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Abstract 

Title: Micromechanical study of spruce wood 

The wood is a natural material widely used for building constructions. Although it 

has been used for centuries, its behaviour has not been fully examined, yet. Due to the 

development of laboratory technologies, it is possible to study the wood composition and 

its properties at the level of nanometres or lower. This thesis provides prediction of the 

wood properties using the micromechanical model based on real structural composition 

of spruce wood. The computation is performed by analytical homogenization methods, 

using classical Self-consistent scheme, Mori-Tanaka method and lamination theory. The 

model is supported by several experimental measurements. A comparison with numerical 

solution is also provided. Although, in some cases the calculated values were in good 

accordance with those measured, further development of the micromechanical model is 

still necessary. 

 

Keywords: Spruce, Wood microstructure, Micromechanical homogenization, Mechanical 

properties, Moisture diffusion coefficient, Coefficient of thermal conductivity 

 

  



 

 

Abstrakt 

Název: Mikromechanická studie smrkového dřeva 

Dřevo je přírodní materiál široce využívaný pro stavební konstrukce. Ačkoliv se 

používá již po staletí, jeho vlastnosti stále nejsou plně prozkoumány. Díky vývoji 

laboratorních technologií je možné studovat strukturu dřeva a jeho vlastnosti na úrovni 

nanometrů i nižší. Tato práce poskytuje predikci vlastností dřeva s využitím 

mikromechanického modelu, založeném na skutečné strukturní stavbě smrkového dřeva. 

Výpočet je proveden pomocí klasické Self-konzistentní metody, metody Mori-Tanaka 

a laminační teorie. Pro ověření modelu byla provedena řada laboratorních měření. 

V rámci práce je také provedeno porovnání s numerickým řešením. Ačkoliv v několika 

případech vykazovaly vypočtené hodnoty dobrou shodu s těmi naměřenými, je další 

vylepšení mikromechanického modelu nutné. 

 

Klíčová slova: smrk, mikrostruktura dřeva, mikromechanická homogenizace, 

mechanické vlastnosti, součinitel difuze vodní páry, součinitel teplotní vodivosti 

 

  



 

 

 

 

 

 

“We may use wood with intelligence only if we understand wood” 

Frank Lloyd Wright (1928) 
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1 Introduction 

The wood is a natural building material used in construction for centuries. Its 

natural origin and renewability are of great advantage, particularly nowadays when 

environmental issues are at the forefront of the global interest. This fact caused 

an expansion of the logging industry. As an example, the timber production in the Czech 

Republic increased from 14.44x106 m3 (2000) to 16.16x106 m3 (2015) [1], which 

corresponds to an increment of 11.9 %, and it is reasonable to expect further growth. In 

2015 the forests covered 36.8% of the total territory of the Czech Republic [1] and the 

major part comprises the Norway spruce (Picea abies) (50.6% of the forest area [1]). This 

thesis is mostly focused on spruce timber used for building construction. 

Generally, the knowledge of the material properties is very important for a proper 

structural design. The wood is an anisotropic material, but it is possible to reduce the 

number of independent material constants on some scales. For example, the wood is 

usually considered as orthotropic on a macro scale. The determination of material 

constants could be very difficult, especially in the case of wood. It is well known that the 

wood properties rely on many aspects. Starting from a living tree, where growth 

conditions have an influence on the wood composition and subsequently on density; 

structural defects, e.g. knots, which are remains of dead or living branches; grain 

deviations or development of the reaction wood. Even the cut wood is dependent on 

ambient conditions, such as humidity and temperature. Humidity of the surroundings and 

consequently the moisture content has a significant impact on the wood properties. Thus, 

it is important to understand the moisture relations. One of the quantities governing the 

moisture movement is a moisture diffusivity. With increasing demands on energy savings 

and reduction of heat transmission through structures, it is necessary to observe another 

quantity, namely thermal conductivity. Proper design of the building is a very complex 

task including many variable parameters. It is almost impossible to implement all these 

variables into the computational model. The correct approach would be the introduction 

of the effective properties of the material. One of the ways to determine the effective 

properties could be the up-scale homogenization. 

Homogenization methods are used for the computation of effective properties of 

a heterogeneous material, especially composites, based on the knowledge of the structural 

composition and material properties of all constituents. The wood is a natural cell-type 
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composite in which the cell walls are composed of fibre reinforced laminas. The cell 

structure itself strengthens the whole structure geometrically. Even the structural 

composition on a higher scale, i.e. arrangement of growth rings, resembles a laminate. 

Therefore, it is appropriate to use homogenization techniques for the computation of 

effective properties of wood. However, the wood composition and material properties of 

individual constituents evinces a great variability. Hence, the main tasks of this thesis are: 

 Evaluation of wood structural composition and implementation of 

individual components into the computational model. 

 Determination of the material properties of wood and its constituents. 

 Experimental determination of wood properties, namely the density, 

moisture content, volume fractions of growth rings and pores, modulus of 

elasticity from the axial tensile test, indentation moduli of the cell wall, 

diffusion coefficient. 

 Utilization of the homogenization methods for the determination of 

effective material properties and their comparison with values obtained by 

the measurements or taken from literature. 

 Sensitivity of the results from homogenization to changes in inputs 

 Determination of the microfibril angle (MFA) using homogenization and 

nanoindentation. 

 Determination of the hygroexpansion coefficients. 

 Comparison of the analytical and numerical homogenization. 

The tasks are elaborated in individual chapters as follows. The spruce wood as 

a natural material is introduced in Chapter 2. The structural composition is described from 

the macroscale discernible by naked eye to the basic constituents of molecular base. 

Fundamental components are presented, together with the variability of wood structure 

caused by many factors. Chapter 3 describes the basic material properties of the wood 

such as mechanical (Section 3.2), moisture (Section 3.3) and thermal (Section 3.4). 

Probably, the most important quantity is the density, which is presented in Section 3.1 

together with closely linked porosity. Some experimental results are mentioned in this 

chapter, which are further described in Chapter 5. The experimental section comprises 

e.g. determination of the density and moisture content, nanoindentation, image analysis, 

tensile tests etc. The theory of homogenization is elaborated in Chapter 4 including the 

employed homogenization methods. Subsequently, in Chapter 6 the homogenization 
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techniques are applied to wood to obtain the effective mechanical properties, moisture 

diffusion coefficients and coefficients of thermal conductivity considering the zero 

microfibril angle. The resulting effective properties are highly dependent on the chosen 

input parameters and assumptions, which is proved in Section 6.4, for the case of 

elasticity. The last chapter (Chapter 7) is dedicated to other applications of 

homogenization, such as the estimation of microfibril angle using the data from 

nanoindentation (Section 7.1) or the determination of coefficients of hygroexpansion 

(Section 7.2) provided by two different homogenization approaches. Section 7.2 presents 

different homogenization procedure than in previous chapters, where the analytical 

homogenization based on Mori-Tanaka method (Section 7.2.1) with different input values 

and assumptions and numerical approach (Section 7.2.2) up to level of lumens are 

introduced. At the end of this section, the comparison of both approaches is made in Tab. 

25. The thesis is concluded with Chapter 8 summarizing all the acquired knowledge. 
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2 Wood composition 

Generally, trees are woody plants with three principal parts: roots, single main stem 

(or trunk), and crown (comprising branches and leaves or needles). The stem is the main 

supporting part of the plant body, including its strength and dimensions, this determines 

it for use as a building element. The main task of the tree stem is not only the supporting 

one, but also it acts as a storage of manufactured organic substances and a conductor of 

water and nutrients. In the following, only the characteristics of the tree stem will be 

considered. The wood as a timber is further divided into softwoods and hardwoods. The 

Norway spruce (Picea abies) belongs to the conifers – a subclass of gymnosperms, and 

its wood belongs to the group of softwoods.  

2.1 Macrostructure 

Firstly, it is important to define three main directions of a timber: radial direction – 

from the centre of the stem to the periphery; tangential direction – in the direction of the 

tangent to growth rings; longitudinal or axial direction – along the stem. In connection to 

the basic directions, it is also necessary to define three types of sections: cross section – 

cut perpendicular to the direction of growth; radial section – in the radial direction, 

running through the centre of the stem; tangential section – in the tangential direction [2]. 

All these sections and directions are shown in Fig. 1. 

 

Fig. 1 Types of directions and sections in wood stem. [2] 

The macrostructure of the wood in the cross section is discernible by naked eye. 

The stem is composed of several components present in concentric bands. The outermost 
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part is the outer bark, which protects the inner bark and xylem (an actual mass of the 

wood) against injuries, microbial attacks and other harmful agents. The inner bark 

transports sugars produced by photosynthesis from the leaves to the roots. The layer 

between bark and xylem is called vascular cambium and produces both adjacent tissues, 

where the growth occurs both outwards to widen the stem and upwards to make the tree 

taller. The xylem divides into sapwood, which is the living part of the wood and conducts 

water from the roots to the leaves, and heartwood differing in colour containing dead cells 

with accumulated organic compounds. The pith is in the centre of the tree stem and 

originated at the very beginning of the growth. A few rings in the middle of the stem are 

also called juvenile wood, which is dated to the time, when the tree was a small sapling 

[3]. The macrostructure composition is depicted on Fig. 2. 

 

Fig. 2 Wood macrostructure. [4] 

As it was mentioned, the cambium produces wood cells in layers to both sides – 

xylem and bark. The xylem layer formed during one growing season is called growth ring 

or annual ring. Each ring consists of two other layers, with more or less visible border. 

The lighter one is earlywood and the darker one is latewood. The layer of the earlywood 

is usually thicker than that of the latewood. Also, cells are bigger with thinner cell walls. 

The difference between both layers is caused by variance of the conditions during the 

growing season. At the beginning, it is necessary to transport as much water and nutrients 

as possible, so cells are bigger with large lumens and thinner walls, and increments of 

wood mass are very large, while at the end of the season the growth is slowing down and 

the main task changes into forming the support of the whole tree and storing nutrients. 

So, the latewood cell walls are much thicker, with very thin lumens, and the density is 
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higher. The width of the whole growth ring depends strongly on the kind of a tree and the 

growth conditions, such as temperature distribution during the season, precipitation 

amount, growth place etc. The growth rate slows down due to the low temperature, 

subsequently the growth rings become thinner and the density higher. This predetermines 

the wood from northern parts as a material with better mechanical properties compared 

to the wood from southern parts [5]. 

2.2 Microstructure 

Wood, as well as other materials of biological origin, is made up of cells. New cells 

are produced in a cambium, this process is called the cell differentiation and lasts for three 

weeks, approximately [4]. In the case of softwood of conifers, only two types of the cells 

are present – tracheids and parenchyma cells. The major part of the spruce wood is 

comprised of the tracheids, approximately 94% of the total volume [5]. The 

microstructure, described below, is apparent on Fig. 3 and Fig. 4. 

 

Fig. 3 Microstructure of the spruce (optical microscope) – cross section 

Tracheids are long closed tube-like cells, with almost rectangular cross section, 

converging on their tips, oriented mainly longitudinally. The cavity inside the cell is 

called lumen, mainly used for transport of water and nutrients in the sapwood, while it is 

usually filled with extractives and other organic compounds in the heartwood. They are 

joined to one another finger like in the longitudinal direction and in the radial and 

tangential direction they are bonded by middle lamella, which acts as a ‘glue’ between 

cells. Continual flow through cells is enabled by pit pairs, possibly described as small 

holes in the cell wall at each end of the cell, see Fig. 5. The average length of spruce cell 

is about 2.5 – 2.82 mm. [5] According to Tsoumis [6] the mean cell length of axial 
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tracheids is 3.6 mm. The diameter of the tracheid varies for earlywood and latewood and 

depends on the direction, see Tab. 1. 

Tab. 1 The diameters of tracheids in spruce [5] 

Tangential direction Radial direction 

Earlywood Latewood Earlywood Latewood 

32.7 μm 32.1 μm 39.3 μm 13.1 μm 

It follows from the table that earlywood tracheids are almost square in shape, 

whereas latewood tracheids are rather rectangular with side ratio about 3:1. Another 

difference between earlywood and latewood is the cell wall thickness. In the first case, it 

is 1.5 μm and in the second one 5 μm [5]. Also, the number of pits is different for both 

types – 50 pits per radial wall in earlywood, in contrary to 15 pits in latewood; the same 

for pit diameters – 16.4 μm in earlywood and 6.1 μm in latewood [6]. The reason of this 

variation is obvious, both types have different purposes as it was mentioned in the 

previous section. In addition to the longitudinal direction, tracheids exist also in the radial 

direction in rays and their normal length is the same as parenchyma cells of the ray [5]. 

 

Fig. 4 Microstructure of the spruce (optical microscope) – tangential section 

Another cell type are parenchyma cells appearing in axial as well as in radial 

directions. In the case of spruce, the axial parenchyma may be entirely absent. They are 

almost the same as tracheids, except that they are shorter, their shape is prismatic (brick-

like) and have a different type of pits (simple). Their length is about 0.1-0.22 mm, with 

widths in a range of 0.01-0.05 mm [6]. Together with tracheids, the parenchyma cells 

form the basic structure of rays. They also appear in resin canals as supporting structural 

cells and gland cells (epithelium cells) secreting resin [5]. 
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The next structural tissue is ray. It is composed of tracheids and parenchyma cells, 

running in the radial direction, i.e. from the pith to the bark. These structures provide 

nutrient transport in the radial direction. In the case of spruce, they appear as one cell 

wide and few cells high rows, see Fig. 4. The volume fraction of rays is about 5.9%, 

approximately [5]. 

Passage of water and nutrients between all types of cells are by way of pits. There 

are three forms of pits: bordered, semi-bordered and simple. Between two tracheids there 

are bordered pits, which occur predominantly on the radial walls. In the earlywood, there 

are more pits and they are bigger in size than that in the latewood. The bordered pit 

comprises secondary wall in the shape of ‘saucers’ on both tracheids with a hole in the 

centre. In the middle of these, there is a thickened part called torus connected to the edges 

by margo strands, which look like a net. The torus is pulled to one side during the process 

of wood drying, and more or less plugs the hole in the adjacent cell wall. This causes the 

reduction of permeability and the state is referred to as aspirated. The aspirated pits 

mainly occur in heartwood. The simple pits are predominantly between two parenchyma 

cells or a parenchyma cell and a tracheid. This type of pit comprises a cylindrical opening 

through the two adjacent secondary walls, while the primary wall remains as a semi 

permeable membrane [4]. 

Resin canals, also called resin ducts, are hollow tubes (cavities) surrounded by 

parenchyma cells (epithelial cells), which secrete resin into the canals. These canals 

appear in both directions – longitudinally and radially. In the spruce wood, the epithelial 

cells are thick walled.  The resin canals arranged in the tangential direction are the result 

of wounding of the tree. These canals are called traumatic resin canals [4]. The volume 

fraction of the resin canals in spruce is about 0.14 % [5]. 

2.3 Ultrastructure 

Wood can also be described as a natural fibre-reinforced polymer composite. 

Particularly, the cell wall could be considered as a multilayer laminate, where each 

lamella corresponds to one layer. Furthermore, each layer could be described as a fibre 

reinforced composite. There are small deviations between various cell types. In the 

following, the ultrastructure composition of the tracheid will be described. 

The basic division of individual layers are depicted on Fig. 5. Describing outwards, 

the layers are: warty layer, secondary wall, primary wall and middle lamella (sometimes 
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called intercellular layer). The middle lamella does not exactly belong to the cell wall 

layers, but joins two adjacent cell walls together. It forms in the same time as a primary 

wall. It is totally amorphous and appears to be continuous and homogeneous. The middle 

lamella is probably the weakest microstructural part compared to the cell wall. The 

outermost cell wall layer is a primary wall, which is the first produced part of the cell wall 

during cell division in the cambium. Maybe, that is the reason of the imperfection of this 

layer. The primary wall is very thin and elastic so the forming cell can expand to its final 

size. Microfibrils are arranged randomly in this layer [5]. Attached to the primary wall is 

the major part of the cell wall – secondary wall. Further it subdivides into three layers – 

S1 – the outer layer, S2 – the middle layer and S3 – the inner layer. These layers are 

organized in a plywood type of construction. The S1 and S3 are relatively thin, with a large 

microfibril angle (microfibrils will be mentioned later), defined as the deviation of the 

microfibrils from the longitudinal axis. The S1 layer is composed of several lamellae with 

a crossed fibrillar texture, which means that the orientation of microfibrils is alternating 

in each lamella [7]. It takes about 10-15% of the total thickness of the secondary wall [5].  

 

Fig. 5 Structure of the tracheid 

ML – Middle lamella; P – Primary wall; S1 – Outer layer; S2 – Middle layer; S3 – Inner layer [3] 

The most important part, with a great impact on final properties, is probably the 

middle layer. The middle layer is covering about 85% of the secondary wall total 

thickness. The microfibrils inside are parallel to each other and are running spirally along 

the longitudinal axis. The MFA (microfibril angle) of the middle layer is about 0° - 30° 

[4]. The innermost secondary wall layer is the inner layer – S3, with the same composition 

as the outer layer, but the angle from axial direction is higher. The inner layer covers 
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about 5% of the total thickness of the secondary wall. However, it could be absent in 

some species. A continuous thin amorphous layer called a warty layer and containing 

some fibres and warts is attached to the inner layer. It could be also missing in some 

species [5]. 

Wood is like other biological materials a carbohydrate, comprising three basic 

chemical elements: carbon, hydrogen and oxygen in the ratios of 1:2:1 [8]. The wood cell 

walls consist mainly of cellulose (predominantly crystalline), hemicellulose 

(predominantly amorphous) and lignin (totally amorphous). Apart from these basic 

components, other substances appear in the wood microstructure, such as extractives, 

water and some additional minor components. 

The most important constituent of wood is the cellulose (C6H10O5) – a semi-

crystalline thermoplastic natural polymer forming the reinforcing microfibres in the cell 

wall. It is produced by polymerization of glucose monomers into a linear molecule chain. 

The molecule chains can form larger units, with alternating crystalline (predominantly) 

and amorphous regions [5]. The cellulose units are parallel to each other in highly ordered 

chains in the crystalline regions. These areas do not absorb water in comparison with non-

crystalline regions that also alter the properties of microfibril [8]. 

Hemicelluloses are heteropolysaccharides composed of glucose and other 

monomers, such as mannose, galactose, xylose, arabinose etc. Polymerization degree of 

the hemicelluloses is low. The structure is semi-crystalline, similar to cellulose, but with 

dominant amorphous sections [5]. The hydrogen bonding connects hemicellulose chains 

together or with cellulose chains. It exhibits high moisture adsorption capacity [8]. 

The last basic constituent is lignin. It is completely amorphous and has large three-

dimensional molecular structure, which is chemically very complicated and 

heterogeneous [8]. There are many types of lignin differing due to its location. The main 

task of lignin is to act as a ‘glue’ between macro fibrils (the units composed of cellulose 

microfibrils and the hemicellulose layer around them) as well as between cell walls. 

Furthermore, it protects the cellulose and hemicellulose from the detrimental influence of 

water because of its hydrophobic nature [5]. The lignin begins to soften at about 170°C 

[8].  

The generally accepted model of the microfibril is that with the length considered 

as indefinite and with the rectangular cross section (about 10x5 nm). It consists of 
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a crystalline core comprising cellulose molecular chains, surrounded by low crystallinity 

area comprising amorphous cellulose and hemicellulose. These threads are bonded 

together by lignin [4]. As it was mentioned in the previous sections, the microfibrils are 

probably responsible for the strength deviations among every single timber of the same 

species. Particularly, it depends on the microfibril angle, where the lower angle 

corresponds to higher strength. So, the examination of the MFA-strength dependence can 

help to determine mechanical properties of the wood. 

2.4 Variation of wood structure and structural defects 

A great disadvantage of wood is probably its variability. It is very unlikely that two 

pieces of timber are of the same appearance and properties. The variability is caused by 

many factors. These factors could be divided into four basic groups: genetical causes, 

systematic variability, environmental reasons and presence of defects [4].  

The difference between various families is certain, but there are differences even 

amongst the trees of the same species growing next to each other, all caused by genetics. 

Variability due to systematic sources is additional to that of genetics and appears within 

a tree both horizontally (from pith to bark) and vertically (from base to top). In the 

direction from pith to bark structural characteristics vary due to age (juvenile, mature and 

overmature wood), growth ring structure, cell morphology (cell length, wall thickness, 

cell and lumen dimensions), ultrastructure (microfibril angle, degree of crystallinity) and 

chemical composition (lignin and cellulose content). In the vertical directions, changes 

appear similarly as in the horizontal. Another important factor is the formation of 

heartwood – the difference between sapwood and heartwood was already mentioned [6]. 

Any environmental factor that affects the growth of the tree will influence the wood 

structure and its properties. These factors are for example moisture, nutrients in the soil, 

light, temperature, wind, growth rate (faster growing are usually weaker), tree spacing, 

changes of the tree shape (pruning) etc. [6]. 

Naturally, the tree grows vertically, it is almost cylindrical in shape with circular 

cross section. Exposure to some environmental factors, such as wind, causes deviations 

from the ideal shape. In many cases, reaction wood can develop. The reaction wood is 

a response to loading of the tree and appears in three forms: tension wood, compression 

wood and contrasting wood. The tension wood develops only in deciduous trees in areas 

under tensile stress, usually on windward side. On the other hand, the compression wood 
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could be found only in conifers in places under compression (leeward side). Both cases 

provoke widening of growth rings, changes in colour (compression wood is darker in 

tone, tension wood is lighter than normal wood), cell structure and chemical composition 

(cell shape, cellulose and lignin content). Contrasting wood develop on the opposite side 

to the reaction wood [5]. 

An important growth feature is a spiral grain. It occurs when longitudinal cells run 

helically around the stem. After the bark removal, it is possible to see the twisted 

appearance of the stem caused by it. There are two patterns in softwoods: the first one 

starts as left-handed near the pith, then changes to straight and finally to right-handed 

spiral pattern. The second one is left-handed spiral that keeps developing all the time [8]. 

