Bachelor Project

Czech
Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Incident detection on SIEM events

Petr Poliak

Field of study: Open informatics
Subfield: Informatics and computer science

Supervisor: Stépan Kopriva, MSc.

May 2018

ii

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
s N
Student's name: Poliak Petr Personal ID number: 439562

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

Study program: Open Informatics
Branch of study: Computer and Information Science
4
Il. Bachelor’s thesis details
~N
Bachelor’s thesis title in English:
Incident Detection on SIEM Events
Bachelor’s thesis title in Czech:
Detekce incident nad SIEM udalostmi
Guidelines:
1) Study the provided SIEM (Security information and event management) event log dataset and the dataset of labeled
incidents (lists of events) of various types. The incidents were generated (labeled) by an existing rule-based system. The
ratio of the incidents to valid event sequences is very limited.
2) Design a classifier (or a set of classifiers), which classifies a sequence of incoming events either as an incident or valid
sequence.
3) Implement the classifier designed in point 2).
4) Evaluate the classifier on a test dataset, measure performance for each incident type and identify potential incidents
from unlabeled data.
5) Optionally deploy the classifier on the distributed computational framework (Apache Spark) to decrease the runtime of
classification.
Bibliography / sources:
[1] He, Habib, and Edwardo Garcia. 2009. Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data
Engineering 21 (9): 1263-1284.
[2] Wang, Shu, and In Tao. 2012. Multi Class Imbalance Problems: Analysis and Potential Solutions. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics 42 (4): 1119-1130.
[3]1N.V. Chawla, N. Japkowicz, A. Kotcz, Editorial: special issue on learning from imbalanced data sets, SIGKDD Explorations
6 (1) (2004) 1-6.
Name and workplace of bachelor’s thesis supervisor:
Stépan Kopriva, MSc., Artificial Intelligence Center, FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 28.02.2018 Deadline for bachelor thesis submission: 25.05.2018
Assignment valid until: 30.09.2019
Stépan Koptiva, MSc. doc. Ing. Tomas Svoboda, Ph.D. prof. Ing. Pavel Ripka, CSc.
L Supervisor’s signature Head of department’s signature Dean’s signature)

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I want to thank everyone from the Face-
book chats where I could cry my heart
out during the past months’ struggles.

Declaration

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within accordance with the me-
thodical instructions for observing the
ethical principles in the preparation of
university theses.

In Prague, 20. May 2018

Abstract

In this thesis, we focus on designing
a pipeline with a set of classifiers that
will be able to classify a sequence of
SIEM logs to flag incidental behavior.
Additionally, we tackle a problem of im-
balanced learning as the used dataset
does not contain many incidents com-
pared to the total size. The pipeline’s
input will be a sequence of SIEM events,
and the result will be an alert type if
any. Lastly, it contains the performance
of presented designs along with eval-
uation and an optimal method how to
classify input sequences.

Keywords: Imbalanced learning,
Sequence classification, SIEM incident
classification

Supervisor: Stépan Kopiiva, MSc.

vi

Abstrakt

Tato prace je zamérena na navrh pi-
peline (s nékolika klasifikatory), ktera
bude schopna zpracovat radu SIEM
logu a Kklasifikovat pochybné chovani.
Zaroven reSime problém uceni z ne-
vyvazeného datasetu, protoze poskytla
data obsahuji mélo incidentd v porov-
nani s celkovou velikosti datasetu. Pipe-
line bude brat za vstup sekvenci SIEM
udalosti a vracet typ incidentu, pokud
se nejaky objevi. Nakonec vyhodnotime
uspésnost navrhnutych klasifikatoru.

Klicova slova: Nevyvazené datasety,
Klasifikace rad, SIEM detekce
incidentt

Pireklad nazvu: Detekce incidentid
nad SIEM udéalostmi

Contents

1 Introduction a1l
1.1 Structure of the thesis
2 Technical Background 3
2.1 Imbalanced learning...........
2.1.1 Evaluation techniques for
Imbalanced learning
2.1.2 Sampling methods for
Imbalanced datasets............
2.1.3 Cost-sensitive methods. 6
2.2 Feature selection..............
2.2.1 Filter methods
2.2.2 Wrapper methods
2.2.3 Embedded methods. 10
2.3 Sequence classification 10|

2.3.1 Feature based classification [17]
2.3.2 Sequence distance methods

2.3.3 Model based classification .
3 Problem Analysis 15|
3.1 Problem settings
3.2 Problem formalization
3.3 Dataset overview............
3.4 Classifier architecture 18|

3.4.1 Sequence classification ... [19

3.4.2 Feature vector classification
4 Proposed solution 21
4.1 Data handling 21
4.2 Sequence classification

4.2.1 General algorithm

4.2.2 Sequence distance
4.3 Feature vector classification. .

4.3.1 Vector composition

vii

4.3.2 Classifier design

4.3.3 Class imbalance

4.4 Implementation

4.4.1 Technologies used
4.4.2 Training set format

4.4.3 Pipeline

4.4 .4 Classifier architecture

4.4.5 Libraries

5 Experiments

5.1 Sequence-based classification

5.2 Experiment metrics

5.3 Pipeline and implementation .
5.3.1 Classifiers

5.4 Evaluation..................
5.4.1 Incidentiality evaluation. ..
5.4.2 Alert type evaluation.

5.5 Features selected

6 Conclusion

6.1 Further development

A Bibliography

B CD content

Figures

2.1 We can see both —between-class
imbalance (between circles and
diamonds) as well as within-class
imbalance demonstrated by
different colors of circles. The two
imbalances are highlighted by
rectangles around them. 4

2.2 Combining SMOTE and Tomek
links. In (a) we can see the original
imbalanced dataset. (b) Shows the
transformation after generating
sample using the SMOTE algorithm.
(c) Contains the marked T-links. (d)
is the final result after removing
T-links.

Source: [71. 7

2.3 When we look at the XOR
problem we can see that both axes
alone are useless. Together,
however, we can see that the
problem is composed of well
separated clusters of respective

Classes. ... 9
2.4 Dynamic time warping example

where we can see how the two

series are linked to minimize the

distance. 12

2.5 An example of profile HMM with
three states —match, insertion and
deletion. We can see how deletion
state “skips” the next match
element in a sequence and insertion
adds element(s) before the next
match.

Source: [10]...................

2.6 Detail of an unrolled Istm neural
network. We can see in detail how
the information of state and result
are passed into the next
computation.

Source: [13[]...................

viii

4.1 Alignment of sequence s to
sequence t. As event of type b has
higher coefficient we prefer aligning
b, to miss-aligning two elements.
Additionally the picture showcases
how we want mappings to only link

consecutively and never cross. .. |25

4.2 The architecture of the two-layer
classification. First, we convert the
sequence to a feature vector. We
then classify the vector as either
incidental or normal behavior. Then
if the vector is classified as
incidental we return the type of
alert we believe the vector
corresponds to or return that the
sequenceisclean. 28

5.1 Confusion matrix for the
sequence distances using the
FastDTW method. The diagonal is
highlighted so we can see that only
pattern 1 and pattern 4 are closer
to each other than the rest of the

patterns. 36

5.2 The average performance of all
the classifiers from Section [5.3.1! for
the 1 : 1 imbalance ratio dataset. As
there aren’t enough colors to
uniquely plot all the points the
image is provided for reference of

the overall performance. 41
5.3 An ROC graph for the Forest

class of classifiers on the 1:1

dataset. 42

5.4 An ROC graph for the Tree class
of classifiers on the 1 : 1 dataset.

5.5 An ROC graph for the SVM class
of classifiers on the 1 : 1 dataset.

42

43

Tables

5.6 The average performance of all
the classifiers from Section for
the 1 : 100 imbalance ratio dataset.
As there aren’t enough colors to
uniquely plot all the points the
image is provided for reference of
the overall performance. 44

5.7 An ROC graph for the Forest
class of classifiers on the 1 : 100
dataset.

5.8 An ROC graph for the Tree class
of classifiers on the 1 : 100 dataset.

5.9 An ROC graph for the SVM class
of classifiers on the 1 : 100 dataset. [46|

5.10 An ROC graph for the direct
Tree classifier on all the 1 : 100
datasets with cost balancing. ...

5.11 An ROC graph for the direct
Tree classifier on all the 1 : 100
datasets without any balancing. .

5.12 An ROC graph for the direct
Tree classifier on all the 1 : 100
datasets with SMOTE and Tomek
links balancing.

5.13 A average weighted error of
alert type classification on the
1:100 dataset. 49

5.14 The average performance of
classifiers using additional features.
We can see the drastic decrease of
FP rate when compared to
classification without the additional

features in Figure 5.6

ix

Chapter 1

Introduction

In a corporate environment, it is a widespread practice to log all entities’
actions in a system. Be it the services providing functionality to the users,
or the users themselves. The reason behind that is to prefer having some
useless data to missing critical information.

The logs then later serve several purposes. We can use them to optimize
the network (e.g., when throttling), improve the availability of services
when they are overloaded, or monitor for suspicious or undesirable be-
havior.

After the logs are collected there is usually a group of analysts who
either manually search for anomalies or design an automatic rule-based
system to flag certain kinds of behavior and then verify whether it is a
false alarm.

We are given logs from such a system, and we want to apply machine
learning methods to it. Among the benefits we have knowledge distillation
[8] to iteratively improve the systems’ capabilities. Due to the nature of
the data, we have two problems that we tackle in this thesis. Because
we are logging behavior over time, we have to be able to accept variable
length input data. Secondly, because the systems need to be secure, there
aren’t many positive samples data. Thus we have a high imbalance of
different classes samples.

Our goals for this thesis are to analyze the labeled dataset, design and
implement a pipeline to classify incidents from sequential data with high
between-class imbalance, and lastly evaluate the design on a suite of
experiments.

1. Introduction

. 1.1 Structure of the thesis

The thesis is organized as follows:

Chapter 2| introduces the necessary background needed for this thesis.
In three parts it explains Imbalanced learning, Feature selection, and
Sequence classification.

Chapter 3| addresses the first assignment of studying the dataset and
analyzing the problem.

