment, the UKF used in this localization
algorithm processes the received data sequentially and uses only measurements
from one MAV in each filter step. This method can be used because the
localized beacon is static and the measurements are time-independent. This
approach was chosen in order to maximize the number of measurements
used in localization. The filter contains a validation gate which detects bad
measurements and discards the whole update step in case of detection. If
measurements from multiple MAVs were used in each step, the filter would
have to either reject all of them or use some additional method to detect
which specific measurement was the faulty one.

During simulations, it was discovered that if the initial position estimate
is on the other side of the first MAV than the real beacon, the distance
estimation from RSSI can cause the filter to diverge and therefore decreases its
performance because it takes time for the UKF to converge again. Therefore,
the filter uses only AoA data in the steps performed in the first position of the
MAV formation trajectory in order to establish a beacon position estimate
in the correct direction from the formation. The AoA-only estimation is
achieved by setting the standard deviation of RSSI in the R matrix to a very
large value as written in Section 4.4.4.

If the algorithm localizes more beacons at the same time, a separate instance
of UKF is created for every beacon.
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................................4.4. Unscented Kalman filter

4.4.1 Weights and sigma points calculation

The sigma points, used by the unscented transform, are calculated using Van
der Merwe’s scaled sigma point algorithm. The calculation of sigma points is
controlled by three parameters α, β and κ, which control the distance of the
individual sigma points from their mean. The points are calculated from the
input µ as

~χ0 = ~µ, (4.4)

~χi =
{
~µ+ [

√
(n+ λ)P]i i ∈ [1, . . . , n]

~µ− [
√

(n+ λ)P]i−n i ∈ [n+ 1, . . . , 2n],
(4.5)

λ = α2(n+ κ)− n, (4.6)

where i index denotes the sigma point number and chooses the i-th column
vector of the matrix, n is the dimension of the state vector, and P is the state
covariance matrix. The first sigma point is the mean of the input and the
rest of the sigma points is chosen symmetrically around the mean. Cholesky
decomposition is used to calculate square root of the matrix. Next, the
weights used for calculation of means and covariances from sigma points are
computed as

Wm
0 = λ

n+ λ
, (4.7)

W c
0 = λ

n+ λ
+ 1− α2 + β, (4.8)

Wm
i = W c

i = 1
2(n+ λ) , i ∈ [1, . . . , 2n], (4.9)

where Wm
i are weights for means and W c

i are weights for covariances. The
values of the parameters have been chosen as

α = 0.001,

n = 2,

κ = 3− n,

and β = 2

4.4.2 Predict step

During the predict step, the sigma points are passed through the system
model and therefore projected forward in time as

Y = Aχ (4.10)
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4. Localization algorithm with uncertainty estimation ....................
where Y are sigma points in step k + 1, χ are sigma points in step k and A
is the system model which, in our case, is just an identity matrix. Afterwards
a new state estimate ~̄x and covariance P̄ are calculated as

~̄x =
2n∑
i=0

Wm
i
~Yi, (4.11)

P̄ =
2n∑
i=0

W c
i (~Yi − ~̄x)(~Yi − ~̄x)T + Q (4.12)

where Wm
i and W c

i denote the i-th element in the respective weight vector
calculated in Section 4.4.1, ~Yi chooses the i-th vector of the Y matrix and
Q denotes the state process covariance matrix whose values are described in
Section 4.4.4.

4.4.3 Update step

During the update step the sigma points are converted into the measurement
space by passing them through the nonlinear measurement function defined
in Section 3.1. The mean and covariance of the measurement sigma points
are computed using the unscented transform:

Z = h(Y), (4.13)

~µz =
2n∑
i=0

wmi
~Zi, (4.14)

Pz =
2n∑
i=0

wci ( ~Zi − ~µz)( ~Zi − ~µz)T + R. (4.15)

The residual ~y of the measurement and the computed mean is calculated as

~y = ~z − ~µz. (4.16)

After subtraction of the two vectors, the angle element is normalized to
interval (−π, π). This applies to equations (4.16) and (4.18).

In order to detect and reject bad measurements, a validation gate is used.
The topic of validation gating is described in [34] in detail. It works by
rejecting the measurements which are too distant from the current state of
the filter. This way the robustness of the UKF is greatly improved. The
validation gate is set up by calculating the Normalized estimation error
squared (NEES) e2

z as
e2
z = ~yTPz

−1~y. (4.17)
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e2
z is a scalar value with a Chi-squared distribution with r degrees of freedom,
where r is the dimension of the measurement vector ~z. If e2

z is outside the
desired bounding values, the measurement is rejected. The used gate is set
to discard measurements which satisfy

e2
z > 4 · qχ2(0.95, 2),

where qχ2(p, n) is a quantile of Chi-squared distribution for confidence level p
and n degrees of freedom. The value of 4·qχ2(0.95, 2) has been determined from
the performance of the filter on real experimental data. When a measurement
is discarded the UKF performs only its predict step which in this case means
a change in the state covariance only and no update step is made.