The last-mentioned growth feature will be a knot. The knot is an inclusion of the 

basal part of a branch within the stem. There are two types of knots depending on its 

origin. If the branch is alive during its inclusion, its surrounding is connected and give 

rise to intergrown or tight knot. On the other hand, an encased or loose knot is formed 

after the branch died and may fall off during drying. Knots have adverse effect on the 

appearance and properties of wood. They act as discontinuities in the wood mass. There 

are grain deviations around them and if the wood is under load, it is the source of the 

crack initiation [6]. 

There are many other natural defects such as bark pockets, resin streaks etc., which 

have not been mentioned, see, e.g. [4] for more information.  

It is important to mention the growth stress which may cause degradation of wood. 

In some species, the stresses are so intense that trees, when felled, split apart [6]. 
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3 Wood properties 

Various important wood properties are described in the following chapter. Example 

values taken from the literature are stated in each section to provide basic overview to the 

reader. In some sections examples of the experimental results are presented, referring to 

Chapter 5. The first section is concerned with the description of different types of the 

density and determination of the porosity, with division into individual phases. Probably 

the most important is the Section 3.2 discussing the mechanical properties of the wood. 

This section is followed by moisture properties focused on the determination of the 

moisture content and moisture diffusion coefficient. The last section describes thermal 

properties, mainly the thermal conductivity.  

3.1 Density and porosity 

Density is a key quantity of wood, which correlates with most mechanical 

properties. Basically, it is defined as a ratio of mass to volume: 

 𝜌 =
𝑚

𝑉
 [
𝑘𝑔

𝑚3
] (3.1) 

where m is the mass [kg] and V the volume [m3] of the wood piece.  

There are many factors affecting the density. The main factor is the moisture 

content, because wood is hygroscopic material and attracts water very much. The 

moisture adsorption increases both the weight and volume of the wood. According to 

conditions during measurement, there are various types of density values [5]: 

Dry density (oven-dry density) (𝜌𝑑𝑟𝑦) means the ratio of mass to volume both 

measured in the oven-dry state, i.e. heat-treated for a period of 12-48 h at the 

temperature of 103±2°C. 

Green density (𝜌𝑔𝑟𝑒𝑒𝑛) means that the measurement is carried in a “green” 

condition, i.e. the moisture content is at or over the fibre saturation point (FSP). 

Air-dry density is the value measured on air-dry wood, i.e. it has been dried at room 

temperature and the moisture content is about 12%. 

Dry-green density is defined for mass measured for oven-dry wood and volume for 

the wood in the green condition. 
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Density of wood substance (density of cell wall) (𝜌𝑐𝑤) corresponds to the density of 

cell wall itself (without influence of dissolved water). 

Basic density is similar to dry-green density, where the volume is measured in the 

condition with lumens full of water (i.e. the volume is at its maximum). 

Some example values taken from literature are listed in Tab. 2. In the range of 0 and 25% 

moisture content, the density can be calculated as [6]: 

 𝜌𝑤𝑒𝑡 = 𝜌𝑑𝑟𝑦
1 + 𝑢

1 + 0.84 𝜌𝑑𝑟𝑦𝑢
  (3.2) 

where 𝜌𝑑𝑟𝑦 is the oven-dry density [g/cm3], u is the moisture content [-] and 𝜌𝑤𝑒𝑡 is the 

density at the corresponding moisture content. 

Tab. 2 Density of Norway spruce (Picea abies) 

Density [kg/m3] 

Dry Dry-green Air-dry 

4101 3762 320-5501 

 3702,a  

 3822,b  

1 Tsoumis [6], 2 Kettunen [5] (a forest, b ridge) 

As it was mentioned above, wood is a porous material and the porosity strongly 

affects the resulting values of density. The density of wood is therefore given as 

an amount of cell wall material contained in a certain volume. Reversibly, it is possible 

to compute the volume fraction of pores using the known wood density and the density 

of the cell wall material. Considering that the only one type of pores are lumens, its 

volume fraction could be derived as [6]: 

 𝑓𝑙𝑢𝑚 = (1 −
𝜌𝑑𝑟𝑦

𝜌𝑐𝑤
) (3.3) 

where 𝜌𝑑𝑟𝑦 is oven-dry density [kg/m3] and 𝜌𝑐𝑤 is density of the cell wall material 

[kg/m3]. Variation of the density depends on factors mentioned in Section 2.4, such as cell 

wall thickness, lumen size and its distribution in the whole tree, deposition of extractives, 
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etc. The variability is evident between different species, trees of the same species and 

even in different areas within a tree. 

The determination of wood porosity is crucial for further examination of the wood 

properties. Maybe the easiest way is the application of Eq. (3.3) for measured dry density 

of the wood and cell wall density set equal to 1500 kg/m3 [5] considering that the cell 

wall has the same properties independent of the tree species. However, this approach 

gives the overall porosity without any differentiation between earlywood and latewood. 

In [9] the authors provide more accurate computation of the cell wall density based on 

known weight fractions and densities of the cell wall constituents and a variable moisture 

content of the cell wall. The density of wet cell wall is then given by [9]: 

 𝜌𝑐𝑤
𝑤𝑒𝑡 = (∑

𝑊𝐹𝑠
𝑤𝑒𝑡

𝜌𝑠

𝑛

𝑠=1

)

−1

  (3.4) 

where 𝑊𝐹𝑠
𝑤𝑒𝑡 is the weight fraction of the wet constituent [-], 𝜌𝑠 is the constituent density 

[g/cm3] and s ∈ {crystalline cellulose, amorphous cellulose, hemicellulose, lignin, 

extractives, water}. Recalling Eq. (3.3), the volume fraction of lumens in the earlywood 

and latewood could be computed by substituting 𝜌𝑑𝑟𝑦 with 𝜌𝑒𝑤
𝑤𝑒𝑡 or 𝜌𝑙𝑤

𝑤𝑒𝑡. The mass 

density of the dry earlywood and latewood could be computed from: 

 
𝜌𝑒𝑤
𝑑𝑟𝑦

=
𝜌𝑑𝑟𝑦

𝑓𝑒𝑤 + 𝑓𝑙𝑤 (
𝜌𝑙𝑤
𝜌𝑒𝑤

)
𝑑𝑟𝑦 ;  𝜌𝑙𝑤

𝑑𝑟𝑦
= 𝜌𝑒𝑤

𝑑𝑟𝑦
(
𝜌𝑙𝑤
𝜌𝑒𝑤

)
𝑑𝑟𝑦

 
(3.5) 

where 𝜌𝑑𝑟𝑦 is oven-dry density [kg/m3], (
𝜌𝑙𝑤

𝜌𝑒𝑤
)
𝑑𝑟𝑦

= 2.6 is given for spruce according to 

[10] and the volume fractions of earlywood and latewood could be derived from: 

 𝑓𝑙𝑤 = 3.75 𝜌𝑑𝑟𝑦 − 1.27; 𝑓𝑒𝑤 = 1 − 𝑓𝑙𝑤 (3.6) 

where the oven-dry wood density is within the range of 339-605 kg/m3 [10]. The mass 

density of the wet earlywood 𝜌𝑒𝑤
𝑤𝑒𝑡 and latewood 𝜌𝑙𝑤

𝑤𝑒𝑡 could be computed employing Eq. 

(3.2) for a given moisture content u. 

Example values of the computed volume fractions are summarized in Tab. 3 using 

the moisture content and dry wood density of data set containing five samples. The 

derivation of the moisture content and densities is further described in Section 5.1. The 
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volume fractions of the earlywood and latewood (𝑓𝑒𝑤 and 𝑓𝑙𝑤) were computed employing 

Eqns. (3.6). Using these values, it is possible to calculate earlywood and latewood 

densities by Eq. (3.5). With a knowledge of the cell wall density obtained by Eq. (3.4), 

the volume fractions of lumens could be derived from Eq. (3.3). The moisture content 

could be accounted for by Eq. (3.2). 

Tab. 3 Measured dry wood densities with corresponding volume fractions, see Section 5.1 

No 
u 𝜌𝑐𝑤

𝑤𝑒𝑡 𝜌𝑑𝑟𝑦 𝑓𝑒𝑤 𝑓𝑙𝑤 𝑓𝑙𝑢𝑚
𝑒𝑤  𝑓𝑙𝑢𝑚

𝑙𝑤  𝑓𝑙𝑢𝑚 

[-] [kg/m3] [kg/m3] [-] [-] [-] [-] (1) (2) 

2 0.046 1430.04 450.62 0.580 0.420 0.805 0.501 0.677 0.685 

6 0.042 1431.14 492.83 0.422 0.578 0.815 0.527 0.648 0.656 

11 0.040 1431.60 432.42 0.648 0.352 0.801 0.490 0.691 0.698 

15 0.034 1433.04 510.23 0.357 0.643 0.820 0.537 0.638 0.644 

38 0.041 1431.43 429.38 0.660 0.340 0.800 0.487 0.693 0.700 

The values in the last two columns were obtained by two methods. The data in the 

column (1) were computed using simple weight arithmetic mean of values from the 

columns on the left hand side of this column, i.e. 𝑓𝑙𝑢𝑚 = 𝑓𝑒𝑤𝑓𝑙𝑢𝑚
𝑒𝑤 + 𝑓𝑙𝑤𝑓𝑙𝑢𝑚

𝑙𝑤 . The values 

in the column (2) were obtained employing Eq. (3.3). Comparing both approaches the 

resulting volume fraction of pores is quite similar. 

  

Fig. 6 SEM image of spruce earlywood: Original greyscale image (left) and binary image (right) 

Better view of the wood microstructural composition can be provided by image 

analysis, see also Section 5.3. Basically, the image analysis is based on capturing image 

by using different types of microscopy and evaluation of the volume fractions of areas 

with different colours, usually by a programme. It could be helpful to transform the image 

to binary, where one colour corresponds to pores and the second one to a solid phase. 

An example is depicted on the Fig. 6 (white=lumens, black=cell wall). 
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An advantage of this approach is the direct view of microstructure with all its 

inhomogeneities and defects. Also, it is possible to differentiate earlywood and latewood 

tracheids and other constituents, such as rays and resin canals. However, it provides 

information only about one cross section and we have no idea about material in the 

direction perpendicular to the surface, which can lead to great errors. On the other hand, 

the evaluation is very simple and images taken by basic optical microscopes are 

satisfactory. Problems could be caused by a sample preparation, where a chosen 

technique can affect the resulting image and so the values of lumen volume fractions. As 

an example, the conventional scanning electron microscope (SEM) operates under high 

vacuum, which leads to the removal of air from pores and therefore to the cell contraction. 

More information about wood structure can be obtained by X-ray microtomography 

[11], which provides a 3D image of the structural composition. This method is 

considerably more demanding in the amount of data to be processed in comparison to 2D 

image analysis. An example of reconstructed structural composition of spruce is depicted 

on Fig. 7. The reconstructed 3D image (CT-scan) can be sliced digitally in any desired 

plane for further analysis. This method does not require any special sample preparation, 

therefore many factors influencing the change of internal structure are eliminated. 

 

Fig. 7 Reconstructed 3D image from single source double-energy method [12] 

Previously mentioned methods are compared in Tab. 4 for spruce samples. The 

values in a row ‘Density’ were computed employing Eqns. (3.3) and (3.6) with mean 

values of the measured dry wood density 𝜌𝑑𝑟𝑦 = 422.73 kg/m3 and the moisture content 

u=4.50%, respectively. The values of the image analysis method were obtained by 

measurements of 58 samples in the case of growth rings and of six samples in the case of 

lumens. It is important to point out that the values from CT scan were obtained for 
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a different sample, whereas the first two mentioned methods are for the samples with the 

same origin. 

Tab. 4 Comparison of methods for evaluation of volume fractions 

 𝑓𝑙𝑢𝑚
𝑒𝑤  𝑓𝑙𝑢𝑚

𝑙𝑤  𝑓𝑒𝑤 𝑓𝑙𝑤 

Density 0.80 0.48 0.68 0.32 

Image analysis 0.69 0.12 0.80 0.20 

CT scan 0.75 0.20   

All mentioned methods give more or less similar estimates of the volume fractions 

of lumens in the earlywood, whereas the value corresponding to the latewood lumens 

computed from density is overestimated, see Section 5.3. The volume fractions of the 

earlywood and latewood are reasonable for first two methods. It is necessary to emphasize 

that reasonable values computed by Eq. (3.6) are obtained only in the middle of the 

mentioned interval, whereas the resulting values at the margin of the interval could be 

considered as less credible. An inappropriate derivation of the volume fractions 

employing previously mentioned equations and validation of this claim is further proved 

in Section 5.2 and 5.3. 

3.2 Mechanical properties 

Mechanical properties represent ability of material to resist the applied external 

forces, depending on their magnitude and a manner of loading (tension, compression, 

shear, bending etc.). Wood behaviour differs in growth directions, i.e. it is mechanically 

anisotropic. Main differences are between longitudinal (axial) direction and transverse 

(radial and tangential) direction, due to its cellular structure and direction of the 

reinforcing fibres. From that, it resembles the behaviour of synthetic fibre-reinforced 

thermoplastics in combination with the cell structure. 

Basically, the material behaviour is obtained from the stress-strain relation. Under 

increasing load, the deformation is reversible, i.e. loading and unloading follows the same 

straight-line starting in zero, until it reaches the limit of proportionality. Above this point 

the permanent deformation occurs. Increasing load will result in more permanent 

deformation and finally in failure. The stress level at which failure occurs is considered 

as strength depending on the manner of load. It is important to mention that wood evinces 
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anelastic (viscoelastic) behaviour, i.e. the strain is partially proportional to the applied 

stress and also partially to viscosity and duration of loading. 

Tab. 5 Typical values of stiffness coefficients of spruce at 12% moisture content [13] 

𝐸𝐿 𝐸𝑅 𝐸𝑇 𝐺𝐿𝑅 𝐺𝐿𝑇 𝐺𝑅𝑇 𝜈𝑅𝐿 𝜈𝑇𝐿 𝜈𝑇𝑅 

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [-] [-] [-] 

13500-

16700 

700-

900 

400-

650 

620-

720 

500-

850 
29-39 

0.018-

0.030 

0.013-

0.021 

0.240-

0.330 

Elastic behaviour of wood can be characterized by a set of twelve constants (nine 

are independent), namely three moduli of elasticity E (MOE), three shear moduli G and 

six Poisson’s ratios ν. Modulus of elasticity E [N/mm2=MPa], also called Young’s 

modulus, is in simplified way defined as the slope of the tensile stress-strain curve in the 

elastic deformation region. The shear modulus G [N/mm2=MPa] indicates the resistance 

of a member to shear stress. During loading the deformation occurs both parallel and 

perpendicularly to the load direction, where the latter one is proportional to the first 

mentioned. The ratio of the transverse to axial strain is called Poisson’s ratio and is 

denoted by ν [-]. Assuming orthotropic material and the validity of Hooke’s law, these 

constants can be overwritten into the form of compliance matrix: 

 M= 

1

𝐸𝑅
 −

𝜈𝑇𝑅
𝐸𝑇

 −
𝜈𝐿𝑅
𝐸𝐿

 0 0 0 

−
𝜈𝑅𝑇
𝐸𝑅

 
1

𝐸𝑇
 −

𝜈𝐿𝑇
𝐸𝐿

 0 0 0 

−
𝜈𝑅𝐿
𝐸𝑅

 −
𝜈𝑇𝐿
𝐸𝑇

 
1

𝐸𝐿
 0 0 0 

0 0 0 
1

𝐺𝐿𝑇
 0 0 

0 0 0 0 
1

𝐺𝐿𝑅
 0 

0 0 0 0 0 
1

𝐺𝑅𝑇
 

 

(3.7) 

where the three principal directions are the longitudinal direction L, the radial direction 

R and the tangential direction T, correspondingly to the wood structure (Fig. 1). 

Following the assumption of the linear elastic material, the compliance matrix is 
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symmetric and from that, there are nine independent parameters. The ranges of values of 

these parameters at a level of solid wood are summarized in Tab. 5. 

Recalling Section 2.3 wood is composed of several materials with various material 

properties. Together with cellular structure the wood evinces variability of the material 

properties at different scales. As an example, the strength in axial tension of the solid 

wood is 50-60 MPa, whereas in transverse tension the strength lowers to values of 

1-7 MPa. The axial strength of a single cell is considerably higher with a range of 

200-1300 MPa. It could be expected that the cellulose chains considered as the main 

load-bearing constituents evince the highest values of about 7500 MPa [6]. 

Tab. 6 Mechanical properties of the cell wall constituents [9] 

Phase Bulk modulus Shear modulus Poisson’s ratio 

 𝐾 [𝐺𝑃𝑎] 𝐺 [𝐺𝑃𝑎] 𝜈 [−] 

Hemicellulose 8.89 2.96 0.35 

Lignin 5.00 2.30 0.30 

Water + extractives 2.30 0.00 0.50 

Amorphous cellulose 5.56 1.85 0.35 

 Stiffness matrix elements (nonzero) [𝐺𝑃𝑎] 

Crystalline cellulose 𝐿11 = 𝐿22 = 34.86; 𝐿33 = 167.79 

𝐿44 = 𝐿55 = 5.81; 𝐿66 = 4.53 

The knowledge of the properties of the material at lower scales is very important at 

least to understand the material behaviour. Furthermore, it is possible to determine the 

properties of the solid wood employing homogenization techniques. The computation 

will be described in the Chapter 6. To that end, it is necessary to introduce the mechanical 

properties of the cell wall constituents, see Tab. 6. The phases in the upper block of the 

table are considered as isotropic materials, while the crystalline cellulose is approximated 

by transversely isotropic material with zero off-diagonal elements, i.e. the Poisson effects 

and coupling between shear and normal stress are neglected according to [9]. However, 

the veracity of these values is not certain, mainly because of complicated measurements 

of individual constituents. Even the material behaviour of each constituent can be 

considered differently in various studies. The presented mechanical properties are 

considered as moisture independent, whereas in [13] the author proclaims the dependency 
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of the hemicellulose and lignin on the moisture content. Also, the hemicellulose is 

described as the transversely isotropic material according to this author, while it is 

considered as isotropic in this thesis. 

Besides the mechanical behaviour, the proper structural design can not be done 

without the knowledge of the strength of the material. Strength of wood could not be 

characterized by one value, but is divided depending on the manner of loading. The basic 

types of strength are compression, tensile, bending and shear, each of them further divided 

into values parallel and perpendicular to the grain, respectively. In addition, there are 

more values characterizing mechanical properties of the wood such as cleavage, 

toughness, hardness, torsion, fracture and fatigue that are not included in this thesis, the 

reader is referred to the literature e.g. [4; 5; 8] for more information. 

Tab. 7 Modulus of elasticity in axial tension of Norway spruce, see Section 5.4 

Sample 
𝜌𝑑𝑟𝑦 MC E Peak stress 

[kg/m3] [%] [GPa] [MPa] 

2 450.62 4.62 15.31 70.3 

6 492.83 4.19 10.91 87.6 

11 432.42 4.00 16.25 67.7 

15 510.23 3.40 16.01 68.4 

38 429.38 4.07 13.14 44.5 

Wooden elements in structures are mostly placed horizontally as beams and their 

mode of deflection is primarily bending. The static bending is also the most used test 

method for the determination of mechanical properties. This test provides the bending 

strength, usually presented as a modulus of rupture (MOR), which corresponds to the 

stress in extreme fibres at a point of failure, if the simple bending theory is assumed. From 

the elastic part of the load-deflection graph, it is possible to determine the modulus of 

elasticity. More accurate values of the MOE could be obtained by the axial tension tests, 

together with strength in axial tension and contraction, which leads to Poisson’s ratios. 

An example of measured values of the modulus of elasticity in axial tension are listed in 

Tab. 7. The tensile tests are further described in Section 5.4. In the case of vertical 

members, such as columns, the value of the strength in compression is needed. The 

strength in compression is about half of that in tension [6] and is often affected by 
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buckling. Another important value is the strength in shear, where the values of the axial 

shear are lower than that of transverse shear, due to the wood structure. 

The mechanical properties are influenced by many factors. As it is evident from the 

previous paragraph and Tab. 8, the values change with different manner of loading and 

the loading direction. In most cases, an increasing deviation from the longitudinal 

direction causes the reduction of the strength values, e.g. the ratio of longitudinal to the 

horizontal value of tensile strength and stiffness is about 40:1 [4]. This change among 

directions is caused by the cellular structure of the wood and the deviation from the 

longitudinal direction of the reinforcing fibres in the S2 layer. The structure appears 

stronger under the axial tension than the corresponding compact structure. This 

phenomenon is called a geometric strengthening, whereas in the axial compression the 

deformation is larger [5]. The measured values depend on the size of the tested sample, 

where the ratio of bending : tension : compression strength of the small clear sample is 

6:9:3, whereas the same ratio of the structural-sized sample is 6:4:4 [4]. This difference 

is mainly due to absence of the defects (e.g. knots, pitch pockets, bird pecks) in the clear 

wood sample. Another natural factors affecting mechanical properties even of the clear 

wood samples are grain deviations, checks, presence of the reaction or juvenile wood, 

growth ring orientation, extractive content, compression failures, etc. Also, the loading 

rate (i.e. how fast is the load applied) and the duration of the load change the resulting 

values. 

Tab. 8 Strength of spruce wood for different types of loading with corresponding MOE 

Tension Compression Static bending Shear  

∥ ⊥ ∥ ⊥ MOR MOE   

84 1.5 30 4.1 60 9100 5.3 1) 

104 - 36.5 - 72 10200 9.8 2) 

1) Tsoumis [6], 2) Desch and Dinwoodie [4] 

All values are in [MPa] 

The most significant factor of the environment is probably the moisture content. Its 

effect is significant when the moisture content is below the FSP, whereas changes appear 

rather slightly above the FSP. Magnitude of the moisture influence is different for 

different properties. Another environmental factor is temperature. In general, the strength 

properties decrease with increasing temperature. However, the influence of the 
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temperature is simultaneously affected by changing the moisture content. Similar to 

loading, the exposure to high temperatures for a long term results in a marked reduction 

of the strength, stiffness and toughness. Due to chemical decomposition of wood, very 

high temperatures (above 200°C) will reduce the strength in few minutes. These were the 

basic factors influencing the mechanical properties, nevertheless many other exist.  