Chapter 4] contains the proposed models of the classifiers that solve the
problems from Chapter|3|for the second assignment. It describes two
approaches and then in Section 4.4]it describes the implementation
together with the technologies used for the third assignment.

Chapter 5| addresses the fourth assignment and evaluates the perfor-
mance of proposed models. It describes the pipeline and methodology
used for testing and the results of the experiments.

Chapter 2

Technical Background

In this chapter, we will introduce the necessary terms and methods that
were needed during solving of this work. In the first section we will
describe what is Imbalanced learning and what problems it introduces
and what are the techniques used to deal with it. Next, we will briefly
explain Feature selection. What it does and how it is useful. And in the
last part, we describe different kinds of Sequence classification problems
and their standard solutions.

. 2.1 Imbalanced learning

It is reasonable to assume some level of imbalance in any real-world
dataset used for machine learning. Imbalanced learning [7] focuses
on datasets that are imbalanced in the individual classes’ sample sizes
in ranges like 100:1 to 10000:1 where one class dominates the other.
There are two cases of imbalanced problems we can encounter. The first
considers only a binary classification in which case we refer to them as
the majority and minority classes. The second we usually refer to as
between-class imbalances where either at least one class dominates the
others, or there is at least one under-represented class.

Imbalanced learning also deals with the problem called within-class
imbalance. This means that a class has subconcepts that aren’t sufficiently
represented in the dataset. To demonstrate this imagine a problem of
animal classification from an image. Let’s focus for now on a subproblem
of differentiating between horses and dogs. Let’s assume the between-
class imbalance is negligible. Now if the dataset showcased a within-class
imbalance, it could be that it contains only the pictures of white horses
and black dogs. This could introduce errors such as not recognizing
the animal in the image or incorrectly classifying black horse as a dog.
Demonstrated with stars and circles in Figure [2.1]

3

2. Technical Background

4 o o o

£ 00° 000 04 o

0 Qo 0
o

o

o O o000

o .o

0O O "o00 0°
o 0

O o
o
00°
o X,
0000
00
o 0 L0
o O o©

>

f1

Figure 2.1: We can see both —between-class imbalance (between circles
and diamonds) as well as within-class imbalance demonstrated by different
colors of circles. The two imbalances are highlighted by rectangles around
them.

Since the dataset for this thesis is free from within-class imbalance
(each class has enough samples to showcase all properties), the following
text focuses on between-class imbalance.

Generally, there are two approaches to dealing with between-class
imbalance. The first approach focuses on resampling the dataset by either
oversampling —generating new samples with the knowledge from the
original samples —or undersampling the majority class thus balancing
the ratio of the classes. The second approach is alternating the respective
cost of misclassifying either class.

B 2.1.1 Evaluation techniques for Imbalanced learning

The problem imbalanced datasets introduce is that we cannot use basic
evaluation methods (for both learning and model evaluation). For example

4

2.1. Imbalanced learning

if we were using simple error rate

number of incorrectly classi fied samples

€r =
" total number of samples

while having an imbalanced dataset of 1000:1 in a two class classification
problem, any classifier with strategy of §(z) = majority class would have
an error ¢, ~ 0.001 which could be considered great in most cases but the
classification would have no informational value.

Precision and Recall metrics. One approach to measuring the quality
of prediction is Precision and Recall which are on a binary classification
problem defined as

TP
P=—"__
TP+ FP
TP
R_TP+FN

A system with high recall but low precision returns many results, but
most of its predicted labels are incorrect when compared to the training
labels. A system with high precision but low recall is just the opposite,
returning very few results, but most of its predicted labels are correct
when compared to the training labels. An ideal system with high precision
and high recall will return many results, with all results labeled correctly.
(Paragraph taken from [1]).

Receiver Operating Characteristics curves. The ROC method com-
pares two characteristics —true positive rate and false positive rate where

TP FP
TP rate = o FP rate = No

An ROC graphical plot is obtained [7] by plotting TP rate over FP rate.
A point is an assessment of a single hard classifier. An ROC curve is
obtained for soft classifiers and signifies the tradeoff for benefits vs costs.
When plotted with the origin at (0,0) and TP rate on the y axis the optimal
point lies in top left corner (F'P_rate, TP rate) = (0,1). When concerned
with ROC curves we usually compare the Area Under Curve as the metric
to compare two classifiers.

B 2.1.2 Sampling methods for Imbalanced datasets

As mentioned above —sampling methods are divided as over- and under-
sampling.

2. Technical Background

Random sampling. The most straightforward approach is random over-
/funder-sampling. For oversampling we simply replicate examples from
minority class until we achieve the desired ratio. Undersampling randomly
selects cases from the majority class and excludes them from the current
set.

Disadvantages are apparent —naive undersampling can lose some infor-
mation valuable to the classification. Oversampling is prone to overfitting
and also increases the relevance of outliers and malicious samples.

Synthetic minority oversampling technique. The SMOTE algorithm
generates new entries by interpolating data points from minority classes.
For example, let’s have a sex classification problem based on the height
of a person. If we have two points (180, M) and (190, M) it is reasonable
to assume that there probably exists a point with height in the interval
[180;190] and class M.

Undersampling using Tomek links. Tomek links (or T-links) are used
to clean the border between clusters of different classes. If we have the
distance between two points d(z,y) defined we call a pair (z,y) a T-link
if following conditions hold: (1) x and y are of different classes (2) there
is no such point z such that d(z, 2) < d(z,y) and d(y,2) < d(z,y). This
means that for some point the closest other point is of a different class
thus one of those points either being an outlier/noise or both points being
on the border of the two clusters.

Removing Tomek links leaves us with a cleaner dataset (less noisy) and
better-separated clusters that can improve the classification.

Combining oversampling with data cleaning. Better results can be
achieved by combining both informed under- and over-sampling. By first
generating new samples using the SMOTE algorithm to better balance the
classes and then cleaning the dataset using T-links an improved dataset is
obtained as can be seen in Figure 2.2,

B 2.1.3 Cost-sensitive methods

Where sampling methods try to mitigate the dataset imbalance by chang-
ing the distribution of samples cost-sensitive methods change the penalty
for misclassification in favor for the minority class/es. For example, when
using the AdaBoost algorithm, we can alter the reweighing of samples to
incorporate the imbalance mitigating costs or when using neural networks
we can weight the output neurons differently or change the error function
to reflect the cost.

2.2. Feature selection

4 O 0.0 # 9 x°0°.0
O Oopo * Ao w L ©
*Ox O o WO *x O e

* * O 040
@) OOO (@) O * O*O OO0 * T ok ok
0’00 o * QOoox”*
O O5 O o*0,0 x 0O
O we °0s° o *o 9090
OOOOOOQOO oY O g0
2 fi
(a) (b)
' o
- *?**OOOOO . . OOOOO
« 2*%0 o 0o « *9oo0
,‘*%Q* ,Q__\"G‘;‘.O O O
Gr5 0 0 Cx=xx 0 OO0 *
0, 00 ojxi* ©Oo o L&
o‘,?‘f;@f;;pg%'--o © © o _ o0
o *g & O
o® o o o° o © 0o %0
fi fi

Figure 2.2: Combining SMOTE and Tomek links. In (a) we can see the
original imbalanced dataset. (b) Shows the transformation after generating
sample using the SMOTE algorithm. (c) Contains the marked T-links. (d) is
the final result after removing T-links.

Source: [7].

. 2.2 Feature selection

Feature selection is a field focusing on selecting a subset of features from
the original feature vector while retaining good prediction results. The
goal is to remove features that don’t provide much information. These
can be dependent variables which don’t contain any additional knowledge
or features which are very noisy and thus reducing the generalization of
the model.

The benefits of removing features are improved generalization and the
reduction of dimensionality. The difference from simple dimensionality
reduction techniques (for example PCA) is that we are reducing the
dimensionality by removing axes (the whole individual features) and

7

2. Technical Background

leaving us with a fewer number of features, not just a lower dimension
but of some artificial variables which don’t have an interpretation.

Generally, there are three categories of feature selection —filter meth-
ods, wrapper methods, and embedded methods which differ in the feature
selection criterion. We briefly describe each below.

B 2.2.1 Filter methods

Filter methods are considered a baseline [6] regarding variable selection.
They use methods of statistical analysis to rank variables how relevant
they are to the labeling. The variables are then filtered out when not
meeting a threshold. Some examples include Pearson correlation coeffi-

cient
cov(X;,Y)

-~ Var(X)var(Y)
where X; represents the values of a feature ¢ and Y represents the labels
respective to the feature vectors.

R(i)

However, [6] showcased that two features that are useless by them-
selves can have information when combined. Observe Figure [2.3| with
the XOR problem. We can see that histogram of neither axis contains
information to construct a discriminative classifier. Looking at the original
distribution, we can see that the 4 clusters are well separated to classify.

Another disadvantage of Filter methods is that they only consider each
variable independently. This means that they will not omit redundant
variables which highly correlate to an already selected variable. A simple
case would be to duplicate a feature —since the original feature passed
the threshold test (and was considered relevant) the duplicate will pass it
as well thus the algorithm will not filter out a redundant variable.

Filter methods are still a useful technique though as they are indepen-
dent of the choice of the predictor and can be used as a pre-processing
step.

B 2.2.2 Wrapper methods

Whereas Filter methods rank variables and then filter the worst out,
Wrapper methods aim to pick the best subset of them. To do so, we
evaluate a selected subset of features using a classifier as a black box and
the performance of it as the objective function we are trying to maximize.
Compared to filter methods this adds the relations between features to
the evaluation, thus providing better results.

With N being the number of features there is 2 number of subsets,
so we are limited by the computational ability of our system to try all

8

2.2. Feature selection

Figure 2.3: When we look at the XOR problem we can see that both axes
alone are useless. Together, however, we can see that the problem is com-
posed of well separated clusters of respective classes.

possibilities only for a small N. Thus, we employ heuristical search
algorithms to obtain a sufficient but possibly sub-optimal solution.

The methods are divided [4] into two categories first being the Se-
quential selection algorithms and second being the Heuristic search
algorithms.

