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ABSTRACT 

Based on its applicability and features, two approaches for multivariate time series modelling 

were discussed. The first, method based Principal Component Analysis is much more simple 

and direct method, having the advantage of closed form computational processes and 

therefore holding much smaller computational burden. Its disadvantage is, that it 

theoretically destroys part of the mutual information that the multivariate data contain, 

because it preserves only raw mutual correlations between stations but not higher order 

dependencies. The basis is that it searches for transformation that has been designed based 

on the covariance matrix, which is a low order statistical characteristic of data. The second, 

method based on Independent component analysis, theoretically preserves even those higher 

order dependencies, because it extracts from the data more mutual information and is 

therefore able to reapply this information to independent univariate synthetic time series that 

were generated individually.  

The practical part of this thesis involved construction of the PCA method based multivariate 

model and evaluation of its performance. Regarding the preservation of the correlation 

structure the model performed arguably quite well, having total error as a performance 

measure explained in section 7.4 around 3.40% for the autocorrelation structure of lag 1 of 

the data set and total error of 7.86% for the cross-correlation structure describing mutual 

relationships of the multivariate data.  

In traditional applications of streamflow data the generated time series did not deviate 

extensively from expected outcomes, making the model’s output usable in some classical 

water management solutions. However, there were some drawback of the model’s 

performance especially in water reservoir operation solutions, where the model produced 

data that underestimated storage capacity requirements for longer time series.   
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1 LAY SUMMARY 

Mathematical modeling of synthetic time series is nowadays basic method used during the 

design process of many water management engineering solutions of different kinds. We use 

this method in cases, where the available historical time series are not sufficient for proper 

design solutions of engineering problems. This is usually because the available historical 

time series are too short and therefore produce unreliable assumptions about future 

behaviour of the phenomenon they represent. Mathematical modelling enables us to create 

much longer synthetic time series, based on the historical real data, with the same sets of 

statistical characteristics. It provides us with more reliable data usable for more complex 

problems, and data that meet requirements on input materials demanded by the present 

legislation. [38] 

There is fundamental difference between simulation of single time series, called univariate, 

and simulation of sets of inter-related time series together, called multivariate time series 

modelling. While the methodical approach for univariate time series modelling has been 

soundly established over many years of its research and application in the last century, 

modelling of multivariate time series is still experiencing intensive development and 

completely new methods have been introduced in recent decades, mainly thanks to advance 

in computer technologies. The problem of accurately simulating multivariate time series 

along with their inner dependence and mutual information stored within is non-trivial 

problem and more complex solution must be employed. [19]  

Two main methods broadly used for this problem, Principal Component Analysis and 

Independent Component Analysis are going being described and compared in this thesis. 

They both aim to discover and describe mathematically the spatial and temporal dependence 

within the historical data and based on that to design a model which will maintain the 

dependence relationships in the new modelled time series. While the first method is older 

and its computational difficulty is much smaller, it will be shown, that the latter, much 

younger method of these two, goes further with the analysis of the dependence and therefore 

preserves the statistical characteristics better. [21]   
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2 GOALS OF THIS THESIS 

The goals of this thesis are to summarize currently used methodological approaches for 

modelling of synthetic hydrological time series in systems of stations for purposes of solving 

water storage function of water reservoirs and watercourse systems and to investigate into 

new methods recently emerged or still emerging in water management engineering. Main 

focus will be given to methods of Principal Component Analysis and Independent 

Component Analysis, whereas this thesis aims to evaluate their usability and possible 

application and to assess the pros and cons in their employment on multivariate hydrological 

time series. 

Secondly, this thesis aims to produce mathematical model for generation of random monthly 

averages streamflow time series and verify the model for chosen case study. The model will 

allow preservation of correspondence of probability characteristics of the real and the 

synthetic streamflow time series including month-wise autocorrelations and cross-

correlation structure among individual profiles. 
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3. INTRODUCTION 

Mathematical modeling of synthetic time series is nowadays basic method used during the 

design process of many water management engineering solutions of different kinds. We use 

this method in cases, where the available historical time series are not sufficient for proper 

design solutions of engineering problems. This is usually because the available historical 

time series are too short and therefore produce unreliable assumptions about future 

behaviour of the phenomenon they represent. Mathematical modelling enables us to create 

much longer synthetic time series, based on the historical real data, with the same sets of 

statistical characteristics. It provides us with more reliable data usable for more complex 

problems, and data that meet requirements on input materials demanded by the present 

legislation. [38] 

There is fundamental difference between simulation of single time series, called univariate, 

and simulation of sets of inter-related time series together, called multivariate time series 

modelling. While the methodical approach for univariate time series modelling has been 

soundly established over many years of its research and application in the last century, 

modelling of multivariate time series is still experiencing intensive development and 

completely new methods have been introduced in recent decades, mainly thanks to advance 

in computer technologies. The problem of accurately simulating multivariate time series 

along with their inner dependence and mutual information stored within is non-trivial 

problem and more complex solution must be employed. [19]  

Two main methods broadly used for this problem, Principal Component Analysis and 

Independent Component Analysis are going being described and compared in this thesis. 

They both aim to discover and describe mathematically the spatial and temporal dependence 

within the historical data and based on that to design a model which will maintain the 

dependence relationships in the new modelled time series. While the first method is older 

and its computational difficulty is much smaller, it will be shown, that the latter, much 

younger method of these two, goes further with the analysis of the dependence and therefore 

preserves the statistical characteristics better. [21]   
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4. THEORETICAL BACKGROUND 

4.1  Basic terms 

At first it is desirable to define basic terms used in this thesis and the way in which 

hydrological time series are mathematically approached here. When considering time series 

in hydrology, they can be viewed as discrete random variable samples. The discharge in a 

river is a stochastic process which we cannot accurately and fully describe mathematically, 

we can only observe its realizations, whereas discharge in a river has always only one 

realization. All the values of the realization form a population and by measuring the 

discharge we take values from the population and we create a random sample - values are 

drawn from sample space, which is set of all possible outcomes of the process (for discharge 

of a river the sample space is infinite set of real numbers).[2, 3] 

We also say that we are recording observations of the realization of the process. The set of 

observations in chronological order is then referred to as time series. One times series 

accounts for one set of observations of one realization and is represented by one random 

variable 𝑞𝑖. When conducting time series analysis, we are trying to estimate the 

characteristics of the population, but because only a sample of the population is available to 

us, we do that by computing characteristics of the sample. The characteristics of the 

population are called statistical parameters, and we are estimating them with statistics or 

estimators such as sample mean.[3, 4] Therefore in this thesis, whenever mean, standard 

deviation or any statistical characteristics is mentioned, it is always referred to statistic, 

characteristic of the sample, unless it is stated otherwise. 

Multivariate time series are sets of observations of more than one variable, such as flow rates 

at different measuring stations over the same period of time, which is also the case of this 

thesis. Each station is represented by one time series, mathematically a vector of certain 

length, but when conducting mathematical operations with the time series, we sometimes 

view it as a random variable.  

The observed time series are referred to as real or historical time series, while realizations of 

the process generated by a mathematical model are called artificial or synthetic time series. 

When modeling a synthetic time series, the goal is to find a model which bets fits the real 

historical time series. When the model is fitted to an existed realization of a stochastic 
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process with reasonable accuracy, it should possess the same statistical properties as the 

process that generated the existent realization. This procedure is called time series 

analysis.[19] The model can be afterwards used to simulate other possible realizations during 

the same period of time or generate longer time series for other applications. 

4.2  Time series modeling in water management 

Time series modeling is an essential discipline in hydrological forecasting.  When designing 

water reservoir or any water structure, future forecast of hydrological events are necessary 

inputs in water management. These events are random in nature and therefore we must equip 

ourselves with statistics and probability theory to bring ourselves closer to accurate forecasts 

of these events.  

Sometimes, for the design of a water structure, will suffice to predict the frequency of 

occurrence of certain hydrological event, using statistical method called frequency analysis. 

With this method, we can predict for example how often can we expect flood of certain 

magnitude, or rather to predict the maximum flood magnitude in certain period of time, 

typically 100, 1000 or 5000 years, generally known as N-year events.[25] 

In some other cases, like assessing proper functioning of water reservoir or water systems 

meeting required goals, it is necessary to take into consideration the actual development of 

hydrological event over a period of time, looking at the whole sequence, not only the 

sequence’s extremes. Typical example of required data is set of monthly averages of 

discharge in a catchment over next number of years (again: 100, 1000, 5000, etc.). In this 

case, not only the magnitude of the values matters, but their order in the sequence matters 

too. This type of hydrological forecasting can be made by methods called synthetic data 

generation, also referred to as time series modeling.[39] 

While some methods of hydrological forecasting, for example frequency analysis, considers 

only certain values from historical records, like the extreme discharge magnitudes and the 

frequency of their occurrence, time series modeling considers in its process the whole 

continuous sets of observations of a given phenomenon. This makes it more difficult to select 

reliable records for this method, but it also means the forecasts made by times series 

modeling are more complex and more plausibly describe the reality. Moreover, when 
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properly modelled, synthetic data series can be used to determine N-year events as well, 

simply by observation of the time series.[25], [32] 

Hydrological forecasting techniques based of streamflow time-series modelling enables 

engineers and researchers examine possible scenarios for water resources systems with 

chronological context to it. Synthetic time series can simulate possible behaviour of a water 

system with realistic succession of events and their context within the continuous 

development of flow-rate, which is especially important in periods of drought or on the 

contrary during high-flow periods. This is essential in tasks like designing optimal operation 

of water systems, irrigation systems, water supply systems, systems upon which 

hydroelectric power stations rely, flood management planning or risk assessment of 

reliability of water systems. Variety of generated scenarios and diversity of conditions can 

largely contribute to creation of more efficient solutions of these tasks and perfected 

strategies. [40] 

4.3  Statistical characteristics of a time series 

The properties of a time series are described through statistical moments and other 

characteristics. These characteristics are needed construct a mathematical model and then to 

measure its goodness of fit. 

This section of the thesis aims to clarify the usage of basic statistical and mathematical terms 

and expressions, rather than explain to detail their mathematical definitions. It is for the 

purpose of not confusing some fundamental statistical elements as the terminology is not 

always uniform in all publications dedicated to this topic. In addition, mathematical symbols 

and operators used in this thesis are explained to a reasonable extent in the Glossary at the 

end of the thesis. 

4.3.1 Statistical moments 

Mean 

When it a mean of a variable is being mentioned in this thesis, it is always referred to mean 

of its sample, sample mean, conventionally denoted by �̅�, not a mean of its population, which 

is usually expressed as 𝜇𝑥 and is being computed from the whole population of a variable, 

which is something never available to us in hydrology, and therefore it is never the case here 
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either. Also, it is always referred to arithmetic mean, computed as in Equation 4.1, where 𝑛 

is the number of elements in the sample.[30] 

 �̅� =
1

𝑛
(∑𝑥𝑖

𝑛

𝑖=1

) (4.1) 

Standard deviation and Variance 

Both standard deviation and variance express the spread, or dispersion of values of a 

variable from its mean. Standard deviation is being expressed here as 𝜎𝑥, and variance, being 

its square as 𝜎𝑥
2. Without the availability of the whole population, standard deviation and 

variance are being computed by expressions Equation 4.1. Because this standard deviation 

is computed using the sample mean �̅�, it is therefore sometimes called uncorrected sample 

standard deviation.[30] 

 𝜎𝑥 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛
;  𝜎𝑥

2 =
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛
 (4.1) 

Skewness 

The skewness measures the lack of symmetry of a distribution. It is being denoted by 𝜅 and 

expressed through standard deviation 𝜎, as in Equation 4.1.[52] κ 

 𝜅𝑥 =
∑ (𝑥𝑖 − �̅�)3𝑛

𝑖=1

𝜎𝑥
3    (4.1) 

Skewness can be used to determine normality of a distribution (Normal distribution is 

symmetric about the mean and therefore has a skewness of zero), wherefore it has a use in 

this thesis in determining effectiveness of normalization transforms used. For example 

D'Agostino's K-squared test is a technique commonly used to measure the departure of a 

distribution from normality through skewness and kurtosis. [11] 

4.3.2 Probability density function and Cumulative distribution function  

Cumulative distribution function (CDF) and Probability density function (PDF), are two 

closely related statistical tools, but should not be confused with each other. The first, PDF, 

describes the probability ℙ of a variable 𝑥 taking certain values 𝑎 – it describes probability 

of its value distribution. Here, PDF is being expressed as in Equation 4.1. [30] 
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 𝑝(𝑥) =  ℙ(𝑥 = 𝑎) (4.1) 

The second, CDF, also called probability distribution function or cumulative frequency 

function, describes probability of a variable taking values less then certain values as in 

Equation 4.1.[30] 

 𝐹(𝑥) =  ℙ(𝑥 ≤ 𝑎) (4.1) 

The direct relation between PDF and CDF is, that PDF is CDF’s derivative:[30]  

 𝑓(𝑥) =  𝐹′(𝑥) (4.1) 

4.3.3 Covariance and correlation coefficient 

Covariance is understood as a measurement of the linear relationship between two variables, 

for example x and 𝑦, and it can be expressed by a single value computed by the Equation 

4.1. [52]  

 𝜎𝑥,𝑦 = 𝑐𝑜𝑣(𝑥, 𝑦) = 𝐸[(𝑥 − 𝐸{𝑥})(𝑦 − 𝐸{𝑦})] (4.1) 

When mentioning correlation coefficient here, it is always referred to standard Pearson 

product-moment correlation coefficient, sometimes shortly PCC, which is expressed through 

covariance of two variables divided by the product of their standard deviation. Therefore 

they both describe linear relationships between variables, but the difference between PCC 

and covariance is, that PCC is scaled and takes only values between -1 and 1, while 

covariance can take any ℝeal values. Positive or negative values of PCC signify positive or 

negative correlation respectively, when PCC equals zero, there is no correlation between the 

two examined variables at all. The Equation 4.1 expresses computing PCC for two different 

variables.[20]  

 𝜌𝑥,𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 (4.1) 

4.3.4 Partial autocorrelation function 

Autocorrelation function, also called serial correlation, describes correlation of a signal with 

latter itself. It is computed as in Equation 4.1, between observations separated by 𝑘 time 

intervals. [19], [53]  
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 𝜌𝑘 = 𝜌𝑥𝑡,𝑥𝑡+𝑘
=

𝐸[(𝑥𝑡 − 𝐸{𝑥})(𝑥𝑡+𝑘 − 𝐸{𝑥})]

𝜎𝑥𝑡
𝜎𝑥𝑡+𝑘

= (4.4) 

Partial autocorrelation function (PACF) is then expressing the development of 

autocorrelation function at different time lags 𝑘. It is very important tool for deciding up to 

which extent the is a time series autocorrelated. It can be then used to determine suitable 

order of autoregressive model.  

4.3.1 Covariance matrix of multivariate and univariate time series 

Mutual covariances of 𝑛 variables of a vector 𝐱 are being expressed by the covariance matrix 

of 𝑛 ×  𝑛 dimensions, denoted by 𝚺𝐱 expressed by Equation 4.2, or by more compact 

formulation in Equation 4.3. This can represent covariance matrix of multivariate time series 

where every variable 𝑥𝑖 stands for one time series or more specifically one streamflow 

station. [52] 

 𝚺𝐱 = 𝑐𝑜𝑣[𝐱] = 𝜎 {

𝑥1

𝑥2

⋮
𝑥𝑛

} =  [

𝜎𝑥1,𝑥1
𝜎𝑥1,𝑥2

… 𝜎𝑥1,𝑥𝑛

𝜎𝑥2,𝑥1
𝜎𝑥2,𝑥2

… 𝜎𝑥2,𝑥𝑛

⋮ ⋮
𝜎𝑥𝑛,𝑥1

𝜎𝑥𝑛,𝑥2
… 𝜎𝑥𝑛,𝑥𝑛

] (4.2) 

 

 𝑐𝑜𝑣[𝐱] = [(𝐱 − 𝐸[𝐱])(𝐱 − 𝐸[𝐱])𝑇] = 𝐸(𝐱𝐱𝑇)  (4.3) 

While univariate time series is being in mathematical modelling considered as single 

variable (see section 4.1), it is possible to express the covariances among sequences of the 

same time series in univariate covariance matrix. In a discrete time series vector with 

elements equidistantly spaced from each other by time intervals we can define the 

covariance of a variable xt  with latter itself xt+k, k-time intervals apart, by formulation in 

Equation (4.4). [19] 

 𝛾𝑘 = 𝑐𝑜𝑣[𝑥𝑡, 𝑥𝑡+𝑘] = 𝐸[(𝑥𝑡 − 𝐸{𝑥})(𝑥𝑡+𝑘 − 𝐸{𝑥})] (4.4) 

Then the univariate covariance matrix can be defined as (4.5). [52] 

 𝑐𝑜𝑣[𝑥𝑡] =

[
 
 
 
 

𝛾0 𝛾1 𝛾2 … 𝛾𝑁−1

𝛾1 𝛾0 𝛾1 … 𝛾𝑁−2

𝛾2 𝛾1 𝛾0 … 𝛾𝑁−3 

⋮ ⋮
𝛾𝑁−1 𝛾𝑁−2 𝛾𝑁−3 … 𝛾0 ]

 
 
 
 

 (4.5) 
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4.4  Time series analysis 

4.5. Univariate time series modelling 

Univariate time series modelling has already long history in the world and Czech Republic 

too. Many models are based on some sort of autoregressive process, describing inner time 

dependence of the observations. Basic type is Autoregressive model of order 𝑝, which 

determining the value of an observations based on 𝑝 number of previous observations. 

However, despite, or maybe thanks to, its simplicity, if employed correctly and smartly, it 

can yield very satisfactory results. 

As the time series modelling discipline developed, additional features were being 

incorporated into the models with autoregressive basis, such that they take into account 

non-stationarity or periodicity of a time series or trends found in the raw data.  

Worth mentioning is also disaggregation modeling and method of fragments, which has a 

tradition in Czech Republic and has been widely used here.  

4.6 Types of models for univariate time series generation 

4.6.1 Autoregressive model  

Autoregressive model (hereinafter AR model) is type of so-called Box-Jenkings models, 

which are linear non-seasonal models, assuming stationarity of the data. Moreover, it does 

not account for potential periodicity of the phenomenon it is supposed to simulate. 

Hydrological time series, including streamflow time series, exhibit very strong and obvious 

periodicity and it is desirable to simulate it in the synthetic data. Therefore, the AR model 

cannot be used directly on full time series, but first the periods must be recognized and then 

it is to determine with how many autoregressive coefficients is the series going to be 

simulated. 

If data consists of monthly averages and the aim is to simulate also time series consisted of 

monthly averages for observations, the suitable approach is to separate raw data according 

to months, therefore creating twelve vectors of observations, one for each month. Then the 

correlation coefficients for each month are determined individually. 

Generally, the Autoregressive process of order 𝑝 is described as in Equation 4.A. [19] 
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𝑧𝑡 = 𝜑1𝑧𝑡−1 + 𝜑2𝑧𝑡−2 + ⋯+ 𝜑𝑝𝑧𝑡−𝑝 + 𝜀𝑡 (4.A) 

Construction of the model thus relies on computing the required correlation coefficients 𝜑 

and generating the white noise. For generating white noise, pseudorandom generators in any 

computational software can be safely used. The elements comprised of previous 

observations and corresponding correlation coefficients are adding up to the deterministic 

component of the model. The white noise along with its coefficient is representing the 

stochastic (random) component.  

