
L.S.

prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague October 15, 2015

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Decision Making and Construction of Trust in Ad-Hoc Networks Using Neural Networks

 Student: Bc. Tatyana Aubekerova

 Supervisor: Ing. Alexandru Moucha, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Systems and Networks

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2016/17

Instructions

Generally, neural networks are able to estimate and find data dependencies not known before. They are able
to make decisions based on some learning performed (samples of good or bad data) and thus they
theoretically can be useful in construction of trust in distributed systems.
Study out which properties and types of neural networks could be used to analyze and construct trust in ad-
hoc networks. Create a neural network simulator to analyze and discover which parameters make sense for
such trust methods. Discuss the results of the simulations and their applicability for trust management in real
ad-hoc networks and formulate the conclusions.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of computer systems

Master’s thesis

Decision Making and Construction of

Trust in Ad-Hoc Networks Using Neural

Networks

Bc. Tatyana Aubekerova

Supervisor: Ing. Alexandru Mihnea Moucha, Ph.D.

14th July 2016

Acknowledgements

I would like to thank my family for support during writing this thesis. Also I
am grateful to my supervisor Alex Moucha for providing valuable advices and
be supportive during work on this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on 14th July 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Tatyana Aubekerova. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Aubekerova, Tatyana. Decision Making and Construction of Trust in Ad-
Hoc Networks Using Neural Networks. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2016.

Abstrakt

Tato práce je věnována oblasti Ad-hoc śıt́ı, konkrétně konceptu d̊uvěry a
je záměrená na možnosti využit́ı neuronových śıt́ı do tohoto konceptu. Ne-
jprve jsou uvedeny definice souvisej́ıćıch pojmů, pak problém je definovan a
následuje navrhované řešeńı. Hlavńı náplńı práce jsou provedené experimenty,
jejich následné vyhodnoceńı a diskusi.

Kĺıčová slova ad-hoc śıtě, d̊uvěra, neuronovy śıtě, Omnet++, FaNN, PRD

Abstract

This work is dedicated to the field of Ad-hoc networks, more specifically to
concept of trust and intent to find application of neural network to this con-
cept. First there are given definitions to related terms, then the problem is
stated and the suggested solution follows. The main pivot of the thesis are
experiments held and their evaluation and discussion.

Keywords ad-hoc network, trust, neural network, Omnet++, FaNN, PRD

ix

Contents

Introduction 1

Motivation and objectives . 1

State of the Art . 1

1 Basic concepts and definitions 3

1.1 Ad-hoc networks . 3

1.2 Concept of trust . 6

1.3 Basics of artificial neural networks 8

2 Statement of objectives 11

2.1 Object of research . 11

2.2 Problem definition . 11

3 Suggested solution 15

3.1 Creation of Data Instances . 16

3.2 Training of NN . 19

3.3 In search of solution: wrong ways 20

4 Testing environment 21

4.1 Tools used . 21

4.2 NN learning and adjusting parameters 24

4.3 Data construction . 24

4.4 Data format . 25

4.5 Data structure . 27

4.6 Evaluating results . 27

5 Experiments 29

5.1 Data for learning . 29

5.2 Detection . 33

5.3 Estimation . 35

xi

6 Discussion and possible further work 37
6.1 Suitability of NN for detection od broken nodes 37
6.2 Suitability of NN for PDR estimation 37
6.3 Limitations . 37
6.4 Future work . 38

Conclusion 39

Bibliography 41

A Acronyms 45

B Contents of CD 47

C User manual for experimenting 49

D More results 51
D.1 NN trained on data set 1 testing data set 1 - detection 51
D.2 NN trained on data set 2 testing data set 2 - detection 52
D.3 NN trained on data set 3 testing data set 3 - detection 53
D.4 NN trained on data set 4 testing data set 4 - detection 54
D.5 NN trained on data set 5 testing data set 5 - detection 55
D.6 NN trained on data set 4 testing data set 1 - detection 56
D.7 NN trained on data set 1 testing data set 4 - detection 57
D.8 NN trained on data set 3 testing data set 1 - detection 58
D.9 NN trained on data set 1 testing data set 3 - detection 59
D.10 NN trained on data set 3 testing data set 4 - detection 60
D.11 NN trained on data set 4 testing data set 3 - detection 61
D.12 NN trained on data set 1 testing data set 1 - estimation 62
D.13 NN trained on data set 2 testing data set 2 - estimation 63
D.14 NN trained on data set 3 testing data set 3 - estimation 64
D.15 NN trained on data set 4 testing data set 4 - estimation 65
D.16 NN trained on data set 5 testing data set 5 - estimation 66
D.17 NN trained on data set 4 testing data set 1 - estimation 67
D.18 NN trained on data set 1 testing data set 4 - estimation 68
D.19 NN trained on data set 3 testing data set 1 - estimation 69
D.20 NN trained on data set 1 testing data set 3 - estimation 70
D.21 NN trained on data set 3 testing data set 4 - estimation 71
D.22 NN trained on data set 4 testing data set 3 - estimation 72

xii

List of Figures

1.1 Omnidirectional antenna . 5
1.2 Mathematical model of neuron . 8

2.1 Node ranges and possibilities for eavesdropping 12
2.2 Node ranges and possibilities for eavesdropping 13
2.3 Bad possibilities for eavesdropping 13
2.4 Measurement of communication . 13

3.1 Example topology with node PDRs 16

4.1 Structure of network in Omnet++ simulation 23
4.2 Structure of node in Omnet++ simulation 24
4.3 Data structure of the data folder 27

xiii

List of Tables

3.1 Example of all paths in the topology (one link paths excluded) . . 16
3.2 Example of PDR calculation for every path 17
3.3 Paths by investigated node . 17
3.4 Example of data instance based on all paths 17
3.5 The average path PDRs . 18
3.6 The example of the final instances based on the paths average on

every node . 18
3.7 The example of final instances with PDRnode5 = 0.3 and PDRnode6 =

0.8 . 19
3.8 The example of final instances with PDRnode5 = 0.2 and PDRnode6 =

0.7 . 19

5.1 Quality of results depending on count of neurons and learning
epochs - detection. (Best results are highlighted.) 32

5.2 Quality of results depending on the count of neurons and learning
epochs - estimation . 32

5.3 Experiment 1 - overall results . 33
5.4 Experiment 1 - detailed results . 34
5.5 Experiment 2 - overall results . 34
5.6 Experiment 3 - overall results . 34
5.7 Experiment 3 - overall results on normal data 35
5.8 Experiment 4 - overall performance 35
5.9 Experiment 5 - overall results . 35
5.10 Experiment 5 - detailed results . 36
5.11 Experiment 6 - overall results . 36

xv

Introduction

Motivation and objectives

Ad-hoc networks are created by nodes, which are routers and end-stations at
the same time, thus such networks can function only if nodes cooperate. In
case some message was not delivered it is generally hard to tell from the view
of sender, which node was responsible. Even if the node have information from
other nodes, it is difficult to construct a method which decides if the given node
is untrusted. The most important advantage of neural networks(NNs) is their
ability to solve problems, for which conventional algorithmic solution does
not exist or is too complex.[1] In general, being a conceptional representation
of human brain, NNs are suitable for the problem solving in which people
are good, but computers are not. They can learn and reorganize itself from
experience, adapt to the environment. As trust concept arose from the notion
of social trust the assumption is that NNs can be capable of trust evaluation
in Ad-hoc networks.

This thesis is structured as follows: first the basic notions related to the
research are described, then the formulation of problem and its analysis is
presented. The simulator for implementation of chosen scenario and collecting
data for NN was created. Description of the experiments with training NN
follows and performance and results are analyzed.

State of the Art

In [2] authors suggested to use NN in peer-to-peer (P2P) networks for eval-
uation of recommendations received from neighbors and determine the trust
level of the target node. Then the communication take place and based on
the obtained result NN weights are adjusted. After a while NN is trained
and can be used for making decisions. Some other studies are using NN for
prediction the node behavior and thus intrusion detection [3] or for making
routing decisions.[4]

1

Chapter 1

Basic concepts and definitions

First chapter aims to describe related theory behind the thesis.

1.1 Ad-hoc networks

1.1.1 General notions

Field of wireless rapid-deployed networks have received a lot of attention re-
cently owning to exponential growth and evolution of wireless communication.
Ad-hoc network is a set of small modules, connecting on-the-fly. Every node
plays role of the router and end station at the same time.

Due to high mobility, continuous changes and lack of fixed infrastruc-
ture and any central management these networks are prone to have security
vulnerabilities. Modules located inside the radio range can communicate di-
rectly, otherwise they need to use intermediate nodes to deliver their messages.
Therefore network performance highly depends on the cooperation of nodes,
thus mechanisms to enforce the collaboration are required. Node not necessary
has to be malicious, the case it is selfish is equal to maliciousness.

Challenges, such as deficiency of computational power and energy re-
sources, preserves from using classical key-establishment schemes and central
certification authorities. In order to reduce potential threats the concept of
trust arose.

1.1.2 Structure and properties of node

Network is created by nodes. These are small modules, consisting of antenna
and radio transceiver, processing unit, memory and battery. As computations
made by one node for the needs of this research are negligible, detailed de-
scription of processing unit and memory is out of scope of this paper. Energy
consumption is also topic of another research. Thus follows the description of
antenna and radio.

3

1. Basic concepts and definitions

For wireless communication antenna is probably the most critical con-
stituent element. Antenna is usually a metal device which is a means for
sending and receiving data. In other words the antenna is the transitional
structure between free-space and a guiding device.The guiding device or trans-
mission line may take the form of a coaxial line or a hollow pipe (waveguide),
and it is used to transport electromagnetic energy from the transmitting source
to the antenna, or from the antenna to the receiver. [5] Radio transceivers
operate in half-duplex, as transmit and receive data at the same time is not
possible.

Fundamental parameter of antenna is radiation pattern. It is defined as “a
mathematical function or a graphical representation of the radiation properties
of the antenna as a function of space coordinates”.[5] Radiation properties can
include power density, field strength, directivity, polarization or phase. The
most interesting is the space distribution of related energy, so the node range
can be determined. A graph of spatial distribution of power density is called
power pattern and usually is plotted in decibels.

Radiation pattern can be isotropic, directional, and omnidirectional. Isotropic
means the equal radiation in all directions, it is not reachable in practice, but
serve as a reference for expressing directive properties for real antennas. Direc-
tional antenna can send/receive more effectively in some direction. Antenna,
whose radiation pattern is non-directional in one plane and directional in or-
thogonal is called omnidirectional and is represented on Figure 1.1).[6] These
antennas are used in our research.

Range of antenna is the distance within the node can communicate. It
grows with square root of power, which means that to double the communi-
cation distance requires four times the power. Communication range defines
which nodes will be neighbors, thus have a direct link between them. Set of
links determines certain network topology.

1.1.3 Network topology

Network can be viewed as a graph G = V × E, where V is a set of all nodes
in the network and E is a set of all links between nodes. Each G∗ ⊆ G, where
V ∗ = V will give a different network topology with the same nodes.

Path between two nodes is a sequence of links which need to be passed to
get from one node to another. Start node is called source and the final node is
destination. Paths can be found by routing algorithms. So network topology
is defined by routing.

1.1.4 Routing

Generally routing protocols for Ad-hoc networks can calculate the routes pe-
riodically (proactive) or on-demand (reactive). Due to such disadvantages
as high memory demand and slow reaction on restructuring and failures [7],

4

1.1. Ad-hoc networks

Figure 1.1: Omnidirectional antenna

proactive protocols (OLSR, DSDV) are not commonly used for Ad-hoc net-
works. Instead, reactive protocols are preferable here. The most prevalent are
AODV, DSR, and OR. Their disadvantages are greater latency and flooding
the network with route request messages.

In Ad hoc On-demand Distance Vector (AODV) protocol all mobile nodes
work collectively to discover a route path from source to destination. An
actual data transfer takes place only after the route is established.

There are three types of control messages: RREP (Route Reply), RREQ
(Route Request), and RERR (Route Error). To find a path the source broad-
casts RREQ packet to the network. On receipt of RREQ, a node sends a
RREP packet, if it is the destination or if it has a fresh enough route to the
destination, otherwise it just forwards RREQ packet to its neighbors.

On receipt of RREQ message, every node increases hop count by one
and on receipt of RREP, intermediate nodes update their route entry with
the new data. Whenever a new RREQ, RREP or RERR messages are sent,
nodes increase their own sequence number. Higher the sequence number more
considered that information. Path with smallest hop-count is chosen [8].

As AODV protocol is the most widespread, and for this research basically
any algorithm is suitable which will create topology, AODV was chosen as
routing protocol in our simulation.

