
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Experimental Analysis of Critical Path
Heuristics

Evžen Šírek

Supervisor: Ing. Daniel Fišer
Field of study: Computer and Information Science
May 2018

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

434672Personal ID number:Šírek EvženStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Experimental Analysis of Critical Path Heuristics

Bachelor’s thesis title in Czech:

Experimentální analýza heuristik kritických cest

Guidelines:
The goal of the thesis is to implement the general hm heuristic functions for classical planning and compare them with the
state-of-the-art. The analysis will show the strenghts and weaknesses of the implemented heuristics in standard benchmarks.
Efficiency will be improved using strategies for the selection of a subset of meta-facts while keeping the estimates as high
as possible.
1) Study literature in the area of the classical planning, in particular the literature related to the critical path heuristics.
2) Create an efficient implementation of h2, h3, and general hm heuristics.
3) Compare the implemented heuristics with the state-of-the-art heuristics in terms of the heuristic value in the initial state,
the coverage on the standard benchmark set, and the number of evaluated states per second.
4) Propose, implement and experimentally evaluate a strategy for selecting a subset of meta-facts allowing faster evaluation
of hm heuristics while preserving high heuristic estimates.

Bibliography / sources:
[1] Haslum, P. (2009). hm(P) = h1(Pm): Alternative characterisations of the generalisation from hmax to hm. In Proceedings
of the 19th International Conference on Automated Planning and Scheduling (ICAPS), pp. 354-357.
[2] Haslum, P. (2012). Incremental lower bounds for additive cost planning problems. In Proceedings of the Twenty-Second
International Conference on Automated Planning and Scheduling (ICAPS).
[3] Haslum, P., Bonet, B., & Geffner, H. (2005). New admissible heuristics for domain-independent planning. In Proceedings,
The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, pp. 1163-1168.
[4] Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning. In Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems (AIPS), pp. 140-149.
[5] Keyder, E. R., Hoffmann, J., & Haslum, P. (2014). Improving delete relaxation heuristics through explicitly represented
conjunctions. J. Artif. Intell. Res. (JAIR), 50, 487-533.

Name and workplace of bachelor’s thesis supervisor:

Ing. Daniel Fišer, Department of Computer Science and Engineering, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 04.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Daniel Fišer
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor Ing.
Daniel Fišer for the valuable comments
and remarks he has given me during the
creation of this work.

Computational resources were provided
by the CESNET LM2015042 and the
CERIT Scientific Cloud LM2015085, pro-
vided under the programme "Projects of
Large Research, Development, and Inno-
vations Infrastructures".

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 25. May 2018

v

Abstract
The critical path heuristics are well stud-
ied in the area of classical planning. The
critical path heuristics are denoted by
hm, where m corresponds to the maximal
size of sets of facts used in the computa-
tion. This thesis describes and provides
effective implementations of the h2 and
h3 heuristics. For that, we utilize the
alternative characterization Πm. Analy-
sis of the h2, h3 and other state-of-the-
art heuristics is made. We compare the
heuristics in terms of heuristic values in
initial states, the number of solved prob-
lems in the International Planning Com-
petition datasets and the number of eval-
uated states per second. Moreover, a new
characterization of the task, Πm

r , is in-
troduced. This characterization allows
for the choice of a set of facts r excluded
from the meta-fact creation, reducing the
size of the Πm task. Finally, a strategy
for choosing a set of facts, which will not
lower the heuristical estimates too much,
is proposed, implemented, and evaluated,
showing promising results in pegsol do-
main from IPC dataset from 2011.

Keywords: planning, heuristics,
STRIPS

Supervisor: Ing. Daniel Fišer

Abstrakt
Heuristiky kritických cest jsou dobře pro-
zkoumanou oblastí z oboru klasického plá-
nování. Tyto heuristiky jsou označovány
jako hm, kdem je maximální velikost mno-
žiny faktů použitých při výpočtu. Tato
práce poskytuje efektivní implementaci
heuristik h2 a h3. Toho je dosáhnuto vy-
jádřením plánovacího problému Π pomocí
alternativní reprezentace problému Πm.
Byla provedena analýza těchto heuristik
ve srovnání s ostaními state-of-the-art heu-
ristikami. Heuristiky porovnáváme na zá-
kladě heuristických hodnot v počítečních
stavech, počtu vyřešených problémů v da-
tasetech z International Planning Compe-
tition a počtu vyhodnocených stavů za
vteřinu. Dále byla navržena nová charak-
terizace plánovacího problému, Πm

r . Tato
charakterizace umožňuje volbu množiny
faktů, které nemohou být použity pro vy-
tváření meta faktů v Πm, zmenšujíc tak
velikost tohoto problému. Nakonec byla
navržena strategie pro výběr takové mno-
žiny faktů, že její použití příliš nesniží hod-
noty heuristických odhadů. Tato strategie
byla naimplemenována a vyhodnocena, se
slibnými výsledky v doméně pegsol z IPC
datasetu z roku 2011.

Klíčová slova: plánování, heuristika,
STRIPS

Překlad názvu: Experimentální
analýza heuristik kritických cest

vi

Contents
1 Introduction 1
2 Background 3
2.1 Domain-independent Planning . . . 3
2.2 Definitions . 3
2.2.1 STRIPS Planning Task 3
2.2.2 Heuristic Functions 4
2.2.3 hm Heuristics 4
2.2.4 Alternative Characterization of
hm . 5

2.2.5 ΠC . 6
3 Implementation 9
3.1 Overview . 9
3.1.1 General Implementation
Information . 9

3.1.2 Project Structure 10
3.2 h1 Heuristic 10
3.3 h2 Heuristic 12
3.3.1 Brute Force Implementation . 13
3.3.2 Conversion to Π2 14
3.3.3 Mutex Elimination 16

3.4 h3 Heuristic 17
3.4.1 Brute Force Implementation . 17
3.4.2 Improved Implementation . . . 17

3.5 hm Heuristic 19
4 Experiments 21
4.1 Experiment Setup 21
4.2 Heuristic Values in Initial States 21
4.3 Coverage . 23
4.4 Evaluated States Per Second . . . 25
5 Proposed Improvement 27
5.1 Initial Experiments 28
5.2 Selection of Restricted Facts . . . 29
5.2.1 Proposed Strategy 29
5.2.2 Strategy Evaluation 29
5.2.3 Justification Graph 30

6 Conclusion 33
Bibliography 35

vii

Figures
4.1 h1 vs h2 scatter plot of heuristic
values in initial states 22

4.2 h2 vs h3 scatter plot of heuristic
values in initial states 23

4.3 h2 vs lm-cut scatter plot of
heuristic values in initial states . . . 23

4.4 h3 vs lm-cut scatter plot of
heuristic values in initial states . . . 24

Tables
4.1 Coverage in IPC 2011 dataset . . 24
4.2 Coverage in IPC 2014 dataset . . 25
4.3 States per second in IPC 2011
dataset . 26

4.4 States per second in IPC 2014
dataset . 26

5.1 Impact of r set selection on Π2
r . 28

5.2 Search time of h2 vs h1(Π2
r) with

strategy for r selection 30

viii

Chapter 1
Introduction

The goal of this thesis is to provide effective implementations of h2 and h3

from the hm family of heuristics, along with the general hm heuristic. hm,
introduced by Haslum and Geffner [10], is a generalization of the standard
hmax heuristic. Instead of considering reachability of single facts, hm works
with combinations of facts with the size of at most m. The computational
complexity of hm is exponential in m and hm is thus rarely used for m ≥ 2.
However, the h2 and h3 (and hm in general) are not bounded by h+, that is,
the cost of the optimal plan in the relaxed problem. For sufficiently large m,
hm even equals the cost of an optimal plan. This is the motivation for an
effective implementation of these heuristics.

We create the implementation utilizing the alternative characterization
of the planning task Πm, introduced by Haslum [7]. This allows computing
hm heuristics as h1 of the modified planning task Πm. We experimentally
evaluate h2 and h3 on datasets used in International Planning Competition
from years 2011 and 2014. We compare the heuristics with other state-of-
the-art heuristics, the LM-Cut heuristic [12], flow-based heuristic [1, 2] and
potential heuristic [16].

We compare the heuristics in terms of heuristic values in initial states,
the number of solved problems in the International Planning Competition
datasets (coverage) and the number of evaluated states per second. We point
out the strengths and weaknesses of these heuristics.

Based on the idea of Πm [7] and ΠC [8], we propose a new characterization
of the planning task, Πm

r . It acts as a restriction of the regular Πm character-
ization of the task, as it allows for a choice of a set of facts which cannot be
used in combinations of facts represented by meta-facts. We experimentally
show that a proper choice of the restriction set r for Π2

r keeps the same
heuristical estimates as for regular Π2.

Finally, we propose a strategy for choosing a set of facts, which will keep
the heuristical estimates reasonably high. The strategy is implemented and
evaluated, showing promising results in pegsol domain from IPC dataset from
2011, but not performing very well in other domains.

The structure of this thesis is following: in Chapter 2 we introduce def-
initions and establish the background necessary for this thesis, presenting
several existing characterizations of the planning task Π. In Chapter 3 the

1

1. Introduction
implementations of h2, h3 and hm are described. Two different approaches
are presented. The implementations of heuristics from Chapter 3 are then
experimentally evaluated in Chapter 4. In Chapter 5 we propose the new
characterization Πm

r . Finally, in Chapter 6 we summarize the work.