In order to prevent a situation when the state estimate and covariance
were too faulty and the validation gate would discard all measurements, the
gate is only allowed to reject 3 measurements in a row and furthermore it
cannot reject any measurements made in the first 3 steps of the filter.

If the measurement passes through the validation gate the cross covariance
of the state and the measurements and the Kalman gain are computed as

Pxz =
2n∑
i=0

W c
i (~Yi − ~̄x)( ~Zi − ~̄µz)T , (4.18)

K = PxzPz
−1. (4.19)

Finally, the new state estimate and the new state covariance are computed as

~x = ~̄x+ K~y, (4.20)

P = P̄−KPzKT . (4.21)

4.4.4 Filter parameters

The UKF parameters have been chosen in order to optimize the filter
performance on data gained from the real world experiments. The initial
state estimate ~x0 is set to be in the center of the MAV formation. In case of
3 MAVs ~x0 is obtained as

~x0 =
[
x1+x2+x3

3
y1+y2+y3

3

]
, (4.22)

where x1...3 denote the x coordinate of the respective MAV and y1...3 denote the
y coordinate of the respective MAV. The initial value of the state covariance
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4. Localization algorithm with uncertainty estimation ....................
P matrix has been chosen as

P =
[
70 0
0 70

]

to reflect a high uncertainty in the initial state estimate. The process noise
Q matrix has been chosen as a diagonal matrix as

Q =
[
0.19572 0

0 0.19572

]
.

The σRSS parameter which represents the RSSI deviation in the measurement
noise R matrix is set to

σRSS = 1000 dBm.

for the filter steps performed in the first position of the MAV formation
trajectory in order to make the UKF use only AoA information in the
beginning. For the remaining steps, the parameter has been chosen as

σRSS = 7.9 dBm.
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Chapter 5

MAV control

5.1 Radiation pattern measuring by rotating MAV

Another approach to measuring the radiation pattern evaluated in this thesis
is rotating the whole MAV along its z axis. This approach requires no rotating
device to be attached to the antenna which makes it a more robust option
because there are less mechanical parts that can break during use. This
approach works by sampling the 360 degree rotation into 65 points and
passing a trajectory of these points to the MAV’s controller. The controller
follows this trajectory in a way that the movement from one point to another
takes 0.2 s without exceeding the maximal allowed speed. This means that
one radiation pattern sweep should theoretically take

ts = (65− 1) · 0.2 = 12.8 s.

The value of 65 points per trajectory was chosen as an appropriate value
which should allow the MAV to measure a sufficient amount of samples and
not spend too much time sweeping one radiation pattern. This approach to
sweeping was tested in the Gazebo simulator and then in a real experiment
with one MAV, described in Section 7.2, and in the final experiment with
active localization, described in Section 7.5. One of the radiation patterns
measured in the experiment with one MAV can be seen in Figure 5.1. It
contains individual measured samples, preprocessed pattern as described in
Section 4.2, the detected AoA and the real AoA.

During the experiments and the simulations, a number of disadvantages
of using this approach as opposed to the use of a rotating antenna were
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Figure 5.1: Radiation pattern measured by rotating the whole MAV

discovered. First, the position of the MAV during the rotation is not stable
which may reduce the localization accuracy. This fact can be overcome by
using a lower rotation speed but longer time per one sweep means a lower total
number of measurements that can be done during one MAV flight. Second,
the use of rotating antenna is more robust in situations when the frequency
of measured samples is not constant. The rotating antenna can stop in each
rotational position and wait for a sufficient number of samples. Because of
these reasons, the rotating antenna approach was used as the main method
of radiation pattern measurement for all further experiments described in
this thesis but rotating MAV approach still remains a viable option which
can be used when no rotating device is available.

5.2 Formation control

During the localization process, the MAV formation needs to actively react
to current position estimates and reposition itself to achieve the best possible
localization results. The formation control algorithm was implemented for
a group of 3 MAVs but could be easily modified for the use of a different
number of drones.