DSR (Dynamic Source Routing) is similar to AODV in terms, that it is
on-demand routing, but it does not rely on routing tables at the intermediate
nodes, using the whole path calculated by source.

In OR (Opportunistic Routing), a set of nodes is selected as potential
forwarders. The nodes in the selected set will forward the packet according
to some criteria after they receive the packet. This group of nodes in OR is
usually called a Candidate Set (CS). A priority is assigned to each candidate

5

1. Basic concepts and definitions

in the CS.

Candidate priority shows the level of ability of a candidate to act as the
next forwarder. The highest priority is given to the candidate that can reach
the destination at the lowest cost. This cost could be understood in different
terms: for example, distance to the destination in terms of the number of
hops, power consumption, the Expected Number of Transmissions (ExNT),
and the like.

The candidates that have received the transmitted packet coordinate among
each other to decide which of them must forward the packet and which must
discard it. This process is usually called candidate coordination. All OR
protocols differ in OR metrics, candidate selection algorithm and candidate
coordination method[9].

Need to mention that neither AODV nor DSR do not choose a route based
on the stability of links but focus on the shortest path leading to sending data
through possibly untrusted nodes.

1.2 Concept of trust

Trust in the scope of Ad-hoc networks means a measure of confidence in the
fact that a node will behave according to expectations. Trust concept in this
case provides a light and feasible way to enhance security of network. Trust
establishment schemes are used for different purposes, such as authentication,
access control, intrusion detection and secure routing.

There are several different trust methods and models proposed by re-
searches up to now. However, the trust in wireless ad-hoc and sensor net-
works is still an open problem. There is no standardization or classification,
and therefore no specialized books have ever been published.

Prior to experiments and evaluations there is need to determine the con-
cept of trust and agree on its meaning in the context of our research.

Notion of trust originally comes from social disciplines and is defined as a
measure of subjective belief regarding the behavior of a some entity [10].

During last years a theory of trust in relation to wireless Ad-hoc networks
was gradually created. It discusses the concept and properties of trust and be-
come generally accepted among researchers. Fundamental properties of trust
according to this theory are dynamicity, subjectivity, incomplete transitivity,
asymmetry and context-dependency [11].

As network infrastructure is not static, nodes join and leave time to time,
some nodes can fail, thus network status changes frequently, and trust values
should consider these changes. Nodes can have incomplete and partially local
information about situation in the network. Hence, trust value should be
continuous to represent this dynamics. It definitely can not be binary and if
discrete, it at least should be with enough number of grades.

6

1.2. Concept of trust

Subjectivity comes from social disciplines and indicates the biased nature
of trust evaluations, based on different experiences.

Trust in psychology makes accent on the cognitive process implying that
humans acquire trust values from their experiences. In the simulation each
node creates its own opinion on the trust of other nodes based on communi-
cation experience with that node.

Non-transitivity or incomplete transitivity means that if node A trusts
node B and node B trusts node C, that does not imply that node A trusts
node C. Although, when using recommendations from other nodes, partial
transitivity takes place.

Trust is not a mutual concept. The fact, that a node believes in another’s
node trustworthiness does not induce its trustworthiness in return.

The last but not least property of trust is context-dependency. Li and
Singhal [12] define trust as the belief that an entity is capable of performing
reliably, dependably, and securely in a particular case; hence, different levels
of trust exist in different contexts. For example, one can trust his doctor
advices on the health issues, but do not trust if the doctor makes advice on
money managing.

Various metrics are used to compute trust. Metrics should justly reflect
the situation in the network with respect to trust calculations. To determine
which metrics to use is not a simple task.

Taking into account an economic basis of trust, the selfishness of nodes
should be considered, as trust in economics is based on the assumption that
humans are rational and strict utility maximizers of their own interest or
incentives [13]. Selfishness in network can be measured by packet dropping
rate or not responding to route requests.

Trust also imply wiliness to take a risk of become vulnerable or lose data.
Hence, the most critical metrics for given network should be investigated.
Level of trust is often linked with level of reliability. Reliability in terms
of networking means a guarantee of data delivery. So, the metric is packet
delivery ratio. Josang et al. [14] and Solhaug et al. [15] conclude that trust
is generally neither proportional nor inversely proportional to risk. Risk is
closely connected to stake. Even when the trust is strong, if the stake is high
the risk will be also great.

On account of trust to be context-dependent, trust metrics should return
adequate references for diverse situations, depending on how sensitive the
information is.

As the most critical feature of the network is its ability to deliver data, for
this research as a trust metrics packet delivery ratio (PDR) was chosen. More
in detail this is described in chapter 3.

7

1. Basic concepts and definitions

Figure 1.2: Mathematical model of neuron

1.3 Basics of artificial neural networks

1.3.1 Model of neuron

Biological neuron is the prototype and inspiration for mathematical model of
artificial neural networks(Figure 1.2).). It has several dendrites(inputs) and
one axon(output). Signals from dendrites traverse through neuron body, what
in mathematical model is implemented with activation function.

Axon connects to other dendrites via synapses, which have different strength
(weights) and thus can be excitatory or inhibitory. First the weighted sum
of inputs is calculated and then passed as argument to activation function.
Usually bias(b) is used to shift the activation function to the left or right.
Generally, if the value of activation function is greater then some threshold,
signal is fired to the output. Bias is passed as one of the inputs and changes
threshold, so for clarity it is better to set threshold to 0 when using bias.

Most common activation function is Sigmoid (1.1), which is used in multi-
layer perceptron networks.

S(t) =
1

1 + e−t
(1.1)

1.3.2 Architecture of neural networks

As stated in [16] NN is a system composed of many simple processing elements
operating in parallel whose function is determined by network structure, con-
nection strengths, and the processing performed at computing elements or
nodes. In essence NN is a structure of connected nodes with some number of
inputs and outputs, embedded activation function and each connection has a
weight assigned to it. Inspired by biological nervous systems they are mathe-
matical models. NN should be considered when input data is high-dimensional
or possibly noisy and the transformation function is unknown.

8

1.3. Basics of artificial neural networks

A lot of different types of NN were created, for example:

• Multi-Layer Perceptron

• Radial Basis Function (RBF)

• Kohonen Features maps

• Other architectures (Hopfield networks, Boltzmann machine, etc.)

Each NN is characterized by:

• model of neurons (details on their inherit properties and functions)

• topology of the network

• learning method

NN consists of input layer, one or more hidden layers and the output layer.
Network design include setting the number of neurons in each layer, number
of hidden layers, create certain topology and choosing the model of neurons.

Several architectures are distinguished according to signal flow:

• Single-Layer Feed-forward

• Multi-Layer Feed-forward

• Recurrent

In feed-forward networks information always flows in one direction. Recurrent
topology allow cycles. There is at least one feed-back connection.

Single-layer networks consist of one input layer and one output layer of
processing units. Multi-layer architecture in addition has one or more hidden
layers of processing units.

Recurrent networks may or may not have hidden layers. There are also
further variations of topology, like short-cut connections, partial connectivity
or time-delayed connections.

1.3.3 Learning methods

NN needs to be configured for particular problem. This is usually achieved
by process called learning. Learning means adjusting connection weights to
get desired output. There is a set of known input/outputs and after feeding
the system with input and getting the result alter the connection weights to
obtain more fitting output. So node connection strengths known as weights
are used to store the learned knowledge.

There are different types of learning: supervised and unsupervised learn-
ing. First assumes that data for training contains values of inputs and their
corresponding outputs.

9

1. Basic concepts and definitions

At the beginning all weights are initialized randomly. In each training cycle
NN is feed up with inputs and after receiving the response from network, it is
compared to the correct output and values of weights are adjusted.

There exist different methods of adjusting weights, one of most common
is Backpropagation algorithm. It calculates gradient of cost function with
respect to weights. Gradient shows how fast the cost changes when the weights
change. The gradient is fed to the optimization method which in turn uses it
to update the weights, in an attempt to minimize the cost function.[17]

Important parameters of this learning method are momentum and learning
rate. Momentum helps to avoid local minimum. It simply adds a fraction of
the previous weight update to the current one.[18] The learning rate, LR,
applies a greater or lesser portion of the respective adjustment to the old
weight.[19]

If the network is too large, it has difficulties with learning and after being
learned it will tend to overfitting, that results in poor generalization. It means
that the network is over learned - it predicts perfectly the results of training
instances but cannot deal with new data.

If the network becomes too small, it will not be able to represent the rules
needed to learn the problem and it will never gain a sufficiently low error rate.

Another reason for overlearning is due to excessive iterations, too big num-
ber of learning epochs. An epoch is a time during which all training instances
are used once to update the weights.

The number of hidden layers is also important. Generally speaking, if the
problem is simple it is often enough to have one or two hidden layers, but as
the problems get more complex, so does the need for more layers.[20]

1.3.4 Limitations of NN

NN can be trained to work with specific problem. And they cannot be re-
trained if the problem changes, completely new training should be performed.
Change of number of inputs or outputs means again a new problem and thus
construction of another neural network.

Moreover, number of training instances for each class in classification prob-
lem should be exact the same. Training instance should cover the problem set
uniformly.

Results of training depends on random initialization, which is some cases
may not lead to sufficient training results.

10

Chapter 2

Statement of objectives

Next chapter specifies the object of the research and states the problem to be
analyzed and solved.

2.1 Object of research

The routing in traditional infrastructure-based network is implemented with
the help of dedicated devices. In case of infrastructure-less network, the rout-
ing is achieved via message forwarding between nodes.

Taking in mind that there are different types of mobile ad-hoc networks,
it is necessary specify to which of them this work is related. First, drop all
schemes dealing with hierarchical/cluster networks. All nodes have the exact
same responsibility and functionality, that means the network is homogeneous.

This topology is very productive for dynamic environment and becomes
less efficient as the total number of nodes significantly increases. Thus, our
research is related to non-clustered (plain) networks of middle size (∼ 20
nodes). Each node has omnidirectional antenna with specified communication
range. Each node has some probability of not forwarding data. The packet
delivery ratio (PDR) of a node is the ratio of packets successfully received to
the total sent. PDR is used as metric of trust. Similarly PDR of the path is
defined.

2.2 Problem definition

The core of the problem is to detect untrusted nodes. Node is considered to
be untrusted when its PDR reaches some specified threshold. There could be
several reasons for node to make errors and not deliver data. First is traffic
congestion. If a node is on the path of great amount of routes and the traffic is
intensive, node can be overloaded and will not be able to forward data. This
problem can be solved by better topology: creating alternative routes to take

11

2. Statement of objectives

1 2 3

Figure 2.1: Node ranges and possibilities for eavesdropping

off the load from the most used nodes. Several topology control algorithm
exist for this purpose.

Another reason can be node itself. Not depending on traffic some node can
behave improperly. Cause for this may hide in fault hardware or software or
the node can be malicious. This situation is hard to solve, it should be detected
and this particular node should be excluded from network communication.

Each node can try to measure and share information about other nodes
error rates, but the question is to which extent this information can be trusted.
Therefore the problem is the detection of error nodes from outside. This can
be done in several ways:

• Eavesdropping

• Measurement by communication

• Detection of path error rate

Die to the fact that radio is a shared medium, each node can see packets
in its communication range, even if these packets are not targeted to it. Thus
when node sends a packet to its neighbor it can try to eavesdrop if the neighbor
forwards the data further. Figure 2.1 shows node 1 and node 3 which cannot
communicate directly, therefore they forward their communication through
node 2. As node 2 is in communication range of node 1, node 1 after sending
the packet turns its network card in promiscuous mode (receiving all traffic
even if it is not addressed to this node) and eavesdrops if node 2 will forward
the data (Figure 2.2).

This seems to be working, but let us show another example on Figure 2.3.
Again nodes 1 and 3 are not in direct communication range of each other

and use node 2 for relaying their data. But in this case if node 1 wants to
eavesdrop node 2 it will not obtain relevant information as node 2 adjusted its
power to be sufficient to send data to 3, but node 1 became out of the range.
From node 1 point of view node 2 never forward any packet.

This is the first disadvantage of eavesdropping, next one is the fact, that
being in promiscuous mode node is not able to receive any data. This in final

12

2.2. Problem definition

1 2 3

Figure 2.2: Node ranges and possibilities for eavesdropping

1 2 3

Figure 2.3: Bad possibilities for eavesdropping

Figure 2.4: Measurement of communication

result collides with methods of access to shared medium (for example carrier
sense multiple access with collision avoidance (CSMA/CA))

Next way to detect the error node is measurement of communication(see
Figure 2.4). Here node 1 and node 3 want to perform measurement on node
2. First they need to agree about measurement process and have to use some
alternative route for that (for example through node 4), which does not have
to exist. Even if this is accomplished, another difficulty comes. There is a
need to ensure requirements for measuring, in particular, there cannot be any
traffic in this part of the network during measurement process, and this is
hard, if not to say almost impossible to guarantee.

