
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s thesis

Distributed Algorithms for Decision Forest
Training in the Network Traffic
Classification Task

Radek Starosta

Supervisor: Ing. Jan Brabec

May 25, 2018





BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

423311Personal ID number:Starosta RadekStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Distributed Algorithms for Decision Forest Training in the Network Traffic Classification Task

Bachelor’s thesis title in Czech:

Distribuované algoritmy pro trénink rozhodovacích lesů v úloze klasifikace síťového provozu

Guidelines:
Decision forests are a popular algorithm for the classification task in machine learning. In the presence of huge datasets,
it is often necessary to use distributed algorithms for decision forest induction. In this thesis, we are interested in algorithms
available on the Apache Spark platform. Currently we have experience with the implementation of the PLANET algorithm
available in Apache Spark MLlib v2.2.1. There are several issues that
have been identified with the current version of the algorithm. This thesis aims to achieve several main goals:
1. Describe the state-of-the-art of distributed decision forest training.
2. Explore the various suggested improvements over the current version of the algorithm that is available in Spark 2.2.1.
Implement them inside of a forked Apache Spark MLlib and benchmark them.
3. Suggest, implement and evaluate custom algorithm improvements to achieve better performance of decision forests in
the network classification for malware task.

Bibliography / sources:
[1] Criminisi, A., Shotton, J., & Konukoglu, E. (2011). Decision forests for classification, regression, density estimation,
manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114, 5(6), 12.
[2] Abuzaid, F., Bradley, J. K., Liang, F. T., Feng, A., Yang, L., Zaharia, M., & Talwalkar, A. S. (2016). Yggdrasil: An
Optimized System for Training Deep Decision Trees at Scale. In Advances in Neural Information Processing Systems (pp.
3817-3825).
[3] Panda, B., Herbach, J. S., Basu, S., & Bayardo, R. J. (2009). Planet: massively parallel learning of tree ensembles with
mapreduce. Proceedings of the VLDB Endowment, 2(2), 1426-1437.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Brabec, Cisco Systems, Inc., Prague

Name and workplace of second bachelor’s thesis supervisor or consultant:

Ing. Jan Drchal, Ph.D., Artificial Intelligence Center, FEE

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 22.01.2018

Assignment valid until: 30.09.2019

_________________________________________________________________________________
prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jan Brabec
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



Acknowledgements

I would like to thank my supervisor Jan Brabec for his patience and valuable
advice during the time of writing this thesis. I consider myself very lucky to
have a supervisor who cared about this project and was always available to
answer my questions and provide insights.

I also want to thank the rest of the CTA team at Cisco Systems, Inc. for
providing me with the opportunity and resources to research this interesting
project.

Finally, I would like to thank my family, friends, and colleagues for their
support and tolerance during the months spent working on this thesis.





Author statement for
undergraduate thesis

I declare that the presented work was developed independently and that I have
listed all sources of information used within accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

In Prague on May 25, 2018 …………………



Czech Technical University in Prague
Faculty of Electrical Engineering
© 2018 Radek Starosta. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Starosta, Radek. Distributed Algorithms for Decision Forest Training in the
Network Traffic Classification Task. Bachelor’s thesis. Czech Technical Uni-
versity in Prague, Faculty of Electrical Engineering, 2018.



Abstrakt

V této práci se zaměřujeme na zlepšení výkonu distribuovaného trénování
náhodných lesů v knihovně Spark MLlib. Trénovací proces optimalizujeme
přidáním fáze lokálního trénování, ve které dotrénujeme podstromy pro do-
statečně malé uzly lokálně v paměti jednotlivých strojů. Tyto uzly nejprve
seskupíme do větších a vyváženějších lokálně trénovaných úloh pomocí bin-
packingu, a následně tyto úlohy efektivně rozplánujeme s pomocí predik-
toru, který přesněji odhaduje jejich dobu trvání. Lokální trénování nám také
umožňuje trénovat hluboké rozhodovací stromy a eliminovat část paměťových
problémů v současné implementaci. Naši implementaci testujeme na velkých
datech ze síťového provozu, která se používají k detekci malwaru. Na této
trénovací sadě je náš algoritmus více než 105× rychlejší než původní imple-
mentace. Toto zlepšení nám umožňuje trénovat náhodné lesy na větších tréno-
vacích sadách, což může výrazně zlepšit výkon klasifikátorů. Klasifikátor pro
detekci malwaru, který byl natrénovaný algoritmem popsaným v této práci,
se již aktivně používá v systému Cisco Cognitive Threat Analytics, a naše
implementaci jej umožnila natrénovat na více než desetinásobném množství
dat.

Klíčová slova náhodné lesy, Apache Spark, MLlib, distribuované trénování

vii



Abstract

In this thesis, we focus on improving the performance of distributed random
forest training in Spark MLlib. To optimize the training process, we introduce
a local training phase in which we complete the tree induction of sufficiently
small nodes in-memory. Further, we group these nodes into larger and more
balanced local training tasks using bin packing and effectively schedule the
tasks using an offline-trained predictor to predict task duration more accu-
rately. Our algorithm allows training of deeper decision trees and mitigates
runtime memory issues. We benchmark our implementation on a huge, real
network traffic dataset used for malware detection, for which it is up to 105×
faster than the original MLlib implementation. This performance improve-
ment allows us to train random forests on larger datasets, which can signifi-
cantly improve classification predictive performance. A classifier for malware
detection trained using the algorithm presented in this thesis is actively used in
the Cisco Cognitive Threat Analytics system. Thanks to our implementation,
we were able to train it using 10× more data than before.

Keywords random forest, Apache Spark, MLlib, distributed training

viii



Contents

Introduction 1

1 Distributed Random Forest Training 3
1.1 Greedy Tree Induction . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 PLANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Yggdrasil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Available Implementations . . . . . . . . . . . . . . . . . . . . . 10

2 Random Forest Training in MLlib 13
2.1 Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 MLlib RandomForest . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Local Training 19
3.1 Advantages of Local Training . . . . . . . . . . . . . . . . . . . 19
3.2 Local Subtree Training Implementation . . . . . . . . . . . . . 20
3.3 Simultaneous Training of Multiple Trees . . . . . . . . . . . . . 25
3.4 Reducing the Number of Tasks Using Bin Packing . . . . . . . 27

4 Handling Task Imbalance 29
4.1 Task Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Collecting Statistics . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Prioritizing Larger Tasks . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Predicting Task Duration Using Logistic Regression . . . . . . 32

5 Experiments 33
5.1 Dataset Characteristics . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Cluster Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Comparison of Local Training Methods . . . . . . . . . . . . . 35
5.5 Effects of Random Forest Parameters . . . . . . . . . . . . . . . 37

ix



Conclusion 41

Bibliography 43

x



List of Figures

1.1 MapReduce model overview [14] . . . . . . . . . . . . . . . . . . . 6

2.1 Spark Cluster Overview [27] . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Node Indexing Example . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Improvements in total training time from optimal task scheduling . 30

5.1 Comparison between the training times of MLlib and our imple-
mentation for random forests with 5 trees on two datasets . . . . . 35

5.2 Comparison of by-tree and multiple-tree local training scheduling
methods for 30 trees with 30M data . . . . . . . . . . . . . . . . . 36

5.3 Comparison of multiple-tree local training scheduling methods for
5 trees with 30M data . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Effects of random forest parameters on training time with 30M data 39

xi





List of Tables

4.1 Statistics collected from RunLocalTraining . . . . . . . . . . . . . . 31

5.1 Training times in seconds for MLlib comparison (Figure 5.1) . . . 35
5.2 Training times in seconds for the multiple-tree scheduling method

comparison (Figure 5.2) . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Training times in seconds for the multiple-tree scheduling method

comparison (Figure 5.3) . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Training times in seconds for random forest parameter comparison

(Figure 5.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiii





Introduction

In this day and age, when most people use computers in their daily lives,
cybersecurity has become a major concern for both individuals and businesses.
Malware attacks have caused serious damage over the the last decade and
effective methods to detect malware have become highly demanded. In recent
years, machine learning approaches are often used for malware detection.

Decision tree-based methods are widely used for classification and regres-
sion tasks, because they are easily interpretable, handle structured data well,
are robust to outliers [1] and naturally allow multiclass classification. Random
forests [2] are a commonly used tree ensemble method, which handles big data
well and often achieves great prediction performance and generalization.

We use a random forest classifier to detect malicious network traffic. Be-
cause our dataset is huge, we need to train the random forest in a distributed
fashion using a computer cluster. For that we use MLlib [3], a machine learning
library built on Apache Spark [4]. However, the random forest implementa-
tion in MLlib is highly inefficient for training deep decision tree models, which
are required to achieve good prediction performance on our data, and unstable
due to memory management issues.

In this thesis, we mainly focus on improving the computational perfor-
mance of distributed random forest training in MLlib, which will allow us to
train more powerful models on larger datasets. We introduce a local training
stage, in which we train suitable decision tree node subtrees in-memory by
aggregating all their input data on a single worker. The subtrees are trained
in parallel on multiple workers, but because the local training tasks are imbal-
anced, the workers can spend a significant portion of time waiting for the other
tasks to finish when they are not optimally scheduled. We present our custom
task scheduling method, which uses binpacking to balance the task sizes and
a linear regression model to predict the task duration. Finally, we evaluate
the performance of our implementation using a dataset of real network traffic.

In Chapter 1, we describe the PLANET [5] algorithm and give an overview
of the available distributed random forest libraries. In Chapter 2, we show

1



Introduction

how MLlib implements the PLANET algorithm on Spark and explain why the
current implementation performs poorly. In Chapters 3 and 4, we give thor-
ough description of our local training implementation and the task scheduling
algorithm. Finally, in Chapter 5 we benchmark our implementation on a
network traffic dataset.

2



Chapter 1
Distributed Random Forest

Training

In this chapter, we first introduce a basic decision tree induction algorithm
and show why it is not suitable for large-scale training.

We introduce the MapReduce model, thoroughly describe the PLANET
[5] algorithm, which is the standard approach for distributed decision tree
learning, and compare it to Yggdrasil [3], which attempts to improve on it
using vertical partitioning.

Finally, we present an overview of several available distributed decision
forest implementations and compare their properties.

1.1 Greedy Tree Induction

Because the task of finding the optimal decision tree for a given training
dataset is NP-complete [6], a greedy top-down induction algorithm is usually
used to construct the tree (Algorithm 1).

Let D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × Y be a set of training data, where
xi = (x1, . . . , xd) are numeric feature vectors and yi are classification labels
from a set of classes Y = {c1, . . . , ck}.

