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Abstrakt

Tato práce se zabývá tématy spojenými s předpovědmi dat a analýzou příčiny
závad v informačních systémech. Používá statistické metody a metody stro-
jového učení, které mohou být použity pro předpověď závad. Tyto předpovědi
administátor může použít pro nápravu situace předtím, než dojde k poruše.
Pomocí statistických metod je vytvořena analýza příčin. Ta může dopomoci
k rychlějšímu odhalení zdroje problému a celkově opravy systému v kratším
čase.

Klíčová slova Monitoring síťové infrastruktury, předpověď problémů sys-
tému, analýza příčin problémů

Abstract

This thesis covers topics of data prediction and root cause analysis in inform-
ation system topology. It should cover basic methods which can be used to
predict future failures in order to help administrators fix the problems before
they occur. Statistical and machine learning methods are used to create ana-
lysis which can help administrators fix the problems at their root before they
will affect the whole system. With that, the administrator can shorten the
time of repairing the information system.
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Keywords Monitoring of network infrastructure, predictions of problem in
systems, root cause analysis
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Introduction

We are now in the age of information systems. Wherever the user of the
Internet can go, there is probably a complex and very robust system involved.
There is hardly a person in the first world who is not using the Internet on a
daily basis. This generates huge demand for availability of internet’s resources.
A huge demand for services spreads from e-shops to emails, from IoT to GPS
and the number of internet users is still rising.

The evolution of technology brought us from a small server in the basement
to a cloud containing thousands of servers. The home of the information
system is getting bigger. This growth also foretells what the needs of users
are. We can to this day find The First Website [4] of the Web which had
only informational meaning. Today we are more concerned with e-commerce,
search engines, etc. The biggest Czech search engine provider Seznam.cz
provides about 15-16 million search requests a day [5].

Figure 0.1: Number of internet users [1]

1



Introduction

The hunger for services also generates another unpleasant issue. Internet
outages have become a global threat. Last year one outage of Google DNS in
the Central Europe [6] left millions of users without an internet connection.
No cyber attack was involved in this outage. From the pieces of information
given by Google authorities, it was just a technical issue. An open question
how much are internet users dependent on an internet services comes up. The
solution to apprehend the outages would be to use monitoring, which was
without a doubt in place.

With internet evolving, monitoring grew as well. The basic idea [7, 8, 9]
is to provide service designed to check on the other services. If a system goes
through unexpected events, a human expert is notified to resolve the situation.
This human expert is usually called the administrator. Yet very few of the
monitoring systems can provide deeper analysis, yet alone forecast fail state
before it occurs. In some cases, based on human expert specified triggers [10],
relationships between fail states can be provided, but root cause analysis is
not usually available, leaving administrators with their intuition.

Based on these basic ideas we can bring up several questions. Answering
them can help create a better monitoring environment. Having a better un-
derstanding of upcoming fail states can have a significant impact on today’s
quality of services.

• What are the current options in monitoring?

• Can any system predict fail state of another system before it occurs?

• What are the relationships between fail states of a system?

Analysis of the current state of monitoring systems is mentioned in the
first chapter – Today’s monitoring (1). The chapter gives a basic overview of
monitoring approaches. The main idea is to build a new system based on data
provided by services already in use. That’s why establishing thorough case
study of monitoring services is crucial to the future of network monitoring.
Second chapter Predicting the future (3) is focused on the time series analysis.
Almost every monitored aspect of the information system is a time series (for
instance CPU idle time or memory usage). Creating forecasts based on time
series analysis can lead to recognizing trends or patterns. Having at least
a slight idea about upcoming events can help administrator react fast to a
future problem. Third chapter Root cause analysis (4) targets relationships
between fail states. Usually, problems do not occur by their own. Having some
time-based link between unusual conditions can help to provide fast return to
normal state of a system on their own. Fourth chapter Testing of application
(5) shows drawbacks and results of a resulting application of this thesis. It
should cover situations which happened during testing of the application in
production environment.

2



Chapter 1
Today’s monitoring

After an initial research of resources for this topic, it is more than obvious
that typology of monitoring is strongly driven by use case. Methods how to
monitor state of resources across the whole topology are designed to ease the
work of the administrator. That helps with the need for fast deployed solutions
which are common in modern information systems[11]. New operations across
information system topologies create new roles which profit from monitoring.
Information about the system is needed not only for administrators but also for
public relations, developers and in case of critical devices even for government
institutions.

Definition of monitoring with its goals and much more was described at
book Effective Monitoring and Alerting [2]. At the very beginning we have to
understand two basic objectives:

Availability – stating the time and conditions on which the information sys-
tem has to be ready to serve requests

Performance – opposite to availability, performance could be described as
speed of response to the request, sometimes created from overall load
time of a front page (APDEX)

Customer with back end administrators create analysis stating basic baselines
of a system. Background knowledge of an expert in the field can improve base
lining and help discover possible risks [12]. As process continues, both parties
establish service level agreement (better known as SLA) which goes through
availability and performance.

To better understand how these points are implemented, a small case study
will be provided in the next section to demonstrate the point. As the typology,
definitions and descriptions are part of referenced literature [2], there is no
need to analyze it any further. What seems to be important is to investigate
current situation of company focused on back end administration. Based on
case study further steps can be discovered and applied. After initial study of

3



1. Today’s monitoring

Figure 1.1: Monitoring coverage of system stack [2]

the needs of company, it should be obvious that company needs some kind of
thorough analysis in terms of root cause of the problems. That is why we will
analyze in section Existing RCA tools (1.2) what are current options and what
is missing in them for small size projects.

1.1 Case study
1.1.1 Focus of the study
The object of the case study is a company named Lukapo. Main target of
the company is to provide SLA for customers who own information systems.
This also covers assistance with deployment and other developer operations.
Everything which the company covers is part of a back end solution.

Main part of the investigation is to discover how company monitors in-
formation systems. To assure SLA company needs to supply availability and
performance. That creates the need for gathering data on items of each part
of the system. Parts can be summed up by system stack of each machine in
the topology.

Company Lukapo promised to be a subject of this thesis. That is why we
could have used them as a subject of the case study and also use their data for
later work. Resulting application is also going to be tested in the environment
of Lukapo.

The company takes care of the parts of stack in different manners. Main
coverage is done by monitoring systems without human interaction. In the

4



1.1. Case study

following section we can observe how the company deals with items from the
system stack in case of problem state (crash, depleting resources, . . . ).

1.1.2 Methods
The monitoring coverage of the system stack is the main part of this study.
Company needs to monitor every part of it. In this case, methodology is
going to analyze how the company monitor each part of the stack and how
the company reacts in case of failure. As it seems the chosen methodology of
this case study is going to be an observation of the process of fail handling.
Main points which are going to be observed are:

Part of the stack coverage – discovers what are the tools used to monitor
a particular part of the stack

Availability assurance and problem management – analyses how com-
pany takes care of problems in the information systems

Problem avoidance – analyses how company deals with future problems
based on past experience

By observing these points in each stack part, we can determine what can
be improved or what is missing.

1.1.2.1 Resources

Part of the stack coverage: The company covers resources in monitoring
software Zabbix [7]. The software takes care of basic monitoring. Data
from the resources are collected with static sampling period which is
usually different for each resource. Based on the inputs from the data,
triggers are fired stating abnormal state of the resource. Further no-
tification is done with OpsGenie [13] which is responsible for reaching
directly to the administrator on call.

Availability assurance and problem management: The company have
basic trigger levels of possible problems. For example memory occupancy
is divided into multiple levels to create state of warning to complete error
state. Availability is handled based on the reached level.
Problem management in case of failure is done by the administrator who
is currently on on-call duty. This actually leads the fail management
into skills of the human expert. If the knowledge of the administrator
is insufficient, chain of other administrators is in place. That means the
situation is handled with more and more human experts based on rising
time of unresolved emergency. If all fails, customer is informed and a
different solution is proposed, based on negotiation between company
and customer.