Sequential selection algorithms. This is a group of iterative algo-
rithms that construct the final subset by adding one feature at a time.
Both forward and backward approaches have been suggested.

Forward approaches construct the set from one element upwards. Each
iteration we try to add one additional feature to the current subset and
evaluate it. The best new subset is then selected for the next iteration.

Backward search uses the opposite approach. We start with the com-
plete set of features and each iteration we remove one feature that has
the smallest decrease in the objective function (the performance of the

9

2. Technical Background

predictor). We repeat this process until the desired number of features
has been achieved.

It has been proposed [16[] to use Floating search methods. This process
starts as a forward selection algorithm but incorporates a backtracking
step. Each iteration we also try to remove a feature from the current
subset if we can improve the performance of the predictor from the
previous n — 1 sized subset. We can imagine this as swapping one of the
features in the current subset with the current feature we want to add to
improve the result instead of just adding it.

Heuristic search algorithms. A genetic algorithm approach is given
[4] as an example of a Heuristic search. We construct N random subsets
of the length k£ we want at the end, and then the genetic algorithm is used
to maximize the predictor’s performance. A modified (more aggressive)
version of GA —CHCGA is recommended.

B 2.2.3 Embedded methods

Where Wrapper methods gain in results, they lose in time complexity and
computational demands over Filter methods. Embedded methods try to
take the advantages of Wrapper methods to evaluate whole subsets of
features and reduce the time complexity of iterative model re-training
and performance evaluation by incorporating the feature selection to the
model learning.

Mutual information (MI) is presented:
I(Y,X)=H(Y)- H(Y|X)

where H(Y') is the Shannon entropy of Y and H(Y|X) is the conditional
entropy. A basic objective function for an embedded method is then

I(Y,f)—ﬁZI(f,S)

sES

where “Y is the output, f is the current feature, S is the set of already
selected features and controls the importance of the MI between the
current feature and the selected features from S” [4]].

. 2.3 Sequence classification

The literature [19] divides Sequence classification into two different
cases. The first is called conventional sequence classification and it
concerns with the whole sequence having one label. The second one

10

2.3. Sequence classification

instead of classifying the whole sequences tries to classify each element
of a sequence with a label is called a strong sequence classification.

Each field has many applications [19] lists examples for conventional
sequence classification a DNA sequence (coding/noncoding area) or ECG
data (healthy/unhealthy patient) and for the strong classification stream-
ing sequences or sequences where we observe a change in state.

The classification methods can be divided into three categories —fea-
ture based classification, sequence distance-based classification, and
model-based classification [19]].

B 2.3.1 Feature based classification

The first method tries to remove the original restrictions that prohibit us
from using regular methods of machine learning (decision trees, neural
networks) by representing/compressing a sequence to a feature vector.

k-grams are introduced [19] as a sequence of k£ consecutive symbols.
The sequence can be then transformed into a vector by the presence of
each k-gram or by its frequency. Instead of k-grams an improved way to
select n-tuples of symbols is presented. Instead of all k-grams we select
patterns of subsequences while following certain rules that optimize the
distinction between classes. The accuracy is reported to improve by 10-
15%.
The problem of representing sequence by smaller subsequences is that
we lose some global properties of the sequence by storing only local
patterns so the usage of wavelet decomposition is noted [[19]. Wavelet
decomposition allows containing the information of the sequence on
multiple resolutions thus providing better context for classification of the
whole sequence.

B 2.3.2 Sequence distance methods

Sequence distance methods make use of distance-based machine learning
models. First, a distance function is defined which is subsequently used
in some standard algorithm. An example is given of K-nearest neighbors
or SVM [19]. Because KNN is a lazy classifier that uses the training data
to classify directly, the choice of the distance function is computationally
reflected in the performance of the classification.

The first and most intuitive distance metric is Euclidean distance. For
two sequences a and b of length [we compute it as

d(a, b) = Z (ai — bz)2

1=0..1

11

2. Technical Background

Another distance metric is called Dynamic time warping (DWT) and
handles cases when we have two sequences that are very similar but
with a differently skewed axis. DWT tries to find the closest distance
by aligning the two sequences. See Figure |2.4 for visualization. DWT
is calculated using dynamic programming and is an expensive distance
function that should be used when Euclidean distance is not providing

Figure 2.4: Dynamic time warping example where we can see how the two
series are linked to minimize the distance.

B 2.3.3 Model based classification

The last mentioned [19]] way of classifying sequences is by using genera-
tive models. It assumes that a class of sequences is generated by some
underlying probability distribution. We then define the model using do-
main knowledge or assumptions and train the parameters of such model.
When classifying a sequence, we assign it a class with the maximum
likelihood.

As in many other classification problems, there is a Naive Bayes clas-
sifier. It assumes that the events are independent of each other which
is in many cases violated. However, it still performs very well with its
simplicity taken into account.

Another models cited are Markov Model and Hidden Markov Model.
The latter assumes that the sequence is a Markov process with unobserved
states. The use of profile HMM is noted with three types of states of
which two are gap states —match state (the correct element is present),

12

2.3. Sequence classification

insertion state (another element is inserted that is missing in sequence
model) and deletion state (an element is “deleted” in the sequence model).

Delats @ Delate

S Y trsr. S AL et > Y

E=gln Match Mateh Match Hateh Mateh End

Figure 2.5: An example of profile HMM with three states —match, insertion
and deletion. We can see how deletion state “skips” the next match element
in a sequence and insertion adds element(s) before the next match.

Source: [10].

LSTM Neural Networks. The rationale behind Recurrent neural net-
works is that when a human tries to understand for example a paragraph
of text, he does not read it as a sequence of individual words but read the
text as a whole. When the person is reading a word, he has the previous
words in memory in a context of the whole sentence.

LSTM or Long short-term memory neural networks improve this idea
by providing an option to regulate the importance of the recurring loop.
In Figure |2.6| we can see a detail of an unrolled recurrent neural network.
The arrows in and out of the network (left and right) symbolize the
loop, the memory or cell state on top and the result h; on the bottom.
Important is the top line where the cell state is modified by the current
input which is then passed to the next computation (loop). For a more
detailed explanation, we redirect the reader to the original article [13]].

13

2. Technical Background

@
S,

~ N

&
% tanh
—PU >

|
®) &

Figure 2.6: Detail of an unrolled lstm neural network. We can see in detail
how the information of state and result are passed into the next computation.
Source: [13].

o

EigtS
Q)

14

Chapter 3

Problem Analysis

The chapter defines the problem we are going to solve in this thesis.
Firstly we provide the reader with the information surrounding the issue
such as the origin of data and what we are trying to solve. After giving
the background information, a formalization of the problem is provided.
Then we briefly describe the format of the dataset and lastly outline the
solution.

. 3.1 Problem settings

For corporate enterprise systems, it is a prevalent practice to log vast
amounts of data about what is happening in the system and on the network.
While logging everything is not much useful very often we can focus on
specific subsets of logs determined by our domain knowledge of the
problem we are trying to solve.

In our problem, we have the activity logs of users (and internal services).
The logs are of resources they are using and how they communicate. What
that means is that any agent in the network when accessing a resource
(e.g., a file on a shared drive) this action is logged because the resource
is only available while being authenticated and authorized.

Generally, each log contains the information of the origin, the event
type (signifying what is happening) and the target of the action (where ap-
plicable). These logs are created in a service called Active directory. (We
refer the reader to the internet if a deeper understanding of the system is
desired.) The Active directory service handles both authentication and
authorization thus when accessing any resource or producing any action
we have a place through where everything needs to be routed. The logs
are then collected from multiple such instances to provide a single stream
of events along with event time (also called log time) and the collected
time when was the log received by the collector. Section|3.3|describes the

15

3. Problem Analysis

dataset in more detail as we now focus more on the general description
of the system.

Incident origin. After these logs are collected multiple queries designed
by specialists are run. These queries contain the information about the
behavior we are trying to target that could be both the insufficiency
and breach of the system. An artificial example of this could be a user
overloading the network —firstly a well-behaved user should not be doing
that (breach) secondly a single user should not have the permissions to
do that (insufficiency of the system).

The task at hand is the following —having sequences of events classified
by the given rule-based classifier design a model that will be able to
replicate the desired behavior.

Purpose of such system. A reader might now object as to what is the
purpose of using machine learning when we already have the original
objective function to classify the records? That is a very valid question,
and the answer to that is not universal to all such problems. The role of
machine learning is that it can draw patterns from data where it is not
apparent. This along with the use of an interpretable classifier can be used
to enhance the system’s design iteratively. The other great property of
machine learning is the generalization. Because the analysts had to design
the classifier with data analysis and experience they had to make certain
decisions such as bounds for when “too much” is actually “too much”.
The model thus generalizes these rules and makes the bounds softer.
This produces some level of false positives but also catches behavior that
would go undetected through the system by acting slightly below the hard
threshold.

. 3.2 Problem formalization

Let’s now strip away the specificities and focus on the underlying problem
abstractly. We have a system that produces events. We then have some
continuous subsequences classified as incidents. The goal is to create
a machine learning model that will learn from the provided labeled se-
quences and which can classify an incoming series of events as either
normal or mark the series as abnormal and why.

We want to create a model g that given a sequence S; of length n:

mn
St =e1,€2,...,€n

16

3.3. Dataset overview

it assigns the sequence a label such that we minimize the risk R on
training set T'

R(g) = kS E L(yi, 9(5:))
N
=

Where T is the training set of pairs (.5;, y;) of sequences and corresponding
labels and L is the loss function of classifying labeling of sequence S by
model g.

. 3.3 Dataset overview

In listing [3.1| we provide an example log message in JSON format.

We can notice a pattern that there are several metadata fields, usually
beginning with an underscore such as _tz for timezone, etc. There are
several fields in the type of _type_X which are then a space-separated list
of other fields we can find in the object. The types are str, num and ip
and they signify the type of the fields in the object.

There are important fields such as norm_id which tells us the ori-
gin of the message (the service which generated the log) and user or
caller_sid which identify the originator of the event. Other notable
fields are log_ts -time of the event used for ordering the events into a
single stream, or event_id —what is an id of the type of the event being
logged.