The tree is built recursively starting from the top node. The data corre-
sponding to the current node are split into two subsets DL and DR according
to a predicate xi < θ, which minimizes impurity – the diversity of labels of
the resulting subsets. A leaf node is constructed if a stopping condition is
reached (i.e., reaching a certain tree depth, having a small number of samples
in D), or when the data in D are pure – all are labeled as a single class. The
prediction of such leaf node is the class with maximum frequency among its
data points.

3



1. Distributed Random Forest Training

Algorithm 1 Greedy tree induction algorithm
Require: D = {(x1, y1), . . . , (xn, yn)}

1: function BuildTree(D)
2: if StoppingCondition(D) or D is pure then
3: return leaf node
4: else
5: (S, DL, DR) = FindBestSplit(D)
6: TL = BuildTree(DL)
7: TR = BuildTree(DR)
8: T = new node storing split S and pointers to subtrees TL and TR

9: return T
10: end if
11: end function

1.1.1 Selecting Best Split
The most important stage of Algorithm 1 is FindBestSplit, which needs to
determine the splitting dimension i and threshold θ of the optimal split by
evaluating all possible splits. To measure the quality of splits in terms of
impurity decrease, we use information gain (Equation (1.1)) which is defined
as the change in information entropy H (Equation (1.2)) from the current
state to a state after the split. The optimal split maximizes information gain.

IG(D) = H(D) − |DL| · H(DL) + |DR| · H(DR)
|D|

(1.1)

H(X) = −
∑
c∈Y

p(c) log p(c) (1.2)

where p(c) are the class frequencies in the given data subset X

Entropy is zero if all data points belong to the same class (node is pure),
and high when all classes are evenly represented in the data subset. Other
measures, such as Gini impurity or variance (usually in regression trees), can
be used as well.

To find the best split efficiently, D is sorted along each dimension, and a
split is considered between each adjacent pair of feature values xi. If we first
precompute class counts for each unique feature value, only one pass over the
sorted feature values is then required to find the threshold of the best split on
a given feature.

1.1.2 Handling Large Data
This simple algorithm, which is implemented in many machine learning li-
braries (e.g., scikit-learn [7], H2O [8]), is designed to work in a single machine

4



1.2. PLANET

setting and therefore is suitable for smaller datasets, where all data points fit
into memory. To find the best split for a node, we need to iterate over all
of its input data, which can be large, especially at higher levels of the tree.
For larger amounts of data, this becomes inefficient, as the data has to be
gradually loaded into memory from secondary storage and sorting the data
along each dimension to find the exact optimal threshold can also become a
bottleneck.

In scenarios with big data saved across multiple machines, this approach
can be viable, as the feature vectors resulting from feature extraction are
usually much more compact than the data itself. Cluster computing can be
used first to process the data and persist the labeled data points, and the
classifier training will then be done on a single machine with a large amount
of memory. However, this method will not be able to deal with an arbitrarily
sized dataset.

Many methods have been proposed to enable decision tree learning on
huge datasets. Some of them still utilize centralized training but manipulate
the data to speed up training from disk [9]. Other more recent attempts make
use of GPUs to accelerate the training process [10]. We will focus on methods
that parallelize the tree induction process to multiple machines, which is the
only truly scalable solution.

1.2 PLANET
PLANET [5] is a distributed framework for training tree models over large
datasets developed at Google. Instead of constructing trees on subsets of data,
it breaks up the tree induction process into a series of distributed MapReduce
[11] tasks, enabling learning in a distributed setting using commodity hard-
ware. The authors also propose several optimizations to mitigate inefficiencies
raised from utilizing the MapReduce model.

PLANET does not have a reference implementation, but most popular
algorithms for approximate decision tree learning, such as MLlib [3] Random-
Forest or XGBoost [12], reuse the idea of proposing a set of candidate splits,
distributing subsets of data to workers and aggregating sufficient statistics to
find the best split among candidates.

1.2.1 MapReduce
MapReduce [11] is a programming model for processing big data in parallel
using a computer cluster. The model is based on the idea of computing (key,
value) pairs from each piece of input (map), grouping of all intermediate values
by key (shuffle) and finally processing the grouped values to return the output
(reduce), demonstrated in Figure 1.1.

MapReduce provides a high-level abstraction to programming distributed
processing jobs and only requires users to specify the map and reduce functions.

5



1. Distributed Random Forest Training

The input data is distributed across multiple workers, and each worker applies
the map function to its local subset. The workers then redistribute the data,
so that all data belonging to one key are located on the same worker, and
finally process these sets using the reduce function.

MapReduce is also fault-tolerant, as the data is stored on a file-system
between all stages of the computation. The most common implementation
of the MapReduce model is Hadoop MapReduce [13], which uses Hadoop
Distributed File System for storage. Although recently the focus has shifted
towards more flexible and less disk-oriented systems (e.g., Apache Spark [4]),
MapReduce remains widely used.

Figure 1.1: MapReduce model overview [14]

1.2.2 Algorithm Overview
The main component of PLANET is the Controller, which has access to the
computation cluster, on which it schedules MapReduce jobs. It maintains a
ModelFile, which stores the currently constructed tree model, and two queues:

• MapReduceQueue: Contains nodes too large to split in memory on a
single machine.

• InMemoryQueue: Contains nodes that can be split on a single machine.

The Controller dequeues nodes off the two queues and schedules MapRe-
duce jobs to find their best splits.

• MR_InMemory: Nodes from InMemoryQueue are processed using a
local training algorithm similar to Algorithm 1, which completes the
rest of the tree induction.

• MR_ExpandNodes: For nodes from MapReduceQueue, the mappers col-
lect statistics required to compute the desired impurity measure for each
of the candidate split predicates. In the reduce phase, these statistics

6



1.2. PLANET

are grouped to form a set of candidate splits with complete statistics
from the whole input dataset.

When a MapReduce job completes, Controller processes the results and
updates ModelFile with the determined split predicates. In-memory jobs out-
put the complete subtree, so new nodes are not added to the queues. Statistics
resulting from the jobs with larger nodes are collected, and the best split is
selected based on calculated impurity decrease. For every processed node,
two new nodes are added to their appropriate queue based on the size of the
dataset subset after splitting it using the determined predicate.

1.2.3 MapReduce Jobs
Now we will describe the two key MapReduce jobs in detail and explain an
important tradeoff during candidate split selection, which makes the compu-
tation feasible.

Both MapReduce jobs take the same input parameters: a set of nodes N ,
training dataset D and current ModelFile M . Note that every MapReduce job
scans the entire input dataset D, even though the subset of data belonging
to nodes in N might be much smaller. However because the tree is built
breadth-first, we can expand all nodes on one tree level in a single MapReduce
job, meaning most data points in D will belong to some node that is being
expanded, unless they already belong to a leaf node in a higher level of the
tree. As we reach lower levels of the tree, scanning the entire dataset becomes
more inefficient, as only a small portion of it will belong to non-leaf nodes.

1.2.3.1 MR_InMemory

The in-memory MapReduce job is straightforward, the mappers iterate over
every data point (x, y) in D and traverse the tree in M to determine whether
the data point belongs to some node in N . The mapping phase outputs
(node, (x, y)) pairs if such a node exists. These pairs are grouped by key in
the reduce phase into sets of data points for each node in N , which are then
used to complete the subtree induction using Algorithm 1.

1.2.3.2 MR_ExpandNodes

Recall that the FindBestSplit method from Algorithm 1 evaluates every single
split threshold by sorting the data along each feature and then considering
all adjacent feature values. This would be impractical in a distributed setting
with large amounts of data – not only would the sorting take a substantial
amount of time, but we would also need to save the results to secondary
storage and deal with complicated partitioning across multiple mappers.

Instead, authors propose we precompute a set of thresholds for every fea-
ture, which will then be used as the potential split candidates throughout the

7



1. Distributed Random Forest Training

whole training process. Although we potentially sacrifice some model accuracy
by not always splitting the node with the most optimal feature threshold, it
allows us to effectively parallelize the process, as the mappers can immediately
start computing class counts for the known split candidates.

To precompute the thresholds, we first sample a subset of the input dataset
and compute an equi-depth histogram for a given number of bins [15]. In equi-
depth histograms, the bin thresholds are not uniformly distributed, and we
aim to have an equal number of samples in each bin instead. A single split
candidate is then considered for every resulting bin.

Similarly to MR_InMemory, first we need to iterate over all data points
in D and determine which node the points belong to by traversing the tree
in M and filtering out unnecessary points. We need to collect statistics to
compute the chosen impurity measure for every candidate split, in our case
class frequencies to compute entropy and information gain (Equations (1.1),
(1.2)). For every node n ∈ N , we will save a tuple agg_tupn of total class
counts, and then for every split candidate (i, θ) a tuple Tn,i,θ with class counts
of the data points for which xi < θ. Each mapper computes these statistics
over its data partition and outputs the class count tuples with (n, i, θ) as the
key. At this point, the tuples need to be shuffled so that all values with the
same key are grouped on a single worker – this requires a lot of communication
between the cluster nodes and is the main bottleneck of this algorithm. In the
reduce phase, tuples with the same key are aggregated into a single tuple with
summed class counts for each candidate split. We can easily compute class
counts for the right subset of the split data by subtracting it from agg_tupn,
which gives us all required information to compute information gain and de-
termine the best split among the candidates. Reducers then output their
proposed best splits, which are then finally collected by the Controller and
the best one is selected and added to the ModelFile M .

1.2.4 Learning Random Forests
The described algorithm builds a single decision tree, but it can be easily
extended to learn tree ensembles such as random forests, which tend to have
more accurate predictions.

• To build multiple trees, Controller pushes multiple root nodes onto
MapReduceQueue – either at the start of the learning process or after
completing the previous tree.

• To bring randomness into the individual trees, we need to support learn-
ing on samples of the input dataset D. This feature is achieved using
hash-based sampling – a combination of the training record’s id and the
tree id is hashed, and only the records for which this hash belongs into
a specified range are used to train the tree.

8



1.3. Yggdrasil

• The Controller can also generate a random subset of feature indices for
every node and pass it to the MapReduce jobs so that only some of the
features are considered when finding the best split. This addition again
brings more randomness to the tree ensemble.

1.3 Yggdrasil
Yggdrasil [16] is a distributed tree learning system, which aims to improve on
PLANET regarding both learning time and accuracy. Instead of partition-
ing the data horizontally, authors propose vertical (by feature) partitioning,
which results in less communication and the ability to determine exact split
thresholds.

To demonstrate the advantages of this approach, recall that the output
of the mapping phase of MR_ExpandNodes are tuples of class counts for
every split threshold – the mapper does not have complete data available.
To determine the best split for a node, all of the statistics for that node
need to be aggregated to a single worker. Overall, this computation is very
communication-heavy, especially for deep trees where the number of nodes
can grow exponentially with tree level. Although the input subsets become
smaller at lower levels of the tree, the size and amount of the transferred tu-
ples stay the same for all nodes, regardless of input subset size. We further
analyze this in Section 3.1.1.