The formation has got the shape of an equilateral triangle with the MAVs
located in its vertices. The vertices lie on a circumscribed circle with radius r
equal to the distance of the vertices from the center of the triangle. All MAVs
fly in the same altitude. The location, rotation, and size of the formation is
determined by the following parameters: Cx and Cy which denote coordinates
of the center of the triangle, radius r and angle θ which is defined as the angle
between the positive half of x axis and the line between the first MAV and
the center of the triangle. The shape of the formation with all its parameters
is shown in Figure 5.2b.
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Figure 5.2: Formation control and its parameters

The controller itself contains a state machine consisting of 5 states: start,
idle, moving, measuring and finished. The measuring state contains 2
substates: searching and measuring. The state machine is depicted in
Figure 5.2a. If there are multiple beacons the formation localizes only one
at a time and starts the localization of the next beacon after the position of
the previous one is found.

The state machine is initialized in the idle state where it waits for a call
to start localization. When the localization starts it transfers to the moving
state and the formation forms itself with its center calculated as the center of
the triangle formed by current positions of the MAVs.

After all MAVs reach their appropriate destinations the state machine
transfers to the measuring state and the searching substate. In this state,
all MAVs measure their radiation patterns and pass the obtained data to the
UKF. After a new estimate of the localized beacon’s position is produced,
the controller transfers back to the moving state with a target position of
the new estimate being at the center of the formation.

The formation continuously improves its estimation of the beacon’s position
and repositions itself to the place of the new estimate (using the MPC

1Drone icon by Leonardo Schneider from the Noun Project
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5. MAV control .....................................
controller described in [23]) until the new estimated position is less than 1
meter away from the last estimate and at least 3 formation measurements
have been performed. Then the measuring state transfers to the finishing
substate. The formation drops to a lower altitude and performs the same
measurement-move cycle but rotates itself by π

6 in every movement step.
After 4 finishing steps the localization is finished (during the finishing
stage, 12 different MAV positions around the beacon are used to gradually
improve the beacon position estimate), the last estimated position is returned
as the beacon’s position and the state machine to the finished state.

If there are any beacons left to localize, the state machine transfers to the
start state, the measuring state transfers back to the searching substate
and the localization continues with the next beacon. Otherwise, the state
machine transfers to the idle state.

From the simulations and the data measured in real experiments, r = 6 m
was empirically chosen as the radius of the formation and the altitudes of 4 m
in the searching substate and 3 m in the finishing substate were chosen as
the appropriate values. The choice of these parameters depends on the scale
of the area were a beacon is being localized and the parameters of the used
devices.
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Chapter 6

Simulations

Before full deployment of the implemented algorithm to real hardware and
performing real outdoor experiments, the Gazebo simulator was used to verify
the system functionalities and correct performance of the implementation.
ROS nodes were implemented in order to simulate the measurement of RSSI
values for different positions of the MAVs and different rotations of the
antenna.

The simulation uses one of the radiation patterns measured in the preliminary
experiment described in Section 7.1 as a source dataset on which all the
simulated measurements were based. The measured radiation pattern was
smoothed using moving mean, and cubic spline interpolation was used to
calculate more detailed samples. During the simulation, the source values
are shifted in angle according to the current rotation of the antenna, current
yaw of the MAV, and the bearing between the MAV and the localized
beacon. Furthermore, the RSSI values are scaled with distance according
to equation (3.7) using parameters identified from experiments described in
Section 7.1, 7.2 and 7.3. Random values from a normal distribution are used
to model the noise influencing the RSSI measurements and the inaccuracy in
AoA estimation.

The simulation offers a basic verification of the implemented algorithm
functionalities before using it on real hardware. However, a lot of other
influences which this simulation does not support, occur under real-world
conditions. For example, the shape of the simulated radiation pattern stays
approximately the same and therefore the estimation of angle uncertainty
described in Section 4.3 has got a low effect on localization performance.
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6. Simulations .....................................
Furthermore, the AoA estimation error is greater with a bigger vertical angle
between the antenna and the localized beacon. Simulation of these influences
could be a part of future work on this subject since these phenomena have
been observed during the final experiments shortly before the thesis deadline.
Earlier experimental evaluation in the full scope was not possible due to
weather conditions. Nevertheless, the real-world experimental evaluation
presented sufficient performance.

6.1 Simulation of active localization

A simulation of active localization of 2 beacons by a formation of 3 MAVs was
performed in order to verify the functionality of formation control algorithm
described in Section 5.2 and localization algorithm described in Chapter 4.
The beacons were placed at zero altitude at positions x: -10, y: -10 and x: 5,
y: 15. The noise and error values were drawn from normal distributions

eRSSavg ∼ N (0, 4),

eRSS ∼ N (0, 2),

eθ ∼ N (0, 30◦),

where eRSSavg is the deviation of average RSSI of the radiation pattern from
the theoretical curve, eRSS is the random noise added to every measured RSSI
value and eθ is the error of AoA estimation in degrees. The MAV formation
started with its center at x: 6.17 m and y: -0.31 m and gradually localized
both beacons. Figure 6.1a shows an example of a measured radiation pattern
from this simulation along with the real angle where the beacon is located
and the AoA detected by the localization algorithm. Figure 6.1b depicts
the localization error calculated as the Euclidean distance between current
estimate and real beacon position for both beacons. Beacon 1 was localized
in 27 steps (9 moves of the formation) and beacon 2 was localized in 36 steps
(12 moves of the formation). The final localization error of the first beacon is
2.38 m and the final estimation error of the second beacon is 1.77 m.