One more way to detect error rates of nodes is measure of error rates of

13

2. Statement of objectives

paths. Later it will be explained on small configuration how this method
works.

14

Chapter 3

Suggested solution

Suppose that some node already has information about the network topology.
This means it has routes to all other nodes in the network. Then it can observe
PDR of each path. Assuming we have information about PDR of all paths
from all nodes, that can be bind with network topology (information about
all intermediate nodes to all destinations). The assumption is, that there are
dependencies in this data, that are hard to find by conventional algorithms.
Searching dependencies in this data can assist in determining PDR of the
particular node.

On this stage NN comes into play. Now the task is to determine format
of data for NN. The goal of NN is evaluate information about particular node
and make decision about trust of this node. Trust, as were mentioned before,
is PDR of that node.

Each node participates in different set of paths, which means each node
represent separate problem, for which individual NN should be trained. The
target node is used by one or more nodes in the network. Each of those
nodes calculates the average value of PDR of the paths where the target node
is present. This average PDR becomes one of the inputs of NN. From this
follows that number of inputs of NN is the number of nodes which are using
the investigating node. There are two possible types of output of NN.

First it can determine if the node is trusted or untrusted. Back propaga-
tion neural networks can naturally solve two types of problems - classification
and regression. The primary goal of this work was detection of untrusted
nodes however after performing some experiments it became clear that neural
network is able to perform also a regression analysis. This means it is possible
to estimate the PDR value of every node in the topology.

While classification typically uses a form of logistic regression in the net-
work final layer to convert continuous data into 0 or 1 – e.g. given someone’s
height, weight and age you might bucket them as a heart-disease candidate
or not – true regression maps one set of continuous inputs to another set of
continuous outputs.[21]

15

3. Suggested solution

3.1 Creation of Data Instances

In this section the creation of data instances which represent the current state
of the network will be described. The example situation is on the figure 3.1. It
represents very simple topology that could be created for example by AODV
routing algorithm and is composed of six nodes (1 to 6). The focused nodes
are the middle ones - 5 and 6. These intermediate nodes are responsible for
successful delivery of data messages. Both have assigned the PDR (which is
unknown in the real world) - the node 5 has PDR 0.4 and node 6 has 0.9.
Lets assume that the threshold PDR between trusted and untrusted node is
a value of 0.5.

1

2

3

4

5 6 0.90.4

Figure 3.1: Example topology with node PDRs

In this example fifteen different paths can be found. The list of paths is
in the table 3.1 (the paths consisted only from one link are excluded).

Path 1 1 - 5 - 2

Path 2 1 - 5 - 6

Path 3 2 - 5 - 6

Path 4 1 - 5 - 6 - 3

Path 5 1 - 5 - 6 - 4

Path 6 2 - 5 - 6 - 3

Path 7 2 - 5 - 6 - 4

Path 8 3 - 6 - 4

Path 9 5 - 6 - 3

Path 10 5 - 6 - 4

Table 3.1: Example of all paths in the topology (one link paths excluded)

The PDR for every path strongly depends on PDRs of the intermediate
nodes 5 and 6, because only these two nodes are responsible for the message

16

3.1. Creation of Data Instances

retransmissions. The PDR of the path can be calculated as a multiplication
of PDRs of every intermediate node in the path. The resulting PDRs can be
seen in the table 3.2.

Path 1 0.4

Path 2 0.4

Path 3 0.4

Path 4 0.4 * 0.9 = 0.36

Path 5 0.4 * 0.9 = 0.36

Path 6 0.4 * 0.9 = 0.36

Path 7 0.4 * 0.9 = 0.36

Path 8 0.9

Path 9 0.9

Path 10 0.9

Table 3.2: Example of PDR calculation for every path

The PDR can be from this point of view considered as a probability of
successful packet delivery. It explains why the PDR values along the path
need to be multiplied. The PDR value for every path can be easily measured
in every node. The main idea of this solution is that PDR values of every path
depends on the underlying topology. Lets consider that these PDR values were
measured in some functioning network with the same topology and the original
PDR values assigned to intermediate nodes are unknown. What can be said
about intermediate nodes if the PDR of every path, where the investigated
node presents, is known? In table 3.3 the list of paths according to the presence
of the intermediate node can be seen.

Investigated node Path list

5 Paths 1 - 7

6 Paths 4 - 10

Table 3.3: Paths by investigated node

With the knowledge of path PDRs it is possible to create data instances
in which every input is a path PDR with investigated intermediate node. The
example of such data instances is in the table 3.4.

5 0.4 0.4 0.4 0.36 0.36 0.36 0.36

6 0.36 0.36 0.36 0.36 0.9 0.9 0.9

Table 3.4: Example of data instance based on all paths

With the knowledge of the underlying topology it can be very easily de-
termined that the PDR of the node 5 is 0.4 and the node 6 has PDR 0.9.

17

3. Suggested solution

The recognition of the PDR from this data seems to be easy, however the
count of paths in the topology depends quadratically on the count of nodes.
With more complicated topology it is almost impossible to find correct and
unambiguous answer - what is the PDR of the investigated node. Even the
question which intermediate node crosses the threshold 0.5 would be almost
impossible to answer with a conventional algorithm.

The task seems to be ideal for NN, however the large number of inputs
increases the complexity of the learning process. This count of inputs can be
decreased by averaging all path PDRs regarding to investigated node on every
other nodes that use this node. Only paths that use the investigated node are
involved in calculation.

The maximal count of all inputs equals to the count of all nodes in the
topology minus one. In the table 3.5 the suggested calculation for all instances
is presented. Every row in this table shows the calculation of average from all
paths in which the investigated node participates. The middle column holds
calculation example for investigated intermediate node 5 and the right one is
for node 6. The input values in the left column are calculated values from the
table 3.2. It can be seen that the number of inputs for every investigated node
is the count of all nodes which use the investigated node for communication.

Investigated nodes − > 5 6

Node 1: (0.4+0.4+0.36+0.36)/4 (0.36+0.36)/2

Node 2: (0.4+0.4+0.36+0.36)/4 (0.36+0.36)/2

Node 3: (0.36+0.36)/2 (0.9+0.9+0.36+0.36)/4

Node 4: (0.36+0.36)/2 (0.9+0.9+0.36+0.36)/4

Node 5: - (0.9+0.9)/2

Node 6: (0.4+0.4)/2 -

Table 3.5: The average path PDRs

The resulting instances are shown in the table 3.6. The count of inputs is
now small enough and it is still possible to estimate the PDRs of investigated
nodes.

Investigated node Resulting instance

5 0.38 0.38 0.36 0.36 0.4

6 0.36 0.36 0.63 0.63 0.9

Table 3.6: The example of the final instances based on the paths average on
every node

The final data instance describes the current state of the network from the
nodes point of view. In real network this instance can be very easily created.
Every node in the network can calculate the PDR of the communication with

18

3.2. Training of NN

any other node from the network. This measured value is in fact the separate
path PDR. The topology of the network is known too, therefore it is possible
to build the data instance for every investigated intermediate node.

3.2 Training of NN

In the previous section the creation of data instance was demonstrated. The
example was simple enough to see that the searched value of PDR is directly
presented in the input data. With more complicated topology it is not possi-
ble to detect the PDR as simple as it was in this example. Fortunately, the
PDRs of every node are involved in the calculation of inputs in the instance.
The change of the node PDR results in changes in some inputs depending
on the underlying topology. The examples of instances created on the same
topology with different PDRs can be seen in tables 3.7 and 3.8. It is not pos-
sible to create a conventional algorithm which comprises all possible topology
configurations.

Investigated node Resulting instance

5 0.27 0.27 0.24 0.24 0.3

6 0.24 0.24 0.52 0.52 0.8

Table 3.7: The example of final instances with PDRnode5 = 0.3 and
PDRnode6 = 0.8

Investigated node Resulting instance

5 0.17 0.17 0.14 0.14 0.2

6 0.14 0.14 0.42 0.42 0.7

Table 3.8: The example of final instances with PDRnode5 = 0.2 and
PDRnode6 = 0.7

The main goal of this work is to exploit the advantages of NN in order
to determine which nodes have crossed the predefined threshold and estimate
the PDRs of intermediate nodes (if it is possible). This is an ideal problem to
be solved by the NN - many data inputs depending on some hidden system
and one output. Since every intermediate node presents one unique problem,
the unique NN needs to be assigned to every intermediate node. It means
that maximal count of needed NNs is equal to the count of all nodes in the
topology and the maximal count of inputs for every instance equals to the
count of all nodes minus one.

The basic problem of NN learning process is the need for sufficient number
of data instances with known result. It seems to be very complicated to
collect convenient data from real topology. Fortunately, the final values in

19

3. Suggested solution

data instances depend only on nodes PDRs and current topology. Since the
topology is stable and node PDRs are known, it is possible to artificially
create suitable set of data instances with the known output. All node PDRs
can be randomly generated and the output value can be calculated based on
these PDRs. With this technique a sufficient amount of training data can be
generated.

Note: Now the question ”where should the NNs be placed” raises. This
problem is beyond the scope of this work. In this work only the suitability of
NNs for detecting nodes with the small PDR is investigated. Some possibilities
will be discussed in the chapter 6.

3.3 In search of solution: wrong ways

The laconic description of suggested solution is a result of extensive thinking
and several dead end ways. First I assumed, that I can just take opinions of
other nodes for detection if the node is malfunctioning. After setting up an
experiment and processing results we realized, that NN had no chance to learn
successfully, because we were training it with instances of different problem.
Even if the number of opinions in two instances were the same, which means
these instances can be used for training particular NN, they belong to different
problems, as the constructed situation arises around different target nodes.

20

Chapter 4

Testing environment

There are several phases of experiment. First involves the network simulation
to collect data for NN learning and testing. Next phase is NN learning. And
the last and most interesting stage is applying trained models of NN on the
testing data.

4.1 Tools used

Network simulation was done in Omnet++ 4.6. OMNeT++ is an extensible,
modular, component-based C++ simulation library and framework, primarily
for building network simulators.[22]

Term network here is meant in broad sense, it can be wire, wireless, even
queueing networks and specific functionality for example support of sensor,
ad-hoc networks, Internet protocols and performance analysis is provided by
model frameworks, developed independently. In this research Inet framework
was used.

Omnet++ offers users an Eclipse-based IDE, graphical runtime environ-
ment and other tools and extensions. Its simulation platform provides user
with large set of predefined components and convenient manner to define new
one.

Basic building block for simulation is module, and several modules to-
gether can create compound module, which can be used in another compound
modules without limiting the number of nested modules. Assembling in done
using a high-level language NED. Modules communicate by sending messages,
which also can be easily constructed by so called message definitions. User
describes message contents, and the corresponding C++ code is automatically
generated from the definitions.

As for our purposes there is no need in graphical runtime environment
luckily has command-line user interface for simulation execution. OMNeT++
runs on Windows, Linux, Mac OS X, and other Unix-like systems. This
research was performed in Ubuntu 14.04.

21

4. Testing environment

Two implementations of NN were tried: OpenNN library and FaNN.

OpenNN is an open source class library written in C++ programming
language which implements neural networks. [23] On high-level is consists of
three classes: NeuralNetwork, PerformanceFunctional and TrainingStrategy,
relationships between them are follows. A neural network has assigned a
performance functional. A performance functional is improved by a training
strategy. [24] There is also DataSet class, which represents data for learning
NN and obtaining desired model. Model is the output NN with adjusted
parameters (weights) for particular problem solving. This library is able to
perform both classification and regression tasks.

FANN stands for fast artificial neural network library. It is a free open
source neural network library, which implements multilayer artificial neural
networks in C with support for both fully connected and sparsely connected
networks. [25] It is cross-platform, well-documented and easy to use. Several
different activation functions are implemented in it. The library has bind-
ings for PHP, Python, Delphi and Mathematica and the library also became
accepted in the Debian Linux distribution.[26]

4.1.1 Omnet++ simulation

Realization of this phase took surprisingly the greater part of time. It took
a while to get familiar with environment and features it offers. Construction
of network for the needs of the experiment faced with choice of relevant mod-
ules, which required understanding of their structure and behavior. And this
knowledge then used for creation of new module.

Simulation of network (creating topologies) and generating data for ex-
periments (data for learning and testing NN) was done using Omnet++ IDE.
Several modules from Inet framework were used. Some of them were adjusted
and new one was written specially for simulation. Network is presented on
the Figure 4.1.