Additionally, there are several fields without any informational value.
These fields are usually a human-readable extension, e.g., a description
or a message. We can safely discard them during the feature extraction
because they correlate with a coefficient 1 with some other field. For
example, description will always be the same for each event_id. Even if
it changed in the future, it would be the same from then onwards.

{

"description": "This event is generated when a logon
session is destroyed",

"event_source": "Microsoft-Windows-Security-Auditing",

"log_ts": 1518525895,

"_type_str": "msg device_name collected_at device_ip
col_type _tz _enrich_policy domain event_source
event_type caller_sid user object norm_id label host
event_log logon_id event_category action message
description _fromv550",

"device_name": "RUMOSDCWO1",

"logon_id": "Ox7583bfa",

"event_type": "Success Audit",

17

3. Problem Analysis

9 "_offset": 32741,

10 "host": "RUMOSDCWOl.Disagroup.net",

11 "action": "logged off",

12 "caller_sid": "S
-1-5-21-2320514144-3261309781-1462386680-119625",

13 "col_ts": 1518515096,

14 "severity": "6",

15 "_tz": "UTC",

16 "label": "User,Logoff",

17 "event_category": "Logoff",

18 "message": "An account was logged off",
19 "logon_type": "3",

20 "norm_id": "WinServer2008",

21 "collected_at": "DKCNTLPOO1",

22 "_identifier": "4",

23 "device_ip": "172.24.85.21",
24 "event_id": "4634",

25 "_fromv550": "t",

26 "_enrich_policy": "ueba_enrich_policy",

27 "domain": "DISAGROUP",

28 "_type_num": "col_ts severity facility log_ts event_id
logon_type sig_id _offset _identifier",

29 "event_log": "Security",

30 "_type_ip": "device_ip",

31 "sig_id": "6",

32 "col_type": "syslog",

33 "user": "NORUMOSLTO250F\$",
34 "facility": "1",

35 "object": "account"

36

Listing 3.1: An exmaple log message in JSON format

. 3.4 Classifier architecture

There are two distinct classes of alerts. The first lies in the behavior
pattern of the user which we will try to classify as a sequence because we
want to preserve the sequential order of the events. The second classifies
the user based on an abnormal quantity of different events.

18

3.4. Classifier architecture

B 3.4.1 Sequence classification

The essence of the first alert type lies in the sequential nature of the data.
The alert signifies some behavior pattern that an entity presents. The
underlying reason for that might be for example a malware breach. There
are multiple ways sequence classification is handled. Another problem
this solution contains is that we have to handle variable length input
because the sequences need not be of the same length.

Anomaly detection. One the literature calls Anomaly detection and is
more focused towards finding a noticeable change in the behavior. The
reason is that the patterns of entity behavior in a system are mostly stable.
This is due to the recurrence of tasks.

An example could be a receptionist. The person would probably use
collaborative services (such as email and shared calendar) and log on
in the morning and leave in the evening. When a breach would occur
on such entity, the system would notice that the entity is using unusual
services, e.g., accessing shared files, or manifesting an unusual behavior
—trying to log in on multiple clients at the same time. Such behavior
would exhibit abnormal usage pattern and would then be flagged.

Sequence distance. The other approach —Sequence distance (de-
scribed more in-depth in Section |2.3.2) leverages the order of the events
and the patterns that occur because of that. It does not compare the
patterns of recent behavior to the current one but instead tries to find
how closely a given sequence resembles labeled patterns.

The rationale is that we are trying to flag behavior that resembles
the pattern. When a PC is infected with malware, we can monitor its
behavior. With the data obtained by monitoring the behavior, we can
then classify not just an anomaly in behavior but also what is the cause
of it. This approach misses a new kind of attack if the attacker changes
the behavior pattern; however, this method is resistant towards random
behavior changes that are not caused by an external influence.

B 3.4.2 Feature vector classification

For the second kind of alerts, we focus more towards the composition
of the sequence than the individual patterns. The predictors for these
alerts could be called threshold classifiers because usually there will be
some limit (or generally a bound space) of what we consider not to be
an anomaly. Because of this we do not take the sequence as individual
elements but try to represent it in a fixed length input.

19

3. Problem Analysis

An example could be that usually, a person logs on and out a few times
a day. A worm would want to spread through the network so it would try
to access all the resources (in a simplified view). This would lead to an
abnormal count of for example Access denied events.

Because we handled the variable length of the sequence and the input
is thus fixed in size, we can use standard machine learning models such
as SVM or Decision trees.

20

Chapter 4

Proposed solution

In this chapter, we focus on the implemented solution to the problem
from Chapter|3. Firstly we describe the workflow of the overall solution.
Then we focus on the design of the classifiers. In the last section, we
describe how we implemented it concerning the technologies used and
implementation details.

. 4.1 Data handling

There are two kinds of information we can draw from data.

One that is useful for the data analyst to see basic patterns and extract
information based on it. This can be used to tailor the architecture of the
model used for the problem or pre-process the data to fit the model only
on the complex patterns while also cleaning the input for the model. An
example could be that we only try to predict some classes of alerts on logs
generated only by a single user while other patterns on services’ logs.

The second kind of information in the data is everything else. Whenever
we see a field that we do not draw some immediate conclusions as how
to use it, it can have some informational value to the classification. The
best examples for this are the artificial neural networks. For the famous
machine learning algorithm AdaBoost [5] one had to create the small
classifiers (or at least specify the classes of such) to use the algorithm.
Neural networks do not need any set of possible small classifiers because
they emerge inside of the network during the learning process and can
be very complicated such that it is hard to draw any information from the
model (compared to for example decision trees). This also means that the
usefulness of such information depends on the model we choose.

Based on this we can design the general algorithm of finding an inci-
dental behavior. In Section |3.1|we mentioned that the logs are collected
from the whole network and merged into a single stream. However, as

21

4. Proposed solution

mentioned above we can lift some responsibility from the classifier by
picking out only the relevant logs. We can see from the data that we clas-
sify only behavior for a single user. This means we can run the analysis
for each user separately because the evaluation is independent of other
users’ behavior.

Algorithm 1: General algortihm
Input: Logs - List of sequences to be classified
Input: stepSize - The size of the step from interval (0, 1]
Output: Alerts - Label of the sequence s
Data: Windows - List of sliding window sizes to classify with

for (user,logs) € Logs.groupByU ser do
for windowSize € Windows < logs.size do
stepLength < windowSize x stepSize
fori < 0;i < logs.size,i + t + stepLength do
class < classifySequence(logs[i : (i + windowSize)])

if isAlert(class) then
| Alerts.add(class)

end
end

end
end
return keepSmallestOfOverlappingIntervals (Alerts)

In Algorithm |1/ we examine each user independently, and this step
can be parallelized well on a per-user basis. For each group of logs, we
then classify all sliding windows of desired sizes. We do not evaluate all
possible windows (which would be of step 1) but only by given stepSize
which is relative to the window size (e.g., % of the sliding window size).
This can significantly improve the speed of the algorithm but introduces
some level of fuzziness as we might not select the smallest possible
sequence that would trigger an alert but only the smallest window with
some possible noisy logs at the beginning or the end. As a last step of
the algorithm, we remove overlapping intervals of the same alert type
leaving us with the smallest sequence length of the same alert that could
have been otherwise triggered by a sequence that is slightly larger thus
containing also the incidental behavior.

. 4.2 Sequence classification

The first classifier takes the task of classifying the whole sequence. It
preserves the structure of the sequence as described in Section |[2.3|and

22

4.2. Sequence classification

uses the nearest-neighbor class of algorithms to classify it with a set
threshold for the sequence not containing an incident. The requirement
for Nearest neighbor algorithms is to define a distance metric between
two sequences. We go over the proposed solution with increasing detail on
the specific functionalities and dependencies. First, we provide the pseudo
algorithms for the general classification algorithm then we describe the
sequence distance metric used and then finally with the event distance.

B 4.2.1 General algorithm

Because we use Nearest neighbor class of algorithms, we have to calculate
the distance between the current element we are trying to classify and
the elements of our training set. A slightly modified version of Nearest
neighbor algorithm in Algortihm 2|

Algorithm 2: Sequence classifier
Data: w- Weights for distance between different event types
Data: T- Set of training samples
Data: Ty - Subset of sequences of class k
Input: s - Sequence to classify
Output: [- Label of the sequence s

| < no alert
nnCriterion < inf

foric {k, T, # 0} do

distances « [0...0]
fort €T, do
| distances|k| « sequenceDistance(s,t,w)

end

if c «<improvesNNCriterion (nnCriterion,distances,i) then
[+ 1
nnCriterion < c

end

end

The algorithm is initialized as the sequence s not being labeled with any
alert. We then iterate over all classes of alerts. For each alert class we
calculate the distances from the current sequence s, and then we evaluate
the class’ nnCriterion on all distances together. This is to incorporate two
things. First, it allows us to change the Nearest neighbor strategies such
as k-NN or minimal average distance to a class. Secondly, it allows us to
incorporate thresholding the criterion. We can decide for each class how
close we want the sample to be to classify it as belonging to that class. It

23

4. Proposed solution

allows us to not label a sequence as label [just because it is closest even
when the distance is not sufficient and thus lowering false positives.

B 4.2.2 Sequence distance

In Algortihm |2| we used a distance metric sequenceDistance to calculate
the distance of two sequences. It took three arguments (s, ¢, w) where s is
the sequence we are classifying, ¢ is a sequence from the training set, and
w is the matrix of weights for distances between different event types.
Algorithm |3| provides pseudocode for such distance metric.