Figure 6.2a contains positions of the MAVs, beacon and progression of
the estimated position during the localization of beacon 1. MAV positions
belonging to the same step are connected by a dashed line. Figure 6.2b shows
the same but displays the progression during the localization of beacon 2.
Figure 6.3 contains screenshots from the video of the simulation, recorded in
the Gazebo simulator itself, from two different steps of the searching phase
of beacon 1 localization. The individual MAVs are highlighted by the black
circles surrounding them and the beacons are highlighted by the red circles.
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Figure 6.2: Estimated positions of each beacon over filter steps along with the
positions of the MAVs

Figure 6.4 contains screenshots from 2 steps of the finishing phase of beacon
one localization. Finally, Figure 6.5 contains 2 pictures from the localization
of beacon 2.

A video of the simulation can be seen on youtube.1 Active localization
verified in this simulation was later tested in a real-world experiment with a
formation of three MAVs and one beacon, as described in Section 7.5.

1https://youtu.be/GB01JsNOv0w
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(a) : Second formation position during
beacon 1 localization

(b) : Formation position number 4
during beacon 1 localization

Figure 6.3: Gazebo - localization of beacon 1 during searching phase

(a) : First finishing step (b) : Second finishing step

Figure 6.4: Gazebo - localization of beacon 1 during finishing phase

(a) : Localization of beacon 2 -
searching phase

(b) : Localization of beacon 2 -
finishing phase

Figure 6.5: Gazebo - localization of beacon 2
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Chapter 7

Real experiments

Five different real-world experiments are described in this chapter. In
Section 7.1, identification of the path loss parameters P0 and γ is described.
Section 7.2 contains an experiment with one drone emulating a moving MAV
formation. Section 7.3 shows an experiment with localization using a single
MAV following a rectangular trajectory. An experiment with a formation
of three MAVs following predefined trajectories is described in Section 7.4.
The final experiment, where the active localization algorithm along with the
rotating MAV approach was verified, is described in Section 7.5. A summary
of the experimental results and a comparison with the previous works are
written in Section 7.6.

7.1 Dependency of average RSSI on distance

For the purpose of localization algorithm design, the parameters P0 and
γ from equation (3.7) needed to be identified. In order to achieve this, a
measurement using a beacon and one MAV was performed. This experiment
was carried out on an empty field in order to eliminate the effect of shadowing
and minimize multipath effects interfering with the RSSI values. The beacon
was placed on the ground at zero altitude and the MAV gradually flew away
from the beacon in a straight line while measuring the current radiation
pattern in multiple points along its trajectory.

This measurement was performed at 3 different altitudes. First, the MAV
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Figure 7.1: Dependency of average RSSI values on the distance between MAV
and beacon measured in experiment 7.1

flew in the altitude of 5 m and in 2D distance from 0 up to 50 m away from the
beacon. 18 different radiation patterns were measured along this trajectory.
During the second measurement, the MAV moved from 2 to 20 m away in
the altitude of 2.5 m while doing a measurement in 8 points and next the
MAV repeated the same 8 point measurement in the altitude of 7.5 m. A
short video from this experiment can be seen on youtube.1

An average RSSI was calculated for every radiation pattern measured as
described in Section 4.2. The dependency of this average RSSI on the 3D
distance between the beacon and the MAV is plotted in Figure 7.1a. It can be
seen that the dependency is comparable for all 3 altitudes although it contains
more noise in shorter distances due to multipath effects. The Equation (3.7)
was fitted to the data measured from the 5 m altitude using a least squares
method. This way the parameters were identified as

P0 = −29.06, γ = 2.765.

Figure 7.1b shows the measured data along with the fitted curve.

Furthermore, by calculating the deviation of the angle with maximal RSSI
from the real AoA it was discovered that the deviation is larger in a closer
distance and in higher altitudes. This is probably caused by a bigger vertical
angle between the antenna and the beacon which increases as the distance
get smaller and as the MAV altitude grows. This highlights the advantage of
using a larger formation moving at a lower altitude during the localization
and the need for reactive position and altitude changing.