Structure of node is presented of Figure 4.2. It has two interfaces: wireless
NIC (wlan[0]) and loopback interface(lo0), which are stored in interface table.

Status module keeps information is the node is up. Mobility module takes
care about node’s position. In our simulation for simplicity nodes are not
moving and initial position is defined randomly within the set playground.

Routing table stores data about routes: destination, next hop, interface,
source (manual, routing protocol) administrative distance, metric and routing
protocol specific data.

Network layer performs routing with the help of AODV module. When it
receives packet from higher layer it makes a request to routing table, and if
the route exists, add control information to the packet and send it NIC. If the
route to the destination was not found in te routing table, network layer sends
request to AODV to find the route. After AODV found the route, packet can
finally be forwarded to lower layer. AODV module was adjusted in such a

22

4.1. Tools used

Figure 4.1: Structure of network in Omnet++ simulation

way, that after finding a route to the destination, it inserts the entry to the
routing table, setting the route timeout to a number, large enough for the
route to be valid till the end of the simulation run.

Main module that implements simulation logic is trafficGenerator. First
it sends probe packets to all other nodes to discover the topology. So now
the routing table of each node contains routes to all other nodes, specifically
addresses of next hop nodes on the route to destination.

On this step there is a check if the topology constructed is connected,
meaning that each node has at least one node in its radio range. If it happens
that the topology is disconnected, it is dropped and next attempt follows.
Next step it to collect information about paths, i.e. identify all intermediate
nodes. After this step is accomplished there is all information, needed to
perform data generation (synthetic simulation of PRD measurement).

23

4. Testing environment

Figure 4.2: Structure of node in Omnet++ simulation

4.2 NN learning and adjusting parameters

After data collected NN training was executed. First try was to use OpenNN.
First experience with OpenNN encountered with data loading problem, how-
ever this broken reading of an XML file was repaired. Then this application
was ready for experiments, but although at the beginning it looked promising,
then the experimentation faced with an another bug in implementation and
it became clear that batch learning cannot be performed. In this case the
problem was hidden deeply in the logic of application and the repair seemed
to be too time consuming.

FaNN proved to work and as the name claims, this NN library is really fast.
An application which allowed to set all important parameters by command
line arguments was created. I did not notice any problem with this library
during execution of all experiments.

4.3 Data construction

The Omnet++ was used for the instance generation. There were created five
sets every with 100 different topologies. In all sets 5000 instances for every
intermediate nodes in all topologies were constructed. The first 1000 instances
were used for training data and the rest for testing. The threshold was set to
the value of 0.5. There are two types of instances, which differ in the output:

• Negative - the investigated intermediate node has PDR above threshold

• Positive - the investigated intermediate node has PDR below threshold

There is in total one half of positive and one half of negative instances in every
set.

Every set has different method of node PDRs construction:

24

4.4. Data format

1. all node PDRs are generated by uniform distribution with range from 0.5
to 1.0, positive instances have PDR of the investigated node generated
by uniform distribution from range 0.01 to 0.49.

2. all node PDRs are generated by uniform distribution with range from
0.5 to 1.0 and one random node has PDR from range 0.01 to 1.0, posi-
tive instances have PDR of the investigated node generated by uniform
distribution from range 0.01 to 0.49.

3. all node PDRs are generated by uniform distribution with range from
0.01 to 1.0, positive instances have PDR of the investigated node gener-
ated by uniform distribution from range 0.01 to 0.49.

4. all node PDRs are generated by normal distribution with mean equal to
0.75 and standard deviation equal to 0.25, positive instances have PDR
of the investigated node generated by uniform distribution from range
0.01 to 0.49.

5. all node PDRs are generated by normal distribution with mean equal to
0.75 and standard deviation equal to 0.25 and one random node has PDR
from range 0.01 to 1.0, positive instances have PDR of the investigated
node generated by uniform distribution from range 0.01 to 0.49.

Not all of these sets were used for the experiments from chapter 5, however
the complete list of results is presented in the Appendix D.

4.4 Data format

The chosen NN implementation FaNN requires two types of data format, first
for training data and second for testing data. In both cases there are very
simple textual files. Furthermore, there need to be created a special data
set for detection and estimation, because they represents different type of
problems from the NN point of view (3). I created a script which converts
data files constructed by Omnet++ to the proper format required by detection
or estimation.

4.4.1 Detection

The data format for training data is little more complicated. On the following
example the input with six instances in total can be seen. Every instance has
five inputs and exactly one output:

6 5 1

0.405549 0.694223 0.440352 0.694223 0.440352

1

0.282362 0.274169 0.271964 0.274169 0.271964

25

4. Testing environment

0

0.540561 0.581132 0.381087 0.581132 0.381087

1

0.233959 0.298616 0.232437 0.298616 0.232437

0

0.713560 0.523443 0.291015 0.523443 0.291015

1

0.271328 0.399818 0.236811 0.399818 0.236811

0

In the example every odd instance is positive and every even is negative.

The testing data file format is simpler. Whole instance is inside one line.
In the following example ten testing instances with five inputs and one output
are presented:

0.534804 0.743309 0.530129 0.743309 0.530129 1

0.015796 0.016523 0.013020 0.016523 0.013020 0

0.536254 0.583671 0.530174 0.583671 0.530174 1

0.267581 0.387889 0.251876 0.387889 0.251876 0

0.631034 0.854609 0.704724 0.854609 0.704724 1

0.039097 0.039840 0.028928 0.039840 0.028928 0

0.502005 0.634014 0.450335 0.634014 0.450335 1

0.339783 0.431359 0.216874 0.431359 0.216874 0

0.362893 0.658696 0.579637 0.658696 0.579637 1

0.215415 0.209800 0.176126 0.209800 0.176126 0

4.4.2 Estimation

The data for estimation are almost identical to that for detection. The only
difference is in output value which is not a binary one. This is the example of
training data:

6 5 1

0.392869 0.597670 0.333235 0.597670 0.333235

0.641888

0.178368 0.253757 0.162813 0.253757 0.162813

0.342506

0.501104 0.395111 0.216980 0.395111 0.216980

0.594301

0.022631 0.038991 0.022856 0.038991 0.022856

0.045603

0.329764 0.526783 0.415047 0.526783 0.415047

0.558883

0.000576 0.000533 0.000389 0.000533 0.000389

0.000801

26

4.5. Data structure

And the example of testing is here:

0.320386 0.499555 0.333538 0.499555 0.333538 0.537222

0.077176 0.091607 0.080138 0.091607 0.080138 0.104488

0.392090 0.439251 0.362681 0.439251 0.362681 0.626878

0.239972 0.181316 0.135093 0.181316 0.135093 0.337902

0.460870 0.475353 0.250051 0.475353 0.250051 0.764832

0.319197 0.339044 0.203384 0.339044 0.203384 0.462905

0.349613 0.524040 0.374240 0.524040 0.374240 0.596328

4.5 Data structure

Every set defined in the previous section is constructed by Omnet++ and it
has its own folder. After construction it has following structure 4.5.

exp0..................................The folder with raw data of set 1
0........................The folder with instance files for topology 0
2Not all topologies were used - number 1 was skipped

0.csv....................................Instance file for node 0
2.csv......Not all nodes are intermediate - number 1 was skipped

Figure 4.3: Data structure of the data folder

4.6 Evaluating results

At first a calculation of a performance result needs to be defined. This work
is focused on two types of problems - detection and estimation. In detection
I am interested in the information: How many instances were successfully
evaluated. However in estimation the question is: How are the results close
to the correct values.

For detection problem the performance result can be defined as:

RD = 1− Csuccess

Call
, (4.1)

where Csuccess is the count of all successfully evaluated instances and Call is
the count of all instances. The result R is a number between 0 and 1.

For estimation problem the performance result can be defined as:

RE = 1−
Sumdiff

Call
, (4.2)

where Sumdiff is the sum of all differences between estimated PDR and ex-
pected PDR. The result R is again the number between 0 and 1.

27

4. Testing environment

The performance result is calculated for every instance file. In order to
see how successful was the whole experiment it is necessary to calculate some
overall values:

• Overall results

• Detailed results

These result types will be described in following sections.

4.6.1 Overall results

This result consists of four values - average, median, minimum and maximum.
It is calculated over all performance results of all instance files generated for
the experiment (all topologies together).

4.6.2 Detailed results

This is calculated in the same way as the overall result however results are
grouped by the inputs count. Values in this result type are: count of inputs,
average, median, minimum, maximum and count of instances. The last value
is the number of all instances with desired inputs count.

28

Chapter 5

Experiments

In the previous chapter the process of data instance creation was defined
and the suggestion how to train the NN was made. In this chapter a set of
experiments which test the performance of NNs on detection nodes with low
PDR and on estimation of node PDRs will be presented. The detection uses
the NN for classification and estimation uses the regression. For both tasks
the same type of NN can be used and training process is almost identical. The
only difference is the type of output (which is based on the generated inputs).
The learning, detection and estimation parts will be described separately.

5.1 Data for learning

The learning process can be influenced by many factors:

• type of NN

• learning method

• count of layers

• count of neurons

• count of learning epochs

• count of inputs

• count of instances

• quality of instances

Each of these factors presents separate choice and together create huge
amount of possible combinations. It would be very hard to investigate every
possibility. In the following subsections the reasons for choosing particular
values will be given.

29

5. Experiments

5.1.1 Type of NN

This research was bound to operate with available implementations of NN.
Writing the own implementation is demanding and time-consuming task and
is out of scope if this thesis. As it was already mentioned in subsection 1.3.2
each NN is characterized by:

• model of neurons (details on their inherit properties and functions)

• topology of the network

• learning method

Learning is discussed in next subsection. As for topology, both OpenNN
and FaNN are implementations of multilayer feed-forward neural networks.
The feed-forward neural network was the first and arguably most simple type
of artificial neural network devised.[27] In search of suitable parameters for
solution several models of neuron were tested: perceptron with sigmoid acti-
vation function and RBF neuron with Gaussian activation function. It turned
out that on constructed data perceptrons learn faster and have better perfor-
mance.

5.1.2 Learning method

FaNN implementation uses Rprop backpropagation algorithm as default. Rprop,
short for resilient backpropagation, is a learning heuristic for supervised learn-
ing in feedforward artificial neural networks. Rprop is one of the fastest weight
update mechanisms.[28]

As it was mentioned in subsection 1.3.3 at the beginning all weights are
initialized randomly. In each training cycle NN is feed up with inputs and after
receiving the response from network, it is compared to the correct output and
values of weights are adjusted. The Backpropagation algorithm calculates
gradient of cost function with respect to weights. So gradient is the vector
whose components are the partial derivatives of weights. Gradient shows
how fast the cost changes when the weights change. The gradient is fed to
the optimization method which in turn uses it to update the weights, in an
attempt to minimize the cost function.[17]

The adaptation-rule works as follows: every time the partial derivative
of the corresponding weight changes its sign, which indicates that the last
update was too big and the algorithm has jumped over a local minimum,
the update-value is decreased [29] by the factor η−, where η− < 1. If the
derivative retains its sign, the update-value is slightly increased by a factor of
η+, where η+ > 1. The update values are calculated for each weight in the
above manner, and finally each weight is changed by its own update value,
in the opposite direction of that weight’s partial derivative, so as to minimize
the total error function. η+ is empirically set to 1.2 and η− to 0.5.[28]

30

5.1. Data for learning

Parameters of this learning method such are momentum and learning rate
were left with default values, as they showed good performance.

5.1.3 Count of layers

Number of hidden layers should respond to the difficulty of the problem. Gen-
erally the harder the problem more hidden layers are required. One hidden
layer is sufficient for the large majority of problems. [30] Several experiments
showed that one layer is sufficient for this research.

5.1.4 Count of neurons and learning epochs

These two factors are the most variable ones. Several experiments were con-
ducted to figure out the best combination of these two factors. One topology
was chosen with one constant PDR configuration. The learning process does
not get the same results for the same inputs because the initial weights con-
figuration is randomly generated. Therefore, it was conducted ten detections
and ten estimations for every investigated parameter combination. The de-
pendency of result on the count of neurons and learning epochs can be seen in
the table 5.1. This experiment revealed the simplicity of the given problem.
It is obvious that detection problem can be very easily solved by only one
neuron in the hidden layer. The quality of the detection is more influenced by
the count of learning epochs. The most interesting results are highlighted. In
the table 5.2 there are results for node PDRs estimation.

It is obvious from both tables that the quality of results differs very slightly
even for great changes of learning factors. The differences are in fractions of
percent. The count of neurons has very negligible influence on results however
the value of 5 neurons seems to be slightly better than the other ones.