Algorithm 3: Sequence distance
Input: s - Sequence to align of length n
Input: ¢ - Sequence to align to of length m
Input: w - Weights for event types
Output: The minimal sequence distance as defined in|2.3.2

DWT[1...n, 0] + inf

DWT[0, 1...m] < inf

DWTI0, 0] + 0

fori <+ 1tondo

for j < 1tomdo

cost + eventDistance(s[i], t[j])

if t[j].eventType # s[i].eventType| then
| cost + (14 wlt[j].eventType]) * cost

end

m < min(DWT[i — 1, j], DWT[i, j — 1], DWT[i — 1, j — 1])
DWT][i, j] « cost +m

end

end
return DWT [n, m]

When computing the sequence distance, we use a modified version
of DWT (2.3.2). By using DWT, we are not only trying to align the two
sequences but to map each element (¢;;¢;) € s to an element (tx;ex) € t
such that we minimize the sum of distances of events in a mapping

|(tises) = (trsex)| = d(ei, ex)

over all mappings while not crossing the mappings (formally below) and
depicted in Figure 4.1 We can see that the mapping (depicted by the lines
between elements) never cross. Further the mapping will be referred
with a pair of indexes {(¢;;e;) — (¢j;€;)} = m(i,) Having two mappings:

24

4.3. Feature vector classification

m(i, k), m(j,1) Following condition holds true:

Vi,j,/{i,l:tjgti = t; < 1

Additionally, we extend the distance metric by a weight. The cost
depends on the event type of the event (¢x;ex) € t we are mapping to.
The motivation for this approach is that the sequences are cluttered with
unimportant events that aren’t valuable to the sequence classification.
The events that are informatively valuable to the classification will have
a high coefficient thus miss-aligning it with an event of a different type
will have a big cost. On the other side events that don’t provide much
information will have a low coefficient, so we miss-align them to align the
important events better. Visually represented in Figure 4.1|.

s=a a b b ¢ a b a

//I\

t=a b a ¢ b b «a
w=(a—0.1,b—0.7,¢c — 0.2)

Figure 4.1: Alignment of sequence s to sequence t. As event of type b has
higher coefficient we prefer aligning b, to miss-aligning two elements.
Additionally the picture showcases how we want mappings to only link con-
secutively and never cross.

. 4.3 Feature vector classification

Classifying sequences rises the problem of classifying input of various
lengths. One of the options to handle that is to create representation and
transformation of the input such that the result is of constant lengths
(among other approaches described in Section [2.3.1). This is also done
in, for example, HashMaps (or dictionaries in some languages) where we
hash the key such that we convert it into a constant dimension space.
Hashing, however, has the property of having a small change in input
results in a significant change in output which is undesirable as it skews
the space erasing the essential similarities. In this section, we first
describe how we transform sequences to a constant length feature vector
then give the description of the architecture of our classifier and finally
note how we chose to deal with problems risen in Section |3l

25

4. Proposed solution

B 4.3.1 Vector composition

Feature vector elements. The elements of a feature vector are usually
constructed using aggregate functions such as min, max, sum, count, etc.
(and their equivalents for other data types) of the fields that are present
in the original events. Other than simply aggregating fields we can also
select which fields to preserve. By this, we can remove fields to clean
the data (e.g., a description that is the same for each event type). Also,
removing fields that are rarely similar can improve the classification (such
as timestamps which we use only for the ordering of the events). We
construct the feature vector from the sequence using the event id field
as we believe this field contains the most information about the sequence
concerning the alerts. We experimented with additional features and
present the results in Section|5.5|

Feature vector construction. To further deal with the variety in length
of the sequences we use the bag of words model. We can approach this
in two ways. First, because we know that the event id is a four digit
number we have the bounds for all the values v € [1000;9999]. We can
then construct appropriately sized vector such that we have a dimension
for the count of each possible integer in that range. This approach is more
future proof; however, it suffers from the course of dimensionality [2].

The second approach (that we selected) first creates an ordered set E of
all possible values of event ids in the dataset. The feature vector is then
constructed such that the ¢-th dimension of the vector v corresponds to
the i-th smallest event id in the set. Having a sequence S and an event_id
set B

S=1,5,5221,1
E=1,2,5

We represent the sequence S as a vector v = (3,2,2). This approach
solves the problem of how to represent a variable lengths input, but we
lose the information that was contained in the ordering of the events in
the original sequence as explained in more detail in Section [2.3.1.

B 4.3.2 Classifier design

Now we want to describe two different approaches to the classifier design.
The first is a straightforward application of a conventional classifier to the
problem, or in an extended way for multi-class classification. The second
approach splits the labeling of a sequence into two steps —firstly decide
whether a sequence is incidental or not and if yes decide what kind of
alert we should flag it in the second step.

26

4.3. Feature vector classification

Conventional classifiers. Below we present two different approaches
to classification. Both of them depend on the use of conventional clas-
sifiers for the actual labeling but handle the process of classification
differently. For the underlying classifiers, we have selected SVMs, Deci-
sion trees, and Random Forests.

SVMs try to find a separating hyperplane to separate the samples of
different classes. An extension of soft margins is used when non linearly
separable case is encountered. Additionally, several kernel methods are
used as well to deal with linear nonseparability of the dataset. Because
SVMs do not provide by default a way for multiclass classification, we use
a “one-against-one” model to classify different types of alerts. We chose
SVM because of its relative accuracy and simplicity, and past widespread
use which made it a baseline classifier.

The second class of classifiers is Decision trees. Decision trees divide
the space into multiple subspaces in an axis-aligned fashion which fits the
presumption of thresholding values in feature vectors. Decision trees are
naturally multi-class classifiers and thus well suited for this task.

The last kind of classifiers is a Random forest classifier. Random forest
train multiple decision trees on random subsets of training dataset and
then select the result based on majority vote. This improves the perfor-
mance because multiple different trees are trained and also increases the
generalization ability.

Direct multi-class classifier. As already mentioned —the first classifier
is straightforward. We do not select the classifier concerning the between-
class imbalances and only focus on the problem of classification. This
means we apply the classifiers mentioned above to the problem directly.

Two-layer classification. The second classifier architecture consists
of a two-layer classification. The first layer has the task of classifying
whether a sequence is incidental or not. The second layer is applied only
when the sequence is considered incidental and outputs its alert type.
Architecture depicted in Figure |4.2|

We create an additional dataset by transforming the original one into a
y € {0, 1} classification problem (we merge all alerts into a single type).
This gives us more samples of the minority class (now a single minority
class) which improves the between-class imbalance against the majority
slightly as well as increases the number of samples we can synthesize
data from (using SMOTE algorithm etc. more in-depth in section 2.1).

There are several benefits to this approach. The first is that based
on the experimental results we can output two kinds of certainty —how

27

4. Proposed solution

Preprocessing 1. layer 2. layer Output

What kind of
alert?

Transform to
Sequence Is an Alert?
FeatureVector

Figure 4.2: The architecture of the two-layer classification. First, we convert
the sequence to a feature vector. We then classify the vector as either
incidental or normal behavior. Then if the vector is classified as incidental we
return the type of alert we believe the vector corresponds to or return that
the sequence is clean.

successful the classifier is that a sequence is an alert and how reliable is
the prediction of the type of the alert.

Another benefit is that we can separate the problems. Let’s now focus
on the problems we separated and what it allows us to do.

1. Because the classification of incidental behavior is only a binary
problem, we can use some more standard solutions. For example for
SVM, this improves the speed of the classifier as multiclass SVM uses
the “one-against-all” approach.

2. The imbalances of the alert types are now relevant. We no longer
need to balance the alert types relative sample size as the a priori
probability of each alert type contains information about the respec-
tive occurrences.

B 4.3.3 Class imbalance

There are some similarities when dealing with the between-class imbal-
ance problem for both of the approaches. As mentioned in Section 2.1 we
can use sampling methods that alter the samples of the dataset or cost
methods where we alter the loss on a per-class basis.

Cost methods. Because we chose to use SVM, Decision trees and
Random forests as our predictors the use of cost method is very straight-
forward. All methods allow us to incorporate a different penalty for
misclassifying a sequence. For the direct classifier we can balance the
weights such that the sum of weights for alerts equalizes the difference
in count against clean training samples. For the two-layer classifier we
balance only the first (0/1) layer because as mentioned above there isn’t
any unusual level of imbalance between the different alert types thus it

28

4.4. Implementation

contains some informational value of the a priori probability of each alert
type.

Sampling methods. As to using sampling methods on the dataset, we
will combine under and oversampling methods (described more in-depth
in Section [2.1.2)). Because the majority class is in such high imbalance,
we randomly sample the majority class to reduce the total size of the
dataset as we can safely assume that the general clean patterns will
occur multiple times. We can do this for both the direct and the two-layer
classifier.

For the sampling of the minority classes, we use the combination of
SMOTE to generate new data, and Tomek links to clean the noise and
border elements (explained in Section 2.1.2). Tomek links should improve
the classification for both decision trees and SVM.

For the two-layer classifier one thing should be noted —the sampling
should happen before the transformation of the dataset to a 0/1 problem
as using SMOTE between vectors of different alert types could yield
incorrect results due to the possibility of a “clean” valley between them.

. 4.4 Implementation

In this section, we talk about the implementation details of the solution
stated above. Firstly we talk about the technologies used together with
libraries. Then we provide an overview of the pipeline how the data is
handled, what is the format of the training dataset and how the classifier
is designed.

B 4.4.1 Technologies used

As our language of choice, we selected Python. It was a very straight-
forward choice. It is one of the most widely used platforms for data
science/machine learning and a go-to platform for many other fields.
Python is a scripting object-oriented language described as

Python is a simple, yet powerful, interpreted programming lan-
guage that bridges the gap between C and shell programming,
and is thus ideally suited for “throw-away programming” and
rapid prototyping. [17]

Hand in hand of the widespread use of Python the surrounding ecosys-
tem has grown as well. Altogether this leads to vast amounts of libraries

29

4. Proposed solution

that are implemented for Python but usually just having a Python wrapper
for a C library.

Although described as “suited for 'throw-away programming’ and rapid
prototyping”, it has also become widely used production platform nev-
ertheless with some controversy surrounding that choice. Python as an
interpreted language is very slow (we refer the reader to “The Computer
Language Benchmarks Game” for comparison) compared to a compiled
language and its strength lies in the integration of compiled libraries.
Another disadvantage is that it is dynamically typed language which intro-
duces some problems when the scale of the project overgrows the original
intentions. However, this has been addressed in Python 3.5 where it has
been made possible to use static types.

Development. The development has been done in Jupyter [11] using
IPython notebooks [[15]. Together they form a great environment for fast
prototyping of Python applications.