3.3 Moisture properties 

The wood is naturally hygroscopic material. It means that it attracts moisture from 

the surrounding atmosphere and holds it in the form of liquid water or water vapour. The 

water conduction and inherent moisture content are very important, because it affects all 

other properties.  

In a living tree, the motion of liquids is upwards in the sapwood of xylem and 

downwards in the inner bark. There are two types of motion obeying the Fick’s first law: 

flow along lumens, driven by difference of pressures, and diffusion along lumens or 

through cell walls dependent on a concentration gradient. The surface energy between the 

cell wall and the liquid influences the capability of liquid to wet the surface of cell walls 

and to penetrate the cell wall structure. If the liquid wets the cell wall well, the surface of 

the liquid in the lumen becomes concave and tends to move upwards (acropetal flow). On 

the contrary, if the surface is convex, the flow motion is downwards (basipetal flow) and 

it identifies a poorly wet cell wall. This phenomenon is called capillary action or 

capillarity. The acropetal flow is supported by underpressure in the axial cells of the upper 

part of stem, which is caused by evaporation of the water from the foliage [5]. 

The basic quantity is a moisture content (MC), defined as a ratio of mass of water 

to oven-dried wood mass. The moisture enters the wood mass, because of attraction of 

water molecules by the hydroxyls of its chemical constituents. Moisture is present in 

wood in two forms: free water (i.e. liquid water or water vapour in lumens and cavities) 

and bound water (i.e. liquid water in the cell wall) [5]. The natural state of living tree is 

called green wood and the moisture content at this state can range from about 30% to 

more than 200% depending on wood species etc. [3]. In softwoods, the moisture content 

differs between sapwood and heartwood, because of presence of extractives, which cover 

the lumen surfaces and pits and cause a decrease in permeability [5]. In the case of 

Norway spruce the corresponding values of moisture content in green state are 40-50% 

for the heartwood and 160 % for the sapwood, respectively [6]. After the tree is cut down, 
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the wood starts to lose water, which is termed desorption. The reverse process is called 

adsorption and means water gain. If the wood is left under constant conditions of 

temperature and relative humidity of surroundings, the moisture retains a final quantity = 

equilibrium moisture content (EMC). The relationship between EMC and relative 

humidity at constant temperature is referred to as a sorption isotherm. The values obtained 

from desorption and from adsorption differ, where that from desorption are higher. 

Graphically it is expressed as a hysteresis loop, see Fig. 8, where a – initial desorption, b 

– adsorption, c – desorption following drying and saturation [6]. 

 

Fig. 8 Moisture sorption isotherms for linden (32°C) [6] 

Decrease of the sorption isotherm c in comparison to a is caused by reduction of the 

wood permeability due to pit aspiration. The pit aspiration occurs during drying and it 

means that the membrane and its torus are aspirated to the pit aperture and pit becomes 

closed. If the closing period is longer, extractives glue the torus strongly to the aperture 

and to the wall of the bordered pit, the closing is irreversible [5]. 

 When the cell walls are fully saturated and there is no free water, i.e. there is no 

water present in lumens, the state is called fibre saturation point (FSP) with average value 

of about 30% [3]. The values of the FSP for Norway spruce (Picea abies) are given for 

different temperatures as 29.3% (20°C), 23.7% (40°C) and 17.6% (65°C), according to 

[5]. This point is very important, because below the FSP, most properties change as 

a function of MC and so the dimensions. Dimensional changes further subdivide into 

shrinkage – changes that are results of the initial drying from green to dry conditions; and 

movement – changes that occur due to daily or seasonal changes in relative humidity of 

the atmosphere. The most significant shrinkage occurs in the tangential direction, almost 
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twice as high as that in the radial direction. Whereas in the longitudinal direction it is 

usually less than 0.1%. All values for both dimensional changes are measured in case of 

free movement. If the movement is not allowed, the wood becomes permanently or 

irreversibly compressed (=compression set) or tensed (=tension set) [4].  

When both the cell walls and lumens are fully saturated, the corresponding moisture 

content reaches its maximum (=maximum moisture content) [3]. However, it could differ 

between various cycles of adsorption and desorption due to aspirated pits as it was 

mentioned earlier. 

Basic method of moisture content determination is drying and weighing, where the 

wood sample is weighed before and after drying in an oven. The gravimetric moisture 

content of the sample is therefore [4]: 

 𝑀𝐶 =
𝑚𝑖𝑛𝑖𝑡 −𝑚𝑑𝑟𝑦

𝑚𝑑𝑟𝑦
×100 [%] (3.8) 

where 𝑚𝑖𝑛𝑖𝑡 [g] is the initial mass of the sample and 𝑚𝑑𝑟𝑦 [g] is oven-dry mass of the 

sample. It is important to mention that hot samples shouldn’t be weighed, because it leads 

to smaller values than actual. And if the wood is kept in an oven too long, the gradual 

decomposition of chemicals will start [6]. An example of the determination of MC is 

shown in Tab. 9, where samples were left in an oven at temperature of 40°C for several 

days. See Section 5.1 for more details about the measurement. 

Tab. 9 Measured masses and moisture content of the Norway spruce samples, see Section 5.1 

Sample 
𝑚𝑖𝑛𝑖𝑡 𝑚𝑑𝑟𝑦 𝑀𝐶 

[g] [g] [%] 

2 1.63 1.56 4.62 

6 1.17 1.12 4.19 

11 1.22 1.17 4.00 

15 1.66 1.61 3.40 

38 1.33 1.28 4.07 

However, this approach is not suitable for resinous samples, because much of the 

resin will be lost on drying and will be treated as water in the calculation. In this case, the 

distillation method could be better choice. Another type of the measurement is based on 

the change of electric properties with change of moisture, where devices are called 



3 Wood properties 

26 

moisture meters and basic types are resistance meters, capacitance meters and power-loss 

meters [4]. 

The fibre saturation point is important for the determination of water motion. When 

the moisture content reaches or overrides the fibre saturation point, the flow of water 

appears in the cell wall and lumens. Whereas below the FSP the motion changes into 

diffusion [5]. The diffusion processes in wood involve the movement of bound water 

through the cell wall and the movement of water vapour through the lumen. In 

an environment, where the wood is used, the moisture concentration and temperature 

change with time and from that the transport processes are transient. It leads to the 

solution of the three coupled differential equations with strongly non-linear anisotropic 

material behaviour [14]. For the sake of simplicity, the steady-state conditions are 

considered, which means that fluxes and concentrations do not change with time and the 

two phases (bound water and water vapour) are in equilibrium [15]. The steady-state 

diffusion is described by Fick’s first law of diffusion as follows [14]: 

 𝐉 = −𝐃
𝜕𝑐

𝜕𝐱
 (3.9) 

where 𝐉 is the macroscopic (effective) moisture flux, which is linked to the macroscopic 

concentration gradient 𝜕𝑐 𝜕𝐱⁄  by the macroscopic (effective) diffusion matrix 𝐃 

Therefore the desired material property is the diffusion matrix. The orhotropic diffusion 

matrix of the cell wall material is given according to [15] as: 

 𝐃𝑐𝑤 = [

𝐷𝑐𝑤,𝑡𝑟𝑎𝑛𝑠 0 0

0 𝐷𝑐𝑤,𝑡𝑟𝑎𝑛𝑠 0

0 0 𝐷𝑐𝑤,𝑙𝑜𝑛𝑔

] (3.10) 

where the transverse diffusion coefficient of the cell wall 𝐷𝑐𝑤,𝑡𝑟𝑎𝑛𝑠 [m
2/s] is defined as: 

 

𝐷𝑐𝑤,𝑡𝑟𝑎𝑛𝑠

= 1.832×10−4

×exp (−
43623 − 20625 𝑢 − 1227 𝑙𝑛 𝑢

𝑅𝑇
) 

(3.11) 

with R = 8.314472 [J/mol.K] as the universal gas constant, T [K] as the actual temperature 

and u [-] as the moisture content. Finally, the longitudinal cell wall diffusivity 𝐷𝑐𝑤,𝑙𝑜𝑛𝑔 

[m2/s] is calculated as: 
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 𝐷𝑐𝑤,𝑙𝑜𝑛𝑔 = 2.5 𝐷𝑐𝑤,𝑡𝑟𝑎𝑛𝑠 (3.12) 

The diffusion coefficient of water vapour in moist air 𝐷𝑎𝑖𝑟 [m2/s] occurring in the lumens 

is according to [15] given by: 

 𝐷𝑎𝑖𝑟 = 2.31×10
−5 (

𝑝𝑎𝑡𝑚
𝑝𝑎𝑡𝑚 + 𝑝𝑣

) (
𝑇

273.15
)
1.81

 (3.13) 

with T [K] denoting the actual temperature, 𝑝𝑎𝑡𝑚=101 325 Pa as a sea level standard 

atmospheric pressure and the vapour pressure 𝑝𝑣 defined as: 

 

𝑝𝑣 = 𝜑𝑝0 = 𝜑 {2.2064×10
7

×exp [
647.14

𝑇
(−7.85823𝜏 + 1.83991𝜏1.5

− 11.7811𝜏3 + 22.6705𝜏3.5 − 15.9393𝜏4

+ 1.77516𝜏7.5)]} 

(3.14) 

with 𝜏 given as: 

 𝜏 = 1 −
𝑇

647.14
 (3.15) 

where 𝜑 [-] is the relative humidity of the surrounding air and T [K] is the actual 

temperature. The diffusion of air in the lumen is written in the matrix form as: 

 𝐃𝑙𝑢𝑚 = 𝐷𝑎𝑖𝑟𝐈 = [

𝐷𝑎𝑖𝑟 0 0
0 𝐷𝑎𝑖𝑟 0
0 0 𝐷𝑎𝑖𝑟

] (3.16) 

The diffusion matrices 𝐃𝑐𝑤 and 𝐃𝑙𝑢𝑚 are set as properties of initial phases used for the 

homogenization in Section 6.1.  

The diffusion coefficient can be determined using e.g. cup method measurement, 

see [16]. Briefly, it is based on a continuous weighing of the sample mounted to cup 

exposed to a change in a relative humidity of surroundings. Considering the Fick’s first 

law, it is possible to compute the diffusion coefficient from the measured weight loss over 

time. The measurement is further described in Section 5.6. 
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3.4 Thermal properties 

Proper design of the energy efficient building can not be made without knowledge 

of thermal properties. Combustibility of the wood is well known for centuries, although 

this is an important property, it occurs only in extreme situation (during a fire) and is not 

a subject of this work. The same is for (calorimetric) heat value, which is defined as 

a quantity of heat that a mass unit of wood creates when it burns totally [5], important for 

the design of heating. 

Most materials change their dimensions in relation to temperature, and wood is no 

exception. Dimensional expansion is characterized by the coefficient of thermal 

expansion, which is a measure of the relative change of dimension caused by temperature 

change [3]. In civil engineering, the linear thermal expansion coefficient 𝛼[𝐾−1] is 

mainly used. In both cases, the highest values is in the tangential direction and the lowest 

in the axial direction. Nevertheless, the dimensional changes with temperature are very 

small in comparison to that related to moisture [6]. 

The amount of heat required to raise the temperature of a unit mass [kg] by one 

degree [K] is a definition of specific heat or heat capacity 𝑐 [𝐽 𝑘𝑔𝐾]⁄ . It is dependent on 

temperature and moisture content, whereas practically independent of density or species. 

The value for oven-dry wood is approximately 1360 J/kgK [4]. High value of the specific 

heat predetermines the wood as suitable for, e.g. handles. With a knowledge of the 

density, thermal conductivity and specific heat, it is possible to determine the thermal 

diffusivity describing how fast a material can absorb the heat from its surroundings 

(⁓0,0005 m2/h) [5]. 

Among other thermal properties, the most attention will be devoted to thermal 

conductivity in this thesis. The thermal conductivity is a measure of quantity of heat [J] 

which will flow during a unit of time [s] through a material of unit surface area and 

thickness [m] when unit temperature difference [K] is maintained between two surfaces. 

It is expressed by coefficient of thermal conductivity 𝜆[𝑊/𝑚𝐾]or 𝜅[𝑘𝑐𝑎𝑙 𝑚ℎ°𝐶⁄ ]. The 

smaller the value is, the greater is the resistance of the material to the passage of heat. 

From that point of view the wood belongs to the poorest conductors. Thermal 

conductivity is influenced by many factors such as wood structure, density, moisture, 

temperature, extractives content, defects, microfibril angle etc. Above the fibre saturation 

point the conductivity is considerably higher than in the dry state. From that, the dry wood 
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is better thermal insulator. The values for spruce with density of 340 kg/m3 are 

0.10 W/mK in the transverse direction and 0.21 W/mK in the longitudinal direction [4]. 

Tab. 10 Thermal conductivities of individual wood constituents [10] 

Phase Material behaviour 𝜆[𝑊 𝑚𝐾⁄ ] 

Hemicellulose Isotropic 0.34 

Lignin Isotropic 0.39 

Water + extractives Isotropic 𝜆𝐻2𝑂 

Lumen Isotropic 𝜆𝑎𝑖𝑟 

Cellulose Transversely isotropic 𝜆𝑐𝑒𝑙𝑙,11 = 0.26 

  𝜆𝑐𝑒𝑙𝑙,22 = 0.26 

  𝜆𝑐𝑒𝑙𝑙,33 = 1.04 

There are several techniques of the thermal conductivity measurement. They can be 

divided into two categories: steady-state methods and transient methods. The first one is 

based on a measuring the temperature difference at a distance under the steady-state heat 

flow. The thermal conductivity is therefore computed using Fourier’s law. The absolute 

technique with a guarded-hot-plate apparatus as a typical test device, and comparative 

technique comprising comparative cut bar technique and heat flow meter method belong 

to the steady-state methods. The transient techniques include, e.g. pulsed power 

technique, hot-wire method and transient plane source (TPS) method (i.e. hot disk 

method) [17]. Or it could be determined employing empirical equations with density as 

the only variable. In [18] the author mentioned two equations for conditions with moisture 

content of 12%. The first one is in the form: 

 𝜅 = 0.177 𝜌12 + 0.0205 [
𝑘𝑐𝑎𝑙

𝑚ℎ°𝐶
] (3.17) 

where 𝜌12 [g/cm3] is the air-dry density. And the second one is statistically derived by the 

author himself and reads: 

 𝜅 = 0.168 𝜌12 + 0.022 [
𝑘𝑐𝑎𝑙

𝑚ℎ°𝐶
] (3.18) 

where the air-dry density 𝜌12 [g/cm3] is in the range of 0.2<𝜌12<0.8. 
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More recent approach relies on the determination of wood thermal conductivity 

employing the homogenization techniques, see Chapter 6. For the computation, it is 

necessary to know thermal properties and volume fractions of individual wood 

constituents. According to [10], the thermal conductivities of individual wood 

constituents are summarized in Tab. 10. The thermal conductivity of lumens is set equal 

to the air thermal conductivity given as a function of temperature T [K]: 

 𝜆𝑎𝑖𝑟 = 3.102×10
−4 + 9.5×10−5𝑇 − 2.917×10−8𝑇2 (3.19) 

where the influence of water vapour content is not considered. Because of low content of 

extractives, their impact on total thermal conductivity is neglected and therefore only the 

value of water is considered. The authors in [10] considered properties of the bound water 

as that of the free water. The thermal conductivity of the free water is given by: 

 𝜆𝐻2𝑂 = −0.7282 + 7.299×10−3𝑇 − 9.454×10−6𝑇2 (3.20) 

where T is the actual temperature in [K]. 
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4 Micromechanical homogenization 

4.1 Theoretical background 

The wood could be possibly described as the combination of the fibre reinforced 

composite and that of the cellular structure, made of natural based material. From that it 

belongs to the natural composites, as it was mentioned in the previous sections, and it will 

be treated as one of them. 

Rapid development of composites over the last decades required a more precise 

determination of the behaviour of this material. The composites are generally 

heterogeneous materials, which requires the determination of many material constants 

and the computation of the behaviour becomes very difficult and time consuming. 

A suitable approach for simplification of the computational procedure could be the 

introduction of effective material properties, which reduces the number of constants. This 

could be accomplished by homogenization techniques. The homogenization provides 

an estimation of behaviour at a macroscale using information from a smaller length 

scales. From that it is necessary to know the structural composition of the composite and 

the material properties of individual constituents. The development of this method has 

also been contributed by the invention of the high-resolution microscopes with the help 

of which it is possible to study the microstructure of the material. Also, the measurement 

of the material properties at the microscale is possible nowadays, e.g. by nanoindentation.  

Many authors have contributed to the theory of composites, micromechanics and 

homogenization. A short introduction to continuum micromechanics is provided by 

Böhm [19]. The micromechanical theory applied on composites is available in works by 

Milton [20] and Dvorak [21]. A practical application of micromechanics and composites 

is described by Šejnoha and Zeman [22]. It is also appropriate to mention the classical 

works that have become the basis of homogenization such as Eshelby [23], Hashin and 

Shtrikman [24], Mori and Tanaka [25], Hill [26] and many others. 

Due to the similarity of the solutions, only the determination of the effective 

mechanical properties considering linear elasticity is described in the following. The 

governing equations in an elastic body at equilibrium and in the absence of the body 

forces take the form: 
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 𝛔(𝒙) = 𝐋(𝒙)𝛆(𝒙);  ∇ ∙ 𝛔(𝒙) = 0;   𝛆(𝒙) =
[∇𝑢(𝒙) + (∇𝑢(𝒙))

𝑇
]

2
 (4.1) 

where 𝛔(𝒙) is the stress field, 𝛆(𝒙) is the strain field that is symmetrized gradient of the 

displacement field 𝐮(𝒙) and 𝐋(𝒙) is the elasticity matrix. The constitutive relation could 

be written in an equivalent form: 

 𝛆(𝒙) = 𝐌(𝒙)𝛔(𝒙) (4.2) 

where 𝐌 = 𝐋−1is the compliance matrix [20]. The elasticity values are dependent on 

a position in a material. Endeavouring to determine effective elasticity matrix of the 

equivalent homogeneous material with overall behaviour, volume averages of the stress 

and strain fields are introduced as: 

 〈𝛔(𝒙)〉 = 𝐋∗〈𝛆(𝒙)〉;  〈𝛆(𝒙)〉 = 𝐌∗〈𝛔(𝒙)〉  (4.3) 

where 𝐋∗ and 𝐌∗are effective stiffness and compliance matrices, respectively. Local strain 

and stress fields of a given phase r and the overall macroscopic fields are linked together 

by strain and stress concentration factors 𝐀𝑟 and 𝐁𝑟 as follows: 

 〈𝛆𝑟〉 = 𝐀𝑟〈𝛆〉; 〈𝛔𝑟〉 = 𝐁𝑟〈𝛔〉 (4.4) 

Furthermore, the effective elastic matrices can be obtained from the local elastic matrices 

and concentration factors by volume averaging: 

 

𝐋∗ =
1

V
∫ 𝐋(𝒙)𝐀(𝒙) dV
V

;  

𝐌∗ =
1

V
∫ 𝐌(𝒙)𝐁(𝒙) dV
V

 

(4.5) 

where V denotes the volume of a given representative element [19]. 

The majority of the modelling approaches may be divided into two groups. The first 

one comprises methods that describe interactions in a collective way in terms of 

phase-wise uniform fields, which are the mean-field approaches with related methods and 

bounding methods. In the second group, the approximations are based on studying 

discrete microgeometries in order to evaluate the microfields, and thereby take the 
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interactions between phases into account. It includes the periodic microfield approaches 

(often referred to as periodic homogenization schemes or unit cell methods), windowing 

approaches, embedded cell or embedding approaches and others. 

Following the mean-field approach, the simplest case is the two-phase composite 

consisting of an elastic matrix strengthened by randomly dispersed spherical inclusions 

with perfect bonding between the constituents. To provide estimates of the effective 

properties we assume that the composite is subjected to boundary displacements 

compatible with macroscopically uniform strains or tractions compatible with 

macroscopically uniform stresses. An average stress in the composite could be written as: 

 〈𝛔〉 = 𝑓1〈𝛔1〉 + 𝑓2〈𝛔2〉 (4.6) 

where 𝑓𝑟 denotes the volume fraction of phases r, where ∑ 𝑓𝑟 = 1𝑟 . Equivalently 

an average strain is given as: 

 〈𝛆〉 = 𝑓1〈𝛆1〉 + 𝑓2〈𝛆2〉 (4.7) 

Combination of Eqns. (4.6) and (4.7) together with assumption of the constant stiffness 

matrix 𝐋𝒓 within the phase r yields to [27]: 

 〈𝛔〉 = 𝐋1〈𝛆〉 + 𝑓2(𝐋2 − 𝐋1)〈𝛆2〉 (4.8) 

A unique dependence of the average strains in the phases upon the overall strain in the 

composite is written as [26]: 

 〈𝛆1〉 = 𝐀1〈𝛆〉; 〈𝛆2〉 = 𝐀2〈𝛆〉; 𝑓1𝐀1 + 𝑓2𝐀2 = 𝐈 (4.9) 

where 𝐈 is the identity matrix. Using (4.3) and (4.9) Eq. (4.8) can be transformed to: 

 𝐋∗ = 𝐋1 + 𝑓2(𝐋2 − 𝐋1)𝐀2 (4.10) 

Equivalently the effective compliance of the composite is given by: 

 𝐌∗ = 𝐌1 + 𝑓2(𝐌2 −𝐌1)𝐁2 (4.11) 

Assuming that the strain throughout the composite is uniform and therefore the strain 

concentration factors 𝐀1 = 𝐀2 = 𝐈, it yields the Voigt approximation written as: 
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 𝐋𝑉𝑜𝑖𝑔𝑡
∗ = 𝐋1 + 𝑓2(𝐋2 − 𝐋1) = 𝑓1𝐋1 + 𝑓2𝐋2 (4.12) 

which provides the estimate of the upper bound of the effective properties. Whereas the 

lower bound was developed by Reuss with the assumption that the composite experiences 

the same stress in every phase identical to the one in an equivalent homogeneous material. 