The order of the model 𝑝 determines number of the elements used and number of the 

correlation coefficients 𝜑 used. Here the correlation coefficient of order 𝑝 for series of 

variable 𝑥 with 𝑙 number of observations is defined as in Equation 4.0. [38] 

 𝜑𝑝 = 𝑐𝑜𝑟𝑟(𝑥1 …𝑥𝑙−𝑝; 𝑥𝑝+1 …𝑥𝑙) = 𝜌𝑥,𝑦 =
𝑐𝑜𝑣(𝑥1…𝑙−𝑝, 𝑥𝑝+1…𝑙)

𝜎𝑥1…𝑙−𝑝
𝜎𝑥𝑝+1…𝑙

 (4.0) 

The order 𝑝 is chosen so that it reflects the behaviour of the time series most accurately. 

There exist tests to determine up to which order there is significant relationships between 

the observations. For modelling time series with daily observations, it is natural, that the 

value of the observation, for example flowrate in a stream, might depend on more than one 

previous observation, so choosing higher order AR model might be appropriate. For monthly 

data, it is much more likely that the monthly average depends only on the previous month 

and AR(1) model can be employed in such case. History of research on hydrological time 

series modelling on Czech Technical University showed, that low order models (with order 

1 or 2) yield the best results and higher order models are for this application on monthly 

streamflow data much less predictable.[13]  

Base of Equation 4.A, autoregressive model of order 1 would then look like in Equation 4.B. 

In this model, another coefficient 𝛾 was applied to reduce the contribution of the white noise 

term, the model then looks like in Equation 4.C. The coefficient is taking values from 0 to 1 

and is being computed as in Equation 4.D.[49] 

 𝑧𝑡 = 𝜑1𝑧𝑡−1 + 𝜀𝑡 (4.B) 

 

 𝑧𝑡 = 𝜑1𝑧𝑡−1 + 𝛾𝜀𝑡 
(4.C) 
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 𝛾 = √1 − 𝜑1
2 (4.D) 

 

 

4.6  Multivariate time series modelling 

4.6.1  Multivariate time series 

True challenge in time series modeling in water management comes when there is need to 

generate multiple time series for multiple stations which are in relative proximity and their 

waterflows are mutually correlated. These inter-correlated time series are referred to as 

multivariate time series or sometimes also as multivariable time series. This applies for 

example to a system of water reservoirs all belonging to the same watershed or to adjacent 

sites affected by similar conditions, we call them multiple reservoir systems. 

Within this kind of system, the water reservoirs located within the same watershed are 

subject to similar precipitation, evaporation, temperatures and climatic conditions generally. 

Sometimes they even directly affect each other; some of the reservoirs in the system can be 

simply downstream from others on the same watercourse. The streamflow times series in 

their profiles therefore exhibit strong both temporal and spatial dependence with each other. 

The challenge in time series modeling lies in the task to preserve the mutual spatial and 

temporal dependence between multiple reservoirs in the synthetic time series, more precisely 

to authentically simulate the dependences.  

The problem gets even more challenging when dealing with not only yearly averages but 

also with monthly average streamflows. Within a year, seasonal trends can be observed and 

appropriate model or approach which reflects this seasonality must be employed to 

accurately simulate all the properties of historical records. 

4.6.2 Principal Component Analysis 

The Principal Component Analysis (PCA) is a method of linear transformation used for 

decorrelation of data. It can be used to transform set of process realizations which are 

correlated into data sets, which are mutually linearly uncorrelated. We call these new data 

sets principal components and we say we are extracting the components from the historical 
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data.[22] The PCA method in the centre of focus of this thesis and its principle and 

application is explained in detail in section 5.2. 

4.6.3 Independent Component Analysis 

Independent Component Analysis (ICA) also decorrelates data within its process, but it goes 

further with minimization of mutual dependencies and looks for so-called independent 

components, which are statistically independent, which is concept explained in section 5.3.4. 

By finding components that hold even less mutual information upon each other than PCA it 

basically stores more of the information on the dependence of raw data and can reapply this 

information on synthetic data retaining fully both spatial and temporal dependence of the 

original time series. ICA is also explained and discussed much more thoroughly, further in 

the thesis, namely in section 5.3 and 5.4. 

4.6.4 Other methods for preserving dependence in multivariate data 

Neural networks approach 

Another approach is to use artificial neural networks which are systems inspired by the 

functioning of human brain. These systems have very specific information distribution of 

information in form of analogue pattern signal and learning abilities which enables them to 

evolve their own solutions for non-linear problems. [3] Application of neural network in 

time series modelling was presented for example by Spanish-Colombian authors (Ochoa-

Rivera et al., 2002). [40] A hybrid model for generation of multivariate streamflow time 

series based on a multilayer feedforward neural network, simulating deterministic 

component with random component represented by normally distributed noise accounting 

for its stochastic part, was proposed by them and compared with autoregressive model of 

order 2. Their work is following, among others, research papers on hydrological time series 

modelling by neural networks of Raman and Sunilkumar (1995) examining this approach 

for bivariate time series and Anmala et al. (2000) dealing with trivariate data. [42] and [4] 

respectively, as cited in [40] According to their results, the composite NN-stochastic model 

yielded much more satisfactory results than the purely stochastic AR model, especially in 

terms of simulation of longer persisting events within hydrological series, such as drought 

periods, which is very essential issue concerning optimal operation of water reservoir 

schemes  design processes.[40] 
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Wavelet-based method with IAAFT algorithm 

Another method presented by working paper by Keylock (2012) [27], is as wavelet-based 

method based on techniques in non-linear physics from the Fourier domain. This approach 

for multivariate synthetic time series generation claims to not only preserve the cross-

correlative structure of the historical records, as is attempted in PCA, but also to simulate 

nonlinear properties that may be present. The paper works with assertion that among the 

most important nonlinear property of the streamflow data is the frequent temporal 

asymmetry of its hydrographs and uses derivative us skewness to describe and address this 

property. Author previously presented use of method called gradual wavelet reconstruction 

for synthetic data generation [28], and adapted in the mentioned work this method to the 

multivariate case. [27] 

Because other two mentioned methods (ICA and PCA) relies on covariance matrices in the 

search for proper orthogonal transformations, they retain in the process only correlation at 

zero-lag. Proposed method by Keylock aims to preserve Fourier cross-spectrum between 

multivariate time series, explaining that it yields identical result as an attempt to preserve 

cross-correlation function. The iterated amplitude adjusted Fourier transform (IAAFT) 

algorithm extended to application on multivariate series is in the focus the paper. The 

research also presents comparison of its introduced method with PCA and ICA, with results 

speaking for advantage in enhancement of preservation of the full cross-correlation function 

over both ICA and PCA. [27] 

4.7 Input and output data 

We usually obtain the flow rates as daily, monthly or yearly averages. It is common to 

generate synthetic time series of monthly o yearly averages, whereas this thesis deals with 

the more complex case of modeling monthly averaged series, which also includes the 

solution for yearly averaged data.  

Any input data used engineering solutions should be first critically evaluated in terms of 

their representativeness. In hydrology, one of the main problems with available source data 

is their scarcity. When conducting time series analysis on streamflow time series, there is 

available usually only one set of observations on one realization of the process, often also 

over relatively short period of time. Results of estimating parameters of the streamflow 

process, based on rather small sample must be used with caution. It is common to work with 



 18  

 

time series of only few decades of flow rate measurements, while the task is often to generate 

synthetic series of several thousands of years. 

In hydrology, these synthetic time series are created in the same manner as the historical 

ones - as chronological sequences where the order of the elements matter. Therefore, we can 

work with them the same way as with the real historical data and use them as an input without 

further adjustment of the design process. 

4.7.1 Critical assessment of source data 

In every case, individual assessment of the researcher is needed to consider all possible cause 

that may have affected the representativeness of the data. Every problem is somehow 

specific and human evaluation is irreplaceable.  

It is important to take into account all the conditions that accompanied the observations and 

acquisition of the data, in terms of their homogeneity. The researcher must get acquainted 

with the location where the observations originated, the landscape circumstances of the 

watershed and its development during the whole period which is represented by the data 

sample and in the future too. In case of flowrate measurements in a watercourse, following 

list presents an example of things that must be considered: 

▪ land-use changes in the watershed during the represented period and future prospects 

▪ anthropogenic interventions in all related watercourses 

▪ method of measurement and its development  

If homogeneity in any of the factors listed above has not been maintained during the 

observed period, influenced sections of the data sample must be ‘purged’ of the effect that 

compromised the coherence or they must be excluded from the analysis and shorter versions 

of the observations must be used.   
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5. METHODICAL APPROACH 

5.2  Principal Component Analysis 

The Principal Component Analysis (PCA) is a method of linear transformation used for 

decorrelation of data. It can be used to transform set of process realizations which are 

correlated into data sets, which are mutually linearly uncorrelated. We call these new data 

sets principal components and we say we are extracting the components from the historical 

data.[22] 

The method was invented by Karl Pearson and was first introduced by him in 1901 in journal 

article of Philosphical Magazine, ‘On lines and planes of closest fit to systems of points in 

space’.[41] as cited in [26]  

The main focus of PCA is to reduce the dimensionality of a data set, while preserving as 

much variation as possible. The method deals with transformation of interrelated variables, 

into a new set of uncorrelated variables, the principal components (PCs). The components 

are ordered by the amount of preserved variance of the original variables, leaving the last 

PCs least important.  [26], [48] This property allows to reduce dimension from 𝑛 to 𝑝 of the 

original data set, by keeping the first 𝑝 principal components, which explain substantial 

portion of the variance of the data set.[54]   

PCA uses information that is contained inside the covariance matrix (section 4.6.2) to derive 

the transformation matrix which will decorrelate the data.  

The method of principal components represents type of orthogonal transformation, that is 

generally speaking a linear transformation which preserves the inner product.  It is being 

done by orthogonal matrix – a matrix whose inner product of itself and its inverse matrix 

equals an identity matrix, in other words, its transpose is equal to its inverse. Moreover, two 

vectors are orthogonal, if and only if their inner product equals zero. Important property of 

an orthogonal transformation for this particular use, is that the length of the vectors stays the 

same. [2, 3] 
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5.3  Independent Component Analysis 

While PCA is will yield uncorrelated variables, they are not truly statistically independent. 

Any residual dependence left in the processed data, can be lost or destroyed during the 

synthetic data generation. By Independent Component Analysis (ICA) one can achieve 

higher order independence within processed data and therefore retain both spatial and 

temporal dependence of the original time series, which will be stored inside the procedures 

applied to the data during ICA. 

5.3.1 History 

The Independent component analysis was introduced for the first time by French authors, 

namely Jeanny Hérault and Bernard Ans, in 1984 in a journal article for Comptes rendus de 

l'Académie des Sciences, with Christian Jutten joining them in 1985 for conference 

proceedings in Paris and Nice. [17], [5], [18] as cited in [21]  

Many concepts of ICA, including connection between negentropy and mutual information, 

or estimation of the components by minimization of the mutual information were most likely 

introduced in work of Pierre Comon (1994).[9] as cited in [21]  

Probably the most extensive work on ICA have been done the Finnish team Aapo Hyvärinen, 

Juha Karhunen, and Erkki Oja from University of Helsinky, with the main reference book 

published in 2001.[21] Work of the Finnish authors is the most significant source for this 

thesis. 

Contribution to the topic with summary of previous work was also done by James V. Stone, 

under MIT in 2004.[44] Research about ICA with regard to hydrology, which is of particular 

interest in this thesis, have been done by Westra, Brown, Lall and Sharma in 2007 and is 

being continued.[54] 

5.3.2 Introduction 

Independent component analysis is closely related to the problem called Blind Source 

Separation (BSS). That is an extraction of source signals from mixed observations without 

any or very little additional information to the observed data, hence the name ‘blind’.[7] It 

comes as an solution to the cocktail party problem. That is a well known mathematical 

problem, popularize in Cherry (1953), where there is number of signals observed, for 
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example from microphones placed on different locations in a room where number of source 

signals, e.g. people speaking in the room, are present.[23] as cited in [36] In this problem, 

each microphone records different combination of the speech signals, each signal having 

different strength in each of those combinations. The goal is to estimate the source signals – 

speeches, as they were recorded directly, uninfluenced and unpolluted by other signals. [1] 

The only assumption on the source signals, is that they are independent in their origin. That 

is also one of the basic assumptions of the ICA. 

Tu put it in simplified way, there can be two basic cases where ICA can be used. One is to 

find good linear representation of multivariate data. By transforming the variables, it aims 

to discover some hidden information on the data set that describes the underlying structure. 

The idea behind ICA is that the independent components correspond to some real physical 

parts of the process that generated the observations. [21]  

5.3.3 Application 

Even though ICA is relatively young method, it is widely used across all scientific fields and 

professions. Because of generality of ICA, its use can be found in medicine, financial 

markets or audio-visual sciences and several more, including natural sciences, where 

working with hydrological time series belongs. This section presents other uses and 

applications than the one of interest in this thesis, which is streamflow synthetic data 

generation. It is also fair to mention that at first it has found its application in signal 

processing, where ICA was used to separate the source signals from recorded mixtures of 

signals as it was explained in section 4.5.2 for ‘blind source separation‘. 

Medicine 

Many diagnostic medical devices are using ICA to analyse their outputs, which usually are 

dimensionless electric signals, to find underlying factors, corresponding to some activities 

of the body. For example magnetoencephalography - it is a functional neuroimaging 

technique for mapping brain activity. [33] Magnetoencephalography device records the 

signals emitted by brain. However, the signals are being mixed up in the sensors of the device 

placed on the head of the patient and ICA is used to re-extract them.[22] 

Another health care diagnostic method called optical coherence tomography (OCT) used for 

biomedical imaging, with applications in ophthalmology or dermatology, can utilize ICA 
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techniques to process output images, reducing speckle noise present in them and thus helping 

the process of interpretation of the images. [6] 

Macroeconomics 

Utilization of ICA analysis can be find in econometry. Many macroeconomic indicators are 

not strictly deterministic and are influenced by some hidden factors, which cannot be 

observed. Finding the background structure or driving mechanism of parallel time series 

such as currency exchange rates or stock prices may be useful both for econometry 

application and forecasting on financial markets.[21] 

Some other applications 

In audio-visual sciences there is also broad area of application of ICA, such as separating 

and purifying specific sources on sound recordings, removing noise from images, extraction 

features from images, or finding filters for natural images. [24]  

Considering ICA deals with signals, other obvious area of employment for ICA is 

telecommunications. where it can be used for example for separation of signals interfering 

with other signals in mobile communications. [22]  

Another use can be found in abundance quantification for hyperspectral imagery, more 

specifically for endmember extraction, a field where PCA was commonly applied in history, 

but not always yielded satisfactory results, as frequent scarcity of endmembers can result in 

very small influence on data variance, which is something that PCA reflects poorly, while 

ICA can be implemented more effectively. [50] 

5.4  Mathematical background of ICA 

5.4.1 The Central Limit Theorem 

The Central Limit Theorem is a key concept in probability theory, allowing for application 

of many statistical methods. The theorem establishes, that the sum of independent random 

samples with any type of distribution, tends toward normal distribution, or at least is more 

gaussian than any original sample. With more data samples, the approximation of normal 

distribution gets better.[53], [22]  
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The logic of the theorem, or more accurately its reverse, is adapted in ICA, which searches 

for transformation that will result in as non-Gaussian variables as possible. Its search is based 

only on the observed mixtures, which are by the central limit theorem assumptions much 

more Gaussian than their underlying signals.[54]  

5.4.2 Data representation 

When we denote the 𝑛 mixtures 𝑥𝑖 and the m source signals as 𝑐𝑗 we can express the observed 

singals as linear combinations in Equation 4.-2 or expanded form in Equation 4.-1. The 

coefficients 𝑎𝑖𝑗 are real numbers representing the ‘strengths’ of the original signals in 

different combinations, the source signals 𝑐𝑗 are called the independent components. 

 𝑥𝑖 = ∑𝑎𝑖𝑗

𝑗

𝑐𝑗 , where 𝑖 = 1…𝑛, 𝑗 = 1…𝑚 (4.-2) 

 

 

𝑥1 = 𝑎11𝑐1 + 𝑎12𝑐2 + … + 𝑎1𝑚𝑐𝑚

𝑥2 = 𝑎21𝑐1 + 𝑎22𝑐2 + … + 𝑎2𝑚𝑐𝑚

⋮
𝑥𝑛 = 𝑎𝑛1𝑐1 + 𝑎𝑛2𝑐2 + … + 𝑎𝑛𝑚𝑐𝑚

 

 

(4.-1) 

Using vector and matrix notations to the above equations, they can be written as in Equations 

4.x and 4.x, where 𝐀 is the 𝑛 ×  𝑚 matrix of linear real coefficients 𝑎𝑖𝑗.We call the matrix 

𝐀 the mixing matrix, as it explains how the components got mixed and resulted in the 

observed mixtures. 

 {

𝑥1

𝑥2

⋮
𝑥𝑛

} = 𝐀{

𝑐1

𝑐2

⋮
𝑐𝑚

} (4.-2) 

 

 𝐱 = 𝐀𝐜 (4.-2) 

The mixing matrix 𝐀 is unknown to us, and so are the components 𝑐𝑗 , all we have are the 

observed mixtures. If we knew the mixing matrix, we could use its inverse to find the 

components, which is basically the approach for finding the solution. The goal is to find the 

inverse of the mixing matrix such that the resulting components have the desired properties 
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or more specifically stastistical characteristics. Most important restriction is that they should 

be as independent as possible. 

5.4.3 Objective of ICA - Statistical independence   

When applying ICA to a data set, we are trying find as independent components as possible, 

so it might be useful to explain, how the statistical independence is defined. 

In mathematical terms, two random variables 𝑥 and 𝑦 are statistically independent if their 

joint probability density functions can be expressed as a product of their individual 

(marginal) probability density functions (explained in section 4.3.2) as expressed in Equation 

4.0. This definition also applies to their cumulative density functions, as in Equation 4.0. 

Both their PDFs and CDFs must be factorizable. [30], [52], [21] In layman’s terms, variables 

are independent if changes in one do not affect the other, and they hold no information about 

each other. 

 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦) (4.0) 

If two variables are uncorrelated, their covariance is 0, and if they are not constants, which 

we can safely assume they are not when considering natural random variables, their Pearson 

correlation coefficient is also zero – Equation 4.0.[30]  

 𝜌𝑥,𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
= 0 (4.1) 

But that means only that they are partly independent and they can still contain significant 

amount of mutual information. Simply: when two variables are independent it implies they 

are also uncorrelated, but not vice versa. Uncorrelated variables are also statistically 

independent if and only if their joint probability distribution 𝐹(𝑥, 𝑦) is normal, which is 

inferred from the assumptions of central limit theorem.[53] Therefore, when searching for 

independence, the independent variables must not have normal distribution – they must be 

non-Gaussian. 

5.4.4 Non-Gaussianity 

Many variables encountered in statistical theory tend to have normal distributions.[22] Some 

authors also argue that this also applies to many physical quantities appearing in natural 

environment. [15] The fact that ICA searches for non-Gaussian variables, precludes the 

usage of ICA in many applications, where the wanted independent variables are assumed to 
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have normal distribution. Independent components can be mathematically found, but they 

probably will not correspond to real variables that were searched for.  

The same fact also complicates application in hydrological time series modelling, although 

not for the same reason. We are not searching for particular existing variables, only 

independent underlying factors representing the behaviour of our data, and distributions of 

these components are unknown to us. They need not to be normally distributed in terms of 

the representation. However, for further modelling procedures the components to be as 

normal as possible, because we estimate important characteristics, like auto-regression 

parameters, from them, used in univariate models, which often use the assumption of normal 

variables, as they are designed also to model normally distributed synthetic data. The 

assumption concerns not only mean and variance, but also skewness and behaviour of tails. 

