
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF CIVIL ENGINEERING

STUDY PROGRAM: GEODESY AND CARTOGRAPHY

BRANCH OF STUDY: GEODESY, CARTOGRAPHY AND

GEOINFORMATICS

BACHELOR’S THESIS

DATABASE OUTPUT STORAGE SUPPORT IN PYWPS

FRAMEWORK

Supervisor: Ing. Martin Landa, Ph.D.
Department of Geomatics

February 2018 Jan PIŠL

ABSTRACT

The aim of this bachelor thesis is to design an extension for the PyWPS framework

that would enable output data derived from PyWPS processes to be stored in a remote

database. PyWPS is an implementation of the OGCWeb Processing Service standard.

Currently, output data is saved in a standard file format on the server from which

the client can download it. Integration of a database output storage can make more

effective both transfering data to the client and its further processing and analysis.

Like PyWPS, the extension is written in Python. As for the database management

system, PostgreSQL and PostGIS were used. PostGIS is an extension that adds

support for geographic objects to PostgresSQL. The problem of implementing this

extension within the PyWPS source code is, to some extent, also adressed in this

thesis.

KEYWORDS

PyWPS, databases, Python, GDAL, PostGIS

ABSTRAKT

Cílem této bakalářské práce je navrhnout rozšíření frameworku PyWPS, jenž by umožnilo

využít vzdálené databázové úložiště pro ukládání výstupů jednotlivých procesů. PyWPS

je implementace standarduOGCWeb Processing Service. Výstupní data jsou momen-

tálně ukládána v souborových formátech na výpočetním serveru, odkud si je klient

může stáhnout. Integrace databázového úložiště může zefektivnit přesun výstupních

dat ke klientovi i jejich následnou správu. Rozšíření je - stejně jako framework Py-

WPS - napsáno v programovacím jazyce Python. Jako vhodný databázový systém

byl zvolen PostgreSQL, respektive jeho nadstavba PostGIS, která přidává podporu

pro geografické objekty. Součástí práce je i předběžný návrh implementace tohoto

rozšíření do zdrojového kódu PyWPS.

KLÍČOVÁ SLOVA

PyWPS, databáze, Python, GDAL, PostGIS

STATUTORY DECLARATION

I hereby declare that this bachelor thesis is completely my own work and that I used

only the cited sources in accordance with the Methodical instruction about observance

of ethical principles of preparation of university final projects.

In Prague .

(Signature)

ACKNOWLEDGEMENT

I would like to thank my supervisor, Ing. Martin Landa, PhD., for his guidance, advice

and patience.

Contents

1 Introduction 9

2 Theory 11

2.1 Web Processing Services . 11

2.1.1 Process execution . 12

2.1.2 Available operations . 12

2.1.3 OGC WPS Implementations 13

2.2 Spatial Databases . 16

2.2.1 PostGIS . 17

2.2.2 Oracle Spatial and Graph . 18

2.2.3 SpatiaLite . 18

2.2.4 ArcSDE & Geodatabase (ESRI) 19

2.3 Background research . 20

3 Technology 22

3.1 Python . 22

3.2 GitHub . 22

3.3 Geospatial Data Abstraction Library 23

3.4 PostGIS . 23

4 Implementation 24

4.1 Functionality . 24

4.1.1 Output Data Management . 24

4.2 Development . 27

4.2.1 PgStorage class development 27

4.2.2 PyWPS source code changes 29

4.2.3 Testing . 30

5 Conclusion and future work 32

List of Acronyms 34

Bibliography 35

Appendix 39

A User guide for testing 40

B Enabling database storage 41

B.1 Configuration file changes . 41

C GitHub Repository Content 42

List of Figures

2.1 WPS conceptual model . 11

2.2 PyWPS logo . 13

2.3 ZOO-Project logo . 14

2.4 52° North logo . 15

2.5 ESRI logo . 16

2.6 PostGIS logo . 17

2.7 Oracle logo . 18

2.8 SpatialLite logo . 18

2.9 ArcSDE logo . 19

2.10 ArcSDE logic . 20

3.1 Python logo . 22

3.2 GitHub logo . 22

3.3 GDAL logo . 23

4.1 Delivering output data directly to the client 25

4.2 Delivering output data via URL reference 25

4.3 Storing output data in a remote database 26

4.4 Three options of delivering output data to the client 27

ČVUT v Praze 1. INTRODUCTION

1 Introduction

Cloud computing - the delivery of on-demand computing resources over a network

(internet or intranet) - is on the rise. Computing resources may range from relatively

simple ones such as text editors to very complex software. They all share the same

basic concept – the client only needs to provide input data, the process itself runs

on a server and then returns the corresponding output data to the client.

Using cloud computing offers a way to gain new capabilities without investing in

new hardware or software. It allows users to perform complex tasks without having

to deal with technical details of the process. It ensures better collaboration by

allowing remote teams to use the same software. And as all resources are maintained

by the service provider, usually the latest version of the software is available.

For the above mentioned and other reasons, cloud computing is frequently used

in the field of geoinformation technology and GIS. It is most useful when it is clear

to the client what they need to do and how to do it and they only lack the tools to

perform the task. For example, the ESRI’s ArcGIS Online platform offers a wide

selection of tools to choose from. These can be “rented” by the client and the task

is then performed on the server. That way, the client gets the desired data without

having to purchase (and learn to use) any desktop GIS application.

While the benefits of cloud computing are apparent, there is also another aspect

of it that may not get as much attention – the management of the data produced

by such processes. The amount of data collected and used is increasing rapidly and

so is the number of processes that are being shared on a network. Naturally, the

amount of data derived from such services is growing, too.

Since one of the primary motivation behind cloud computing is to make the

service easy to use for the client, managing output data should also be carried out

by the provider of the service in such a way that is convenient for the client – it

needs to be effective, well-organized and easy to access.

Relational databases are one way to do so. They are designed and organized

especially for rapid search and retrieval in what can be a large amount of data.

Database-management system (DBMS) is a tool for managing and interacting with

databases.

9

ČVUT v Praze 1. INTRODUCTION

DBMSs have several major advantages over the traditional system where data

is stored in files. Unlike the file management system, there can be more users

accessing the same data concurrently without corrupting the data. Indexing speeds

up the data retrieval operations. There is a standardized database language to use

for queries. There are mechanisms such as data normalization that can be used to

avoid duplicity of data and save storage space.