2

Chapter 2
Background

2.1 Domain-independent Planning

Domain independent planning is a field which focuses on techniques used
for solving planning problems without any specific knowledge about the
particular domain of the problem. In the following sections we establish
necessary background needed for this thesis.

2.2 Definitions

2.2.1 STRIPS Planning Task

Definition 2.1. A STRIPS [3] planning task Π is a tuple 〈F ,O, sinit, sgoal〉,
where F = {f1, f2, . . . , fn} is a set of facts and O is a set of operators. State
s ⊆ F is a set of facts. We say that fact f holds or is true in a state s, if
f ∈ s. sinit ⊆ F is the initial state and sgoal ⊆ F is a goal specification.

Operator o ∈ O is a quadruple 〈pre(o), add(o), del(o), cost(o)〉, where
pre(o) ⊆ F is a set of preconditions, add(o) ⊆ F are add effects and
del(o) ⊆ F are delete effects. cost(o) ∈ R+

0 is a cost of applying the operator o.
All operators are well-formed, i.e., pre(o)∩add(o) = ∅ and add(o)∩del(o) = ∅.

Operator o is applicable in a state s if pre(o) ⊆ s. The resulting state of
application of o on s is o[s] = (s \ del(o)) ∪ add(o). State s is called a goal
state iff sgoal ⊆ s. A sequence of operators π = 〈o1, . . . , on〉 is applicable in s0
if there are states s1, . . . , sn such that oi is applicable in si−1 and si = o[si−1]
for 1 ≤ i ≤ n. π[s0] = sn is then the resulting state of applying the sequence
on s0. Sequence of operators π is called a plan iff sgoal ⊆ π[sinit]. Cost of
the plan π is a sum of all its operators’ costs, i.e., cost(π) =

∑
o∈π cost(o).

The optimal plan is the plan with the minimal cost over all plans. A state
s is called reachable if there exists an applicable operator sequence π such
π[sinit] = s. A set of all reachable states is denoted by R. A state s is called
a dead-end state iff s + sgoal and there exists no sequence of operators π
applicable in s such that π[s] ⊇ sgoal.

A simple example of a STRIPS planning task is shown in Example 2.2.

3

2. Background
Example 2.2. Let Π = 〈F ,O, sinit, sgoal〉, where F = {i, 1, 2, 3, 4, g} , sinit =
{i} , sgoal = {g} and O is given by the following table:

pre add del cost

op1 {i} {1,2} {i} 1
op2 {1,2} {3} {1} 1
op3 {1,2} {4} {2} 2
op4 {1} {2} ∅ 3
op5 {2} {1} ∅ 3
op6 {3,4} {g} ∅ 4

We can see that only operator op1 is applicable in the initial state. Se-
quence of operators π = 〈op1, op2, op5, op3, op4, op6〉 is a plan, as π[sinit] =
{1, 2, 3, 4, g} and sgoal ⊆ π[sinit] holds. The cost of the plan is 14. How-
ever, this plan is not optimal, as there are plans with lower costs, e.g. plan
πopt = 〈op1, op2, op5, op3, op6〉 is the optimal plan with cost(πopt) = 11.

2.2.2 Heuristic Functions

A heuristic function h is function h : R 7→ R+
0 ∪∞ mapping each reachable

state to a positive number or infinity.
Definition 2.3. We say that h is an admissible heuristic function, if it holds
for every state s ∈ R that h(s) ≤ hopt(s), where hopt is the cost of optimal
plan from the state s to a goal state.

In other words, admissible heuristics are optimistic — they never overesti-
mate the cost of reaching a goal state. This is an important property for the
optimality of informed search algorithms using the heuristic function, such as
A* algorithm.
Definition 2.4. Let h1 and h2 be admissible heuristic functions. We say that
h1 dominates h2 if it holds for all states s ∈ R that h1(s) ≥ h2(s).

One of the consequences of h1 dominating h2 is a possible improvement of
performance of A∗ search algorithm in terms of the number of visited states
[17].

2.2.3 hm Heuristics

Let R(Π) be a set of transitions corresponding to the backward search in
planning task Π. It holds that for every transition (s, o, s′) ∈ R(Π) there
exists an operator o in Π such that s regressed through o yields s′, i.e.,
s ∩ del(s) = ∅ and s′ = (s \ add(o)) ∪ pre(o). The cost of this transition is
cost(o). Lets define h∗(s) to be the minimum cost of any path in R(Π) from
s to any state contained in sinit (h∗(s) =∞ if no such path exist), i.e., the
cost of the optimal plan, and h+(s) to be the cost of the optimal plan in the
corresponding delete-relaxed problem.

4

......................................2.2. Definitions
Definition 2.5. The hm(m = 1, 2, . . .) is a family of heuristics defined [9] as
follows:

hm(s) =


0 ifs ⊆ sinit,
min(s,o,s′)∈R(Π)(hm(s′) + cost(o)) if |s| ≤ m,
maxs′⊆s,|s′|≤m hm(s′) otherwise.

It holds for sufficiently high m that hm(s) = h∗(s), i.e., the heuristic value
equals the cost of optimal path. It also holds that for every m1 ≥ m2, hm1

dominates hm2 .

2.2.4 Alternative Characterization of hm

Haslum [7] proposed an alternative characterization of hm using modified
planning task:
Definition 2.6. Let Π be a planning task 〈F ,O, sinit, sgoal〉. Planning task
Πm is a tuple 〈Φ,Ω, φinit, φgoal〉, where Φ is a set of meta-facts (meta-atoms),
Φ = {φc | c ⊆ F , |c| ≤ m}, i.e., each meta-fact corresponds to a set of facts
from Π of size at most m. The inital state φinit = {φc | c ⊆ sinit, |c| ≤ m} and
goal specification φgoal = {φc | c ⊆ sgoal, |c| ≤ m} are defined analogously.

For each operator o ⊆ O and for each set of facts f ⊆ F , |f | ≤ m− 1 and
f * add(o) ∪ del(o), Πm contains a meta-operator ωo,f ∈ Ω:

pre(ωo,f) = {φc | c ⊆ (pre(o) ∪ f), |c| ≤ m},
add(ωo,f) = {φc | c ⊆ (add(o) ∪ f), c ∩ add(o) 6= ∅, |c| ≤ m}
del(ωo,f) = ∅, and
cost(ωo,f) = cost(o).

It holds that h1(Πm) = hm(Π1), which allows to compute the hm value
as h1 of the compiled task. However, h∗(Πm) 6= h∗(Π1), which means that
applying an arbitrary admissible heuristic to Πm does not necessarily yield
an admissible estimate for Π. This is shown in Example 2.8. In the Example
2.7 we show a principle of Πm construction.
Example 2.7. Recall Example 2.2. We will show some steps of Πm con-
struction on that example, in this case for m = 2. In the original plan-
ning task Π, F = {i, 1, 2, 3, 4, g}. In the corresponding problem Π2, Φ
consists of meta-facts corresponding to all subsets of F of size 2 and smaller,
i.e., F =

{
φ{i}, φ{1}, . . . , φ{i,1}, φ{i,2}, . . . , φ{4,g}

}
. The same applies for

φinit =
{
φ{i}

}
and φgoal =

{
φ{g}

}
.

We will demonstrate the construction of meta operators in Π2 on operator
op2. This is the operator from original task:

pre add del cost

op2 {1,2} {3} {1} 1

We create a new meta operator for every f ⊆ F satisfying conditions from
definition 2.7. Here for f = ∅:

5

2. Background
pre add del cost

ωop2,∅ {φ{1}, φ{2}, φ{1,2}, } φ{3} ∅ 1

And for f = {4}:

pre add del cost

ωop2,{4} {φ{1}, φ{2}, φ{4}, φ{1,2}, φ{1,4}, φ{2,4}} φ{3}, φ{3,4} ∅ 1

Note that the meaning of applying this operator could be understood as
simultaneously making the effect of operator ωop2 true while also preserving
the truth of fact f . This observation is closely related to Example 2.8.
Example 2.8. Consider the task Π2, constructed in Example 2.7, and delete-
relaxed task Π from Example 2.2. Consider state s = {1, 4} in task Π. In
this state, the operator op4 is applicable, with resulting state s′ = {1, 2, 4}.
To achieve the same effect in Π2, two applications of operators are needed:

State t = {φ{1}, φ{4}, φ{1,4}} corresponds to state s. To achieve state t′ =
{φ{1}, φ{2}, φ{4}, φ{1,2}, φ{1,4}, φ{2,4}} corresponding to state s′, application of
meta-operators ωop4,{1}, adding φ{1,2}, and ωop4,{4}, adding φ{1,4} are needed.

This can cause non-admissibility of heuristics (e.g., some types of additive
heuristics, as they take into account the amount of actions needed to reach
the goal) applied to the compiled task. This is however not the case for h1,
which computes the heuristic value for state s as the most expensive fact
from s, and is thus not affected by this non-admissibility problem.

It is also necessary to note that the characterization itself does not simplify
the complexity of computing the heuristic value [7]:

“The new characterisation does not directly lead to a practical way
of generalising an arbitrary admissible heuristic from 1 to m. Nor
is it a more efficient way to compute hm : computing h1([Π]m)
typically requires more time and memory than computing hm([Π]).”