1https://youtu.be/lpT_dYN07Gg
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Figure 7.2: Data measured from experiments with one MAV

7.2 One MAV emulating a moving formation

This experiment was meant to emulate a few moves of the whole formation
using one MAV. The MAV made measurements in 15 predefined points
emulating 5 moves of a 3 drone formation. The individual positions of the
MAV along with lines representing the detected AoA and the beacon position
can be seen in Figure 7.2a. The correlation coefficient of calculated σθ values
and AoA estimation error (as defined in Section 4.3) is 0.713 at statistical
significance 0.0028.

During this experiment, it became clear that the frequency of samples
received by the antenna is too variable to be able to reliably receive enough
samples per each position when a constant time is spent in each position,
and sometimes no transmission is realized. For example, during two of
these measurements, no samples were received due to XBees being unable
to establish communication. These are the leftmost points in the upper and
middle row in Figure 7.2a where no AoA is plotted. After this experiment,
a waiting period for a constant number of samples in each position and a
timeout after a certain time threshold is exceed were implemented in the
algorithm as described in Section 4.1.

This experiment was performed on a large empty outdoor urban area. It
was discovered that the RSSI path loss parameters differ from the parameters
identified in Section 7.1. This can be caused by bigger radio interference in
the urban environment. To account for this, new parameters were identified
from data measured in this experiment and in the experiment described in
Section 7.3. The data were measured only in distances shorter than 28 m
from the beacon, therefore the path loss exponent γ was set to have an upper
limit of 3 because it is assumed that the RSSI falls more slowly with larger
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Figure 7.3: Positions estimated by the UKF during the experiment with one
MAV emulating a moving formation

distances. The new parameters were thereafter identified as

P0 = −33.96, γ = 3.

The root mean square error (RMSE) of average RSSI values measured in this
experiment from the fitted curve is 2.53 dBm.

The measured data were passed to the UKF in a way emulating that
a formation of 3 MAVs made the measurements. Figure 7.3a shows the
progression of UKF localization error over the number of executed filter steps.
The error eukf is calculated as

eukf =
√

(xest − xB)2 + (yest − yB)2, (7.1)

where xest and yest are the current estimates of beacon coordinates and xB
and yB are the real beacon coordinates. The final error is 7.06 m and the
filter keeps converging to the correct position which suggests that with more
measurements, which would be available with a full formation, the beacon
should be successfully localized. Figure 7.3b depicts the progression of the
estimated beacon position in the x-y plane along with the beacon and the
individual MAV positions. A covariance ellipse of the final estimate which
shows the 95% confidence area is plotted. It can be seen that the beacon is still
outside this area which highlights the necessity of using more measurements
and adaptive formation control.

The rotating MAV approach described in Section 5.1 was also verified during
this experiment. The MAV made 5 measurements at the same positions as
the bottom row in Figure 7.2a. The approach was proved to work but the
disadvantages described in Section 5.1 were discovered.
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following a rectangular trajectory

7.3 One MAV following a rectangular trajectory

This experiment was performed in the same workspace as the experiment
described in Section 7.2. One MAV was following a rectangular trajectory
around the beacon and during this time it made 14 different measurements.
The same path loss parameters and the same UKF parameters as in the
previous experiment were used. The first MAV position was chosen as the
initial estimate of beacon position. The positions where the MAV made its
measurements along with the detected AoA can be seen in Figure 7.4. The
beacon was placed at x: 0, y: -7. The MAV started at the lower left corner of
the rectangle and then followed the trajectory in a counter-clockwise direction.

The RMSE of average RSSI values from the theoretical fitted curve is
2.6 dBm. The correlation coefficient of σtheta and AoA estimation error is
0.80 at statistical significance 0.0005. Figure 7.5a shows the progression of
UKF localization error over the number of performed filter steps. It can be
seen that the error dropped from 13.39 m to 4.22 m in just 5 filter steps
but then stayed roughly the same for the rest of the localization. The final
localization error is 3.88 m. Figure 7.5b contains the progression of estimated
beacon position in xy plane along with covariance ellipse of the final estimate.
It can be seen that the beacon position lies inside this 95% confidence area.
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Figure 7.5: Positions estimated by the UKF - experiment with a single MAV
following a rectangular trajectory

7.4 MAV Formation sweeping a large area

This experiment was performed in the same place as Experiment 7.1, therefore
the UKF uses the path loss parameters identified during that experiment.
A formation of 3 MAVs and one beacon were used during this experiment.
The formation swept a 65 by 50 m large area by traveling to 16 predefined
positions resulting in 48 different radiation pattern measurements. The
predefined trajectory can be seen in Figure 7.6. The formation starts in the
lower left corner. During the first flight described in Subsection 7.4.1 the
MAVs made 23 individual measurements and the experiment was stopped
due to technical difficulties but the measured data can still be used for partial
localization. During the second flight described in Subsection 7.4.2 the MAVs
made all 48 individual measurements. A video of the second flight can be
seen on youtube. 2. Figure 7.10 contains a picture from the video depicting
measurement of the individual radiation patterns. Figure 7.11 contains
another picture from the video which shows the MAV formation following
the predefined trajectory and localizing the beacon.