Being aware of these advantages, the main goal of this thesis is to design an

extension, written in Python, that implements database storage for output data de-

rived from geoprocessing services run within the PyWPS framework. They typically

produce geographical data, so appropriate software must be used that is capable of

dealing with this type of data. In this thesis, PostgreSQL is used together with its

spatial database extender PostGIS.

10

ČVUT v Praze 2. THEORY

2 Theory

2.1 Web Processing Services

The Web Processing Service (WPS) is an Open Geospatial Consortium (OGC) stan-

dard that provides rules for publishing and executing processes on the web. „The

standard also defines how a client can request the execution of a process, and how

the output from the process is handled. It defines an interface that facilitates the

publishing of geospatial processes and clients’ discovery of and binding to those pro-

cesses. The data required by the WPS can be delivered across a network or they

can be available at the server.“ [39]

WPS uses HTTP (Hypertext Transfer Protocol) and XML (eXtensible Markup

Language) for describing processes and data transfer. The first version 0.4.0 was

released in 2005. Despite a new version 2.0.0 having been released in 2015, version

1.0.0 remains most widely used.

A process is essentially a function p that returns an output Y for each input X:

p: X → Y

In case of WPS, a process is a geospatial operation, calculation or a model of

any complexity. It may require one or more input arguments and always yields one

or more outputs. If there are no input arguments, the process is either generating

constant or random values. While WPS was designed for geospatial data, it is not

restricted to them.

Figure 2.1: WPS conceptual model (source: Open Geospatial Consortium)

11

http://docs.opengeospatial.org/is/14-065/14-065.html#10

ČVUT v Praze 2. THEORY

There are two basic capabilities of a WPS server. It provides the process and

retrieves the process description and it controls and monitors processing jobs. Job is

an instance of a process – it is an object created for a particular process execution.

Job control is the ability to execute, dismiss or delete a job.

2.1.1 Process execution

There are two ways in which a process can be executed. If the complexity of the

process is lower, the connection is stable and the completion time is relatively short

(for instance, the Apache2 server uses 60 seconds as a default value for Connection-

Timeout [5]) the execution is run synchronously. After the execute request is sent

by the client, the WPS server starts executing the process while the client remains

connected to the server for the entire time of the execution. Only when the process

has finished and the output has been delivered, the connection terminates.

The asynchronous execution, on the other hand, better suits for complex pro-

cesses that are expected to take longer time to finish. When the client requests

process excecution, the server responds with a status information message that con-

firms the request has been accepted and the process will be run. The message also

includes a unique processing job identifier. Then, the connection is interrupted.

At this time, the client can send a GetStatus request with the job identifier to get

information on how the process has progressed. Once the process has finished, the

client can access the output data using a GetResult request with the job identifier.

The asynchronous execution can be also useful in case of unstable connection that

prevents synchronous execution to successfully run.

2.1.2 Available operations

GetCapabilities. A mandatory operation for any OGC Web service. [18] For

WPS, it is one of the three basic operations that are available for any process.

There are no input parameters required. Once the request is sent, the server returns

a document that includes information about the service provider, a list of operations

available for a WPS server and a list of all the processes offered by the service.

DescribeProcess. Another basic operation. The only required input is the name

(or a list of names) of the process to be described. [9] If the process offers description

in multiple languages, a language parameter can be added to the request. It returns

12

ČVUT v Praze 2. THEORY

a document with characteristics of the process and a description of input parameters.

It also describes the output format of the process.

Execute. The key operation for any OGC WPS service. It allows processes that

are implemented by a server to be run. [14] It requires input parameter values as

specified by the service. These can be either values (numerical or other) that are

included directly in the request or references to other recources that are accessible as

local files or through the web. Analogically, outputs of the execute operation can be

included in the XML response document or stored locally or on the web. In case of

asynchronous operation, the response contains a unique JobID that the client uses

to enquire about the process status and results.

GetStatus. An operation only used for asynchronous processes. After the Execute

request has been accepted, the client can use this operation to query status infor-

mation of the processing job, using a JobID returned by the Execute response. [20]

This operation is only available in version 2.0.0.

GetResult. The final operation used for asynchronous processes that is to be used

after the GetStatus operation reports the process has finished. The input parameter

is the unique JobID. [19] Then, GetResult fetches the results of the process as

described in the Execute section. This operation is only available in version 2.0.0.

Dismiss. Allows the client to let the server know the result of the process is no

longer wanted. In such case, all the resources corresponding to the JobID sent in

the Dismiss request may be deleted. [10] If the process is still running, it may be

cancelled. This operation is only available in version 2.0.0.

2.1.3 OGC WPS Implementations

PyWPS

Figure 2.2: PyWPS (source: PyWPS)

13

http://pywps.org/images/pywps.png

ČVUT v Praze 2. THEORY

PyWPS is a server side implementation of the OGC Web Processing Service (OGC

WPS) standards 1.0.0. It is written in the Python programming language, it runs

on Python 2.7, 3.3 or higher and it is tested and developed on Linux. [31] It uses

a ConfigParser format for configuration files.[30] It supports a variety of geospatial

software and tools such as GRASS GIS, R Project or the GDAL library. Synchronous

and asynchronuous invocations are supported. As for request encoding, two options

are available - key-value pairs (using HTTP-GET) or XML payload (using HTTP-

POST). Every process that is to be deployed on the server is defined as a class

and has several mandatory parameters. The key parameter called "handler" gets

invoked every time there is an incoming request, it accepts the request and returns

a response.

In 2016, it upgraded from PyWPS 3 to PyWPS 4. Some of the more significant

changes include every input being considered a list of inputs and all inputs having

file, data and stream attributes. [29] These attributes allow better manipulation

with data.

As PyWPS only supports version 1.0.0 of the OGC WPS standards, it does not

support operations implemented in version 2.0.0. These operations are GetStatus,

GetResult and Dismiss. Support for version 2.0.0 is currently being planned.[28]

ZOO-Project

Figure 2.3: ZOO-Project (source: ZOO-Project)

ZOO-project is an open source WPS platform that consists of several components.