The problem of non-admissibility of Πm led to a new compilation ΠC , which
solves this problem by allowing operators to make true subsets of explicitly
expressed conjunctions, specified in C.

2.2.5 ΠC

There are several different definitions of ΠC , e.g., in [14] or in [8]. In this
thesis a slightly adjusted definition from [8] is used, as the construction is
similar to the already defined Πm.
Definition 2.9. Let C = {c1, . . . , cn}, where |ci| > 1, be a set of sets of facts
in planning task Π and o be an operator in Π. We define following partition
of C:

6

......................................2.2. Definitions

Ct(o) = {c ∈ C | c ⊆ ((pre(o) \ del(o)) ∪ add(o)) and c ∩ add(o) 6= ∅},
Cf (o) = {c ∈ C | c ∩ del(o) 6= ∅},
Cn(o) = {c ∈ C | c ∩ del(o) = c ∩ add(o) = ∅},
Cp(o) = {c ∈ C | c ∩ del(o) = ∅, c ∩ add(o) 6= ∅ and

c * ((pre(o) \ del(o)) ∪ add(o))}.

The Ct(o) is a set of sets of facts necessarily made true by o, the Ct(o) is
a set of those made false by o, Cn(o) are those facts on which o has no effect
and finally Cp(o) is a set of sets of facts possibly made true by o, depending
on the state where o is applied.
Definition 2.10. Let X ⊆ Cp(o). The X is then called downward closed iff
for all c ∈ X and c′ ∈ Cp(o) such that c′ ⊆ c, c′ ∈ X.
Example 2.11. Let C = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} and X = {{1, 2, 3}},
X ⊆ C. The X is not downward closed, as for example c′ = {1, 2}, c′ ⊆ c,
c ∈ Cp(o), but c′ 6∈ X.
Definition 2.12. Let Π be a planning task 〈F ,O, sinit, sgoal〉. ΠC has all facts
of Π, and for each c ∈ C it has a meta-fact φc. φc is initially true iff c holds
in the initial state sinit of Π, and is in a goal iff c ⊆ sgoal. For any set of facts
X ⊆ F , let XC = X ∪ {φc | c ∈ C, c ⊆ X}.

For each operator o in Π and for each set X ⊆ Cp(o) that is downward
closed, ΠC has an operator αo,X with

pre(αo,X) =
(
pre(o) ∪

⋃
c∈X

(c \ add(o))
)C

add(αo,X) = add(a) ∪ {φc | c ∈ Ct(o) ∪X}
del(αo,X) = ∅
cost(αo,X) = cost(o).

The operator o is called the original operator of all αo,X . Operator αo,X is
called representative of o of o is original operator of αo,X .

The adjustment, which differentiates our definition from the original one [8],
is made in the construction of delete effects of representatives of operators—as
it is dealt only with delete-relaxed problems in this thesis, it is unnecessary
to define them. This approach of empty delete effects is also used in the
definition in [14].

The ΠC grows potentially exponentially in |C| (that is, in number of
conjunctions, not in their size), as it creates new operators for each downward
closed subset of C. There exists another compilation ΠC

ce [8] which introduces
conditional effects to ΠC , resulting in linear growth in |C|. This is however
out of the scope of this thesis. In Example 2.13 we show how ΠC deals with
the non-admissibility problem of Πm shown in Example 2.8.
Example 2.13. Recall Example 2.8. Only one application of an operator was
needed to achieve state s′ from s in the original planning task Π. However,

7

2. Background
two applications of operators were necessary to achieve the same situation in
corresponding states t′ and t in the planning task Π2. We will now show the
same situation in the ΠC compilation.

Let Π be a delete-relaxed planning task from Example 2.2. Let C =
{{f1, f2} | f1, f2 ∈ F , f1 6= f2} and let ΠC be a properly formed planning
task according to the Definition 2.12. The C contains all pairs of facts from
the original task and each is represented by its own meta-fact φ{f1,f2}. This
resembles the Π2 compilation, but the main difference is in the definition of
operator’s representatives.

Consider states s = {1, 4} and s′ = {1, 2, 4} from Example 2.8. Correspond-
ing states in ΠC would be u = {1, 4, φ{1,4}} and u′ = {1, 2, 4, φ{1,2}, φ{1,4},
φ{2,4}}, respectively. To achieve the state u′, only one application of opera-
tor’s representative is needed, and that is the application of αop4,{φ{1,2},φ{2,4}},
adding facts 2, φ{1,2} and φ{2,4} at the same time.

8

Chapter 3
Implementation

3.1 Overview

Several versions of algorithms were implemented for this thesis. As the idea
of h1 (or, alternatively, hmax) is important for the computation of h1(Πm),
it was implemented first. Two versions of h2 were implemented, both using
the alternative characterization Π2 of the task. The first one uses brute force
approach, the second one uses more efficient approach of using a priority
queue. Two versions of h3 were implemented in the same manner. Finally,
the general hm was implemented, which allows for computation of hm value
for any m ≥ 1, although its practical usage is limited, as the computation
times and memory requirements are too high.

3.1.1 General Implementation Information

The implementation was written in C language and integrated into the
MAPlan planner [6], which provides the problem specification in FDR repre-
sentation [11], so it is necessary to translate it to STRIPS first. This is easily
done, as illustrated in the following example:
Example 3.1. Consider simple problem specified in FDR with one variable
v with domain d(v) = {1, 2, 3}. This means the variable v can have three
different values, one of {1, 2, 3}. To translate this to STRIPS facts, we create
three facts {v1, v2, v3}, which corresponds to the variable holding specific
value, e.g., v2 corresponds to the variable v having value 2. It is clear that
each assignment (variable, value) corresponds to exactly one STRIPS fact.
This allows for easy translation of operators too.

It is also necessary to take into account the fact, that only one fact from
{v1, v2, v3} can hold at the same time. This is solved by altering the delete
effects of operators, e.g., when an operator has v1 as precondition and v2 as
effect, the v1 has to be present in delete effects of this operator. However, as
we deal with delete-relaxed problems, this can be omitted. In the following
sections it is assumed that the problem is already translated from FDR to
STRIPS in the way described above.

The implementation also uses the Boruvka library [4], from which the

9

3. Implementation....................................
implementation of priority queue and memory management functions were
used.

3.1.2 Project Structure

The MAPlan planner offers a simple way of implementing new heuristic by
defining the interface of methods which need to be implemented in order for
the heuristic to be used in the planner.

Following list shortly describes all source files created and used for this
thesis.. fact_conv.c and fact_conv.h — functions used for translation

between STRIPS and FDR representation. hmax.c — implementation of h1. simpleh2.c — brute force implementation of h2. h2.c — optimized implementation of h2. simpleh3.c — brute force implementation of h3. h3.c — optimized implementation of h3. hm.c — implementation of general hm heuristics. hmtable.c and hmtable.h — implementation of hash table used for
storing facts along with their values

These files are located in src directory of the maplan project.

3.2 h1 Heuristic

h1 could be implemented just by using the recursive equations from Definition
2.5. This would however be very inefficient, as this recursive definition leads
to unnecessarily many repeated computations. Therefore, different approach
was used.

One of the basic approaches to the implementation of h1 would be to take
the state s for which we want to compute the heuristic value and gradually
try to apply all operators, adding new facts to this state. This is done
until reaching a fixpoint, where no operators can be applied anymore. A
value, whose meaning is the cost of achieving this fact, is stored for each
fact. Initially, facts in the s get the initial value of 0, others get infinity or
some flag of a not visited state. Every time a operator is applied, values of
added facts from operator’s effects are updated if the cost of operator plus
the maximal value of facts from preconditions of operator is smaller then
the current value of added fact. The h1(s) value is then computed as the
maximum of all values of the facts in sgoal. The pseudo-code is shown in
Algorithm 1.

The following Algorithm 2 is taken from [5] and it is the one used for the
improved implementation. It uses priority queue for ordering the facts based
on their value, with lowest values having higher priority. It requires some

10

..................................... 3.2. h1 Heuristic

Algorithm 1 h1 simple
Input: Π = 〈F ,O, sinit, sgoal〉, state s
Output: h1(s)

1: Initialize values for all facts f ∈ F : V (f)← 0 iff f ∈ s and V (f)←∞
otherwise

2: currState← s
3: changed← True
4: while changed do
5: changed← False
6: for all o ∈ O do
7: if o is applicable in currState then
8: for all f ∈ add(o) do
9: /** Get the maximal value of precondition of o **/

10: maxPre← maxfpre∈pre(o)(V (fpre))
11: if V (f) > maxPre+ cost(o) then
12: V (f)← maxPre+ cost(o)
13: currState← currState ∪ f
14: changed← True
15: end if
16: end for
17: end if
18: end for
19: end while
20: return maxf∈sgoal

(V (f))

pre-computations—instead of set of precondition facts, each operator stores
only the number of unsatisfied precondition facts. Also every fact stores list
of operators, in whose preconditions it is in. Finally, new fact goal and new
operator opgoal adding this fact is introduced, with preconditions being the
facts from sgoal and cost zero. This allows for representation of the goal
specification by a single fact while not changing any plan.