[8], [39] Fitting of the autoregressive model requires that the probability distribution of the 

modelled variable matches the distribution of the transformed sample from which the 

statistics are estimated. The most desirable and easiest way to approach this restriction is to 

model the synthetic data Gaussian with mean 0 and variance 1.[38] 

A solution offers itself here: to apply normalization procedure only after the ICA 

transformation directly on the estimated components. Normalizing will not affect their 

independence after it was found. This is however non-trivial task as many widely used 

normalization procedures, with effects that are desirable for hydrological modelling (such as 

not magnifying the variance dispersion), work on data that are positive only, which data after 

ICA transformation along with its pre-processing procedures never are. Even when applying 

the fastICA algorithm alone, the algorithm, when maximizing the non-Gaussianity, will 

reach for negative values. 

Among possible solutions of this ICA property are to use normalization transformation that 

can work also with negative values and yields desirable results, modify fastICA algorithm 

so it ouputs positive data only, or to use different method of synthetic series generation such 

as bootstrapping, or other resampling methods, that will accurately simulate even non-

Gaussian distributions.  
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5.4.5 Measures of non-Gaussianity 

First, a measure of non-Gaussianity must be established, in order to mathematically define 

the search for the independent components in ICA. Among known measures are Kurtosis 

and Negenthropy. 

Kurtosis is probably more classical measure. Being the scaled version of fourth moment, it 

tells us something about the behaviour of the peak and the tails of the distribution.[53] It can 

be defined by general formula in Equation 5.1.  

 𝜁𝑥 = 𝐸[𝑥4] − 3(𝐸[𝑥2])2 (5.1) 

Although for standardized variable we can write kurtosis as in Equation 5.2.[53] 

 𝜁𝑥 = 𝐸 [(
𝑥 − �̅�

𝜎𝑥
)
4

] − 3 (5.1) 

Same as for skewness, the kurtosis will be zero for Gaussian variables because the following 

relationship will apply.[21] 

 𝐸[𝑥4] = 3(𝐸[𝑥2])2 (5.1) 

 

Kurtosis can take both positive or negative values (from -2 to infinity), which signifies so-

called super-Gaussian or sub-Gaussian distribution respectively.[53] Super-Gaussian 

distribution’s PDF has spiky peak and heavy tails, and is much more common when it comes 

to hydrological data, such as flowrate.[56] However, absolute value of kurtosis is being 

usually used to measure non-Gaussianity. The problem with kurtosis is, that it is very 

sensitive to ouliers and these are very common in streamflow data.[16] It is however much 

simpler both computationally and theoretically than the latter method. 

Negentropy 

Negentropy is also being used as a measure of non-Gaussianity and is defined through 

differential entropy, which is a concept from information theory. Entropy is sometime being 

called measure of randomness – the more unpredictable a variable is, the higher its entropy 

is. Mathematically it is defined as in Equation 5.3, where 𝐻(𝑥) is entropy of variable 𝑥. For 

vectors, modified definition can be used, called differential entropy, expressed in Equation 

5.4. 
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 𝐻(𝑥) = −∑ℙ(x = 𝑎𝑖) ∙ ln[ℙ(x = 𝑎𝑖)]

𝑖

 (5.1) 

 

 𝐻(𝐱) = −∫𝑝(𝐱) ∙ ln[𝑝(𝐱)] ∙ 𝑑𝐱 (5.1) 

The most important feature of entropy for herein application is, that it is largest for Gaussian 

variables. [10] as cited in [21] To obtain measure of non-Gaussianity, the definition of 

differential entropy must be further modified into definition of Negentropy which contrarily 

to entropy smallest for Gaussian variables – it is always non-negative and it goes to 0 for 

Gaussian variables. The definition of Negentropy 𝐽(𝐱) of vector 𝐱 is as follows, in 

Equation 5.3. 

 𝐽(𝐱) = 𝐻(𝐱𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛) − 𝐻(𝐱) (5.1) 

The vector of random variables 𝐱𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is vector of Gaussian variables with the same 

covariance matrix as 𝐱. 

5.4.6 Ambiguities of ICA 

Among ambiguities of ICA belongs unknown variances and signs of the components as well 

as their order. Because of the nature of the transform it is impossible to determine the 

variances of the independent components. When we are searching for the mixing matrix, 

which is unknown, there is no unequivocal sole solution, because with different matrix with 

columns multiplied by unknown scalar, or with matrix that is a linear combination of other 

possible mixing matrices, we can accomplish similar results in terms of independence. 

Because of the same reason, there is also no way to determine the signs the components. 

Because of this ambiguity, the variances of all the components are sometimes being scaled 

to 1, by diving the combinations with standard deviation. [21], [44] 

However, in many applications, this ambiguity is not significant. [21] It is also not important 

for multivariate hydrological time series modelling, where the goal is not to find components 

representing some particular existing latent variables as that would be impossible, it is 

sufficient to find components that are independent and represent the overall variance of the 

multivariate data. 
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5.5 Application of ICA to multivariate streamflow series 

Before using Independent Component Analysis, we must first prepare the data. Some of 

these techniques are not necessary but they can be very useful and can make the process of 

estimation of ICAs much easier. It includes for example centering and whitening the input 

data. 

The inconsistency of synthetic data is a result from either bias (systematic error), lying within 

the chosen techniques and procedures the model is based on, or from a random error.  

The random error should not be significant for many utilizations of the modelled data, 

especially when longer time series are modelled. When 10 000 years long time series are 

being generated, it of course give more space for any random error, but they also lose 

significance at least in terms of sample statistics and long term behaviour parameters of the 

system. However random error can cause for example generation of unrealistically high 

flowrate at certain point of the time series, which might affect some tasks the series is being 

used to solve, e.g. frequency analysis and related applications.  

The bias on the other hand, is of more concern. It can be stored within applied 

transformations or methods used to achieve the deterministic component of the model.  

5.5.1 Standardization 

By standardization it is here meant making the data zero mean with standard deviation equal 

to 1.  We can achieve centering of the input data simply by substracting the mean from the 

time series (4.1). This will make the data zero mean, which is done solely to simplify the 

upcoming process. When we also divide each time series or its part by standard deviation, 

we then achieve in having data sets that are scaled to the same variance (and standard 

deviation) of 1, which also simplifies next processeces. Standardized variable is denoted as 

𝑥0, and computed as in equation 4.1. 

 𝑥0 =
𝑥 − 𝐸{𝑥}

𝜎𝑥
 (4.1) 

5.5.2 Whitening 

Whitening is another process that can help prepare the data for further analysis. It is a linear 

transformation which transforms elements of a vector into new vector whose elements are 
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uncorrelated. Covariance matrix of the original vector is used for this transformation, hence 

it must be known.[21]  

The whitening transformation will convert the input vector into white noise vector whose 

covariance matrix is an identity matrix (the elements have no correlation with each other and 

they all have variance equal to one), as expressed in Equation 4.5, where �̂� is the whitened 

vector. 

 𝐸(�̂��̂�𝑇) = 𝐼 (4.5) 

One of the ways how to perform whitening transformation is to use Eigen Value 

Decomposition, denoted as EVD. The EVD can be applied to covariance matrix of original 

vectors and it will yield corresponding matrix of eigenvectors 𝐄 and diagonal matrix of 

eigenvalues 𝐃. Eigenvectors are important mathematical elements with convenient 

properties when using linear transformation matrices. Eigenvector 𝑒 of linear transformation 

matrix 𝐀 does not change direction when this transformation is applied to it, it only changes 

scale by 𝜆, which is its corresponding eigenvalue.[45] This relationship is represented by 

Equation 4.6. 

 𝐀𝑒 = 𝜆𝑒 (4.6) 

After finding the matrices 𝐄 and 𝐃, they can be used to create new matrix 𝐕 which will 

perform the required transformation process. There are more ways how to create the 

whitening transform matrix 𝐕, one is represented in Equation 4.7.[31], [54] Transformation 

of vector 𝐱 into white noise vector 𝐳 is then expressed in Equation 4.8. 

 𝐕 = 𝐃−1/2𝐄𝑇 (4.7) 

 

 𝐳 = 𝐕x (4.8) 

5.5.3 Normalization transformation 

Real streamflow data is never truly normal. By common sense, it is understandable that the 

probability distribution or the PDF of streamflow data goes to zero very quickly on the left 

tail from the mean as it cannot exceed to negative values of the horizontal axis. On the right 

tail on the other hand, there are extremes, even thought they might be scarce, very far from 

the mean, making the PDF to converge to zero much more slowly. This phenomenon is 
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called heavy right tail, and we speak of heavy-tailed distributions, which is, by definition, 

every distribution whose tail is heavier than the tail of an exponential distribution. [8] 

Box-cox power transform  

Box cox is type of power transformation where simple objective function is employed to 

find optimal coefficient 𝜆, that is subsequently used as a power in following Equation 5.3. 

Its advantage is, that it deals very well with non-normally behaving tails. Unfortunately for 

our application, it also has wo major disadvantages. One is that being a very strong 

transform, it can very sensitive to outliers, unnaturally boosting variance in its reapplication 

after synthetic data generation. The second disadvantage is, that in its original form, it cannot 

be reapplied to negative data, which synthetic data generated by AR model always contain. 

Result of the reapplication on negative data would result in complex numbers and modified 

version of the transformation needs to be used, like the one in Equation 5.4, if one wishes to 

employ Box cox power transform.  

 𝑦 =
𝑥𝜆 − 1

𝜆
 (5.3) 

 𝑦 = 𝑥𝜆 (5.4) 

 

3-Parameter Log-Normal transform 

One of the ways to normalize is through defining so-called 3-Parameter Log-Normal 

distribution.[43] To normalize variable 𝑥, it is searched for variable 𝑦, defined in Equation 

4.0. 

 𝑦 = ln|𝑥 − 𝑥0| (4.8) 

If this variable 𝑦 has normal distribution, which is what is needed, the variable 𝑥 has log-

normal distribution, defined by three parameters 𝜇𝑦, 𝜎𝑦 and 𝑥0, expressed in Equations 4.0, 

4.0 and 4.0, where 𝑐 expresses coefficient of variation and for the 3-parameter log-normal 

distribution is defined through relation with skewness of 𝑥 described in Equation 4.0. The 

three parameters express the mean and standard deviation of the sample space of 𝑦 and a 

shift of the distribution, respectively. The shift parameter is present to smooth the asymmetry 

of the distribution of 𝑥.  Its PDF can be written as follows, in Equation 4.0.[43] 
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 𝑝(𝑥) =
1

|𝑥 − 𝑥0|𝜎𝑦√2𝜋
∙ e

−
(ln|𝑥−𝑥0|−𝜇𝑦)

2

2𝜎𝑦
2

 (4.8) 

 

 𝜇𝑦 = ln 𝜎𝑥 − ln|𝑐| − 0.5 ln(1 + 𝑐2) = ln (
𝜎𝑥

|𝑐| ∙ √1 + 𝑐2
) (4.8) 

 

 𝜎𝑦
2 = ln(1 + 𝑐2) (4.8) 

 

 𝑥0 = �̅� −
1

𝑐
𝜎𝑥 (4.8) 

 

 𝑐3 + 3𝑐 − 𝜅𝑥 = 0 (4.?) 

The way to find 𝑦 is to find the shift parameter 𝑥0, such that the expression Equation 4.? is 

true. The skewness 𝜅𝑥 of variable 𝑥 is within this setup defined in Equation 4.8, but in order 

to find 𝑐 and subsequently 𝑥0, the 𝜅𝑥 is computed in standard way, as in Equation 4.1.[43] 

 𝜅𝑥 = (𝑒𝜎𝑦
2
+ 2)√𝑒𝜎𝑦

2
− 1 

(4.8) 

5.5.3 Independent components estimation 

As it was explained, we are looking for components that are as independent as possible. As 

it was described in section 5.3.4 the components 𝑖𝑐 will be independent when their PDFs are 

factorizable as in equation 4.9.[53] 

 𝑝(𝑖𝑐1, 𝑖𝑐2, … , 𝑖𝑐𝑛) = 𝑝(𝑖𝑐1)𝑝(𝑖𝑐2)…𝑝(𝑖𝑐𝑛) (4.9) 

The independence can be searched for by looking for maximum non-Gaussianity. That is 

true, because of the logic of central limit theorem. If the components were Gaussian, their 

PDFs could be factorizable even if they are not truly independent by origin, but their 

“independence” could still be proved. With components that are not non-Gaussian, the 

estimation is not possible. There is an exception allowing for at most one of the independent 

components being Gaussian.[22] 

5.6 Comparison of PCA and ICA 

Main purpose of PCA, for which was this technique originally intended, is to maximize 

variance. In water management, we are using also its orthogonality and uncorrelatedness 
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properties, although these are part of the method mainly to ensure that each of PCs are 

expressing separate factors. For ICA the separation of components is its main objectives and 

has more demanding requirements for unrelatedness of the components, as it aims for them 

being not only uncorrelated but also statistically independent and that not only for Gaussian 

variables.[53] [26]   

Uncorrelated variables with Gaussian distribution are also independent if their joint 

probability distribution is also Gaussian. For that particular case, PCA can be viewed as an 

equivalent to ICA and ICA can be considered as generalization of PCA to non-Gaussian 

data. In scientific community it is sometimes considered that PCA assumes normality of 

data, but that is not by any means necessary, unless one wants to find principal components 

with statistical independence (in mathematical definition-wise sense) and does not want to, 

for any reason possible, use ICA.[2] as cited in [26]   

Generally, PCA can be used to reduce a data set’s dimension before ICA algorithm is applied 

to it. When dealing with high-dimensional entries it can significantly reduce computational 

difficulty of the iterative algorithm. However sometime reducing dimension of your source 

data might not be desirable and it that case the one might want to use PCA mechanisms just 

to pre-process data for ICA by making them uncorrelated and standardized.[2] Eigenvalue 

or singular value decompositions are commonly being used for this purpose.[54], [31], [22] 
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6. MATHEMATICAL MODEL 

6.1 Introduction and goals of the mathematical model 

6.2 Structure of the model 

Whole model was coded in MATLAB R2015a, MathWorks software as a function with 

variable inputs.  

6.2.1 Input data 

To simplify the work with source data it is convenient to put all the flow rate time series as 

input vectors in one matrix 𝐐, where each vector represents one station. They are being 

ordered vertically, so columns correspond to stations and rows correspond to observations 

at the same time, as in Equation 6.1. We can call the matrix 𝐐 the input matrix. Obviously, 

all the vectors must be of the same length 𝑙 and the resulting matrix is then of dimensions 

𝑙 ×  𝑛 , where 𝑛 is the number of time series (number of stations).  

 𝐐 = [

𝑞11 𝑄21 … 𝑞𝑛1

𝑞12 𝑞22 … 𝑞𝑛2

⋮ ⋮
𝑞1𝑙 𝑞2𝑙 … 𝑞𝑛𝑙

]  (6.1) 

But technically we will view the source data set as vector 𝐪 of random variables 𝑞𝑖 where 

𝑖 = 1… 𝑙, Equation 6.2. 

 𝐪 = {

𝑞1

𝑞2

⋮
𝑞𝑙

} (6.2) 

The matrix  𝐐 can contain any number of time series of any length, the model performs the 

procedures independently on the dimension of the input matrix. While this does not affect 

its functionality, it may significantly affect the computing time and there is no information 

whether it might affect the efficiency of PCA, although there is no reason to believe so. 

6.2.2 Pre-processing 

Normalization transformation 
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Although it is listed here as pre-processing transformation, because it does not have a 

significant impact on PCA or ICA in terms of looking for uncorrelated or independent 

components, it is very important part of the process of time series modelling, and the choice 

of normalization method has fundamental implications. 

To check if the normalization transformation succeeded, the Kolmogorov–Smirnov one 

sample test (KS test), named after Andrey Kolmogorov and Nikolai Smirnov, was used. It 

is a nonparametric test used to compare the probability distribution of tested sample, with 

reference probability distribution, such as normal distribution. The transformed time series 

is taken, standardized and compared with standard normal distribution.[46] In MATLAB the 

corresponding function to execute this test is  [h,p] = kstest(x,y). The null hypothesis is that 

the tested sample comes from a standard normal distribution, which is either accepted 

resulting in h is 0, or rejected at significance level alpha (implicitly 5%), resulting in h is 1. 

 

 

 

 𝑦 =
𝑥𝜆 − 1

𝜆
 (1) 

 𝑦 = 𝑥𝜆 (2) 

 

Standardization 

Very simple standardization transformation is used in this model. The aim is to make the 

data zero-mean with standard deviation equal to 1, as was explained in section [5.6.1]. To 

do that, the normalized time series 𝑁 is taken, from which mean is subtracted for every 

column in every month matrix and then it is divided by its standard deviation, as expressed 

in Equation 6.1, resulting in standardized times series 𝑆. 

 𝑆𝑚,𝑛 =
𝑁𝑚,𝑛 − �̅�𝑚,𝑛

𝜎𝑁𝑚,𝑛

 (6.1) 

Although some methods of normalization, as for example the MATLAB built-in Box-Cox 

transformation, already make the data zero mean, it won’t affect the data to subtract the mean 
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in every case again in standardization process and it might prove helpful in case the 

normalization method is changed, so we do not need to change the standardization and de-

standardization procedures already implemented within the model.   

6.2.3  Employment of Principal Component Analysis 

6.2.4 Autoregressive model 

6.2.6 Reverse transformations and interpretation of data 

6.3 Verification of the model 

 

6.3.1  System of stations for verification of the model 

The constructed model was verified on system of stations in Moravian-Silesian region in 

Czech Republic (hereinafter CR). All stations belong to the same watershed of river Odra. 

It is a 850 km long river, out of which 112 km is in Czech Republic, where it starts. Its spring 

can be found in hill formation Oderské Vrchy in region of Olomouc, from where it goes 

north-east to city of Ostrava and then crosses the border to Poland. Table 6.1 contains names 

of the stations, the streams they are located on and their average long-term annual flowrate 

𝑄𝑎. From now on, the stations are referred to only by their corresponding numbers in Table 

6.1. 

Details of these station can be found on webpage of national organization Povodí Ohře. [57] 

Approximate locations of the stations within the region are shown in map of the region in 

Appendix 1.  

Table 6.1 
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This thesis is focused on methodology of construction of the model itself and uses arbitrary 

historical data only to evaluate the model’s performance, without consideration of possible 

water management implications to examined stations. Data that were chosen for this purpose 

were already used in similar research and their homogeneity and consistency were already 

evaluated. Critical assessment of the input data as it was described in section 4.7.1 is 

therefore not included here.  