The core processing engine, ZOO-Kernel, is a WPS server written in C that im-

plements WPS standards 1.0.0 and 2.0.0.[40] A significant advantage over other

WPS implementations is that it is written as a polyglot, i.e. in a valid form of

multiple programming languages, which performs the same operations independent

14

ČVUT v Praze 2. THEORY

of the programming language used to compile or interpret it.[25] It runs on Mac

OS, Linux and Microsoft Windows operating systems. It uses a ConfigParser styled

configuration file.

ZOO-services offers a rich collection of ready-to-use services that are built on

open source libraries such as GDAL or GRASS GIS.

ZOO-API is a server-side library written in JavaScript for creation and chaining

services. These services can be written in one of five programming languages that

are supported. It also offers easy conversion of vector formats.

ZOO-Client is a simple client-side JavaScript API for interacting with WPS from

web applications. It allows to build WPS requests and send them to a WPS server.

[41] It also provides functions to easily parse the output XML responses.

52°North WPS

Figure 2.4: 52 North (source: 52° North)

52°North WPS is a part of the 52°North open source software initiative. Located

in Germany, their aim is to foster innovation in the field of geoinformatics through

a collaborative process. As a part of this inititiave, the 52°North WPS is an im-

plementation of the OGC WPS standard (version 1.0.0). It is written in the Java

programming language. It can be run under Linux or Microsoft Windows operating

systems.

As for the WPS invocation methods, it supports both synchronous and asyn-

chronous invocation, HTTP-GET and HTTP-POST. As for the WPS datatypes, it

supports GeoTIFF, Shapefile, KML, WKT and others. [23] Configuration is based

on an XML file.

15

ČVUT v Praze 2. THEORY

ESRI Web Processing

Figure 2.5: ESRI (source: ESRI)

ESRI is an international company oriented on desktop and mobile GIS software,

geodatabases and web GIS. Founded in 1969, it is the leading company in the

global GIS market. It offers a variety of GIS products, including ArcGIS for Desktop,

ArcGIS Online or ArcGIS for Mobile.

It allows services created within the ArcGIS software to be published and shared

online on another ESRI’s platform, ArcGIS Server. [12] On ArcGIS Server, these

services can be stored and accessed by other users. They can be also implemented

alongside with maps, which can also be created in other ArcGIS software and then

published online, into online web applications. Users can also take advantage of the

Web App Builder feature and of many templates that simplify creating applications.

By default, ESRI software does not follow WPS standards. However, when

publishing a geoprocessing service in ArcGIS Desktop, there is a possibility to enable

the WPS capability. Then, the service published is compliant with the OGC WPS

1.0.0 specifications.[6]

2.2 Spatial Databases

Spatial database (or a geodatabase) is a database optimized for storing and querying

data related to objects in geometric space, such as points, lines or polygons. They

require additional functionality for processing spatial data effectivelly. Usually, spe-

cial data types such as geometry or feature are added along standard data types.

In addition to typical SQL queries such as SELECT statements, spatial databases

can perform a wide variety of spatial operations. These spatial operations include

16

ČVUT v Praze 2. THEORY

(but are not restricted to) computing line length, polygon area, distance between

geometries, etc.

The International Organization for Standardization (ISO) and OGC specify a

Simple Features standard that is divided into two parts. The first one defines a gen-

eral model for two-dimensional geometries. [35] It also deals with spatial reference

systems. The second part defines an implementation using SQL. This second part

is implemented to varying extent in most of spatial databases and extensions. [35]

Here I list the best known and most widely used spatial database systems, how-

ever, there are many more. In fact, most of the major database systems support

spatial data, including Microsoft SQL Server or MySQL (and its community de-

veloped branch MariaDB). Also, there is a number of database systems especially

designed and developed as spatial databases (e.g. SpatialDB, SpaceBase, MapD).

2.2.1 PostGIS

Figure 2.6: PostGIS (source: PostGIS)

PostGIS is an open-source spatial database extension for PostgreSQL. [27] Post-

greSQL is a widely-used object-relational database management system. PostGIS

adds support for geographic objects according to the OGC Simple Features for SQL

specification.

PostgreSQL and PostGIS use the client/server architecture. [26] When a client

makes a request (typically an SQL statement), there is a server that accepts and

evaluates it. The server itself is then responsible for updating (or, generally, changing

in any way) the database file. Two of the most significant advantages of PostgreSQL

over other DBMSs are its high standard compliance and extensibility. It allows

"stored procedures" to be created and saved to simplify complex operations that

are frequently repeated.

17

ČVUT v Praze 2. THEORY

In a study that compared PostGIS with Oracle Spatial, PostGIS was found to

perform faster when accessing and querying data. [1]

2.2.2 Oracle Spatial and Graph

Figure 2.7: Oracle (source: Oracle)

The Oracle Spatial and Graph is an extension of the Oracle Database that allows

managing geographic data in a native type within an Oracle database. It is also

a client-server service [24] but, unlike PostGIS, it is proprietary. Spatial features

extend Oracle Locator, a standard feature of the Oracle Database distribution. Ora-

cle Locator provides basic functions and services in Oracle Spatial but it lacks more

advanced functions. Oracle Spatial and Graph supports large-scale geographic infor-

mation systems, provides spatial web services and generally is designed for complex

spatial data management and analysis.

2.2.3 SpatiaLite

Figure 2.8: SpatialLite (source: SpatialLite)

SpatiaLite is a lightweight library that extends the SQLite database management

system so it provides support for spatial data. Unlike Oracle and PostgreSQL,

18

ČVUT v Praze 2. THEORY

SQLite is designed as a single file-based database. [37] It means that, unlike server-

based databases, by using SQL expressions a user updates the file directly. There-

fore, a file-based database must be stored in the local file system. As a consequence,

SQLite is very fast and efficient for standard operations but is not optimized for

multi-user applications or for large-scale operations. SQLite (and SpatiaLite) is

open-source. [38]

2.2.4 ArcSDE & Geodatabase (ESRI)

Figure 2.9: ArcSDE (source: ArcSDE)

ESRI is a supplier of a wide range of GIS software, including web GIS services,

desktop and mobile applications and geodatabase management systems. Data used,

produced or derived from ESRI software is stored in geodatabases, that are defined

by ESRI as "a collection of geographic datasets of various types held in a common

file system folder, a Microsoft Access database, or a multiuser relational DBMS."[11]

As the definition suggests, ESRI distinguishes between three conceptually different

types of geodatabases, depending on the scale of the data, requirements of the client,

operating system and other factors.