Initially, facts from the state s are inserted into the queue with the value
0. When a fact is popped from the priority queue, all operators, whose
preconditions contain this fact, have their counter of unsatisfied preconditions
decreased by 1. This is an important point of the algorithm (line 24 in
Algorithm 2)—when an operator achieves 0 of unsatisfied preconditions, the
value of the last fact that satisfied operator’s preconditions, is the maximum
value of all operator’s preconditions. This is thanks to the priority queue, as
all the facts, which have previously decreased the counter, must have had
lower value, otherwise they would not be popped from the priority queue.
This is an advantage compared to Algorithm 1, because we do not need
to repeatedly check for the applicability of the operators, as the applicable
operators are determined by the zero value of the counter.

After achieving zero in the counter of unsatisfied preconditions, values
of added effects are updated in the priority queue. The values can only

11

3. Implementation....................................
be decreased. When the goal fact is popped from the priority queue, the
algorithm terminates and returns the value of the goal fact. This value is
h1 value of the input state s. If at no point of the algorithm the goal fact is
popped, the input state s is a dead-end state and ∞ is returned.

Note that the algorithm resembles Dijkstra’s shortest path algorithm.

Algorithm 2 h1 (hmax)
Input: Π = 〈F ,O, sinit, sgoal〉, state s
Output: h1(f)

1: Initialize min prio. queue PQ.init({(f, 0) | f ∈ s}∪ {(f,∞) | f ∈ F \ s});
2: Initialize number of unsatisfied preconditions U(o)← |pre(o)|,∀o ∈ O;
3: while not PQ.empty do
4: /** Pops the element(fact) with lowest h1(f) **/
5: (f, h1(f))← PQ.pop()
6: if f is goal then
7: return h1(f)
8: end if
9: for all o ∈ O, f ∈ pre(o) do

10: U(o)← U(o)− 1
11: if U(o) = 0 then
12: for all g ∈ add(o) do
13: if (h1(f) + cost(o)) < PQ.getValue(g) then
14: PQ.update((g, h1(f) + cost(o)))
15: end if
16: end for
17: end if
18: end for
19: end while
20: /** The goal fact was not achieved from s **/
21: return ∞

3.3 h2 Heuristic

For the h2 heuristic the alternative characterization described in 2.2.4 is used,
along with the fact that h1(Πm) = hm(Π1). The planning task Π is expanded
to Π2 and then the h1 heuristic is applied. It became clear that it is not
necessary to create complete Π2, as some set of facts are unreachable—for
those sets are the corresponding meta-facts useless and their elimination
can improve the performance of the algorithm. Before this, the brute force
solution was implemented, which served as a baseline for performance testing
and a basis for improvement.

12

..................................... 3.3. h2 Heuristic

3.3.1 Brute Force Implementation

The brute force implementation uses the same idea as Algorithm 1, which
is extended to Π2. We, however, avoid the explicit construction of meta-
operators, as the preconditions and effects of them are determined during the
run of the algorithm.

Algorithm 3 Brute force h2

Input: Π = 〈F ,O, sinit, sgoal〉, state s
Output: h2(s)

1: Init doubles (fact combination, values): ({({c}, 0) | c ⊆ s, 1 ≤ |c| ≤
2} ∪ {({c},∞) | c ⊆ F \ s, 1 ≤ |c| ≤ 2})

2: changed← True
3: while changed do
4: changed← False
5: for all o ∈ O do
6: pres← {{c} | c ⊆ pre(o), 1 ≤ |c| ≤ 2}
7: if all comb in pres have value set then
8: maxPre← maxc∈pres getValue(c)
9: /**update can only lower the existing value**/

10: update({({c},maxPre+ cost(o)) | c ⊆ add(o), 1 ≤ |c| ≤ 2})
11: if some value was changed then
12: changed← True
13: end if
14: end if
15: /**Get facts available for extension of the operator o**/
16: avail← {f | f ∈ F , (f ∩ add(o)) = ∅}
17: for all f in avail do
18: fPres← {c | c ⊆ (pre(o) ∪ f), 1 ≤ |c| ≤ 2}
19: if all fPre in fPres have value set then
20: maxfPre← maxfPre∈fPres getValue(fPre)
21: update({({c},maxfPre + cost(o)) | c ⊆ (add(o) ∪

fSet), 1 ≤ |c| ≤ 2, c ∩ add(o) 6= ∅}
22: if some value was lowered then
23: changed← True
24: end if
25: end if
26: end for
27: end for
28: end while
29: return maxc⊆sgoal,1≤|c|≤2 getValue(c)

13

3. Implementation....................................
3.3.2 Conversion to Π2

Conversion to Π2 requires to create a meta-fact for every single fact and every
pair of facts from F . This is simply done by enumerating and creating a
representative for every subset of F of size one and two. It, however, proved
very useful to preserve the information about the underlying combination
being represented, as it, for example, allows to iterate through meta-facts
representing combinations of size 1, which can speed up the algorithm.

For every operator o from the original task the add(o) and pre(o) sets are
replaced with sets of meta-facts representing every single fact and every pair
of facts from those sets, e.g., {1, 2} becomes {φ1, φ2, φ1,2}. This corresponds
to the meta-operator from Definition 2.2.4 with f = ∅, i.e., ωo,∅. We refer
to this meta-operator’s precondition and effects as simple preconditions and
simple effects of the operator o.

Instead of creating all the new meta-operators as in Definition 2.2.4, it is
enough to extend simple preconditions and simple effects for every o ∈ O.
Note that the fulfillment of simple preconditions of o is necessary condition
for application of any meta-operator that extends the original operator o with
non-empty f . There are only two possible sizes of f in Π2, 0 and 1. The case
of |f | = 0 is already covered by simple preconditions and simple effects. We
therefore need to represent n additional meta-operators, where n = |F|, i.e.,
the number of meta-facts representing single facts from the original Π task.

For that we need to identify the meta-facts unique to preconditions of
meta-operator, i.e., {pre(ωo,{f}) \ pre(ωo,∅)}, where f 6= ∅, as the simple
preconditions of o are a subset of precondition set of every meta-operator
extending corresponding operator o with f 6= ∅. This is easily done, as those
unique meta-facts are the ones representing pairs of f and every single fact
precondition of simple preconditions of o, and meta-fact representing the fact f
itself. These sets of meta-facts are further referred to as extended preconditions
for f of operator o. Analogously, the sets {add(ωo,{f})\add(ωo,∅)}, where f 6=
∅, are called extended effects for f of operator o.

We can now put together the previously mentioned sets of simple precon-
ditions and effects and extended preconditions and effects into one operator
representative, whose logic would work as shown in Algorithm 4.

Algorithm 4 Operator’s representative satisfaction logic in Π2

Input: Operator o, task Π2

1: op← operator representative of o
2: if op.simplePreconditions are satisfied then
3: apply ωo,∅
4: for all f ∈ F do
5: if op.extendedPreconditions(f) are satisfied then
6: apply ωo,{f}
7: end if
8: end for
9: end if

14

..................................... 3.3. h2 Heuristic

It is now possible to express the preconditions as the size of the precondition
set and move the information to meta-fact representatives, as in the h1

implementation. The meta-fact representative, however, has to remember
its role in the operator representative’s unsatisfied counters, as the meta-fact
representative can point to the extended operator representative’s simple
precondition’s counter or to the extended precondition’s counter. In the second
case it is also necessary to remember, for which f was the meta-fact created.

This representation helps to keep the number of operators in the task low
and also saves the memory, as the introduction of all meta-operators would
bring a redundancy of pre(ωo,∅) being the subset of pre(ωo,{f}) for every
o ∈ O and f ∈ F , |f | = 1.

For a better illustration of the idea let us show the structure of the actual C
structure from implementation representing an operator representative (note
that in the implementation single fact representatives are identified by ids
from 0 to n = (|F| − 1)):

field type meaning

pre_size int number of simple preconditions
pre_unsat int number of unsatisfied simple preconditions
pre_size2 int array pre_size2 [f] = size of extended

preconditions for f
pre_unsat2 int array pre_unsat2[f] = number of unsatisfied

extended preconditions for f

The C structure of a meta-fact representative looks as follows:

field type meaning

pre_op pointer to operator r. operator r. having this fact in
its simple preconditions

pre_extop list of pointers to op r. list of operator r. having this
fact in extended preconditions

pre_extop_f list of fact ids list of ids of single fact
representatives identifying f set
defining extended precondition

Also note that it is not necessary to create extended preconditions and
effects for every fact f ∈ F , as some facts cannot be used for a creation
of meta-operators due to breaking the constraints in Definition 2.7. The
complete h2 algorithm is shown in Algorithm 5.