5



1. Today’s monitoring

Problem avoidance: Company for low layer resources basically avoids prob-
lems with scaling. This is done according to the cost analysis and the
information system capabilities. In some cases, only vertical scaling is
available since the managed system can’t scale across network topology.
Company actually keeps a database of known problems which happened
in the past, or problems which are already known and may happen again.
This helps the administrator on duty to fix the problem even if he is not
familiar with the customer’s information system. By creating such a
database and improving it, company can avoid future problems.

1.1.2.2 Software

Part of the stack coverage: Company covers software items with Zabbix
in some cases. The software is covered regularly with checks from outside
the company. These checks are coming from third party information
systems – for example Pingdom [14] and Statusdroid [15]. Therefore,
overall availability is provided with simple pings on application layer.
Performance is tracked with the load time of the monitored system.

Availability assurance and problem management: When the whole in-
formation system is not running, the SLA is usually very strict. Admin-
istrator searches for the errors in lower part of the stack in resources. If
the fault is not part of the lower stack, programmers are being informed.
Availability is also ensured by good functioning resources.
The middleware can be omitted, because company does not have that
many customers who have any appliances of the middleware. If so, it
is handled in the same manners. Most frequently used middleware is
queue messaging (RabbitMQ [16]).

Problem avoidance: The company has an operations manual to fix the is-
sues. If some new situation occurs, administrators with the customers
establish baseline operations which should be done in the future. The
procedure is almost the same as in resources. Main difference could be
that developers are called much often to the rescue. Sometimes applic-
ation level difficulties are directly part of the application without any
possibility to control it outside or from tools of the operation system.

1.1.2.3 Experience

In this case, the company does not take any role. Customer usually collects
metrics of classic user behaviour. That is:

• Average time spent on page

• The percentage of returning visitors

6



1.1. Case study

Figure 1.2: Monitoring operations based on part of the system stack

User behaviour is not part of the back end. That is the reason why com-
pany does not have direct influence on this stack part. Also, the topic of user
experience is not covered in this theses for the same reason.

1.1.3 Discussion

From the description above we can establish basic outline of every failure
handling. The company keeps an administrator on duty to solve any possible
error which can occur. Each administrator on duty is online on the OpsGenie
[13]. That means the reaction to the system failure is in a matter of minutes.
Time to react in case of emergency is usually specified in SLA. The company
keeps track of failures in the database and mitigates failures based on past
knowledge. In case of new problems and no knowledge how to solve it, ad-
ministrator contacts developers or directly customer who owns information
system.

Based on the operation flow in case of emergency, some missing operations
can be found:
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1. Today’s monitoring

There is no prediction in the process of monitoring:
Administrators strongly rely on good constructed trigger. If there is
some gradually approaching disaster, administrator will only get the
warning in case of immediate threat when the trigger fires. Estimating
trends in time series from the monitoring could be essential for the fail
avoidance.

There are only explicit triggers:
If any failure occurs and it’s not specified as trigger, nothing is going
to happen. There is no dynamic threshold estimation in place. This
creates uncertainty in levels of failing resources.
Another issue is that there is hardly any monitoring of relationship
between failed resources. Administrator can be fixing depleted memory
yet the problem could be unwanted steal time of processor in the cloud.

1.1.4 Conclusion
Administrator can get more obvious information before triggers fire on fail
states. There is of course some kind of heuristics which provides help with
prediction in some cases. For example administrator can predict memory
problem in case memory usage steady rises. The problem is that the admin-
istrator wouldn’t apply his own judgment to every data taken. The company
could profit out of more analysis of input data. Correlation between different
data of resources can lead to create more non obvious judgment. Also creating
some time based relationships can give bigger view on root cause.

There are concepts from applied economics which clearly help with ana-
lyzing root cause of a problem [17]. We can explore root-cause analysis with
five hows methodology. That could help us create time based relationship
view on a problems. This is very time consuming approach and not usable in
information system topology. Administrators need to have this analysis fully
automatized and see the results in reasonable short time. There are applica-
tion which offer such a functions and we analyze them in following section.

1.2 Existing RCA tools
There are already solutions which create RCA in large clouds. One of them is
OpenStack Vitrage [18] from Nokia. This platform is analysed, because there
are a lot of similarities with this thesis. Keep in mind that Vitrage is growing
fast. Conclusion of what could be done differently or what is missing in Vitrage
and could be implemented can be based on the analysis of past versions.

Another very promissing project is Dynatrace [19] which promises full auto-
mation of root cause analysis. This platform is available under paid plan as
cloud service. Because of its commercial nature, it is really hard to analyze
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1.2. Existing RCA tools

Figure 1.3: Vitrage Architecture

how the methods of root cause analysis function. The company keeps their
methods partially secret and calls them Dynatrace secret sauce [20].

1.2.1 RCA OpenStack Vitrage

1.2.1.1 Description

From the description at Vitrage homepage [18] we can see that Vitrage per-
forms analysis on the OpenStack platform. The whole idea is to expand alerts
of cloud stack to give the administrator a better view of what should be the
cause. The whole result of the analysis is displayed in the entity graph where
the administrator can see what are the relationships between alarms and other
OpenStack entities. The administrator can open a tab with alarms and see for
each what Vitrage estimated as the root cause. The map of causes is defined
in templates or dynamically generated with machine learning techniques (as
they are promised to be ready in the new version). Machine learning results
are actually offered to a user as new templates and user should decide if they
are useful or not.
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Vitrage offers an incredible number of integrations with other monitoring
systems. In this thesis we have defined collectors for collecting data, Vitrage
uses Data Drivers which collect the data and pass them to the Message Bus for
later evaluation. During the writing time of this analysis, Vitrage has already
successfully integrated CollectD, Zabbix, Nagios and others, which are not
internal OpenStack monitoring resources.

Big advantage of Vitrage cloud usage is that Vitrage can collect data about
the topology. This helps with the estimation of Entity diagram. Vitrage
uses Data Drivers to contact the correct management system and extract
information to estimate topology relationships.

Creation of analysis and graphs is done by Vitrage Graph. From the de-
scription [18] we can see that Vitrage performs graph searches like BFS and
DFS algorithms. From project update [21] we can see that Vitrage also uses
MariaDB to store some history. In the current available version the function-
ality is not added yet.

Another part of the system is Vitrage Notifier which can create feedback
for entities in OpenStack. For example, if some host starts to fail in topology,
Vitrage can decide from the analysis to inform Mistral to evacuate host. For
external services Vitrage offers integration through SNMP protocol.

1.2.1.2 Drawbacks

There are some drawbacks which make the whole system less useful for a
company like Lukapo (used in the case study). First of all, the company
does not have any customer who uses OpenStack. As was already mentioned,
Vitrage has integration for external monitoring systems and even for external
feedbacks. The main problem would be the overhead of deploying such a
monitoring for lightweight projects which are running on topology of a few
servers. In that case, Vitrage would be the main consumer of the topology’s
resources.

In this thesis the resulting application should only use collectors to interact
with monitoring. There are no constraints on where the application should
run. We can say that the resulting application of this thesis does not have the
same ambitions as Vitrage, because the target entity of analysis is not a whole
cloud but a simple topology of a general customer who is able to use Zabbix.

Another problem could be seen in the output of the whole analysis. Vitrage
uses graphs of entities which can get enormous. The author of the project
mentioned multiple times that this is their main concern. After some major
collapse, alerts can be generated in thousands. That would make the whole
analysis useless during first minutes of disaster until the administrator can
judge by themselves what is important and what is not. The root cause
analysis is actually available in the Alarm tab for each alarm. That means
there are thousands of analyses for thousands of alarms.
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We would like to tackle this issue with alert aggregations. The resulting
application is not going to display all the entities but only the alerts from the
monitoring server and cluster them based on their time of occurrence. That
would mean the administrator is going to observe a large cluster of multiple
alarms in case of a disaster.