In its simplest form, an ESRI geodatabase can be a collection of GIS data stored

as files in a folder within the standard file system. This is called file geodatabase and

is intended for single users and small workgroups. Personal geodatabase is another

type of geodatabase, also designed to be used by individuals or small workgroups. It

uses Microsoft Access database management system and therefore is only available

on Microsoft Windows operating system.

The final and most complex type of geodatabase is the enterprise geodatabase.

Unlike the previous two, it is designed to be used by multiple users simultaneously

and for large datasets. It works with various DBMSs storage models using ArcSDE.

19

ČVUT v Praze 2. THEORY

ArcSDE is a proprietary technology for managing and accessing spatial data that

supports multiple DBMSs: IBM DB2, IBM Informix, Microsoft SQL Server, Oracle,

and PostgreSQL.[7] It also supports the corresponding standards. ArcSDE is built

with the client/server architecture. A client first sends a request to the server. Then,

the server receives the request, generates results, and delivers them to the client.

Figure 2.10: ArcSDE logic(source: ArcSDE)

The client doesn’t need any knowledge of particulars of any of the DBMSs.

Another significant advantage is that ArcSDE allows datasets to be available to

multiple users for viewing, querying or editing at the same time.[13]

2.3 Background research

PyWPS is only one of the many implementations of the WPS standard, each of

them approaching the problem of storing output data differently. From those listed

above, the ZOO-project provides the "ZOO-kernel optional database support" [42]

that is most similar to what the author of this thesis is aiming to create. There is an

optional section in the configuration file that allows to configure the connection. The

section has six elements (dbname, port, user, host, type and schema) that are used

to generate a connection string that is passed to the GDAL library that connects to

the database.[43]

20

ČVUT v Praze 2. THEORY

When using ArcGIS Server (ESRI software for executing processes on a server),

ArcSDE handles storing data in a database. For more information about the ArcSDE

technology, refer to the section 2.2.4 - ArcSDE & Geodatabase (ESRI).

As for the 52°North Web Processing Service, it, by default, stores output data

as web accessible resources and provides the consumer with an URL. Depending on

the type of the output data, it may be stored directly as WMS, WFS or WCS layers.

[23]

As an alternative, it is also possible to store the data within a PostgreSQL

database. [4] It is, however, primarily used to save requests and responses, e.g. to

help debugging the service. While storing output data in the database is technically

possible, too, no spatial database is implemented at the moment.1

1Information obtained from personal email correspondence with Benjamin Proß, the contact

person for 52°North WPS

21

ČVUT v Praze 3. TECHNOLOGY

3 Technology

3.1 Python

Figure 3.1: Python logo (source: Python.org)

Python is a high-level programming language that fully supports object-oriented and

structured programming. Developed in the late 1980s, the first version 0.9.0 was

released in 1991. In 2008, Python 3.0 was released. Currently, the most up-to-date

version available is 3.6.[2]

It was designed as a syntactically simple language, using whitespace intendantion

instead of brackets and English words rather than punctuation. It is a dynamically-

typed language, which means it is not neccessary to specify a data-type when defin-

ing a variable. For its simplicity and readability, Python is often considered a good

first programming language to learn.

One of the key advantages of Python is its high extensibility. It provides large

standard libraries and also an extensive number of other modules, packages and

libraries, so most of the common programming tasks are already solved, scripted

and made available.

3.2 GitHub

Figure 3.2: GitHub logo (source: GitHub.com)

GitHub is a web-based Git repository hosting service with a graphical interface. Git

is an open-source version control system for tracking changes in text files, typically

used for source code management.[21] On top of the standard Git functionality,

22

https://www.python.org/static/community_logos/python-logo-master-v3-TM.png

ČVUT v Praze 3. TECHNOLOGY

GitHub provides a number of its own features, including forking (copying a reposi-

tory), pull requests, or bug tracking. GitHub also offers a desktop application.

3.3 Geospatial Data Abstraction Library

Figure 3.3: GDAL logo (source:[15])

Geospatial Data Abstraction Library (GDAL) is the most widely used data acces

library for raster and vector geospatial data formats. It is released under an X/MIT

style Open Source license by the Open Source Geospatial Foundation and it is writ-

ten in C++ and C programming languages. As for operating systems, it can run

under Linux, Solaris, Mac OS X and Microsoft Windows.[15]

The first version was released by Frank Warmerdam in 2000 and the last stable

version 2.2.3 was released in November 2017.[17]

The OGR library was developed separately but is now a part of the GDAL source

tree. GDAL used to work with raster data and OGR with vector data. Starting

with GDAL 2.0, however, the two have been integrated more tightly.

For its extensive capabilities and comprehensive set of functionalities, the GDAL

library is widely used by both commercial and non-commercial GIS projects and

programs. The list of software programs that uses it includes Google Earth, ArcGIS,

GRASS GIS and many others.[16]

3.4 PostGIS

For information on the PostgreSQL spatial database extender, refer to the section

2.2.1.

23

ČVUT v Praze 4. IMPLEMENTATION

4 Implementation

4.1 Functionality

PyWPS allows to publish and consume geoprocessing services on a server. Every

process that is to be implemented by PyWPS must be constructed as a Python class

and contain a list of inputs and outputs. Also, there must be a handler method with

two parameters - request and response. [33] Details on the procedure of creating

new processes can be found in PyWPS documentation.

To send a request to PyWPS, an instance of PyWPS must be running at a server.

The request is handled and a response is generated and returned to the client. The

response has a form of an XML document that contains different elements depending

on the type of the request.

When an Execute request is called, a new, temporary folder is created in location

specified in configuration file and input data is copied here. While the process is

being executed, temporary files may be generated in this folder. For every process,

it must be specified what the final output is. Once the execution is finished, the

output is copied to a location that is accessible via the web. The temporary folder,

containing input and output data and all the intermediate data that arose during

the execution, is then deleted.

4.1.1 Output Data Management

Current Options

The simplest option of delivering output data is to embed it in the XML response

document. Either as plain text, GML or, in case of an image, base64 encoding

scheme. This is typically used when the output is relatively small. For PyWPS, it

is also the default option.