Table 6.2 [58] 

 

 

 

 

 

Number Station Stream Qa [m3/s]

1 KS Svinov Odra 12.135

2 VD Kružberk Moravice 5.784

3 Děhylov Opava 14.788

4 VD Šance Ostravice 3.148

5 VD Morávka Morávka 1.7

6 Vyšní Lhoty Morávka 3.355

7 VD Olešná Olešná 0.392

8 VD Žermanice Lučina 0.552

9 Slezská Ostrava Ostravice 13.523

10 Český Těšín Olše 7.329

11 VD Těrlicko Stonávka 1.226

12 Věřňovice Olše 15.521

13 Řeka Ropičanka 0.304

SYSTEM OF STATIONS  in  ODRA WATERSHED

Storage Capacity Watershed area Dam Height Flooded Area

[mil. m
3
] [km

2
] [m] [ha]

2 VD Kružberk 24.6 567.0 34.5 280.0

4 VD Šance 43.1 146.4 65.0 337.0

5 VD Morávka 4.9 63.3 39.0 79.5

7 VD Olešná 3.5 33.6 18.0 88.0

8 VD Žermanice 18.5 45.5 32.0 248.0

11 VD Těrlicko 22.0 82.0 25.0 267.6

STATIONS with WATER RESERVOIR

Number Reservoir Name
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During the 36 years long period, two outstanding flood events can be seen. One is from July 

of 1997, and second from May of 2010. Both event affected mainly eastern part of Czech 

Republic and Silesia, if we restrict our interest on Czech country only. The 2010 event was 

considerably smaller in scale than the one from 1997, but both represent exceptional 

incidents within such short period of time.   

In terms of statistics, in May 2010 the flows were estimated to have return periods 20 to 50 

years in most of the watercourses in Odra and Morava watersheds, in watershed of river Olše 

(part of Odra watershed) the flows exceeded 100 years values. In July of 1997 the flows had 

estimated return periods at least 50 years in most watercourses, many exceeded 100 years 

and at least one river (Opava) registered discharge with return period significantly higher 

than 100 years. Table 6.3 summarizes the estimates on return periods as a result of research 

conducted on the records of the two events. [59]  

Table 6.3; [57, p. 48] 

 

 

Table 6.4 [57] 

July 1997 May 2010 July 1997 May 2010

[m
3
/s] [m

3
/s] [years] [years]

Odra Ostrava-Svinov 688.0 404.0 > 100 20-50

Opava Opava 647.0 76.9 >> 100 2-5

Ostravice Ostrava 898.0 780.0 50 20-50

Odra Bohumín 2160.0 1070.0 > 100 10-20

Olše Věřňovice 673.0 1030.0 20-50 > 100

FLOOD EVENTS of 1997 and 2010 in ODRA WATERSHED

Culmination flow Return perion

Stream Station 
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I. Station Stream Q1 Q2 Q5 Q10 Q20 Q50 Q100

1 KS Svinov Odra 128 180 258 322 392 491 571

2 VD Kružberk Moravice 52.6 75.5 111 140 173 219 258

3 Děhylov Opava 101 150 228 296 371 482 576

4 VD Šance Ostravice 52.8 84.9 132 170 211 267 313

5 VD Morávka Morávka 21.8 39.4 67 90.7 117 155 187

6 Vyšní Lhoty Morávka 35.4 57.7 96.5 133 175 241 300

7 VD Olešná Olešná 9.6 15.8 26.9 37.4 49.9 69.6 87

8 VD Žermanice Lučina 16.2 23.3 34.1 43.3 53.3 67.7 79.5

9 Slezská Ostrava Ostravice 186 280 431 565 714 936 1120

10 Český Těšín Olše 110 164 249 323 405 525 626

11 VD Těrlicko Stonávka 27.8 40.8 61.2 78.8 98.1 127 150

12 Věřňovice Olše 182 267 399 512 637 819 970

13 KS Smilovice Ropičanka 7.32 12.3 20.2 27.2 35 46.4 56.2

RETURN PERIODS for SYSTEM OF STATIONS  in  ODRA WATERSHED
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7. RESULTS AND DISCUSSION 

7.1 Testing the synthetic time series 

This section of thesis aims to test the synthetic times series generated with the constructed 

model with water management problems that are commonly being solved based on 

streamflow time series. These problems involve following solutions.[34]  

a) Requirement for supply storage capacity in a water reservoir and the reliability with 

which this capacity ensures unimpaired water supply at required rate, along with 

function expressing volume of water present in the reservoir in progress.  

b) Operational function expressing relation between required for supply storage 

capacity and required improved outflow at given level of temporal reliability. 

7.1.1 Water Supply Reliability function – WSR – ad a) 

This function is dealing with basic water management solution. Requirement for supply 

storage capacity is computed, such that the required reliability of the reservoir is satisfied. It 

also produces plot of function expressing volume of water present in the reservoir in 

progress. The way WSR works is summarized in computational diagram, in Picture 7.1. 

Following table show requirements for both historical and synthetic data, while the synthetic 

time series used as an input were 100 years long and the values of required storage capacities 

were averaged throughout 50 runs.  

Table 7.1

 

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13

Historical data [mil.m
3
] 85.10 31.50 81.50 14.70 8.80 17.60 3.00 4.00 77.90 34.60 9.20 72.70 2.00

Synthetic data [mil.m
3
] 83.09 34.56 83.08 19.40 9.74 19.30 2.90 3.49 74.05 39.91 8.03 74.23 1.70

Water Supply Storage Capacity requirements
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Picture 7.1
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7.1.2 Water Reservoir Operation function – WRO 

One of the exercises that has been used to study the behaviour of a time series, is Water 

Reservoir Operation function. It gives us relation between required storage capacity and 

different demanded improved outflows secured at given constant temporal reliability. It is a 

complex water reservoir management solution and elementary characteristic of any water 

reservoir.   

Computing reservoir function involves iteration process, where for selected improved 

outflows, small volumes of storage capacity are added with each iteration to the reservoir 

characteristic, until the required reliability is secured. The smallest storage capacity which 

will satisfy that condition is the function output for that given improved outflow. The process 

is described in its computational diagram in Picture 7.2. 

Picture 7.2

 

Operation function is very useful tool for evaluation process of model’s performance and an 

important indicator of its correctness. Classic time series models are usually performing very 
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good in terms of reproducing time series with the same sets of statistical moments. Especially 

low order moments are easily determinable and quite simply manageable, for the 

transformations built within the model are based on the identification of these characteristics 

and in case of their insignificant deviation from desired values, due to the unreliability of the 

stochastic component, uncomplicated correction techniques are available to 

deterministically achieve output with desired properties. However not only the preservation 

of overall statistics is important, but also accurate simulation of long-term and short-term 

behaviour of the time series represented by fair appearance of characteristic events like 

drought periods or flood flows and their realistic succession. This is difficult to express 

mathematically. The behaviour of synthetic time series can be examined by experienced eye 

of a researcher directly from a plot of the time series, but this can be very subjective and 

time consuming and the results are difficult to quantify. One way to examine realisticness of 

the time series behaviour is through operation function. The function plot can represent 

several scenarios in scaled and compact figures, where the behaviour of time series is 

represented by simple exponential-like curve based on the ability of the time series to satisfy 

certain conditions. This way we can easily compare the “performance“ of synthetic time 

series with the one of the historical time series, judge the deviations and make conclusions 

about the performance of the model. 

It is necessary to mention that the structure of the WSR function was substantially simplified 

compared to the real solutions in practice. For example, the evaporation element was left out 

of the function, simply because its computation would require Depth-Area-Volume function 

data, which is a fundamental characteristic of any water reservoir. This characteristic is 

obviously unavailable for the stations where there is no existent reservoir and therefore 

implementation of the evaporation element would require design of possible reservoir 

solutions and that was beyond the reach of this thesis. However, while this would certainly 

hold an impact on the applicability of the WSR function in practice, it does not affect herein 

application, because we omit the respective elements in both historical and synthetic data 

processing and this simplification can be safely used without the loss of representativeness 

of the method. 

For improved flows a vector of 20 values was used, starting at 20% and ending at 80% of 

long-term annual average of historical data of corresponding station.   
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7.2 Testing tools 

In this section, tools used to evaluate behaviour of both synthetic and historical time series 

are presented and their mathematical background is explained. It includes commonly used 

parameters of water reservoirs, like temporal and occurrence reliability or required supply 

storage capacity. Several significance tests which were used to determine whether statistical 

characteristics of the modelled water system were preserved in the synthetic system, are also 

presented. 

7.3.1 Temporal and Occurrence Reliability 

Temporal reliability is the primary parameter of water reservoir that is being used here to 

determine sufficient storage capacity. To determine temporal reliability, empirical 

probability estimate is used, based on the number of months the reservoir fails to provide 

sufficient water supply with given supply storage capacity. As from the definition of 

empirical probability, which is defined by the ratio of the number of outcomes in which the 

given event occurs to the total number of trials [37], ratio of the number of months the 

reservoir did not fail to meet the water demand to the total number of months is used to 

assess the temporal reliability. The ratio is being expressed through Čegodajev empirical 

probability formula [14], as in Equation 6.1, where 𝑙 is the total number of months and 𝑓𝑚 

number of failure months.[29] 

 ℙ𝑡 =
(𝑙 − 𝑓𝑚) − 0,3

𝑙 + 0,4
 (6.1) 

Occurrence reliability is another measure used to evaluate the storage capacity requirement. 

It is very similar to temporal reliability, but instead of months it uses years in which the 

reservoir does not meet the requirements - ratio of non-failure years to total number of years 

is used. A year is considered as failed if it contains at least one failure month. The formula 

is expressed in Equation 6.1, where 𝑓𝑦 is the number of failure years.[29] 

 ℙ𝑜 =
(

𝑙
12 − 𝑓𝑦) − 0,3

𝑙
12 + 0,4

 (6.1) 

Level of reliability required differs and depends on size of the reservoir and its purpose. For 

large water reservoir, supplying water for civil usage, the demanded temporal reliability is 

usually 99.5%.  
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7.3.2 Two sample T-test for sample means and variances  

Other test conducted on the simulated data was evaluation of deviation of sample statistics 

between synthetic and historical time series. Classic two sample t-test was used for this 

evaluation, testing the null hypothesis that both observation samples have equal means and 

variances and they are coming from independent random sample spaces. T-test is a type of 

parametric test that uses the significance level 𝛼 upon which it rejects or accepts the null 

hypothesis. Second output of the t-test is the 𝑝-value, which is being compares to the limit 

level of significance, at which we still rejects the null hypothesis – we reject the hypothesis, 

if 𝑝 is smaller than 𝛼.[47] MATLAB function [h,p] = ttest2(x,y), was used for this test. The 

result h is 1 if the test rejects the null hypothesis at the significance level 𝛼 (implicitly 5%), 

and 0 otherwise.[35]  

The test was to determine whether the model preserves sample means and variances in whole 

time series but also across month samples. For example, sample mean of all monthly 

flowrate averages in Novembers in historical data were compared with those in synthetic 

data and so it was done for all months and for each station. Finally, whole sample means 

were compared. 

Zero values signify that the null hypothesis was not rejected and means and the variances 

were not significantly different for the historical data and the modelled time series. Non-zero 

values mean rejection of the null hypothesis and at the same time they express the 𝑝-values 

upon which the hypothesis was rejected. They are therefore all smaller than the 5% 

significance level 𝛼.  

7.3.3 Two sample correlation significance test using Fisher’s procedure  

Following method was used to compare pairs of correlation coefficients. The two sample 

correlation significance test is testing null hypothesis that a correlation of two samples from 

one time series is the same as a correlation of the same corresponding two samples from 

second time series. Procedure introduced by R. A. Fisher in 1921, explained in following 

equations, was implemented in the test.[12] as cited in [55] 

First the two correlation coefficients being compared are transformed by the Fisher’s 

transformation as in Equation 6.1, then the searched statistic is computed by Equation 6.1, 

where 𝑛 is the size of the sample - number of observations, used to compute corresponding 

coefficient.  [55]  
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 𝜌′ =
1

2
∙ ln (

1 + 𝜌

1 − 𝜌
) (6.1) 

 

 
𝑧 =

|𝜌1
′ − 𝜌2

′ |

√
1

𝑛1 − 3 +
1

𝑛2 − 3

 
(6.1) 

The 𝑝 value is then computed standardly through normal distribution function Normal CDF 

with zero mean and variance of 1, as in Equation 6.1.[53]    

 𝑝 = 2 ∙ (1 − 𝐹(𝑧|0,1)) =  
1

√2𝜋
∫ exp (

−𝑧2

2
)

𝑧

−∞

𝑑𝑡 (6.1) 

 

 The value is than compared with the chosen significance level – here 0.05. If 𝑝 is smaller 

than the the significance level, the null hypothesis is rejected.  

7.3 Preservation of basic sample statistics 

Because of the employment of the correction techniques, which directly reapply the sample 

mean and variance of the historical data to the synthetic time series, these two statistics are 

always preserved without error, if we compare only the end data. Following table proves 

that. It shows the percentages of cases in which the mean and variance were significantly 

different between the historical and synthetic time series, which is tested by the two-sample 

t-test from section 7.3.2. All of the results are zero, signifying that the test’s null hypothesis 

was never rejected. 

Table 7.1 
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Same percentages are shown in Table 7.2, signifying cases in which the synthetic time series 

had significantly different probability distribution, which is tested by the classic 

Kolmogorov-Smirnov two sample test.  

The percentages higher than 15% are highlighted by red colour. The 15% limit was chosen 

arbitrarily. As you can see, the model preserves fairly the distributions of values in vectors 

comprised of the same month. The least pleasant behaviour can be seen in July’s data. This 

is probably due to the higher variance of July’s averages across years, even in the historical 

data. In July, both major flood events and severe droughts can occur.  However, the model 

does not perform very well in preserving the distributions of the time series as a whole. This 

can be caused by the structure of the model itself, as it is applying individual transformations 

separately on every month. 

Table 7.2 

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13

XI 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

XII 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

I 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

II 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

III 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

IV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

V 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

VI 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

VII 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

VIII 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

IX 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

X 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Q 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Mean and Variance comparation - two sample Student Test's percentage results
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Table 7.3

 

Following table – Table 7.2 a), shows summary of the Table 7.2, making averages of the 

percentages firstly only for monthly values, secondly for the full series comparison and 

finally it shows total error of the table by making an average of the entire table. 

Table 7.2 a) 

 

7.4 Examination of correlation coefficients 

Two basic sets of correlation trends were examined: 

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13

XI 0 0.1% 0 0 0 0 0.1% 0 0 0 0 0 0

XII 0 0.1% 0.4% 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0

II 0 0 0 0 0 0 0 0 0 0 0 0 0

III 0 0 0 0 0 0 0 0 0 0 0 0 0

IV 0.1% 0 0 0 0 0 0.1% 0 0 0 0.1% 0 0

V 10.3% 0 0.3% 0.5% 0.2% 0.3% 14.5% 0.9% 3.8% 4.9% 0.2% 15.7% 0.3%

VI 0.1% 2.1% 1.9% 0 0 0 0.1% 0 0 0 0 0 0

VII 80.2% 61.8% 76.5% 11.6% 13.9% 11.7% 55.1% 2.3% 18.4% 8.7% 1.0% 4.9% 3.9%

VIII 39.8% 0 0 0.5% 1.2% 0.2% 28.0% 1.2% 0.3% 0 15.0% 0.4% 0

IX 8.7% 6.6% 0.5% 3.6% 4.7% 5.4% 1.1% 1.5% 0.9% 10.8% 1.0% 0.7% 0.4%

X 3.7% 22.7% 3.5% 0 0 0 0.3% 0.3% 0.2% 0 0 0 0

Q 99.8% 91.3% 80.0% 66.9% 34.7% 49.5% 99.5% 76.1% 41.2% 45.2% 77.5% 34.7% 8.0%

Distribution comparation - two sample Kolmogorov-Smirnov Test's percentage results

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13

XI 0 2.8% 0 0 0 0 2.8% 0 0 0 0 0 0

XII 0 2.8% 2.8% 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0

II 0 0 0 0 0 0 0 0 0 0 0 0 0

III 0 0 0 0 0 0 0 0 0 0 0 0 0

IV 2.8% 0 0 0 0 0 2.8% 0 0 0 2.8% 0 0

V 2.3% 0 2.8% 2.8% 2.8% 2.8% 2.2% 2.6% 2.5% 2.5% 2.8% 2.3% 2.3%

VI 2.8% 2.7% 2.4% 0 0 0 0.6% 0 0 0 0 0 0

VII 1.3% 1.7% 1.3% 2.4% 2.2% 2.2% 1.8% 2.4% 2.2% 2.4% 2.3% 2.4% 2.3%

VIII 1.9% 0 0 2.8% 2.3% 2.0% 2.0% 2.8% 1.8% 0 2.2% 2.8% 0

IX 2.4% 2.4% 2.8% 2.4% 2.5% 2.4% 2.8% 2.6% 2.8% 2.3% 2.8% 2.8% 2.8%

X 2.5% 2.2% 2.6% 0 0 0 2.8% 2.8% 2.8% 0 0 0 0

Q 0.4% 1.5% 1.8% 2.3% 2.9% 2.7% 0.3% 1.9% 2.7% 2.7% 1.9% 3.0% 3.4%

Distribution comparation - two sample Kolmogorov-Smirnov Test's p  values mean

Total error in equal distribution test within months 3.66%

Total error in equal distribution test within full series 61.88%

Total error for entire table 8.13%
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1) Autocorrelations of months with previous months - The first set show the inner 

autocorrelation structure of individual stations. By examining the set, it is aimed to 

determine whether the model preserved inner time dependent and periodical 

behaviour of the individual historical time series. This could be also done separately 

for each station. 

2) Cross-correlations between stations – The second set represents matter of higher 

interest in this thesis. It shows us both temporal and spatial dependence of stations 

with each other, which the very thing the model aims to preserve and replicate. By 

temporal dependence it is meant time-coordinated behaviour - if an event occurs in 

one of the stations, the other stations, being in its proximity, behave accordingly 

always with similar time response, depending on the extent of the event of course. 

By spatial dependence, it is meant the similarity of behaviour based on their mutual 

distances and their topographic relationships – an event cause by natural 

phenomenon, like precipitation, in one of the stations, probably affects by certain 

measure other stations in its proximity, depending on the extent of the phenomenon.  

7.4.1 Autocorrelations of months with previous months – ad 1) 

At first were tested coefficients expressing correlations of each month average flowrates 

with previous month average flowrates throughout the whole observed period. For example, 

vector of flowrate averages in all Novembers in station 1 were taken and compared with 

vector of flowrate averages in all Octobers. Finally, autocorrelation with lag 1 for vector 

with all months was computed, i.e. relationship between a times series and latter itself, 

shifted by one month (one value). This was done for the historical time series, then for the 

synthetic one and then were these pairs of correlation coefficients compared by the 

two-sample correlation significance test using Fisher’s procedure, described in section 7.3.3. 

Table 7.4 shows autocorrelation structure for the historical data and Table 7.5 shows 

averages of correlation coefficients for 1000 generated time series. Row labels with months 

represent correlation between the month on the label and its previous month. Final row 

represents full time series autocorrelation. The tables are colour-scaled with red colour for 

positive correlation, blue colour for negative correlation and white cells are those with very 

small or no correlation at all. Higher saturation means stronger relationship.  



 49  

 

It is clear from the tables, that the structure for historical data is much more chaotic, while 

the structure for synthetic data is much more homogeneous for individual months. This is 

obviously by main part caused by the fact that the table for historic data represents one single 

scenario, while the table for synthetic data is smoothed by 1000 runs making the values to 

converge to correlation figures of the modelled population. Also there are no negative 

correlations in the synthetic data, but that can be of no significance, as the very few negative 

correlations in historical data are very week and their reproduction in synthetic time series 

can be assessed as unimportant. However, some considerable difference can be spotted and 

their significance will be assessed in following paragraph. 