Thus the stress concentration factors 𝐁1 = 𝐁2 = 𝐈. The effective stiffness is therefore: 

 𝐋𝑅𝑒𝑢𝑠𝑠
∗ = [𝐌1 + 𝑓2(𝐌2 −𝐌1)𝐁2]

−1 = [𝑓1𝐋1
−1 + 𝑓2𝐋2

−1]−1 (4.13) 

In case of lamination theory used in the following sections the Voigt approximation 

corresponds to the parallel connection of lamellae and the Reuss approximation to the 

connection in series. The prediction of the effective moduli of the composite is performed 

by the Self-consistent and Mori-Tanaka methods. The two methods will be described 

separately in individual sections. 

4.2 Classical Self-consistent scheme 

The Self-consistent method belongs to the effective medium approaches. The 

method is based on treating all phases as inhomogeneities, where each subvolume of 

phase 𝐋𝑟 is embedded as a solitary ellipsoidal inclusion in a large volume of an a priori 

unknown effective medium. An overall stress or strain is applied at the remote boundary. 

The concentration factors of each phase are therefore [21]: 

 
𝐀𝑟
𝑆𝐶 = [𝐈 + 𝐏(𝐋𝑟 − 𝐋𝑆𝐶)]

−1  

𝐁𝑟
𝑆𝐶 = [𝐈 + 𝐐(𝐌𝑟 −𝐌𝑆𝐶)]

−1 

(4.14) 

where 𝐏 is the so called Hill tensor and is linked by relation: 

 𝐏 = 𝐒𝐌0 = 𝐒𝐋0
−1 ; PL+MQ=I (4.15) 

to the Eshelby tensor 𝐒, where 𝐌0 and 𝐋0 are the host medium compliance and stiffness 

matrices, respectively, which in the case of Self-consistent scheme are 𝐌0 = 𝐌𝑆𝐶  and 

𝐋0 = 𝐋𝑆𝐶. Recall that in the case of Self-consistent method the Eshelby and Hill tensors 

elaborated in [28] are also functions of the properties of the host medium. Generalizing 

the relationships for effective stiffness and compliance of the two-phase composite to the 

multi-phase one, it is possible to rewrite (4.10) and (4.11) as: 
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𝐋𝑆𝐶
∗ = 𝐋1 +∑𝑓𝑟(𝐋𝑟 − 𝐋1)𝐀𝑟

𝑆𝐶

𝑁

𝑟=2

 

𝐌𝑆𝐶
∗ = 𝐌1 +∑𝑓𝑟(𝐌𝑟 −𝐌1)𝐁𝑟

𝑆𝐶

𝑁

𝑟=2

 

(4.16) 

This method is well suitable for systems where the role of matrix and inclusion 

could be reversed. However, it could not be employed for porous materials. Point out 

finally that the effective properties occur on both sides of the relationship (4.16) and it 

leads to the iterative solution [22]. 

4.3 Mori-Tanaka method 

The Mori-Tanaka method pertains to the mean-field estimates. In contrary to the 

previously mentioned method, the Mori-Tanaka method has an explicit format. The 

method approximates the interaction between the phases in a matrix-based system by 

considering each inhomogeneity 𝐋𝑟 as a solitary inclusion embedded in an unbounded 

matrix 𝐋1. The interaction of inclusions is accomplished by loading the system by 

an average stress or strain found in the matrix. The determination of effective material 

properties is similar to the one in the previous section employing the pertinent 

concentration factors. For a two-phase composite they are provided by: 

 

𝐀2
𝑀𝑇 = 𝐀2

𝑑𝑖𝑙[𝑓1𝐈 + 𝑓2𝐀2
𝑑𝑖𝑙]

−1
;  𝐀2

𝑑𝑖𝑙 = [𝐈 + 𝐏(𝐋2 − 𝐋1)]
−1  

𝐁2
𝑀𝑇 = 𝐁2

𝑑𝑖𝑙[𝑓1𝐈 + 𝑓2𝐁2
𝑑𝑖𝑙]

−1
;  𝐁2

𝑑𝑖𝑙 = [𝐈 + 𝐐(𝐌2 −𝐌1)]
−1 

(4.17) 

where for individual members, the same relationships apply as in the previous section. 

Note that in this case the P and Q terms depend on the matrix properties. Finally, 

estimates of the effective stiffness and compliance matrices of the multi-phase composite 

can be obtained from: 

 

𝐋𝑀𝑇
∗ = 𝐋1 + [∑𝑓𝑟(𝐋𝑟 − 𝐋1)𝐀𝑟

𝑑𝑖𝑙

𝑁

𝑟=2

] [𝑓1𝐈 +∑𝑓𝑟𝐀𝑟
𝑑𝑖𝑙

𝑁

𝑟=2

]

−1

 

𝐌𝑀𝑇
∗ = 𝐌1 + [∑𝑓𝑟(𝐌𝑟 −𝐌1)𝐁𝑟

𝑑𝑖𝑙

𝑁

𝑟=2

] [𝑓1𝐈 +∑𝑓𝑟𝐁𝑟
𝑑𝑖𝑙

𝑁

𝑟=2

]

−1

 

(4.18) 
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where 𝐀𝑟
𝑑𝑖𝑙 and 𝐁𝑟

𝑑𝑖𝑙 are given by Eqns. in (4.17) and satisfy the relationship 𝐈 =

∑ 𝑓𝑟𝐀𝑟
𝑑𝑖𝑙𝑁

𝑟=1  and 𝐈 = ∑ 𝑓𝑟𝐁𝑟
𝑑𝑖𝑙𝑁

𝑟=1 , respectively [22]. 

In composites with large contrast between moduli of the constituents, the 

Mori-Tanaka tends to underestimate (or overestimate) effective moduli, even at moderate 

concentrations. In case of porous two-phase media it leads to the upper Hashin-Shtrikman 

bound, which approaches zero only when the matrix volume fraction reaches zero [21]. 
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5 Experimental determination of wood properties 

Some of the properties mentioned in Chapter 3 were measured on small clear 

samples of the Norway spruce (Picea abies). Factors affecting the properties, such as 

knots, grain deviations, resin streaks, bark pockets etc., were kept to a minimum. Tensile 

tests were performed on 40 samples, of which 19 were used for the density and moisture 

content measurement, together with image analysis of the growth rings, and 6 of them 

were measured by nanoindentation and examined by microscopy. Another 27 samples 

were used for the density and moisture content determination and image analysis of the 

growth rings. 

5.1 Density and moisture content 

Small samples of clear wood were cut from the dog bone specimens made from 

Norway spruce. They were conditioned for few days at room temperature and relative 

humidity, which corresponds to the air-dry state. The dimensions of all samples were 

measured to the nearest 0.01 mm by digital caliper at both ends in each of the three 

directions. Then the measured values were averaged and the volume of each sample was 

computed. Initial masses of air dried wood specimens were obtained using laboratory 

scales with an accuracy of 0.01 μg. After that, the samples were put into an oven and left 

there at a temperature of 40°C. All of them were periodically weighed until the 

differences between the two consecutive measurements were negligible. In about seven 

days there were no weight losses and the measurement was terminated. 

Tab. 11 Measured values of the moisture content and densities 

  mean min max 

Air-dry density [𝑘𝑔/𝑚3] 441.80 380.33 527.58 

Oven-dry density [𝑘𝑔/𝑚3] 422.73 365.34 510.23 

Moisture content [%] 4.50% 3.40% 5.17% 

Resulting values of air-dry density and oven-dry density were computed from Eq. 

(3.1), where in the first case m was set equal to the initial mass, whereas in the latter one 

the mass corresponds to that measured as the last – oven-dry mass. The gravimetric 

moisture content was calculated by Eq. (3.8). The measurement was made on 45 samples 

in total and its mean, minimum and maximum values are summarized in Tab. 11. 
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The average value of the oven-dry density is 422.73 kg/m3, that of the air-dry 

density is 441.80 kg/m3 and the resulting average gravimetric moisture content is 4.5%. 

Example values of the moisture content and densities for 5 samples are mentioned in Tab. 

3, which are subsequently used for the computation of the volume fractions. The 

measured initial and oven-dry masses with corresponding moisture content are 

summarized in Tab. 9 for five samples as an example. 

5.2 Volume fractions of the earlywood and latewood 

The knowledge of the volume fractions of the earlywood and latewood is important 

for the last step of the homogenization procedure. The samples prepared for the previous 

measurement, i.e. density and MC measurement, were used. Surfaces localized on cross 

sections were ground to obtain sufficient contrast between phases. Afterwards, pictures 

of the surfaces were taken with common photo camera.  

 

Fig. 9 Cross sections of the spruce samples 

Subsequent editing of photographs by commercial software increased the contrast 

of the borders between individual phases (Fig. 9) and the image analysis could be 

performed. Recalling Fig. 9, it shows a great variability of the growth rings arrangement. 

Several parameters were measured: growth ring width, width of the latewood part, 

volume fractions of black (latewood) and light (earlywood) parts related to total area of 

one sample. The volume fractions of the earlywood and latewood parts were obtained by 

two approaches. The first one was the direct determination from photographs by image 

analysis and in the second one the volume fractions were calculated from measured 

widths. Mean, minimum and maximum values of these parameters are summarized in 

Tab. 12. As it is evident from Tab. 12, the volume fractions of earlywood computed from 

widths are higher than those obtained by image analysis. It could be attributed to the fact 

that the image analysis involves the distribution of individual phases throughout the 
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sample. Whereas the width of one growth ring was measured at the selected location and 

from that it does not include the change over the length of the growth ring. 

Tab. 12 Measured parameters of growth rings 

 mean min max 

Growth ring width [mm] 1.73 0.60 3.40 

Latewood width [mm] 0.23 0.06 0.61 

Volume fractions (IA) [-]    

Earlywood 0.80 0.69 0.94 

Latewood 0.20 0.06 0.31 

Volume fractions (widths) [-]    

Earlywood 0.86 0.77 0.94 

Latewood 0.14 0.06 0.23 

 

Fig. 10 Dependence of the earlywood width on the growth ring width 

During the measurements, the dependence of the earlywood width on the overall 

width of the growth ring was found, see Fig. 10, where the linear correlation between 

both parameters is obvious. On the other hand, no correlation was found between 

latewood width and growth ring width, see Fig. 11. With regard to both phenomena, it is 

possible to consider the latewood width as constant (set to 0.2 mm in the following) and 
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earlywood width as the only one variable. Similar conclusion has been put forward by 

[13]. 

 

Fig. 11 Dependence of the latewood width on the growth ring width 

When we plot the dependence of the earlywood width on the oven-dry density, the 

correlation between these values is evident, see Fig. 12. The same correlation also applies 

to the dependence of the earlywood volume fraction on oven-dry density, assuming 

constant latewood width and computation of the volume fractions using measured widths. 

This ascertainment allows us to adopt an assumption that the density of wood is 

dependent on the volume fraction of earlywood, where higher fraction of earlywood 

results in lower density. If we find a suitable function which will fit the data well, the 

volume fractions of the earlywood and latewood could be computed reversibly for known 

density.  

Recalling the computation of the volume fractions described in Section 3.1, Eqns. 

(3.6) are linear functions, while the dependence depicted on Fig. 12 seems to be rather 

exponential. When the volume fractions computed from the measured widths assuming 

constant latewood width (0.2 mm) and Eqns. (3.6) are plotted in one figure (Fig. 13), it is 

evident that the measured data are rather outside the lines representing equations stated 

by the authors in [10]. Plus signs in the upper part of the image represent the volume 

fractions of earlywood and that in the lower part represent the latewood volume fractions. 

The picture also shows that the volume fractions computed by Eqns. (3.6) are equal if the 

density is 472 kg/m3. When the density approaches the value of 600 kg/m3, the volume 
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fraction of earlywood is reaching zero and the latewood volume fraction is close to 1. It 

means that wood with density close to 600 kg/m3 is almost composed of pure latewood, 

which is not a reasonable assumption. The same applies to the other bound of the interval, 

but inversely. In [13] the author stated that the density of clear wood specimens of 

Norway spruce is about 350-600 kg/m3. According to the graphs published in this work, 

even the values outside the interval were measured, which makes these equations 

inapplicable. This leads to the decision about inaccuracy of these equations. 

 

Fig. 12 Dependence of the earlywood width on the oven-dry density (with illustrative fit function) 

 

Fig. 13 Dependence of the earlywood and latewood volume fractions on oven-dry density 
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5.3 Volume fractions of pores 

Accurate determination of the volume fractions of lumens is a key factor for the 

homogenization procedure. Pores are assumed to decrease the final effective properties. 

Incorrect values of the lumen volume fractions lead to great errors in the results. However, 

the determination of the size and distribution of pores within the wood sample is still 

a great challenge. Many approaches exist nowadays, e.g. porosimetry, CT scans etc. and 

each of them has its advantages and disadvantages. Some of them have been already 

mentioned in Section 3.1 and compared in Tab. 4. This section is mainly focused on the 

determination of the lumens volume fractions using the image analysis. 

 

Fig. 14 Dependence of the volume fractions of lumens on oven-dry density 

The sample preparation is similar to that in the case of nanoindentation, see Section 

5.5. Small clear samples of the Norway spruce were embedded in an epoxy resin. After 

the resin hardened enough, the samples were cut into slices with diamond wheel at small 

revs. The cuts were performed perpendicularly to the longitudinal direction. One side of 

each slice was ground and polished to obtain as smooth surface as possible. This step is 

necessary to prevent the defibrillation of the structure, which leads to lower visibility of 

the cell wall edges. Afterwards, the specimens were examined by microscope with 

simultaneous image capturing. The images were subsequently edited by commercial 

software and transformed to binary images, where white colour corresponds to lumens 

and black to the cell wall material, see Fig. 6 as an example. The main task of the image 
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analysis is to determine the size of black and white areas in relation to the whole image. 

The earlywood and latewood cells were examined separately, whereas that of the 

transition wood were excluded from the analysis, i.e. influence of the transition zone was 

neglected. As it was proposed in Section 3.1, the volume fractions of lumens for both the 

earlywood and latewood can be computed combining Eqns. (3.3), (3.4) and (3.5). Both 

results from the image analysis and equations represented by curves are depicted on Fig. 

14, where the plus signs in the upper part are the volume fractions of earlywood lumens 

and that in the lower part represents the volume fractions of latewood lumens. The data 

from image analysis are rather constant, i.e. they do not show any dependence on the 

density, even in the case of a very high density (points on the right-hand side). Therefore, 

the average values of 0.69 for the earlywood and 0.12 for the latewood are considered in 

the homogenization procedure. From Fig. 14 it is evident that the values derived by Eqns. 

(3.3),(3.4) and (3.5) are overestimated, especially in the case of the latewood lumens 

(lower curve). It is reasonable to cast doubt on the computational approach, which was 

already proposed in Section 3.1. 

5.4 Tensile tests 

One of the possible ways of determining the modulus of elasticity is the axial tensile 

test. The samples with a shape of ‘dog bone’, i.e. long thin veneers with widening on both 

ends, were cut from Norway spruce timber, see Fig. 15. This shape enables the fraction 

to occur in the middle instead of the zone of grip. 

 

Fig. 15 Dog bone sample for the axial tensile test 

Samples were tested one at a time. Each sample was fastened into grips of the 

testing machine and extensometer with length of 100 mm was placed to the middle part 

of the specimen. Afterward, the sample was loaded in tension in a displacement control 

regime until failure, with simultaneous recording of the load and elongation of the 

extensometer. The modulus of elasticity is defined as an initial slope of the stress-strain 

curve. The stress is computed as the applied force divided by the area of the cross section 

in the middle of the sample and the strain is given as the extensometer expansion divided 

by its initial length. The resulting values are plotted in the form of normal distribution, 

see Fig. 16. The mean value is 14.29 MPa and thus lies within a range given in Tab. 5.  
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Fig. 16 Probability density function of modulus of elasticity from axial tensile test 

5.5 Nanoindentation 

The mechanical properties of the cell wall could be measured directly by 

nanoindentation. The nanoindentation is used for the characterization of mechanical 

behaviour of materials at the micrometre and nanometre scales. This method is based on 

the contact mechanics with limitations for some types of material responses e.g. 

viscoelastic solids. The method was developed for measuring hardness and elastic 

modulus from load-displacement data, obtained during one cycle of loading and 

unloading by using sharp, self-similar indenters, such as the Berkovich triangular 

pyramid. The basic principle of this method is pushing the small hard tip with known 

geometry and material properties to a material with unknown properties, with 

simultaneous recording of the load and indentation depth relative to the initial 

undeformed surface. The load-displacement curve is depicted on Fig. 17, where Pmax is 

the maximum load, hmax is the maximum displacement, S=dP/dh is the elastic unloading 

stiffness defined as the slope of the upper part of the unloading curve and hf is the final 

depth – the permanent penetration depth after the indenter is fully unloaded. In this model, 

the elastic and plastic deformation during loading is assumed, whereas during unloading 

only elastic displacements are recovered [29]. The maximum force holding is used to 

eliminate the viscoelastic response of the material, which is very important in the case of 

wood, because it exhibits viscoelasticity. 
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Probably, the most used tip is the Berkovich indenter (also used in this thesis), 

which can be modelled by a conical indenter with a half-included angle ϕ = 70.3°, that 

gives the same depth-to-area relationship. Very important is the assumption that the 

contact periphery sinks in in compliance with the models of indentation of a flat elastic 

half-space by rigid punches of simple geometry [29]. 

 

Fig. 17 Load-displacement curve and unloading process of the indenter tip [29] 

The main output of the nanoindentation is the indentation modulus. The indentation 

modulus Er (also called reduced modulus) is quantified from the measured data as follows 

[29]: 

 𝐸𝑟 =
√𝜋

2𝛽

𝑆

√𝐴
 (5.1) 

where S=dP/dh is the slope od the unloading part of the load-displacement curve (the 

elastic unloading stiffness), a is the contact area and the correction factor β, which is the 

dimensionless parameter of the indenter tip geometry. Probably, the most accurate would 

be the direct measurement of the contact area of each indent, however it is not possible 

nowadays. The size of the residual impression of the indenter is too small to be measured 

accurately. From that the area function was introduced. In the case of Hysitron 

nanomechanical test instrument, which is used for the measurement in this thesis, the area 

function is given by a sixth order polynomial of the form [30]: 

 𝐴 = 𝐶0ℎ𝑐
2 + 𝐶1ℎ𝑐 + 𝐶2ℎ𝑐

1/2
+ 𝐶3ℎ𝑐

1/4
+ 𝐶4ℎ𝑐

1/8
+ 𝐶5ℎ𝑐

1/16
 (5.2) 
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where hc is the contact depth and C0 – C5 are the calibration constants obtained by 

a calibration process. The calibration is usually performed as an independent 

measurement on a material with known properties, e.g. fused silica. This procedure 

eliminates the influence of the deviations from an ideal tip geometry, such as rounding of 

the tip. As a result, the calibration should be made for each indenter individually. 

However, this area function does not account for a pile-up of the material around the 

perimeter of the contact area. If there is the pile-up, the contact area is greater than the 

computed one and therefore the modulus is overestimated. When the ratio of the final 

indentation depth hf to the maximum displacement hmax is over the value 0.7, using this 

method can lead to large errors in the contact area [29]. 

 

Fig. 18 Surface scan (25x25 μm) of earlywood before (left) and after (right) nanoindentation  

The measurement was performed on small samples of the Norway spruce prepared 

by following procedure. Small enough samples were cut from the timber and left in 

a room to accommodate to the temperature and relative humidity of the surroundings. 

Then all cut samples were fixed in small containers and the epoxy resin was poured over 

them. For the elimination of unwanted gas, it was necessary to place samples into the 

vacuum desiccator and left there at low vacuum for a while. The epoxy fills in the lumens, 

but the question is, if it pours into the cell wall and affects the measurement results. Next, 

the embedded samples were cured at room temperature until they hardened enough. It is 

much better to avoid the heat treatment, which is usually used for the epoxy hardening, 

because the exposure to heat may affect the properties and the results of the measurement 

can exhibit inaccuracies. Then the cured samples were cut into slices with diamond cut-

off wheel at low revs. One side of each slice was therefore ground and polished to obtain 

as smooth surface as possible. The surface roughness plays a significant role, because it 

affects the results, when it is too large. 
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It is very important to set-up the measurement device and to choose a proper type 

of the indentation tip. The Berkovich diamond indenter tip was used for measurement in 

this thesis. Although the author in [31] recommends small acuity spherical probes (e.g. 

A cono-spherical probe) also suitable for indentation of polymers, which exhibit 

viscoelastic response. Important settings are the load-time curve and the maximum depth. 

The load-time curve was set as a trapezoidal function containing three parts: linear 

loading, holding at peak load and linear unloading. The holding part is implemented to 

allow the plastic deformation to be fully realised in the case of materials, where the creep 

occurs. The indentation depth should be set higher than the measured surface roughness. 

After successful setting of the device, the measurement can be performed. 

The samples should be accommodated to the temperature and humidity inside the 

chamber of the measurement device. The indents were localized into the S2 layer using 

an added microscope. This layer was chosen with regard to its greatest impact on overall 

mechanical properties, as mentioned in Section 2.3. The positions of the indents should 

be controlled after the measurement with the help of surface scans, see Fig. 18. Indents 

on the wrong position have to be excluded from further data evaluation, together with 

those with the wrong shape of the load-displacement curve.  

 

Fig. 19 Probability density function of indentation modulus 

Considering the normal distribution, resulting mean values of earlywood (EW) and 

latewood (LW) are 12.88 GPa and 13.23 GPa, respectively. Because these values are very 

similar, it is possible to consider that the properties of the cell wall are the same 
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throughout the whole growth ring. Individual distributions are depicted on Fig. 19, where 

the similarity is more evident. The numbers in brackets correspond to the number of 

indents. 