24

ČVUT v Praze 4. IMPLEMENTATION

Figure 4.1: Delivering output data directly to the client (source: author)

If, on the contrary, the output data is large and complex, there is another op-

tion. The client is only given a reference, a URL link, from which the data can be

downloaded. PyWPS saves the file in a folder specified in configuration passed by

the service (or in a default location). The URL is embedded in the XML response.

[34]

Figure 4.2: Delivering output data via URL reference (source: author)

It is up to the consumer of the process to decide which option to choose. For

the latter option, the "@asReference" value must be set to "True" in the request.

[8] By default, it is set to "False".

Proposed Extension

The aim of this thesis was to develop another variant to add to the existing two that

stores output data in a PostGIS database.

25

ČVUT v Praze 4. IMPLEMENTATION

Figure 4.3: Storing output data in a remote database (source: author)

From the point of view of the consumer of a process, it is similar to the previous

option. After the final output has been produced, connection to the database is

established and the output data is copied there. When the XML response is delivered

to the client, it contains a reference that points to the location of the data within

the database. The reference is composed of the name of the database, schema and

table. To access the data itself, database login credentials are neccessary.

The current state is not definitive. In the final state, the client will receive a

URL link that references to a WFS service. The WFS service itself will access the

output data stored in a database and serve them to the client.

To use this functionality as a consumer of a process, it must be implemented in

the process by its author. For details on implementation when creating a process,

please refer to appendix B.

26

ČVUT v Praze 4. IMPLEMENTATION

Figure 4.4: Three options of delivering output data to the client (source: author)

4.2 Development

4.2.1 PgStorage class development

A new class, PgStorage, has been developed that implements PostGIS storage sup-

port. Details on PostGIS can be found in section 2.2.1. PgStorage is a derived

class, inheriting from StorageAbstract class that is part of PyWPS API.

PgStorage is stored within storage.py in the pywps.inout module. It consists

of several methods that are described below.

__init__

A constructor, i.e. it gets called automatically when an instance of the PgStorage

class is created.

In this method, the get_config_value function is used that is defined within

the PyWPS API. It accesses the configuration file and retrieves required elements.

What elements are retrieved is specified by the function’s two parameters, section

and option.

Correct section (db) is specified and saved to a variable. The name of the

database is extracted from the configuration file and saved to a variable.

27

ČVUT v Praze 4. IMPLEMENTATION

Another variable is defined that serves as a connection string for connecting to

a database. Requisite elements (user name, password and host server) are retrieved

from the configuration file. Finally, an instance of the _create_schema method is

created and saved to a variable. See an example of a db section in section B.1.

_create_schema

First defines a variable schema_name as a random string of specified length that

consists of letters and digits. This is done using Python libraries random and string.

Psycopg2 library is used to connect to database specified by the target variable.

A try-except clause is included to raise an exception if the connection cannot not

be established.

Then, when a cursor has been created, an SQL query is executed that generates

a new schema if it doesn’t exist already. Changes in database are commited so

they persist after connection is aborted, cursor and connection are closed and the

schema_name variable is returned.

_store_output

As its name suggests, it handles writing output data to the database. It benefits

from an extensive use of GDAL library. More information about GDAL can be

found in section 3.3. It has two input parameters, the name of the file that is to be

stored in a database, and a process identifier.

Thanks to GDAL, the process is fairly simple and straight-forward. The output

file is opened using the file name input parameter and connection to the database

is established. Then, data is copied from the output file to the database using the

OGR CopyLayer function.

Each of the three above mentioned operations is followed by a simple condition

that checks if the variable storing output of the operation is not None. If it is, it

raises an exception with a corresponding message.

This method returns the identifier.

store

The store method is defined in the StorageAbstract parent class. Just as in the

parent class, it has output as an input argument. In this case, output is an instance

of the ComplexOutput class.

28

ČVUT v Praze 4. IMPLEMENTATION

It initializies the _store_output method and passes it name and identifier of

the output file.

Then, a string is created that specifies the location of the data and saved as a

variable. It consists of a name of the database, schema and identifier. This string is

then given to the client as an output in the XML response of the process.

There are three parameters returned by the method - the corresponding value

of a DB variable defined within the STORE_TYPE class, name of the output file and

the variable describing the location of the data that is composed of names of the

database, schema and table. These must be returned as they are required by the

get_url method (defined within the ComplexOutput class).

4.2.2 PyWPS source code changes

All changes that have been done within the PyWPS source code can be examined

in a diff folder that is appended to this thesis.

Outputs module

This module includes three classes that define how outputs are handled and delivered

to the client. Each class deals with one type of output data - Literal, Complex

and BoundingBox. Since there is another option being added of storing output

data that returns a reference to the client, _execute_xml_reference method in

ComplexOutput class had to be adjusted.

Whether the output data is stored as a file or in a database depends on value of

the store_type option in configuration file. store_type is a new variable within

the configuration file that was declared for this purpose. For details on changes in

the configuration file, refer to section B.1. The code block that has been added here

first retrieves the value using get_config_value. If it is equal to "db", PgStorage

is chosen to handle output data. In any other case (the value is different or the

option is missing), FileStorage is used.

Storage module

PgStorage class has been added that implements the database storage functionality.

For more details on this class, refer to the section 4.2.1.

FileStorage is another class defined in this module that inherits from

the StorageAbstract class. As described above, it is either this class or PgStorage

29

ČVUT v Praze 4. IMPLEMENTATION

that gets called when a reference is to be returned within the response document.

As its name indicates, it saves outputs as files.

There is another class called get_free_space within this module. Its name, too,

is self-explanatory - it returns folder or drive free space.

Also, second option has been added to the class STORE_TYPE. So, apart from a

PATH variable that implies storing output data as a file, there is also a DB variable

that is used when saving data in a database.

4.2.3 Testing

A script has been developed to test whether the process of storing outputs in a

database functions correctly.

For the purpose of this test, three simple processes have been written. One

of them only returns a string, while the other two, (process_one_output and

process_two_outputs), produce one and two complex outputs, respectively.

Both process_one_output and process_two_outputs generate buffers around

input features, the latter also calculates centroids thereof. They are based on sample

processes available for the PyWPS demo service. There is also a GML file provided

with the demo service that was used as an input file for this test.

To sucessfully run the test, instance of PyWPS must be running. When run, the

test executes each of the processes and analyzes the corresponding XML response

using the ElementTree XML parser. For every process, it returns an identifier of the

process extracted from the XML document.