If we instead partition the data by feature, each worker only stores a
couple of features, but for the complete set of training points. This means
we can immediately compute the best split on the set of features distributed
to the worker, therefore communicating only the statistics of the best split is
sufficient. However because every worker now stores a subset of every training
point, we also need to deliver a bit vector indicating the split direction for each
point to all workers. This requirement leads to a tradeoff between horizontal
and vertical partitioning regarding communication cost, which depends on the
number of training instances, number of features and desired tree depth. From
the experiment results presented in [3], it is clear that for high dimensional
data and deeper trees, Yggdrasil drastically reduces communication and is the
better option.

Additionally, we no longer need to approximate the split thresholds be-
forehand and can use the method described in Section 1.1 to determine the
optimal threshold precisely, which can result in better prediction accuracy of
the model. To perform this precise split finding, we need to sort the feature
values, but this is no longer a problem because all values for every feature are
now available in the memory of a single worker. Additionally, this presents
the opportunity to compress the data using run-length encoding – if multiple
data points have the same feature value, it is sufficient to store the feature
value and count. Because only the information about the class frequencies is

9



1. Distributed Random Forest Training

required to compute impurity, we can determine the optimal splits using the
saved count and never need to decompress the data.

The main drawback of this method is that because most data are saved in
a row-based format, it is more natural to distribute them using horizontal par-
titioning. Unless we already use column-based storage (e.g., Apache Parquet
[17]) to store the training data, the algorithm does require transforming it into
a column-based format, which requires additional memory and resources.

The available implementation [18] is built on top of an older version of
Apache Spark and is not maintained. In its current state, it only supports
learning single decision trees. While there were some efforts to adopt this
method in Spark MLlib [19], not much progress has been made in that regard
so far.

1.4 Available Implementations
1.4.1 Apache Mahout
Apache Mahout [20] is a Java library containing implementations of sev-
eral distributed machine learning algorithms, primarily using the MapReduce
model on Apache Hadoop framework. Its decision forest implementation par-
titions the input dataset across a set of mappers and then constructs individual
trees on these smaller subsets of data, with each mapper using only the data
in its designated partition.

While this approach is simple to implement and relatively fast, because we
mostly utilize a straightforward in-memory training algorithm, the resulting
forests often have lower accuracy compared to other methods. On datasets
with very rare classes, this method can also perform poorly, because the train-
ing samples of these classes may not be present in many of the input subsets
for individual trees.

At the time of writing, the decision forest libraries are deprecated, as Ma-
hout shifts towards building a backend-independent environment and support
for MapReduce algorithms is gradually phased out [21].

1.4.2 H2O
H2O [8] is a distributed machine learning platform written in Java. It uses
the MapReduce paradigm to distribute work, with a custom implementation
capable of processing the data mainly in-memory, similarly to Apache Spark.
It directly supports Java, Python and R languages, but the server also exposes
a REST interface.

Its Distributed Random Forest (DRF) library implements an algorithm
similar to PLANET [22], although inner details are not evident from the doc-
umentation. According to a benchmark on subsets of the airline dataset [23],
both the in-memory and distributed versions of H2O’s random forest libraries

10



1.4. Available Implementations

perform well and can handle large amounts of data smoothly, although no
direct comparison is made between DRF and MLlib implementations in the
distributed setting.

1.4.3 MLlib
MLlib [3] is a machine learning library developed as a part of the Apache
Spark project. The current RandomForest implementation is heavily based
on PLANET but utilizes the Spark model, which is optimized towards in-
memory processing as opposed to the mainly disk-based MapReduce. It also
includes several optimizations that take advantage of this more complex model
but omits the local training stage, which significantly affects its performance.

The MLlib implementation is optimized for training shallow trees, which
do not yield optimal results for data with a large number of features. At the
moment it only supports training trees up to a maximum depth of 30, for
which it already performs poorly. From our experience, in addition to being
very slow when dealing with large datasets, it has severe memory management
issues which lead to executors or entire jobs failing. Tuning job settings and
cluster parameters can mitigate these issues, but they remain a problem that
complicates training forests on larger data.

In this thesis, we will focus on extending this implementation and over-
coming the stated problems. We choose this implementation because it is well
documented, both Spark and MLlib are widely used and actively developed,
and because the codebase used to run the experiments is already closely tied
to it.

1.4.4 Sequoia Forest
Sequoia Forest [24] is a Random Forest implementation on Apache Spark. It
was developed during early stages of MLlib development and aimed to improve
the speed and ability to handle large data of its Random Forest libraries.

Sequoia Forest implementation added the option of training on random
subsets of features, and a node id cache. The cache is used to keep track
of which node currently has the given data point in its input subset, which
eliminates to need to transfer and traverse the current tree model. Both
of these features are implemented in the current version of MLlib, and the
Sequoia Forest implementation is no longer maintained.

The most significant improvement that still has not been implemented in
MLlib is the addition of local subtree training – once the input dataset of a
node becomes small enough to fit into memory, all of its data is shuffled to
one executor and rest of the subtree induction is finished there. This idea
was already present in the original PLANET algorithm (Section 1.2.2), and
authors even include a performance comparison of their implementation with
and without local training in the paper, showing a significant difference in

11



1. Distributed Random Forest Training

training time. In MLlib, the entire forest is trained using the distributed
algorithm similar to the one described in Section 1.2.3.2, which greatly affects
its performance, mainly when training deep trees.

Once the training reaches lower levels of trees, we encounter a large number
of nodes with small input subsets. Every executor needs to accumulate a
tuple of sufficient statistics for every split candidate for every node, which has
data partitioned in its designated partitions, and these tuples then have to be
aggregated to compute the impurity measure. Therefore most resources are
used on communication between executors, which could easily be prevented if
the input subsets are already small enough to be trained locally.

1.4.5 Woody
Woody is an implementation of a recently published algorithm [25], which
presents an interesting compromise between the subset method used in Apache
Mahout (Section 1.4.1) and fully distributed algorithms that aggregate data
from workers (e.g., PLANET). It enables training of random forest models
on large datasets using a single machine due to its multi-level construction
scheme.

It separates the training into two stages – it first trains a top tree using a
small random subset of the data. This tree is then used to distribute all input
data into smaller partitions based on the corresponding leaf nodes of the tree.
Separate standard random forests are then trained on the resulting partitions.
To get a prediction, the top tree is traversed first to retrieve a pointer to the
random forest for the designated partition of the given data point.

To optimize the performance of this algorithm, authors propose several
modifications to the basic decision tree induction, such as modifying the im-
purity measure criterion to create well balanced top trees consistently, and
continuing splitting pure data if the subsets are not small enough.

Because this algorithm is brand new, it has not been extensively tested.
It showed promising results in the experiments presented in the paper, where
the resulting models do not show any significant loss in accuracy compared to
standard random forest implementations in scikit-learn and H2O, while still
being very fast to train and able to handle large data. More benchmarks
need to be done on large data to show how the size proportion of the sampled
dataset for top trees impact accuracy, but this algorithm could potentially
be ported to distributed implementations and significantly speed up their
training.

12



Chapter 2
Random Forest Training in

MLlib

In this chapter, we first describe the fundamental concepts and terminology
of the Apache Spark [4] framework.

We then provide an overview of how MLlib uses it to implement the
PLANET algorithm, summarize the stages of the current implementation and
go over several important implementation details.

2.1 Apache Spark
Apache Spark [4] is an open-source cluster computing system written mainly
in Scala. It uses a custom processing engine that can handle general execution
graphs, as opposed to the two-stage MapReduce engine used in the original
PLANET implementation. The engine is optimized for in-memory processing
and brings a significant performance boost over the disk-based MapReduce in
specific applications, such as iterative algorithms, because the reused data is
kept in memory and does not need to be saved and loaded from disk between
every task. However, Spark outperforms MapReduce even in purely disk-based
tasks [26].

2.1.1 Spark Components

To achieve parallelism, Spark operates on a cluster of worker nodes (Figure
2.1). In this section, we introduce the key concepts of the Spark computation
model and its components.

Application The highest-level unit of computation is a Spark application,
which is a user program written on Spark.

13



2. Random Forest Training in MLlib

Figure 2.1: Spark Cluster Overview [27]

Driver An application corresponds to a single instance of the SparkContext
class in a driver program, which coordinates the computation of one
or multiple jobs. It acquires executors, transfers the application code to
them and sends information about the tasks the executor should process.

Executor An executor is a JVM instance on a worker node, which runs tasks
and keeps data for a single Spark application. It usually stays active
throughout the whole lifetime of the application and processes multiple
tasks. Executors can also process tasks in parallel if they get multiple
cores assigned to them, and multiple executors can run on one worker
node.

Cluster Manager The SparkContext of a driver program connects to a clus-
ter manager (e.g., YARN [28]), which allocates resources from worker
nodes to individual applications.

Job A job represents a parallel computation triggered by an action on a
distributed dataset. It consists of stages that depend on each other and
are processed sequentially.

Stage A stage represents one step of a job on a distributed dataset. It is a
set of parallel tasks, where each task processes a portion of the data.

Task A task represents a unit of work on one partition of a distributed
dataset.

2.1.2 Resilient Distributed Dataset
Resilient Distributed Dataset (RDD) is one of the available data abstractions
in Spark applications, which was first described in [29]. RDDs are fault-
tolerant collections of records distributed over multiple partitions on the clus-
ter nodes. The RDD API abstracts the partitioning and distribution process

14



2.2. MLlib RandomForest

away and allows users to manipulate the collections using operations similar
to those available for standard Scala collections.

RDDs support two types of operations:

• transformations - lazy operations that return another RDD (e.g. map,
reduce, filter)

• actions - operations that start the computation and return values (e.g.
collect, count)

As of Spark 2.0, RDDs have been replaced by DataFrame and Dataset APIs
as the primary data abstraction methods. They are conceptually very similar
to RDDs, but organize the data into named columns, are more optimized and
allow higher-level abstraction (e.g., using SQL style queries). However, RDDs
are not deprecated and are still used in many scenarios requiring low-level
control of the dataset, e.g., in the MLlib RandomForest libraries.

2.2 MLlib RandomForest
MLlib implements the PLANET algorithm for random forest training on
Apache Spark. It follows the same ideas described in Section 1.2, with sev-
eral implementation differences resulting from using Apache Spark instead of
MapReduce and the absence of local subtree training previously discussed in
Section 1.4.4.

2.2.1 Overview
Algorithm 2 presents an overview of the main procedure running in the driver
program.

Input data D are stored in an RDD and are partitioned by rows as they
get distributed across the memory of allocated executors. If the data are too
large to fit in memory, the disk (or other secondary storage) is used to store
the remaining data. On each iteration, the algorithm splits a set of nodes
from DistributedQueue. To find the best split, executors compute sufficient
statistics on partitions of the distributed data. All statistics for each node are
then collected to an executor, which selects the best split. The driver receives
information about the best splits, updates the model and enqueues daughter
nodes unless stopping conditions are met.