Vitrage offers an incredible number of options and configurations which can
help improve the whole analysis. The administrator can set up from alarm
severity aggregations [22] to whole templates for predefined cause relation-
ships. Now let us consider basic use case of a project with a few servers. The
administrator usually spends a lot of time just by setting up the monitoring
itself. Creating another configuration to map causality and other relationships
could be a matter of weeks. That might be just too much for a paying cus-
tomer who wanted a few simple servers as backend for his project. Therefore,
simpler the configuration can be, the better. Large number of descriptions
and settings can be obtained directly from the monitoring servers, there is no
need to ask for this information again.

The other problem is that deduced alarms in RCA are a matter of well
prepared templates, not a result of some analysis – with the exception of tem-
plates prepared from machine learning. This thesis takes a different direction.
As we mentioned before, our focus is to estimate prediction, explore clusters
or analyze thresholds. None of these methods can give one hundred percent
correct analysis, results still need to be evaluated by a human expert.

Vitrage in its current released version does not support history of entity
graphs. During the last conference in the Boston Summit [21] the authors
promised a better solution with sliders. In this work we will simply generate
graphs and keep them for reasonably long time. The administrator can find
them in the frontend page.

Another very important part of Vitrage is a possibility to create feed-
back. This is not going to be covered by this thesis. Creating feedbacks with
large impact to the infrastructure could be an irreversible process. Companies
(mainly Lukapo) which agree to provide data for this thesis did not give any
permission to automatically alter infrastructure. It would be safe to say that
target users do not need this function from the RCA analysis.

The last point to end this comparison: Vitrage does not support any
predictions for data items. So far it does not even have its own time series
database to keep the data. The author did not mention if they are going to
add this function to the Vitrage. It is safe to assume that they are not going
to.
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1.2.2 RCA Dynatrace

1.2.2.1 Description

Very interesting platform is Dynatrace which is cloud application capable of
analyzing the whole application stack. The solution is designed to be used
by large enterprises. On the Dynatrace webpage in Customer stories we can
see names like Volkswagen or Whirlpool and there are many more. Dynatrace
promises much more than root cause analysis – it is connected to economical
tools. For example root cause directly counts revenue loses in case of problem
detection. This is promised to be done mainly without human interaction and
mainly via artificial intelligence (AI).

Data extraction is done by one of the patented solutions called OneAgent.
It is the application which is installed in the monitored hosts and collects
as much information as possible. From further analysis, it mainly uses good
knowledge of the application stack. By the description, OneAgent is able
to dynamically find relationships of services called by the target application.
Those are the lowest blocks of the cause analysis. Dynatrace can later estimate
the problems and directly point to the services deduced from the relationships
found by OneAgent. In practice, Dynatrace can explain system collapse from
first click of the user to the failed database query.

Dynatrace also estimates entities diagram in dynamic infographic 1.4. De-
scription promises estimation in a matter of seconds. Close inspection again
reveals that this is done by a patented solution Smartscape. The solution
promises no gaps and blind spots. The user has one hundred end-to-end
visibility into all the application components. This is very impressive if we
consider what can be expected form Vitrage.

Dynatrace states that their root cause analysis is one hundred percent
accurate in case of dependency detection (example in 1.5 figure). They also
state that they estimate this within seconds. Reason seems to be very robust
OneAgent which auto-inject every part of application stack with it’s own data
collectors. Data collected from this process are needed for thorough later
analysis. Another addition captures everything on the user experience level.
This analysis could be provided to the users with heat maps. With that,
Dynatrace can estimate the impact of a problem and count loses in revenue.

Another great feature of OneAgent is the automatic baselining. We used
baselines in definition of SLA. Furthermore, Dynatrace uses it as dynamic
thresholds and can deduce some alarms if the baseline is reached. From the
description on the application page, smart baselining can remove almost ninety
percents of false alarms.

It is more than obvious that without practical usage and exploration of
Dynatrace we can hardly understand how the whole application functions.
Even with the description from the website it is hard to deduce what can be
expected form Dynatrace an how does it work. Since there is a large number
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Figure 1.4: Dynamic entity diagram of Dynatrace

Figure 1.5: Dynatrace root cause
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of satisfied customers, there can be hardly any criticism. Only drawbacks we
could find are based on problems of pricing and close source.

1.2.2.2 Drawbacks

The biggest problem with an otherwise amazing solution is the price. Dynatrace
offers fifteen days trial which is free. The pricing plan differs in size of enter-
prise. If customer chooses to pay a plan named Pay-as-you-go, the charge
will be counted from the size of memory and hours of OneAgent runtime. For
example, small server with 4GB of memory would pay 8.4US dollars a day.
This is just for monitoring of performance, code-level visibility, deep process
monitoring and cloud infrastructure monitoring. Other methods like user ex-
perience are paid extra. If we consider that month has thirty days, we will
get roughly about 252US dollars fee, that could be just too much for a small
project.

We also have to consider that Dynatrace is a closed source. Using non
open source platform can be unreasonable for some customers. The ability
and assurance that everybody can check for programmer’s errors could be
helpful in designing new projects.

We also have to consider data transfers. Trusting a third party in case
of monitoring means large amount of data traveling to the cloud for analysis.
Nowadays, this behavior is not unusual. We have already mentioned services
like OpsGenie and Newrelic which act exactly the same.

We have mentioned that Dynatrace is a closed source. There is no way how
to install the platform on customer hardware or cloud. That is very obvious
since Dynatrace is a private company which doesn’t need to harm its income.
The customer in this case needs to trust the company with every other aspect
of running such a platform (backups, availability, performance, . . . ).

1.2.3 Comparison

To compare analyzed platforms, a summary table was created (figure 1.1).
The application which should be the result of this thesis should cover the
needs of target company, that’s why can use the basic ideas in here in terms
of Our proposed solution. The attributes composing the table should cover the
main differences and better display the ambitions this work has. Attributes
compared in the table were deduced from the case study. The main focus was
given to these points:

Integration – attribute which should help the target company to better de-
ploy the resulting application into the currently used topology of servers
under monitoring

14



1.2. Existing RCA tools

Methods of analysis – explores several possible methods used in analysis –
finding them can help analyze possible data dependencies and help with
application deployment

Predictions – analyze if the application has capabilities in prediction of data
series

Entity diagram – analyze if the application can create network design to
better display problems in topology

Housing – explores options of platforms which can be use to run the applic-
ation

Adding our proposed solution helps with creating (function and non-functional)
requirements in later application design.

The application resulting from this thesis faces several obvious challenges,
which, however, cannot be tackled by the application. We do not have cloud
platform to use for large scale computation as Dynatrace has. The target
company is driven by the customer budget. Lease of cloud platform used only
for advanced monitoring can strongly influence costs of the whole solution.

Also, since only the data used for analysis come from monitoring servers,
the application can’t have any information about topology. That degrades
informational value of any entity diagram to entities from monitoring. This
is a constraint given by not using any other monitoring agent.

On the other hand, we plan to have usable predictions of failures. Whole
result application is open source and it is not bound to any cloud platform.
This can improve deployment of the solution.
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Vitrage Dynatrace Our proposed solu-
tion

Integration Integrated with all
main monitoring sys-
tems.

Have its own DataA-
gent which collects
variety of informa-
tion based on a paid
plan (differs for full
stack and cloud in-
frastructure).

Plan to have integ-
ration to monitoring
servers.