15

3. Implementation....................................
Algorithm 5 h2

Input: Π = 〈F ,O, sinit, sgoal〉, state s
Output: h2(s)

1: Construct Π2 = 〈Φ, ∅, φinit, φgoal〉, φs = {φc | c ⊆ s, |c| ≤ 2}
2: Construct set of operator representatives OR
3: Initialize number of unsatisfied simple preconditions UnsatSP (or) and

extended preconditions UnsatEP (or), ∀or ∈ OR
4: Initialize lists of pointers to counters of or, SP (φ), EP (φ) ,∀φ ∈ Φ
5: Initialize min prio. queue PQ.init({(φ, 0) | φ ∈ φs} ∪ {(φ,∞) | φ ∈

Φ \ φs});
6: while not PQ.empty do
7: (φ, h2(φ))← PQ.pop()
8: if φ is goal then
9: return h2(φ)

10: end if
11: for all or ∈ SP (φ) do
12: UnsatSP (or)← UnsatSP (or)− 1
13: if UnsatSP (or) = 0 then
14: update values of or.simpleEffects in PQ
15: for all f ∈ F do
16: if UnsatEP (or) = 0 then
17: update values of or.extendedEffects(f) in PQ
18: end if
19: end for
20: end if
21: end for
22: for all or ∈ EP (φ) do
23: UnsatEP (or)← UnsatEP (or)− 1
24: if UnsatEP (or) = 0 then
25: /**Get f , for which the φ was ext. precond. of or**/
26: fSetFact← getfSetFact(φ, or)
27: update values of or.extendedEffects(fSetFact) in PQ
28: end if
29: end for
30: end while
31: return ∞

3.3.3 Mutex Elimination

Mutexes are sets of facts that are mutually exclusive, i.e., facts, which cannot
hold at the same time. The Π2 construction creates meta-facts representing
pairs of facts, from which some are clearly unreachable. This follows from the
underlying FDR representation of the problem. As shown in Example 3.1,
FDR variable translates to r STRIPS facts, where r is the size of the variable’s
domain. From those r facts only one can hold at the same time, which means

16

..................................... 3.4. h3 Heuristic

that any meta-fact that corresponds to a pair of facts from those r facts
is unreachable and can be completely omitted from the Π2 task. This can
significantly reduce the size of the Π2 task, as each meta-fact representative
can possibly contain significant amount of information.

Mutexes and the impact of their elimination on the planning task are
furthermore explored in Chapter 4.

3.4 h3 Heuristic

Two implementations of h3 were created, the first with a brute force approach
(used as a baseline for performance testing) and the second one with ad-
justed algorithm using priority queue, a variation of the already implemented
algorithm from h1 and h2 implementation.

3.4.1 Brute Force Implementation

At first the brute force force solution was implemented. The idea is the same
as in the brute force h2. Instead of explicitly constructing the Π3 task, we
compute the heuristic on the original planning task Π, while constructing
the Π3 meta-operators and meta-facts on the go, i.e., instead of explicitly
creating a meta-fact representative for a set of facts beforehand and working
with it as a regular facts, we only work with facts from Π and we create
combinations of these facts when needed.

However, a problem arises with the need to store values along with the facts
and fact combinations, as the number of all combinations is n(n−1)(n−2)/6,
where n is the size of F in Π. For a lot of problems in the IPC domains
used for experiments in Chapter 4 it was not possible to store this amount
of values in a simple table within the memory limits. For this reason, the
values of combinations are being stored in a hash table. Initially, only the
combinations of facts from initial state are inserted. Other combinations
are inserted gradually, as they are encountered for the first time during the
computation. This proved quite useful. Usually, not all combinations are
encountered during the computation of heuristic.

We do not list the pseudo-code for this algorithm, as it is basically the
same as Algorithm 7 for m = 3.

3.4.2 Improved Implementation

The same idea with using the priority queue as in Algorithm 2 and Algorithm
5 was used. We expand the task to the Π3 compilation and apply the h1

heuristic to it. All combinations of facts from the original task of size at
most 3 are enumerated a represented by meta-facts. From these then the
mutexes are eliminated, as described in Section 3.3.3, only with the extension
to triplets of facts. We apply the same transformations as in Section 3.3.2,
that means introduction of a new meta-fact representing the goal specification,

17

3. Implementation....................................
which is reachable only by a new goal meta-operator, whose preconditions
are the meta-facts of the original goal state.

The Π3 is constructed in analogous way to Section 3.3.2. The idea of
keeping all the newly created meta-operators from one operator in one operator
representative, with hierarchically checked preconditions can by applied here
too. Consider the following observation.

Let Π = 〈F ,O, sinit, sgoal〉 denote a planning task. Let Πm = 〈Φ,Ω, φinit, φgoal〉
denote a compilation of Π from Definition 2.6. It holds for every pair of
facts f1, f2 ∈ F , f1 6= f2 and for every o ∈ O that pre(ωo,∅) ⊆ pre(ωo,{f1})
and pre(ωo,∅) ⊆ pre(ωo,{f2}). It also holds that pre(ωo,{f1}) ⊆ pre(ωo,{f1,f2}),
pre(ωo,{f2}) ⊆ pre(ωo,{f1,f2}) and (pre(ωo,{f1,f2}) \ pre(ωo,{f1})) \ pre(ωo,{f2}) =
{φ{f1,f2}} ∪ {φ{f1,f2,p} | p ∈ pre(o), p 6= f1, p 6= f2}.

It follows from this observation that it is again possible to create one
operator representative for each operator in the original task. Let o ∈ O
and f1, f2 ∈ F , f1 6= f2. By simple preconditions of o we then mean the
set pre(ωo,∅), by extended preconditions for o and f1 the set pre(ωo,{f1}) \
pre(ωo,∅) and by the double extended preconditions for o and facts f1, f2 the
set pre(ωo,{f1,f2}) \ (pre(ωo,{f1}) ∪ pre(ωo,{f2})).

This operator representative then consists of simple preconditions, n ex-
tended preconditions and

(n
2
)
double extended preconditions, where n = |F|.

The logic of applying the operator representative is illustrated in Algorithm 6.

Algorithm 6 Operator’s representative satisfaction logic in Π3

Input: Operator o, task Π3

1: op← operator representative of o
2: if op.simplePreconditions are satisfied then
3: apply ωo,∅
4: for all f1 ∈ F do
5: if op.extendedPreconditions(f1) are satisfied then
6: apply ωo,{f1}
7: for all f2 ∈ F , f1 6= f2 do
8: if op.extendedPreconditions(f2) are satisfied and

op.doubleExtendedPreconditions(f1, f2) are
satisfied then

9: apply ωo,{f1,f2}
10: end if
11: end for
12: end if
13: end for
14: end if

During the construction of operator representatives for all operators of the
original task, the same transformation as in Section 3.3.2 is applied, that
means that instead of each set of preconditions, only the size of the set is
stored in the operator representative. Every meta-fact from those sets then
contains pointers to those operator representative precondition’s counters.

18

.....................................3.5. hm Heuristic

However, because of the need of construction of the task and the way of
doing it, it is not possible to use the same method of storing the meta-fact’s
values in a hash table gradually (as in 3.4.1). All of the meta-facts (except for
the meta-facts representing mutexes) are needed at the time of construction,
as they carry references to the operator representative’s counters. This brings
problems with the memory requirements, as for many problems it is not
possible to hold all meta-facts representatives in the memory at the same
time.

The actual algorithm is very similar to Algorithm 5, but instead of check-
ing and decreasing of counters of unsatisfied preconditions only for simple
preconditions and extended preconditions, the counter for double extended
preconditions is introduced. The conditions for applying an operator repre-
sentative are then analogous to the principle introduced in Algorithm 6.

3.5 hm Heuristic

For the implementation of hm, the brute force approach analogous to Al-
gorithm 1 was used, along with the Πm representation of the task. As the
algorithm has to be general for any m, it is difficult to generalize any of the
improvements introduced in the implementations of h2 and h3. However, this
general implementation was not meant for efficient and fast computation of
hm values, but rather as a tool for obtaining information about hm behaviour
for values of m > 3.

For the storage of facts along with their values the hash table was used,
and facts are inserted into the hash table gradually during the run of the
algorithm. This lowers memory requirements (it is not necessary to hold all
fact values in the memory at once from the beginning of computation), while
keeping the access time to the stored values reasonable. Similarly, meta-facts
and meta-operators of the Πm representation are not explicitly stored in the
memory, but are constructed “on the fly” from the Π task. The algorithm is
described in pseudo-code in Algorithm 7.

19

3. Implementation....................................

Algorithm 7 hm

Input: Π = 〈F ,O, sinit, sgoal〉, state s
Output: hm(s)

1: Insert combinations of facts into hash table HTable.insert({({c}, 0) | c ⊆
s, 1 ≤ |c| ≤ m})

2: changed← True
3: while changed do
4: changed← False
5: for all o ∈ O do
6: combinations← {{c} | c ⊆ pre(o), 1 ≤ |c| ≤ m}
7: if all comb in combinations are in HTable then
8: maxPre← maxc∈combinations HTable.getValue(c)
9: HTable.updateOrInsert({({c},maxPre + cost(o)) | c ⊆

add(o), 1 ≤ |c| ≤ m})
10: if HTable was updated then
11: changed← True
12: end if
13: end if
14: /**Get facts available for extension of the operator o**/
15: avail← {f | f ∈ F , (f ∩ add(o)) = ∅}
16: fSets← {f | f ⊆ avail, 1 ≤ |f | ≤ (m− 1)}
17: for fSet in fSets do
18: fPres← {c | c ⊆ (pre(o) ∪ fSet), 1 ≤ |c| ≤ m}
19: if all fPre in fPres are in HTable then
20: maxfPre← maxfPre∈fPres HTable.getValue(fPre)
21: HTable.updateOrInsert({({c},maxfPre + cost(o)) | c ⊆

(add(o) ∪ fSet), 1 ≤ |c| ≤ m, c ∩ add(o) 6= ∅}
22: if HTable was updated then
23: changed← True
24: end if
25: end if
26: end for
27: end for
28: end while
29: return maxc⊆sgoal,1≤|c|≤m(HTable.getValue(c))

20

Chapter 4
Experiments

Experiments were performed on datasets from International Planning Compe-
tition (IPC) from years 2011 and 2014. Both datasets consists of 16 domains,
each containing 20 problems, that being 560 problems in total. The goal
of these experiments is to compare the implemented heuristics h2 and h3

with state-of-the-art heuristics. For these heuristics, the MAPLAN’s [6]
implementations of following heuristics were used:. lm-cut: LM-Cut heuristic [12],. flow: flow-based heuristic [1, 2], and. pot: potential heuristic [16].