The algorithm pseudocode uses the following methods:

FindSplitCandidates This method performs discretization and binning of
features as described in Section 1.2.3.2. It samples a subset of data,
computes equi-depth histograms and returns a set of split candidates
for every feature.

15



2. Random Forest Training in MLlib

Algorithm 2 Distributed Training
Require: D = {(x1, y1), . . . , (xn, yn)}
Require: DistributedQueue = {} ▷ holds pairs (TreeId, Node)

1: Splits = FindSplitCandidates(D)
2: push all top nodes for all trees onto DistributedQueue
3: while DistributedQueue is not empty do
4: Nodes = SelectNodesToSplit(DistributedQueue)
5: BestSplits = FindBestSplits(Splits, Nodes)
6:
7: for (TreeId, N, S, DL, DR) in BestSplits do
8: N → Split = S
9: N → Left = HandleSplit(DL, TreeId)

10: N → Right = HandleSplit(DR, TreeId)
11: UpdateNodeIdCache(TreeId, N, S)
12: end for
13: end while

Algorithm 3 HandleSplit
1: if StoppingCondition(D) or D is pure then
2: N = new LearningLeafNode
3: else
4: N = new LearningNode
5: DistributedQueue → Push ((TreeId, N))
6: end if
7: return N

SelectNodesToSplit This method dequeues several nodes off the Distribut-
edQueue (based on the required memory for their sufficient statistics)
and generates a random subset of features to be considered for each
node. Note that the DistributedQueue is implemented using a stack so
that the children of the nodes split in the last iteration and trained next.
This way, the algorithm focuses on completing trees rather than training
all of them at once, which means fewer trees have to be transferred to
executors when a node id cache (further described in Section 2.2.3) is
not used.

FindBestSplits This method performs the distributed logic of the algorithm
and selects the best split for each node. Executors pass over its parti-
tions of data, and for each node selected in SelectNodesToSplit, they
collect splitting statistics about every split candidate for the selected
subset of features. The statistics for each node are aggregated using
reduceByKey. From the aggregated statistics, the executors then com-
pute the chosen impurity measure and use it to determine the best split

16



2.2. MLlib RandomForest

among the candidates for each node.

HandleSplit This a helper method that checks stopping conditions and cre-
ates and enqueues new nodes. Note that the DL and DR passed to this
method are not the full data subsets, but rather only the information
required to check the stopping conditions – instances of the Impurity-
Calculator class containing subset size and impurity value.

UpdateNodeIdCache This method updates the node id cache with node
ids of the new nodes created after splitting. It only updates the indices
for data points that belong to the split node in the appropriate tree.

2.2.2 Learning Nodes
During the training, MLlib represents the nodes as LearningNode objects.
Nodes that have already been split contain information about the split and
pointers to left and right children. The node objects can also represent nodes
which have not been split yet - these are kept in the DistributedQueue and
gradually dequeued and processed. Once the training process completes, the
model is converted into InternalNode and LeafNode objects, which removes
fields that are only used during training and not required for evaluation.

MLlib uses binary encoding to index nodes. If a node has index i, then
its left and right children have indices 2i + 1 and 2i + 2. An example of this
indexing is shown in Figure 2.2. Note that the indices 10 and 11 are not used
to index children of node 6, because they are reserved to encode daughter
nodes of node 5.

Binary encoding indices allows for the model to be saved and reconstructed
easily without the need to store the tree structure itself, as the indices directly
encode the position of the nodes. The downside of this approach is that
because the indices are positive integers stored in Int primitives, only 232 − 1
nodes can be indexed this way. It introduces a limit to the maximum tree
depth that the algorithm can handle – MLlib itself sets this limit at 30. In
the newer RandomForest API in Spark 2.x [30], the finished model no longer
relies on indices, but because it uses the same underlying class for training,
the maximum depth limit remains.

2.2.3 Node Id Cache
In PLANET, we described how the ModelFile is passed to all MapReduce jobs.
The trees in the ModelFile need to be traversed for the mappers to determine
to which node each data point belongs.

MLlib offers the option to use a node id cache, which stores this informa-
tion. It is an RDD of integer arrays, which store indices of nodes that the
data point would evaluate to in the current model for every tree. This means
the model no longer needs to be transferred to the executors, which reduces

17



2. Random Forest Training in MLlib

1

2

4

8 9

5

3

6

12 13

7

Figure 2.2: Node Indexing Example

communication costs significantly. It does, however, require additional stor-
age memory – for every data point, we keep NumTrees extra integers, which
can be a substantial increase in memory usage for low-dimension data or a
large number of trees.

We choose to enable the node id cache because, for our dataset and testing
parameters, the memory increase is acceptable. In addition to reducing com-
munication costs, the cache also allows us to implement local subtree training
more efficiently.

18



Chapter 3
Local Training

In the chapter, we discuss the advantages of adding local training to the ML-
lib RandomForest implementation. We present the iterations of our custom
implementation, starting from adding a local training stage which consecu-
tively trains single decision trees of the random forest, and finishing with an
implementation capable of parallel training of multiple nodes across different
trees of the forest.

3.1 Advantages of Local Training
Implementing local training in MLlib brings us two main benefits – we dras-
tically reduce the communication cost of the algorithm, which speeds up the
training process, and enable training of deeper trees, which can improve model
accuracy.

3.1.1 Reducing Communication Cost
We mainly aim to improve the speed of the random forest training, which
will enable learning on larger datasets. As mentioned previously, the current
implementation is communication-heavy. For each node split using the dis-
tributed approach, the executors compute the class counts on their set of parti-
tions and communicate a tuple of sufficient statistics of (features ·bins ·classes)
integers. The total communication cost of splitting one node is therefore equal
to (workers · features · bins · classes). Note that this does not depend on the
input dataset size, size of the node subsets or tree level. As the algorithm
progresses to lower levels of the tree, the input subsets of the nodes become
significantly smaller, but the communication cost stays the same for all nodes.

The number of nodes can grow exponentially with tree depth. A binary
tree of depth d contains at most 2d+1 − 1 nodes. Recall that MLlib limits the
maximum tree depth to M ≤ 30, therefore the subtree of a node on level k
will have at most N = 2M−k − 1 nodes. In the worst case, the communication

19



3. Local Training

cost of fully training the subtree of a node on level k will be (N · workers ·
features · bins · classes). In a setup with 50 workers, training the subtree of a
node on level 15 with training data of 300 features discretized into 32 bins in a
classification task with 10 classes will in the worst case require communicating
about 585 Gb of data.

In contrast, the communication cost of fully splitting a node using local
training is only the memory consumed by all data points in its input subset.
Assume our input dataset has a total size of 100 Gb. A node on level 15 was
already split 14 times – assume it was always split in a 4 to 1 ratio. In this
case, the largest nodes have input subsets of size 100 · 0.814 = 4.40 Gb, which
we will be able to use to train locally in most cluster setups. Note that the
distributed communication cost further scales with the number of workers,
the number of discretization bins and the number of classes, whereas for local
training, this does not matter at all.

3.1.2 Training Deeper Trees
Furthermore, implementing local training effectively removes the limit on the
maximum tree depth, because the local training algorithms do not rely on
node indices. Unless the input data are so massive that we never reach the
local training stage, we will be able to train forests of any chosen depth, which
could significantly improve the accuracy of the resulting models.

3.2 Local Subtree Training Implementation
The training process is divided into two stages - distributed and local training.
We keep the distributed stage described in the previous chapter (Algorithm 2)
and modify it slightly to store appropriate nodes in a separate local training
queue. Nodes from the local training queue are then processed using our
custom local training pipeline.

The distributed splitting continues until all remaining nodes can be split
locally, at which point we start the local training. Although simultaneously
running both stages is possible, it would only complicate the implementation
without bringing any significant performance improvements.

Initially, we choose to locally train one tree at a time. Because we are
training a random forest, each data point will belong to different nodes in the
individual trees. If we concurrently train only nodes from a single tree, their
input subsets will never overlap. This allows us to use simple partitioning
logic, and also guarantees that the amount of shuffled data will be at most
the size of the dataset because each data point only needs to be present in a
single partition.

Algorithm 4 presents an overview of the local training procedure running
in the driver program. The algorithm iterates over all trees in the forest and
processes smaller batches of local training tasks. First, it filters only the data

20



3.2. Local Subtree Training Implementation

belonging to nodes in the processed batch and partitions them by node. Each
executor then processes one partition and completes the training of its node
by running a local training algorithm. Finally, the model is updated with the
completed nodes after collecting them in the driver.

Algorithm 4 Local Training
Require: Dataset D ▷ RDD with bagged data points
Require: LocalQueue = {(TreeId, Node), . . .}

1: for CurrentTree in (1 . . . NumTrees) do
2: TreeNodes = LocalQueue → filter (TreeId == CurrentTree)
3: while TreeNodes is not empty do
4: Batch = TreeNodes → take (BatchSize)
5:
6: Partitions = FilterAndPartitionData (D, Batch)
7: CompletedNodes = RunLocalTraining (Partitions)
8: UpdateParents (CompletedNodes)
9: end while

10: end for

3.2.1 Selecting Nodes for Local Training
First, we need to select the nodes for local training during the distributed
stage. Compared to the distributed Algorithm 2, the only addition is a local
training queue LocalQueue, where we store nodes with input datasets small
enough to be split in memory. Therefore we only need to modify the Han-
dleSplit method of the original distributed algorithm, as shown in Algorithm
5.

Algorithm 5 HandleSplit for local training
1: if StoppingCondition(D) or D is pure then
2: return new LearningLeafNode
3: else
4: N = new LearningNode
5: if D → NumRows < LocalTrainingThreshold then
6: LocalQueue → Push ((TreeId, N))
7: else
8: DistributedQueue → Push ((TreeId, N))
9: end if

10: return N
11: end if

To decide whether the node is ready for local training, we compare the
number of records in its input dataset, which we will call NumRows, to a

21



3. Local Training

precomputed threshold LocalTrainingThreshold.
To find LocalTrainingThreshold, we need take into account the memory

allocated to one executor MaxMemory, the total number of features NumFea-
tures, number of classes NumClasses and the number of bins that each feature
is discretized into, NumBins.

First we need to make sure that the data itself is small enough. Each data
point is stored as a TreePoint object, which contains an integer array with a
bin index for every feature value and a floating point label, which takes up
approximately PointSize = 4 · NumFeatures + 8 bytes. The total approximate
size of the data DataSize is NumRows · PointSize bytes.