Methods of analysis Have explicit tem-
plates which define
relationships in the
root cause analysis.
Machine learn-
ing techniques are
partially used.

Contains AI meth-
ods, the company
has patented their
solutions and calls
them Secret Sauce.

Plan to use only stat-
istical methods to es-
timate clusters, rela-
tionships, thresholds
and correlations.

Predictions Does not have any
ambition in predic-
tions.

It is hard to find out
if Dynatrace uses any
prediction.

Predictions are one
of the main func-
tions.

Entity diagram Estimate entity dia-
gram from topology
and resources.

Estimate infograph-
ics which have the
same meaning as en-
tity diagram in Vit-
rage.

Do not estimate
any entity diagram,
because monitor-
ing system does not
keep any information
about it (only source
of information is the
monitoring system)
and there are no
other systems to
obtain it from.

Housing Could be installed on
local machine.

Provide frontend to
the results which
come from cloud
computation.

Could be installed on
local machine.

Table 1.1: Comparision of different root cause analysis implementation
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Chapter 2
Application design

Based on the discovered topics we need to estimate what is going to be result
of this thesis. That should be an application containing the tools covering the
topics which were mentioned as insufficient in case study.

We have already covered some requirements, which can help administrators
monitor topology better. From the observation provided we can estimate basic
functional requirements. Those should cover the needs of the administrator
for creating better judgment and analyze monitored topology better:

• Application has to provide the administrator with basic prediction of
future

• Application has to create root cause analysis

From functional requirements we can create some non-functional require-
ments which are actually quite natural for monitoring systems. These should
also be covered by simple SLA offering reasonable availability and performance.
Non-functional requirements should support functionality of application. We
can estimate them as follow:

• The application has to provide analysis in a reasonable, understandable
frontend

• The application has to provide prediction in a reasonably short compu-
tational time

• The application has to create root cause analysis in a reasonably short
computational time

• The application has to collect data from monitoring servers and keep
them for analysis

• The application has to use data from existing monitoring applications
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The first three points of non-functional requirements come from a practical
point of view. Administrator can not profit from analyses which were estim-
ated late. Point mentioning data collection is created for the needs of data
analysis. Monitoring servers have different procedures of keeping data. These
procedures can keep just averages or compressed data from the past – these
data are then deemed useless in further analysis. Last point is very significant
for the simplicity of deployment of the resulting application. The adminis-
trator can "plug in" whole application to the running environment without
any additional agent.

Application layout needs to be divided into multiple subsystems which can
communicate with each other. The whole system should be able to asynchron-
ously work on predictions as well as collect data from monitoring servers or
estimate root cause analysis. From these requirements we can estimate the
components of the application:
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2. Application design

Figure 2.1 should describe subsystems and components which are inde-
pendent in terms of computation. The system is divided into multiple subsys-
tems performing different tasks. Results are presented to the users through
frontend. The following section goes through every subsystem, describes its
relationship in terms of other subsystems and analyzes possible algorithms
which can be used for inner functionality of subsystems.

Collectors

Subsystem Collectors provides data to the subsystems Predictions and
RCA Analysis. Input of data is provided by independent monitoring servers.
It should serve as an independent layer between monitoring such as Zabbix or
Icinga to the monitoring analysis.

Predictions

Subsystem Predictions gets data from Collectors and estimates the
predictions. These predictions are then passed on the RCA Analysis.

In exploration of resources covering predictions we have found algorithms
such as ARIMA and LSTM networks. Those are analyzed and compared as tools
which can be used in the resulting application.

RCA Analysis

Subsystem RCA Analysis analyzes different aspects which can be useful
for the administrator. Data inputs are from Predictions and Collectors,
the output is passed to Frontend which displays results to the user.

In case of analyzing data for RCA which come only from monitoring servers,
we have to consider what is their informational value. The amount of data
needs to be reduced and put into context. There are some algorithms which
can be found in literature [2] and some which can help compare data series.
Without any entity diagrams exploring physical relationship, we can always
map relationship between triggered alerts in terms of time.

Algorithms which can help with RCA could be following:

Time based relationships – alarms do occur in time order, analysis caus-
ality can help the administrator decide what was the cause of a problem.
We are going to explore if different methods can help analyze causality
better. For example, using logical time instead of real time can be prom-
ising, because it helps to sort every event in the distributed computing
environment.

Clustering – in a disastrous scenario, alarms occur in large quantities. We
can create clusters of them based on the time at which they occur. As
we mentioned before, we can also consider logical time. Clusters can be
estimated from density in time. Very simple clustering can be done by
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sampling the time. For example, if we would sample every minute, our
clusters would contain alarms which happened during that minute.

Thresholding – estimating constants which create a frame creating baseline
of data. If data goes above or lower than threshold estimated from
reasonable old data, it could be considered a problem.

Correlation – to compare two time series we would need to have a measure
of distance. Correlation in form of the Pierson Coefficient seems to be
very useful to capture such a distance.

Further analysis of implementation is presented in each chapter. Parti-
tioning all the algorithms and methods to the separated subsystems proved
to be a manageable way of implementation. In terms of components, we can
imagine that each component is a microservice bound to other microservice
with queues.

2.1 Prototype
For better representation of the result, a mock-up of frontend was created
(figure 2.2). From the component point of view, this should be the output of
subsystem Frontend if all the other components in the system work correctly.
We can see that serverXY1 failed due to a lack of free space on device. An-
other alarm was triggered by service MySQL which stopped working properly.
Time related dependency was formed, stating that free space on the hard drive
alarm was triggered before the MySQL alarm. The administrator can keep track
of the alarms and consider time dependency to solve the issue. Another very
significant analysis was provided via correlation estimation. We can see that
time series of service Free space on device on server serverXY1 and ser-
vice File backup were significantly correlated. The administrator can decide
to enlarge disk space on both devices. Based on prediction, analysis created
an alarm on service Website load time which reached unbearable limits and
was classified as prone to failure in near future. Another failing service could
be Number of web connection which reached dynamic threshold of 95 per-
centil. Administrator should take it into consideration because the load time
of webpage is rising and was predicted to fail (based on trigger).
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Figure
2.2:

M
ock-up

ofapplication
frontend
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2.1. Prototype

Application design was used to show what should be the result of this
work. We have defined the questions which should be answered in the intro-
duction. Creating this application should lead to a better understanding of
what methods can be used and how they should be implemented. The fol-
lowing text will go through all the subsystems and describe how they were
implemented. We can also find created known solutions. There are already
applications which create root cause analysis. On the other hand, non of them
create predictions.
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Chapter 3
Predicting the future

Nowadays there is not a single system with some commercial value that
wouldn’t be monitored – there is always some health check. Beyond simple
ping, control covers many other resources. For example CPU load, memory
usage or disk I/O operations. Some of the monitoring systems also store data
to create graphs. Based on the data, further analysis can be done. The
majority of monitoring services (Icinga, Cacti, . . . ) do not provide data fore-
casting. Zabbix can use module [7] which can give basic models to forecast the
future based on past observations (linear, polynomial and exponential regres-
sion models). None of the monitoring systems mentioned earlier use complex
models like ARIMA or Neural Networks with Long Short Term Memory (LSTM
Neural Networks) – the reason is long computational time.

Furthermore, there are still some attributes of forecasting that need to be
satisfied. If forecast takes unreasonably long time, future can be far gone,
when data are ready. Another problem may be selecting which data should
be analyzed. Monitoring systems cover almost every resource of the client
server ranging from incoming HTTP requests till hard drive I/O count. If a
forecasting system needs to cover every input data time series, there can be
hardly any assumption about data. Data could vary in trends, mean, max-
imum, minimum and various other features. Without any expert knowledge,
forecast needs to be as general as possible.