Table 7.4

 

Table 7.5

 

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13

XI 0.56 0.87 0.87 0.43 0.44 0.40 0.47 0.62 0.51 0.45 0.57 0.47 0.39

XII 0.33 0.15 0.45 -0.02 0.05 0.08 0.50 0.30 0.21 0.10 0.29 0.20 0.11

I 0.33 0.53 0.55 0.20 0.14 0.09 0.21 0.09 0.08 -0.01 0.10 0.13 0.01

II -0.04 0.08 0.10 0.07 0.08 0.13 -0.04 0.09 0.04 0.11 0.06 0.07 0.05

III 0.18 0.23 0.18 0.21 0.13 0.16 0.13 0.09 0.17 0.02 0.12 0.07 0.15

IV 0.27 0.21 0.32 0.03 0.08 0.23 0.15 0.16 0.31 0.35 0.21 0.33 0.27

V 0.38 0.58 0.48 0.01 -0.01 -0.01 0.11 0.05 0.02 -0.02 0.07 -0.03 0.01

VI 0.53 0.50 0.49 0.51 0.17 0.46 0.11 0.27 0.29 0.38 0.13 0.32 0.26

VII 0.05 0.06 0.02 0.36 0.37 0.21 0.07 0.13 0.17 0.19 0.18 0.13 0.09

VIII 0.13 0.38 0.20 0.02 0.07 0.10 0.07 0.10 0.09 0.08 0.10 0.08 0.08

IX 0.08 0.37 0.20 -0.06 0.00 0.02 -0.03 0.09 -0.01 0.10 -0.01 0.07 0.08

X 0.46 0.47 0.49 0.31 0.43 0.39 0.20 0.14 0.30 0.28 0.19 0.32 0.32

Q 0.27 0.45 0.35 0.20 0.20 0.23 0.13 0.19 0.19 0.21 0.16 0.19 0.21

Autocorrelation coefficients for Historical Time Series

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13

XI 0.49 0.52 0.53 0.48 0.51 0.53 0.41 0.51 0.54 0.53 0.51 0.54 0.52

XII 0.22 0.25 0.24 0.22 0.22 0.22 0.21 0.21 0.23 0.22 0.23 0.22 0.22

I 0.12 0.07 0.10 0.10 0.11 0.11 0.11 0.13 0.14 0.13 0.13 0.14 0.12

II 0.09 0.12 0.11 0.08 0.08 0.08 0.10 0.09 0.06 0.06 0.07 0.06 0.06

III 0.17 0.17 0.18 0.16 0.16 0.17 0.14 0.15 0.18 0.18 0.16 0.18 0.17

IV 0.23 0.25 0.27 0.20 0.21 0.24 0.19 0.19 0.26 0.25 0.19 0.25 0.25

V 0.10 0.11 0.11 0.10 0.11 0.11 0.09 0.10 0.11 0.10 0.10 0.11 0.11

VI 0.28 0.25 0.26 0.26 0.26 0.30 0.27 0.28 0.31 0.29 0.27 0.30 0.30

VII 0.22 0.20 0.19 0.18 0.21 0.23 0.21 0.21 0.23 0.22 0.21 0.23 0.21

VIII 0.33 0.30 0.32 0.33 0.36 0.37 0.32 0.35 0.36 0.36 0.34 0.37 0.36

IX 0.18 0.27 0.21 0.17 0.18 0.17 0.16 0.18 0.17 0.17 0.17 0.17 0.17

X 0.35 0.32 0.35 0.34 0.36 0.36 0.33 0.34 0.37 0.36 0.35 0.36 0.34

Q 0.26 0.38 0.30 0.25 0.26 0.28 0.22 0.26 0.28 0.26 0.25 0.26 0.30

Autocorrelation coefficients for Synthetic Time Series
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Next two tables, Table 7.6 and Table 7.7, represent the two-sample comparation test’s 

results. By the same logic as in the two-sample test of equal means and variances, or 

distributions, the first one (7.6) gives us percentages of runs when the null hypothesis was 

rejected, and the second one gives us average 𝑝 values upon which the hypothesis was 

rejected, counting only cases when it was actually rejected. For example, the autocorrelation 

coefficient of Novembers with preceding Decembers in station 1, was significantly different 

in 1.7% of cases (first row, first column). Zero values signify that the null hypothesis was 

never rejected for that particular relation and the correlation coefficients were never 

significantly different for the historical data and the modelled time series. The table 7.6 is 

arguably the most important one, because it shows something about how similarly to the 

historical data the synthetic time series behave and therefore it tells us something about the 

model’s performance.  

The percentages higher than 15% are highlighted by red colour.  As you can see, the 

autocorrelation structure of the series was not disrupted by the model too often in many 

places as substantial majority of values is smaller than 1% or even 0. It however highlighted 

problematic periods especially in stations 2 and 3, namely autocorrelation at lag 1 for 

Novembers, Januaries and Mays, where the structure was disrupted significantly. Cross-

referencing the locations of these deviations with correlation coefficient in tables 7.4 and 

7.5, it is clear, that this has been caused by sort of systematic error of the model, rather than 

being a result of weak autocorrelation or unpredictability of relevant periods.  

Table 7.7, as expected, corresponds to results in Table 7.6, and top of it, it shows that the 𝑝 

values are not critically small, most of them being between 3-4% meaning that the 

hypothesises were not far from the rejection limit, set at 5% significance level.  Values below 

1% are highlighted by yellow colour, pointing to spots with largest probability of different 

values in terms of autocorrelation.  
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Table 7.6

 

Table 7.7

 

Following the same measure done for the equal distributions test, Table 7.6 a), shows 

summary of the Table 7.6, making averages of the percentages firstly only for monthly 

values, secondly for the full series comparison and finally it shows total error of the table by 

making an average of the entire table. 

Table 7.6 a) 

 

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13

XI 1.7% 88.9% 87.3% 0 0.2% 0 0.6% 4.0% 0.1% 0 1.3% 0 0.1%

XII 1.6% 0 7.7% 0 0 0 19.7% 0.8% 0.1% 0 0.3% 0.2% 0

I 6.9% 58.6% 60.0% 1.3% 0.2% 0.2% 1.6% 0.1% 0 0 0 0.1% 0

II 0 0.2% 0.4% 0.4% 0.5% 1.1% 0 0.1% 0.3% 0.5% 0.2% 0.2% 0.2%

III 0.2% 0.8% 0.1% 0.5% 0.3% 0.3% 0.2% 0 0.3% 0.1% 0.2% 0 0.2%

IV 0.2% 0.6% 0.8% 0 0.1% 0.5% 0 0 0.3% 1.9% 0.3% 0.4% 0.6%

V 15.1% 62.8% 36.0% 0.1% 0 0 0.2% 0.1% 0 0 0 0 0

VI 15.6% 15.6% 11.4% 14.5% 0.1% 4.2% 0 0 0.1% 1.4% 0 0 0

VII 0 0 0 4.2% 3.2% 0.2% 0 0.1% 0 0 0.1% 0 0.1%

VIII 0 1.2% 0 0 0 0 0 0 0 0 0 0 0

IX 0 1.6% 0.2% 0 0 0 0 0 0 0 0 0 0

X 1.3% 5.2% 3.9% 0 0.6% 0.3% 0 0 0 0 0 0 0.2%

Q 1.1% 11.6% 5.3% 0 0 0 0 0 0 0 0 0 0

Autocorrelation coefficients comparation - two sample Fisher's Test's percentage results

Stations 1 2 3 4 5 6 7 8 9 10 11 12 13

XI 3.2% 0.6% 0.8% 0 3.4% 0 2.9% 2.9% 3.8% 0 3.1% 0 2.6%

XII 3.5% 0 3.0% 0 0 0 2.4% 2.7% 2.6% 0 2.0% 3.1% 0

I 3.0% 1.7% 1.7% 3.0% 2.4% 3.8% 3.3% 4.3% 0 0 0 4.9% 0

II 0 2.8% 3.0% 3.5% 4.1% 3.6% 0 3.5% 4.4% 4.1% 3.4% 4.6% 4.2%

III 2.0% 3.0% 0.5% 2.3% 3.2% 1.1% 2.6% 0 2.5% 4.8% 4.5% 0 1.2%

IV 1.9% 3.2% 2.6% 0 4.8% 2.9% 0 0 3.3% 3.5% 3.8% 3.9% 3.5%

V 2.6% 1.6% 2.1% 4.4% 0 0 3.3% 3.8% 0 0 0 0 0

VI 2.4% 2.8% 2.8% 2.5% 3.5% 3.0% 0 0 4.4% 3.8% 0 0 0

VII 0 0 0 3.1% 3.2% 2.8% 0 4.0% 0 0 2.2% 0 4.3%

VIII 0 3.4% 0 0 0 0 0 0 0 0 0 0 0

IX 0 3.0% 2.3% 0 0 0 0 0 0 0 0 0 0

X 3.6% 3.0% 2.9% 0 3.3% 3.0% 0 0 0 0 0 0 4.5%

Q 3.1% 2.9% 3.0% 0 0 0 0 0 0 0 0 0 0

Autocorrelation coefficients comparation - two sample Fisher's Test's p  values mean

Total error in autocorrelation within months 3.57%

Total error in autocorrelation within full series 1.38%

Total error for entire table 3.40%



 52  

 

7.4.2 Cross-correlations between stations 

As a second measure, cross correlations between stations were computed and compared. 

Again, this was first done for separate months, i.e. correlation of Novembers in Station 1 

with Novembers in Station 2, and then for the time series as a whole, expressing correlation 

of development of flowrates between the two examined stations throughout he whole 

observed period.  These coefficients were again computed for the historical time series, for 

1000 of synthetic time series, construction average values of them and then were these pairs 

of correlation coefficients compared by the two-sample correlation significance test from 

section 7.3.3.  

Four tables were constructed by the same manner as in previous section 7.4.1, but due to the 

large size of the tables (with 13 stations there is (13
2
) possible combinations, that is 78 

relationships), they are included as appendices – namely in Appendix 5 (pages XIV – XVI).  

Table 7.8 shows cross-correlation structure for the historical data and Table 7.9 shows 

averages of cross-correlation coefficients for 1000 generated time series. Row labels tell 

between which two stations is the corresponding relationship, columns represent months in 

which the relationship is examined. Final column represents correlation between full time 

series. The table is colour-scaled, but differently than in Tables 7.4 and 7.5, as here, in Table 

7.8 and 7.9 the correlations are always positive, which is understandable considering they 

represent spatial dependence in one watershed and being strongly tied to weather behaviour 

in the area. Red colour is for strongest positive correlations, blue colour for least strong 

relationships and white colour is used as transition colour, signifying average strength of 

dependence. Higher saturation of red or blue colour means higher proximity to maximum or 

minimum values respectively.  

There is very clearly observable similarity between the structures for historical data and 

synthetic data. Overall, most of the correlations are very strong. There are observable 

patterns, showing for example weaker correlations for winter and spring months especially 

among first few stations and particularly strong correlations in months May, July and 

September in all of the profile relationships. While all values remain positive, naturally all 

strengths can appear, as some stations used here for verification are quite distant from each 

other and their relationship can lack the spatial dependence at all, leaving only the temporal 

dependence, which is with greater distance arguably also weaker.  This means that no 
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strength of dependence is suspicious, unless it is preserved (not reduced nor boosted) in the 

synthetic data. Altogether, we can safely say, that the structures are not apparently different, 

signifying fair performance of the PCA method. Evaluation of significance of discovered 

difference follows in next two paragraphs.  

The next two tables in Appendix 5, Tables 7.10 and 7.11 show percentages of times series 

where the particular correlations were significantly different between the historical and 

synthetic data and the average 𝑝 values upon which the null hypothesis assuming 

insignificant difference was usually rejected, if so, counting again only the cases it was 

rejected. Table 7.10 is colour-scaled (unlike in Table 7.6) with more saturated red colour 

signifying higher number of different outcomes. It is very clear from the table that the most 

“bad-behaving” month is July, and May follows. The results for July are unpleasant, showing 

that the cross correlations were significantly different in majority of cases. This can again 

signify systematic error of the model and/or certain unpredictability of the flows in month 

of July. It was previously discussed in section 7.3, that July is the month most likely to be 

unpredictable, along with discussion of results in 7.2, where July was also showing highest 

rate of error. There is however another thing in play, which is the nature of Fisher’s 

transformation, because of which the differences between high correlation coefficients close 

to 1 are rated as much more significant than the differences between weaker correlations. 

For example, the Fisher’s test will reject the null hypothesis for comparation of correlations 

0.90 and 0.97, but it will not reject the hypothesis for values 0.2 and 0.5, assuming all values 

were computed from vectors of the same length. This is arguably right approach considering 

the definition of correlation coefficient [53], but it might be in some applications, including 

this one, overestimating the significance of difference between strong correlation 

relationships. 

By making average summary of the table 7.10 we get a total error of the structure. Three 

values were produced - first as a total error in cross-correlations within months, second as 

total error in cross-correlations between full time series and third as a total error of the 

complete structure, making an average from entire table. Results are in Table 7.11 a), and 

are showing that the total errors are within reasonable limits. 
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Table 7.11 a) 

  

 In Table 7.11 the 𝑝 values lower than 1% are highlighted with yellow colour, making not 

very extensive list. This tells us that even if the null hypothesis of the test was rejected in 

majority of cases in those particular relationships, it was mostly rejected upon 𝑝 value not 

very far from the significance level.  

7.5 Influence of particular transformations 

7.5.1 Importance of the correction techniques 

If the definitions of sample mean and sample variance is taken into consideration, it is clear 

that the correction techniques suppress only the outcome by-product of the stochastic 

component, not its desired feature directly, and only from the long-term point of view, where 

for example the variance could differ slightly in realistic solution of 1000 years long and 

longer synthetic time series , but would also be autonomously corrected by the convergence 

process, refining the variance, bringing it closer to the population mean, the longer the series 

is.  

  

Total error in cross correlations within months 7.19%

Total error in cross correlations between full series 15.90%

Total error for entire table 7.86%
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8. CONCLUSION 

Based on its applicability and features, two approaches for multivariate time series modelling 

were discussed. The first, method based Principal Component Analysis is much more simple 

and direct method, having the advantage of closed form computational processes and 

therefore holding much smaller computational burden. Its disadvantage is, that it 

theoretically destroys part of the mutual information that the multivariate data contain, 

because it preserves only raw mutual correlations between stations but not higher order 

dependencies. The basis is that it searches for transformation that has been designed based 

on the covariance matrix, which is a low order statistical characteristic of data. The second, 

method based on Independent component analysis, theoretically preserves even those higher 

order dependencies, because it extracts from the data more mutual information and is 

therefore able to reapply this information to independent univariate synthetic time series that 

were generated individually.  

The practical part of this thesis involved construction of the PCA method based multivariate 

model and evaluation of its performance. Regarding the preservation of the correlation 

structure the model performed arguably quite well, having total error as a performance 

measure explained in section 7.4 around 3.40% for the autocorrelation structure of lag 1 of 

the data set and total error of 7.86% for the cross-correlation structure describing mutual 

relationships of the multivariate data.  

In traditional applications of streamflow data the generated time series did not deviate 

extensively from expected outcomes, making the model’s output usable in some classical 

water management solutions. However, there were some drawback of the model’s 

performance especially in water reservoir operation solutions, where the model produced 

data that underestimated storage capacity requirements for longer time series.   
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LIST OF MATHEMATICAL NOTATIONS 

𝑥  random variable 

𝐱  vector of random variables 

𝐗  matrix 

𝐱𝑇/𝐗𝑇  transpose of a vector/matrix 

./   element wise division operator, for other operations analogically 

𝐸  expected value operator  

𝜇𝑥  mean of a sample of a population of variable 𝑥  

�̅�  mean of a sample of a variable 𝑥  

𝜎𝑥  standard deviation of variable 𝑥 

𝜅𝑥  skewness of variable 𝑥 

𝜁𝑥  kurtosis of variable  𝑥 

ℙ(A)  probability of event A 

𝑝(𝑥)  marginal probability density function of variable 𝑥 

𝑝(𝑥, 𝑦)  joint probability density function of variables 𝑥 and 𝑦 

𝐹(𝑥)  cumulative distribution function of variable 𝑥 

𝜌𝑥,𝑦  Pearson correlation coefficient between variables 𝑥 and 𝑦 

𝜎𝑥,𝑦  covariance between variables 𝑥 and 𝑦, also 𝑐𝑜𝑣(𝑥, 𝑦) 

𝛾𝑥,𝑥+𝑘  covariance of variable 𝑥 with latter itself, also 𝛾𝑘 

𝚺𝐱  covariance matrix of a random vector 𝐱 

𝜀𝑡  white noise element 

𝜑𝑝  autocorrelation coefficient of order 𝑝 
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APPENDIX 5; Cross-correlation test results; Table 7.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XI XII I II III IV V VI VII VIII IX X Q