The other factor is the memory used to store the statistics aggregates
required to compute the impurity of all splits. Every feature gets discretized
into a number of bins, and for each bin, we need to compute label counts for
every class. Therefore the approximate size of the statistics for every node
StatisticsSize is 4 · NumClasses · NumFeatures · MaxBins bytes.

The data are stored in JVM objects and further manipulated in the local
training implementation, so we need to account for additional memory con-
sumption. We also want to have more control over the size of the tasks. We
add an additional parameter MemMultiplier and assume that the total mem-
ory usage for a given task TotalSize is equal to MemMultiplier · (DataSize +
StatisticsSize).

To add a node to the local training queue, we need to check that its Total-
Size <MaxMemory. Therefore, we can compute the LocalTrainingThreshold
as the value of NumRows for which this condition is satisfied.

TotalSize < MaxMemory

MemMultiplier · (NumRows · PointSize + StatisticsSize) < MaxMemory

...

LocalTrainingThreshold = MaxMemory

MemMultiplier · PointSize
− StatisticsSize

PointSize

LocalTrainingThreshold ≈ 1
MemMultiplier

· MaxMemory

PointSize

Because the value of StatisticsSize/PointSize is negligible, we can now
interpret this value as the number of times a data point fits in total memory,
reduced by a fraction controlled by MemMultiplier.

3.2.2 Partitioning
To locally train a node, first we need to move all of its training data onto a
single machine, and in the context of Spark, into the memory of an executor.
We can only guarantee that all of the data are together and no data from other

22



3.2. Local Subtree Training Implementation

tasks are included when the data are in a single partition. The partitioning
process is shown in Algorithm 6.

Algorithm 6 FilterAndPartitionData
Require: Dataset D
Require: Batch = {(TreeId, Node), . . .}

1: Partitions = create a partition for every (TreeId, Node) in Batch
2: DataWithNodeIds = GetDataWithNodeIds (D, Batch)
3: for (TreeId, NodeId, Point) in DataWithNodeIds do
4: Partitions (TreeId, Node) += Point
5: end for
6: return Partitions

The local training queue contains only nodes that we can split on a single
executor. However, if we tried to run multiple splitting tasks on one execu-
tor concurrently, we would soon reach the memory capacity and encounter
errors. This is the reason we process the nodes from the local training queue
in smaller batches of size BatchSize. At the beginning of the local training
stage, we query the SparkContext and set BatchSize to the number of available
executors, so that each executor always handles one training task.

Additionally, instead of relying on the default grouping and partitioning,
we use a custom key partitioner, which distributes data from every node of
the current batch into its partition. This gives us absolute control over the
number and content of the partitions so that we can distribute the data evenly
and ensure each executor only handles one partition.

Recall from Section 2.2.3 that we store the information about the nodes
that each data point belongs to in the node id cache. The cache allows us to
easily filter the dataset to only include data points from nodes in the current
batch, as shown in Algorithm 7. Because we are training nodes from a single
tree, we only need to check the appropriate column of the node id cache.

Algorithm 7 GetDataWithNodeIds
Require: Dataset D
Require: Batch = {(TreeId, Node), . . .}

1: BatchTreeId = Batch → Head → TreeId
2: BatchNodeIds = Batch → Map (N → Id)
3:
4: DataWithNodeIds = NodeIdCache → Zip (D)
5: return DataWithNodeIds
6: → Map ((NodeIds, Point) ⇒
7: (BatchTreeId, NodeIds (BatchTreeId), Point))
8: → Filter ((TreeId, NodeId, Point) ⇒
9: BatchIds → contains (NodeId))

23



3. Local Training

3.2.3 Local Tree Induction

Once the data is partitioned accordingly, we are finally able to run the local
training algorithm. Each executor converts the data representation of its
partition into a standard Scala Array and uses it as training data for the tree
induction of the given node (Algorithm 8).

Algorithm 8 RunLocalTraining
Require: Partitions = {(TreeId, Node, Data), . . .}

1: return Partitions
2: → MapPartitions ((TreeId, Node, Data) ⇒ {
3: PointArray = Data → ToArray ()
4: LocalTreeInduction (Node, PointArray)
5: return (TreeId, Node)
6: })

We utilize a local training implementation by Siddharth Murching specif-
ically tailored to work with MLlib random forest classes, that is currently
in the process of being merged into Spark [31]. It is an implementation of
the Yggdrasil algorithm discussed in Section 1.3, which we extended to allow
selection of random feature subsets.

Using a Yggdrasil implementation is not ideal in this case, because the
data is stored in a row-based RDD and the distributed stage uses horizontal
partitioning. This means that the entire partition has to be first transformed
into a column-based format, for which the data needs to fit into the executor
memory twice. This significantly limits the size of tasks we can train locally.
Additionally, the implementation reuses the split candidates proposed in the
distributed stage, so we do not gain any accuracy from finding the exact best
splits. Therefore, choosing a more suitable local training implementation and
making it compatible with MLlib data structures might significantly improve
results and is one of the aims for future experimenting.

3.2.4 Updating the Model

In the distributed stage, the splitting is done in the driver program, so we can
directly update the model stored in the driver memory. During local training,
we perform the whole splitting process on the executors, and the driver then
receives a different node object, which we need to plug into the appropriate
position in the model.

After we finish the induction of all nodes from the processed batch, we
collect the completed nodes in the driver program and update our current
model with pointers to them (Algorithm 9). Recall from Section 2.2.2 that we
use breadth-first indexing of the learning nodes. This allows us to use only the

24



3.3. Simultaneous Training of Multiple Trees

node id to easily find the parent of a completed node and determine whether
it is the left or right child of that node.

Algorithm 9 UpdateParents
Require: CompletedNodes = {(TreeId, Node), . . ., }

1: for (TreeId, Node) in CompletedNodes do
2: Parent = FindParent (TreeId, Node → Id)
3: if IsLeft (Node → Id) then
4: Parent → Left = Node
5: else
6: Parent → Right = Node
7: end if
8: end for

3.3 Simultaneous Training of Multiple Trees
In this section, we demonstrate how we modified the described algorithm
to allow training nodes from multiple trees in a single batch. This may seem
counter-intuitive at first, as it increases the complexity of the data partitioning
process without any immediate benefits, but it will eventually allow us to
optimize the process further, as we will show in Chapter 4.

The original distributed stage already allows splitting nodes from multiple
trees together, although the algorithm attempts to minimize the amount of
these operations and prefers splitting nodes from a single tree. In the dis-
tributed stage, this does not require manipulating the input dataset, as each
executor only iterates over its designated partitions and calculates statistics
for the given set of nodes, regardless of which trees they belong to.

Recall that because we are building a random forest, each tree will be
split differently and the nodes will have different input datasets. If we allow
processing nodes from multiple trees at once, a single data point may be
present in multiple input subsets of the nodes in the currently processed batch.

In the case of local training, we need the whole input subset shuffled to
an executor in one partition. Therefore it is no longer sufficient to filter and
partition the input dataset, and we also need to clone the data points which are
used in multiple nodes, so that they can be distributed to multiple partitions.
Additionally, instead of simply checking one column of the node id cache, we
now need to check every (TreeId, NodeId) pair to determine whether a data
point is used during the processing of the batch. This requires extending the
GetDataWithNodeIds method, as shown in Algorithm 10.

To be able to clone the appropriate data points efficiently, we first precom-
pute a map TreeNodeSets, which stores indices of all nodes for every tree in
the current batch, and a set of all tree indices in the batch BatchTreeIds. For

25



3. Local Training

every datapoint in the input dataset, we filter and map over BatchTreeIds, so
that we get tuples (TreeId, NodeId, Point) for every node that requires Point
in its input subset. We concatenate these tuples into one RDD collection using
flatMap and then use our standard partitioning logic (Algorithm 6).

Algorithm 10 GetDataWithNodeIds for multiple trees
Require: Dataset D
Require: Batch = {(TreeId, Node), . . .}

1: TreeNodeSets = Batch
2: → Map ((TreeId, Node) ⇒ (TreeId, Node → Id))
3: → GroupByKey ()
4: → Map ((TreeId, (TreeId, Nodes)) ⇒ (TreeId, Nodes))
5:
6: BatchTreeIds = TreeNodeSets → Map ((TreeId, Nodes) ⇒ TreeId)
7:
8: DataWithNodeIds = NodeIdCache → Zip (D)
9: return DataWithNodeIds

10: → FlatMap ((NodeIds, Point) ⇒
11: BatchTreeIds
12: → Map (T ⇒ (T, NodeIds(T)))
13: → Filter ((T, N) ⇒ TreeNodeSets (T) → Contains (N))
14: → Map ((T, N) ⇒ (T, N, Point))

This process theoretically has the same complexity as partitioning nodes
from a single tree, as we still iterate over the same amount of nodes for each
data point. However, it requires checking multiple columns of the node id
cache, and the amount of shuffled data also increases when the same data
points need to be included several times. These factors will increase the com-
munication cost of the partitioning, but the ability to process nodes from
multiple trees together gives us more options to select optimized batches and
simplifies the local training procedure in the driver program, as demonstrated
in Algorithm 11.

Algorithm 11 Local Training of multiple trees
Require: Dataset D
Require: LocalQueue = {(TreeId, Node), . . .}

1: while LocalQueue is not empty do
2: Batch = LocalQueue → take (BatchSize)
3:
4: Partitions = FilterAndPartitionData (D, Batch)
5: CompletedNodes = RunLocalTraining (Partitions)
6: UpdateParents (CompletedNodes)
7: end while

26



3.4. Reducing the Number of Tasks Using Bin Packing

3.4 Reducing the Number of Tasks Using Bin
Packing

The local training queue contains nodes small enough to be split locally, but
the sizes of these tasks may greatly differ. Some of these tasks may be close
in size to the LocalTrainingThreshold, meaning they indeed require the whole
memory of an executor, but many tasks will be significantly smaller. Tiny
tasks take up only a small portion of the available memory and complete the
tree induction very fast, meaning most of the total time required to complete
these tasks is spent on partitioning and communication. Additionally, be-
cause the entire batch needs to be processed before the driver can collect the
completed nodes, the executor will be idle until the longest task in the batch
completes – this problem will be further discussed in Chapter 4.

We choose to group these smaller tasks and train them consecutively on
one executor, which allows us to minimize the number of batches necessary
to finish local training. We create a lower number of larger partitions, which
are more balanced in terms of size. It also lowers the number of data shuffles,
which removes some overhead of this expensive operation.

3.4.1 Bin Packing Problem
We want to create a minimal amount of task groups, where the total sum of
NumRows is lower than LocalTrainingThreshold. This is an instance of the
bin packing problem [32], where our tasks are the items we want to pack
into the desired groups, or bins. It is an NP-hard problem, and although
several optimized methods for finding the exact solution exist (e.g., [33]), the
computation is not feasible for a large number of tasks we may need to pack.