Forecast itself can help avoid outages of systems. With fitting statistical
or machine learning models for crucial resources, system administrator can
know in advance what are the possible future problems. For example, when
an incoming bandwidth of data to server exceeds certain value, a server can
become unreachable. Administrator can be informed about upcoming alert
from our application and try to fix the problem before it happens.

Collection data section of this paper is about data retrieval from mon-
itoring systems. There is no standard representation of the data, therefore
implementation of a collector which can do some transformation was created.
For the purpose of showing how difficult forecast can be, one particular time
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series was selected. It has all the unwanted properties which could be found
(no stationarity and a lot a peaks). Second section ARIMA applies ARIMA
model on one selected time series. Further analysis is done, especially on de-
ciding the correct order of the model. Third section Reccurent Neural Long
Short Term Memory Network deals with the machine learning methods for
forecasting. Testing is done primarily for the long term predictions, because
the longer prediction, the better. Exception is LSTM network, because of dif-
ferent use case. ARIMA needs to be retrained every time with new data where
LSTM can adapt and be used reasonably fast again and again. Therefore in
Practical use of LSTM networks we focus on using LSTM for short term predic-
tions.

3.1 Collecting data
Data from the monitoring systems needs to be accessed via a fast and reliable
way. Creating models from old data could lead to an invalid conclusion. For
some systems, access to a database is performed directly via REST API. All the
monitoring used in this paper has some REST API. The problem is with systems
which do not by default keep any memory and only work with the current state
of resources. That is, for example, Icinga (with basic installation) which
asks client machines about their states. With collected output comes logic.
It decides on contacting the administrator to change any unwanted state.
Icinga uses Nagios commands on client devices. On the other hand Zabbix
keeps data about the past and uses moving average to compress data. Moving
average can lose some features of time series. Both of these approaches are
not usable for further analyses.

Therefore, new layer was suggested, its main role is to collect data. That
is why it uses collectors. These collectors are different for each monitoring sys-
tem. The reason behind that is absence of normalization over REST interfaces.
Usually, there is no Atom Syndication Format or HATEOS which can help drive
collector and make in more reusable. Each of the collectors is going to obtain
data from monitoring software’s REST API making a layer between data used
for time series analysis and data in different formats. Collectors are going to
save the data to a shared database (figure 3.1).

Sampling speed of data is strictly defined by monitoring system. Collector
does need to make samples in unified time, because data items could be still
pulled out from monitored systems. Therefore collector needs to find data
item collection interval and create a schedule to retrieve it only in case mon-
itoring system already got the data. Implementation in Python gives a lot of
opportunities to create such a polling task. The problem was that a lot of
these solutions used process for each task given.

That lead to server collapse with incredible number of processes. That’s
why collector uses library apscheduler [23] which provides multiple threads
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Figure 3.1: Data collection infrastructure

Figure 3.2: Inner architecture of collector

that work on jobs given in code. After collecting roughly about 2000 data
items per 30 seconds, apscheduler created exception stating that execution
time was too long and data were not collected in accurate time. This was
apprehend with rewriting scheduled jobs (figure 3.2). Currently job gives only
notice to queue that there are data to be collected and on the other side of
queue consumers collect the data whenever they are ready. Data are than
send to RabbitMQ queue for other jobs (analysis, prediction, . . . ).

The database has a pretty simple layout, there is no need for complicated
relationships. Table for records contains only five columns, only the first
normal form is enforced. Following list explains the columns:

id – is running iterator for later use in ORM, there is no need for it in any
analysis
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time_execution – contains Unix timestamp which is used in Zabbix and
also in Icinga to cover time when the value was obtained

resource – contains the name of the monitored resource, for example CPU
load or memory usage

hostname – of the machine which is monitored

result – is a value of resource taken at the time_execution from machine
with given hostname

state – is a status of resource, for example when monitoring suggests that
resource is in warning state, non zero value is stored

Columns hostname and resource are already named in the monitoring
system. Collector only retrieves their names and saves them to records table.
There is no need for user explicit knowledge.

Column hostname and resource can use bitmap index to speed up query-
ing. Both columns have low cardinality. PostgreSQL does not offer explicit
definition of bitmap index, it uses it in querying system. Time_execution
has significant meaning in TimescaleDB [3]. The database can be partitioned
not by the size of a table but by timestamp. This partitioning is called
chunking. Fast access to the date is provided by a hypertable, which has an
overview of all the chunks in the table. TimescaleDB is based on PostgreSQL.
Developers can use normal SQL to obtain data. Much needed difference in
speed can be seen in benchmarks provided from Timescale (figure 3.3).

Figure 3.3: TimescaleDB benchmark on 16GB of input data [3]

Furthermore, with collection of large set of time series comes a question
of which of them are necessary to analyze. For example, collecting number
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Figure 3.4: Incoming network traffic of ethernet device of message queue server
in bits per second

of logged in users has much smaller meaning than counting incoming packets.
Basic preprocessing should mark time series which do not give any inform-
ation. The first idea would be to use entropy. But this is usually not the
case since time series data are not discrete. Using a continuous version of
counting entropy, which is called Limiting density of discrete point [24], is not
reasonable either. Data do not need to follow any continuous function.

As a result, some other features need to be used. One of the fastest ways
seems to simply check standard deviation. If the deviation is zero, there is no
need to use the series in forecasts. Time series model, in this case, should be
constant for all its values through the time. The reasonable forecast would
be just to prolong constant values. Another attribute in selecting right time
series to analyze would be to ask a human expert to mark what he is interested
in specifically.

For the purpose of this paper’s section, only data from one resource are
used. It is the incoming network traffic on ethernet device of message queue
server (figure 3.4). Data are taken from Zabbix which saved data of resource
every minute for five days. There is a space in data at the beginning, meaning
that the state of the resource hasn’t changed in some time. No data were
received during that time.

Zabbix collected 3780 pieces of data with the standard deviation of 22674710
and mean of 5010694. Data spans from 2017-05-25 21:52:21 to 2017-05-30
17:49:38. Minimum value is 30776 (30 [Kbits]) with maximum 298492700
(284 [Mbps]). Simple look at the data shows that hardly any assumption can
be made. There are a lot of peaks and no visible stationarity by far.
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3.2 ARIMA
ARIMA is an acronym for Autoregressive Integrated Moving Average model. It
got its fame from its application in predicting stock market [25]. There are two
reasons why to use ARIMA. First is to understand better underlying signal of
data (if there is any) and second to create a forecast based on already known
data. As the acronym suggests, it is constructed from a combination of three
base models.

3.2.1 AR
Autoregressive part implies that there is some autoregression in the signal
which could be used for further forecast. It’s defined as follows:

xt = α1Xt−1 + · · ·+ αpXt−p + zt (3.1)

Where α are autocorrelation coefficients at lags 1, 2, . . . , p and zt is residual
error term. A good model covers all the data and leaves zt = 0. It is trying
to fit data with a function using previous x. The function is adapted via
optimizing coefficients to fit input data with the smallest error. In this case
the residual sum of squares divided by the number of degrees of freedom was
used (as it is usually default option). Input parameter of p states what order
AR model is.

3.2.2 MA
Moving average can help with univariate time series. Furthermore smooth
data, which have peaks with no informational value (for example current load
of CPU). It is defined below:

xt =
q∑
i=0

βixt−i (3.2)

Where βi are the weights applied to prior data. The β coefficients cover
weighted average from current and immediate values. Moving average targets
trend of immediate data to create a forecast.

3.2.3 Differencing
Both AR and MA models have a problem with stationarity. If the model is
not stationary, there is hardly any way how to fit these models (models are
finite). Time series have to keep variance, autocorrelation and mean constant
over time. This suggests removal of trends in data, therefore integration was
introduced to make dataset stationary.