7.4.1 First flight

Figure 7.7a shows the MAV positions during this experiment along with the
detected AoAs which are depicted by lines pointing from the appropriate MAV
positions. Data from all 3 MAVs in formation are available only from the first

2https://youtu.be/3fBW5CertHk
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Figure 7.6: Predefined formation trajectory - experiment with an MAV formation
sweeping a large area

3 formation positions. In the rest of the positions, only data from 2 MAVs
were obtained. The correlation of estimated AoA uncertainty σθ and AoA
estimation error is 0.28 at 0.19 statistical significance which is significantly
lower than in the previous experiments but a correlation still exists. The
RMSE of average RSSI values from the theoretical curve is 3.9 dBm.

Figure 7.7b contains the progression of UKF localization error over the
number of performed filter steps. It can be seen that using the measured
data the localization error dropped by approximately 20 m during the filter
run. The final localization error is 9.8 m.

7.4.2 Second flight

During the second flight, the MAVs made a total number of 48 different
measurements. The positions were the measurements were performed along
with the detected AoAs can be seen in Figure 7.8a. The correlation of σθ and
AoA estimation error is 0.29 at 0.043 statistical significance. The average
RSSI values along with the theoretical curve are shown in Figure 7.8b. The
RMSE of the values from the theoretical curve is 3.45 dBm.

During this experiment, the largest number of correct measurements was
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Figure 7.7: MAV positions with detected AoA and UKF localization error from
first flight of formation with predefined trajectories

-20 0 20 40 60 80

x [m]

-20

0

20

40

60

y
 [
m

]

MAV and beacon positions with detected AoA

MAV

beacon

detected AoA

(a) : x-y plot of MAV and beacon
positions along with detected AoA
from experiment with a formation
following predefined trajectories

0 10 20 30 40 50

3D distance [m]

-80

-70

-60

-50

-40

-30

-20

a
v
e

ra
g

e
 R

S
S

I 
[d

B
m

]
Dependency of average RSSI on 3D distance

measured data

theoretical curve

(b) : Dependency of average RSSI on
distance from formation experiment

Figure 7.8: Measured data from the second flight of MAV formation

collected therefore the data from this experiment were used for tuning the
parameters of the UKF with the goal of minimizing the final localization error
and the performance of the filter with these parameters was then verified on
data gained from the other experiments. The UKF parameters are described
in Section 4.4.4.

Figure 7.9a shows the progression of UKF localization error over the number
of performed filter steps for 3 different settings of the filter. The RSSI+AoA
setting uses the filter parameters described in Section 4.4.4. It can be seen
that its localization error drops to 1.66 m in 25 filter steps end then keeps
slowly converging to the real beacon position. The final localization error is
0.04 m. The AoA setting uses just the AoA data for localization which was
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Figure 7.9: Localization results from the second flight of MAV formation

Figure 7.10: Measurement of radiation patterns during the second flight in the
experiment with MAV formation following a predefined trajectory

done by setting the σRSS parameter to a very large value (1000 dBm) and
tuning the Q matrix for the best possible localization results. In this case, the
final localization error is 5.92 m. The RSSI setting uses only the RSSI data
which is set by multiplying the σθ parameters by a large scalar value (1000)
and tuning the Q matrix and σRSS parameter to produce a good and stable
filter performance. The performance is again worse than the performance of
the hybrid RSSI +AoA filter and the final localization error is 3.19 m.

Figure 7.9b depicts the progression of the RSSI + AoA UKF estimated
position in the xy plane. It can be seen that the estimate starts with its initial
value in the first formation position and then gradually converges to the real
beacon position. A covariance ellipse of the final estimate representing the
95% confidence area is plotted as well.
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Figure 7.11: Localization of the beacon during the second flight in the experiment
with MAV formation following a predefined trajectory

7.5 Active localization

During this experiment, functionalities of the beacon position estimation
along with the formation control algorithm, described in Section 5.2, were
verified. This experiment was performed in the same workspace as experiments
described in Sections 7.2 and 7.3, therefore the path loss parameters P0 and
γ identified during these experiments were used. During this experiment,
a formation of three MAVs was actively localizing one static beacon. The
beacon was placed at x = −2 m and y = −4.8 m and the MAV formation
started with its center in x = 4.58 m and y = −21.53 m. One of the
used MAVs made its radiation pattern measurements using the rotating
MAV approach described in Section 5.1. The other two MAVs rotated their
antennas using step motors. The MAVs made a total number of 23 individual
measurements. The algorithm did not fully complete its finishing phase
because one of the MAVs failed to submit its estimated position to the UKF
which resulted in stopping the localization. This unwanted behavior was
fixed after the experimental data were processed. However, the obtained data
proved sufficient for beacon localization.