The count of learning epochs changed the result quality significantly be-
tween 1000 and 2000. Other changes increased the quality of results very
slightly. The count of learning epochs influences not only the results but the
total time of learning process. Therefore the lowest possible count is suggested.

According to the previous observations 5 neurons in the hidden layer and
2000 learning epochs were chosen for the next experiments.

5.1.5 Count of inputs

According the section 3.1 the count of inputs depends on the count of nodes
in the used topology. The value 20 was chosen as the count of nodes. This
number is the trade-off between two factors:

• The topology for experiments needs to be large enough in order to be
more similar to the real ad-hoc networks.

• The topology needs to be small enough to be controlled by manual cal-
culations.

31

5. Experiments

Neurons count \ Epochs count 1000 2000 3000 4000 5000

1 0.9834 0.9838 0.9842 0.9844 0.9844

2 0.9836 0.9840 0.9841 0.9842 0.9841

3 0.9836 0.9840 0.9841 0.9840 0.9838

4 0.9837 0.9839 0.9840 0.9839 0.9838

5 0.9837 0.9840 0.9839 0.9840 0.9838

6 0.9836 0.9839 0.9839 0.9839 0.9837

7 0.9836 0.9800 0.9839 0.9838 0.9839

8 0.9837 0.9839 0.9838 0.9839 0.9824

Table 5.1: Quality of results depending on count of neurons and learning
epochs - detection. (Best results are highlighted.)

Neurons count \ Epochs count 1000 2000 3000 4000 5000

1 0.9710 0.9727 0.9732 0.9735 0.9735

2 0.9726 0.9738 0.9742 0.9744 0.9746

3 0.9729 0.9741 0.9744 0.9747 0.9749

4 0.9729 0.9740 0.9743 0.9748 0.9747

5 0.9729 0.9742 0.9744 0.9747 0.9747

6 0.9728 0.9739 0.9744 0.9744 0.9749

7 0.9729 0.9739 0.9742 0.9747 0.9749

8 0.9728 0.9738 0.9742 0.9748 0.9746

Table 5.2: Quality of results depending on the count of neurons and learning
epochs - estimation

5.1.6 Count of instances

After a few trials it became clear that 1000 training instances is sufficient for
all experiments.

5.1.7 Quality of instances

As it was mentioned in the subsection 1.3.4 the set of training instances should
uniformly cover the problem set. In this work the problem is created from
a combination of node PDRs. The sufficient set of training instances can
be obtained by random generation of PDR values. The task is to create
instances as different as possible. For the PDR values generation two different
distribution - uniform and normal were chosen.

The uniform distribution covers the investigated problem sufficiently, how-
ever it is expected that it is to far from reality. In real environment there are
many external influences on PDR values, which can cause some extreme con-
figurations which have low probability to be generated by uniform distribution.
The idea is to train NN on data instances created with uniform distribution

32

5.2. Detection

and test it on data instances created with normal distribution. In case of
a good results obtained, the NN trained on uniform distribution can have a
good performance in real environment.

Note: The range of generated PDR values differs by experiment and type
of problem. The concrete ranges will be specified in following sections.

5.2 Detection

The main purpose of detection is to detect nodes which crossed some prede-
fined threshold. In the detection problem it is expected that all node PDRs
are higher than threshold until one of nodes is broken and its PDR decreases
below threshold. The problem ends with positive detection of this broken
node. What happens after the detection is not a part of this work.

In the following sections the experiments will be described. The PDR
threshold value for all experiments is set to 0.5. In all experiments 100 different
topologies were generated. For every topology and experiment 1000 training
instances and 4000 testing instances were created.

5.2.1 Experiment 1

Lets assume that only one node breaks at the time. For this situation there
is prepared NN trained on data set 1 (4.3). The trained NN was used on the
testing data again from set 1. The overall performance of the NN can be seen
in table 5.3.

Average Median Minimum Maximum

0.9878 0.9885 0.9694 0.9975

Table 5.3: Experiment 1 - overall results

In the table 5.4 can be found detailed results of experiment 1.

The performance of detection differs by inputs count. It could be clearly
seen that performance NNs with small amount of inputs is the worst and it
has the greatest dispersion.

5.2.2 Experiment 2

In this experiment the learned NN from experiment 1 is used, however it
classifies testing data from data set 4. This experiment should demonstrate
the ability of NN trained on uniform data to work on different type of data.
The results are in table 5.5.

The performance is slightly worse than in experiment 1.

33

5. Experiments

Count of inputs Average quality Median Minimum Maximum Instances count

3 0.9601 0.9703 0.8588 1.0000 121

4 0.9663 0.9965 0.8268 0.9998 99

5 0.9757 0.9964 0.8798 0.9998 78

6 0.9862 0.9973 0.9035 1.0000 61

7 0.9858 0.9963 0.8985 1.0000 77

8 0.9881 0.9965 0.8915 0.9998 57

9 0.9932 0.9961 0.9513 0.9998 46

10 0.9956 0.9965 0.9743 1.0000 74

11 0.9948 0.9959 0.9743 0.9993 68

12 0.9946 0.9963 0.9065 0.9993 71

13 0.9938 0.9965 0.9398 0.9998 63

14 0.9954 0.9958 0.9835 0.9990 65

15 0.9938 0.9958 0.9380 0.9988 61

16 0.9944 0.9955 0.9628 0.9993 68

17 0.9945 0.9953 0.9813 0.9993 94

18 0.9948 0.9955 0.9820 0.9998 119

19 0.9943 0.9948 0.9830 0.9993 218

Table 5.4: Experiment 1 - detailed results

Average Median Minimum Maximum

0.9781 0.9791 0.9435 0.9967

Table 5.5: Experiment 2 - overall results

5.2.3 Experiment 3

The first two experiments were prepared in advance and their results were
expected. During my experiments I tried different combinations of learned
NN and type of testing data and I got some surprising result. When I tried
the NN trained on data set 4 with data set 1, I got better performance than
in experiment 2. The results can be seen in the table 5.6.

Average Median Minimum Maximum

0.9854 0.9862 0.9670 0.9964

Table 5.6: Experiment 3 - overall results

This result is even more surprising because the performance of this NN is
slightly better on uniform data than on normal data on which it was trained
(table 5.7.

34

5.3. Estimation

Average Median Minimum Maximum

9822 9834 9514 9974

Table 5.7: Experiment 3 - overall results on normal data

5.2.4 Experiment 4

Because the performance in first thee experiments was surprisingly good, I
decided for the last hardest experiment with detection. I stated before that
only one broken node in the topology is expected. What if I try the NN
trained in the experiment 1 for the topologies with random count of broken
nodes? For this experiment there was used a data set 3 on NN trained on
data set 1. According the table 5.8 the results are still good enough.

Average Median Minimum Maximum

9696 9699 9326 9957

Table 5.8: Experiment 4 - overall performance

5.2.5 Other experiments with detection

Much more experiments was conducted, however the results were not so in-
teresting, therefore are not commented. Results from other experiments and
detailed results are placed in the Appendix D.

5.3 Estimation

Another kind of problem is an estimation of the PDR values in the whole
topology. There is no threshold PDR value defined.

5.3.1 Experiment 5

In this experiment the NN trained on data set 3 is used. For testing the same
data like for training was used. The resulting performance is shown in the
table 5.9.

Average Median Minimum Maximum

9660 9675 9412 9776

Table 5.9: Experiment 5 - overall results

It can be seen that performance is over 95% which is really great for the
indirect estimation from averaged values. If we take a look at the detailed

35

5. Experiments

Count of inputs Average quality Median Minimum Maximum Instances count

3 0.9275 0.9612 0.8123 0.9818 121

4 0.9375 0.9750 0.8020 0.9822 99

5 0.9478 0.9752 0.8247 0.9838 78

6 0.9613 0.9760 0.8526 0.9818 61

7 0.9632 0.9759 0.8501 0.9823 77

8 0.9647 0.9760 0.8334 0.9832 57

9 0.9726 0.9765 0.8934 0.9830 46

10 0.9752 0.9764 0.9323 0.9813 74

11 0.9769 0.9771 0.9505 0.9823 68

12 0.9750 0.9767 0.8502 0.9812 71

13 0.9746 0.9770 0.8953 0.9828 63

14 0.9770 0.9771 0.9633 0.9823 65

15 0.9731 0.9764 0.8832 0.9818 61

16 0.9766 0.9771 0.9336 0.9822 68

17 0.9764 0.9767 0.9535 0.9820 94

18 0.9770 0.9770 0.9710 0.9832 119

19 0.9757 0.9772 0.6467 0.9828 218

Table 5.10: Experiment 5 - detailed results

results sorted by inputs count in table 5.10, we can notice poor performance
on low inputs instances. The behaviour is similar to the experiment 1.

5.3.2 Experiment 6

Previous experiment has a great results on the ideal data. In this experiment
the same NN will be tested on data set 4. This experiment should simulate
the performance of NN under different conditions. As it was expected the
performance is worse than in experiment 5 however it is according table 5.11
still over 90% which gives a chance for similar results in the real environment.

Average Median Minimum Maximum

9249 9263 8679 9773

Table 5.11: Experiment 6 - overall results

36

Chapter 6

Discussion and possible further
work

6.1 Suitability of NN for detection od broken
nodes

Generally it appeared that NN is applicable on the problem of trust how it is
defined in this thesis.

From the experiment results it can be seen that neural networks, which
have small number of inputs demonstrate worse performance. This can be
explained by follows. It there are several paths through the same nodes in a
row and some untrusted node is among them, it is hard to detect precisely
which one. But NN with number of inputs > 5 showed quite impressive quality
of output.

It was unexpectedly discovered, that NN trained on data generated with
normal distribution cope better with data generated with uniform distribution
than with their own data.

6.2 Suitability of NN for PDR estimation

Here it can be observed the same situation when using models with small
number of inputs. But imprecise value of PDR has not that critical impact as
wrong classification of the node.

6.3 Limitations

Topology changes result in necessity to perform new learning for NN. But
learning can be performed quite quickly and with the knowledge of topology
any traffic generation is not required. Routing protocol (AODV in our case) is
used purely for topology discovery. AODV route lifetime according to AODV

37

6. Discussion and possible further work

Routing RFC 3561 is network traverse time [31] and thus quite short. For the
aims of this research this parameter was adjusted, but generally AODV is not
suitable for such kind of experiment where topology better remain unchanged.
AODV was chosen as it is the most popular protocol for Ad-hoc networks.

6.4 Future work

Later the research can be extended to data generated with another random
distribution or collected from the real traffic simulation. Also another param-
eters of NN can be tried.

38

Conclusion

This work aimed to find out if neural networks are applicable to problem
of trust in Ad-hoc networks. After stating the objectives and defining the
problem there were performed several experiments, that proved the neural
network to be able to cope with the problem with good performance. Different
parameters of NN were investigated and the optimal ones proposed and their
choice is explained. There are limitations to the proposed solution which were
discussed in the previous chapter.

39

Bibliography

[1] Stergiou, C. What is a Neural Network? Available from:
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/cs11/
article1.html

[2] Azmi, R.; Hakimi, M.; Bahmani, Z. Dynamic Reputation Based Trust
Management Using Neural Network Approach. In IJCSI International
Journal of Computer Science Issues, 2011.

[3] Imana, E. Y.; Ham, F. M.; Allen, W.; et al. Proactive Reputation-Based
De f ense f or MANETs Using Radial Basis Function Neural Networks.

[4] Mujica-V, V.; Sisalem, D.; Popescu-Zeletin, R. NEURAL-Trust: Stimu-
lating Cooperation Engagements in Multi-Agents Systems.

[5] Balanis, C. A. Antenna Theory: Analysis and Design. Wiley-Interscience,
2005, ISBN 0471714623.

[6] Omnidirectional Antenna Radiation Pattern. Available from:
http://www.mpantenna.com/omnidirectional-antenna-radiation-
patterns/

[7] Singal, T. Wireless communications. Tata McGraw-Hill Education, 2010,
ISBN 9781259083501, 595 pp.

[8] Perkins, C.; Royer, E. Ad-hoc on-demand distance vector routing. In
Mobile Computing Systems and Applications, 1999. Proceedings. WM-
CSA ’99. Second IEEE Workshop on, Feb 1999, pp. 90–100, doi:10.1109/
MCSA.1999.749281.