Each notebook contains independent cells of either runnable code or a
Markdown to document the notebook. The cells can be run independently
of the order they are placed in the file and on demand. Each notebook
runs in its own kernel having separate state from other notebooks. The
state is persisted across cell runs and thus allows to modify parts of
the code without re-running the whole program. Additionally, each cell
contains an output cell which can be persisted in the saved notebook file.

The only disadvantage of said notebooks is that the files are not saved
as regular Python code files but in a JSON format and thus aren’t easily
readable or runnable without the IPython technology which would also
introduce some additional work when porting the project to a standalone
application. This, however, doesn’t pose a problem as the next step in
the development would be to largely scale the application to a distributed
computational framework Spark which is JVM based.

B 4.4.2 Training set format

The training data was provided in a DataFrame object from the pandas
framework. DataFrame could be described as a wide-column, tabular
data structure. Columns of the DataFrame were the field names of the
JSONSs (described in Section [3.3) and each log from the original dataset
corresponds to a single row of the DataFrame.

Additionally, we have columns for each pattern we have labeled. Each
labeled sequence is marked with a unique integer in the appropriate
column or a zero if the log does not belong to that sequence. This means
that if we have a row with the number 2 in the column pattern 4 it belongs

30

4.4. Implementation

to the labeled sequence 4 with the label of pattern 4. If we want to extract
the whole sequence we take all the rows of the DataFrame which have
the corresponding number in the respective column. If we want to take
a sequence that doesn’t belong to any pattern we need to check that we
either have at least two unique numbers or only the number 0 in each
pattern column.

B 4.4.3 Pipeline

The pipeline consists of 4 major steps. First, we extract the labeled
sequences from the tabular format into groups. Then we extend the set of
labeled sequences by non labeled sequences and we assign them the label
pattern 0. Afterward, the sequences are transformed into the vectorized
form. In the last stage, we split the dataset for training and validation
and the classifier is trained and evaluated.

1. We iterate over the pattern X columns and create a group for each
one of them. For each column, we group by the column’s value
forming the labeled sequences and discarding the logs under the
group 0 as it signifies that the logs do not belong into any sequence
of that label.

After this step, we have an object containing a group for each pattern
type each containing a list of sequences of logs. We do not need the
original values of pattern columns further as the purpose was only to
differentiate the different occurrences of a single pattern.

2. We select the desired count of sequences to fill the group of negative
examples (we take the negative group as sequences with no alerts
associated and positive as sequences with any alert associated). We
select some sequences of arbitrary lengths and for each, we check
that each pattern column has either only zeros or at least two different
integers.

After this step, we have the dataset available for training of both
positive and negative samples.

3. With the sequences grouped by the label, we then vectorize each
of them. The vector is constructed in a way that each dimension
represents the count of one specific event id. To be able to do that
we first have to collect all the unique event _ids. We have to collect
them from the original dataset from step 1 to be sure that we do not
encounter by a small chance a missing event id that wasn’t in the
selected training sample from step 2.

After this step, we have a set of vectors each representing one se-
quence grouped by the label of each sequence.

31

4. Proposed solution

4. As the last step we first unzip the vectors from grouped representa-
tion into a (X, y) pair where X is the sequence of all the vectors and
y is the sequence of corresponding labels. Further, it is then split
into a training and validation set to evaluate the performance of the
classifier on data that were not used for training. We then train the
classifier using the convention from the SciKit API [3] of training the
classifier using the fit (X, y) method with the training part of the
data.

After this step, we have a trained classifier, and we can evaluate its
performance on the validation set.

B 4.4.4 Classifier architecture

As noted above we have two kinds of classifiers —one we called Direct
classifier which classifies either no alert or alert type directly, and the
second —two-layer classifier where we use one classifier for predicting
alert and then a second layer for the alert type.

From this decision we have two base classifier classes
—DirectClassifier and TwoLayerClassifier which define the API for
the classifiers. It is inspired by the SciKit API [3] where a c1f.fit (X, y)
method is used to train the classifier and clf.predict(X) is used to
classify samples. Both of them are used as wrappers for the underlying
classifiers such as SVM.

Both of the classes contain a skeleton implementation that offers sub-
classes to step in during the training process. The method is called on
the input (X, y) parameters before the training of the classifier happens.
The method is then later overridden by a BalancedDirectClassifier
and BalancedClassifier to provide the balancing of the dataset using
the combination of SMOTE oversampling and Tomek links undersampling.
From the two Balancedx* classifier classes we then have subclasses with
different parameters and classifiers used (e.g. TreeDirectClassifier).

The main difference between DirectClassifier and its subclasses
compared to the TwoLayerClassifier and its subclasses are that the
latter provides two different sets of the “step-in” methods described
above. One for the incident classifier and the second for the alert type
classifier —as they both need different handling (e.g., for sampling).

B 4.4.5 Libraries

The main library used was scikit-learn [[14]. Scikit-learn is an open-
sourced machine learning library that contains the implementations of
most of the machine learning techniques and models used. In this thesis, it

32

4.4. Implementation

has been mainly used for the implementation of classifiers SVM, Decision
trees and Random forests and its utility methods.

As for the implementations of techniques used for handling dataset
imbalances we used the imbalanced-1learn [12] library. It uses the Scikit-
learn [3]] API and implements numerous sampling methods. In this thesis
the implementations of oversampling using SMOTE and undersampling
using Tomek links have been used.

Additionally, we used several data structure libraries such as Numpy
and Pandas. The performance graphs in the Experiments section were
generated using Matplotlib [9].

33

34

Chapter 5

Experiments

In the Experiments chapter, we evaluate the solution which implemen-
tation was described in Chapter 4| First, we talk about the Sequence
classification —what was the performance, and what we believe are the
reasons why the method failed. In the rest of this chapter, we then talk
about the Feature vector classification. We define the metrics that were
used to compare the performance of the different classifiers. Then, we
describe the workflow of the experiments and the implementation details.
In Section [5.4| comes the actual evaluation with graphs of classifiers’
performance. Lastly we talk about the selected features as referred to in
Section 4.3.1

. 5.1 Sequence-based classification

The sequence classification proposed in Section 4.2|didn’t work. We did
not finish the implementation of the sequence classifier because the early
stages of development were exhibiting inferior performance.

We used the FastDTW [[18] implementation along with the regular DTW
implementation from the same library. Although the methods differed
slightly in the results, the difference was not relevant for the performance.

In Figure 5.1 we can see that the presumption that sequences of the
same type would be close to each other fails. The reason the method
failed on this dataset is that when inspecting the distances between the
sequences we usually see numbers most frequently in the range [0, 1, 2].
This means that the method cannot differentiate between sequences of a
different type. We believe this to be caused by the insufficient complexity
of the sequences.

35

5. Experiments

Confusion matrix

20.0
pattern 14 3 0 0 0 0 0
17.5
N
22 4 1 1 0 0
pattern_2 150
9 pattern_3 6 1 0 1 0 0 125
o
v
Z pattern 44 2 0 0 9 0 0 -10.0
7.5
pattern 54 4 2 0 4 0 0
r5.0
pattern_6 1 1 16 0 9
T T T T 2.5
NANPN N o 28
& Q0 Q0 Q0 R R
< %) < Q' 7))) —L 0.0
& &L

redicted label

Figure 5.1: Confusion matrix for the sequence distances using the FastDTW
method. The diagonal is highlighted so we can see that only pattern 1 and
pattern 4 are closer to each other than the rest of the patterns.

Further, all sections are concerned with the feature vector classification.

. 5.2 Experiment metrics

As noted and described more in-depth in Section [2.1.1 we cannot use
simple error rate to evaluate the performance of a classifier on an imbal-
anced dataset. The higher the imbalance for a class the more inclined
the classifier would be to blindly overfit to the majority class as it would
minimize the error.

We chose to evaluate the performance of the classifiers using ROC
(Receiver operating characteristic) with False positive and True positive
rates on x and y axis respectively. Because we did not use any soft
classifiers (those that provide the probability of each class instead of only
a label), we cannot generate ROC curves and generate only ROC points
which will ease the comparison a little.

Furthermore, as the alert classification is not a binary classification
problem we collect a per-class error rate to compare the classifiers. How-
ever, having two metrics to compare two predicts introduces the problem
of which classifier performs better when each has better metrics in one

36

5.3. Pipeline and implementation

category. We can assume that in production we value more not missing
an alert than the lower error rate on the specific alert type. Also, we can
compute some other statistics (such as precision) and order the classifiers
based on that.

. 5.3 Pipeline and implementation

We implemented the following experimental pipeline. To ease the eval-
uation we refrained from using the pipeline as outlined in Section |4.4.3
which is oriented more towards regular usage than the batch evaluation
on multiple datasets.

1. We create the dataset to run the tests on. We do that by taking
the full set of labeled alerts grouped by the alert type and add the
pattern 0 group with c sequences of no pattern. With this, we modify
the imbalance ratio of the alert classes to the no-alert class.

2. We convert all sequences to the vector representation.
After this step, we have the prepared dataset for the evaluation.

3. We create n training/validation split pairs from the current training
dataset. We do this step commonly for all the classifiers to evaluate

the different classifiers on the same datasets to minimize the number
of external variables.

Also, we split the data in a stratified fashion such that all classes are
present with the desired ratio in both training and validation sets.

4. We train and evaluate each classifier on all the training and validation
pairs.

5. We calculate the statistics of the performance of the classifier on the
validation sets.

6. As the last step, we aggregate the results and generate graphs for
each classifier for both aggregated and raw data.

We evaluate the above pipeline on multiple different imbalance ratios
with ¢ € {100, 200, 1000, 10000} and the number of tests n € {10,100}.

37

5. Experiments

B 5.3.1 Classifiers

The following Direct classifiers were used:

SVM, C=1 An SVM classifier with the C' = 1 parameter. The C parameter
is used with soft margin classification (in case of non separable data)
and marks the penalty multiplier for misclassification. We used the
sklearn.svm.SVC class from Scikit-learn library.

SVM, C=10 Same as above the class sklearn.svm.SVC but with C = 10
which means higher penalty for misclassification.