Figure 7.13 contains the MAV positions along with the detected AoAs,
where measurements were made. The MAV positions belonging to the same
formation position are connected by dashed lines. The RMSE of detected AoA
from the real MAV-beacon bearing was 0.61 rad. The correlation coefficient
of estimated σθ values and the error of AoA estimation was 0.57 at statistical
significance 0.00042. Figure 7.12a shows the dependency of average RSSI
values of the individual measurements on the 3D distance between MAV and
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Figure 7.12: Dependency of average RSSI values on distance and UKF
localization error from active localization experiment

beacon. The RMSE of the measured RSSI values was 7.95 dBm. It can be
seen that the algorithm performance could be further improved by better
calibration of path loss parameters.

The dependency of UKF localization error on the number of performed
filter steps can be seen in Figure 7.12b. The final localization error was
3.65 m after 23 filter steps but the UKF has already converged to an error of
3.40 m in step 16 and stayed roughly the same after. Figure 7.14 contains
positions of the MAV formation and beacon along with the development of
the estimated position over the number of filter steps. A covariance ellipse of
the final estimate, representing the 95% confidence area, is also plotted.

A video of this experiment can be seen on youtube.3 The initial MAV
and beacon positions can be seen in Figure 7.15, containing a snapshot from
the video. Figure 7.16 shows the localization during its finishing phase and
Figure 7.17 shows the situation in the finishing phase, after the formation
has rotated. In this experiment, the rotating MAV approach proved to be a
reliable alternative to rotating the directional antenna using a step motor,
e.g. in case of step motor failure. Furthermore, the functionality of the
active localization algorithm was verified under real-world conditions. The
performance of the algorithm could be further improved by more precise
calibration of path loss parameters.

3https://youtu.be/uH3hmT4Aubk
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Figure 7.13: MAV and beacon positions along with detected AoA from active
localization experiment

7.6 Summary of experiments

The data measured in the aforementioned experiments were used to tune the
parameters of the algorithm in order to optimize its performance. Path loss
parameters were identified from experiments described in Sections 7.1, 7.2
and 7.3. Parameters of the UKF were tuned based on the performance of the
filter on data obtained from the experiment described in Section 7.4.

The experiments have shown that the proposed algorithm performs well
under real-world conditions and can be used with a variable number of MAVs.
In experiment described in Section 7.2, the final localization error was 7.06 m
after 15 filter steps. In the final steps, the UKF kept converging to the correct
position, which suggests that with more steps or with the use of the active
repositioning, described in Section 5.2, the localization error would improve.
In the single drone experiment described in Section 7.3, the final localization
error was 3.88 m after 14 filter steps but the UKF already converged to an
approximately 4 m error in its fifth step. The experiment from Section 7.4
consisted of two flights of a formation containing 3 MAVs. The localization
error in the first flight dropped from 29.08 m to 9.8 m. The data from the
second flight were used for tuning the UKF parameters with the goal of
minimizing the final localization error. Therefore final localization error was
0.04 m. Furthermore, by using different UKF settings it was shown that the
localization algorithm benefits from the fusion of RSSI and AoA data and
therefore achieves better results than by using either of these data separately.
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Figure 7.14: MAV and beacon positions along with estimated beacon position
from active localization experiment

In the final experiment described in Section 7.5, the functionality of the
formation controller, described in Section 5.2, was verified and the rotating
MAV approach, described in Section 5.1, was proven to be a viable alternative
to the use of a step motor for rotating the antenna. The final localization
error during the active localization experiment was 3.65 m which could be
further improved by better calibration of the path loss parameters.

This thesis builds upon previous work dealing with localization based on
RSSI data obtained from omnidirectional antennas. When compared to results
achieved in [1], the estimation using coupled AoA and RSSI measurements,
proposed in this work, is more stable than the position estimation from RSSI-
only data. Although the RSSI-only approach achieved a lower localization
error (under 1.5 m), only indoor experiments in a small room were performed
which suggests that outdoor experiments on a larger scale would contain a
larger localization error. In [3], an outdoor experiment using Xbee devices with
omnidirectional antennas and 2 beacons was performed. In this experiment,
the localization error was approximately 4 m for the first beacon and 5 m for
the second beacon which is worse than in the experiments with coupled RSSI
and AoA measurements where a sufficient number of filter steps was made.
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Figure 7.15: Initial MAV positions during the experiment with active localization

Figure 7.16: Beacon localization in the finishing phase - experiment with active
localization

Figure 7.17: Beacon localization in the finishing phase, the formation has rotated
- experiment with active localization
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Chapter 8

Conclusion

The goal of this thesis was to design a method for localization of sources of RF
transmission using a formation of relatively localized MAVs equipped with a
rotating directional antenna, implement the method in ROS, experimentally
verify in Gazebo simulator and real experiments and compare the achieved
results with a system using omnidirectional antennas and with a system using
static directional antennas (when the UAV itself is rotating).