5.6 Measurement of the moisture diffusion coefficient 

The last measured quantity was the moisture diffusion coefficient. The 

measurement was performed at the Department of materials, Faculty of Civil 

Engineering, CTU in Prague. The wet cup arrangement of the cup method was used 

considering steady-state under isothermal conditions. Samples of the Norway spruce with 

square cross section of 100x100 mm and thicknesses of 4, 6, 8 and 10 mm were fastened 

on the top of a cup and insulated with epoxy resin on edges to ensure one-dimensional 

water vapour transport. Each cup contained saturated solution of KNO3 with equilibrium 

humidity of 95±5% above it. A thin layer of air (10 mm) was left between the solution 

and sample. The cups were placed into the climate chamber with controlled temperature 

and relative humidity. The step change of the relative humidity from 95% to 50% was 

carried out at temperature of 23°C. The cups were weighed periodically until the mass 

loss per time unit was constant. The resulting water vapour diffusion coefficients D [m2/s] 

were computed from measured data as follows [32]: 

 𝐷 =
∆𝑚 𝑡 𝑅 𝑇

𝐴 𝜏 𝑀 ∆𝑝
 (5.3) 

where ∆𝑚 [kg] is the amount of the water vapour diffused through the sample, t [m] the 

sample thickness, R = 8.314472 [J/mol.K] the universal gas constant, T [K] the actual 

temperature, a [m2] the area of the specimen surface, 𝜏 [s] the duration of the transport of 

water vapour mass ∆𝑚, M = 0.018 [kg/mol] the molar mass of water, ∆𝑝 [Pa] the 

difference in partial water vapour pressures above and under the specific specimen 

surface. The computed diffusion coefficients for various thicknesses are listed in Tab. 13. 

Unfortunately, measured values are quite far from those given in the literature. For 

example, in [33] the author states that the typical value of the longitudinal diffusivity 

coefficient of Swedish pine and spruce is 1.5x10-9 m2/s, determined at RH=75% 

considering steady-state. Therefore, these values were not considered for the verification 

of results obtained by the homogenization procedure. 
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Tab. 13 Moisture diffusion coefficients of spruce wood for various thicknesses 

t [mm] D [m2/s] 

4 4.90x10-6 

6 4.83x10-6 

8 5.50x10-6 

10 5.18x10-6 
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6 Application of homogenization to wood 

As it was mentioned earlier the wood is a natural composite and could be treated as 

such. In spite of the variability at all scales it is possible to consider it more or less as 

regular on average. Recalling the structural composition described in Chapter 2 the most 

appropriate approach to the determination of effective properties seems to be an upscale 

homogenization, which comprises several steps starting from the lowest scale up to the 

macroscale. An example of hierarchical organization of the wood is depicted on Fig. 20 

at three different magnifications. 

 

Fig. 20 Hierarchical organization of wood 

It is possible to begin at the level of atoms, but it is too much complicated and the 

wood composition is not even known at the atomic level. A reasonable starting point of 

the micromechanical homogenization seems to be at the level of cell wall constituents. 

Following the homogenization procedure described in [9], the first step is called the 

polymer network with characteristic length of a representative volume element (RVE) in 

a range of 8-20 nm. The polymer network comprises lignin, hemicellulose, water and 

extractives, where the latter two phases are considered as one, because of the dissolution 

of the extractives in the water. Consequently, the relationship of the volume fractions of 

phases is given by: 
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 𝑓𝑙𝑖𝑔 + 𝑓ℎ𝑒𝑚𝑐𝑒𝑙𝑙 + 𝑓𝑤𝑒 = 1 (6.1) 

The volume fractions of all cell wall constituents are dependent on the moisture content 

and could be computed by equations introduced in [9] as: 

 𝑓𝑠 = 𝑊𝐹𝑠
𝑤𝑒𝑡

𝜌𝑐𝑤
𝑤𝑒𝑡

𝜌𝑠
;  𝑊𝐹𝑠

𝑤𝑒𝑡 =
𝑊𝐹𝑠

𝑑𝑟𝑦

1 + 𝑢
 (6.2) 

where 𝜌𝑐𝑤
𝑤𝑒𝑡 is the density of the wet cell wall given by Eq. (3.4), 𝑊𝐹𝑠

𝑑𝑟𝑦
 and 𝜌𝑠 are weight 

fraction and density of each cell wall constituent (values were taken from [9]) and 𝑢 is 

the moisture content of the cell wall. It is necessary to note that the volume fractions of 

the polymer network phases computed by (6.2) are determined relative to the entire cell 

wall and thus they have to be recalculated in relation to the polymer network, i.e. the 

volume fraction of the polymer network is: 

 𝑓𝑙𝑖𝑔 + 𝑓ℎ𝑒𝑚𝑐𝑒𝑙𝑙 + 𝑓𝑤𝑒 = 𝑓𝑃𝑁 (6.3) 

and therefore the volume fraction of phases in (6.1) are given by: 

 𝑓𝑠 = 𝑓𝑠/𝑓𝑃𝑁 (6.4) 

where s ∈ {lignin, hemicellulose, water + extractives}. Lignin and hemicellulose are 

almost of the same volume fractions and the role of matrix and inclusion is not clear. 

From that a suitable method for this computational step seems to be the Self-consistent 

scheme with spherical inclusions in an isotropic matrix. 

Effective properties of the cell wall material are obtained via the second step, where 

the characteristic length of RVE falls within a range of 0.5-1 μm. Remaining cell wall 

constituents that were not taken into account earlier are the amorphous and crystalline 

cellulose. These are in the form of long threads wound helically along the cell, see Section 

2.3. It leads to the notion of these phases as infinite cylindrical inclusions. The polymer 

network determined by the previous step is set as a matrix and the volume fractions of 

phases are computed using Eqns. (6.2) and (6.3) and the relation takes the form: 

 𝑓𝑃𝑁 + 𝑓𝑐𝑟𝑦𝑐𝑒𝑙𝑙 + 𝑓𝑎𝑚𝑜𝑐𝑒𝑙𝑙 = 1 (6.5) 
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In this step influence of the microfibril angle is implemented as a deviation of 

inclusions from the longitudinal direction (axis x3 in this thesis). Assumption of this 

structural composition leads to the Mori-Tanaka method for isotropic matrix with infinite 

circular cylindrical inclusions, which are deviated by an angle corresponding to MFA. 

Within this step the orientation averaging is implemented to obtain transversely isotropic 

material. 

Following the wood composition, the next step covers the influence of the porous 

structure. Recalling Section 2.2, pores are in the form of ellipsoidal cavities – lumens, 

that change their shape within a single growth ring. For simplicity only division to 

earlywood and latewood is considered, while the transition zone (gradual change between 

both types) is neglected. The homogenization model is made up of the cell wall forming 

the matrix and lumens as ellipsoidal inclusions parallel to the longitudinal axis of the cell 

wall, assuming that: 

 𝑓𝑐𝑤 + 𝑓𝑙𝑢𝑚 = 1 (6.6) 

where 𝑓𝑐𝑤 and 𝑓𝑙𝑢𝑚 are the volume fraction of the cell wall material and lumens, 

respectively. It is important to note that the volume fraction and shape of lumens differ 

for both the earlywood and latewood. The volume fractions of lumens could be computed 

using dry wood density or measured directly, referring to Section 3.1. The dimensions of 

lumens could be measured directly, e.g. by microscopy, or computed using the procedure 

described in [10]. The measured values of the cell dimensions for both earlywood and 

latewood were taken from the literature [5], see also Tab. 1, where after subtraction of the 

cell wall thickness the lumen dimensions are obtained, see Tab. 14. 

Tab. 14 Dimensions of lumens [μm] [5] 

 Radial Tangential Longitudinal 

Earlywood 36.3 29.7 2657.0 

Latewood 3.1 22.1 2650.0 

The Mori-Tanaka method with ellipsoidal inclusions in transversely isotropic 

matrix was employed for the computation of the effective properties. Mainly because, 

unlike the Self-consistent scheme, this method is well suitable for materials with a porous 

phase. The resulting effective material is orthotropic, which correspond to the assumption 

of wood behaviour. 
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The last step utilizes the similarity of the growth ring arrangement with 

multi-layered laminate. Earlywood and latewood are aligned in plies, which leads to the 

application of standard rules of mixture. The Voigt and Reuss bounds are obtained 

employing Eqns. (4.12) and (4.13), where the volume fractions could be computed or 

measured, see Section 3.1, satisfying the condition: 

 𝑓𝑒𝑤 + 𝑓𝑙𝑤 = 1 (6.7) 

where 𝑓𝑒𝑤 and 𝑓𝑙𝑤 are the volume fractions of earlywood and latewood, respectively. 

Recalling the growth ring arrangement and the definition of directions (Section 2.1) the 

selection of the type of the bound is dependent on the direction. Lamellae in the radial 

direction resembles the connection in series thus the Reuss bound is employed, whereas 

the Voigt bound is used in the longitudinal and tangential direction due to the parallel 

connection of plies. Due to the interconnection of individual elements of the effective 

stiffness matrix, the classical lamination theory described in [20] is used in the case of 

elasticity. Whereas in the case of moisture diffusivity and thermal conductivity, the Reuss 

and Voight bounds are sufficient predictions. 

In [9] the authors also provide one additional step reflecting the influence of rays. 

However, due to the low content in the whole wood volume, about 5.9 % [5], their impact 

on the final properties can be neglected so that this step was omitted from the 

homogenization procedure. 

An example of the application of the homogenization procedure is presented for the 

following three material properties of the wood: moisture diffusivity, thermal 

conductivity and elasticity. 

6.1 Moisture diffusivity 

An easiest computation is in the case of moisture diffusivity. The homogenization 

procedure starts at the level of earlywood and latewood, because the moisture diffusion 

properties of individual cell wall constituents have not been found in the literature. 

Therefore, the first step comprises two phases: cell wall and lumens. The diffusion matrix 

of the cell wall material is given by Eq. (3.10) as a function of temperature and moisture 

content. This calculation is limited for cases with moisture content below the fibre 

saturation point. From that the diffusion of lumens is set equal to that of the moist air 

which is governed by Eq. (3.16) as a function of the temperature, atmospheric pressure 
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and relative humidity of surroundings. In [15] the authors use the conversion for 

diffusivities of phases depending on different concentration gradients. Whereas in this 

thesis no conversion was employed. The second and also the last step provides the final 

properties of solid wood employing the standard rules of mixture described earlier. The 

earlywood and latewood form the laminate. The rays are neglected. The results are 

summarized in Tab. 15 for the following conditions: 4.5% moisture content, 60% relative 

humidity, temperature of 20°C. The volume fractions of the lumens of earlywood and 

latewood, together with the volume fractions of both layers were taken from Tab. 4 for 

the case of image analysis. The ratios of semi-axes of the ellipsoidal inclusions required 

for the first step were derived from the lumens dimensions in Tab. 14. 

Tab. 15 Diffusion coefficients of spruce wood obtained by homogenization 

 D [10 -12 m2/s] 

Direction Radial Tangential Longitudinal 

Cell wall 0.95 0.95 2.37 

Earlywood 5.65 4.80 3819.03 

Latewood 1.10 2.00 2895.21 

Solid wood 3.09 4.24 3634.27 

In [34] the authors state that the moisture diffusion coefficient in the radial direction 

of Norway spruce is in the order of 10-9 m2/s as related to the moisture content. Radial, 

tangential and longitudinal diffusion coefficients of Terminalia superba at 30°C and zero 

relative humidity are 1.35x10-11 m2/s, 1.16x10-11 m2/s and 3.23 x10-11 m2/s, respectively, 

according to [35]. The resulting value of diffusion coefficient depends on the chosen step 

of the change of moisture content as it is showed in [36], where the transverse diffusion 

coefficient of spruce wood is 5.2x10-11 m2/s for a cycle from RH=65% to RH=80% and 

7.6x10-11 m2/s for a cycle from RH=65% to RH=30%, both at a temperature of 20°C. The 

author also provides the value of the longitudinal diffusivity for a cycle from RH=65% to 

RH=80%, which is equal to 10-9 m2/s. In [33] the author presents typical values of 

diffusivity coefficients of Swedish pine and spruce as 1.5x10-9 m2/s in the longitudinal 

direction, 3x10-10 m2/s in the radial and tangential direction, determined at RH=75% 

considering steady-state. Resulting longitudinal diffusion coefficient of solid wood 

corresponds to that given by the last two authors. The values in the radial and tangential 

direction are lower, which could be caused by neglection of the rays in the 



6 Application of homogenization to wood 

55 

homogenization model, which provides transport of the water and nutrients in the radial 

direction. Although there are differences among above-mentioned values, which are not 

negligible. It could be caused by difficulty of the measurement especially when division 

into directions is required. 

6.2 Thermal conductivity 

More demanding calculation is that for the thermal conductivity. The whole 

homogenization procedure, which is described at the beginning of this chapter, is used to 

obtain the effective properties at the macroscale. The first step comprises lignin, 

hemicellulose and water together with extractives, wherein the classical Self-consistent 

scheme is used. 

Tab. 16 Thermal conductivities of spruce wood obtained by homogenization 

 𝜆[𝑊 𝑚.𝐾⁄ ] 

 Radial Tangential Longitudinal 

Polymer network 0.40 0.40 0.40 

Cell wall 0.34 0.34 0.63 

Earlywood 0.09 0.08 0.21 

Latewood 0.21 0.30 0.56 

Solid wood 0.10 0.13 0.28 

The next step includes two phases namely polymer network corresponding to the 

effective material from the previous step, and cellulose, where it is not distinguished 

which type it is, whether amorphous or crystalline. The cellulose is in the form of infinite 

cylinders, where their deviation from the longitudinal axis corresponds to the MFA. In 

this step, the Mori-Tanaka method was employed. The thermal conductivities of the cell 

wall constituents used for the first two steps are summarized in Tab. 10. Their volume 

fractions were determined according to the computation described at the beginning of 

Chapter 6. The third step involves the influence of pores, whose properties correspond to 

the air defined by Eq. (3.19). Their volume fractions and dimensions are the same as for 

the moisture diffusivity. The Mori-Tanaka method was used again with ellipsoidal 

inclusions. The last step is the solution of the multi-layered laminate composed of the 

earlywood and latewood, where the volume fractions of plies are set equal to that obtained 
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by image analysis, see Tab. 4. The results for the temperature of 20°C, moisture content 

of 4.5% and zero microfibril angle are summarized in Tab. 16. 

The values obtained by homogenization are close to that provided by authors in [4], 

which are 0.10 W/mK in the transverse direction (radial and tangential) and 0.21 W/mK 

in the longitudinal direction. In [37] the author determined the longitudinal and transverse 

thermal conductivity of spruce at 20°C as 0.246 W/mK and 0.111 W/mK, respectively. 

These values are very similar to the previous ones. Whereas in [38] the thermal 

conductivity in the longitudinal direction is equal to 0.559 W/mK, which is more than 

twice as high as the previous mentioned. The same author also provides the value of the 

transverse thermal conductivity λ=0.107 W/mK, which is quite similar to the others. Both 

values were measured on Norway spruce specimens at temperature of 20°C. Employing 

Eqns. (3.17) and (3.18) the values of thermal conductivity for average air-dry density of 

441.80 kg/m3 are thereafter 0.115 W/mK (0.099 kcal/mh°C) and 0.112 W/mK 

(0.096 kcal/mh°C), respectively. These values are close to that in the transverse direction, 

whereas lower than the longitudinal conductivity. 

6.3 Elasticity 

The last example of the homogenization computation is that of the effective 

mechanical properties of the solid wood. The procedure is the same as in the case of 

thermal conductivity. The first step provides effective properties of polymer network. The 

classical Self-consistent scheme with spherical inclusions is employed in this step, where 

the individual phases are lignin, hemicellulose and water with extractives. The second 

step comprises polymer network from previous step as a matrix, amorphous and 

crystalline cellulose as cylindrical inclusions. Cylinders are deviated from the 

longitudinal axis, where deviation angle is equal to MFA. The Mori-Tanaka method with 

implemented orientation averaging is used in this step. The volume fractions of the cell 

wall constituents are computed in the same way as in the case of the thermal conductivity. 

The properties of individual cell wall constituents are given in Tab. 6. In the third step, 

the ellipsoidal inclusions corresponding to lumens are inserted into the transversely 

isotropic matrix, whose properties correspond to that of the cell wall material from 

previous step. The volume fractions of the lumens for both earlywood and latewood were 

taken from Tab. 4 for case of image analysis. The ratio of the inclusions semi-axes 

dimensions are derived from Tab. 14. The lumens act as pores, which reduce the overall 
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stiffness of the material, from that the properties of lumens are set to zero. The last step 

covers the influence of the arrangement of the parts of the growth ring, which resembles 

the laminate. Classical lamination theory is employed to obtain effective mechanical 

properties of the solid wood, according to the procedure described in [20]. The volume 

fractions of the earlywood and latewood were set equal to that obtained by the image 

analysis, see Tab. 4. The results for the moisture content of 4.5% and zero microfibril 

angle are summarized in Tab. 17. 

Tab. 17 Mechanical properties of spruce wood obtained by homogenization 

 𝐸 [𝐺𝑃𝑎] 𝐺 [𝐺𝑃𝑎] 𝜈 [−] 

 𝐸𝑅 𝐸𝑇 𝐸𝐿 𝐺𝐿𝑇 𝐺𝐿𝑅 𝐺𝑅𝑇 𝜈𝑇𝑅 𝜈𝐿𝑅 𝜈𝐿𝑇 

Polymer network 4.92 4.92 4.92 1.83 1.83 1.83 0.35 0.35 0.35 

Cell wall 6.88 6.88 39.22 2.28 2.28 2.31 0.49 0.27 0.27 

Earlywood 1.02 0.82 12.08 0.38 0.45 0.33 0.31 0.26 0.26 

Latewood 3.09 5.88 34.49 1.96 1.18 1.10 0.47 0.26 0.27 

Solid wood 1.23 1.84 16.56 0.70 0.51 0.38 0.34 0.26 0.26 

The values at the level of cell wall are close to that published by [5], where the axial 

modulus of the cell wall is equal to 35 GPa and the transverse one to 10 GPa. Small 

differences between mentioned values, where the longitudinal modulus is higher and the 

transverse moduli are lower in the case of homogenization, could be caused by MFA. 

Increase of the angle will reduce the longitudinal value, whereas the transverse ones will 

increase. Comparing the values of the solid wood obtained by the homogenization Tab. 

17 with that given by literature Tab. 5, the longitudinal modulus is in the range mentioned 

in Tab. 5, while the transverse moduli are higher than that in the table. In [6] the author 

assesses the longitudinal modulus of spruce, which value of 9.1 GPa is lower than that 

from homogenization. The same applies to the values given by the author in [4], where 

the modulus of elasticity of the Norway spruce is 10.2 GPa. 

6.4 Sensitivity of the results to changes in input values and 

assumptions 

In this section, the sensitivity of the results to changes in input values are examined. 

First mentioned is the dependence of the moduli of elasticity in three directions on the 
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deviation of the crystalline cellulose fibres from the longitudinal axis, where the MFA is 

changing from 0° to 90°. The elastic moduli were determined by homogenization 

procedure described in Section 6.3. The volume fractions of the cell wall constituents 

were computed according to the approach described at the beginning of Chapter 6 for the 

average moisture content of 4.5 %. Dimensions of the inclusions corresponding to lumens 

were derived from Tab. 14. The volume fractions of lumens and that of the earlywood 

and latewood were set constant equal to that in Tab. 4 (image analysis). The resulting 

dependence is depicted on Fig. 21. 

 

Fig. 21 Dependence of the three moduli of elasticity of wood on MFA 

From the course of the variable EL it is evident that the values are reasonable only 

up to 60°, approximately. Until this point the value is decreasing, whereas slightly 

increasing again for MFA higher than 60°. The line expressing modulus in the tangential 

direction is above that of the radial modulus, which does not comply with the statement 

that the radial modulus is higher than tangential one proposed by many authors, e.g. 

Kettunen [5], Persson [13], see also Tab. 5. This could be caused by neglecting the rays 

in the homogenization procedure or another assumption in the model. 

Importance of the proper determination of the lumen volume fraction is 

demonstrated in the case of the earlywood. The properties were obtained by 

homogenization up to the level of lumens. The input values were set constant in the same 

way as in the previous case, except the volume fraction of the earlywood lumens was 
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assumed to vary. The microfibril angle was considered as zero. The resulting dependence 

is represented on Fig. 22.  

 

Fig. 22 Dependence of the three moduli of elasticity of the earlywood on the volume fraction of lumens 

Clearly the dependence of the longitudinal moduli on the volume fractions of the 

earlywood lumens seems to be linear. This is not surprising as in the longitudinal direction 

the Mori-Tanaka predictions for the fibrous composites are identical to simple arithmetic 

average. Thus, in this case 𝐸𝐿 = (1 − 𝑓𝑙𝑢𝑚)𝐸𝑐𝑤,𝐿. In contrary, the transversal moduli 

(radial and tangential) are rather polynomials of higher degree. In addition, all values drop 

down to zero, when the volume fraction is set equal to 1. Recall that such a result can not 

be obtained with the Self-consistent method, because it is not recommended to use it for 

the homogenization of porous composites. 