Decision tree We used the sklearn.tree.DecisionTreeClassifier
class with the gini criterion.

Random forest, n = 5 Random forest is an ensemble classifier which
uses several Decision trees and then uses the majority rule to select
the classification. We used the
sklearn.ensemble.RandomForestClassifier class with n = 5 being
the number of underlying decision trees.

Random forest, n = 10 Same as above but with n = 10 number of un-
derlying decision trees.

Along with three variants of each classifier class. The first was just the
classifier with the parameters described above and the dataset was not
resampled. In the second we resampled the dataset using SMOTE and
Tomek links. The third version was with the non-resampled dataset but
the costs were balanced inversely to the respective classes’ frequencies
(as described in Section |2.1.3).

The “balance” mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input
data as n_samples/(n_classes * np.bincount(y)).

Taken from the Scikit documentation for respective classifiers.

And the following Two-layer classifiers were used:

SVM, C=1 Two sklearn.svm.SVC classifiers in series with the C' = 1
parameter.

SVM, C=10 Same as above except C' = 10.

Decision tree Two sklearn.tree.DecisionTreeClassifier in series
with the gini criterion.

38

5.4. Evaluation

Random forest, n = 5
Two sklearn.ensemble.RandomForestClassifier in series withn =
5 underlying decision trees.

Random forest, n = 10 Same as above with n = 10 trees.

Additionally, as with the direct classifiers, there were two different
instances of each of the two-layer classifiers from the list above. One
where the dataset was left intact and the second where we resampled it.

The range of c values. We believe that values of ¢ greater than 10000
would introduce undesired attributes to the dataset. The size of the
original dataset is ~ 700000 logs. Because we sample sequences with
the length [€ [5,100], we select on average ~ 525000 logs in sequences.
Increasing the ¢ further could lead to higher probability of duplicate
sequences and would thus skew the evaluation as two sequences that
differ in very few elements could be split such that one ends up in the
training and one in the evaluation set.

. 5.4 Evaluation

In this section, we provide the actual results as well as the evaluation of
the performance of the classifiers using the pipeline described above. We
will talk about the average performance of each type of the classifier as
well as the precision/variation on the performance.

B 5.4.1 Incidentiality evaluation

For now, we will ignore the idea of multiple alert types and focus only on
the binary classification whether a given sequence should be classified as
an alert or not. The rationalization is that it is more important to detect an
alert than to correctly classify its type because it will be further handled
manually by analysts. As noted above we will use the False positive and
True positive rates:

TP FP
TP rate = B FP rate = Ne

with P being the total count of positive samples and N¢ being the total
count of negative samples.

When we plot the results with F'P rate and T'P_rate being on x and y
axis respectively the classifier that is closer to the (0, 1) point (top left
corner) is better. We added concentric circles with the center in the point
(0,1) to the graphs comparing the classifiers to make the performance

39

5. Experiments

comparison more clear. Also, it aids in evaluating the classifiers with the
highly imbalanced dataset as the axis have a very different scale to such
extent that the circles resemble ellipses or straight lines.

B Means

We will now provide the averaged results for two different dataset im-
balances. The first is balanced with close to a 1 : 1 ratio alerts to clean
sequences. The second is imbalanced with a 1 : 100 ratio of alerts to
clean sequences. We would like to remind the reader to pay attention to
the scales as the big difference in imbalance ratios makes the axis very
skewed.

Dataset with 1 : 1 ratio. In the Figure |5.2| we can see the overall
performance on the 1 : 1 dataset. We can see that there is one larger
cluster near the top left corner and then several scattered points.

On separated plots in Figures |5.3|/5.4//5.5| we can see that the worst
performing is the SVM class of classifiers. Generally, we can see better
False positive rate with the forest class of classifier compared to the Tree
class classifiers. However, the Tree class of classifiers performs better
concerning the True positive rate which we established is more valuable
to the solution of this problem along with the points being overall closer
to the (0,1) point.

Additionally, we do not see any pattern concerning the balancing of
the dataset. This is desirable behavior as the balancing should not be
creating data points outside of the hidden patterns and thus shouldn’t be
lowering the score on non sampled verification dataset.

40

5.4. Evaluation

1.00

0.95 A

0.90 ~

0.85 A

0.80 A

0.75 A1

True Positive Rate

0.65 A

0.60 T T T T T 1 T
0.00 0.05 010 0.15 020 0.25 030 0.35 0.40

False Positive Rate

Figure 5.2: The average performance of all the classifiers from Section|5.3.1
for the 1 : 1 imbalance ratio dataset. As there aren’t enough colors to
uniquely plot all the points the image is provided for reference of the overall
performance.

41

5. Experiments

1.00 y

0.95 1

_/(
0.90 T
0.85 1

x forest5 sampled

0.80 1 forest5_nonbalanced
forest5_cost_balanced

0.75 -% forest5 2layer sampled

forest5 2layer_nonbalanced
0.70

True Positive Rate

X X X X

forest10-sampled
forest10_nonbalanced
forest10_cost balanced
forest10 2layer sampled
forest10_2layer nonbalanced

0.60 . T . . T . . 4
0.00 0.05 0.10 0.15 020 0.25 030 0.35 0.40

False Positive Rate

0.65 A1

i

Figure 5.3: An ROC graph for the Forest class of classifiers on the 1 : 1

dataset.
1.00
0.95 ~
0.90 -
£ 0.85
o
Q
2
2 0.80 1
(o]
o
S
= 0.751
0.70 _ tree_sampled
tree_nonbalanced
/ X _tree_cost balanced
0.65 __/ X tree_2layer sampled
X tree 2layer nonbalanced
0.60 . . : =

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
False Positive Rate

Figure 5.4: An ROC graph for the Tree class of classifiers on the 1 : 1 dataset.

42

5.4. Evaluation

1.00 J
0.95 -J
0.90 A

0.85 A

svmC1l sampled
0.80 7 svmC1_nonbalanced
svmC1_cost_balanced
0.75 -/ svmC1l0_sampled
/ svmC10_nonbalanced
0_70_% svmC10 cost_balanced
_// svmC1l _2layer sampled
svmC1l _2layer nonbalanced
_/ svmC10_2layer_sampled
svmC10_2layer_nonbalanced
0.60 T . T . . f . 4
0.00 0.05 0.10 0.15 0.20 0.25 030 0.35 0.40

False Positive Rate

True Positive Rate
X

X X X X

\

0.65 1

Figure 5.5: An ROC graph for the SVM class of classifiers on the 1 : 1 dataset.

43

5. Experiments

Dataset with 1 : 100 ratio. In the Figure 5.6/ we can see the overall
performance on the 1 : 100 dataset. The reader should keep in mind the
different scale of the two axes. The lines are still concentric circles with
the center in the (0, 1) point.

1.00 _/”////

0.95 1

0.90

0.85 1%
%

0.80 =

0.75 1

True Positive Rate

0.70

0.65 1

0.60 . T T .
0.00 0.01 0.02 0.03 0.04 0.05

False Positive Rate

Figure 5.6: The average performance of all the classifiers from Section|5.3.1
for the 1 : 100 imbalance ratio dataset. As there aren’t enough colors to
uniquely plot all the points the image is provided for reference of the overall
performance.

At first sight, we notice that the increase in the ratio towards the
negative class shifted all the classifiers towards smaller False positive
rate values but also smaller True positive rate. This is expectable as
the a priori probability of the negative class increases compared to the
positive class. The shift to lower True positive rate values is expectable
as well as the classifier is more inclined towards negative class.

As with the smaller dataset, we can see the SVM class of classifiers gen-
erally performing the worst with several being outside of the plotted area
which is, however, considerably smaller this time. Interesting observation
that can be seen in Figure [5.9 is that only the sampled versions of the

44

5.4. Evaluation

1.00 _/;’/

0.95 +

0.90
Q
5 0.85 17X
i X —
> X forestb_sampled i
a 0.80 forest5_nonbalanced i
’f; forest5_cost_balanced i
E 0.75 forest5 2layer sampled 4

forest5_2layer_nonbalanced -
0.70 forest10_sampled .

forest10_nonbalanced .
X forestl0 cost balanced -

X X | X | X

0.65 7 forest10_2layer_sampled -
forest10_2layer_nonbalanced T
0.60 . . T T
0.00 0.01 0.02 0.03 0.04 0.05

False Positive Rate

Figure 5.7: An ROC graph for the Forest class of classifiers on the 1 : 100
dataset.

classifiers are in the frame. Neither original datasets nor cost balanced
classifiers performed well enough.

With the forest class of classifiers in Figure [5.7| we can see that the
cost balancing method is the worst performing one by a large margin.
The best performing classifier overall is the two layer classifier with the
resampled dataset and generally the resampled dataset was increasing
the performance of the classifier architecture.

Tree class classifiers (Figure |5.8) performed most reliably with a small
size of the cluster compared to the other two underlying classifier classes.

45

5. Experiments

1.00 —/i’//
0.95 A
0.90
o X
E 0.85 A S
o X
2z
= 0.80
(o]
o
g
= 0.75 A
0.70 X tree sampled .
tree_nonbalanced .
X tree cost balanced .
0.65 7 X tree 2layer sampled .
% tree_2layer_nonbalanced
0.60 T T T ;
0.00 0.01 0.02 0.03 0.04 0.05

False Positive Rate

Figure 5.8: An ROC graph for the Tree class of classifiers on the 1 : 100

dataset.
1.00 _/i//
0.95 A
0.90
E 0.85
_“2’ X svymCl_sampled i
'§ 0.80 v svmC1l_nonbalanced i
P X % svmC1_cost_balanced J
E 0.75 1 X symC10_sampled i
X svymC1l0_nonbalanced 4
0.70 ¥ svmC1l0_cost_balanced -
svmC1l_2layer_sampled =
% symCl 2layer-nonbalanced
0.65 1 svmC10 2layer sampled .
svmC10_2layer_nonbalanced 7
0.60 . T T T
0.00 0.01 0.02 0.03 0.04 0.05

False Positive Rate

Figure 5.9: An ROC graph for the SVM class of classifiers on the 1 : 100
dataset.