Two possible approaches to measuring the radiation pattern of the directional
antenna were used - rotating the antenna using a step motor and rotating the
whole MAV, as described in Section 5.1. The proposed algorithm, described
in Chapter 4, calculates the average RSSI value of each measured radiation
pattern and estimates AoA of the transmission along with its uncertainty.
A UKF-based approach is used for data fusion and estimation of the RF
beacon position. The UKF automatically detects bad measurements and
rejects them in order to improve localization performance. The formation
controller, described in Section 5.2, takes advantage of the possibility to
reactively reshape and reposition the MAV formation in order to quickly and
precisely localize the RF beacon.

The proposed algorithm was implemented in ROS and its functionalities
were verified in simulations described in Chapter 6. Five different real-world
experiments, described in Chapter 7, were performed to verify the system
functionalities with real MAV platforms under real-world conditions and test
the performance of the proposed approach.

A summary of the achieved experimental results, along with a comparison
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8. Conclusion......................................
with results from previous works achieved with omnidirectional antennas, is
written in Section 7.6. The experiments have shown that the proposed
approach produces more stable and precise results than the RSSI-only
approaches from previous works. A discussion of the use of static directional
antennas and rotating whole MAVs is written in Section 5.1. The rotating
MAV approach has proven to be a viable alternative to rotating the antennas
using step motors but a number of disadvantages were discovered, including
less stable MAV position during measurements and low performance in case
of variable sample frequency.

It has been shown that the proposed algorithm performs well under real-
world conditions. The algorithm benefits from the use of coupled RSSI and
AoA measurements and achieves more robust results than either of these
methods on their own. The utilization of an actively repositioned MAV
formation further improves the localization performance. Furthermore, the
possibility to use the rotating MAV approach makes it more practical as
it can be used even in situations when an additional rotating device is not
available or has suffered a failure.

8.1 Future work

The experimental data measured during the work on this thesis contained
a substantial amount of bad measurements. For future work, the use of a
directional antenna with higher gain should be considered. With a higher-gain
antenna, the AoA estimation would probably be more successful, the UKF
would reject fewer measurements and therefore the localization would be
faster and more precise. Furthermore, the use of another position estimation
algorithm, for example the particle filter, could be considered. According to
literature, the particle filter usually outperforms the UKF and many of the
related works mentioned in Section 1.1 use the particle filter instead of KF
or other algorithms.

Correct beacon distance estimation from RSSI values depends on the
precise calibration of the path loss parameters. In order to simplify the
calibration, a differential RSSI (DRSSI) approach, described e.g. in [14],
could be used. With the DRSSI approach, only the path loss exponent γ
needs to be identified.

The formation control algorithm is another part which could be improved.
When the formation moves in a straight line towards the localized beacon,
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the measured AoA data are not very variable and the beacon distance is
therefore determined mostly from the RSSI data. A more advanced path
planning algorithm could provide more variable AoA data on the way to the
beacon and therefore accelerate the localization process.

In order to better test the performance of the algorithm before deploying
it to real hardware, the simulation could be improved by incorporating a
radiation pattern simulation which shape would depend on the vertical angle
and the distance between the RF beacon and the antenna. That way, the
influence of AoA uncertainty estimation could be tested in simulations.
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Appendix A

CD contents

The contents of the CD attached to this thesis are listed in table A.1.

Directory Content
sources software source code
thesis thesis in pdf format
videos videos of performed experiments

Table A.1: CD contents
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Appendix B

List of abbreviations

The abbreviations used in this thesis are listed in Table B.1.

Abbreviation Meaning
RF radio frequency
MAV micro aerial vehicle
UAV unmanned aerial vehicle
UKF unscented kalman filter
EKF extended kalman filter
KF kalman filter
AoA angle of arrival
RSSI received signal strength indication
RFID radio frequency identification
GPS global positioning system
TDoA time difference of arrival
GNSS global navigation satellite system
MPC model predictive control
RTK real-time kinematic
NEES normalized estimation error squared
RMSE root mean square error
DRSSI differential received signal strength indication

Table B.1: List of abbreviations
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