[9] Boukerche, A.; Darehshoorzadeh, A. Opportunistic Routing in Wire-
less Networks: Models, Algorithms, and Classifications. ACM Comput.
Surv., volume 47, no. 2, Nov. 2014: pp. 22:1–22:36, ISSN 0360-0300,
doi:10.1145/2635675. Available from: http://doi.acm.org/10.1145/
2635675

41

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/cs11/article1.html
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/cs11/article1.html
http://www.mpantenna.com/omnidirectional-antenna-radiation-patterns/
http://www.mpantenna.com/omnidirectional-antenna-radiation-patterns/
http://doi.acm.org/10.1145/2635675
http://doi.acm.org/10.1145/2635675

Bibliography

[10] Cook, K. S. (editor). Trust in Society. Russell Sage Foundation Series on
Trust, 2003.

[11] Cho, J.-H.; Swami, A.; Chen, I.-R. A Survey on Trust Management for
Mobile Ad Hoc Networks. Communications Surveys Tutorials, IEEE, vol-
ume 13, no. 4, Apr 2011: pp. 562–583, ISSN 1553-877X, doi:10.1109/
SURV.2011.092110.00088.

[12] Li, H.; Singhal, M. Trust Management in Distributed Systems. Computer,
volume 40, no. 2, Feb. 2007: pp. 45–53, ISSN 0018-9162, doi:10.1109/
MC.2007.76.

[13] MacKenzie, A.; Wicker, S. Game theory and the design of self-configuring,
adaptive wireless networks. Communications Magazine, IEEE, vol-
ume 39, no. 11, Nov 2001: pp. 126–131, ISSN 0163-6804, doi:10.1109/
35.965370.

[14] Jøsang, A.; Presti, S. Analysing the Relationship between Risk and
Trust. In Trust Management, Lecture Notes in Computer Science, vol-
ume 2995, edited by C. Jensen; S. Poslad; T. Dimitrakos, Springer
Berlin Heidelberg, 2004, ISBN 978-3-540-21312-3, pp. 135–145, doi:
10.1007/978-3-540-24747-0 11.

[15] Why Trust is not Proportional to Risk. In Availability, Reliability and
Security, 2007. ARES 2007. The Second International Conference on,
April 2007, pp. 11–18, doi:10.1109/ARES.2007.161.

[16] (U.S.), D. N. N. S. DARPA Neural Network Study. Virginia: AFCEA
International Press, ist ed. edition, 1988.

[17] Backpropagation. Available from: https://en.wikipedia.org/wiki/
Backpropagation

[18] Momentum and Learning Rate Adaptation. Available from: https://

www.willamette.edu/~gorr/classes/cs449/momrate.html

[19] Basic Concepts for Neural Networks. Available from: https://

www.cheshireeng.com/Neuralyst/nnbg.htm

[20] Network Design. Available from: http://leenissen.dk/fann/wp/help/
advanced-usage/

[21] Using Neural Networks With Regression. Available from: http://

deeplearning4j.org/linear-regression.html

[22] OMNeT++ Discrete Event Simulator. Available from: https://

omnetpp.org

42

https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
https://www.willamette.edu/~gorr/classes/cs449/momrate.html
https://www.willamette.edu/~gorr/classes/cs449/momrate.html
https://www.cheshireeng.com/Neuralyst/nnbg.htm
https://www.cheshireeng.com/Neuralyst/nnbg.htm
http://leenissen.dk/fann/wp/help/advanced-usage/
http://leenissen.dk/fann/wp/help/advanced-usage/
http://deeplearning4j.org/linear-regression.html
http://deeplearning4j.org/linear-regression.html
https://omnetpp.org
https://omnetpp.org

Bibliography

[23] OpenNN neural networks. Available from: http://www.opennn.net/

[24] The software model of OpenNN. Available from: http:

//www.opennn.net/documentation/the_software_model_of_
opennn.html

[25] Fast Artificial Neural Network Library. Available from: http://

leenissen.dk/fann

[26] Neural Networks Made Simple. Available from: http://

fann.sourceforge.net/fann_en.pdf

[27] Types of artificial neural networks. Available from: https://

en.wikipedia.org/wiki/Types_of_artificial_neural_networks

[28] Rprop. Available from: https://en.wikipedia.org/wiki/Rprop

[29] Riedmiller, M.; Braun, H. A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm. In Neural Networks, 1993.,
IEEE International Conference On, IEEE, 1993, pp. 586–591.

[30] Panchal, G.; Ganatra, A.; Kosta, Y.; et al. Behaviour analysis of multi-
layer perceptronswith multiple hidden neurons and hidden layers. Inter-
national Journal of Computer Theory and Engineering, volume 3, no. 2,
2011: p. 332.

[31] Ad hoc On-Demand Distance Vector (AODV) Routing. Available from:
https://www.ietf.org/rfc/rfc3561.txt

43

http://www.opennn.net/
http://www.opennn.net/documentation/the_software_model_of_opennn.html
http://www.opennn.net/documentation/the_software_model_of_opennn.html
http://www.opennn.net/documentation/the_software_model_of_opennn.html
http://leenissen.dk/fann
http://leenissen.dk/fann
http://fann.sourceforge.net/fann_en.pdf
http://fann.sourceforge.net/fann_en.pdf
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
https://en.wikipedia.org/wiki/Rprop
https://www.ietf.org/rfc/rfc3561.txt

Appendix A

Acronyms

AODV Ad-hoc on demand distance vector protocol.

CSMA/CA carrier sense multiple access with collision avoidance.

IDE integrated development environment.

NED NEtwork Description.

NIC network interface card.

NN neural network.

P2P peer-to-peer.

PDR packet delivery ratio.

RBF radial basis function.

Rprop resilient backpropagation.

45

Appendix B

Contents of CD

readme.txt......................the file with DVD contents description
data ... the data files directory

FaNN original source codes of the Fast NN
Omnet++.................. the directory with Omnet++ environment

omnetpp-4.6-src.tgz...........original source of the Omnet++
Project.zip.....exported project for constructing data instances

scripts..............the directory with bash scripts for experiments
data.zip....................the raw data constructed by Omnet++
models.zip.............. the archive file with data of all learned NN
NN-eclipse....the exported eclipse project with source codes for NN

src the directory with thesis source codes
text..the thesis text directory

MastersThesis Aubekerova.pdf.. the Diploma thesis in PDF format

47

Appendix C

User manual for experimenting

This manual describes only the data manipulation and calculating results with
existing NN which are already trained. The data instances construction and
NN training process is not a part of this manual. For the simple experimenting
the bash only is required.

In the following list all important scripts from the DVD (content of the
directory data/scripts) are briefly described:

• calculateAverageByInputsCount - calculates and shows detailed results
in the latex format. Requires only one argument - path to the results
directory

• calculateAverageByTopology - calculates and shows overall results in
minimal format. Requires only one argument - path to the results di-
rectory

• classifyFANN - evaluates detection process with the learned NN on test-
ing data. Requires the path to the directory with testing data, path to
the directory with stored NNs and path to the results folder (this will
be created automatically)

• convertDataForFANN-classification - converts raw data constructed by
Omnet++ into training and testing instances for detection. Requires
the path to the directory with raw data and the name of the output
directory. (Important note: it creates two directories - the first with
suffix ”_learn” for training data and the second with suffix ”_test” for
testing)

• convertDataForFANN-regression - the same as the script above, it only
creates data for estimation.

• learnFANN - executes NN training. It requires path to the directory with
training data without suffix ”_learn” and path to the directory where

49

C. User manual for experimenting

will be store data of trained NN. (Important note: The suffix ”_learn”
is not given in argument however it is expected by this script!)

• regressFANN - evaluates estimation process with the learned NN on
testing data. Requires the path to the directory with testing data, path
to the directory with stored NNs and path to the results folder (this will
be created automatically)

In order to start with experiments it is necessary to follow these steps:

1. Extract content of the archive data.zip into scripts directory. This
archive contains of five data sets names exp0, exp1, exp2, exp3 and
exp4.

2. Extract content of the archive models.zip into scripts directory. This
archive contains of five models for detection (with suffix ’c’) and five
models for estimation (with suffix ’r’).

3. Next step is the preparation testing instances. Use scripts ’convertDataForFANN-
classification’ and ’convertDataForFANN-regression’. Example:

./convertDataForFANN-classification exp0 exp0_detection.

This will create two directories:

exp0_detection_learn and exp0_detection_test.