1 x 2 0.67 0.76 0.81 0.68 0.60 0.83 0.79 0.84 0.98 0.86 0.84 0.93 0.77

1 x 3 0.86 0.92 0.91 0.83 0.88 0.92 0.90 0.91 0.98 0.95 0.96 0.96 0.92

1 x 4 0.68 0.60 0.58 0.42 0.49 0.66 0.92 0.60 0.95 0.83 0.82 0.86 0.76

1 x 5 0.64 0.63 0.57 0.36 0.41 0.66 0.89 0.50 0.95 0.84 0.80 0.70 0.73

1 x 6 0.66 0.67 0.60 0.44 0.59 0.70 0.92 0.73 0.94 0.83 0.82 0.71 0.78

1 x 7 0.69 0.83 0.84 0.71 0.93 0.87 0.96 0.73 0.97 0.94 0.94 0.78 0.89

1 x 8 0.74 0.79 0.82 0.63 0.85 0.80 0.91 0.75 0.92 0.86 0.87 0.68 0.84

1 x 9 0.76 0.84 0.82 0.71 0.84 0.85 0.95 0.78 0.96 0.92 0.89 0.84 0.88

1 x 10 0.70 0.76 0.73 0.65 0.79 0.77 0.92 0.72 0.91 0.85 0.79 0.73 0.83

1 x 11 0.76 0.83 0.85 0.78 0.86 0.81 0.90 0.73 0.90 0.93 0.89 0.76 0.85

1 x 12 0.78 0.83 0.85 0.80 0.87 0.83 0.94 0.77 0.93 0.94 0.85 0.76 0.88

1 x 13 0.72 0.77 0.65 0.63 0.69 0.72 0.89 0.80 0.93 0.85 0.85 0.60 0.81

2 x 3 0.90 0.90 0.93 0.93 0.88 0.95 0.95 0.95 0.99 0.94 0.82 0.97 0.90

2 x 4 0.51 0.47 0.73 0.81 0.78 0.83 0.68 0.56 0.91 0.71 0.60 0.77 0.77

2 x 5 0.45 0.50 0.66 0.76 0.70 0.81 0.67 0.38 0.90 0.73 0.54 0.55 0.70

2 x 6 0.46 0.48 0.65 0.76 0.71 0.82 0.67 0.52 0.90 0.75 0.59 0.54 0.69

2 x 7 0.31 0.40 0.52 0.21 0.41 0.63 0.65 0.39 0.91 0.75 0.70 0.63 0.54

2 x 8 0.34 0.40 0.65 0.27 0.44 0.58 0.57 0.40 0.88 0.75 0.65 0.47 0.54

2 x 9 0.49 0.50 0.72 0.74 0.69 0.83 0.65 0.47 0.91 0.81 0.65 0.68 0.68

2 x 10 0.49 0.51 0.69 0.81 0.71 0.81 0.60 0.53 0.86 0.74 0.53 0.56 0.70

2 x 11 0.33 0.41 0.63 0.38 0.41 0.56 0.56 0.36 0.84 0.79 0.66 0.58 0.52

2 x 12 0.42 0.48 0.70 0.68 0.66 0.76 0.60 0.52 0.87 0.79 0.60 0.62 0.65

2 x 13 0.37 0.57 0.62 0.69 0.69 0.64 0.60 0.48 0.89 0.74 0.60 0.39 0.64

3 x 4 0.67 0.50 0.61 0.71 0.73 0.79 0.77 0.49 0.92 0.85 0.81 0.81 0.80

3 x 5 0.62 0.55 0.60 0.66 0.67 0.79 0.77 0.35 0.92 0.87 0.80 0.66 0.78

3 x 6 0.64 0.57 0.61 0.69 0.76 0.81 0.78 0.54 0.91 0.87 0.83 0.66 0.80

3 x 7 0.58 0.66 0.65 0.38 0.72 0.72 0.79 0.49 0.92 0.87 0.93 0.70 0.75

3 x 8 0.60 0.60 0.69 0.41 0.72 0.70 0.73 0.50 0.88 0.83 0.86 0.59 0.73

3 x 9 0.72 0.68 0.75 0.77 0.86 0.88 0.78 0.54 0.92 0.93 0.88 0.77 0.83

3 x 10 0.66 0.63 0.67 0.79 0.85 0.82 0.73 0.54 0.87 0.86 0.78 0.66 0.79

3 x 11 0.61 0.64 0.70 0.54 0.70 0.68 0.72 0.49 0.85 0.88 0.89 0.69 0.71

3 x 12 0.65 0.67 0.76 0.76 0.86 0.81 0.75 0.57 0.88 0.90 0.83 0.71 0.79

3 x 13 0.61 0.69 0.62 0.71 0.81 0.74 0.74 0.61 0.90 0.88 0.85 0.53 0.79

4 x 5 0.95 0.94 0.95 0.98 0.96 0.98 0.97 0.87 0.98 0.97 0.98 0.88 0.96

4 x 6 0.95 0.94 0.95 0.98 0.95 0.97 0.98 0.85 0.97 0.97 0.98 0.88 0.95

4 x 7 0.73 0.55 0.51 0.18 0.36 0.53 0.94 0.45 0.96 0.87 0.90 0.85 0.69

4 x 8 0.82 0.63 0.72 0.27 0.45 0.57 0.94 0.61 0.95 0.90 0.93 0.83 0.74

4 x 9 0.94 0.85 0.87 0.86 0.81 0.91 0.98 0.75 0.98 0.97 0.97 0.96 0.90

4 x 10 0.95 0.88 0.90 0.90 0.80 0.92 0.98 0.82 0.96 0.94 0.98 0.89 0.92

4 x 11 0.79 0.67 0.67 0.30 0.41 0.53 0.91 0.55 0.94 0.91 0.95 0.89 0.72

4 x 12 0.90 0.77 0.77 0.70 0.69 0.82 0.97 0.75 0.97 0.93 0.96 0.90 0.86

4 x 13 0.87 0.84 0.88 0.80 0.81 0.76 0.94 0.62 0.96 0.95 0.94 0.75 0.86

5 x 6 0.99 0.98 0.98 0.98 0.95 0.98 0.99 0.85 1.00 0.99 0.99 0.98 0.98

5 x 7 0.75 0.58 0.51 0.16 0.32 0.56 0.92 0.49 0.96 0.87 0.90 0.80 0.71

5 x 8 0.87 0.64 0.71 0.27 0.45 0.64 0.93 0.56 0.97 0.90 0.94 0.88 0.78

5 x 9 0.94 0.87 0.87 0.85 0.78 0.93 0.97 0.75 0.98 0.97 0.98 0.93 0.92

5 x 10 0.95 0.91 0.88 0.90 0.77 0.94 0.96 0.82 0.98 0.97 0.99 0.95 0.93

5 x 11 0.82 0.70 0.66 0.31 0.41 0.60 0.92 0.56 0.95 0.91 0.95 0.90 0.76

5 x 12 0.91 0.79 0.77 0.69 0.66 0.86 0.94 0.73 0.99 0.95 0.97 0.93 0.87

5 x 13 0.91 0.89 0.93 0.82 0.82 0.83 0.96 0.69 0.98 0.96 0.97 0.87 0.91

6 x 7 0.76 0.63 0.58 0.27 0.53 0.61 0.95 0.72 0.97 0.87 0.92 0.83 0.78

6 x 8 0.88 0.69 0.75 0.37 0.62 0.68 0.96 0.84 0.98 0.93 0.96 0.90 0.84

6 x 9 0.96 0.91 0.90 0.91 0.91 0.95 0.99 0.94 0.99 0.98 0.98 0.95 0.96

6 x 10 0.97 0.93 0.93 0.93 0.90 0.95 0.97 0.95 0.98 0.96 0.98 0.97 0.95

6 x 11 0.86 0.76 0.70 0.40 0.60 0.64 0.94 0.79 0.96 0.92 0.97 0.94 0.82

6 x 12 0.93 0.84 0.81 0.76 0.82 0.89 0.96 0.92 0.99 0.94 0.97 0.95 0.91

6 x 13 0.94 0.92 0.95 0.87 0.90 0.84 0.96 0.88 0.99 0.96 0.97 0.92 0.94

7 x 8 0.85 0.85 0.82 0.74 0.94 0.89 0.96 0.88 0.96 0.89 0.95 0.84 0.91

7 x 9 0.87 0.87 0.82 0.61 0.81 0.80 0.98 0.88 0.99 0.93 0.97 0.92 0.91

7 x 10 0.77 0.77 0.75 0.50 0.79 0.72 0.96 0.76 0.96 0.90 0.89 0.89 0.83

7 x 11 0.87 0.92 0.91 0.91 0.94 0.94 0.95 0.89 0.95 0.94 0.97 0.91 0.93

7 x 12 0.81 0.87 0.85 0.76 0.88 0.85 0.98 0.85 0.97 0.95 0.92 0.90 0.91

7 x 13 0.79 0.69 0.68 0.56 0.68 0.68 0.93 0.82 0.96 0.85 0.94 0.76 0.83

8 x 9 0.93 0.87 0.90 0.64 0.86 0.81 0.97 0.94 0.98 0.94 0.97 0.91 0.93

8 x 10 0.89 0.83 0.86 0.52 0.84 0.75 0.97 0.84 0.97 0.93 0.94 0.95 0.89

8 x 11 0.96 0.94 0.91 0.85 0.97 0.95 0.99 0.97 0.98 0.97 0.99 0.97 0.97

8 x 12 0.94 0.93 0.91 0.68 0.90 0.86 0.98 0.92 0.97 0.95 0.96 0.90 0.93

8 x 13 0.92 0.76 0.81 0.59 0.80 0.80 0.96 0.88 0.98 0.91 0.96 0.85 0.90

9 x 10 0.97 0.96 0.95 0.96 0.97 0.96 0.98 0.93 0.97 0.96 0.97 0.97 0.96

9 x 11 0.93 0.94 0.90 0.71 0.85 0.81 0.96 0.92 0.97 0.96 0.98 0.96 0.92

9 x 12 0.95 0.96 0.95 0.94 0.96 0.95 0.99 0.97 0.98 0.98 0.98 0.96 0.97

9 x 13 0.94 0.91 0.92 0.94 0.92 0.88 0.96 0.92 0.98 0.96 0.97 0.85 0.95

10 x 11 0.88 0.88 0.87 0.63 0.82 0.74 0.96 0.82 0.95 0.92 0.93 0.97 0.87

10 x 12 0.96 0.95 0.93 0.91 0.96 0.95 0.99 0.96 0.99 0.97 0.99 0.98 0.97

10 x 13 0.94 0.95 0.94 0.94 0.92 0.85 0.96 0.89 0.98 0.95 0.96 0.88 0.93

11 x 12 0.93 0.95 0.95 0.84 0.91 0.88 0.96 0.92 0.96 0.97 0.96 0.95 0.94

11 x 13 0.91 0.83 0.79 0.70 0.75 0.78 0.97 0.91 0.95 0.91 0.96 0.89 0.88

12 x 13 0.95 0.88 0.85 0.91 0.87 0.85 0.95 0.92 0.97 0.94 0.97 0.86 0.92

CROSS-CORRELATIONS  for  HISTORICAL TIME SERIES
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APPENDIX 4; Maximum monthly averages comparison 
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APPENDIX 5; Cross-correlation test results; Table 7.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XI XII I II III IV V VI VII VIII IX X Q

1 x 2 0.67 0.76 0.81 0.68 0.60 0.83 0.79 0.84 0.98 0.86 0.84 0.93 0.77

1 x 3 0.86 0.92 0.91 0.83 0.88 0.92 0.90 0.91 0.98 0.95 0.96 0.96 0.92

1 x 4 0.68 0.60 0.58 0.42 0.49 0.66 0.92 0.60 0.95 0.83 0.82 0.86 0.76

1 x 5 0.64 0.63 0.57 0.36 0.41 0.66 0.89 0.50 0.95 0.84 0.80 0.70 0.73

1 x 6 0.66 0.67 0.60 0.44 0.59 0.70 0.92 0.73 0.94 0.83 0.82 0.71 0.78

1 x 7 0.69 0.83 0.84 0.71 0.93 0.87 0.96 0.73 0.97 0.94 0.94 0.78 0.89

1 x 8 0.74 0.79 0.82 0.63 0.85 0.80 0.91 0.75 0.92 0.86 0.87 0.68 0.84

1 x 9 0.76 0.84 0.82 0.71 0.84 0.85 0.95 0.78 0.96 0.92 0.89 0.84 0.88

1 x 10 0.70 0.76 0.73 0.65 0.79 0.77 0.92 0.72 0.91 0.85 0.79 0.73 0.83

1 x 11 0.76 0.83 0.85 0.78 0.86 0.81 0.90 0.73 0.90 0.93 0.89 0.76 0.85

1 x 12 0.78 0.83 0.85 0.80 0.87 0.83 0.94 0.77 0.93 0.94 0.85 0.76 0.88

1 x 13 0.72 0.77 0.65 0.63 0.69 0.72 0.89 0.80 0.93 0.85 0.85 0.60 0.81

2 x 3 0.90 0.90 0.93 0.93 0.88 0.95 0.95 0.95 0.99 0.94 0.82 0.97 0.90

2 x 4 0.51 0.47 0.73 0.81 0.78 0.83 0.68 0.56 0.91 0.71 0.60 0.77 0.77

2 x 5 0.45 0.50 0.66 0.76 0.70 0.81 0.67 0.38 0.90 0.73 0.54 0.55 0.70

2 x 6 0.46 0.48 0.65 0.76 0.71 0.82 0.67 0.52 0.90 0.75 0.59 0.54 0.69

2 x 7 0.31 0.40 0.52 0.21 0.41 0.63 0.65 0.39 0.91 0.75 0.70 0.63 0.54

2 x 8 0.34 0.40 0.65 0.27 0.44 0.58 0.57 0.40 0.88 0.75 0.65 0.47 0.54

2 x 9 0.49 0.50 0.72 0.74 0.69 0.83 0.65 0.47 0.91 0.81 0.65 0.68 0.68

2 x 10 0.49 0.51 0.69 0.81 0.71 0.81 0.60 0.53 0.86 0.74 0.53 0.56 0.70

2 x 11 0.33 0.41 0.63 0.38 0.41 0.56 0.56 0.36 0.84 0.79 0.66 0.58 0.52

2 x 12 0.42 0.48 0.70 0.68 0.66 0.76 0.60 0.52 0.87 0.79 0.60 0.62 0.65

2 x 13 0.37 0.57 0.62 0.69 0.69 0.64 0.60 0.48 0.89 0.74 0.60 0.39 0.64

3 x 4 0.67 0.50 0.61 0.71 0.73 0.79 0.77 0.49 0.92 0.85 0.81 0.81 0.80

3 x 5 0.62 0.55 0.60 0.66 0.67 0.79 0.77 0.35 0.92 0.87 0.80 0.66 0.78

3 x 6 0.64 0.57 0.61 0.69 0.76 0.81 0.78 0.54 0.91 0.87 0.83 0.66 0.80

3 x 7 0.58 0.66 0.65 0.38 0.72 0.72 0.79 0.49 0.92 0.87 0.93 0.70 0.75

3 x 8 0.60 0.60 0.69 0.41 0.72 0.70 0.73 0.50 0.88 0.83 0.86 0.59 0.73

3 x 9 0.72 0.68 0.75 0.77 0.86 0.88 0.78 0.54 0.92 0.93 0.88 0.77 0.83

3 x 10 0.66 0.63 0.67 0.79 0.85 0.82 0.73 0.54 0.87 0.86 0.78 0.66 0.79

3 x 11 0.61 0.64 0.70 0.54 0.70 0.68 0.72 0.49 0.85 0.88 0.89 0.69 0.71

3 x 12 0.65 0.67 0.76 0.76 0.86 0.81 0.75 0.57 0.88 0.90 0.83 0.71 0.79

3 x 13 0.61 0.69 0.62 0.71 0.81 0.74 0.74 0.61 0.90 0.88 0.85 0.53 0.79

4 x 5 0.95 0.94 0.95 0.98 0.96 0.98 0.97 0.87 0.98 0.97 0.98 0.88 0.96

4 x 6 0.95 0.94 0.95 0.98 0.95 0.97 0.98 0.85 0.97 0.97 0.98 0.88 0.95

4 x 7 0.73 0.55 0.51 0.18 0.36 0.53 0.94 0.45 0.96 0.87 0.90 0.85 0.69

4 x 8 0.82 0.63 0.72 0.27 0.45 0.57 0.94 0.61 0.95 0.90 0.93 0.83 0.74

4 x 9 0.94 0.85 0.87 0.86 0.81 0.91 0.98 0.75 0.98 0.97 0.97 0.96 0.90

4 x 10 0.95 0.88 0.90 0.90 0.80 0.92 0.98 0.82 0.96 0.94 0.98 0.89 0.92

4 x 11 0.79 0.67 0.67 0.30 0.41 0.53 0.91 0.55 0.94 0.91 0.95 0.89 0.72

4 x 12 0.90 0.77 0.77 0.70 0.69 0.82 0.97 0.75 0.97 0.93 0.96 0.90 0.86

4 x 13 0.87 0.84 0.88 0.80 0.81 0.76 0.94 0.62 0.96 0.95 0.94 0.75 0.86

5 x 6 0.99 0.98 0.98 0.98 0.95 0.98 0.99 0.85 1.00 0.99 0.99 0.98 0.98

5 x 7 0.75 0.58 0.51 0.16 0.32 0.56 0.92 0.49 0.96 0.87 0.90 0.80 0.71

5 x 8 0.87 0.64 0.71 0.27 0.45 0.64 0.93 0.56 0.97 0.90 0.94 0.88 0.78

5 x 9 0.94 0.87 0.87 0.85 0.78 0.93 0.97 0.75 0.98 0.97 0.98 0.93 0.92

5 x 10 0.95 0.91 0.88 0.90 0.77 0.94 0.96 0.82 0.98 0.97 0.99 0.95 0.93

5 x 11 0.82 0.70 0.66 0.31 0.41 0.60 0.92 0.56 0.95 0.91 0.95 0.90 0.76

5 x 12 0.91 0.79 0.77 0.69 0.66 0.86 0.94 0.73 0.99 0.95 0.97 0.93 0.87

5 x 13 0.91 0.89 0.93 0.82 0.82 0.83 0.96 0.69 0.98 0.96 0.97 0.87 0.91

6 x 7 0.76 0.63 0.58 0.27 0.53 0.61 0.95 0.72 0.97 0.87 0.92 0.83 0.78

6 x 8 0.88 0.69 0.75 0.37 0.62 0.68 0.96 0.84 0.98 0.93 0.96 0.90 0.84

6 x 9 0.96 0.91 0.90 0.91 0.91 0.95 0.99 0.94 0.99 0.98 0.98 0.95 0.96

6 x 10 0.97 0.93 0.93 0.93 0.90 0.95 0.97 0.95 0.98 0.96 0.98 0.97 0.95

6 x 11 0.86 0.76 0.70 0.40 0.60 0.64 0.94 0.79 0.96 0.92 0.97 0.94 0.82

6 x 12 0.93 0.84 0.81 0.76 0.82 0.89 0.96 0.92 0.99 0.94 0.97 0.95 0.91

6 x 13 0.94 0.92 0.95 0.87 0.90 0.84 0.96 0.88 0.99 0.96 0.97 0.92 0.94

7 x 8 0.85 0.85 0.82 0.74 0.94 0.89 0.96 0.88 0.96 0.89 0.95 0.84 0.91

7 x 9 0.87 0.87 0.82 0.61 0.81 0.80 0.98 0.88 0.99 0.93 0.97 0.92 0.91

7 x 10 0.77 0.77 0.75 0.50 0.79 0.72 0.96 0.76 0.96 0.90 0.89 0.89 0.83

7 x 11 0.87 0.92 0.91 0.91 0.94 0.94 0.95 0.89 0.95 0.94 0.97 0.91 0.93

7 x 12 0.81 0.87 0.85 0.76 0.88 0.85 0.98 0.85 0.97 0.95 0.92 0.90 0.91

7 x 13 0.79 0.69 0.68 0.56 0.68 0.68 0.93 0.82 0.96 0.85 0.94 0.76 0.83

8 x 9 0.93 0.87 0.90 0.64 0.86 0.81 0.97 0.94 0.98 0.94 0.97 0.91 0.93

8 x 10 0.89 0.83 0.86 0.52 0.84 0.75 0.97 0.84 0.97 0.93 0.94 0.95 0.89

8 x 11 0.96 0.94 0.91 0.85 0.97 0.95 0.99 0.97 0.98 0.97 0.99 0.97 0.97

8 x 12 0.94 0.93 0.91 0.68 0.90 0.86 0.98 0.92 0.97 0.95 0.96 0.90 0.93

8 x 13 0.92 0.76 0.81 0.59 0.80 0.80 0.96 0.88 0.98 0.91 0.96 0.85 0.90

9 x 10 0.97 0.96 0.95 0.96 0.97 0.96 0.98 0.93 0.97 0.96 0.97 0.97 0.96

9 x 11 0.93 0.94 0.90 0.71 0.85 0.81 0.96 0.92 0.97 0.96 0.98 0.96 0.92

9 x 12 0.95 0.96 0.95 0.94 0.96 0.95 0.99 0.97 0.98 0.98 0.98 0.96 0.97

9 x 13 0.94 0.91 0.92 0.94 0.92 0.88 0.96 0.92 0.98 0.96 0.97 0.85 0.95

10 x 11 0.88 0.88 0.87 0.63 0.82 0.74 0.96 0.82 0.95 0.92 0.93 0.97 0.87

10 x 12 0.96 0.95 0.93 0.91 0.96 0.95 0.99 0.96 0.99 0.97 0.99 0.98 0.97

10 x 13 0.94 0.95 0.94 0.94 0.92 0.85 0.96 0.89 0.98 0.95 0.96 0.88 0.93

11 x 12 0.93 0.95 0.95 0.84 0.91 0.88 0.96 0.92 0.96 0.97 0.96 0.95 0.94

11 x 13 0.91 0.83 0.79 0.70 0.75 0.78 0.97 0.91 0.95 0.91 0.96 0.89 0.88

12 x 13 0.95 0.88 0.85 0.91 0.87 0.85 0.95 0.92 0.97 0.94 0.97 0.86 0.92

CROSS-CORRELATIONS  for  HISTORICAL TIME SERIES

Compared st.
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Table 7.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XI XII I II III IV V VI VII VIII IX X Q