For our input dataset, we can create a test telling us something more about
stationarity. Augmented Dickey–Fuller test (named after David Dickey and
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Wayne Fuller [26]) has null hypothesis whether a unit root is presented in an
autoregressive model or not. The alternative hypothesis states stationarity.
We can run the algorithm on the dataset:

ADF Statistic: -4.297952
p-value: 0.000448

5%: -2.862
1%: -3.432
10%: -2.567

For rejection of null hypothesis, the p-value is less than or equal to a
specific level. P-value 0.000448 is much bigger than any level of 5%, 1%
or 10%. Hypothesis couldn’t be rejected. Dataset could not be labeled as
stationary, therefore differencing is going to be used by ARIMA model. Whole
model can be described as follows:

(1− φ1B − . . .− φpBp) · (1−B)dyt = c+ (1 + θ1B + · · ·+ θqB
q)et (3.3)

The first part of the equation is dedicated to AR with input degree of p.
The second part is for differencing with the order of d. Last part in MA model
is stated with the polynomial of degree q.

3.2.4 Deciding the parameters
As mentioned earlier, input parameters of p, d, q need to be given to ARIMA
model. This could be achieved by observing autocorrelation function plot
(figure 3.5). By carefully analyzing plots generated by statistical library we
can derive optimal values.

Autocorrelation plot shows that the data stick at lag 0 to 1. There is
a small hint of seasonality which occurs at peaks of autocorrelation in the
frequency of 5 lags. From QQ plot we can summarize that series is a skewed
normal distribution [27].

The problem is that this approach couldn’t be reproduced automatically.
The algorithm can check for autocorrelation just as well as an observer of a
graph did. On the other hand, it couldn’t notice trends suggesting some level
of difference. There is a way to estimate the parameters through a full scan
automatically. Since the model needs to be generated with an application,
scan for parameters needs to be done anyway. To compare which parameters
are better or worse than others we can use Akaike Information Criterion (AIC)
[28].

AIC can help with comparisons of models. Suppose we have M of data
x. Let k be a count of estimated parameters in the model, then L̂ is the
maximized value of the likelihood function for the model. That means L̂ =
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Figure 3.5: Input data statistics

P (x|θ̂,M), where θ̂ are parameter values that maximize the likelihood of a
function.

AIC = 2k − 2 ln(L̂) (3.4)

Let’s say we have two models describing the same data with different
parameter values. We want to decide which one did the description better.
We perform count for both AIC and compare them. If AIC of the second model
is smaller then for the first model, the second model is better for describing
the underlying structure of data.

Since we already know autocorrelation function of our data, we can assume
that there is going to be a really small size of parameters p, q. Full scan
with AIC for the parameters estimated the best (p, d, q) as following (1, 1, 7).
Resulting AIC was 109940.967535.

3.2.5 Testing the model
Consider model parameters (1, 1, 7). Let’s do some preprocessing and divide
data into testing and training. A ratio was set to 80% of data are used for the
training phase, and 20% are left for testing. After that we can estimate how
much different will the mode be in the future. To calculate error, we will use
mean squared error function [29].

The figure shows (figure 3.6) by how much the model missed the real data
in the long run. The graph also shows the underlying structure which the
model established on input data before creating the forecast. This approach
could help in further analysis. The resulting mean squared error was estim-
ated to 25080375.5115. This shows a relationship with autocorrelation which
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Figure 3.6: Real data in comparison with ARIMA model, green line is the
prediction and blue line is showing real data

suggested that long prediction in the future couldn’t be successful with this
data.

3.3 Reccurent Neural Long Short Term Memory
Network

ARIMA was introduced based on statistical features. What if there is a structure
which could be learned and later used in the forecast? This learning could be
done without knowledge about features like autocorrelation. Therefore some
analysis regarding Recurrent Neural Networks needs to be done.

For the forecast of future values, we certainly need to understand the past.
Standard neural networks do not provide any advantage in this situation.
Their form of learning is not based upon creating persistent knowledge used
for further forecasts. Recurrent networks address the issue. They use loops in
form of a feedback allowing information to stay in more persistent mode.

In diagram (figure 3.7) the input xt is coming in time t with output ht
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Figure 3.7: One node of reccurent network

Figure 3.8: Unrolled reccurent network

(hidden state) which is later used as recurrent input in other iterations (figure
3.8). The network can be unrolled and can pass its outputs at time t − 1 to
another unrolled part at time t. Each loop can have old hidden states as well
as new data on the input. This approach can lead to providing relationships
in the network.

So far we haven’t mentioned the issue of activation function, which is
only one in the RNN node (figure 3.9). This leads to a problem of long-term
dependency. It seems there is only explicit dependency from the last state
to new one. That doesn’t need to be true as we also observed at ARIMA. RNN
can benefit from creating not only relationship between outputs directly from
the last step but from more past steps which do not need to be in sequence.
This creates a context which can be used in the network. There is also the
limitation on how much past lags can create the context for new output [30].
The answer to this problem can be solved with LSTM [31]

Long Short Term Memory Networks are a specific kind kind of RNN with
the ability to learn long-term dependencies. Instead of using one activation
function, there are five of them, each has a different meaning (figure 3.10).

The node (figure 3.11) contains cell state in horizontal line with one mul-
tiplication and addition. The state is the way how the network transfers
information with some minor linear interactions. The ability to remove or
add information is modelled with gates. Each contains one sigmoid and a
pointwise multiplication operation. The output of gates is between one and
zero expressing the weight of how much information is relevant in the context
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Figure 3.9: Activation function in one node

Figure 3.10: Activation function in one node of LSTM

of the network. There are only three gates to protect or control the cell state.
First step of LSTM (figure 3.11) is dedicated to what information should be

left out. The sigmoid gate responsible for this is called "forget gate". Output
is between one and zero where zero discards whole information and one keeps
it all. Output of the gate is given by function: ft = σ(Wf [ht−1, xt] + bf ).

Next step (figure 3.12) is to decide which information should be stored in
cell state. First sigmoid is called "input gate layer" and decides which values
should be updated. Next the tanh function creates vector of a new candidate
for Ct. The output function is stated as follows: it = σ(Wi · [ht−1, xt] + bi)
and Ctc = tanh(Wc · [ht−1, xt] + bc).

Update of Ct is created in the last step into the cell state. It’s formed

35



3. Predicting the future

Figure 3.11: First step of LSTM

Figure 3.12: Second step of LSTM

out of all the gates from the steps before. New Ct is created from the next
equation:

Ct = ft ∗ Ct−1 + it ∗ Ctc (3.5)
Finally, the decision needs to be made about the output. It is based on

the state of the cell. Also filtering is applied. Sigmoid layer decides which
part of the cell is going to be outputted. Then the tanh function pushes the
value from −1 to 1 and multiplies it with an output of the sigmoid gate. That
will create an output of only selected values.

The output ht (figure 3.13) is generated by the following equation:

ot = σ(Wo[ht−1, xt] + bo) (3.6)

ht = ot ∗ tanh(Ct) (3.7)

36



3.3. Reccurent Neural Long Short Term Memory Network

Figure 3.13: Output of ht

3.3.1 Preprocessing
Input data have a standard deviation of 22674710 and mean of 5010694. Data
for LSTM network have to be scaled from 0 to 1. Therefore to use model
training properly, everything needs to be scaled down.

Another operation would be to change raw data into data with window.
Every point of time needs to have a window containing data which have come
immediately before this point. For better understanding see figure 3.14. The
window size is one of the parameters which should be estimated on data. In
this case, we start with the window size of 40.

Figure 3.14: Reshaped data for LSTM

The last thing which needs to be done is to create two subsets of data.
Since this is a time series, we can’t use any cross-validation. The original
context is to forecast future based on old data, which couldn’t be done on
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shuffled data. The ratio of 80% training data to 20% testing was used to see
if the approach had similar results as in ARIMA case.