4. Now you can start experiments. Following example evaluates detection
with data set 1 on model trained on data set 2:

./classifyFANN exp0_detection models_exp1_r results_0on1_r

5. The detailed results can be printed as:

./calculateAverageByInputsCount results_exp0_on_model_exp1_r

6. The overall results can be printed as:

./calculateAverageByTopology results_exp0_on_model_exp1_r

50

Appendix D

More results

D.1 NN trained on data set 1 testing data set 1 -
detection

Average Median Minimum Maximum

0.9878 0.9885 0.9694 0.9975

Count of inputs Average quality Median Minimum Maximum Instances count

3 0.9601 0.9703 0.8588 1.0000 121

4 0.9663 0.9965 0.8268 0.9998 99

5 0.9757 0.9964 0.8798 0.9998 78

6 0.9862 0.9973 0.9035 1.0000 61

7 0.9858 0.9963 0.8985 1.0000 77

8 0.9881 0.9965 0.8915 0.9998 57

9 0.9932 0.9961 0.9513 0.9998 46

10 0.9956 0.9965 0.9743 1.0000 74

11 0.9948 0.9959 0.9743 0.9993 68

12 0.9946 0.9963 0.9065 0.9993 71

13 0.9938 0.9965 0.9398 0.9998 63

14 0.9954 0.9958 0.9835 0.9990 65

15 0.9938 0.9958 0.9380 0.9988 61

16 0.9944 0.9955 0.9628 0.9993 68

17 0.9945 0.9953 0.9813 0.9993 94

18 0.9948 0.9955 0.9820 0.9998 119

19 0.9943 0.9948 0.9830 0.9993 218

51

D. More results

D.2 NN trained on data set 2 testing data set 2 -
detection

Average Median Minimum Maximum

0.9864 0.9871 0.9654 0.9976

Count of inputs Average Median Minimum Maximum Instances count

3 0.9543 0.9660 0.8300 1.0000 121

4 0.9624 0.9965 0.7963 1.0000 99

5 0.9728 0.9967 0.8535 0.9998 78

6 0.9850 0.9965 0.9005 0.9998 61

7 0.9840 0.9958 0.8935 1.0000 77

8 0.9856 0.9963 0.8690 0.9995 57

9 0.9919 0.9961 0.9373 0.9995 46

10 0.9953 0.9968 0.9730 0.9995 74

11 0.9945 0.9959 0.9733 0.9993 68

12 0.9945 0.9965 0.8950 0.9993 71

13 0.9935 0.9960 0.9365 0.9993 63

14 0.9946 0.9953 0.9765 0.9993 65

15 0.9928 0.9950 0.9273 0.9993 61

16 0.9949 0.9960 0.9673 0.9995 68

17 0.9942 0.9957 0.9765 0.9993 94

18 0.9942 0.9948 0.9813 0.9988 119

19 0.9942 0.9950 0.9828 0.9993 218

52

D.3. NN trained on data set 3 testing data set 3 - detection

D.3 NN trained on data set 3 testing data set 3 -
detection

Average Median Minimum Maximum

0.9777 0.9792 0.9395 0.9976

Count of inputs Average Median Minimum Maximum Instances count

3 0.9247 0.9515 0.7640 1.0000 121

4 0.9383 0.9950 0.7433 0.9998 99

5 0.9538 0.9959 0.7795 1.0000 78

6 0.9742 0.9970 0.8343 0.9995 61

7 0.9731 0.9953 0.8160 0.9998 77

8 0.9759 0.9963 0.7888 0.9995 57

9 0.9830 0.9949 0.8740 0.9985 46

10 0.9925 0.9960 0.9478 1.0000 74

11 0.9863 0.9949 0.6143 0.9995 68

12 0.9925 0.9960 0.8203 0.9990 71

13 0.9890 0.9948 0.8800 0.9993 63

14 0.9925 0.9953 0.9575 0.9985 65

15 0.9878 0.9943 0.8545 0.9993 61

16 0.9902 0.9943 0.9158 0.9985 68

17 0.9917 0.9939 0.9570 0.9983 94

18 0.9919 0.9933 0.9660 0.9995 119

19 0.9919 0.9933 0.9665 0.9993 218

53

D. More results

D.4 NN trained on data set 4 testing data set 4 -
detection

Average Median Minimum Maximum

0.9822 0.9835 0.9514 0.9974

Count of inputs Average Median Minimum Maximum Instances count

3 0.9364 0.9548 0.7740 1.0000 121

4 0.9472 0.9953 0.7620 0.9998 99

5 0.9620 0.9968 0.8160 0.9995 78

6 0.9789 0.9970 0.8523 0.9998 61

7 0.9796 0.9963 0.8563 1.0000 77

8 0.9811 0.9960 0.8208 0.9998 57

9 0.9894 0.9955 0.9093 1.0000 46

10 0.9945 0.9968 0.9580 0.9995 74

11 0.9938 0.9963 0.9595 0.9993 68

12 0.9938 0.9963 0.8678 0.9995 71

13 0.9921 0.9958 0.9030 0.9988 63

14 0.9947 0.9958 0.9768 0.9988 65

15 0.9913 0.9953 0.9005 0.9998 61

16 0.9935 0.9956 0.9483 0.9988 68

17 0.9934 0.9955 0.9625 0.9988 94

18 0.9936 0.9950 0.9620 0.9993 119

19 0.9936 0.9948 0.9778 0.9993 218

54

D.5. NN trained on data set 5 testing data set 5 - detection

D.5 NN trained on data set 5 testing data set 5 -
detection

Average Median Minimum Maximum

0.9816 0.9831 0.9478 0.9975

Count of inputs Average Median Minimum Maximum Instances count

3 0.9337 0.9548 0.7420 1.0000 121

4 0.9458 0.9958 0.7518 0.9998 99

5 0.9608 0.9969 0.8023 0.9998 78

6 0.9784 0.9970 0.8503 1.0000 61

7 0.9786 0.9960 0.8458 0.9995 77

8 0.9811 0.9960 0.8178 0.9998 57

9 0.9898 0.9957 0.9010 0.9995 46

10 0.9944 0.9958 0.9600 0.9998 74

11 0.9934 0.9960 0.9623 0.9995 68

12 0.9936 0.9963 0.8523 0.9995 71

13 0.9916 0.9960 0.8985 0.9995 63

14 0.9939 0.9953 0.9695 0.9998 65

15 0.9908 0.9948 0.8938 0.9985 61

16 0.9934 0.9953 0.9513 0.9985 68

17 0.9932 0.9950 0.9708 0.9993 94

18 0.9934 0.9948 0.9663 0.9990 119

19 0.9935 0.9943 0.9773 0.9988 218

55

D. More results

D.6 NN trained on data set 4 testing data set 1 -
detection

Average Median Minimum Maximum

0.9855 0.9862 0.9670 0.9964

Count of inputs Average Median Minimum Maximum Instances count

3 0.9524 0.9643 0.8183 1.0000 121

4 0.9591 0.9938 0.8008 0.9998 99

5 0.9709 0.9950 0.8460 0.9998 78

6 0.9834 0.9960 0.8960 1.0000 61

7 0.9830 0.9948 0.8968 0.9998 77

8 0.9852 0.9955 0.8840 0.9998 57

9 0.9900 0.9950 0.9073 0.9993 46

10 0.9946 0.9957 0.9755 0.9998 74

11 0.9941 0.9954 0.9583 0.9993 68

12 0.9944 0.9963 0.8873 0.9995 71

13 0.9924 0.9955 0.9198 0.9993 63

14 0.9950 0.9960 0.9768 0.9995 65

15 0.9921 0.9940 0.9235 0.9988 61

16 0.9941 0.9951 0.9500 0.9993 68

17 0.9938 0.9950 0.9755 0.9993 94

18 0.9939 0.9945 0.9668 0.9995 119

19 0.9938 0.9945 0.9780 0.9993 218

56

D.7. NN trained on data set 1 testing data set 4 - detection

D.7 NN trained on data set 1 testing data set 4 -
detection

Average Median Minimum Maximum

0.9781 0.9791 0.9435 0.9967

Count of inputs Average Median Minimum Maximum Instances count

3 0.9320 0.9503 0.7710 1.0000 121

4 0.9434 0.9943 0.7488 1.0000 99

5 0.9581 0.9943 0.8045 0.9998 78

6 0.9755 0.9953 0.8523 0.9995 61

7 0.9735 0.9943 0.8465 1.0000 77

8 0.9778 0.9948 0.8178 0.9988 57

9 0.9852 0.9920 0.9035 0.9990 46

10 0.9902 0.9935 0.9328 0.9990 74

11 0.9892 0.9929 0.9358 0.9998 68

12 0.9905 0.9935 0.8588 0.9980 71

13 0.9867 0.9930 0.8965 0.9998 63

14 0.9906 0.9933 0.9453 0.9983 65

15 0.9866 0.9933 0.8808 0.9980 61

16 0.9886 0.9917 0.9003 0.9988 68

17 0.9896 0.9923 0.9468 0.9978 94

18 0.9904 0.9923 0.9425 0.9990 119

19 0.9897 0.9910 0.9545 0.9990 218

57

D. More results

D.8 NN trained on data set 3 testing data set 1 -
detection

Average Median Minimum Maximum

0.9715 0.9765 0.9057 0.9969

Count of inputs Average Median Minimum Maximum Instances count

3 0.9344 0.9518 0.6498 0.9998 121

4 0.9386 0.9883 0.5000 0.9995 99

5 0.9593 0.9889 0.7288 1.0000 78

6 0.9732 0.9938 0.8523 0.9993 61

7 0.9705 0.9890 0.7473 0.9998 77

8 0.9649 0.9925 0.6520 0.9990 57

9 0.9783 0.9901 0.8355 0.9993 46

10 0.9837 0.9926 0.8435 0.9990 74

11 0.9779 0.9914 0.6278 0.9993 68

12 0.9822 0.9923 0.8253 0.9988 71

13 0.9787 0.9885 0.8493 0.9998 63

14 0.9822 0.9885 0.8895 0.9985 65

15 0.9807 0.9898 0.8733 0.9995 61

16 0.9825 0.9892 0.8843 0.9983 68

17 0.9802 0.9891 0.8928 0.9990 94

18 0.9772 0.9855 0.7208 0.9988 119

19 0.9792 0.9853 0.7737 0.9995 218

58

D.9. NN trained on data set 1 testing data set 3 - detection

D.9 NN trained on data set 1 testing data set 3 -
detection

Average Median Minimum Maximum

0.9696 0.9699 0.9326 0.9957

Count of inputs Average Median Minimum Maximum Instances count

3 0.9120 0.9338 0.7683 1.0000 121

4 0.9268 0.9930 0.7565 1.0000 99

5 0.9428 0.9918 0.7688 0.9995 78

6 0.9639 0.9940 0.8085 0.9998 61

7 0.9618 0.9938 0.8078 0.9998 77

8 0.9677 0.9938 0.7350 0.9995 57

9 0.9746 0.9909 0.8535 0.9988 46

10 0.9815 0.9931 0.6805 0.9995 74

11 0.9804 0.9910 0.8053 0.9993 68

12 0.9862 0.9930 0.8190 0.9993 71

13 0.9771 0.9925 0.7623 0.9988 63

14 0.9867 0.9920 0.9140 0.9988 65

15 0.9804 0.9918 0.8433 0.9975 61

16 0.9843 0.9918 0.8713 0.9983 68

17 0.9847 0.9919 0.7500 0.9993 94

18 0.9870 0.9915 0.8820 0.9983 119

19 0.9868 0.9898 0.8743 0.9990 218

59

D. More results

D.10 NN trained on data set 3 testing data set 4 -
detection

Average Median Minimum Maximum

0.9658 0.9689 0.9058 0.9966

Count of inputs Average Median Minimum Maximum Instances count

3 0.9079 0.9343 0.6660 1.0000 121

4 0.9225 0.9883 0.5815 0.9998 99

5 0.9443 0.9923 0.7015 0.9998 78

6 0.9645 0.9945 0.7873 0.9995 61

7 0.9595 0.9890 0.7448 1.0000 77

8 0.9614 0.9930 0.6975 0.9995 57

9 0.9744 0.9927 0.8408 0.9985 46

10 0.9805 0.9937 0.8490 0.9990 74

11 0.9753 0.9919 0.5918 0.9993 68

12 0.9824 0.9920 0.8248 0.9990 71

13 0.9763 0.9913 0.8420 0.9998 63

14 0.9818 0.9910 0.8750 0.9995 65

15 0.9770 0.9888 0.8470 0.9993 61

16 0.9792 0.9902 0.8423 0.9993 68

17 0.9799 0.9893 0.8845 0.9973 94

18 0.9786 0.9858 0.7970 0.9990 119

19 0.9796 0.9859 0.8188 0.9990 218

60

D.11. NN trained on data set 4 testing data set 3 - detection

D.11 NN trained on data set 4 testing data set 3 -
detection

Average Median Minimum Maximum

0.9741 0.9759 0.9375 0.9965

Count of inputs Average Median Minimum Maximum Instances count

3 0.9151 0.9408 0.7625 1.0000 121

4 0.9333 0.9930 0.7613 0.9998 99

5 0.9457 0.9958 0.7795 0.9998 78

6 0.9684 0.9958 0.8050 1.0000 61

7 0.9665 0.9948 0.8033 0.9995 77

8 0.9713 0.9945 0.7823 0.9995 57

9 0.9788 0.9946 0.8498 0.9998 46

10 0.9901 0.9952 0.9275 0.9995 74

11 0.9887 0.9944 0.9373 0.9988 68

12 0.9914 0.9958 0.8343 0.9990 71

13 0.9848 0.9943 0.8395 0.9990 63

14 0.9911 0.9950 0.9430 0.9993 65

15 0.9848 0.9925 0.8553 0.9990 61

16 0.9884 0.9935 0.8828 0.9985 68

17 0.9881 0.9930 0.8733 0.9990 94

18 0.9903 0.9930 0.9508 0.9990 119

19 0.9895 0.9925 0.9223 0.9990 218

61

D. More results

D.12 NN trained on data set 1 testing data set 1 -
estimation

Average Median Minimum Maximum

0.9721 0.9728 0.9616 0.9766

Count of inputs Average Median Minimum Maximum Instances count

3 0.9571 0.9714 0.8967 0.9811 121

4 0.9602 0.9744 0.8842 0.9792 99

5 0.9658 0.9751 0.9087 0.9799 78

6 0.9708 0.9752 0.9286 0.9788 61

7 0.9721 0.9754 0.9275 0.9799 77

8 0.9727 0.9759 0.9160 0.9795 57

9 0.9752 0.9759 0.9544 0.9779 46

10 0.9760 0.9760 0.9671 0.9793 74

11 0.9761 0.9762 0.9726 0.9793 68

12 0.9753 0.9760 0.9263 0.9789 71

13 0.9754 0.9760 0.9489 0.9785 63

14 0.9760 0.9759 0.9728 0.9790 65

15 0.9755 0.9760 0.9483 0.9790 61

16 0.9759 0.9760 0.9719 0.9781 68

17 0.9760 0.9761 0.9723 0.9802 94

18 0.9759 0.9758 0.9730 0.9800 119

19 0.9758 0.9760 0.9707 0.9796 218

62