In the case of variable volume fraction of earlywood (Fig. 23), the courses of 

functions are the same as in the previous case, i.e. the longitudinal modulus corresponds 

to linear function and that of transverse moduli were higher degree polynomials. The 

effective properties of wood were determined by the whole homogenization procedure, 

i.e. to the level of solid wood. The volume fractions of the cell wall constituents were the 

same as for the previous case. The dimensions of lumens were derived from Tab. 14. The 

volume fractions of lumens in the earlywood and latewood were set to 0.69 and 0.12, 

respectively, according to Tab. 4. The volume fraction of earlywood was variable, 

whereas that of the latewood was computed employing Eq. (6.7). The microfibril angle 

was set equal to zero. 
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Fig. 23 Dependence of the three moduli of elasticity of wood on the volume fraction of earlywood 

The determination of the volume fractions of earlywood and latewood is also very 

important. The results ranging from 34.49 GPa for few=1, which corresponds to pure 

latewood, to 12.08 GPa corresponding to pure earlywood assuming zero microfibril 

angle. This range is very wide. The figure also shows an interesting phenomenon, where 

the tangential and radial moduli are getting closer to each other when the volume fraction 

is approaching to 1. It is probably caused by the different shape of inclusions in both types 

of wood. Where the latewood lumens are flattened, whereas the earlywood lumens have 

almost the same dimensions in both directions. 

The inclusions at the level of earlywood and latewood are in the form of ellipsoids 

elongated in the longitudinal direction. The shape is defined by the ratio of the semi-axes, 

where the ratio of radial : tangential : longitudinal axis dimensions is equal to 

0.014:0.011:1 in the case of earlywood and 0.001:0.008:1 in the case of latewood. The 

influence of changing this ratio on the results of the homogenization procedure is 

presented for the earlywood as an illustrative example. Characteristics up to the level of 

cell wall were the same as in the previous cases for the constant moisture content of 4.5%. 

The volume fraction of lumens was adopted from the image analysis (0.69). The last 

homogenization step was omitted again. The dependence of the three moduli of elasticity 

of earlywood on the radial part of the ratio of semi-axes dimensions is depicted on Fig. 

24. The value is changing from 0.0012 to 0.0137, where the limits correspond to the 

latewood and earlywood, respectively.  
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Fig. 24 Dependence of the three moduli of elasticity of earlywood on changing dimension of radial 

semi-axis 

The longitudinal modulus shows only a very slight decrease, from 12.11 GPa to 

12.08 GPa. Change of the transversal values are more significant, where the radial 

modulus varies from 0.31 GPa to 1.02 GPa and the tangential one from 1.88 GPa to 

0.82 GPa. This proves the surmise that the converging of both transversal values 

mentioned in the previous case is due to the shape of inclusions. 

Tab. 18 Comparison of effective mechanical properties of wood using different types of 

inclusions 

 𝐸 [𝐺𝑃𝑎] 𝐺 [𝐺𝑃𝑎] 𝜈 [−] 

 𝐸𝑅 𝐸𝑇 𝐸𝐿 𝐺𝐿𝑇 𝐺𝐿𝑅 𝐺𝑅𝑇 𝜈𝑇𝑅 𝜈𝐿𝑅 𝜈𝐿𝑇 

Ellipsoid 1.23 1.84 16.56 0.70 0.51 0.38 0.34 0.26 0.26 

Elliptic cylinder 1.22 1.83 16.63 0.70 0.51 0.38 0.34 0.27 0.27 

Circular cylinder 1.13 1.72 16.63 0.69 0.49 0.39 0.36 0.27 0.27 

Sphere 1.54 2.08 8.68 0.77 0.58 0.54 0.38 0.24 0.25 

Another important assumption seems to be the choice of the inclusion shape. The 

homogenization procedure was performed in the same way as in the previous cases, with 

cell wall parameters for MC of 4.5%, volume fractions taken from Tab. 4 obtained by 

image analysis. The influence of the chosen inclusion shape was examined at the level of 

earlywood and latewood, i.e. inclusions corresponding to lumens. The resulting values at 
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the level of solid wood are summarized in Tab. 18, for four types of inclusions, namely 

ellipsoid, elliptic cylinder, circular cylinder and sphere. Where the ratios of semi-axes of 

ellipsoids are 0.014:0.011:1 in the case of earlywood and 0.001:0.008:1 in the case of 

latewood and that of elliptic cylinder are the same, only 1 was replaced by infinity. As it 

is evident from the table, the results are almost the same for the first three cases, whereas 

in the case of spherical inclusions the longitudinal modulus is almost half of that first 

mentioned. 
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7 Application of homogenization in further study of 

wood 

7.1 Determination of the MFA using nanoindentation 

The samples for nanoindentation were prepared in a way the longitudinal direction 

is practically identical to the longitudinal axis of the cell. From that the indentation 

modulus Er supposed to be the same as the longitudinal modulus of the cell wall EL. 

However, recall Tab. 17 the value obtained by homogenization is 39.22 GPa, which is 

almost three times higher than that provided by nanoindentation measurement 

(13.06 GPa). Although the indentation modulus is not exactly the same as the Young 

modulus, the difference is still too large. The discrepancy is caused, among other factors, 

by the microfibril angle, which affects the final mechanical properties. The dependency 

of the final mechanical properties on the MFA is also depicted on Fig. 21. 

 

Fig. 25 Angle dependency of the indentation modulus (M) 

The effective value from homogenization was derived for zero microfibril angle. 

To obtain the effective properties at the cell wall level assuming a non-zero MFA, the 

matrix transformation must be performed. Adopting the anisotropic theory of indentation 

presented in [39], we acquire indentation modulus as a function of the rotated 

homogenized stiffness matrix, which corresponds to that obtained by homogenization at 

the level of cell wall considering the average moisture content of 4.5 %. The variation of 
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the indentation modulus as a function of deviation from the longitudinal axis is plotted 

on Fig. 25. Assuming that the deviation angle corresponds to the MFA, it is possible to 

estimate the microfibril angle simply by comparing the measured values with those 

derived numerically. Point out, that the theoretical values are expressed in terms of the 

homogenized stiffness at the cell wall level transformed into the rotated system. 

 

Fig. 26 Probability density function of the microfibril angle 

Applying the normal distribution to data, the resulting mean value of the MFA is 

therefore 28.24°, see Fig. 26. The value is close to the upper limit of the interval 0°-30° 

stated by [4]. From the calculation, only a slight difference between the earlywood and 

latewood was observed, whereas referring [40] the MFA of Norway spruce earlywood 

ranges from 35° to 54° compare to latewood ranging from 3.5° to 11°. The author in [40] 

also mentioned the MFA of the fast-grown Norway spruce of 29°, which is very close to 

the present value. In [41] the authors provide MFA of the latewood cell walls of Norway 

spruce with the mean values of 0°and 20° measured by the X-ray diffraction and 

corresponding ranges of 0°-11.76°and 14.06°-27.66° obtained by various Raman imaging 

approaches. However, computed values lay out of range 5°-20° given by [42] for S2 layer 

in a mature wood. 

Nevertheless, there are many factors affecting the microfibril angle. Firstly, it is the 

horizontal and vertical position within the stem, where e.g. juvenile wood (in the centre) 

evinces high values in contrary to mature wood with the lowest values. The difference is 
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observed among trees even from the same sites. Exposure of the tree to external forces 

also causes a change in MFA. There are many other aspects given in literature, see e.g. 

[40; 42]. 

The whole homogenization procedure was performed again to show the effect of 

rotation of the fibres on the final properties. The input values remained the same as for 

the determination of MFA. The whole procedure with used parameters is described in 

Section 6.3. The results considering the mean value of the microfibril angle (28.24°), see 

Fig. 26, are summarized in Tab. 19. 

Tab. 19 Mechanical properties of spruce obtained by homogenization (MFA=28.24°) 

 𝐸 [𝐺𝑃𝑎] 𝐺 [𝐺𝑃𝑎] 𝜈 [−] 

 𝐸𝑅 𝐸𝑇 𝐸𝐿 𝐺𝐿𝑇 𝐺𝐿𝑅 𝐺𝑅𝑇 𝜈𝑇𝑅 𝜈𝐿𝑅 𝜈𝐿𝑇 

Polymer network 4.92 4.92 4.92 1.83 1.83 1.83 0.35 0.35 0.35 

Cell wall 7.03 7.03 22.40 5.55 5.55 2.54 0.38 0.47 0.47 

Earlywood 1.07 0.87 6.92 0.93 1.09 0.36 0.27 0.47 0.47 

Latewood 3.23 6.02 19.70 4.78 2.87 1.20 0.37 0.47 0.47 

Solid wood 1.30 1.92 9.47 1.70 1.25 0.42 0.28 0.47 0.47 

When comparing results for zero microfibril angle (Tab. 17) with those considering 

MFA of 28.24° (Tab. 19), we find out that the influence of the microfibril deviation from 

longitudinal axis is considerable. The most significant differences are in the direction of 

wood cells, where the longitudinal modulus of elasticity reduced from 16.56 GPa to 

9.47 GPa. On the other hand, the shear moduli in the tangential-longitudinal and 

radial-longitudinal planes increased to more than double. Also, the Poisson’s ratios in the 

same planes rose. Whereas the radial and tangential elastic moduli show only a slight 

change. Unfortunately, the rotation of fibres does not have the presumed effect on the 

effective properties of the cell wall material. The decrease of the longitudinal modulus is 

marked, while those in the transverse direction almost did not change. These results are 

even further from the values provided by [5], where the longitudinal modulus is 35 GPa 

and the transverse one is 10 GPa. The longitudinal modulus of solid wood dropped below 

the range given in Tab. 5 (13.5-16.7 GPa) and the value obtained by tensile tests 

(14.29 GPa), see Section 5.4. Nevertheless, it got closer to values stated by [4] (10.2 GPa) 

and [6] (9.1 GPa), see Section 6.3, where both values were obtained by test in bending. 
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7.2 Determination of coefficients of hygroexpansion 

As it was mentioned in Section 3.3, the wood is a naturally hygroscopic material, 

i.e. it attracts moisture from surroundings. During drying, the dimensions of the wood 

element are reduced, i.e. the shrinkage occurs. The opposite phenomenon to shrinkage is 

swelling, when the wood volume expands with increasing humidity. The ability of the 

material to change its dimensions in relation to the moisture content is characterized by 

hygroexpansion coefficient 𝛼ℎ, which is similar to that of the thermal expansion. The 

effective hygroexpansion coefficient could be implemented to the homogenization 

procedure. Unfortunately, hygroexpansion properties have not been found for all phases 

used in the previously mentioned homogenization procedure (Chapter 6) and some phases 

had different shape than was considered within the homogenization. According to the 

formula for overall strain: 

 𝜺 = 𝜺𝑒 + 𝜺ℎ;    𝜺ℎ = 𝜶ℎ𝑢 (7.1) 

where 𝜺𝑒 denotes the elastic strain, 𝜺ℎ the hygroexpansion strain, 𝜶ℎ the vector of 

hygroexpansion coefficients and 𝑢 the change of moisture content, the effective 

hygroexpansion coefficients have to be computed simultaneously with the effective 

mechanical properties. Therefore, the approach described in [13] was adopted for the 

whole computation. According to this approach, the homogenization is performed in 

a different way and with different input parameters than the previously mentioned. As it 

was proposed earlier, the resulting values are strongly dependent on the chosen input 

parameters. So, it would be appropriate to try another approach with different input values 

to obtain a comparison of the two procedures. 

Apart from the predictions based on the classical micromechanical models, the 

present sections examine the application of numerical homogenization in the framework 

of first-order homogenization theory for the sake of comparison. 

7.2.1 Analytical homogenization based on Mori-Tanaka method 

To avoid difficulties associated with the use of Self-consistent scheme in 

connection with anisotropic matrices, only the Mori-Tanaka homogenization method is 

considered. In comparison to Chapter 6, where the S2 layer was considered only, the 

prediction of effective coefficients of hygroexpansion follows a different path. This is 

because both lignin and hemicellulose, unlike crystalline parts of the cellulose, absorb 
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water quite significantly and as such all layers within the cell wall should be taken into 

account. In particular, the model assumes the cell wall as a laminate, which consists of 

three layers: M (middle lamella, primary wall and S1 layer), S2 and S3 layers, recall 

Section 2.3. 

Tab. 20 Mechanical properties of cell wall constituents [13] 

 𝐸 [𝐺𝑃𝑎] 𝐺 [𝐺𝑃𝑎] 𝜈 [−] 

 𝐸𝑅 = 𝐸𝑇 𝐸𝐿 𝐺𝐿𝑇 = 𝐺𝐿𝑅 𝐺𝑅𝑇 𝜈𝑇𝑅 𝜈𝐿𝑅 = 𝜈𝐿𝑇 

Lignin 2.75 2.75 1.03 1.03 0.33 0.33 

Hemicellulose 3.50 16 1.50 1.25 0.40 0.10 

Cellulose 17.50 150 4.50 5.38 0.50 0.01 

The first step comprises lignin, hemicellulose and cellulose. The distinction 

between amorphous and crystalline types of the cellulose is not considered. Further 

distinction to the original assumptions made in Chapter 3 concerns the material symmetry 

of cell wall constituent, where the originally isotropic hemicellulose is considered here as 

transversely isotropic to be consistent with [13]. The elastic properties of individual 

phases are summarized in Tab. 20 and corresponding coefficients of hygroexpansion are 

stored in Tab. 21. 

Tab. 21 Hygroexpansion coefficients of cell wall constituents [13] 

 𝛼ℎ,𝑅 𝛼ℎ,𝑇 𝛼ℎ,𝐿 

Lignin 0.351 0.351 0.351 

Hemicellulose 1.368 1.368 0.000 

Cellulose 0.000 0.000 0.000 

Within the cell wall, the cellulose was represented by circular cylindrical inclusions 

deviated from the longitudinal axis by the angle corresponding to MFA. The value of the 

microfibril angle of S2 layer was found with the help of nanoindentation, recall the Section 

7.1, whereas the respective values for M and S3 layers were taken from [13]. As seen from 

Tab. 22, not only MFA but also the volume fractions of cell wall constituents differ from 

layer to layer. Note finally, that the volume fractions and properties of phases are assumed 

to be independent of the moisture content. 
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The effective mechanical properties were obtained using Eqns. (4.17) and (4.18) in 

the same way as in Section 6.3. The effective coefficients of hygroexpansion within 

individual layers were computed by the Levin formula [21] written as: 

 𝛂ℎ
ℎ𝑜𝑚 = ∑𝑓𝑟(𝐁𝑟

𝑀𝑇)𝑇𝛂ℎ,𝑟 (7.2) 

where r ∈ {lignin, hemicellulose, cellulose}, 𝐁𝑟
𝑀𝑇 is a concentration factor given by 

Eq. (4.17) for Mori-Tanaka method and 𝜶ℎ,𝑟 denotes the hygroexpansion coefficient of 

individual phases. Again, the orientation averaging is implemented to the Mori-Tanaka 

method to account for every possible position within the cell wall. 

Tab. 22 Parameters of individual cell wall layers [13] 

 𝑓𝑙𝑖𝑔 𝑓ℎ𝑒𝑚𝑐𝑒𝑙𝑙 𝑓𝑐𝑒𝑙𝑙 𝑀𝐹𝐴 𝑓 (𝐸𝑊) 𝑓 (𝐿𝑊) 

M 0.65 0.15 0.20 45° 0.352 0.117 

S2 0.24 0.27 0.49 0-45° 0.609 0.870 

S3 0.24 0.27 0.49 75° 0.039 0.013 

Using the same approach as in Section 7.1, it is possible to evaluate the microfibril 

angle of the S2 layer, considering that nanoindentation results correspond to the properties 

of this layer. The higher values of the mechanical properties of the S2 layer considering 

zero angle led to higher MFA, which is equal to 32.53° comparing to 28.24° (Fig. 26) 

derived in the previous section. 

The second step takes into account the lamellar arrangement of the cell wall. The 

lamination theory introduced in [20] was used for the computation of the effective 

mechanical properties in the same way as for solid wood in Section 6.3. The directions 

were assumed in the similar way as in the case of solid wood, where the radial direction 

corresponds to the connection in series and the tangential and longitudinal directions to 

the parallel connection. The volume fractions of individual layers within the cell wall are 

listed in the last two columns of Tab. 22. Applying this approach to the effective 

coefficients of hygroexpansion yields the following estimates: 

 

𝛼𝑅
ℎ𝑜𝑚 = ∑𝑓𝑖 𝛼ℎ,𝑅,𝑖 

𝛼𝑇
ℎ𝑜𝑚 =

∑𝑓𝑖  𝐸𝑇,𝑖 𝛼ℎ,𝑇,𝑖
∑𝑓𝑖  𝐸𝑇,𝑖

 

(7.3) 



7 Application of homogenization in further study of wood 

69 

𝛼𝐿
ℎ𝑜𝑚 =

∑𝑓𝑖 𝐸𝐿,𝑖 𝛼ℎ,𝐿,𝑖
∑𝑓𝑖  𝐸𝐿,𝑖

 

where i ∈ {M layer, S2 layer, S3 layer}, E is the elastic modulus and R, T, L denote to the 

radial, tangential and longitudinal direction. The resulting values of the effective 

mechanical properties are summarized in Tab. 23 and those of the effective 

hygroexpansion coefficients are in Tab. 24.  

Tab. 23 Mechanical properties of spruce obtained by homogenization according to [13] 

 𝐸 [𝐺𝑃𝑎] 𝐺 [𝐺𝑃𝑎] 𝜈 [−] 

 𝐸𝑅 𝐸𝑇 𝐸𝐿 𝐺𝐿𝑇 𝐺𝐿𝑅 𝐺𝑅𝑇 𝜈𝑇𝑅 𝜈𝐿𝑅 𝜈𝐿𝑇 

M layer 5.20 5.20 6.26 5.85 5.85 2.53 0.03 0.55 0.55 

S2 layer * 7.69 7.69 32.18 13.23 13.23 3.39 0.14 0.76 0.76 

S3 layer 32.71 32.71 6.68 5.77 5.77 13.78 0.19 0.10 0.10 

Earlywood cell wall 7.26 8.05 22.95 10.34 8.85 3.11 0.15 0.68 0.61 

Latewood cell wall 7.60 7.86 29.61 12.27 11.36 3.29 0.15 0.73 0.71 

*MFA=32.53° 

It should be noted that the computation leads to different elastic properties of the 

earlywood and latewood cell wall, as it is evident from Tab. 23. This contradicts the 

results from Section 5.5, where the S2 layer only was considered in the homogenization 

thus suggesting the same cell wall stiffness of both the earlywood and latewood. 

Tab. 24 Hygroexpansion coefficients of spruce obtained by homogenization according to [13] 

 𝛼ℎ,𝑅 𝛼ℎ,𝑇 𝛼ℎ,𝐿 

M layer 0.363 0.363 0.248 

S2 layer * 0.363 0.363 0.125 

S3 layer 0.228 0.228 0.396 

Earlywood cell wall 0.358 0.341 0.141 

Latewood cell wall 0.361 0.356 0.129 

*MFA=32.53° 

Although the microfibril angle is higher, the resulting values at the level of cell wall 

are also higher than that mentioned in Tab. 19. It could be caused by higher volume 
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fraction of cellulose with large longitudinal modulus. Even though the total volume 

fraction is approximately the same in both cases, in the previously mentioned procedure, 

the cellulose is divided into crystalline with high stiffness and amorphous with very low 

values of longitudinal modulus. Also, the assumption of the transversely isotropic 

hemicellulose with higher longitudinal modulus may have appreciable impact on final 

properties. 

The next step covers the influence of the wood porosity. In order to make the 

comparison between the numerical and analytical solutions, the same assumptions as for 

the numerical homogenization were adopted. The effective properties at the level of 

lumens were computed using the same procedure as in the first step described at the 

beginning of this section. The inclusions in the form of elliptic cylinders aligned in the 

longitudinal direction were embedded in the matrix with properties of the cell wall 

material. Recall that in Chapter 6 the inclusions were assumed to be of ellipsoidal shape. 

The dimensions and volume fractions of the lumens were derived from Fig. 27. 

Subsequently, the volume fraction of lumens in the earlywood is 0.86 and 0.21 in the 

latewood. The results are compared with those obtained by numerical homogenization in 

Tab. 25. 

7.2.2 Numerical homogenization up to level of lumens 

The present section provides the derivation of the effective mechanical properties 

and coefficients of hygroexpansion to be compared with the Mori-Tanaka predictions 

derived in Section 7.2.1. This approach is based on the application of periodic unit cell 

(PUC). 

 

Fig. 27 Geometry of PUC of earlywood and latewood cell 

The PUC is defined for earlywood and latewood separately to distinguish between 

the different dimensions of the cells and lumens and volume fractions of the individual 
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layers within the cell wall. Similar to the previous section, three layers of the cell wall are 

considered as follows: M layer comprising middle lamella, primary wall and S1 layer 

(blue), S2 layer (red) and S3 layer (green). The simplified geometry of PUCs is depicted 

on Fig. 27, see also [13]. 

Owing to the fact that the evaluation of effective coefficients of hygroexpansion is 

similar to that of thermal expansion, we follow the procedure described in [22] and 

assume the PUC to be loaded by uniform tractions compatible with macroscopically 

uniform stress 𝚺 and a uniform moisture change u. The local constitutive law then reads: 

 𝝈(𝒙) = 𝐋(𝒙)(𝜺(𝒙) − 𝜶ℎ(𝒙)𝑢) (7.4) 

where 𝐋 is the local stiffness matrix, 𝜶ℎ comprises the coefficients of hygroexpansion 

and 𝑢 denotes the change of the moisture content. In the framework of first order 

homogenization, the local strain 𝜺(𝒙) is split into a macroscopic part 𝑬 constant over the 

PUC and a fluctuation part 𝜺∗(𝒙) such that: 

 𝜺(𝒙) = 𝑬 + 𝜺∗(𝒙) (7.5) 

It is obvious that the fluctuation part has to disappear during volume averaging. This 

could be achieved by assuming the fluctuation part 𝜺∗to be periodic so that the 

corresponding displacement field 𝒖∗ is subjected to specific periodic boundary 

conditions, see [22] for further details. 