We also compare the h2 and h3 with h1 heuristic, as the former two are an
“extension” of h1 and it is, therefore, useful to see the performance difference
between them.

The performance of heuristics is evaluated by comparison of heuristic values
in initial states, the number of evaluated states per second and the number
of solved problems from given domains (coverage).

4.1 Experiment Setup

The experiments were performed using the MetaCentrum [15], which provides
computational resources for remote computing. All experiments were per-
formed on a machine with an Intel E5-2670 2.6GHz CPU, except for the hm
experiments, which were performed on a machine with an Intel Xeon E5-4617
2.9GHz CPU because of higher memory requirements of the hm, which the
first machine was not able to satisfy. Memory and time limits were chosen
individually depending on the type of experiment, and are always listed in
that experiment’s description.

4.2 Heuristic Values in Initial States

In this experiment, only heuristic values were computed for the initial states
of each problem. The experiment was carried out with the memory limit
of 5 GB and the time limit of 60 minutes for each problem. Figures are

21

4. Experiments
shown separately for datasets from years 2011 and 2014. This is useful for
the testing of the dominance of heuristics. Once computed, the values are
plotted in a scatter plot in the following way. Each point in the scatter plot
corresponds to one planning problem, axes corresponds to heuristics, and
axis coordinates of a point correspond to the values of heuristics in the initial
state. For example, with x-axis corresponding to h2 and y-axis to h3, a point
with coordinates [3; 5] corresponds to the problem, for which the values of
heuristic were 3 for h2 and 5 for h3.

This allows for an easy observation of the heuristic dominance. Points,
which are above the diagonal, have higher y coordinate and thus higher value
of the heuristic corresponding to the y axis. Analogously for the points below
the diagonal, for which the x coordinate is greater that the y one. Problems,
for which the value in initial state could not be computed (because of time or
memory limits), are plotted as gray “x” points with the coordinate of value
1 on the axis corresponding to the failed heuristic. The lines, on which the
unsolved problems are plotted, are marked with the “uns” label. Since the
problems within domains scale exponentially, a logarithmic scale was used.

(a) : IPC 2011 (b) : IPC 2014

Figure 4.1: h1 vs h2 scatter plot of heuristic values in initial states

We can observe clear dominance of h2 over h1 in Figure 4.1. That complies
with the theoretical properties of hm. It can be however noticed, that h1 was
able to compute initial values for more problems than h2. The h1 computed
all values in the IPC 2014 dataset and all but one in the IPC 2011 dataset.
On the other hand, the h2 failed to compute 10 and 38 values in the limits in
the 2011 and 2014 datasets, respectively. This result is also expected, as h2

is computationally more demanding then h1.

22

...................................... 4.3. Coverage

(a) : IPC 2011 (b) : IPC 2014

Figure 4.2: h2 vs h3 scatter plot of heuristic values in initial states

Similar situation can be observed in Figure 4.2. h3 dominates h2, but was
not able to compute as many problems (116 and 176 unsolved for h3, 10 and
38 unsolved for h2).

(a) : IPC 2011 (b) : IPC 2014

Figure 4.3: h2 vs lm-cut scatter plot of heuristic values in initial states

Figures 4.3 and 4.4 depict the comparison between h2 and lm-cut. There
is no clear dominance in neither case.

4.3 Coverage

In the coverage experiment, we test how many problems is the MAPlan
planner able to solve with given heuristics and with given time and memory
limits using the A∗ algorithm. The time limts and memory limits for one
problem are 60 minutes and 5 GB, respectively. We test the coverage for h2,

23

4. Experiments

(a) : IPC 2011 (b) : IPC 2014

Figure 4.4: h3 vs lm-cut scatter plot of heuristic values in initial states

h3, lm-cut, pot and flow heuristics. The results are shown in Table 4.1 and
Table 4.2 for IPC 2011 and IPC 2014 datasets, respectively.

of solved problems

domain(#) h1 h2 h3 lm-cut pot flow

barman (20) 4 0 0 4 4 4
elevators (20) 9 11 2 17 7 7
floortile (20) 4 4 2 6 0 2
nomystery (20) 8 8 7 16 8 10
openstacks (20) 12 7 1 12 11 10
parcprinter (20) 10 9 2 17 15 20
parking (20) 0 0 0 4 1 1
pegsol (20) 17 17 10 17 17 19
scanalyzer (20) 6 3 3 13 9 11
sokoban (20) 20 17 1 20 15 16
tidybot (20) 14 6 0 14 13 6
transport (20) 6 6 5 7 6 6
visitall (20) 9 9 8 10 16 17
woodworking (20) 3 2 0 12 2 6∑

(280) 122 99 41 169 124 135

% (100.00) 43.57 35.36 14.64 60.36 44.29 48.21

Table 4.1: Coverage in IPC 2011 dataset

We can see that h2 and h3 are not able to keep up with lm-cut, pot and flow
heuristics in most domains and its total coverages are lower in both datasets,
in the case of h3 significantly. In the IPC 2014 dataset, the h3 was able to
solve only 22 out of 280 problems, failing on either memory or time limits in
the rest of the problems. However, there are some exceptions. In the elevators,

24

..............................4.4. Evaluated States Per Second

of solved problems

domain(#) h1 h2 h3 lm-cut pot flow

barman (20) 6 0 0 6 3 3
cavediving (20) 7 7 0 7 6 7
childsnack (20) 0 0 0 0 0 0
citycar (20) 16 10 2 16 9 9
floortile (20) 2 2 0 5 0 0
ged (20) 15 13 9 15 15 13
hiking (20) 11 8 3 10 9 10
maintenance (20) 5 5 3 17 5 5
openstacks (20) 1 1 0 1 1 1
parking (20) 0 0 0 4 3 2
tetris (20) 7 2 0 9 11 11
tidybot (20) 10 0 0 10 5 0
transport (20) 6 6 3 6 4 4
visitall (20) 3 4 2 4 13 13∑

(280) 89 58 22 110 84 78

% (100.00) 31.79 20.71 7.86 39.29 30.00 27.86

Table 4.2: Coverage in IPC 2014 dataset

floortile and sokoban domains from IPC 2011 dataset, h2 outperformed both
pot and flow heuristics. The same holds for the transport domain from IPC
2014. In both datasets, h3 outperformed only the pot heuristic in floortile
domain int IPC 2011. Also note that the hm heuristics did not solve any
problem in both parking domains, while the remaining heuristics were able
to solve at least one problem.

Two coverage experiments were also run for hm heuristic, one for m = 4
and the second one for m = 5. The memory limit was set to 100 GB and the
time limit to 5 hours. However, not a single problem was solved, with most
of them failing due to the time limit.

4.4 Evaluated States Per Second

This experiment was focused on the speed, with which is the planner able to
evaluate states with given heuristics. The same heuristics as in the previous
coverage experiment were used. The experiment setup is similar to the
coverage experiment. Time limits and memory limits for one problem are
60 minutes and 5 GB, respectively. We compute the number of evaluated
states per second for each problem. These values are then averaged over each
domain. A “dash” sign in a table means, that the heuristic was not able to
compute even the initial state for any problem in the domain. The results
are shown in Table 4.3 and Table 4.4.

It is clear that the calculation of h3 is very slow. For example, in the IPC

25

4. Experiments
2014 domain, the h3 was not able to finish a initial state evaluation for any
problem in 7 domains.

evaluated states per second

domain h1 h2 h3 lm-cut pot flow

barman 56935.3 95.8 0.1 4156.4 731321.1 3396.2
elevators 99715.8 609.7 2.7 8589.4 1119131.7 5807.5
floortile 95323.9 829.4 8.0 9539.2 1262216.7 4681.8
nomystery 73900.6 2285.6 132.6 7797.2 1556514.6 3004.2
openstacks 90600.4 771.6 19.8 56784.9 1275567.3 3182.4
parcprinter 63648.3 776.4 7.1 12416.1 867593.7 3877.2
parking 4705.0 - - 293.0 760372.9 459.4
pegsol 121417.0 1615.9 6.2 40344.2 1324796.9 3013.1
scanalyzer 23199.4 1929.2 299.2 3482.0 922557.2 1112.5
sokoban 89583.5 329.7 5.4 13022.5 997807.0 3088.4
tidybot 5841.6 5.1 - 417.3 54817.2 154.3
transport 46207.6 309.6 4.5 1175.7 1089358.9 3413.1
visitall 157583.0 7303.5 2024.4 21032.0 1233533.6 6011.0
woodworking 58706.8 266.0 - 7228.9 853696.8 3804.5