3.3.2 Creating models
3.3.2.1 Basic LSTM

Basic LSTM model contains one layer of nodes (figure 3.15). The output is
forwarded to densifier which outputs one number as a result for each input
window. There is no relationship between windows. That means there is no
need to keep or transfer the state.

Figure 3.15: Basic LSTM model with on layer

Another property which needs to be set is loss function [32]. Training
procedure needs to estimate how the model performs in comparison with real
data 1. For that process mean square error function is used. ADAM algorithm
was used as an optimizer because it seems to perform the best in most of the
cases [33]. As was mentioned earlier, we can’t make any assumptions about
data. Hence ADAM seems to be the best option.

1Names of dimensions are omitted, data are transformed to series of real numbers
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Figure 3.16: Result of basic LSTM network model

Figure does not show any improvement in forecasting in the long term (fig-
ure 3.16). The resulting mean squared error was estimated to 25759944.4567.
That is a little bit worse (679568.9452) than ARIMA forecast.

3.3.2.2 Stateful LSTM

Stateful LSTM model contain one layer of nodes (figure 3.17). The output is
forwarded to densifier which outputs result. Relationship between windows is
propagated through the network with input state marked as Ct∗ (figure 3.17).

Figure 3.17: LSTM model with state input from past LSTMs

All the properties related to internal function (optimizer, loss, . . . ) stay
the same. The only property which is added is statefulness. The problem of
the proper size of the window is now less significant since we are propagating
state through the network.

39



3. Predicting the future

Figure 3.18: Result of stateful LSTM network model

Even though it seems that there no improvement, the mean square error
shows that there was a change for better. Mean square error was 25723488.664
which is 36455.7927 off than basic LSTM model. Nevertheless, this result is
hardly as good as ARIMA model.

3.3.2.3 Stacked LSTM

Another way to improve forecast should be to stack LSTM models (figure 3.19).
Whole layers of hidden states can be forwarded to new layers which can better
capture new features of data. For example, changing frequency of a signal can
be divided into different layers. Since there is hardly anything we can assume
about the input data, this seems to be the best approach for a forecast.

Figure 3.19: Stacked LSTM in two layers

The idea seemed promising, but results are not better than in one layer
stateful LSTM network. Mean square error was 25752725.4935 which is worse
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(the difference is 29236.8295). As the figure 3.20 shows, model performance
does not significantly differ from others.

Figure 3.20: Results of stacked LSTM in two layers

3.3.2.4 Practical use of LSTM networks

We have so far considered LSTM networks on the worst data with a lot of
spikes, questionable stationarity and no visible trends. However, there are
much greater advantages if we consider different use cases. In case of ARIMA
model we always had to retrain the whole model for next prediction. This is
not the case for neural networks. Weights can be changed according to the
new data without reconstructing the model. Classifier can be recycled and
adjusted during runtime.

Another observation is that predictions MSE are getting bigger with the
number of steps taken. This can not be avoided for general data. Let us
keep in mind that if we have a trained classifier, we can create predictions
very quickly. In that case, we can predict small steps in the future in almost
constant time.

We will give a small window of data to the classifier which then provides us
with a short prediction. If we use data item which has a collection interval of
half a minute, we can create reliable predictions for five minutes in the future.
That is a significantly shorter time interval than in the tests we did for each
LSTM configuration.

For this case we will use simple LSTM network with one layer of neurons.
Training will be done in ten iterations with the same configuration as in the
last tests with a basic LSTM network. The data are a representation of bytes
downloaded per minute from a very busy web server. They obviously create
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Figure 3.21: One step prediction with LSTM

some day to day trend but have a lot of spikes. We can see how the classifier
did on a short prediction in the following graph (figure 3.21).

Results are, as expected, much better. Computational speed of the pre-
diction was bearable. Training of such a model took a long time which was
also expected (on platform GeForce GTX 1060). We can see that the classifier
predicted each new step almost correctly without any problem.

That would mean we do not need to create long term predictions, we can
simply predict quick, short term batches of data and use them for analysis.
To compare how the performance of predictions deteriorates in the future, let
us zoom at the end of the dataset and create a prediction for a long term of
a hundred steps (figure 3.22). If we compare the results, we can clearly see
that the prediction works for a few more steps and then loses its accuracy and
continues only as a constant.

To get a better view of how LSTM captures the seasonality and how im-
portant it is for predictions, let us consider artificial data of repeating normal
distributions. They can symbolize shoppers connecting to a virtual restaur-
ant ordering food, showing large peaks during the middle of the day. Arrival
of clients could start rising from the morning and decline to zero during the
night. There is a clear day to day trend. These data are constructed to be
simple for LSTM classifier – even if the classifier has one layer and is stateless.
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Figure 3.22: One step prediction with LSTM with further prediction of unknown
data

For ARIMA another type of model named Seasonal ARIMA would need to be
used. With these data we attempt to make new prediction with the same
basic LSTM model and observe results (figure 3.23).

We can clearly see that LSTM found the seasonality. If we take into consid-
eration that every peak represents one day, we have a reliable prediction for a
few days (administrator can get a fairly good idea how the data will continue).
This classifier is reusable and can adjust its weights the next time we use it.
That means we have a great tool which can help with the monitoring of future
problems.

3.4 Conclusion

Collecting data from resources in information systems is an easy task. Every
significant part of the system usually has some representation in a monitor-
ing system. It is reasonably harder to create collectors for all the different
monitoring servers. This resulted in creating an independent layer where for
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Figure 3.23: Future prediction with well trended data

every new system some application can be defined which is responsible for
contacting REST API and getting the data which are needed.

Collecting all the data from all the resources showed to be unreasonable,
usable data were filtered with standard deviation. Any method, which would
compare multiple time series and state which should be used, was left out.
There was a simple reason behind this. Removing series automatically without
the knowledge of context could lead to removing a future source of informa-
tion. Another reason could be the computational time of decision. Standard
deviation, which could be estimated reasonably fast, was found sufficient.

The problem with the quality of data continued throughout the chapter.
Basic analysis on first dataset proves that the small autocorrelation makes any
long forecast quite impossible. Very promising was MA part of ARIMA model
which by AIC estimation showed, that the model can use seven lags from the
past. Testing proved that ARIMA couldn’t create any long forecast.

Another possibility which is currently vital in stock prize analyses was to
use some machine learning technique. The first idea was to use some recurrent
neuron network. Due to gradient descent problem, basic RNN was skipped and
LSTM network was used. Three models were constructed with different inner
structure (one layer with long window, stateful and stacked in subsection 3.3.2)
. Unfortunately, for generic data without any expert knowledge, the models
didn’t make any major difference in the long forecast (table 3.1). ARIMA proved
to be faster and predicted better in case of mean square error.

The problem does not need to be in LSTM model itself but in the input
parameters which need to undergo further tunning. In this paper there was
a setting for window of lags 40, improvement can be done in setting window
size to 120 (lags usually have a distance of one minute between each other,
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Name MSE
ARIMA 25080375.5115

LSTM Network 25759944.4567
Stateful LSTM Network 25723488.664

Stacked Stafeful LSTM Network 25752725.4935

Table 3.1: Mean square error in trained models

120 would be two hours long window) or even more. This could lead to much
longer training time with an unclear result.

A more promising method would be to use LSTM network just to estimate
few lags in the future. The network can adapt in runtime and the model
does not need to be fully trained again and again. Adaptive training meth-
ods gave LSTM networks an advantage over ARIMA. Further work is going to
be focused on adaptive learning in LSTM and to find out if ARIMA can cover
long term predictions better than LSTM. This approach turned out to be very
promising. With classifier already trained, creating predictions is a matter of
short computational time. Because ARIMA can’t dynamically adapt, it would
be unreasonable to use it in the same way.