Luckily, decent solutions can be found using greedy approximation ap-
proaches, such as the first-fit decreasing algorithm. The algorithm sorts the
items in decreasing order and then attempts to place each item in the first bin
that can accommodate the item. If no such bin exists, it creates a new one.

It has been proved that if we solve the problem using the first-fit decreasing
algorithm, the number of the resulting bins will be at most (11/9 Opt + 1)
bins, where Opt is the number of bins in the exact optimal solution [34].
Because our main goal is to balance the size of the partitions, this is more
than sufficient.

3.4.2 Implementation
Because we now have additional information that we need to store in Lo-
calQueue, we create a Task class to hold the required data for the local train-
ing tasks. It stores the node and tree indices and NumRows of the input
subset. We then modify the HandleSplit method to store these objects in the
LocalQueue. We also create a Bin class, which holds the set of Tasks and a

27



3. Local Training

number of TotalRows of the currently packed tasks. The bin packing proce-
dure, which we run between the distributed and local training stages, is shown
in Algorithm 12.

Algorithm 12 Bin Packing
Require: LocalQueue = {(Task), . . .}

1: Bins = {}
2: SortedByRows = LocalQueue → SortBy (−Task → NumRows)
3: for Task in SortedByRows do
4: PackTask (Task, Bins)
5: end for

Algorithm 13 PackTask
1: for Bin in Bins do
2: if Task → NumRows + Bin → TotalRows < Threshold then
3: Bin → Tasks += Task
4: Bin → TotalRows += Task → NumRows
5: return
6: end if
7: end for
8: NewBin = new Bin
9: NewBin → Tasks += Task

10: NewBin → TotalRows += Task → NumRows
11: Bins += NewBin

Several small changes need to be made to the current local training pro-
cess. Instead of LocalQueue, all methods will now process the Bins queue. In
the FilterAndPartitionData method, we will create a partition for every bin
instead of creating it for every node. In the GetDataWithNodeIds method, we
need to iterate over all nodes for every bin in the batch to determine TreeN-
odeSets and BatchNodeIds. In RunLocalTraining, each partition now contains
data points for multiple nodes, so we need to group them by the node indices
before we run the local training algorithm.

28



Chapter 4
Handling Task Imbalance

In this chapter, we introduce the problem of task imbalance present in our
implementation and show how it is currently impairing its performance.

We describe how we collected statistics about the local training process
and used them to analyze the problem.

Finally, we present two approaches to task scheduling which mitigate the
effects of task imbalance – a universal method based on the data size, and a
data specific method using a linear regression model to predict the training
time of nodes.

4.1 Task Imbalance
After running experiments with the early versions of our local training imple-
mentation, we quickly noticed that the local training process was not optimal.
Spark uses a synchronous computing model, so every time we distribute a
batch of tasks to executors, all of the tasks in the batch need to complete
before we can collect the completed nodes, update the model, and distribute
another batch. This means that the total time required to complete the train-
ing of every batch is equal to the duration of the longest task in it.

As discussed in Section 3.4, the nodes in the local training queue have
different input subsets and take different amounts of time to complete. This
is problematic because if we have a batch of 50 tasks, where one task takes
10 minutes to complete and the rest all take 1 minute, the driver has to wait
for the longest task to complete, and 49 executors will stay idle for 9 minutes.
Although bin packing helps us balance the tasks in terms of row count, the
training time differences between the bins can still be significant.

Ideally, we would sort the tasks (or bins) in descending order by training
time. That way, the tasks with similar training times would be grouped into
batches, and we would minimize the idle time of the executors, as demon-
strated in Figure 4.1. However, we do not know precisely how much time

29



4. Handling Task Imbalance

batch 1 batch 2 batch 3
0

2

4

6

8

10
Tr

ai
ni

ng
T

im
e

(s
)

(a) Before sorting

batch 1 batch 2 batch 3
0

2

4

6

8

10

Tr
ai

ni
ng

T
im

e
(s

)

(b) After sorting

Figure 4.1: Improvements in total training time from optimal task scheduling

will be spent training the nodes. Therefore we need to make a reasonable
prediction of the training time from the information available before running
the tasks.

4.2 Collecting Statistics

To tackle this problem, we first need to collect statistics from the local training
stage. We modify the RunLocalTraining method so that in addition to running
the tree induction algorithm, it measures the time it takes for each node to
complete the local training. We also save the row count and label entropy of
each node, both of which were already computed to determine the best split
of their parent nodes during the distributed stage. A structure containing the
training time, row count and label entropy is then returned together with the
completed node. In the driver program, we collect all of these statistics and
log them in a file.

An example of the statistics measured on our dataset, which will be de-
scribed in Section 5.1, can be seen in Table 4.1.

4.3 Prioritizing Larger Tasks

The intuitive approach to solving the task imbalance problem is to sort the
tasks by row count. Using bin packing, this translates to sorting the bins by
the total rows count of all their nodes. This makes sense because, for nodes
with larger input subsets, it will take longer to complete their full subtree.
The nodes in the subtree will take longer to split, as more data needs to be
iterated to compute the impurity measure used to determine the best split.
The subtree will usually be deeper and therefore contain more nodes because
we are less likely to get a pure subset after splitting a node with a larger

30



4.3. Prioritizing Larger Tasks

row count entropy training time
1 165023 0.3775 184.05
2 416 0.9883 0.64
3 817 0.1966 1.49
4 104561 0.9955 198.48
6 52450 1.0593 74.49
7 108337 0.3919 130.96
8 117986 0.9460 190.08
9 7004 0.1079 2.12

10 49710 0.0089 6.57

Table 4.1: Statistics collected from RunLocalTraining

input dataset. Additionally, these nodes will require shuffling more data to
the executor.

In Table 4.1, we can see the that it took the longest to complete the training
of nodes 1, 4, 5 and 7, which all had large datasets with over 100,000 rows.
This indicates that row count could be used to effectively predict the training
time of our tasks. To further analyze this theory, we computed the Pearson
correlation coefficient on the complete set of statistics from one training job of
a random forest with 40 trees, which contains information about 8735 locally
trained nodes. On this set of nodes, the coefficient is r = 0.4934.

The coefficient of determination R2 can be used to measure the goodness of
fit of a linear regression model obtained by applying the least squares method
– a model minimizing the sum of squares of residuals. Although a more
thorough analysis could be done to determine the statistical significance of
the predictors, it is not the main focus of this thesis. We will only use the
coefficient of determination to measure the potential quality of models and
test their actual performance using experiments in Chapter 5.

In a situation with only one observed variable, R2 is equal to the square
of Pearson correlation coefficient r between the observed and target variables,
in our case R2 = 0.2434. Although this value would generally indicate a fairly
weak predictor, in our case, it can help substantially. We do not need to
predict the exact duration of the task, only to preserve the ordering. Because
this is a linear model, we can omit the coefficients and intercept, simply sort
the tasks by the row count and achieve the same result ordering.

After we implemented prioritizing larger tasks based on row count, the per-
formance of the local training improved drastically and started to outperform
the current MLlib implementation by order of magnitude.

31



4. Handling Task Imbalance

4.4 Predicting Task Duration Using Logistic
Regression

If we analyze the statistics in Table 4.1 further, we can notice that the training
time does not depend only on the row count of the node, but also on the data
structure – high label entropy appears to be a good indicator of more complex
tasks. We can see that tasks 6 and 10 have very similar data sizes, but the
training of task 6, which has much higher entropy, took significantly longer.
This is a reasonable assumption because data with high entropy probably
contains data points with many different labels, and therefore it will take
longer to obtain pure subsets using binary splitting, meaning the full subtree
of the node will be deeper. In contrast, nodes with very low entropy might
only require a few splits to obtain pure subsets and the final depth of their
subtrees will be much lower.

After measuring the Pearson correlation coefficient between the entropy
and training time variables, we get a value of r = 0.4499, which is comparable
to the correlation with row count. Therefore, we would like to use a predictor
which combines both row count and entropy. We use the method of least
squares to obtain a multiple linear regression model, as described in [35].

In this case with multiple observed variables, the coefficient of determina-
tion R2 will be equal to the square of the coefficient of multiple correlation.
On our dataset, we get a value of R2 = 0.471. This indicates a potentially
more accurate model than a simple predictor using only row count.

We also suspect that the relation between the variables is not linear. Be-
cause the data is very inconsistent and it will never be possible to predict the
training time precisely, we did not focus on finding the most optimal model.
However, we decided to add additional non-linear variables based on row count
and entropy and select the significant ones using stepwise multiple regression.
The final predictor has R2 = 0.606 and uses the following combination of row
count r and entropy e:

c1 · r + c2 · e + c3 · (r · e) + c4 · log r + c5 · (r · log r) + c6 · log e + c7 · (e · log e) + c8

Because the predictor now uses a specific combination of the observed
valuables measured on our dataset in a specific cluster setup, it is much more
biased than the predictor based on row count. While it also improved the
performance of local training significantly, as we will show in Section 5.4, we
choose to use sorting by row count as the default scheduling method of our
implementation and allow users to specify a custom prediction model tailored
to their dataset, such as the one described in this section.

32



Chapter 5
Experiments

In this chapter, we present the results of our experiments with network data,
which we use to train random forest classifiers. We describe the cluster setup
used for the experiments and compare our implementation with the current
MLlib implementation in terms of training time. We also examine the signif-
icance of the individual scheduling improvements in our implementation and
show how it behaves for different random forest parameters.

5.1 Dataset Characteristics

Our training dataset originates from network traffic data in the form of proxy
logs. These logs contain HTTP flows, which represent a single communication
between a user and a server. Flows include both directions of the communi-
cation and store interesting data about the communication, such as URLs,
source, and destination IP addresses, number of transferred bytes, etc. A to-
tal of 357 features were extracted from each flow, most of them are based on
the URL. A more thorough description of the data and features can be found
in [36].

All flows were initially unlabeled. Some positive labels were added on
the domain level, either by using available blacklists or manually by human
analysts. However, most of these flows remain unlabeled, are considered as
innocent network traffic and therefore assigned a negative label. This includes
some undetected malicious traffic, which is therefore incorrectly labeled.

For the experiments, we used data from proxy logs recorded in January
2018. Because the whole dataset is huge, we sampled only 1% of the negatively
labeled data points. The resulting dataset contains 30,004,828 objects, and
2,149,472 of them are labeled as one of the 152 positive malware classes.

33



5. Experiments

5.2 Cluster Setup
All of our experiments were performed on Amazon Web Services using the
Elastic MapReduce service [37]. The experiments were run on a cluster of 11
r4.2xlarge memory-optimized EC2 instances, set up as one master node and
ten worker nodes using YARN [28] as the cluster manager. These instances
offer 8 vCPUs on Intel Xeon E5-2686 v4 processors and 61 GiB of memory
each, leaving us with 80 vCPUs and 530GB available after cluster setup.