46

5.4. Evaluation

B variability

An interesting pattern can be seen regarding the variance of the perfor-
mance of the classifier with regard to the balancing method used. We can
see in Figure |5.11|a Direct decision tree classifier without any balancing
technique used. When we compare it to the cluster in Figure [5.12/ we can
see that sampling the dataset increases the variability of False positive
rate but doesn’t affect the variability in the y axis. On the other hand
using a cost balancing method in Figure |5.10| we can see that it increases
the variability in the True positive rate axis.

1.00
DI
0.951, 4
[
0.90 +
s
Q
s 0.85
o
o) X
=
G 080 Jomm x
o
o
g PR
= 0.75 1
= b
0.70 ¥
0.65 1 x
X tree_cost _balanced
0.60 T T T T
0.00 0.01 0.02 0.03 0.04 0.05

False Positive Rate

Figure 5.10: An ROC graph for the direct Tree classifier on all the 1 : 100
datasets with cost balancing.

47

5. Experiments

1.00

0.95 A1

True Positive Rate
o
(o]
o
X
X

0.70 A

0.65 A

X tree_nonbalanced

0.60 . T . .
0.00 0.01 0.02 0.03 0.04 0.05

False Positive Rate

Figure 5.11: An ROC graph for the direct Tree classifier on all the 1 : 100
datasets without any balancing.

1.00
XX X X
0.95
0.90 1
0.85 4 K

0.80 1 s

0.75 A

True Positive Rate

0.70 - X

0.65 A1

X tree_sampled

0.60 . T . .
0.00 0.01 0.02 0.03 0.04 0.05

False Positive Rate

Figure 5.12: An ROC graph for the direct Tree classifier on all the 1 : 100
datasets with SMOTE and Tomek links balancing.

48

5.5. Features selected

Bl 5.4.2 Alert type evaluation

Because TP _rate and F'P rate only reflect the ability of the classifier to
spot an alert we should also evaluate the error rate on the alert types of
the different classifiers. In Figure|5.13|we can see an average weighted
error for each classifier with the weights being the respective frequencies.

We can see that resampling the dataset improves the average weighted
error in all cases except for the Two-layer decision tree classifier. Addi-
tionally, we can see that cost balancing is not very effective. The best
performing classifier is the Two-layer forest of size 10 that used the re-
sampling method to deal with the imbalances which also performed the
best in the incidentiality detection.

1.0

0.8 B
0.6 1 I
0.4 I
0.2 1 I

STRTTELRTLRITITRILRTILRTRITIRXSTLRSITR
NN N NN SN NG N NG SNGFSNGRCES
P R R R A P S P ol R
Q. 990 990 9900 99 99Q 99 990Q 99 990
S 7SS L4780 /S N 7R/ S A TSNS K4S o/
QVWHaONLIGZOKNOVLGTONQOIPZHZOUL P yOw
SANOCHCNICHINICUIANISTITHNILS
N OS/P (RO Ty NGy KOG 7S O'C 7
L SH7N Hs$ s QLS VIANIES @
VIR L@V NQO TV SOV G @V glo
PN FC 0 E DI 6N TS
VNEE WS BSOS WO DLos
VP VvVOILOS NG % VE
A AORS S SN 9 <
QISR Lpi&§5< QLN 9 NINO (724
~&K 59 NS 9 o9 Y
59 3 U'o 3
2) ' @ &
& & & 5>
@ 4

Figure 5.13: A average weighted error of alert type classification on the
1:100 dataset.

. 5.5 Features selected

In Section 4.3.1| we talked about using the event_id field to construct
the feature vector. In Figure |5.14| we can see the results of using some
additional features. Noticeable is the improvement of both TP rate and
FP rate. However, the average Alert type errors didn’t improve that
much.

We believe that introducing these additional features exhibits a case of
Data leakage. Data leakage is a case when some outside information, that

49

5. Experiments

shouldn’t be known to the model is (often in an accident) incorporated
to the data. The data leakage is introduced by the artificial creation of
negative samples. Positive samples naturally emerge, but we generate
the negative samples artificially using a randomized algorithm. This leads
to the predictors focusing much more on the artificial features because
the negative samples are easier to separate by them. If we look at the
diagram of a Decision tree (included with this thesis as a tree.dot file)
learned with these feature vectors, we can see that it depends on the new
features in many nodes that separate the negative class.

This easier separation of negative samples leads to improvements in
FP rate and thus also in alert type classification, as we decrease false
negatives.

1.00 /:/
0.95 {x
0.90 4%
I
M) ~
2 0.85 A
o
[}
z
= 0.80
o
o
) K
3 4
2075
0.70
0.65 -
0.60
0.00 0.01 0.02 0.03 0.04 0.05

False Positive Rate

Figure 5.14: The average performance of classifiers using additional fea-
tures. We can see the drastic decrease of FP_rate when compared to classifi-
cation without the additional features in Figure |5.6|

50

Chapter 6

Conclusion

We presented two approaches towards classifying incidental behavior
for a SIEM event log dataset. The first approach, based on sequence
alignment, didn’t work, which we believe is caused by the nature of the
dataset.

For the second —feature vector —approach, we designed several dif-
ferent configurable classifiers and then evaluated their performance on
many different subsets. Additionally, we incorporated methods to deal
with the imbalanced nature of the dataset.

We observed that for some configurations of classifiers, balancing the
dataset (most notably with cost-based methods) worsened the perfor-
mance. Generally, however, the performance improved, increasingly with
the dataset imbalance. Interestingly the balancing of the dataset did not
have the same effect for Decision trees and Random forests even though
Random forests use Decision trees.

From the experiments in Chapter |5|we found that the best performing
classifier was the Two-layer classifier consisting of Random forests with 10
Decision trees that were learned using the dataset balanced with sampling
using SMOTE for oversampling and Tomek links for undersampling.

. 6.1 Further development

Future work on this topic would include wrapping the model/pipeline in
an application that would handle integration with the analyst platform for
handling alerts. It would work as described in Algorithm |1. It could be
further expanded by some Active learning methods to further improve the
accuracy of the model with feedback from the analysts.

51

6. Conclusion

Concerning the model, further research would be needed to improve
the method described in Section 4.2l Additional data would be beneficial
to experiment with the method.

52

Appendix A
Bibliography

[1] Scikit-learn precision recall tutorial.

[2] RICHARD BELLMAN. Adaptive Control Processes: A Guided Tour.
Princeton University Press, 1961.

[3] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer,
Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaél Varoquaux. API design for machine
learning software: experiences from the scikit-learn project. In
ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, pages 108-122, 2013.

[4] Girish Chandrashekar and Ferat Sahin. A survey on feature selection
methods. Computers & Electrical Engineering, 40(1):16 — 28, 2014.
40th-year commemorative issue.

[5] Yoav Freund and Robert E. Schapire. A short introduction to boosting.
1999.

[6] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. J. Mach. Learn. Res., 3:1157-1182, March 2003.

[7]1 H. He and E. A. Garcia. Learning from imbalanced data. IEEE
Transactions on Knowledge and Data Engineering, 21:1263-1284,
Sept 2009.

[8] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a
Neural Network. ArXiv e-prints, March 2015.

[9] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In
Science & Engineering, 9(3):90-95, 2007.

[10] Accelrys Inc. Profile hidden markov model.

53

A. Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damian Avila,
Safia Abdalla, and Carol Willing. Jupyter notebooks - a publishing
format for reproducible computational workflows. In F. Loizides and
B. Schmidt, editors, Positioning and Power in Academic Publishing:
Players, Agents and Agendas, pages 87 — 90. IOS Press, 2016.

Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas.
Imbalanced-learn: A python toolbox to tackle the curse of imbalanced
datasets in machine learning. Journal of Machine Learning Research,
18(17):1-5, 2017.

Christopher Olah. Understanding lstm networks.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Fernando Pérez and Brian E. Granger. IPython: a system for interac-
tive scientific computing. Computing in Science and Engineering,
9(3):21-29, May 2007.

P. Pudil, J. Novovicova, and]J. Kittler. Floating search methods in
feature selection. Pattern Recognition Letters, 15(11):1119 - 1125,
1994.

Guido Rossum. Python reference manual. Technical report, Amster-
dam, The Netherlands, The Netherlands, 1995.

Stan Salvador and Philip Chan. Toward accurate dynamic time
warping in linear time and space. Intell. Data Anal., 11(5):561-580,
October 2007.

Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey
on sequence classification. SIGKDD Explor. Newsl., 12(1):40-48,
November 2010.

54

Appendix B

CD content

CD
. _notebooks code sources in IPython notebooks format
L reSU LS ottt s
FES_CoN tuiiiininnnnrnnennnnss the graphs generated from results
=T T o R o the results files
confusion_dtw.png the confusion matrix using DTW
confusion_fastdtw.png .the confusion matrix using fastDTW
| thesisociiiiiiiiiin the source files of this thesis in IATEX
L Zav_prace.pf i e thesis assignment
| thesis.pdf i e this thesis
| _tree.dotthe graph of a tree classifier with extended features

The data we used in this thesis’ experiments were not included on the
CD as they are bound by an NDA with the data originator. For further
clarification contact the thesis supervisor.

55

	Introduction
	Structure of the thesis

	Technical Background
	Imbalanced learning
	Evaluation techniques for Imbalanced learning
	Sampling methods for Imbalanced datasets
	Cost-sensitive methods

	Feature selection
	Filter methods
	Wrapper methods
	Embedded methods

	Sequence classification
	Feature based classification
	Sequence distance methods
	Model based classification

	Problem Analysis
	Problem settings
	Problem formalization
	Dataset overview
	Classifier architecture
	Sequence classification
	Feature vector classification

	Proposed solution
	Data handling
	Sequence classification
	General algorithm
	Sequence distance

	Feature vector classification
	Vector composition
	Classifier design
	Class imbalance

	Implementation
	Technologies used
	Training set format
	Pipeline
	Classifier architecture
	Libraries

	Experiments
	Sequence-based classification
	Experiment metrics
	Pipeline and implementation
	Classifiers

	Evaluation
	Incidentiality evaluation
	Alert type evaluation

	Features selected

	Conclusion
	Further development

	Bibliography
	CD content