For the two processes that yield complex outputs the test establishes connection

to the database and counts features in the corresponding table. Then it compares

this value to the number of features in the input file. If these two values differ, it

raises an exception.

Similarly, it checks whether the geometry type of the layer in database is equal

to a predefined value (point for centroids, polygon for buffer). If not, it raises an

exception with a corresponding warning.

When no exception is raised, it indicates that all processes have been run and

all complex outputs have been stored in a database.

GDAL library is used for creating database connection, counting features and

getting geometry type. Database login credentials are retrieved from a configuration

30

ČVUT v Praze 4. IMPLEMENTATION

file using get_config_value. To ensure correct configuration file is read, another

PyWPS built-in function, load_configuration, is used. For information on how

to download all required data and run the test, refer to appendix A.

31

ČVUT v Praze 5. CONCLUSION AND FUTURE WORK

5 Conclusion and future work

The aim of this thesis was to design an extension for the PyWPS framework that

would allow output data to be stored in a database rather than in a standard file

system.

Until now, there were only two ways of returning data to the client. It was

either embedded in the response directly or, typically if the data was larger or more

complex, it remained stored on a server and the response included a reference (a URL

link) pointing to the location from which the data could be downloaded.

By adding the third option of storing outputs in a remote database, the output

data can be transferred, stored and processed more effectively. However, there is

a lot of room for improvement and future work.

Most importantly, current state of the extension provides the client with a string

that points to a specific table, schema and database. The client, however, has to

access the database by themselves and only then work with the data.

In the future, the client should be only given a unique URL link that points to

a running WFS (or, for viewing data only, WMS and WCS) service that will be

retrieving data from the database. The client will not even need to be aware where

tha data is stored as they will access it easily through a standardized interface.

The author encountered several other issues during the development. Some of

them have been solved, others were out of the scope of this thesis.

One of the unresolved issues is safety of the database login credentials. At this

point, all the data that is neccessary for connecting to and accessing the database

(including password) is stored in the configuration file as plain text. Obviously, this

is a major safety risk and a better, more secure solution is needed where (at least)

the password would not be accessible directly.

Another problem that may arise if using this extension and that should be ad-

dressed in the future is exceeding the capacity of the database if the output data

that is being copied to the database is too large. This could be solved by adding

another functionality that would establish a connection to the database, check how

much space there is available and then compare it to the size of the output file and

raise an exception if the capacity was not sufficient.

32

ČVUT v Praze 5. CONCLUSION AND FUTURE WORK

These and perhaps other improvements are neccessary before the extension can

be fully implemented by PyWPS. Due to time constraints, the above mentioned

changes will be worked on after this thesis has been submitted. The author plans

to cooperate with authors of PyWPS to implement the extension as a pull request

to the PyWPS repository. The entire thesis, including text, source code and sample

data, is available on GitHub at: https://github.com/ctu-geoforall-lab-projects/bp-

pisl-2018.

33

https://github.com/ctu-geoforall-lab-projects/bp-pisl-2018
https://github.com/ctu-geoforall-lab-projects/bp-pisl-2018

ČVUT v Praze LIST OF ACRONYMS

List of Acronyms

WPS Web Processing Service

OGC Open Geospatial Consortium

HTTP Hypertext Transfer Protocol

XML Extensible Markup Language

DBMS Database Management System

API Application Programming Interface

TIFF Tagged Image File Format

KML Keyhole Markup Language

WKT Well-known text

GDAL Geospatial Data Abstraction Library

GIS Geographic Information System

SQL Structured Query Language

RDBMS Relational Database Management System

WMS Web Map Service

WFS Web Feature Service

WCS Web Coverage Service

OSGeo Open Source Geospatial Foundation

ISO International Organization for Standardization

GML Geography Markup Language

URL Uniform Resource Locator

34

ČVUT v Praze BIBLIOGRAPHY

Bibliography

[1] DEEPIKA SHUKLA, Darshit Shah C. S. PostGIS and Oracle Spatial Per-

formance Comparison [online]. [cit. 2018-01-04]. Available at: http://

csjournals.com/IJCSC/PDF7-2/16.%20Deepika.pdf.

[2] PILGRIM, Mark. Dive Into Python. Apex: Apress, 2004. ISBN 978-1-59059-

356-1.

[3] PROß, Benjamin. Private email communication.

[4] How to use PostgreSQL for request/response/result storage [online].

[cit. 2018-01-11]. Available at: https://wiki.52north.org/Geoprocessing/

WPSAndPostgreSQL.

[5] Apache2 Httpd Server Connection Timeout Default Value [online]. [cit. 2018-01-

02]. Available at: http://httCopd.apache.org/docs/2.4/mod/core.html#

timeout.

[6] ESRI WPS Compliance [online]. [cit. 2018-01-06]. Available at:

http://server.arcgis.com/en/server/latest/publish-services/linux/

wps-services.htm.

[7] Understanding ArcSDE [online]. [cit. 2018-01-06]. Available at: http:

//downloads.esri.com/support/documentation/sde_/706Understanding_

ArcSDE.pdf.

[8] Returning Large Data [online]. [cit. 2018-01-12]. Available at: http://pywps.

readthedocs.io/en/master/process.html#returning-large-data.

[9] DescribeProcess Request [online]. [cit. 2018-01-11]. Available at: http://docs.

opengeospatial.org/is/14-065/14-065.html#55.

[10] Dismiss Extension [online]. [cit. 2018-01-11]. Available at: http://docs.

opengeospatial.org/is/14-065/14-065.html#86.

[11] ESRI Geodatabase Definition [online]. [cit. 2018-01-06]. Available

at: http://desktop.arcgis.com/en/arcmap/10.3/manage-data/

geodatabases/what-is-a-geodatabase.htm.