5.3 Benchmarking
First, we compare the performance of our final version of the local training
algorithm using bin packing and linear regression time predictions (bin-reg)
against the current MLlib implementation (old). As we previously mentioned,
MLlib has memory management issues, which leads to executors and eventu-
ally entire applications crashing. Therefore, we had to tune the application
parameters to be able to complete the random forest training on our large
dataset.

Our implementation scales well with the number of executors and per-
forms well even with a large number of small executors with only one core.
To fully utilize the cluster resources, we set the number of executors to 80
and executor memory to 6 GB. However, we were not able to complete the
training with the current MLlib implementation using this setup. Therefore,
our implementation also mitigates some memory issues, as a portion of nodes
is saved to the local training queue, and fewer nodes are split concurrently
during distributed training.

From our experiments, we noticed that crashes are not tied to the level
of parallelism, but rather the memory size of the executors. Using a setup
of 30 executors with 15 GB of executor memory with two cores each, we
were able to consistently train on our dataset without crashing. Although we
only utilize 75% of the available vCPUs on the cluster, the training times are
better compared to the setup with 80 executors, because the two threads on
the executor share the data and less total communication is required.

We also created another dataset by sampling one-third of the negative
data points from the original dataset to show how both algorithms behave on
smaller data. This dataset contains 10,498,783 objects, again with 2,149,472
positive samples. Note that the size of this smaller dataset is about 35 GB –
in practice, the random forest would probably not be trained on a cluster of
this size.

Figure 5.1 and Table 5.1 show the comparison of training times of a ran-
dom forest classifier with 5 trees using both datasets. The trees are trained to
a maximum depth of 30 and with

√
357 ≈ 19 random features considered for

each split. Unless stated otherwise, these parameters are also used in all fol-

34



5.4. Comparison of Local Training Methods

old bin-reg
0

50000

100000

150000

200000

Tr
ai

ni
ng

T
im

e
(s

)
30M data

old bin-reg
0

10000

20000

30000

40000

50000

10M data

Figure 5.1: Comparison between the training times of MLlib and our imple-
mentation for random forests with 5 trees on two datasets

executors 30M data 10M data
old bin-reg old bin-reg

30 216304 2056 50374 1252
80 crash 2231 crash 1087

Table 5.1: Training times in seconds for MLlib comparison (Figure 5.1)

lowing experiments. For this experiment, we also tuned the MemMultiplier,
which was set to 1.2. In other experiments, MemMultiplier was set to 4.0,
which proved to be unnecessarily pessimistic. We can see that implementing
local training and optimizing its task scheduling drastically improves the per-
formance, with our final implementation being over 105× faster on the larger
30M dataset, and over 40× faster on the smaller 10M dataset.

5.4 Comparison of Local Training Methods
In this section, we want to compare the local training methods described in
Chapters 3 and 4 and evaluate the effects of the individual improvements.

First, we compare our original local training implementation described in
Section 3.2, which trains the forest tree by tree and sorts the nodes by row

35



5. Experiments

by-tree bin-reg
0

2500

5000

7500

10000

12500

15000

17500

20000
Tr

ai
ni

ng
T

im
e

(s
)

Total
Distributed Training
Local Training

Figure 5.2: Comparison of by-tree and multiple-tree local training scheduling
methods for 30 trees with 30M data

count, to our final implementation using bin packing and linear regression time
predictions to optimally schedule the training of nodes from multiple trees. To
demonstrate the significance of being able to train nodes from multiple trees
together, we trained a random forest with 30 trees for this experiment.

In Figure 5.2 and Table 5.2, we can see that the multiple-tree training helps
greatly, with the bin-reg implementation decreasing the local training time by
over 40%. The reason for this is that large training tasks are scattered across
all trees, and if we train the forest tree by tree, we are not able to group
them during scheduling. Therefore a large number of executors will be idle
throughout most of the local training of every tree, waiting for the large tasks
to complete. In the multiple-tree implementation, we mitigate the effects of
this problem by first bin packing the nodes to balance the number of rows
between the tasks and then grouping the bins which we predict will take
longer, which is now possible even for nodes from different trees.

Next, we evaluate the significance of our task scheduling optimizations for
multiple-tree training. As our baseline method, we use an implementation
which schedules the nodes by sorting them by row count and processes them
in descending order (Section 4.3). Note that this method already gives better
results than training the forest tree by tree, but we focus on evaluating the
performance improvements brought by bin packing and time prediction using

36



5.5. Effects of Random Forest Parameters

method total distributed local
by-tree 19220 7429 11766
bin-reg 14481 7403 7053

Table 5.2: Training times in seconds for the multiple-tree scheduling method
comparison (Figure 5.2)

method total distributed local
base 3429 1242 2162
bin 3225 1254 1946
reg 2973 1246 1702

bin-reg 2768 1259 1484

Table 5.3: Training times in seconds for the multiple-tree scheduling method
comparison (Figure 5.3)

linear regression.
Figure 5.3 and Table 5.3 show the results of these experiments on a random

forest with 5 trees. Base uses sorting by row count, bin performs only bin
packing, reg sorts tasks by time predictions from a linear regression model,
and bin-reg combines bin packing and time prediction scheduling. Note that
we only modify the local training scheduling, the distributed splitting remains
unchanged and always takes roughly the same amount of time, which is a
significant fraction of the total time. If we compare only the time spent on
local training, we can see that the final implementation combining bin packing
and time prediction yields about 30% improvements over the basic task sorting
approach. The performance increase will probably be slightly higher for larger
forests, as having more locally trained nodes allows us to schedule them more
effectively.

5.5 Effects of Random Forest Parameters
Finally, we show how the performance of our implementation depends on the
parameters of a random forest. We focus on the impact of two parameters –
random forest size and maximum tree depth.

Increasing the random forest size does not slow down the local training,
because the local training batch size remains constant and we only increase
the number of local training tasks. We can see that increasing the number of
trees in some cases improves the performance of the local training because it
results in more local training tasks and that allows optimizing their scheduling.
The performance of the distributed training slightly deteriorates for a larger

37



5. Experiments

base bin reg bin-reg
0

500

1000

1500

2000

2500

3000

3500
Tr

ai
ni

ng
T

im
e

(s
)

Performance of local training implementations

Total
Distributed Training
Local Training

Figure 5.3: Comparison of multiple-tree local training scheduling methods for
5 trees with 30M data

number of trees, but this can be mitigated by training smaller sets of trees
and combining the resulting models.

Examining the effects of the maximum tree depth parameter is also impor-
tant, as it greatly impacts the number of nodes we can train locally. Increas-
ing the maximum tree depth results in the dataset getting split more times,
meaning the subsets eventually become small enough to be trained locally. For
smaller values of this parameter, almost no nodes are split locally using our
setup, and we see that training shallow trees using the only the distributed
splitting is feasible. However, using a large number of shallow trees would
yield poor classification results for our dataset with a large number of classes.

After reaching level 10, the number of locally trained nodes quickly in-
creases. As more nodes are processed in the local training phase, the overall
process speeds up as well. Although the number of nodes in the forest can
grow exponentially with tree depth, the overall time increase is acceptable,
because we can train the nodes locally and avoid the expensive communica-
tion required by the distributed splitting. Note that the time increase between
depths 30 and 50 is very small because distributed splitting stops after reach-
ing level 30. Roughly the same amount of nodes will be trained locally and
increasing the maximum depth for local training has a negligible performance
cost.

38



5.5. Effects of Random Forest Parameters

5 10 20 40
Number of Trees

0

2500

5000

7500

10000

12500

15000

17500

20000
Tr

ai
ni

ng
T

im
e

(s
)

Total
Distributed Training
Local Training

(a) Random forest size

5 10 20 30 50
Maximum Tree Depth

0

500

1000

1500

2000

2500

Tr
ai

ni
ng

T
im

e
(s

)

Total
Distributed Training
Local Training

(b) Maximum tree depth

Figure 5.4: Effects of random forest parameters on training time with 30M
data

trees total distributed local
5 2768 1259 1484

10 4524 2247 2251
20 9065 4200 4840
40 21251 11486 9741

max depth total distributed local
5 267 232 8

10 840 745 69
20 2139 1402 710
30 2599 1390 1182
50 2633 1389 1217

Table 5.4: Training times in seconds for random forest parameter comparison
(Figure 5.4)

The results of both of these experiments can be found in Figure 5.4 and
Table 5.4.

39





Conclusion

In this thesis, we focused on the training of decision forests on large datasets
in a distributed setting.

To give an introduction to distributed random forest training, we thor-
oughly described the PLANET algorithm and its use of horizontal data par-
titioning, which is a widely adopted approach to this task. We analyzed its
shortcomings, demonstrated an alternative vertical partitioning method used
in Yggdrasil, and finally gave an overview of available distributed forest train-
ing implementations.

To explain why the current random forest implementation in MLlib per-
forms poorly, we showed how MLlib implements PLANET on Apache Spark,
analyzed the communication cost of this implementation, and demonstrated
how the absence of local training negatively impacts its performance.

We implemented local training in a fork of the MLlib random forest library
using a simple tree by tree approach and then extended the algorithm to
support parallel training of nodes from multiple trees and training multiple
nodes on a single executor. Implementing local training also allowed us to
remove the maximum tree depth limitation and therefore enabled the training
of deep decision trees.

Then, we described how task imbalance impairs the performance of the lo-
cal training process and presented several methods for optimized task schedul-
ing that minimize executor inactivity. Our best performing method uses a
linear regression model to predict task duration from the input size and la-
bel entropy. We use bin packing to reduce the number of training tasks and
balance their sizes.

Finally, we presented the results of our experiments on a network dataset
created from proxy logs. We compared the performance of our algorithm
and the original MLlib implementation, showed the incremental performance
improvements of bin packing and task duration predictors, and demonstrated
how the performance of our implementation scales with random forest size
and maximum tree depth parameters.

41



Conclusion

Overall, the proposed improvements resulted in a drastic performance in-
crease and also made the training process more stable. On our dataset, the
presented algorithm is up to 105× faster than the current MLlib implementa-
tion. We expect an even larger improvement on bigger datasets.

This performance increase allows us to improve predictive performance by
training the model on larger datasets, or by increasing number of trees in the
random forest. Additionally, local training gives us the ability to train deeper
trees, which can also have a positive effect on the model performance.

A classifier for malware detection trained using the algorithm presented
in this thesis is actively used in the Cisco Cognitive Threat Analytics system.
Thanks to our implementation, we were able to train it using 10× more data
than before.