D.13. NN trained on data set 2 testing data set 2 - estimation

D.13 NN trained on data set 2 testing data set 2 -
estimation

Average Median Minimum Maximum

0.9714 0.9724 0.9591 0.9766

Count of inputs Average Median Minimum Maximum Instances count

3 0.9530 0.9685 0.8742 0.9793 121

4 0.9569 0.9744 0.8555 0.9814 99

5 0.9637 0.9751 0.8929 0.9792 78

6 0.9703 0.9756 0.9216 0.9800 61

7 0.9719 0.9763 0.9197 0.9795 77

8 0.9721 0.9762 0.8982 0.9797 57

9 0.9756 0.9766 0.9497 0.9806 46

10 0.9761 0.9759 0.9703 0.9804 74

11 0.9760 0.9764 0.9708 0.9786 68

12 0.9753 0.9761 0.9196 0.9790 71

13 0.9755 0.9762 0.9454 0.9784 63

14 0.9760 0.9764 0.9729 0.9787 65

15 0.9755 0.9762 0.9433 0.9783 61

16 0.9759 0.9761 0.9686 0.9800 68

17 0.9760 0.9762 0.9704 0.9802 94

18 0.9757 0.9759 0.9610 0.9792 119

19 0.9758 0.9757 0.9727 0.9805 218

63

D. More results

D.14 NN trained on data set 3 testing data set 3 -
estimation

Average Median Minimum Maximum

0.9661 0.9676 0.9412 0.9776

Count of inputs Average Median Minimum Maximum Instances count

3 0.9275 0.9612 0.8123 0.9818 121

4 0.9375 0.9750 0.8020 0.9822 99

5 0.9478 0.9752 0.8247 0.9838 78

6 0.9613 0.9760 0.8526 0.9818 61

7 0.9632 0.9759 0.8501 0.9823 77

8 0.9647 0.9760 0.8334 0.9832 57

9 0.9726 0.9765 0.8934 0.9830 46

10 0.9752 0.9764 0.9323 0.9813 74

11 0.9769 0.9771 0.9505 0.9823 68

12 0.9750 0.9767 0.8502 0.9812 71

13 0.9746 0.9770 0.8953 0.9828 63

14 0.9770 0.9771 0.9633 0.9823 65

15 0.9731 0.9764 0.8832 0.9818 61

16 0.9766 0.9771 0.9336 0.9822 68

17 0.9764 0.9767 0.9535 0.9820 94

18 0.9770 0.9770 0.9710 0.9832 119

19 0.9757 0.9772 0.6467 0.9828 218

64

D.15. NN trained on data set 4 testing data set 4 - estimation

D.15 NN trained on data set 4 testing data set 4 -
estimation

Average Median Minimum Maximum

0.9142 0.9145 0.8498 0.9627

Count of inputs Average Median Minimum Maximum Instances count

3 0.9118 0.9027 0.8262 0.9850 121

4 0.9136 0.9178 0.8083 0.9855 99

5 0.9233 0.9361 0.8081 0.9856 78

6 0.9216 0.9404 0.7913 0.9849 61

7 0.9139 0.9361 0.5761 0.9850 77

8 0.9111 0.9441 0.7849 0.9844 57

9 0.9005 0.9252 0.6070 0.9854 46

10 0.9237 0.9495 0.7702 0.9850 74

11 0.9106 0.9441 0.7614 0.9857 68

12 0.9131 0.9427 0.7448 0.9854 71

13 0.9242 0.9567 0.7629 0.9844 63

14 0.9051 0.9426 0.7580 0.9843 65

15 0.9102 0.9432 0.7518 0.9837 61

16 0.9078 0.9511 0.7249 0.9852 68

17 0.9221 0.9537 0.7510 0.9858 94

18 0.9126 0.9531 0.7448 0.9851 119

19 0.9079 0.9542 0.6782 0.9854 218

65

D. More results

D.16 NN trained on data set 5 testing data set 5 -
estimation

Average Median Minimum Maximum

0.9191 0.9202 0.8706 0.9629

Count of inputs Average Median Minimum Maximum Instances count

3 0.9084 0.9048 0.8154 0.9863 121

4 0.9084 0.9233 0.7610 0.9861 99

5 0.9220 0.9361 0.8264 0.9864 78

6 0.9275 0.9504 0.7936 0.9860 61

7 0.9313 0.9505 0.7856 0.9864 77

8 0.9224 0.9501 0.7769 0.9856 57

9 0.9393 0.9612 0.7746 0.9863 46

10 0.9274 0.9543 0.7733 0.9858 74

11 0.9208 0.9423 0.7670 0.9857 68

12 0.9103 0.9521 0.5367 0.9867 71

13 0.9211 0.9502 0.7591 0.9852 63

14 0.9235 0.9603 0.7609 0.9864 65

15 0.9033 0.9401 0.5710 0.9857 61

16 0.9187 0.9504 0.7563 0.9859 68

17 0.9206 0.9536 0.7582 0.9871 94

18 0.9141 0.9596 0.7528 0.9864 119

19 0.9228 0.9588 0.7512 0.9860 218

66

D.17. NN trained on data set 4 testing data set 1 - estimation

D.17 NN trained on data set 4 testing data set 1 -
estimation

Average Median Minimum Maximum

0.9251 0.9251 0.8644 0.9720

Count of inputs Average Median Minimum Maximum Instances count

3 0.9293 0.9248 0.8566 0.9946 121

4 0.9284 0.9333 0.8029 0.9954 99

5 0.9376 0.9430 0.7977 0.9956 78

6 0.9323 0.9473 0.8215 0.9947 61

7 0.9238 0.9462 0.5946 0.9948 77

8 0.9251 0.9456 0.8116 0.9947 57

9 0.9122 0.9223 0.6264 0.9942 46

10 0.9319 0.9585 0.7885 0.9945 74

11 0.9192 0.9514 0.7905 0.9947 68

12 0.9217 0.9452 0.7892 0.9944 71

13 0.9351 0.9638 0.7726 0.9943 63

14 0.9146 0.9525 0.7831 0.9946 65

15 0.9202 0.9489 0.7748 0.9932 61

16 0.9173 0.9550 0.7309 0.9947 68

17 0.9317 0.9640 0.7820 0.9952 94

18 0.9220 0.9609 0.7764 0.9957 119

19 0.9172 0.9594 0.7002 0.9952 218

67

D. More results

D.18 NN trained on data set 1 testing data set 4 -
estimation

Average Median Minimum Maximum

0.9526 0.9537 0.9344 0.9610

Count of inputs Average Median Minimum Maximum Instances count

3 0.9278 0.9475 0.8279 0.9690 121

4 0.9334 0.9584 0.8146 0.9656 99

5 0.9417 0.9587 0.8514 0.9663 78

6 0.9510 0.9594 0.8855 0.9638 61

7 0.9522 0.9588 0.8820 0.9679 77

8 0.9526 0.9580 0.8552 0.9664 57

9 0.9567 0.9587 0.9189 0.9646 46

10 0.9588 0.9594 0.9458 0.9654 74

11 0.9593 0.9600 0.9507 0.9648 68

12 0.9586 0.9602 0.8821 0.9647 71

13 0.9574 0.9585 0.9108 0.9659 63

14 0.9589 0.9599 0.9494 0.9643 65

15 0.9577 0.9593 0.9073 0.9658 61

16 0.9589 0.9591 0.9438 0.9641 68

17 0.9588 0.9592 0.9476 0.9662 94

18 0.9588 0.9591 0.9513 0.9655 119

19 0.9588 0.9591 0.9512 0.9642 218

68

D.19. NN trained on data set 3 testing data set 1 - estimation

D.19 NN trained on data set 3 testing data set 1 -
estimation

Average Median Minimum Maximum

0.9581 0.9600 0.9278 0.9714

Count of inputs Average Median Minimum Maximum Instances count

3 0.9171 0.9542 0.7719 0.9771 121

4 0.9288 0.9670 0.7742 0.9778 99

5 0.9403 0.9702 0.7892 0.9848 78

6 0.9535 0.9697 0.8361 0.9766 61

7 0.9536 0.9694 0.8253 0.9779 77

8 0.9569 0.9705 0.7970 0.9772 57

9 0.9665 0.9698 0.9130 0.9819 46

10 0.9680 0.9705 0.9341 0.9760 74

11 0.9697 0.9706 0.9507 0.9785 68

12 0.9693 0.9712 0.8668 0.9766 71

13 0.9677 0.9705 0.9055 0.9775 63

14 0.9690 0.9710 0.9328 0.9774 65

15 0.9675 0.9707 0.9147 0.9765 61

16 0.9695 0.9712 0.9434 0.9820 68

17 0.9683 0.9703 0.9267 0.9762 94

18 0.9688 0.9698 0.9419 0.9771 119

19 0.9669 0.9700 0.5363 0.9770 218

69

D. More results

D.20 NN trained on data set 1 testing data set 3 -
estimation

Average Median Minimum Maximum

0.9444 0.9459 0.9136 0.9658

Count of inputs Average Median Minimum Maximum Instances count

3 0.9012 0.9447 0.7283 0.9819 121

4 0.9150 0.9585 0.7248 0.9828 99

5 0.9251 0.9546 0.7612 0.9798 78

6 0.9464 0.9648 0.8010 0.9820 61

7 0.9421 0.9608 0.7747 0.9855 77

8 0.9440 0.9603 0.7566 0.9783 57

9 0.9498 0.9607 0.8556 0.9779 46

10 0.9576 0.9626 0.8981 0.9806 74

11 0.9581 0.9634 0.9150 0.9764 68

12 0.9584 0.9613 0.8463 0.9772 71

13 0.9529 0.9571 0.8677 0.9792 63

14 0.9569 0.9607 0.9130 0.9759 65

15 0.9508 0.9560 0.8491 0.9815 61

16 0.9528 0.9544 0.9069 0.9738 68

17 0.9531 0.9558 0.8956 0.9767 94

18 0.9547 0.9571 0.9085 0.9798 119

19 0.9524 0.9542 0.8988 0.9766 218

70

D.21. NN trained on data set 3 testing data set 4 - estimation

D.21 NN trained on data set 3 testing data set 4 -
estimation

Average Median Minimum Maximum

0.9420 0.9449 0.9084 0.9581

Count of inputs Average Median Minimum Maximum Instances count

3 0.8965 0.9291 0.7474 0.9629 121

4 0.9093 0.9523 0.7548 0.9638 99

5 0.9216 0.9566 0.7713 0.9680 78

6 0.9354 0.9543 0.8034 0.9616 61

7 0.9369 0.9561 0.8005 0.9617 77

8 0.9406 0.9568 0.7813 0.9623 57

9 0.9503 0.9557 0.8718 0.9625 46

10 0.9533 0.9573 0.8872 0.9625 74

11 0.9536 0.9557 0.9045 0.9616 68

12 0.9550 0.9578 0.8359 0.9632 71

13 0.9518 0.9563 0.8552 0.9633 63

14 0.9547 0.9563 0.9223 0.9617 65

15 0.9517 0.9560 0.8619 0.9628 61

16 0.9551 0.9570 0.9032 0.9621 68

17 0.9536 0.9558 0.8891 0.9623 94

18 0.9540 0.9553 0.9263 0.9628 119

19 0.9522 0.9555 0.5396 0.9631 218

71

D. More results

D.22 NN trained on data set 4 testing data set 3 -
estimation

Average Median Minimum Maximum

0.9250 0.9263 0.8679 0.9773

Count of inputs Average Median Minimum Maximum Instances count

3 0.9022 0.9082 0.7807 0.9962 121

4 0.9118 0.9209 0.7711 0.9957 99

5 0.9247 0.9480 0.7868 0.9963 78

6 0.9260 0.9485 0.8163 0.9958 61

7 0.9198 0.9414 0.4620 0.9955 77

8 0.9227 0.9511 0.8115 0.9954 57

9 0.9111 0.9336 0.5864 0.9946 46

10 0.9361 0.9599 0.8060 0.9946 74

11 0.9267 0.9616 0.7950 0.9955 68

12 0.9285 0.9562 0.7632 0.9953 71

13 0.9395 0.9658 0.7860 0.9947 63

14 0.9222 0.9569 0.7907 0.9941 65

15 0.9261 0.9572 0.7826 0.9942 61

16 0.9241 0.9618 0.6584 0.9950 68

17 0.9377 0.9600 0.7888 0.9956 94

18 0.9306 0.9651 0.7726 0.9955 119

19 0.9256 0.9611 0.7307 0.9949 218

72

	Introduction
	Motivation and objectives
	State of the Art

	Basic concepts and definitions
	Ad-hoc networks
	Concept of trust
	Basics of artificial neural networks

	Statement of objectives
	Object of research
	Problem definition

	Suggested solution
	Creation of Data Instances
	Training of NN
	In search of solution: wrong ways

	Testing environment
	Tools used
	NN learning and adjusting parameters
	Data construction
	Data format
	Data structure
	Evaluating results

	Experiments
	Data for learning
	Detection
	Estimation

	Discussion and possible further work
	Suitability of NN for detection od broken nodes
	Suitability of NN for PDR estimation
	Limitations
	Future work

	Conclusion
	Bibliography
	Acronyms
	Contents of CD
	User manual for experimenting
	More results
	NN trained on data set 1 testing data set 1 - detection
	NN trained on data set 2 testing data set 2 - detection
	NN trained on data set 3 testing data set 3 - detection
	NN trained on data set 4 testing data set 4 - detection
	NN trained on data set 5 testing data set 5 - detection
	NN trained on data set 4 testing data set 1 - detection
	NN trained on data set 1 testing data set 4 - detection
	NN trained on data set 3 testing data set 1 - detection
	NN trained on data set 1 testing data set 3 - detection
	NN trained on data set 3 testing data set 4 - detection
	NN trained on data set 4 testing data set 3 - detection
	NN trained on data set 1 testing data set 1 - estimation
	NN trained on data set 2 testing data set 2 - estimation
	NN trained on data set 3 testing data set 3 - estimation
	NN trained on data set 4 testing data set 4 - estimation
	NN trained on data set 5 testing data set 5 - estimation
	NN trained on data set 4 testing data set 1 - estimation
	NN trained on data set 1 testing data set 4 - estimation
	NN trained on data set 3 testing data set 1 - estimation
	NN trained on data set 1 testing data set 3 - estimation
	NN trained on data set 3 testing data set 4 - estimation
	NN trained on data set 4 testing data set 3 - estimation