35

http://csjournals.com/IJCSC/PDF7-2/16.%20Deepika.pdf
http://csjournals.com/IJCSC/PDF7-2/16.%20Deepika.pdf
https://wiki.52north.org/Geoprocessing/WPSAndPostgreSQL
https://wiki.52north.org/Geoprocessing/WPSAndPostgreSQL
http://httCopd.apache.org/docs/2.4/mod/core.html#timeout
http://httCopd.apache.org/docs/2.4/mod/core.html#timeout
http://server.arcgis.com/en/server/latest/publish-services/linux/wps-services.htm
http://server.arcgis.com/en/server/latest/publish-services/linux/wps-services.htm
http://downloads.esri.com/support/documentation/sde_/706Understanding_ArcSDE.pdf
http://downloads.esri.com/support/documentation/sde_/706Understanding_ArcSDE.pdf
http://downloads.esri.com/support/documentation/sde_/706Understanding_ArcSDE.pdf
http://pywps.readthedocs.io/en/master/process.html#returning-large-data
http://pywps.readthedocs.io/en/master/process.html#returning-large-data
http://docs.opengeospatial.org/is/14-065/14-065.html#55
http://docs.opengeospatial.org/is/14-065/14-065.html#55
http://docs.opengeospatial.org/is/14-065/14-065.html#86
http://docs.opengeospatial.org/is/14-065/14-065.html#86
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/geodatabases/what-is-a-geodatabase.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/geodatabases/what-is-a-geodatabase.htm

ČVUT v Praze BIBLIOGRAPHY

[12] How to publish a service from ArcMap or ArcCatalog [online]. [cit. 2018-

01-11]. Available at: http://enterprise.arcgis.com/en/server/latest/

publish-services/linux/how-to-publish-a-service.htm.

[13] ESRI Geodatabase Types [online]. [cit. 2018-01-06]. Available at: http:

//desktop.arcgis.com/en/arcmap/10.3/manage-data/geodatabases/

types-of-geodatabases.htm.

[14] Execute Operation [online]. [cit. 2018-01-11]. Available at: http://docs.

opengeospatial.org/is/14-065/14-065.html#58.

[15] GDAL - Geospatial Data Abstraction Library [online]. [cit. 2018-01-6]. Available

at: http://www.gdal.org/.

[16] GDAL/OGR Info Sheet [online]. [cit. 2018-01-07]. Available at: http://www.

osgeo.org/gdal_ogr.

[17] GDAL/OGR 2.2.3 Release Notes) [online]. [cit. 2018-01-07]. Available at:

https://trac.osgeo.org/gdal/wiki/Release/2.2.3-News.

[18] GetCapabilities Operation [online]. [cit. 2018-01-11]. Available at: http://

docs.opengeospatial.org/is/14-065/14-065.html#50.

[19] GetResult Request [online]. [cit. 2018-01-11]. Available at: http://docs.

opengeospatial.org/is/14-065/14-065.html#67.

[20] GetStatus Operation [online]. [cit. 2018-01-11]. Available at: http://docs.

opengeospatial.org/is/14-065/14-065.html#62.

[21] Git [online]. [cit. 2018-01-06]. Available at: https://en.wikipedia.org/wiki/

Git.

[22] Python hassatr Function [online]. [cit. 2018-01-07]. Available at: https://

docs.python.org/3.6/library/functions.html#hasattr.

[23] 52 North Web Processing Service features [online]. [cit. 2018-01-06]. Available

at: https://52north.org/software/software-projects/wps/.

36

http://enterprise.arcgis.com/en/server/latest/publish-services/linux/how-to-publish-a-service.htm
http://enterprise.arcgis.com/en/server/latest/publish-services/linux/how-to-publish-a-service.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/geodatabases/types-of-geodatabases.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/geodatabases/types-of-geodatabases.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/geodatabases/types-of-geodatabases.htm
http://docs.opengeospatial.org/is/14-065/14-065.html#58
http://docs.opengeospatial.org/is/14-065/14-065.html#58
http://www.gdal.org/
http://www.osgeo.org/gdal_ogr
http://www.osgeo.org/gdal_ogr
https://trac.osgeo.org/gdal/wiki/Release/2.2.3-News
http://docs.opengeospatial.org/is/14-065/14-065.html#50
http://docs.opengeospatial.org/is/14-065/14-065.html#50
http://docs.opengeospatial.org/is/14-065/14-065.html#67
http://docs.opengeospatial.org/is/14-065/14-065.html#67
http://docs.opengeospatial.org/is/14-065/14-065.html#62
http://docs.opengeospatial.org/is/14-065/14-065.html#62
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://docs.python.org/3.6/library/functions.html#hasattr
https://docs.python.org/3.6/library/functions.html#hasattr
https://52north.org/software/software-projects/wps/

ČVUT v Praze BIBLIOGRAPHY

[24] Oracle7 Server Concepts Manual [online]. [cit. 2018-01-11]. Avail-

able at: https://docs.oracle.com/cd/A57673_01/DOC/server/doc/SCN73/

ch20.htm.

[25] Polyglot (computing) [online]. [cit. 2018-01-06]. Available at: https://en.

wikipedia.org/wiki/Polyglot_(computing).

[26] Architectural Fundamentals [online]. [cit. 2018-01-11]. Available at: https:

//www.postgresql.org/docs/9.1/static/tutorial-arch.html.

[27] About PostGIS [online]. [cit. 2018-01-11]. Available at: https://postgis.net.

[28] PyWPS Documentation [online]. [cit. 2018-01-02]. Available at: https://

pywps.readthedocs.io/en/master/.

[29] Single process definition [online]. [cit. 2018-01-11]. Available

at: http://pywps.readthedocs.io/en/master/migration.html#

single-process-definition.

[30] Configuration [online]. [cit. 2018-01-11]. Available at: https://pywps.

readthedocs.io/en/master/configuration.html#configuration.

[31] Dependencies and requirements [online]. [cit. 2018-01-11]. Avail-

able at: http://pywps.readthedocs.io/en/master/install.html#

dependencies-and-requirements.

[32] PyWPS Processes [online]. [cit. 2018-01-07]. Available at: http://pywps.

readthedocs.io/en/master/process.html.

[33] PyWPS Processes [online]. [cit. 2018-01-07]. Available at: http://pywps.

readthedocs.io/en/master/process.html.

[34] PyWPS Processes - Returning Large Data [online]. [cit. 2018-01-07].

Available at: http://pywps.readthedocs.io/en/master/process.html#

returning-large-data.

[35] Simple Feature Access - Part 1: Common Architecture [online]. [cit. 2018-01-

11]. Available at: http://www.opengeospatial.org/standards/sfa.