The finite element formulation is based on the application of the Hill Lemma 

written as: 

 〈𝛿𝜺(𝒙)𝑇𝝈(𝒙)〉 = 𝛿𝑬𝑇𝚺 (7.6) 

where angle brackets denote the volume average. Substituting Eqns. (7.4) and (7.5) into 

Eq. (7.6) yields: 

 
𝛿𝑬𝑇〈𝐋(𝒙)(𝑬 + 𝜺∗(𝒙) − 𝜶ℎ(𝒙)𝑢)〉 + 〈𝛿𝜺

∗(𝒙)𝑇𝐋(𝒙)(𝑬 +

𝜺∗(𝒙) − 𝜶ℎ(𝒙)𝑢)〉 = 𝛿𝑬
𝑇𝚺  

(7.7) 

Since 𝛿𝑬 and 𝛿𝜺∗(𝒙) are independent, the preceding equation can be split into two 

statements: 
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𝛿𝑬𝑇𝚺 = 𝛿𝑬𝑇[〈𝐋(𝒙)〉𝑬 + 〈𝐋(𝒙)𝜺∗(𝒙)〉 − 〈𝐋(𝒙)𝜶ℎ(𝒙)𝑢〉]  

0 = 〈𝛿𝜺∗(𝒙)𝑇𝐋(𝒙)〉𝑬 + 〈𝛿𝜺∗(𝒙)𝑇𝐋(𝒙)(𝜀∗(𝒙) − 𝜶ℎ(𝒙)𝑢)〉  
(7.8) 

Upon the finite element discretization the strain field becomes: 

 𝜺(𝒙) = 𝑬 + 𝐁(𝒙)𝒓 (7.9) 

where 𝐁 is the geometric matrix and 𝒓 is the vector of nodal displacements of the 

fluctuation part of the displacement field. Combining Eqns. (7.8) and (7.9) provides the 

discretized system of algebraic equations: 
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 (7.10) 

where the macroscopic strain 𝑬 and the nodal fluctuation displacements 𝒓 are unknown 

quantities, which can be solved by these equations. 

Finally, setting the macroscopic stress 𝚺 = 0 and the moisture change 𝑢 = 1 yields 

the effective coefficients of hygroexpansion at the level of lumens as the components of 

the macroscopic strain 𝑬. 

Tab. 25 Comparison of results from analytical and numerical homogenization at level of lumens 

  𝐋11 𝐋22 𝐋33 𝛼ℎ,𝑅 𝛼ℎ,𝑇 𝛼ℎ,𝐿 

Numerical - EW 0.74 0.61 3.71 0.356 0.357 0.143 

 - LW 2.65 6.90 28.45 0.369 0.363 0.130 

Analytical - EW 0.55 0.46 3.77 0.358 0.341 0.141 

 - LW 2.67 7.10 29.32 0.361 0.356 0.129 

The results from the numerical homogenization assuming plain-strain are compared 

with those derived from analytical homogenization in Tab. 25, where 𝐋𝑛𝑚 denotes the 

element of the stiffness matrix and 𝛼ℎ is the coefficient of hygroexpansion in a given 

direction. Furthermore, the subscripts refer to the direction as follows: 11 – radial, 22 – 

tangential, 33 – longitudinal. The presented values obtained by both approaches are very 
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similar. Slightly larger differences, but still insignificant, are among the transverse 

elements of the stiffness matrix. 
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8 Conclusion 

The wood is a widely used building material. The major part of timber used for 

building construction in the Czech Republic comprises the Norway spruce (Picea abies), 

therefore the thesis is mainly concerned about this species. The use of wood is 

considerably limited, because of its heterogeneity and almost unpredictable mechanical 

properties. For a full understanding of the behaviour of wood it is necessary to know the 

influences, which affect its mechanical and transport properties. 

It is important to understand the wood composition and its behaviour in a green 

state, i.e. to understand the behaviour of the tree itself. It is useful to know the impact of 

the growth conditions on the final properties (Section 2.4). This knowledge can simplify 

the following research. In this case, the tree stem, from which the timber is mainly 

produced, is studied. First, it is necessary to introduce three basic directions, which are 

consistent with a concentric arrangement of the growth rings. The radial direction runs 

from the centre of the stem to the periphery and is perpendicular to the growth rings. The 

tangential direction is in the direction of the tangent to growth rings. The longitudinal (or 

axial) direction is assumed along the stem. Basically, the wood is mainly composed of 

tracheids, the long tube-like cells, which are different in the earlywood and latewood. The 

earlywood cells are large, where thin cell walls surround wide lumens (cavity inside the 

cell). They are formed at the beginning of the growth season and act as conductors of 

water and nutrients. On the other hand, the latewood cells are narrower in the radial 

direction with thick walls and thin lumens. These cells are formed at the end of the growth 

season, mainly to provide support to the whole tree and storage of nutrients. The 

earlywood and latewood together form the growth ring, which resembles lamellar 

arrangement. The same also applies to the cell wall, where the layers are arranged as 

follows (describing outwards): warty layer, secondary wall (divided into inner, middle 

and outer layer) and primary wall. The adjacent cell walls are bonded together by middle 

lamella. The most significant effect on the overall strength of the cell wall has the middle 

layer of the secondary wall (S2 layer), due to the parallel arrangement of the microfibrils 

and its large volume fraction within the cell wall. Furthermore, the cell wall is composed 

of cellulose (crystalline and amorphous), hemicellulose, lignin and extractives. The 

cellulose occurs in the form of microfibrils – long fibres with the core of the crystalline 

cellulose surrounded by the amorphous cellulose and hemicellulose, bonded together by 
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lignin. It is proposed by many authors that the deviation of the microfibrils from the 

longitudinal axis (denoted as the microfibril angle – MFA) has a significant influence on 

the properties of the cell wall and subsequently on the overall mechanical behaviour. The 

structural composition of wood is more elaborated in Chapter 2. 

The prerequisite for a proper structural design is the knowledge of the mechanical 

properties of the material. The basic quantity determining whether the wood is weaker or 

stronger is the density. There are several types of densities of which the most used are the 

oven-dry and air-dry density, see Section 3.1. The range of the oven-dry density obtained 

by the measurements within this thesis is 365.34-510.23 kg/m3, see Section 5.1. It 

corresponds to the interval stated in [13], where the density of clear wood specimens of 

Norway spruce falls within the range of 350-600 kg/m3. The density is inversely 

proportional to the amount of pores, where higher porosity indicates lower density and 

subsequently lower strength of the material. Thus, it is essential to determine the exact 

distribution and dimensions of pores. Recalling the cell structure, where larger pores 

occur mainly in the earlywood, an accurate determination of the volume fractions of the 

earlywood and latewood is also necessary. Both characteristics can be determined by 

various methods, whereas the values presented in this thesis are mainly obtained by image 

analysis, see Sections 5.2 and 5.3. In Section 3.1, the computation of the volume fractions 

of the earlywood and latewood together with that of lumens (pores) according to [9] and 

[10] was introduced, whereas it was proved (Sections 5.2 and 5.3) that these relationships 

depending on the density do not express the reality quite well. The measurements of the 

widths of growth rings and their parts show the dependency of the earlywood width on 

the density, while the latewood widths seem to be rather constant of about 0.2 mm. 

Similar conclusion has been put forward in [13]. Independence of the density has been 

observed also in the case of lumen volume fractions. For almost all computations, the 

average values obtained by image analysis were considered, where the volume fractions 

of the earlywood and latewood are 0.8 and 0.2, respectively, and the volume fractions of 

lumens are 0.69 in the earlywood and 0.12 in the latewood, see Tab. 4. 

The ability of the material to resist external forces is represented by mechanical 

properties, see Section 3.2. The stress level at which failure occurs is considered as 

strength varying in dependence on the manner of loading. Elastic behaviour can be 

characterized by the set of 12 constants, where nine are independent considering 

orthotropy of the wood. These parameters can be determined either experimentally or 
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numerically. Probably, the most fundamental quantity describing the elastic behaviour of 

the material is the modulus of elasticity. According to [6], more accurate values of the 

MOE could be obtained by the axial tension tests. The tensile test performed within this 

thesis is described in Section 5.4, where the mean value is 14.29 GPa, which falls within 

the range given in Tab. 5. The mechanical properties could be measured even on lower 

scales. It is proposed by many authors that the main load bearing wood constituent is the 

cell wall. Therefore, it could be useful to know the mechanical properties of the cell wall. 

These can by measured directly by nanoindentation. The basic principle of the 

nanoindentation experiment is pushing the small hard tip with known geometry and 

mechanical properties into the tested material with unknown properties while 

simultaneously recording the load and indentation depth relative to the initial undeformed 

surface. The method, basic equations and the measurements itself are further described in 

Section 5.5. The measured data have to be evaluated by various approaches, in this case 

the anisotropic theory of indentation presented in [39] was employed. Due to the 

assumption that the overall strength of the cell wall is governed by that of the S2 layer, all 

indents were localized into this layer. Based on the results depicted on Fig. 19, it is 

assumed that the properties of the cell wall are the same throughout the whole growth 

ring. The mean value of the indentation modulus is 13.06 GPa, whereas it is necessary to 

point out that it does not correspond to the Young modulus of the material. 

The wood is a naturally hygroscopic material, i.e. it attracts moisture from 

surrounding atmosphere. However, the presence of the water affects all other properties. 

The water is present in the wood in two forms: free water (i.e. liquid water or water vapour 

in the lumens and other cavities) and bound water (i.e. liquid water in the cell wall) [5]. 

The amount of water present in wood is characterized by the moisture content (MC), 

defined as a ratio of the mass of water to the oven-dried wood mass. The moisture content 

belongs to the most relevant quantities, which have to be measured during the material 

examination. The basic method of moisture content determination is based drying and 

weighing, where the wood sample is weighed before and after drying in an oven. The 

gravimetric moisture content is therefore computed by Eq. (3.8). The mean value of MC 

of samples examined within this thesis, see Section 5.1, is 4.5%. There are two important 

values of MC: the equilibrium moisture content (EMC) defined under constant conditions 

and the fibre saturation point (FSP) referring to the state, when the cell walls are fully 

saturated and there is no free water in lumens. The average value of FSP is about 30% 
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[3]. This point is very important, because below FSP, most properties change as 

a function of MC and so the dimensions (i.e. shrinkage occurs). Also, below FSP the 

motion changes into diffusion only. There are two types of motion obeying Fick’s first 

law: flow along the lumens, driven by difference of pressures, and diffusion along lumens 

or through cell wall dependent on a concentration gradient. Considering the steady-state 

diffusion, the macroscopic moisture flux is governed by Eq. (3.9). In this equation, the 

material property is characterized by moisture diffusion coefficient D [m2/s], which could 

be also measured e.g. by cup method. Unfortunately, the measurement described in 

Section 5.6 led to values too far from those stated in the literature. Therefore, they were 

not included in further data processing. 

Nowadays, a proper building design can not be managed without the knowledge of 

thermal properties (see Section 3.4). One of the key quantities is the coefficient of thermal 

conductivity 𝜆 [W/mK]. It characterizes the resistance of the material to the passage of 

heat and is governed by Fourier’s law. The thermal conductivity is also influenced by 

moisture, such as the other material properties. According to [4] the values for spruce 

with density of 340 kg/m3 are 0.10 W/mK in the transverse direction and 0.21 W/mK in 

the longitudinal direction. 

All mentioned material characteristics could be determined computationally, e.g. 

by micromechanical homogenization. Homogenization methods are used for the 

computation of the effective properties of the heterogeneous material, especially 

composites, based on the knowledge of the structural composition and the material 

properties of all constituents. An overview of methods and the derivation of individual 

equations are mentioned in Chapter 4. The wood resembles the natural composite and 

could be treated as such. Recalling the structural composition described in Chapter 2 the 

most appropriate approach of the determination of effective properties seems to be 

an upscale homogenization starting from the level of cell wall constituents up to the level 

of solid wood (Chapter 6). Adopting the approach described in [9] the homogenization 

procedure comprises several steps. The effective material obtained by the first step is 

called polymer network and consists of three phases: lignin, hemicellulose and water with 

extractives forming one phase. Lignin and hemicellulose are almost of the same volume 

fractions and the role of the matrix and inclusion is not clear. Therefore, the 

Self-consistent scheme with spherical inclusions seems to be a good choice. The next step 

provides the effective properties of the cell wall. Circular cylindrical inclusions, 
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corresponding to cellulose or amorphous and crystalline cellulose separately, are inserted 

into the isotropic matrix (polymer network from the previous step). Within this step the 

influence of the microfibril angle is implemented as a deviation of inclusions from the 

longitudinal axis (axis x3 in this thesis). These assumptions lead to the Mori-Tanaka 

method for isotropic matrix with infinite circular cylindrical inclusions deviated by MFA. 

This step also includes the orientation averaging to obtain transversely isotropic material. 

The third step covers the influence of the porous structure. According to the wood 

composition, see Section 2.2, the shape of pores (lumens) could be simplified into the 

form of ellipsoidal cavities, which are different in the case of earlywood and latewood. 

The matrix formed by the cell wall is weakened by pores. The Mori-Tanaka method with 

ellipsoidal inclusions oriented in the longitudinal direction in transversely isotropic 

matrix was employed for the computation of the effective properties. Mainly because, 

unlike the Self-consistent scheme, this method is well suitable for materials with porous 

phase. The last step covers the influence of the arrangement of the earlywood and 

latewood parts of the growth ring, which resembles the multi-layered laminate. The 

classical lamination theory described in [20] was employed in the case of elasticity, 

whereas the Voight and Reuss bounds governed by Eqns. (4.12) and (4.13) give sufficient 

estimates in the case of moisture diffusivity and thermal conductivity. In [9] the authors 

also provide one additional step reflecting the influence of rays. Whereas this step was 

omitted from the procedure due to the low content of the rays in the whole wood volume, 

about 5.9% [5]. 

The homogenization procedure was performed for the case of elasticity, moisture 

diffusivity and thermal conductivity. In the case of the moisture diffusivity the 

homogenization procedure starts at the level of lumens, whereas the thermal conductivity 

and elasticity were computed employing the whole procedure. The application of the 

homogenization procedure together with properties of individual phases for the three 

cases are described in Sections 6.1, 6.2 and 6.3. The volume fractions of the cell wall 

constituents were the same for all cases and were derived according to the approach 

described at the beginning of Chapter 6 for the moisture content set equal to 4.5%. The 

volume fractions of the earlywood (0.80) and latewood (0.20) and that of the lumens in 

the earlywood (0.69) and latewood (0.12) were taken from Tab. 4 for the case of image 

analysis. The microfibril angle was considered equal to zero. 
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According to Tab. 15 the resulting diffusion coefficients of spruce at the level of 

solid wood are 3.09x10-12 m2/s (radial), 4.24x10-12 m2/s (tangential) and 3634.27x10-12 

m2/s (longitudinal). The value in the longitudinal direction correspond to that given in 

[33], where the author presents typical values of diffusivity coefficients of Swedish pine 

and spruce as 1.5x10-9 m2/s in the longitudinal direction, 3x10-10 m2/s in the radial and 

tangential direction, determined at RH=75% considering steady-state. Whereas the values 

in the transverse direction obtained by homogenization are considerably lower. Although, 

the values are not consistent among published results. In [34] the authors state that the 

moisture diffusion coefficient in the radial direction of Norway spruce is in the order of 

10-9 m2/s as related to the moisture content. On the other hand, in [36] the author presents 

the transverse diffusion coefficient of spruce wood in relation to the chosen step of the 

change of moisture content, where the resulting values are 5.2x10-11 m2/s for a cycle from 

RH=65% to RH=80% and 7.6x10-11 m2/s for a cycle from RH=65% to RH=30%, both at 

a temperature of 20°C. The author also provides the value of the longitudinal diffusivity 

for a cycle from RH=65% to RH=80%, that is equal to 10-9 m2/s, which corresponds to 

that obtained by homogenization too. However, it should be mentioned, that the 

measurement is very difficult, especially when division into directions is required. 

The results of the homogenization for the case of the thermal conductivity are 

summarized in Tab. 16. The coefficients of thermal conductivity at the level of solid wood 

are 0.10 W/mK (radial), 0.13 W/mK (tangential) and 0.28 W/mK (longitudinal). These 

values are close to that provided by the authors in [4], where the transverse coefficient is 

0.10 W/mK and the longitudinal one is 0.21 W/mK. The similar values are provided also 

in [37], where the thermal conductivity of spruce at 20°C is 0.111 W/mK in the transverse 

direction and 0.246 W/mK in the longitudinal direction. On the other hand, in [38] the 

authors present considerably higher value of the longitudinal coefficient (0.559 W/mK), 

whereas the transverse thermal conductivity is 0.107 W/mK, which is similar to those 

previously mentioned. 

The effective values of the mechanical properties at all levels of the homogenization 

procedure are summarized in Tab. 17. The effective Young moduli at the level of solid 

wood are 1.23 GPa in the radial direction, 1.84 GPa in the tangential direction and 

16.56 GPa in the longitudinal direction. Comparing to Tab. 5, the longitudinal modulus 

obtained by homogenization falls within the range of 13.5-16.7 GPa given by [13]. 

Whereas the values corresponding to the radial and tangential directions are quite higher 
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than that mentioned in Tab. 5 (0.70-0.90 GPa – radial, 0.40-0.65 GPa – tangential). The 

longitudinal modulus is close to that measured in axial tension test, where the mean value 

is 14.29 GPa, see Section 5.4. Although, the homogenization gives higher estimate than 

values given by [6] and [4], where the longitudinal moduli are 9.1 GPa and 10.2 GPa, 

respectively. Also, the values at the level of cell wall are slightly different than that 

published in the literature. For example, in [5] the axial modulus of the cell wall is 35 GPa 

and the transverse one is 10 GPa. The small differences between mentioned values, where 

the longitudinal modulus is higher and the transverse moduli are lower in the case of 

homogenization, could be caused by the deviation of microfibrils. 

Based on the previously mentioned results, it is possible to propose that the 

homogenization provides more or less reasonable estimates of the effective thermal 

conductivity and values in the longitudinal direction of the remaining quantities. The 

discrepancy could be caused by many factors. There could be inaccuracies in the 

homogenization procedure (e.g. wrong input values, improperly conceived model etc.) or 

even the measurement and adopted assumptions within the data evaluation can lead to 

misleading results. The values in previous paragraphs show a great variability in data 

reported in the literature. However, the improvement of measurement methods is not 

a subject of this thesis. The effect of change in some input values and assumptions on 

resulting effective properties is examined in Section 6.4, where the effect on mechanical 

properties only was studied for the sake of simplicity. 

The presented variations in input values in Section 6.4 show that the choice of the 

inclusion shape, see Tab. 18, has only a little effect on the final properties, except the 

spherical inclusion that was chosen only as an illustrative case and does not correspond 

to the real shape of lumens. Increasing radial semi-axis dimension leads to the change in 

transverse effective moduli, whereas the longitudinal modulus remains almost 

unchanged. The dependency is depicted on Fig. 24. More significant is the influence of 

the volume fractions of parts of the growth ring, i.e. earlywood and latewood (Fig. 23). 

With increasing volume fraction of the earlywood, the mechanical properties are 

changing from that of pure latewood to the pure earlywood, where the values decrease 

from 34.49 GPa to 12.08 GPa considering zero MFA. Referring to Fig. 22, the most 

significant is the influence of the wood porosity. The reduction of mechanical properties 

due to increasing volume fraction of pores is considerable. Thus, the proper determination 

of the lumens volume fraction is a key factor determining the accuracy of final results. 



8 Conclusion 

81 

It is proved by many authors that the microfibril angle has a significant impact on 

overall mechanical properties. It is possible to implement it into the homogenization 

procedure as the deviation of inclusions within the second step. The dependency of the 

three moduli at the level of solid wood on the deviation angle is depicted on Fig. 21. As 

it is evident from the picture, the MFA mainly affects the longitudinal modulus, where 

the most significant decrease is between 0° and 50°. Considering that the values measured 

by nanoindentation correspond to the real properties of the cell wall, it is possible to adopt 

an inverse approach and estimate the MFA by combining the homogenization and 

nanoindentation results, see Section 7.1. 

Tab. 26 Mechanical properties obtained by homogenization for two different values of MFA 

 MFA 𝐸 [𝐺𝑃𝑎] 𝐺 [𝐺𝑃𝑎] 𝜈 [−] 

 [°] 𝐸𝑅 𝐸𝑇 𝐸𝐿 𝐺𝐿𝑇 𝐺𝐿𝑅 𝐺𝑅𝑇 𝜈𝑇𝑅 𝜈𝐿𝑅 𝜈𝐿𝑇 

Cell wall 0 6.88 6.88 39.22 2.28 2.28 2.31 0.49 0.27 0.27 

 28.24 7.03 7.03 22.40 5.55 5.55 2.54 0.38 0.47 0.47 

Solid wood 0 1.23 1.84 16.56 0.70 0.51 0.38 0.34 0.26 0.26 

 28.24 1.30 1.92 9.47 1.70 1.25 0.42 0.28 0.47 0.47 

Recalling the results of both methods, the effective longitudinal modulus obtained 

by homogenization for zero MFA is 39.22 GPa, whereas the indentation modulus 

measured by nanoindentation (13.06 GPa) is almost three times lower. It is evident that 

the matrix transformation has to be employed to obtain the effective properties of the cell 

wall for a non-zero MFA. Adopting the anisotropic theory of indentation presented in 

[39], we acquire the indentation modulus as a function of the rotated homogenized 

stiffness matrix. The dependency of the indentation modulus on the deviation angle is 

depicted on Fig. 25. Comparing the measured values with those derived numerically, it is 

possible to estimate the microfibril angle. Considering the normal distribution of data in 

Fig. 26, the mean value of the microfibril angle is 28.24°. This value is close to the upper 

limit of the interval 0°-30° presented in [4]. On the basis of the nanoindentation 

measurements, it was assumed that the cell wall has the same properties regardless of its 

position within the growth ring. Whereas, when referring to [40] the MFA of Norway 

spruce earlywood ranges from 35° to 54° compare to latewood ranging from 3.5° to 11°. 