1 x 2 0.75 0.66 0.81 0.72 0.66 0.80 0.78 0.84 0.86 0.86 0.87 0.86 0.76

1 x 3 0.89 0.88 0.90 0.84 0.89 0.89 0.86 0.89 0.91 0.92 0.94 0.93 0.89

1 x 4 0.68 0.62 0.68 0.49 0.53 0.66 0.78 0.67 0.85 0.82 0.85 0.84 0.73

1 x 5 0.66 0.63 0.66 0.42 0.46 0.67 0.77 0.60 0.84 0.83 0.82 0.80 0.71

1 x 6 0.70 0.68 0.67 0.51 0.62 0.71 0.79 0.77 0.85 0.84 0.86 0.83 0.76

1 x 7 0.67 0.84 0.80 0.74 0.91 0.86 0.90 0.82 0.94 0.90 0.94 0.83 0.87

1 x 8 0.76 0.82 0.86 0.69 0.83 0.77 0.81 0.78 0.85 0.85 0.87 0.84 0.82

1 x 9 0.78 0.84 0.86 0.75 0.83 0.83 0.87 0.83 0.93 0.90 0.92 0.89 0.87

1 x 10 0.73 0.76 0.81 0.70 0.80 0.75 0.82 0.75 0.83 0.84 0.83 0.85 0.81

1 x 11 0.79 0.83 0.86 0.82 0.83 0.77 0.82 0.76 0.85 0.89 0.90 0.87 0.83

1 x 12 0.78 0.84 0.87 0.83 0.86 0.80 0.86 0.80 0.87 0.89 0.87 0.85 0.86

1 x 13 0.73 0.76 0.70 0.67 0.71 0.75 0.81 0.80 0.83 0.85 0.85 0.78 0.79

2 x 3 0.93 0.88 0.93 0.94 0.89 0.95 0.94 0.96 0.96 0.92 0.89 0.94 0.90

2 x 4 0.58 0.50 0.81 0.81 0.77 0.79 0.64 0.53 0.74 0.67 0.69 0.70 0.75

2 x 5 0.57 0.51 0.74 0.77 0.71 0.77 0.65 0.42 0.72 0.70 0.66 0.64 0.68

2 x 6 0.58 0.47 0.73 0.78 0.72 0.78 0.64 0.53 0.71 0.73 0.71 0.64 0.68

2 x 7 0.36 0.33 0.52 0.28 0.49 0.61 0.64 0.54 0.72 0.70 0.78 0.62 0.52

2 x 8 0.46 0.35 0.66 0.38 0.48 0.52 0.56 0.46 0.72 0.70 0.70 0.59 0.53

2 x 9 0.60 0.45 0.76 0.76 0.72 0.79 0.66 0.53 0.77 0.78 0.76 0.69 0.66

2 x 10 0.58 0.46 0.75 0.81 0.73 0.72 0.58 0.54 0.68 0.70 0.65 0.63 0.68

2 x 11 0.45 0.35 0.65 0.48 0.46 0.51 0.53 0.42 0.71 0.73 0.74 0.65 0.51

2 x 12 0.53 0.42 0.72 0.72 0.69 0.70 0.61 0.55 0.72 0.74 0.70 0.66 0.63

2 x 13 0.49 0.50 0.66 0.73 0.71 0.62 0.59 0.51 0.70 0.69 0.67 0.55 0.63

3 x 4 0.66 0.52 0.76 0.74 0.73 0.79 0.67 0.49 0.77 0.78 0.80 0.76 0.76

3 x 5 0.65 0.55 0.74 0.69 0.68 0.80 0.70 0.39 0.77 0.81 0.81 0.75 0.75

3 x 6 0.68 0.57 0.74 0.73 0.77 0.81 0.70 0.54 0.77 0.83 0.85 0.76 0.77

3 x 7 0.54 0.62 0.60 0.44 0.75 0.71 0.74 0.60 0.79 0.79 0.91 0.70 0.71

3 x 8 0.63 0.59 0.72 0.49 0.73 0.66 0.64 0.55 0.77 0.76 0.82 0.71 0.69

3 x 9 0.73 0.65 0.80 0.79 0.87 0.86 0.73 0.58 0.82 0.88 0.89 0.80 0.80

3 x 10 0.68 0.60 0.78 0.82 0.86 0.79 0.65 0.56 0.73 0.80 0.79 0.75 0.76

3 x 11 0.65 0.60 0.72 0.61 0.71 0.64 0.63 0.53 0.77 0.78 0.87 0.77 0.68

3 x 12 0.69 0.64 0.79 0.79 0.87 0.78 0.68 0.59 0.78 0.83 0.82 0.76 0.76

3 x 13 0.64 0.65 0.70 0.75 0.82 0.74 0.68 0.60 0.76 0.82 0.84 0.70 0.76

4 x 5 0.93 0.93 0.95 0.97 0.97 0.97 0.96 0.89 0.91 0.95 0.95 0.91 0.94

4 x 6 0.94 0.91 0.96 0.97 0.95 0.97 0.95 0.88 0.89 0.94 0.95 0.91 0.93

4 x 7 0.68 0.58 0.54 0.27 0.42 0.58 0.80 0.63 0.85 0.85 0.87 0.80 0.66

4 x 8 0.82 0.63 0.71 0.36 0.48 0.62 0.86 0.70 0.86 0.88 0.87 0.88 0.72

4 x 9 0.92 0.82 0.87 0.86 0.84 0.92 0.95 0.83 0.93 0.96 0.95 0.95 0.89

4 x 10 0.94 0.86 0.89 0.91 0.82 0.90 0.94 0.84 0.89 0.91 0.95 0.91 0.90

4 x 11 0.78 0.63 0.68 0.41 0.44 0.58 0.79 0.66 0.89 0.89 0.91 0.88 0.70

4 x 12 0.91 0.73 0.79 0.75 0.72 0.83 0.91 0.81 0.92 0.90 0.93 0.88 0.84

4 x 13 0.86 0.85 0.86 0.84 0.81 0.78 0.91 0.71 0.83 0.92 0.92 0.86 0.84

5 x 6 0.98 0.98 0.98 0.98 0.95 0.98 0.98 0.88 0.99 0.98 0.99 0.98 0.98

5 x 7 0.70 0.62 0.54 0.22 0.37 0.61 0.80 0.66 0.86 0.84 0.87 0.78 0.68

5 x 8 0.84 0.67 0.72 0.32 0.49 0.68 0.85 0.68 0.94 0.87 0.90 0.89 0.76

5 x 9 0.94 0.86 0.88 0.83 0.81 0.93 0.95 0.82 0.95 0.96 0.96 0.94 0.91

5 x 10 0.95 0.90 0.89 0.88 0.79 0.93 0.93 0.85 0.96 0.95 0.97 0.94 0.92

5 x 11 0.80 0.69 0.67 0.38 0.44 0.65 0.80 0.66 0.91 0.88 0.93 0.88 0.74

5 x 12 0.90 0.79 0.79 0.71 0.69 0.87 0.91 0.79 0.97 0.93 0.95 0.92 0.86

5 x 13 0.90 0.89 0.92 0.84 0.83 0.84 0.91 0.75 0.92 0.95 0.97 0.91 0.89

6 x 7 0.73 0.69 0.58 0.33 0.57 0.66 0.83 0.80 0.87 0.85 0.91 0.81 0.74

6 x 8 0.87 0.73 0.73 0.43 0.65 0.72 0.89 0.86 0.96 0.91 0.92 0.91 0.83

6 x 9 0.96 0.90 0.89 0.90 0.93 0.95 0.97 0.95 0.96 0.97 0.98 0.96 0.95

6 x 10 0.97 0.93 0.91 0.93 0.92 0.93 0.94 0.95 0.96 0.94 0.96 0.96 0.94

6 x 11 0.85 0.76 0.69 0.48 0.61 0.69 0.84 0.82 0.93 0.90 0.95 0.92 0.80

6 x 12 0.93 0.84 0.81 0.79 0.83 0.89 0.93 0.93 0.96 0.93 0.96 0.94 0.90

6 x 13 0.94 0.93 0.93 0.89 0.91 0.86 0.93 0.90 0.94 0.95 0.97 0.94 0.93

7 x 8 0.82 0.88 0.84 0.75 0.91 0.86 0.85 0.87 0.88 0.86 0.93 0.87 0.87

7 x 9 0.81 0.90 0.82 0.65 0.81 0.81 0.90 0.91 0.95 0.90 0.95 0.90 0.88

7 x 10 0.73 0.80 0.77 0.55 0.79 0.74 0.86 0.81 0.88 0.86 0.87 0.89 0.80

7 x 11 0.83 0.93 0.91 0.91 0.92 0.90 0.87 0.88 0.90 0.89 0.96 0.91 0.90

7 x 12 0.77 0.90 0.83 0.77 0.87 0.83 0.92 0.87 0.91 0.89 0.90 0.88 0.88

7 x 13 0.75 0.76 0.68 0.58 0.70 0.74 0.87 0.86 0.87 0.83 0.90 0.77 0.81

8 x 9 0.93 0.90 0.90 0.68 0.85 0.82 0.93 0.94 0.95 0.92 0.94 0.94 0.91

8 x 10 0.89 0.85 0.86 0.59 0.83 0.79 0.94 0.86 0.95 0.89 0.90 0.95 0.87

8 x 11 0.95 0.94 0.91 0.86 0.97 0.94 0.96 0.97 0.97 0.97 0.98 0.96 0.96

8 x 12 0.94 0.94 0.91 0.72 0.89 0.86 0.95 0.92 0.95 0.92 0.94 0.92 0.92

8 x 13 0.91 0.80 0.81 0.62 0.81 0.84 0.92 0.92 0.94 0.89 0.94 0.89 0.89

9 x 10 0.96 0.96 0.96 0.96 0.98 0.96 0.96 0.93 0.94 0.93 0.96 0.97 0.95

9 x 11 0.92 0.94 0.90 0.76 0.83 0.82 0.90 0.92 0.96 0.93 0.97 0.96 0.90

9 x 12 0.96 0.96 0.95 0.95 0.96 0.95 0.97 0.97 0.97 0.95 0.97 0.95 0.96

9 x 13 0.93 0.93 0.91 0.94 0.93 0.90 0.95 0.94 0.91 0.94 0.96 0.90 0.93

10 x 11 0.86 0.88 0.88 0.68 0.82 0.79 0.91 0.84 0.93 0.88 0.91 0.95 0.86

10 x 12 0.96 0.95 0.94 0.92 0.96 0.96 0.98 0.97 0.98 0.97 0.98 0.97 0.96

10 x 13 0.93 0.94 0.93 0.95 0.93 0.88 0.95 0.91 0.93 0.94 0.95 0.91 0.92

11 x 12 0.93 0.95 0.95 0.85 0.90 0.88 0.95 0.92 0.95 0.92 0.94 0.92 0.93

11 x 13 0.89 0.85 0.79 0.72 0.75 0.83 0.91 0.93 0.90 0.89 0.94 0.89 0.87

12 x 13 0.93 0.89 0.85 0.91 0.88 0.88 0.94 0.94 0.92 0.93 0.96 0.89 0.91

CROSS-CORRELATIONS  for  SYNTHETIC TIME SERIES

Compared st.
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Table 7.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XI XII I II III IV V VI VII VIII IX X Q

1 x 2 0 3.7% 0.1% 0 0 0.2% 0.4% 0.2% 93.5% 0.2% 0.1% 19.8% 0.8%

1 x 3 0 4.5% 0.1% 0 0 2.1% 5.3% 2.3% 92.4% 8.7% 5.1% 12.8% 58.7%

1 x 4 0 0 0 0 0 0 57.1% 0 60.8% 0.2% 0 0.5% 5.3%

1 x 5 0 0 0 0 0 0 30.9% 0 59.7% 0.2% 0 0 2.7%

1 x 6 0 0 0 0 0 0 46.7% 0 52.6% 0 0 0 4.5%

1 x 7 0 0 0.2% 0 0.4% 0.2% 44.7% 0 23.1% 12.3% 0.2% 0 14.0%

1 x 8 0 0.1% 0 0 0.1% 0 31.7% 0 25.9% 0.5% 0.1% 0 17.5%

1 x 9 0 0 0 0 0 0 38.9% 0 22.6% 1.8% 0 0 8.5%

1 x 10 0 0 0 0 0 0 37.0% 0 25.1% 0.3% 0 0 9.6%

1 x 11 0 0 0 0 0.6% 0.2% 19.9% 0 6.3% 7.4% 0 0 13.3%

1 x 12 0 0 0 0 0 0 29.1% 0 17.5% 15.1% 0 0 25.2%

1 x 13 0 0 0 0 0 0 13.1% 0 45.8% 0.1% 0 0 6.1%

2 x 3 0.1% 1.6% 0 0 0 0.2% 1.2% 0 95.0% 2.0% 0 34.1% 0

2 x 4 0 0 0 0 0 0 0.2% 0 67.9% 0 0 1.7% 2.0%

2 x 5 0 0 0 0 0 0 0 0 66.1% 0.1% 0 0 0.1%

2 x 6 0 0 0 0 0 0 0.2% 0 62.4% 0 0 0 0.1%

2 x 7 0 0.2% 0 0 0 0 0.1% 0 69.4% 0.7% 0 0 0.3%

2 x 8 0 0 0 0 0 0 0 0 40.5% 0.1% 0 0 0

2 x 9 0 0 0 0 0 0.3% 0 0 55.7% 0.1% 0 0 0.2%

2 x 10 0 0 0 0 0 1.0% 0 0 42.1% 0 0 0 0.1%

2 x 11 0 0.1% 0 0 0 0 0.1% 0.1% 18.9% 1.4% 0 0 0

2 x 12 0 0 0 0 0 0.3% 0 0.1% 38.8% 0.1% 0 0 0.1%

2 x 13 0 0.1% 0 0 0 0 0 0.1% 59.1% 0.3% 0 0 0.2%

3 x 4 0 0 0 0 0 0 6.1% 0 64.7% 4.0% 0.3% 0.7% 21.8%

3 x 5 0 0 0 0 0 0 1.8% 0 57.6% 4.1% 0 0 7.6%

3 x 6 0 0 0 0 0 0 3.5% 0 51.9% 1.8% 0 0 11.2%

3 x 7 0.1% 0 0 0 0 0 1.4% 0 55.1% 11.2% 1.2% 0 18.9%

3 x 8 0 0 0 0 0 0 1.4% 0 26.9% 5.2% 1.4% 0 8.5%

3 x 9 0 0 0 0 0 0.1% 0.9% 0 40.7% 11.8% 0.1% 0 19.3%

3 x 10 0 0 0 0 0 0.1% 1.4% 0 27.8% 4.9% 0 0 14.4%

3 x 11 0 0 0 0 0 0 2.3% 0 8.0% 19.4% 0.6% 0 5.5%

3 x 12 0 0 0 0 0 0 0.8% 0 21.9% 12.9% 0 0 12.3%

3 x 13 0 0 0 0 0 0 0.7% 0.1% 42.6% 4.3% 0.1% 0 15.0%

4 x 5 1.4% 0.7% 0 1.5% 0 0.1% 5.9% 0 84.9% 18.8% 40.5% 0 73.8%

4 x 6 0.6% 2.8% 0 0.1% 0.1% 0.2% 43.3% 0 79.0% 8.5% 39.4% 0 78.1%

4 x 7 0.4% 0 0 0 0 0 78.4% 0 70.8% 0.6% 1.9% 0.9% 0.9%

4 x 8 0 0 0 0 0 0 37.4% 0 61.5% 1.2% 13.3% 0 0.6%

4 x 9 0.1% 0.2% 0 0 0 0 43.1% 0 55.4% 2.3% 8.8% 0.6% 3.0%

4 x 10 0.1% 0.2% 0.1% 0 0 0.1% 53.4% 0 51.5% 4.3% 21.0% 0 39.6%

4 x 11 0 0 0 0 0 0 43.5% 0 22.7% 1.1% 9.8% 0 0.4%

4 x 12 0 0 0 0 0 0 55.7% 0 43.9% 2.3% 11.2% 0 3.1%

4 x 13 0 0.1% 0.2% 0 0 0 4.3% 0 84.4% 7.1% 4.3% 0 12.0%

5 x 6 1.5% 0.3% 0.1% 1.0% 0 0.1% 8.7% 0 55.9% 8.1% 18.6% 0 7.6%

5 x 7 0 0 0 0 0 0 43.7% 0 77.7% 1.8% 1.8% 0 2.1%

5 x 8 0.1% 0 0 0 0 0 30.9% 0 41.5% 1.6% 12.2% 0 0

5 x 9 0.2% 0.1% 0 0 0 0 10.1% 0 59.5% 9.8% 8.5% 0 3.0%

5 x 10 0 0.1% 0 0.3% 0 0.7% 11.9% 0 36.1% 5.3% 29.4% 0 8.4%

5 x 11 0.1% 0 0 0 0 0 53.0% 0 11.5% 1.4% 5.5% 0.1% 0.5%

5 x 12 0.1% 0 0 0 0 0 6.1% 0 32.7% 2.0% 6.1% 0 0.1%

5 x 13 0.2% 0 0.3% 0 0 0 25.9% 0 81.9% 3.5% 1.6% 0 9.8%

6 x 7 0 0 0 0 0 0 68.6% 0 83.0% 1.1% 0.4% 0 5.7%

6 x 8 0 0 0 0 0 0 46.6% 0 49.3% 1.2% 12.2% 0 0.6%

6 x 9 0 0.1% 0 0 0 0 34.5% 0 72.5% 0.7% 2.7% 0 17.3%

6 x 10 0 0.2% 0.3% 0 0 1.2% 27.8% 0 43.0% 9.6% 16.6% 0.1% 46.6%

6 x 11 0.1% 0 0 0 0 0 56.3% 0 9.3% 0.6% 3.6% 0.2% 1.1%

6 x 12 0 0 0 0 0 0 18.6% 0 38.4% 1.2% 2.4% 0.5% 2.0%

6 x 13 0.3% 0 1.9% 0 0 0 15.1% 0 90.1% 1.8% 1.2% 0 20.6%

7 x 8 0.9% 0 0 0 2.7% 0.7% 75.4% 0 59.0% 1.4% 3.8% 0 83.3%

7 x 9 2.7% 0 0 0 0 0 85.3% 0 90.3% 4.7% 2.4% 0.3% 46.0%

7 x 10 0.2% 0 0 0 0 0 80.4% 0 53.8% 3.5% 0.6% 0 24.2%

7 x 11 0.8% 0 0 0.1% 1.1% 5.4% 41.7% 0.2% 21.6% 18.2% 1.1% 0.1% 79.0%

7 x 12 0.1% 0 0.1% 0.2% 0.1% 0 78.7% 0 69.9% 29.2% 1.2% 0.2% 71.8%

7 x 13 0.3% 0 0 0 0 0 17.4% 0 68.9% 1.5% 6.7% 0 12.3%

8 x 9 0 0 0 0.1% 0 0 56.3% 0.1% 36.3% 3.0% 16.2% 0 28.7%

8 x 10 0 0 0 0 0 0 33.0% 0 19.1% 7.1% 4.8% 0 2.5%

8 x 11 0.2% 0 0 0 0.3% 0.4% 49.9% 0 3.8% 0.4% 26.8% 0.2% 21.5%

8 x 12 0 0 0 0.1% 0 0 31.9% 0 13.9% 4.7% 7.7% 0 16.8%

8 x 13 0.3% 0 0 0.1% 0 0 23.7% 0 73.4% 1.4% 9.1% 0 4.4%

9 x 10 0 0 0 0 0 0.1% 54.0% 0 28.4% 9.9% 3.7% 0 46.5%

9 x 11 0.6% 0 0 0 0.1% 0 48.2% 0 1.3% 15.8% 5.4% 0.2% 23.9%

9 x 12 0 0 0 0 0 0 44.7% 0 16.1% 19.5% 2.5% 0.1% 41.5%

9 x 13 0 0 0 0 0 0 3.4% 0 77.9% 5.8% 8.0% 0 43.0%

10 x 11 0 0 0 0 0 0 35.6% 0 4.4% 8.0% 2.4% 5.3% 3.6%

10 x 12 0 0 0 0 0 0 60.1% 0 42.3% 0.4% 3.7% 0.8% 5.8%

10 x 13 0 0 0.3% 0 0 0 2.9% 0 60.2% 1.8% 2.9% 0 4.0%

11 x 12 0.2% 0 0.2% 0 0.1% 0 7.1% 0 1.8% 47.5% 2.9% 1.7% 24.0%

11 x 13 0.3% 0 0 0 0 0 56.5% 0 23.8% 1.6% 2.3% 0.1% 12.5%

12 x 13 0.2% 0 0 0 0 0 0.5% 0 57.0% 0.4% 2.4% 0 4.2%

Compared st.