37

https://docs.oracle.com/cd/A57673_01/DOC/server/doc/SCN73/ch20.htm
https://docs.oracle.com/cd/A57673_01/DOC/server/doc/SCN73/ch20.htm
https://en.wikipedia.org/wiki/Polyglot_(computing)
https://en.wikipedia.org/wiki/Polyglot_(computing)
https://www.postgresql.org/docs/9.1/static/tutorial-arch.html
https://www.postgresql.org/docs/9.1/static/tutorial-arch.html
https://postgis.net
https://pywps.readthedocs.io/en/master/
https://pywps.readthedocs.io/en/master/
http://pywps.readthedocs.io/en/master/migration.html#single-process-definition
http://pywps.readthedocs.io/en/master/migration.html#single-process-definition
https://pywps.readthedocs.io/en/master/configuration.html#configuration
https://pywps.readthedocs.io/en/master/configuration.html#configuration
http://pywps.readthedocs.io/en/master/install.html#dependencies-and-requirements
http://pywps.readthedocs.io/en/master/install.html#dependencies-and-requirements
http://pywps.readthedocs.io/en/master/process.html
http://pywps.readthedocs.io/en/master/process.html
http://pywps.readthedocs.io/en/master/process.html
http://pywps.readthedocs.io/en/master/process.html
http://pywps.readthedocs.io/en/master/process.html#returning-large-data
http://pywps.readthedocs.io/en/master/process.html#returning-large-data
http://www.opengeospatial.org/standards/sfa

ČVUT v Praze BIBLIOGRAPHY

[36] Simple Feature Access - Part 2: SQL Option [online]. [cit. 2018-01-11]. Available

at: http://www.opengeospatial.org/standards/sfs.

[37] Single-file Cross-platform Database [online]. [cit. 2018-01-11]. Available at:

https://www.sqlite.org/onefile.html.

[38] SpatiaLite [online]. [cit. 2018-01-12]. Available at: https://www.gaia-gis.

it/fossil/libspatialite/index.

[39] Open Geospatial - WPS standard [online]. [cit. 2018-01-04]. Available at: http:

//www.opengeospatial.org/standards/wps.

[40] ZOO-Kernel Compliance [online]. [cit. 2018-01-04]. Available at: http://www.

zoo-project.org/docs/kernel/what.html#compliant.

[41] What is ZOO-Client? [online]. [cit. 2018-01-11]. Available at: http://www.

zoo-project.org/docs/client/what.html#what-is-zoo-client.

[42] ZOO-project Database Backend [online]. [cit. 2018-01-06]. Available

at: http://www.zoo-project.org/docs/install/installation.html#

zoo-create-db-backend.

[43] ZOO-project Database Section [online]. [cit. 2018-01-06]. Available

at: http://www.zoo-project.org/docs/kernel/configuration.html#

database-section.

38

http://www.opengeospatial.org/standards/sfs
https://www.sqlite.org/onefile.html
https://www.gaia-gis.it/fossil/libspatialite/index
https://www.gaia-gis.it/fossil/libspatialite/index
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps
http://www.zoo-project.org/docs/kernel/what.html#compliant
http://www.zoo-project.org/docs/kernel/what.html#compliant
http://www.zoo-project.org/docs/client/what.html#what-is-zoo-client
http://www.zoo-project.org/docs/client/what.html#what-is-zoo-client
http://www.zoo-project.org/docs/install/installation.html#zoo-create-db-backend
http://www.zoo-project.org/docs/install/installation.html#zoo-create-db-backend
http://www.zoo-project.org/docs/kernel/configuration.html#database-section
http://www.zoo-project.org/docs/kernel/configuration.html#database-section

ČVUT v Praze APPENDIX

Appendix

A User guide for testing 40

B Enabling database storage 41

C GitHub Repository Content 42

39

ČVUT v Praze A. USER GUIDE FOR TESTING

A User guide for testing

I. Clone the repository:

$ g i t c l one \

https : // github . com/ctu−g e o f o r a l l−lab−p r o j e c t s /bp−p i s l −2018

II. Using requirements.txt, go to bp-pisl-2018/src directory and install all required

packages, including PyWPS core package:

$ pip3 i n s t a l l −r requ i rements . txt

III. Edit configuration file (refer to appendix B for details)

IV. Run demo application (taken from PyWPS-Demo):

$ python3 demo . py

V. Run the test in another terminal - demo application must be running concur-

rently:

$ python3 t e s t . py

40

ČVUT v Praze B. ENABLING DATABASE STORAGE

B Enabling database storage

To enable the database storage capacity as an author of a process, there are a few

things that must be done. No changes are neccessary in the code of the process

itself, but configuration file must be updated.

It is assumed that there is an instance of PostGIS database running on some

server.

B.1 Configuration file changes

When output data is not embedded directly in the response document, there are

two more options - it can be stored as a file or in a database. The decision is made

based on a value of the store_type variable in the configuration file. Therefore, a

new option of this name must be added in the server section and its value set to

db. If the option already exists, only the value must be changed. Position of the

option within the server section is arbitrary.

store_type = db

To connect to a remote database, login credentials are required such as the

database name, user name, password and a host (server the database runs on).

The PgStorage class is designed to extract them from the configuration file, so the

author must add a new section there that contains all the required information. An

example of a complete db section is shown below.

[db]

host=geo102.fsv.cvut.cz

user=pisl

password=XXXXXXXX

dbname=pisl_bp

41

ČVUT v Praze C. GITHUB REPOSITORY CONTENT

C GitHub Repository Content

The repository is available on GitHub at: https://github.com/ctu-geoforall-lab-

projects/bp-pisl-2018.

repository

src

diff

processes

static

data

text

pictures

text of the thesis as a PDF file

zadani

42

https://github.com/ctu-geoforall-lab-projects/bp-pisl-2018
https://github.com/ctu-geoforall-lab-projects/bp-pisl-2018

	Introduction
	Theory
	Web Processing Services
	Process execution
	Available operations
	OGC WPS Implementations

	Spatial Databases
	PostGIS
	Oracle Spatial and Graph
	SpatiaLite
	ArcSDE & Geodatabase (ESRI)

	Background research

	Technology
	Python
	GitHub
	Geospatial Data Abstraction Library
	PostGIS

	Implementation
	Functionality
	Output Data Management

	Development
	PgStorage class development
	PyWPS source code changes
	Testing

	Conclusion and future work
	List of Acronyms
	Bibliography
	Appendix
	User guide for testing
	Enabling database storage
	Configuration file changes

	GitHub Repository Content