Close to the computed value is the MFA of the fast grown Norway spruce (29°) stated in 

[40]. However, they lay out of range 5°-20° given by [42] for S2 layer in a mature wood. 
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Nevertheless, there are many factors affecting the microfibril angle, see e.g. [40; 42]. The 

effect of the deviation of the reinforcing fibres is showed in Tab. 26, where the results 

from the homogenization procedure at the level of cell wall and solid wood are presented 

as a combination of Tab. 17 and Tab. 19. Unfortunately, the rotation of fibres does not 

have the presumed effect on the effective properties. The longitudinal moduli decreased 

significantly, while the radial and tangential moduli increased rather slightly. The 

longitudinal modulus of the cell wall is considerably lower than that provided by [5] 

(35 GPa). At the level of solid wood, the longitudinal modulus dropped below the range 

given in  Tab. 5 (13.5-16.7 GPa) and the value obtained by the tensile tests (14.29 GPa), 

see Section 5.4. But it got closer to values stated in [4] (10.2 GPa) and [6] (9.1 GPa), see 

Section 6.3, where both values were obtained by the bending test. 

The wood is a naturally hygroscopic material that receives water from its 

surroundings. During drying, the dimensions of the wood element are reduced, i.e. the 

shrinkage occurs. The opposite phenomenon to shrinkage is swelling, when the wood 

volume expands with increasing humidity. The ability of the material to change its 

dimensions in relation to the moisture content is characterized by the coefficient of 

hygroexpansion 𝛼ℎ, which is similar to that of the thermal expansion. The coefficients of 

hygroexpansion could be determined also by homogenization. Due to the connection of 

the elastic and hygroexpansion strain, see Eq. (7.1), these two quantities have to be solved 

simultaneously. Unfortunately, the hygroexpansion properties of all phases of the 

homogenization procedure have not been found. Therefore, the approach described in 

[13] was adopted. According to this approach, the homogenization is performed in 

a different way and with different input parameters and assumptions than that previously 

mentioned. As it was proposed earlier, the resulting values are strongly dependent on the 

chosen input parameters, so it provides a comparison to the homogenization procedure 

described in Chapters 4 and 6. Apart from the predictions based on the classical 

micromechanical models, the numerical homogenization is examined within this chapter. 

The analytical homogenization is based on the Mori-Tanaka method. In comparison to 

Chapter 6, where the S2 layer is considered only, all layers within the cell wall are 

accounted for, recall the cell wall composition in Section 2.3. Each layer is considered as 

fibre-reinforced composite comprising lignin, hemicellulose and cellulose, where the last 

two phases are in the form of circular cylindrical inclusions deviated from the longitudinal 

axis by MFA. The distinction between amorphous and crystalline types of the cellulose 
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is not considered. Further distinction to the original assumptions made in Chapter 3 

concerns the material symmetry of cell wall constituents, where originally isotropic 

hemicellulose is considered here as transversely isotropic to be consistent with [13]. The 

properties and volume fractions of individual phases are summarized in tables within 

Section 7.2.1. The effective properties of cell wall layers were computed by the 

Mori-Tanaka method employing the Levin formula in the case of hygroexpansion. Using 

the same approach as in Section 7.1, it is possible to evaluate the microfibril angle of the 

S2 layer, considering that nanoindentation results correspond to the properties of this 

layer. The calculation led to the resulting MFA being equal to 32.53°, which is higher 

than 28.24° obtained in Section 7.1. As it was mentioned earlier, the cell wall resembles 

laminate. Therefore, the lamination theory introduced in [20] and Eqns. (7.3) were used 

for the computation of the effective properties of the whole cell wall. The directions were 

assumed in the same way as in the case of the solid wood, where the radial direction 

corresponds to the connection in series and the tangential and longitudinal directions to 

the parallel connection. The resulting properties are summarized in Tab. 23 and Tab. 24. 

It should be noted that the computation leads to different elastic properties of the 

earlywood and latewood cell wall. This contradicts the results from Section 5.5, where 

the S2 layer only was considered in the homogenization thus suggesting the same cell wall 

stiffness of both the earlywood and latewood. Although the microfibril angle is higher, 

the resulting values at the level of cell wall are also higher than that mentioned in Tab. 

19, which is caused by different assumptions and input values. The influence of the wood 

porosity is covered by the next step. The Mori-Tanaka is employed in the same way as in 

Section 6.3 and the effective coefficients of hygroexpansion are computed according to 

Eq. (7.2). The same assumptions regarding the shape and volume fractions of lumens as 

for the numerical homogenization were adopted, in the sake of comparison. The 

numerical homogenization was employed using equations derived in Section 7.2.2. The 

computation starts at the level of cell wall considering layered structure according to the 

periodic unit cell (Fig. 27), where the properties of individual layers correspond to those 

computed by analytical homogenization in Section 7.2.1. The final effective properties at 

the level of lumens of both approaches are very similar, see Tab. 25.  

It is apparent from the presented work, that the knowledge of the properties and 

volume fractions of individual phases is crucial for the use of homogenization methods. 

However, the wood is very complex material showing a great variability in all its 
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characteristics, so all parameters have to be evaluated on average. Modern measurement 

methods allow us to determine the properties of individual constituents up to the 

nanometre scale. Advanced microscopes provide a view of the structure of material at 

high zoom. The development of the homogenization model has to be supported by 

measurements on various scales. Some of the model improvements based on the findings 

determined within this thesis will be presented in the following text. 

Following the homogenization procedure, the first main task is the determination 

of the properties and volume fractions of the cell wall constituents, which differ for 

individual layers. However, it is a demanding process among others due to the 

complicated extraction of individual phases. Also, the assumed shape of the phases is 

very important issue. The higher value of MFA estimated from the computation according 

to [13] shows that the model of microfibril, defined as cellulose surrounded by 

hemicellulose and lignin represents the reality more precisely than that assumed in 

Chapters 3 and 6. Furthermore, the deviation angle of microfibrils varies in each layer 

and its measurement is also very complicated. The estimation of the MFA using the 

nanoindentation measurement could be satisfactory, whereas the data evaluation is still 

quite questionable. The solution of the contact with viscoelastic material could be a better 

choice. Also, the assumption of the layered structure of the cell wall is closer to the actual 

state. Although, no significant difference was found between the used shapes of 

inclusions representing pores (Section 6.4) due to the considerable length of the cells, the 

use of ellipsoids is more accurate. Unfortunately, the lumens cause only the reduction of 

the effective mechanical properties computed by the Mori-Tanaka method, while the 

effect of the geometric strengthening of the wood structure is not taken into account. This 

could be implemented into the computation only by modelling the structure and 

a subsequent calculation using the finite element method. The representation of growth 

rings adopted here is also not quite accurate. The gradual change of the porosity between 

the earlywood and latewood should be taken into account, i.e. the transition zone should 

be taken into account. The solid wood includes many elements that were not considered, 

whether natural components, such as rays and resin canals, or defects, e.g. knots. It 

follows from the above that the wood modelling is a very complex matter and there is 

still a long way to achieve the ‘correct’ model for the prediction of wood properties. 
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Nomenclature 

General notation 

𝒂  Vector quantity 

𝐀  Matrix quantity 

𝑎  Scalar quantity 

𝐈  Identity matrix 

𝐀−1  Inverse of 𝐀 

𝐀𝑇  Transpose of 𝐀 

𝒙  Position vector 

∇  Gradient operator 

Basic quantities 

u [-] Moisture content 

𝜌𝑑𝑟𝑦 [kg/m3] Oven-dry density 

𝑓 [-] Volume fraction 

E [GPa] Modulus of elasticity 

𝜈 [-] Poisson’s ratio 

G [GPa] Shear modulus 

D [m2/s] Moisture diffusion coefficient 

λ [W/m.K] Coefficient of thermal conductivity 

𝛼ℎ [-] Coefficient of hygroexpansion 

Homogenization 

M Compliance matrix of the material 

L Stiffness matrix of the material 

A Strain concentration factor 

B Stress concentration factor 
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Abbreviations 

MFA Microfibril angle 

MC Moisture content 

EMC Equilibrium moisture content 

FSP Fibre saturation point 

MOE Modulus of elasticity 

RVE Representative volume element 

RH Relative humidity in surroundings 

PUC Periodic unit cell 

Subscripts and superscripts 

lum Lumens 

ew Earlywood 

lw Latewood 

cw Cell wall 

R Radial 

T Tangential 

L Longitudinal 

SC Self-consistent method 

MT Mori-Tanaka method 

  



List of figures 

87 

List of figures 

Fig. 1 Types of directions and sections in wood stem. [2] ........................................... 4 

Fig. 2 Wood macrostructure. [4] ................................................................................... 5 

Fig. 3 Microstructure of the spruce (optical microscope) – cross section .................... 6 

Fig. 4 Microstructure of the spruce (optical microscope) – tangential section ............. 7 

Fig. 5 Structure of the tracheid ..................................................................................... 9 

Fig. 6 SEM image of spruce earlywood: Original greyscale image (left) and binary 

image (right) ..................................................................................................... 16 

Fig. 7 Reconstructed 3D image from single source double-energy method [12] ....... 17 

Fig. 8 Moisture sorption isotherms for linden (32°C) [6] ........................................... 24 

Fig. 9 Cross sections of the spruce samples ................................................................ 38 

Fig. 10 Dependence of the earlywood width on the growth ring width ....................... 39 

Fig. 11 Dependence of the latewood width on the growth ring width .......................... 40 

Fig. 12 Dependence of the earlywood width on the oven-dry density (with illustrative fit 

function) ............................................................................................................ 41 

Fig. 13 Dependence of the earlywood and latewood volume fractions on oven-dry 

density ............................................................................................................... 41 

Fig. 14 Dependence of the volume fractions of lumens on oven-dry density .............. 42 

Fig. 15 Dog bone sample for the axial tensile test ........................................................ 43 

Fig. 16 Probability density function of modulus of elasticity from axial tensile test ... 44 

Fig. 17 Load-displacement curve and unloading process of the indenter tip [29] ........ 45 

Fig. 18 Surface scan (25x25 μm) of earlywood before (left) and after (right) 

nanoindentation ................................................................................................ 46 

Fig. 19 Probability density function of indentation modulus ....................................... 47 

Fig. 20 Hierarchical organization of wood ................................................................... 50 

Fig. 21 Dependence of the three moduli of elasticity of wood on MFA ...................... 58 



List of figures 

88 

Fig. 22 Dependence of the three moduli of elasticity of the earlywood on the volume 

fraction of lumens ............................................................................................. 59 

Fig. 23 Dependence of the three moduli of elasticity of wood on the volume fraction of 

earlywood .......................................................................................................... 60 

Fig. 24 Dependence of the three moduli of elasticity of earlywood on changing 

dimension of radial semi-axis ........................................................................... 61 

Fig. 25 Angle dependency of the indentation modulus (M) .......................................... 63 

Fig. 26 Probability density function of the microfibril angle ........................................ 64 

Fig. 27 Geometry of PUC of earlywood and latewood cell .......................................... 70 

  



List of tables 

89 

List of tables 

Tab. 1 The diameters of tracheids in spruce [5] ............................................................ 7 

Tab. 2 Density of Norway spruce (Picea abies) ........................................................... 14 

Tab. 3 Measured dry wood densities with corresponding volume fractions, see Section 

5.1 ..................................................................................................................... 16 

Tab. 4 Comparison of methods for evaluation of volume fractions ............................ 18 

Tab. 5 Typical values of stiffness coefficients of spruce at 12% moisture content [13]

 .......................................................................................................................... 19 

Tab. 6 Mechanical properties of the cell wall constituents [9] .................................... 20 

Tab. 7 Modulus of elasticity in axial tension of Norway spruce, see Section 5.4 ....... 21 

Tab. 8 Strength of spruce wood for different types of loading with corresponding MOE

 .......................................................................................................................... 22 

Tab. 9 Measured masses and moisture content of the Norway spruce samples, see 

Section 5.1 ........................................................................................................ 25 

Tab. 10 Thermal conductivities of individual wood constituents [10] .......................... 29 

Tab. 11 Measured values of the moisture content and densities ................................... 37 

Tab. 12 Measured parameters of growth rings .............................................................. 39 

Tab. 13 Moisture diffusion coefficients of spruce wood for various thicknesses ......... 49 

Tab. 14 Dimensions of lumens [μm] [5] ........................................................................ 52 

Tab. 15 Diffusion coefficients of spruce wood obtained by homogenization ............... 54 

Tab. 16 Thermal conductivities of spruce wood obtained by homogenization ............. 55 

Tab. 17 Mechanical properties of spruce wood obtained by homogenization .............. 57 

Tab. 18 Comparison of effective mechanical properties of wood using different types of 

inclusions .......................................................................................................... 61 

Tab. 19 Mechanical properties of spruce obtained by homogenization (MFA=28.24°) 65 

Tab. 20 Mechanical properties of cell wall constituents [13] ........................................ 67 

Tab. 21 Hygroexpansion coefficients of cell wall constituents [13] ............................. 67 



List of tables 

90 

Tab. 22 Parameters of individual cell wall layers [13] .................................................. 68 

Tab. 23 Mechanical properties of spruce obtained by homogenization according to [13]

 ........................................................................................................................... 69 

Tab. 24 Hygroexpansion coefficients of spruce obtained by homogenization according 

to [13] ................................................................................................................ 69 

Tab. 25 Comparison of results from analytical and numerical homogenization at level of 

lumens ............................................................................................................... 72 

Tab. 26 Mechanical properties obtained by homogenization for two different values of 

MFA .................................................................................................................. 81 

  



References 

91 

References 

1. Ministerstvo zemědělství. Zpráva o stavu lesa a lesního hospodářství České republiky 

v roce 2015 (Report on the state of forests and forestry in the Czech Republic in 2015). 

Praha : Ministerstvo zemědělství, 2016. ISBN 978-80-7434-324-7. 

2. Holmberg, Hans and Sandberg, Dick. Structure and Properties of Scandinavian 

Timber. Stockholm : HoS Grenarna HB, 1997. 

3. Forest Products Laboratory (U.S.). Wood handbook: Wood as an engineering 

material. Madison, Wisconsin : s.n., 2010. 

4. Desch, H. E. and Dinwoodie, J. M. Timber: structure, properties, conversion and use. 

Hampshire : Macmillan Press, 1996. ISBN 0333609050. 

5. Kettunen, Pentti O. Wood: Structure and Properties. Uetikon-Zuerich : Trans Tech 

Publications Ltd, 2006. ISBN 0878494871;9780878494873. 

6. Tsoumis, George. Science and technology of wood: Structure, properties, utilization. 

New York : Chapman & Hall, 1991. ISBN 0-412-07851-1. 

7. Fujita, Minoru and Harada, Hiroshi. Ultrastructure and Formation of Wood Cell 

Wall. [book auth.] David N.-S. Hon and Nobuo Shiraishi. Wood and Cellulosic 

Chemistry. New York : Marcel Dekker, Inc., 2001. 

8. Smith, Ian, Landis, Eric and Gong, Meng. Fracture and fatigue in wood. 

Chichester : Wiley, 2003. ISBN 0-471-48708-2. 

9. Hofstetter, Karin, Hellmich, Christian and Eberhardsteiner, Josef. Development 

and experimental validation of a continuum micromechanics model for the elasticity 

of wood. European Journal of Mechanics - A/Solids. 2005, Vol. 24, 6, pp. 1030-1053. 

10. Eitelberger, J. and Hofstetter, K. Prediction of transport properties of wood below 

the fiber saturation point – A multiscale homogenization approach and its experimental 

validation: Part I: Thermal conductivity. Composites Science and Technology. 2011, 

Vol. 71, 2, pp. 134-144. 

11. Mayo, S. C., Chen, F. and Evans, R. Micron-scale 3D imaging of wood and plant 

microstructure using high-resolution X-ray phase-contrast microtomography. Journal 

of Structural Biology. 2010, Vol. 171, 2, pp. 182-188. 



References 

92 

12. Šejnoha, Michal, et al. Effective material properties of wood based on 

homogenization. International Journal of Computational Methods and Experimental 

Measurements. 2017 (In Press). 

13. Persson, Kent. Micromechanical modelling of wood and fibre properties. Lund 

University. Lund : KFS i Lund AB, 2000. Doctoral thesis. ISBN 91-7874-094-0. 

14. Eitelberger, Johannes, Svensson, Staffan and Hofstetter, Karin. Theory of 

transport processes in wood below the fiber saturation point. Physical background on 

the microscale and its macroscopic description. Holzforschung. 2011, Vol. 65, 3, pp. 

337-342. 

15. Eitelberger, J. and Hofstetter, K. Prediction of transport properties of wood below 

the fiber saturation point – A multiscale homogenization approach and its experimental 

validation. Part II: Steady state moisture diffusion coefficient. Composites Science and 

Technology. 2011, Vol. 71, 2, pp. 145-151. 

16. Eitelberger, Johannes and Svensson, Staffan. The Sorption Behavior of Wood 

Studied by Means of an Improved Cup Method. Transport in Porous Media. 2012, 

Vol. 92, 2, pp. 321-335. 

17. Zhao, Dongliang, et al. Measurement Techniques for Thermal Conductivity and 

Interfacial Thermal Conductance of Bulk and Thin Film Materials. Journal of 

Electronic Packaging. 2016, Vol. 138, 4. 

18. Kollmann, Franz F.P. and Côté, Wilfred A. Principles of Wood Science and 

Technology. Berlin : Springer, 1968. Vol. I Solid Wood. 

19. Böhm, Helmut J. A short introduction to basic aspects of continuum 

micromechanics. Vienna : TU Wien, 1998, 2017. 

20. Milton, Graeme W. The theory of composites. Cambridge : Cambridge Univeristy 

Press, 2004. ISBN 0-511-04092-X. 

21. Dvorak, George J. Micromechanics of composite materials. Dordrecht : Springer, 

2013. ISBN 978-94-007-4101-0. 

22. Šejnoha, Michal and Zeman, Jan. Micromechanics in practice. Southampton : WIT 

Press, 2013. ISBN 978-1-84564-682-0 . 



References 

93 

23. Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion and 

related problems. Proceedings of the Royal Society of London. Series A, Mathematical 

and Physical Sciences. 1957, Vol. 241, pp. 376-396. 

24. Hashin, Z. and Shtrikman, S. A variational approach to the theory of the elastic 

behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids,. 

1963, Vol. 11, 2, pp. 127-140. 

25. Mori, T. and Tanaka, K. Average stress in matrix and average elastic energy of 

materials with misfitting inclusions. Acta Metallurgica. 1973, Vol. 21, 5, pp. 571-574. 

26. Hill, R. Elastic properties of reinforced solids: Some theoretical principles. Journal 

of the Mechanics and Physics of Solids. 1963, Vol. 11, 5, pp. 357-372. 

27. Aboudi, Jacob, Arnold, Steven M. and Bednarcyk, Brett A. Micromechanics of 

composite materials: A generalized multiscale analysis approach. Oxford : 

Butterworth-Heinemann, 2013. ISBN: 978-0-12-397035-0. 

28. Parnell, William J. The Eshelby, Hill, Moment and Concentration Tensors for 

Ellipsoidal Inhomogeneities in the Newtonian Potential Problem and Linear 

Elastostatics. Journal of Elasticity. 2016, Vol. 125, 2, pp. 231–294 . 

29. Oliver, W. C. and Pharr, G. M. Measurement of hardness and elastic modulus by 

instrumental indentation: Advances in understanding and refinements to methodology. 

Journal of Materials Research. Jan. 2004, Vol. 19, No. 1. 

30. Hysitron. Hysitron service document - Probe Calibration. [Online] [Cited: 30th April 

2017.] https://www.hysitron.com/resources-support/education-

training/nanoindentation. 

31. Oyen, Michelle L. and Cook, Robert F. A practical guide for analysis of 

nanoindentation data. Journal of the mechanical behavior of biomedical materials. 

2009, Vol. 2, 3, pp. 396-407. 

32. Pavlík, Zbyšek, et al. Modified lime-cement plasters with enhanced thermal and 

hygric storage capacity for moderation of interior climate. Energy and Buildings. 

2016, Vol. 126, pp. 113-127. 

33. Wadsö, Lars. Studies of water vapor transport and sorption in wood. s.l. : Division 

of Building Materials, LTH, Lund University, 1993. Doctoral thesis. 



References 

94 

34. Eriksson, John, Johansson, Håkan and Danvind, Jonas. Numerical determination 

of diffusion coefficients in wood using data from CT-scanning. Wood and Fiber 

Science. 2006, Vol. 38, 2, pp. 334-344. 

35. Fotsing, Joseph Albert Mukam and Tchagang, Claude Wanko. Experimental 

determination of the diffusion coefficients of wood in isothermal conditions. Heat and 

Mass Transfer. 2005, Vol. 41, 11, pp. 977-980. 

36. Tong, Liu. Moisture transport in wood and wood-based panels: A pre-study of 

sorption methods. TräteknikCentrum. Stockholm : s.n., 1987. Rapport P 8712078. 

37. Jansson, Robert. Measurement of thermal properties at elevated temperatures – 

Brandforsk project 328-031. SP Swedish National Testing and Research Institute. 

Borås : s.n., 2004. SP Report 2004:46. ISBN 91-85 303-22-4. 

38. Adl-Zarrabi, Bijan, Boström, Lars and Wickström, Ulf. Using the TPS method 

for determining the thermal properties of concrete and wood at elevated temperature. 

Fire and materials. 2006, Vol. 30, 5, pp. 359-369. 

39. Vlassak, J. J., et al. The indentation modulus of elastically anisotropic materials for 

indenters of arbitrary shape. Journal of the Mechanics and Physics of Solids. 2003, 

Vol. 51, 9, pp. 1701-1721. 

40. Barnett, John R. and Bonham, Victoria A. Cellulose microfibril angle in the cell 

wall of wood fibres. Biological reviews. 2004, Vol. 79, 2, pp. 461-472. 

41. Gierlinger, Notburga, et al. Cellulose microfibril orientation of Picea abies and its 

variability at the micron-level determined by Raman imaging. Journal of Experimental 

Botany. 2010, Vol. 61, 2, pp. 587-595. 

42. Donaldson, Lloyd. Microfibril Angle: Measurement, Variation and Relationships – 

A Review. IAWA Journal. 2008, Vol. 29, 4, pp. 345-386. 

 