average 70526.3 1317.5 228.2 13305.6 1003520.4 3214.7

Table 4.3: States per second in IPC 2011 dataset

evaluated states per second

domain h1 h2 h3 lm-cut pot flow

barman 55772.8 88.5 0.1 4008.0 740269.8 3184.3
cavediving 55880.9 385.4 - 10528.6 704039.5 2354.8
childsnack 44719.7 497.7 - 8716.8 994637.3 2455.8
citycar 67561.1 336.7 0.8 3205.9 671806.8 3410.2
floortile 99603.8 559.5 - 8875.3 1224168.0 4917.4
ged 66095.5 1380.5 57.3 26845.1 1659684.0 911.4
hiking 49151.2 1952.8 233.7 6234.9 768559.9 3178.0
maintenance 227348.6 9765.2 154.0 153521.7 909329.2 10495.9
openstacks 30798.5 99.1 - 14091.6 1048073.2 1064.4
parking 5622.6 - - 371.1 765490.6 594.2
tetris 12464.4 8.3 - 414.8 129058.9 273.1
tidybot 2142.6 - - 43.5 17812.7 50.3
transport 34499.3 332.6 6.1 976.5 958408.9 2609.0
visitall 101164.8 2001.0 44.9 11326.2 945642.6 3419.5

average 60916.1 1450.6 71.0 17797.1 824070.1 2779.9

Table 4.4: States per second in IPC 2014 dataset

26

Chapter 5
Proposed Improvement

Based on the idea of ΠC [8] and Πm [7], we propose a new representation of
planning task Π.
Definition 5.1. Let Π be a planning task 〈F ,O, sinit, sgoal〉 and let r ⊆ F
be a set of facts from Π. Planning task Πm

r is a tuple 〈Φ,Ω, φinit, φgoal〉,
where Φ is a set of meta-facts (meta-atoms), Φ = {φc | c ⊆ F , |c| ≤ 1} ∪
{φc | c ⊆ F , 1 < |c| ≤ m, c ∩ r = ∅}. Initial state and goal specification are
defined analogously:
φinit = {φc | c ⊆ sinit, |c| ≤ 1} ∪ {φc | c ⊆ sinit, 1 < |c| ≤ m, c ∩ r = ∅}
φgoal = {φc | c ⊆ sgoal, |c| ≤ 1} ∪ {φc | c ⊆ sgoal, 1 < |c| ≤ m, c ∩ r = ∅}.
For each operator o ⊆ O and for each set of facts f ⊆ F \ r, |f | ≤ m− 1

and f * add(o) ∪ del(o), Πm contains such a meta-operator ωo,f ∈ Ω:

pre(ωo,f) = {φc | c ⊆ (pre(o) ∪ f), |c| = 1}∪
{φc | c ⊆ (add(o) ∪ f), c ∩ r = ∅, 1 < |c| ≤ m}

add(ωo,f) = {φc | c ⊆ add(o), |c| = 1}∪
{φc | c ⊆ (add(o) ∪ f), c ∩ add(o) 6= ∅, c ∩ r = ∅, 1 < |c| ≤ m}

del(ωo,f) = ∅, and
cost(ωo,f) = cost(o).
This is, in fact, a Πm task, with the restriction on a set of combinations for

which meta-facts are created. This is done by introducing set r ⊆ F of facts
from the original task Π. All combinations of size bigger than 1, which would
contain fact f from r, have not their corresponding meta-fact created. This
is similar to the ΠC characterization of the task, as the same effect could be
achieved with an appropriate choice of C, however, the main difference is in
the definition of meta-operators. Meta-operators in Πm

r follow the same logic
as in the Πm in Definition 2.5. That means that meta-operator is created for
every subset of F of a size smaller than m. Recall that in the ΠC task from
Definition 2.12, the meta-operator was created for every subset of C. This
puts the Πm

r task somewhere in between the Πm and ΠC task. The heuristic
value is computed as h1 of to the Πm

r task, same as in Definition 2.5.
Notice, that the choice of restricted facts r allows for a transition between

Πm tasks for different m values. Let Π = 〈F ,O, sinit, sgoal〉. The Π2
r task,

27

5. Proposed Improvement
where r = F is then equal to the original Π task. However, with r = ∅, the
Π2
r tasks corresponds to the Π2 task.

5.1 Initial Experiments

For the experiments, the basic implementation of h1(Π2
r) was created. It is

built upon the brute force implementation of h2, shown in Algorithm 3. The
implementation takes a list of facts, that cannot be used in any combinations
of facts throughout the whole task.

Two sample problems included with the MAPlan planner [6] were used in
this experiment, rovers-p01.proto and rovers-p02.proto. They were chosen
due to their relatively small size, which allows for an easier observation of
their initial structure, as opposed to the problems from the IPC datasets.

The first experiment was focused on studying the impact of the r set
selection on the planning task. This was done be generating all combinations
of facts from F . Regular h1 and h2 heuristics were computed on the two
tested problems. The heuristic value at the initial state and the total number
of evaluated states were noted. After that, the h1(Π2

r) were computed with r
iterating through all the generated combinations of facts.

Part of the results are shown in Table 5.2. Note that the first row of the
table corresponds to results obtained by h2, while the last one to the ones by
h1 heuristic. For a more clear way of describing the used facts, the names of
single facts derived from the FDR representation are included in the table.

r set (ids) r set (names) init heur eval states

∅ - 5 124
· · · · · · · · · · · ·
{f3} {at(rover0, waypoint3)} 5 124
{f4} {at_rock_sample(waypoint0)} 5 124
{f5} {have_rock_analysis(rover0, waypoint0)} 5 171
{f6} {at_soil_sample(waypoint0)} 5 124
{f7} {have_soil_analysis(rover0, waypoint0)} 5 171
{f8} {calibrated(camera0, rover0)} 5 148
· · · · · · · · · · · ·
{f3, f4} - 5 124
· · · · · · · · · · · ·
{f5, f7} - 4 206
· · · · · · · · · · · ·

{f3, f4, f6} - 5 124
· · · · · · · · · · · ·
F - 3 259

Table 5.1: Impact of r set selection on Π2
r

We can see that restricting some facts has no effect on the number of
evaluated states and the search with this heuristic overall. Consider for

28

..............................5.2. Selection of Restricted Facts

example r sets of {f3}, {f4} and {f6}. The heuristic values and number
of evaluated states are the same as for unrestricted h2. It could also be
noticed, that combining those single facts, that have no effect on the number
of evaluated states into one set, which was then passed to the heuristic as r
set, had also no effect on the number of evaluated states.On the other hand,
combining those single facts, that have no effect on the heuristic value at the
initial state, did not produce such good results. It, however, still performed
better than the h1 heuristic by itself.

Nevertheless, this experiment showed, that it is possible to select a set of
facts r in such way, that the h1(Π2

r) produces the same heuristic values as h2.
In the following section, we discuss the strategy for selecting set of facts, that
would keep the heuristic estimates as high as possible.

5.2 Selection of Restricted Facts

As described in the previous section, two ways of selecting the set of facts
to restrict were proposed. The better performing one selected those facts,
for which the number of evaluated states is the same or smaller than in the
case of h2. However, this is not very practical, as for this we need to actually
solve the problem completely. Because of that, a strategy based on heuristic
values in initial states is proposed.

5.2.1 Proposed Strategy

Let Π = 〈F ,O, sinit, sgoal〉 and let Π2
r = 〈Φ,Ω, φinit, φgoal〉 constructed as in

Definition 5.1. Let us apply the following strategy for selecting the set of
facts rset. Compute the value of h1(Π2). Lets call this value original init
value. For every fact f ∈ F compute h1(Π2

r) for r = f . If this value is the
same as original init value, add fact f to rset. Finally, compute h1(Π2

rset
).

5.2.2 Strategy Evaluation

Let us show the results on pegsol domain from IPC 2011 dataset. For each
problem, the brute force h2 was used and the problem was solved, with the
total search time shown in the second column of Table 5.2. After that, the
strategy from Section 5.2.1 is applied to the h1(Π2

r) for r selection. The
total time for the selection process plus solving the task itself is in the third
column.

We can see that the strategy produces the solution to the problems in pegsol
faster than regular brute force h2. However, this is the best performing domain
from the dataset and the strategy itself does not guarantee any theoretical
properties. The relative success in this domain can thus be attributed to the
structure of this domain.

29

5. Proposed Improvement
time in seconds

problem h2 h1(Π2
r) + strategy diff

p1 0.07 0.49 -0.42
p2 489.14 162.60 326.54
p3 26.05 20.72 5.33
p4 192.63 134.07 58.56
p5 36.52 22.34 14.18
p6 223.30 124.29 99.01
p7 126.05 73.35 52.70
p8 363.25 172.51 190.74
p9 357.45 206.10 151.35
p10 627.80 237.14 390.66
p11 30.83 28.79 2.03
p12 26.54 9.85 16.69
p13 963.83 493.40 470.43
p14 883.42 572.60 310.82
p15 897.52 518.71 378.81
p16 863.62 904.16 -40.53
p17 977.36 916.34 61.02
p18 894.69 919.36 -24.67
p19 550.00 948.05 -398.05
p20 652.69 960.86 -308.17∑

9182.76 7425.74 1757.02

Table 5.2: Search time of h2 vs h1(Π2
r) with strategy for r selection

5.2.3 Justification Graph

Some analytical approach of selecting the set of facts to restrict, which
would produce results with some theoretical guarantees, would be much more
convenient. With the hope of discovering some structural connection or
relationships of the task with the facts not affecting when restricted with,
we tried to construct justification graphs [13] of the investigated problems.
Justification graph is defined [13] as follows:
Definition 5.2. Let Π = 〈F ,O, sinit, sgoal〉. A precondition choice function
is a function p : O → F , which maps every operator o ∈ O to one of its
precondition.