42



Bibliography

[1] Hastie, T.; Tibshirani, R.; et al. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer series in statis-
tics, Springer, 2009, ISBN 9780387848846, 305–317 pp. Available from:
https://books.google.cz/books?id=eBSgoAEACAAJ

[2] Breiman, L. Random Forests. Machine Learning, volume 45, no. 1, Oct
2001: pp. 5–32, ISSN 1573-0565, doi:10.1023/A:1010933404324. Available
from: https://doi.org/10.1023/A:1010933404324

[3] Meng, X.; Bradley, J. K.; et al. MLlib: Machine Learning in Apache
Spark. CoRR, volume abs/1505.06807, 2015, 1505.06807. Available from:
http://arxiv.org/abs/1505.06807

[4] Zaharia, M.; Xin, R. S.; et al. Apache Spark: A Unified Engine for Big
Data Processing. Commun. ACM, volume 59, no. 11, Oct. 2016: pp.
56–65, ISSN 0001-0782, doi:10.1145/2934664. Available from: http://
doi.acm.org/10.1145/2934664

[5] Panda, B.; Herbach, J.; et al. PLANET: Massively Parallel Learning
of Tree Ensembles with MapReduce. PVLDB, volume 2, no. 2, 2009:
pp. 1426–1437. Available from: http://www.vldb.org/pvldb/2/vldb09-
537.pdf

[6] Hyafil, L.; Rivest, R. L. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, volume 5, no. 1, 1976: pp. 15
– 17, ISSN 0020-0190, doi:https://doi.org/10.1016/0020-0190(76)90095-
8. Available from: http://www.sciencedirect.com/science/article/
pii/0020019076900958

[7] Pedregosa, F.; Varoquaux, G.; et al. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, volume 12, 2011: pp.
2825–2830.

43

https://books.google.cz/books?id=eBSgoAEACAAJ
https://doi.org/10.1023/A:1010933404324
1505.06807
http://arxiv.org/abs/1505.06807
http://doi.acm.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
http://www.vldb.org/pvldb/2/vldb09-537.pdf
http://www.vldb.org/pvldb/2/vldb09-537.pdf
http://www.sciencedirect.com/science/article/pii/0020019076900958
http://www.sciencedirect.com/science/article/pii/0020019076900958


Bibliography

[8] H2O. https://www.h2o.ai/h2o.

[9] Alsabti, K.; Ranka, S.; et al. CLOUDS: A Decision Tree Classifier for
Large Datasets. In KDD, AAAI Press, 1998, pp. 2–8.

[10] Jansson, K.; Sundell, H.; et al. gpuRF and gpuERT: Efficient and Scalable
GPU Algorithms for Decision Tree Ensembles. In IPDPS Workshops,
IEEE Computer Society, 2014, pp. 1612–1621.

[11] Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, volume 51, no. 1, Jan. 2008: pp.
107–113, ISSN 0001-0782, doi:10.1145/1327452.1327492. Available from:
http://doi.acm.org/10.1145/1327452.1327492

[12] Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System.
CoRR, volume abs/1603.02754, 2016, 1603.02754. Available from: http:
//arxiv.org/abs/1603.02754

[13] Hadoop MapReduce. https://hadoop.apache.org/docs/stable/
hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html.

[14] Google App Engine: MapReduce Overview. https://web.archive.org/
web/20130120053524/https://developers.google.com/appengine/
docs/python/dataprocessing/overview.

[15] Yildiz, B.; Büyüktanir, T.; et al. Equi-depth Histogram Construction for
Big Data with Quality Guarantees. CoRR, volume abs/1606.05633, 2016,
1606.05633. Available from: http://arxiv.org/abs/1606.05633

[16] Abuzaid, F.; Bradley, J. K.; et al. Yggdrasil: An Opti-
mized System for Training Deep Decision Trees at Scale. In
Advances in Neural Information Processing Systems 29: An-
nual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, 2016, pp. 3810–3818.
Available from: http://papers.nips.cc/paper/6366-yggdrasil-an-
optimized-system-for-training-deep-decision-trees-at-scale

[17] Apache Parquet. https://parquet.apache.org.

[18] Yggdrasil implementation. https://github.com/fabuzaid21/
yggdrasil.

[19] [SPARK-3162]: Train Decision Trees Locally When Possible.
https://docs.google.com/document/d/1baU5KeorrmLpC4EZoqLuG-
E8sUJqmdELLbr8o6wdbVM.

[20] Apache Mahout. https://mahout.apache.org.

44

https://www.h2o.ai/h2o
http://doi.acm.org/10.1145/1327452.1327492
1603.02754
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://web.archive.org/web/20130120053524/https://developers.google.com/appengine/docs/python/dataprocessing/overview
https://web.archive.org/web/20130120053524/https://developers.google.com/appengine/docs/python/dataprocessing/overview
https://web.archive.org/web/20130120053524/https://developers.google.com/appengine/docs/python/dataprocessing/overview
1606.05633
http://arxiv.org/abs/1606.05633
http://papers.nips.cc/paper/6366-yggdrasil-an-optimized-system-for-training-deep-decision-trees-at-scale
http://papers.nips.cc/paper/6366-yggdrasil-an-optimized-system-for-training-deep-decision-trees-at-scale
https://parquet.apache.org
https://github.com/fabuzaid21/yggdrasil
https://github.com/fabuzaid21/yggdrasil
https://docs.google.com/document/d/1baU5KeorrmLpC4EZoqLuG-E8sUJqmdELLbr8o6wdbVM
https://docs.google.com/document/d/1baU5KeorrmLpC4EZoqLuG-E8sUJqmdELLbr8o6wdbVM
https://mahout.apache.org


Bibliography

[21] [MAHOUT-1510]: Goodbye MapReduce. https://issues.apache.org/
jira/browse/MAHOUT-1510.

[22] H2O: Building Random Forest At Scale. https://www.slideshare.net/
0xdata/rf-brighttalk.

[23] Random Forest Benchmark. https://github.com/szilard/benchm-ml.

[24] Chung, S. H. Sequoia Forest: A Scalable Random Forest Implemen-
tation on Spark. https://pdfs.semanticscholar.org/presentation/
a1c1/0b3767d73105aa1184985e38c3ea9b4a54a2.pdf, 2016.

[25] Gieseke, F.; Igel, C. Training Big Random Forests with Little Resources.
CoRR, volume abs/1802.06394, 2018, 1802.06394. Available from: http:
//arxiv.org/abs/1802.06394

[26] Spark wins Daytona Gray Sort 100TB Benchmark. https:
//spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-
benchmark.html.

[27] Apache Spark: Cluster Overview. https://spark.apache.org/docs/
2.3.0/cluster-overview.html.

[28] Apache Hadoop YARN. https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html.

[29] Zaharia, M.; Chowdhury, M.; et al. Resilient Distributed Datasets: A
Fault-tolerant Abstraction for In-memory Cluster Computing. In Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, Berkeley, CA, USA: USENIX Association,
2012, pp. 2–2. Available from: http://dl.acm.org/citation.cfm?id=
2228298.2228301

[30] Apache Spark MLlib: Random Forest Classifier. https:
//spark.apache.org/docs/latest/ml-classification-
regression.html#random-forest-classifier.

[31] [SPARK-3162] [MLlib] Add local tree training for decision tree regressors.
https://github.com/apache/spark/pull/19433.

[32] Bin-Packing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, ISBN
978-3-540-29297-5, pp. 426–441, doi:10.1007/3-540-29297-7_18. Avail-
able from: https://doi.org/10.1007/3-540-29297-7_18

[33] Schreiber, E. L.; Korf, R. E. Improved Bin Completion for Optimal
Bin Packing and Number Partitioning. In Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence, IJCAI
’13, AAAI Press, 2013, ISBN 978-1-57735-633-2, pp. 651–658. Available
from: http://dl.acm.org/citation.cfm?id=2540128.2540223

45

https://issues.apache.org/jira/browse/MAHOUT-1510
https://issues.apache.org/jira/browse/MAHOUT-1510
https://www.slideshare.net/0xdata/rf-brighttalk
https://www.slideshare.net/0xdata/rf-brighttalk
https://github.com/szilard/benchm-ml
https://pdfs.semanticscholar.org/presentation/a1c1/0b3767d73105aa1184985e38c3ea9b4a54a2.pdf
https://pdfs.semanticscholar.org/presentation/a1c1/0b3767d73105aa1184985e38c3ea9b4a54a2.pdf
1802.06394
http://arxiv.org/abs/1802.06394
http://arxiv.org/abs/1802.06394
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/docs/2.3.0/cluster-overview.html
https://spark.apache.org/docs/2.3.0/cluster-overview.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier
https://github.com/apache/spark/pull/19433
https://doi.org/10.1007/3-540-29297-7_18
http://dl.acm.org/citation.cfm?id=2540128.2540223


Bibliography

[34] Yue, M. A simple proof of the inequality FFD (L) � 11/9 OPT (L) + 1, �L
for the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica,
volume 7, no. 4, Oct 1991: pp. 321–331, ISSN 1618-3932, doi:10.1007/
BF02009683. Available from: https://doi.org/10.1007/BF02009683

[35] Kutner, M. Applied Linear Statistical Models. McGrwa-Hill international
edition, McGraw-Hill Irwin, 2005, ISBN 9780071122214, 214–255 pp.
Available from: https://books.google.cz/books?id=0xqCAAAACAAJ

[36] Bartos, K.; Sofka, M. Robust Representation for Domain Adaptation in
Network Security. In Proceedings, Part III, of the European Conference
on Machine Learning and Knowledge Discovery in Databases - Volume
9286, ECML PKDD 2015, Berlin, Heidelberg: Springer-Verlag, 2015,
ISBN 978-3-319-23460-1, pp. 116–132, doi:10.1007/978-3-319-23461-8_8.
Available from: https://doi.org/10.1007/978-3-319-23461-8_8

[37] Amazon EMR. https://aws.amazon.com/emr/.

46

https://doi.org/10.1007/BF02009683
https://books.google.cz/books?id=0xqCAAAACAAJ
https://doi.org/10.1007/978-3-319-23461-8_8
https://aws.amazon.com/emr/

	Introduction
	Distributed Random Forest Training
	Greedy Tree Induction
	PLANET
	Yggdrasil
	Available Implementations

	Random Forest Training in MLlib
	Apache Spark
	MLlib RandomForest

	Local Training
	Advantages of Local Training
	Local Subtree Training Implementation
	Simultaneous Training of Multiple Trees
	Reducing the Number of Tasks Using Bin Packing

	Handling Task Imbalance
	Task Imbalance
	Collecting Statistics
	Prioritizing Larger Tasks
	Predicting Task Duration Using Logistic Regression

	Experiments
	Dataset Characteristics
	Cluster Setup
	Benchmarking
	Comparison of Local Training Methods
	Effects of Random Forest Parameters

	Conclusion
	Bibliography