COMPARISON  of  CROSS-CORRELATION COEFFCIENTS
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Table 7.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

XI XII I II III IV V VI VII VIII IX X Q

1 x 2 0 2.6% 4.0% 0 0 3.9% 2.6% 1.5% 0.4% 4.3% 2.3% 2.1% 3.5%

1 x 3 0 3.1% 4.7% 0 0 3.4% 3.1% 2.6% 0.4% 2.4% 3.0% 2.4% 1.4%

1 x 4 0 0 0 0 0 0 1.4% 0 1.2% 4.2% 0 4.3% 2.6%

1 x 5 0 0 0 0 0 0 2.0% 0 1.3% 4.1% 0 0 2.7%

1 x 6 0 0 0 0 0 0 1.6% 0 1.6% 0 0 0 2.5%

1 x 7 0 0 2.5% 0 2.1% 3.8% 1.6% 0 2.0% 2.3% 2.9% 0 2.5%

1 x 8 0 4.6% 0 0 4.9% 0 1.9% 0 2.3% 2.7% 3.3% 0 2.2%

1 x 9 0 0 0 0 0 0 1.9% 0 2.1% 3.5% 0 0 2.3%

1 x 10 0 0 0 0 0 0 1.8% 0 2.2% 3.1% 0 0 2.3%

1 x 11 0 0 0 0 3.4% 4.7% 2.3% 0 2.8% 2.8% 0 0 2.1%

1 x 12 0 0 0 0 0 0 2.1% 0 2.4% 2.5% 0 0 1.9%

1 x 13 0 0 0 0 0 0 2.4% 0 1.6% 3.2% 0 0 2.4%

2 x 3 4.6% 2.6% 0 0 0 4.3% 3.0% 0 0.3% 3.0% 0 1.9% 0

2 x 4 0 0 0 0 0 0 4.2% 0 1.2% 0 0 3.5% 3.5%

2 x 5 0 0 0 0 0 0 0 0 1.3% 4.2% 0 0 4.3%

2 x 6 0 0 0 0 0 0 4.1% 0 1.4% 0 0 0 4.1%

2 x 7 0 4.4% 0 0 0 0 2.5% 0 1.1% 3.9% 0 0 3.4%

2 x 8 0 0 0 0 0 0 0 0 1.9% 4.1% 0 0 0

2 x 9 0 0 0 0 0 3.8% 0 0 1.5% 4.8% 0 0 4.9%

2 x 10 0 0 0 0 0 3.4% 0 0 1.9% 0 0 0 3.8%

2 x 11 0 3.6% 0 0 0 0 3.8% 3.8% 2.4% 4.1% 0 0 0

2 x 12 0 0 0 0 0 3.7% 0 4.9% 2.0% 3.9% 0 0 4.8%

2 x 13 0 4.7% 0 0 0 0 0 4.0% 1.6% 3.9% 0 0 4.9%

3 x 4 0 0 0 0 0 0 3.0% 0 1.2% 3.0% 3.0% 3.9% 2.2%

3 x 5 0 0 0 0 0 0 3.6% 0 1.5% 3.3% 0 0 2.7%

3 x 6 0 0 0 0 0 0 3.4% 0 1.8% 3.6% 0 0 2.4%

3 x 7 4.2% 0 0 0 0 0 3.0% 0 1.4% 2.7% 3.6% 0 2.2%

3 x 8 0 0 0 0 0 0 3.6% 0 2.2% 3.1% 3.4% 0 2.7%

3 x 9 0 0 0 0 0 4.8% 3.3% 0 1.8% 2.7% 2.8% 0 2.2%

3 x 10 0 0 0 0 0 4.6% 3.4% 0 2.4% 2.8% 0 0 2.4%

3 x 11 0 0 0 0 0 0 3.3% 0 2.9% 2.4% 4.0% 0 2.8%

3 x 12 0 0 0 0 0 0 3.9% 0 2.5% 2.5% 0 0 2.7%

3 x 13 0 0 0 0 0 0 3.6% 3.7% 1.9% 2.9% 2.7% 0 2.5%

4 x 5 3.4% 3.6% 0 3.4% 0 4.8% 2.9% 0 0.7% 2.3% 1.8% 0 1.0%

4 x 6 3.3% 3.4% 0 3.2% 4.9% 3.9% 1.6% 0 0.9% 2.6% 1.9% 0 1.0%

4 x 7 3.7% 0 0 0 0 0 0.9% 0 1.1% 3.3% 3.0% 3.3% 3.1%

4 x 8 0 0 0 0 0 0 1.8% 0 1.3% 3.4% 2.5% 0 4.1%

4 x 9 2.9% 3.8% 0 0 0 0 1.6% 0 1.4% 3.0% 2.6% 2.5% 3.0%

4 x 10 4.2% 4.2% 3.7% 0 0 4.7% 1.4% 0 1.6% 3.3% 2.3% 0 2.0%

4 x 11 0 0 0 0 0 0 1.9% 0 2.3% 3.3% 2.6% 0 3.9%

4 x 12 0 0 0 0 0 0 1.4% 0 1.8% 3.2% 2.7% 0 3.1%

4 x 13 0 5.0% 4.2% 0 0 0 2.9% 0 0.7% 2.7% 3.0% 0 2.7%

5 x 6 3.7% 2.3% 1.3% 3.6% 0 4.8% 2.5% 0 1.3% 2.7% 2.2% 0 2.8%

5 x 7 0 0 0 0 0 0 1.7% 0 0.9% 2.8% 3.4% 0 3.4%

5 x 8 4.1% 0 0 0 0 0 1.9% 0 1.7% 3.1% 2.6% 0 0

5 x 9 4.6% 1.8% 0 0 0 0 2.5% 0 1.4% 2.4% 2.9% 0 3.0%

5 x 10 0 3.1% 0 3.9% 0 4.3% 2.6% 0 1.9% 2.7% 1.9% 0 2.8%

5 x 11 3.1% 0 0 0 0 0 1.7% 0 2.5% 3.0% 2.9% 3.8% 3.4%

5 x 12 2.9% 0 0 0 0 0 2.8% 0 2.1% 2.9% 2.5% 0 2.4%

5 x 13 3.3% 0 2.5% 0 0 0 2.1% 0 0.9% 3.1% 3.3% 0 2.7%

6 x 7 0 0 0 0 0 0 1.2% 0 0.8% 2.8% 3.4% 0 2.9%

6 x 8 0 0 0 0 0 0 1.6% 0 1.5% 2.7% 2.5% 0 3.4%

6 x 9 0 0.9% 0 0 0 0 1.7% 0 1.0% 2.8% 2.8% 0 2.2%

6 x 10 0 3.0% 3.3% 0 0 3.2% 2.2% 0 1.8% 2.6% 2.3% 4.7% 1.9%

6 x 11 3.0% 0 0 0 0 0 1.5% 0 2.9% 3.1% 2.7% 2.7% 3.6%

6 x 12 0 0 0 0 0 0 2.3% 0 1.9% 2.7% 2.6% 3.9% 3.2%

6 x 13 3.4% 0 3.0% 0 0 0 2.7% 0 0.5% 2.5% 3.2% 0 2.2%

7 x 8 3.6% 0 0 0 3.5% 3.4% 1.0% 0 1.4% 2.9% 2.9% 0 0.7%

7 x 9 2.9% 0 0 0 0 0 0.6% 0 0.5% 3.0% 3.0% 3.8% 1.8%

7 x 10 4.2% 0 0 0 0 0 0.8% 0 1.5% 2.8% 3.5% 0 2.3%

7 x 11 4.1% 0 0 3.0% 3.4% 2.8% 1.8% 3.6% 2.1% 2.6% 3.2% 3.6% 0.8%

7 x 12 3.5% 0 3.1% 4.1% 4.0% 0 0.8% 0 1.2% 1.8% 3.1% 4.1% 1.2%

7 x 13 4.1% 0 0 0 0 0 2.3% 0 1.1% 3.0% 2.7% 0 2.6%

8 x 9 0 0 0 4.1% 0 0 1.4% 4.6% 1.9% 3.1% 2.5% 0 2.1%

8 x 10 0 0 0 0 0 0 1.9% 0 1.9% 3.0% 2.8% 0 3.4%

8 x 11 3.7% 0 0 0 3.4% 2.9% 1.4% 0 2.9% 3.5% 2.1% 3.1% 2.1%

8 x 12 0 0 0 4.2% 0 0 1.9% 0 2.2% 2.8% 3.1% 0 2.2%

8 x 13 2.4% 0 0 2.0% 0 0 2.1% 0 1.0% 2.9% 2.6% 0 2.2%

9 x 10 0 0 0 0 0 1.3% 1.5% 0 1.9% 2.5% 3.5% 0 1.6%

9 x 11 4.2% 0 0 0 4.6% 0 1.5% 0 2.5% 2.5% 2.6% 2.8% 2.1%

9 x 12 0 0 0 0 0 0 1.7% 0 2.4% 2.3% 3.0% 3.6% 1.7%

9 x 13 0 0 0 0 0 0 3.0% 0 0.8% 3.0% 2.8% 0 1.5%

10 x 11 0 0 0 0 0 0 1.9% 0 2.8% 2.7% 3.1% 3.0% 2.9%

10 x 12 0 0 0 0 0 0 1.3% 0 1.5% 3.4% 2.9% 3.4% 3.0%

10 x 13 0 0 3.5% 0 0 0 3.1% 0 1.4% 3.1% 3.2% 0 2.2%

11 x 12 3.8% 0 2.9% 0 2.6% 0 2.6% 0 3.0% 1.6% 3.1% 2.9% 2.0%

11 x 13 3.3% 0 0 0 0 0 1.4% 0 2.0% 3.3% 3.3% 4.7% 2.5%

12 x 13 3.5% 0 0 0 0 0 2.9% 0 1.6% 3.4% 2.7% 0 2.4%

COMPARISON  of  CROSS-CORRELATION COEFFCIENTS

Compared st.
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APPENDIX 6; Water Reservoir Operation Function plots for 36 years long synthetic TS 
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APPENDIX 7; Water Reservoir Operation Function plots for 100 years long synthetic TS 
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APPENDIX 9; Matlab model 
 

function [SYNT] = MTSM( X,T ) 

%%  MULTIVARIATE TIME SERIES MODEL 

%%  performs PCA on any number of vectors and creates synthetic time series with 

AR(1) model 

 

%   Programmed by Waldemar Gresik 

%       X - Input data - rows correspond observations and columns to 

%       variables (stations) 

%       T - number of synthetic years to generate  

%   The function preserves the order of the months in the input  

  

%% [1] Data preparation - measures dimensions, separate months and creates 12 

matrices, one for each month 

n=size(X,2);                    % n = number of stationsQmT 

m=size(X,1);                    % m = lenght of the vectors - number of months 

for i=1:12 

    Qm{i}= X(i:12:end,:);       % creates cell array with 12 month matrices 

End 

 

%% [2] Normalize by 3LGN 

CsN=zeros(12,n);                  

S0=zeros(12,n); 

function[e]=cmin(c,kappax)         % Objective function 

e=abs(c^3+3*c-kappax);             % Optimization criteria 

end 

  

for i=1:12 

N{i}=zeros(m/12,n); 

for j=1:n 

x = Qm{i}(:,j);         % Time series to normalize 

mux=mean(x);             

sigmax=std(x); 

kappax=skewness(x);          

initial=-0.5*std(x);    % initial guess for the optimization function 

         

% Optimization function - finds minimum of the Objective function 

c=fminsearch(@cmin,initial,[],kappax);       

        

x0=mux-1/c*sigmax;          % computes the shift parameter 

sigmay=(log(1+c^2))^0.5;    % second parameter of the distribution 

% first parameter of the distribution 

muy=log(sigmax)-log(abs(c))-1/2*log(1+c^2);         

 

y=log(x-x0);                 % Normalizing time series 

N{i}(:,j) = y; 

csy=skewness(y);             % Controls skewness of normalized data 

S0(i,j)=x0;                  % Assigns shift parameters 

CsN(i,j)=csy;                  % Assigns skewness coefficient        

end 

end 

assignin('base','S0',S0); 

 

%% [3] 1. Standardization - Standardize data by substracting mean and dividing by 

standard deviation   

for i=1:12; 

    S{i}=bsxfun(@minus,N{i},mean(N{i}));        % Makes the data zero mean 

    S{i}=bsxfun(@rdivide,S{i},std(N{i}));       % Makes the data of standard 

deviation of 1 

end 

 

%% [4] Kolmogorov-Smirnov test to Check if the probability distribution of the 

vectors is standard normal 

for i=1:12 

    for j=1:n 
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        KS(i,j)=kstest(S{i}(:,j),'Alpha',0.05);     % K-S test with significance 

level of Alpha (implicit value is 5%) 

    end 

end   

disp('Kolmogorov-Smirnov I - before PCA - should be 0 and is:');  

disp(sum(sum(KS))); 

 

%% [5] PRINCIPAL COMPONENT ANALYSIS -  

% finds the "mixing" matrix TRANSM such that the principal components are 

uncorrelated 

% and ordered by amount of variance they represent 

  

for i=1:12; 

   [TRANSM{i},Z{i},VAR{i}] = princomp(S{i});  % Singular Value Decomposition is 

used to determine TRANSM  

end 

 

%% [6] 2. Standardization - smooths the redistribution of variance after PCA 

  

for i=1:12; 

    Zc{i}=bsxfun(@rdivide,Z{i},std(Z{i}));  % Makes data of variance of 1 

end 

 

%% [7] Kolmogorov-Smirnov test to Check if the probability distribution of the 

vectors is standard normal 

for i=1:12 

    for j=1:n 

        KSZ(i,j)=kstest(Zc{i}(:,j),'Alpha',0.05);    % K-S test with significance 

level of Alpha (implicit value is 5%) 

    end 

end   

display('Kolmogorov-Smirnov II - after PCA -  should be 0 and is:'); 

disp(sum(sum(KSZ))); 

 

%% [8] AR(1) MODEL %% ---- %% AR(1) MODEL %% 

                       

Syn=zeros(T*12,n);            % empty matrix for synthetic data 

Phi=zeros(12,n);                 % empty matrix for correlation coefficients 

for j=1:n 

for i=2:12 

% Corr. coeff. for Novembers (one element shorter vectors) 

Phi(1,j)=corr(Zc{1}(2:m/12,j),Zc{12}(1:m/12-1,j));  

% Corr. coeff. for other months  

Phi(i,j)=corr(Zc{i}(:,j),Zc{i-1}(:,j));                 

end 

end 

xm=zeros(T*12,1);         % empty vector for synthetic time series 

for j=1:n 

    epsilon=randn(T*12,1);% random numbers with N(0,1)  

    xm(1,1)=epsilon(1);   % first observation (without deterministic component)               

    for k=2:T*12;                            

        month=mod(k-1,12)+1;         % determination of month                        

        ssgm=sqrt(1-Phi(month,j).^2);% sigma coefficient for stochastic component 

         

        % ´modelling of observations with AR(1) process                 

        xm(k,1)=(epsilon(k)*ssgm)+(xm(k-1,1)*Phi(month,j));        

    end 

    Syn(:,j)=xm;                    

end 

assignin('base','Phi',Phi); 

 

%% [9] Decomposition of Synthetic data for inverse transformations and correction 

of statistics 

for i=1:12 

    Qmsyn{i}= Syn(i:12:end,:); 

% Correction of mean to 0     
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Qmsyn01{i}=bsxfun(@minus,Qmsyn{i},mean(Qmsyn{i})); 

% Correction of variance to 1   

Qmsyn01{i}=bsxfun(@rdivide,Qmsyn01{i},std(Qmsyn01{i}));  

end 

 

%% [10] Reverse 2. Standardization from section [6] 

for i=1:12;                

    Zr{i}=bsxfun(@times,Qmsyn01{i},std(Z{i}));     % Incorporating PCA 

redistributed variance 

end 

 

%% [11] Inverse PCA transformation - applying inverse of transformation matrix 

TRANSM 

for i=1:12; 

    Sr{i}=Zr{i}*inv(TRANSM{i});      % Product with Inverse pca coefficients 

matrix 

end 

 

%% [12] Reverse 1. Standardization from section [3] 

for i=1:12;  

    Nr{i}=bsxfun(@times,Sr{i},std(N{i}));    % Incorporating stadard deviation of 

historical data 

    Nr{i}=bsxfun(@plus,Nr{i},mean(N{i}));    % Incorporatin mean of historical 

data 

end 

 

%% [13] Inverse normalization - reverses process from section [2]  

for i=1:12                           

    for j=1:n 

        Qmr{i}(:,j)=exp(Nr{i}(:,j))+S0(i,j);      % Inverse log transform into 

Log-Normal distributed data                                                    

    end 

end 

 

%% [14] Correction of statistics 

for i=1:12    

    Qmr{i}=bsxfun(@times,Qmr{i},std(Qm{i})./std(Qmr{i})); 

    Qmr{i}=bsxfun(@plus,Qmr{i},mean(Qm{i})- mean(Qmr{i}));  

end 

 

%% [15] Final Recomposition - creates synthetic data matrix 

SYNT = zeros(T*12,n); 

for i=1:12                   

    SYNT(i:12:end,:)= Qmr{i};       % puts the data in single matrix, following 

the formatting of the input 

end 

 

%% [16] Check negatives 

Negatives=zeros(T*12,13); 

for i=1:(T*12) 

    for j=1:n 

        if SYNT(i,j)<0; 

        Negatives(i,j)=1;        

        end 

    end 

end 

disp('Number of negatives for each station:'); 

disp(sum(Negatives)); 

 

%% [17] Replace negatives with minimum streamflow 

correction=0.001*mean(X); 

for i=1:n 

    for j=1:T*12 

        if SYNT(j,i)<0; 

           SYNT(j,i)=correction(i); 



XXX 

 

        else SYNT(j,i)=SYNT(j,i); 

        end 

    end 

end    

assignin('base','SYNT',SYNT); 

 

%% [18] Plot results 

for i=1:n 

    figure(i) 

    set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0.3 1 (1/T^(1/6))]); 

    plot (X(:,i),'Linewidth',1.0,'Color',[0.9020 0.0000 0.0000]) 

    hold on 

    plot (SYNT(:,i),'Linewidth',1.2,'Color',[0.0000 0.4392 0.7529]) 

    xlim([0,T*12]); 

    legend({'historical data','synthetic 

data'},'location','northeast','FontSize',11);  

    hold off 

end 

  

end 
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