Justification graph JG for precondition choice function p is a directed graph
with annotated edges. The JG contains a vertex for every fact f ∈ F and
edge p(o) o−→ e for every o ∈ O, e ∈ add(o).

We constructed the justification graph for the Π2 with precondition choice
function being the h1, i.e., for each operator selecting the hardest to reach
precondition. The idea was to look for some properties of the graph, which
would explain why some facts can be restricted from the meta-fact creation
while maintaining the same heuristic values. However, this turned up to be

30

..............................5.2. Selection of Restricted Facts

nearly impossible, as the justification graph represents every fact in the task
with a node. For example, in the Π2 representation of the rovers-p02 problem
that means several hundred of meta-facts. The graph gets very large and it
is thus difficult to observe any rules or regularities.

31

32

Chapter 6
Conclusion

One of the goals of this thesis was to efficiently implement h2 and h3 heuristics.
This was done by using the alternative characterization of the planning task
Π, Πm, and the fact, that h1(Πm) = hm(Π) [7]. A brute force solutions
were implemented first. Then we gradually improved them by introducing
optimizations to the algorithms. The optimized algorithms for h2 and h3

were experimentally evaluated on datasets used in International Planning
Competition from years 2011 and 2014. We compared the heuristics with
other state-of-the-art heuristics, namely the LM-Cut heuristic [12], flow-based
heuristic [1, 2] and potential heuristic [16].

In the analysis, heuristics were compared in terms of heuristic values in
initial states, the number of solved problems in the International Planning
Competition datasets (coverage) and the number of evaluated states per
second. We used the heuristic values in initial states for showing the dominance
between heuristics. We obtained results in accordance with the theoretical
properties of hm, i.e., h3 dominating h2 and h2 dominating h1. There was
no dominance found between any of the other heuristics. The coverage
experiment showed that h3 is not able to keep up with other state-of-the-art,
with the exception for one domain. The h2 was, however, able to solve more
problems than the LM-Cut and flow-based heuristics in several of domains,
while in general performing worse than the state-of-the-art. Similar results
were obtained when comparing the number of evaluated states per second,
with h2 and h3 being outperformed by state-of-the-art heuristics.

General hm heuristic was also implemented, however, its usage was very
limited and it performed poorly in experiments, completely failing in the
coverage experiment.

We proposed a new characterization of the planning task, Πm
r . It acts

as a restriction of the regular Πm characterization of the task, as it allows
for a choice of a set of facts which cannot be used in combinations of facts
represented by meta-facts. It was experimentally shown that a proper choice
of the restriction set for Π2

r keeps the same heuristical estimates as for regular
Π2.

Finally, a strategy for choosing a set of facts, which will not lower the
heuristical estimates too much, was proposed, implemented, and evaluated,
showing promising results in pegsol domain from IPC dataset from 2011, but

33

6. Conclusion......................................
not performing very well in other domains. The problem of selecting the set
of restricted facts will be a subject of a future work.

34

Bibliography

[1] Blai Bonet. “An Admissible Heuristic for SAS+ Planning Obtained
from the State Equation”. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI). 2013, pp. 2268–2274.
url: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/
view/6927.

[2] Blai Bonet and Menkes van den Briel. “Flow-Based Heuristics for
Optimal Planning: Landmarks and Merges”. In: Proceedings of the
Twenty-Fourth International Conference on Automated Planning and
Scheduling (ICAPS). 2014, pp. 47–55. url: http://www.aaai.org/
ocs/index.php/ICAPS/ICAPS14/paper/view/7933.

[3] Richard Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving”. In: Artif. Intell.
2.3/4 (1971), pp. 189–208. doi: 10.1016/0004-3702(71)90010-5. url:
http://dx.doi.org/10.1016/0004-3702(71)90010-5.

[4] Daniel Fišer. Boruvka. https://github.com/danfis/boruvka. 2018.
[5] Daniel Fišer. LM-Cut Heuristic. URL: http://cw.fel.cvut.cz/

wiki/_media/courses/a4m36pah/t4- lmcut- fiser.pdf. Slide 4.
Mar. 2017.

[6] Daniel Fišer, Michal Štolba, and Antonin Komenda. “MAPlan”. In:
Competition of Distributed and Multi-Agent Planners (CoDMAP). 2015,
pp. 8–10.

[7] Patrik Haslum. “hm(P) = h1(Pm): Alternative Characterisations of the
Generalisation From hmax To hm”. In: Proceedings of the 19th Inter-
national Conference on Automated Planning and Scheduling (ICAPS).
2009, pp. 354–357. url: http://aaai.org/ocs/index.php/ICAPS/
ICAPS09/paper/view/713.

[8] Patrik Haslum. “Incremental Lower Bounds for Additive Cost Planning
Problems”. In: Proceedings of the Twenty-Second International Con-
ference on Automated Planning and Scheduling, ICAPS 2012, Atibaia,
São Paulo, Brazil, June 25-19, 2012. 2012. url: http://www.aaai.
org/ocs/index.php/ICAPS/ICAPS12/paper/view/4703.

35

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6927
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6927
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7933
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7933
https://doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1016/0004-3702(71)90010-5
https://github.com/danfis/boruvka
http://cw.fel.cvut.cz/wiki/_media/courses/a4m36pah/t4-lmcut-fiser.pdf.
http://cw.fel.cvut.cz/wiki/_media/courses/a4m36pah/t4-lmcut-fiser.pdf.
http://aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/view/713
http://aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/view/713
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4703
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4703

Bibliography
[9] Patrik Haslum, Blai Bonet, and Hector Geffner. “New Admissible

Heuristics for Domain-Independent Planning”. In: Proceedings, The
Twentieth National Conference on Artificial Intelligence and the Sev-
enteenth Innovative Applications of Artificial Intelligence Conference,
July 9-13, 2005, Pittsburgh, Pennsylvania, USA. 2005, pp. 1163–1168.
url: http://www.aaai.org/Library/AAAI/2005/aaai05-184.php.

[10] Patrik Haslum and Hector Geffner. “Admissible Heuristics for Optimal
Planning”. In: Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems (AIPS). 2000, pp. 140–149. url:
http://www.aaai.org/Library/AIPS/2000/aips00-015.php.

[11] Malte Helmert. “Concise finite-domain representations for PDDL plan-
ning tasks”. In: Artif. Intell. 173.5–6 (2009), pp. 503–535. doi: 10.
1016/j.artint.2008.10.013. url: http://dx.doi.org/10.1016/j.
artint.2008.10.013.

[12] Malte Helmert and Carmel Domshlak. “Landmarks, Critical Paths and
Abstractions: What’s the Difference Anyway?” In: Proceedings of the
19th International Conference on Automated Planning and Scheduling
(ICAPS). 2009.

[13] Malte Helmert and Gabriele Roger. A Beginner’s Introduction to Heuris-
tic Search Planning - 6. Delete Relaxation and Landmarks. URL: http:
//ai.cs.unibas.ch/misc/tutorial_aaai2015/planning06.pdf.
Slide 30. Jan. 2015.

[14] Emil Keyder, Jörg Hoffmann, and Patrik Haslum. “Improving delete
relaxation heuristics through explicitly represented conjunctions”. In:
Journal of Artificial Intelligence Research 50 (2014), pp. 487–533.

[15] MetaCentrum VO. https://metavo.metacentrum.cz/cs/. Accessed:
2018-05-20.

[16] Florian Pommerening et al. “From Non-Negative to General Operator
Cost Partitioning”. In: Proceedings of the Twenty-Ninth Conference
on Artificial Intelligence (AAAI). 2015, pp. 3335–3341. url: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9983.

[17] S. Russell and P. Norvig. “Artificial Intelligence: A Modern Approach”.
In: Third. Series in Artificial Intelligence. Upper Saddle River, NJ:
Prentice Hall, 2010. Chap. 3, pp. 103–104. url: http://aima.cs.
berkeley.edu/.

36

http://www.aaai.org/Library/AAAI/2005/aaai05-184.php
http://www.aaai.org/Library/AIPS/2000/aips00-015.php
https://doi.org/10.1016/j.artint.2008.10.013
https://doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://ai.cs.unibas.ch/misc/tutorial_aaai2015/planning06.pdf.
http://ai.cs.unibas.ch/misc/tutorial_aaai2015/planning06.pdf.
https://metavo.metacentrum.cz/cs/
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9983
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9983
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

	Introduction
	Background
	Domain-independent Planning
	Definitions
	STRIPS Planning Task
	Heuristic Functions
	hm Heuristics
	Alternative Characterization of hm
	C

	Implementation
	Overview
	General Implementation Information
	Project Structure

	h1 Heuristic
	h2 Heuristic
	Brute Force Implementation
	Conversion to 2
	Mutex Elimination

	h3 Heuristic
	Brute Force Implementation
	Improved Implementation

	hm Heuristic

	Experiments
	Experiment Setup
	Heuristic Values in Initial States
	Coverage
	Evaluated States Per Second

	Proposed Improvement
	Initial Experiments
	Selection of Restricted Facts
	Proposed Strategy
	Strategy Evaluation
	Justification Graph

	Conclusion
	Bibliography