Another promising method would be using ARIMA as preprocessing. With
cleared data, LSTM can capture trends much better. Again, the procedure
of estimating forecast needs to be as generic as possible. That mean this
approach should not be used.

The final statement would be to better select time series. With better
quality of data comes better probability of a good prediction. There is no
generic model which can create a forecast with a small error on every input
data.
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Chapter 4
Root cause analysis

We have mentioned that administrators do not have a very good picture of the
problem. All of risk management can profit from a more extensive overview.
There are methods known from applied economics [17] which can address the
issue and root cause analysis (RCA) is one of them. Definition states that root
cause analysis is applied methodology used to identify and correct a root cause
instead of addressing the symptomatic results. In our case, symptoms can be
e.g. failed service, yet root cause could be depleted hard drive memory.

To estimate root cause can be a matter of a good setup in monitoring. If
all of the dependencies are correctly described, administrator can directly fix
them. But this is not the case for every alarm and every trigger. That is why
in this thesis we will try to analyze alarms by multiple methods which then
lead to better decision making by the administrator.

4.1 Our approach
We have analyzed one of the major tools to create RCA in cloud environment
(section 1.2). The purpose of our application was summarized in the applica-
tion design. Exploring Vitrage showed that the application design was not that
far from the already known solutions. In this section we will explore possibil-
ities of RCA analysis based on statistical tools and machine learning methods.
That is something not used by Vitrage by default. There are obvious reasons
why. No statistical method or machine learning can create analysis which
maps problems at one hundred percent accuracy. That means the adminis-
trator using the application of this work should always judge by themselves.
Obvious advantage is that the administrator does not need to define any tem-
plates but also the administrator needs to know a little bit more about analysis
and have good knowledge about of his monitored topology.

Finding the root cause from data gathered directly from monitoring soft-
ware could be very tricky. Some of the issues were already addressed in the
past chapter. Here is a small summary:
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• A sampling frequency of the checks can create unusable data. The reason
is mainly that monitoring software is not designated to collect data for
further analysis but for on-time trigger evaluation. Sampling is therefore
driven by the possibility of failing not for data analysis.

• Dependencies are not easy to find. Basic ideas like Principal Component
Analysis (PCA) could lead to excessively load time of monitoring software.
Finding correlation between all the items can be inconceivably hard.

• Administrators tend to gather data mapping only symptoms. It is much
easier to test the whole stack with application check rather than monitor
each item in the stack. That creates vast space for fails without anyone
noticing.

• Data tend to be more white noise than stationary. For example load of
a system can jump from zero to ten very quickly and fall back to zero.
Graphs project this instability as spikes leaving system load as unusable
data.

This chapter creates analysis of what could be done with such data and how
to deal with them. To deal with spikes, we can estimate dynamic thresholds
[2]. A more prominent structure can be created with time relationships. If
some fails happen at the same time period, an administrator should see them
all in one group. Also, in many cases correlation could provide much needed
help.

4.2 Selecting thresholds
Input data are usually bound to some lower and upper limit. Utilization of
CPU will never go above 100 percent as well as throughput of 1Gb link never
reach 1.1Gb. Furthermore, data do not usually jump low and high if there is
nothing wrong (except for CPU load and some other special cases). Underlying
trends are steady rise or day to day spikes as clients connect to the system.
Smart monitoring can help with creating these thresholds.

4.2.1 Static thresholds
Some of the thresholds are already known from SLA or from monitoring sys-
tems itself. Administrators define them to notice something which they con-
sider abnormal. Regular ones are 10% to 25% limit of running out of disk
space. These can be optimized yet they are not the case of this study.

4.2.2 Data driven thresholds
Time series, which are usually the data from monitoring, have evolving pat-
tern. Thresholds are more dynamic and should be calibrated by the data’s
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most recent state. That is why data drive thresholds need to be adjusted
periodically. This approach comes with some obstacles:

• We have to consider problems which are a part of such data. What
if we pick a relatively extended period and estimate threshold based on
past high values? That would render the whole threshold unusable. The
value of the threshold can get so high it can no longer detect any failing
state. The sensitivity would be just too unbearable.

• Another problem may occur if values of data item decrease to unrealistic
levels – for example servers which are in the idle pool, ready to be used
in production. These servers will have much lower utilization and can
set dynamic thresholds low. If the threshold will get used, it will fire a
lot of false alarms. Thresholds would be considered oversensitive.

To apprehend these difficulties, administrators should decide how old data
look back should be used. If monitored data items are not valid, only explicit
evaluation can help. More help can be offered in monitoring systems. For
example, Zabbix can specifically disable whole client and not collect data when
a server is not in production.

From empiric observation [2] one week of data seems enough to create
thresholds. Based on the target monitored system, there can be apparent
similarities which repeat itself. These trends in data can mean users attending
some service at server doing their job or logging out of the system during lunch
hours. There are many possibilities. On the other hand, we should consider
some days which are different in case of trends. Weekends and holidays can
create bigger space for the problem of lower utilization. If data shows a decline
in some days, one week still seems to be enough to cover basic distributions.

Estimation of dynamic threshold could be covered in these steps:

1. Determine lower and upper limit. Based on the data distribution, a
percentile should be also considered.

2. Sort data in ascending way where maximum is percentile 100.

3. Every other percentile needs to be counted out of rank, where rank is
(percentile ∗ sizeofdata)/100.

4. Resulting rank needs to be rounded up and through this procedure, we
can select the desired threshold.

5. If given percentile exceeds minimum or maximum, it should be rounded
up to the data’s minimum or maximum.

After applying this approach to the data from monitoring, alerts started
to occurred pretty fast. The reason was because the observed period was too
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Figure 4.1: Over sensitive threshold

small and thresholds were over sensitive (figure 4.1). Following figure shows
failed states in a red bubble. These bubbles are bound with arrows showing
which items failed first.

The red bubbles are items marked by the monitoring system. The black
one is stating data going over 99 percentile, which is almost maximum. Sampling
period was one minute. Since the data should be gathered from the whole
week, the threshold is valid only after getting more than 10080 values.

Creating better thresholds could not directly help with monitoring. We
have keep in mind obstacles with a sensitivity of estimation. There are some
more technical problems. For example, if there are missing data or data are
collected with different sampling period. Smart monitoring should consider
these issues. In practical use, this method proves to be helpful even if it
generated some false alarms. The main usage could be to use them as simple
classifier for data items which have simple level of failure. If the value exceeds
threshold, it could be classified as abnormal. In application design we can see
component which is responsible for classifying prediction, that could be done
with thresholds.

4.3 Time-based relationships
Some time based relationships have already been mentioned (figure 4.1). The
idea is to map failed states to a diagram which better explains what happened
in the past. Each failed item would have some time consequence if the failure
did not occur just by itself.
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Collected data contains timestamp which gives enough information to es-
timate where the trigger fired. This could be one of the problems because
timestamp can be given from system with different time notation (UTC vs.
CEST). If we consider only Unix timestamp, we can get just too much inform-
ation. By the standard [34] Unix timestamp counts seconds form 1.1.1970 –
that is an enormous number in case of monitoring. Essential time relationships
between failures do not have more significant interval than days. From literat-
ure, we can find that the Mean Time Between Failures (MTBF) was considered
roughly about seven days [35].

Another alternative would be to use logical time [36] which can better
map causality in a distributed system. For this use case, it promises better
aggregation of events. If we consider counting logical time from the beginning
of the monitoring, it will hardly reach the size of the Unix timestamp.

4.3.1 Logical time
In case of collecting information about the fail states with logical time, some
conditions need to be met. The collector needs to start the counter for each
received item and give it a default value of zero. In next sampling period, all
the counters need to be iterated by one. The sampling period needs to be
uniform for all the data items.

These generate several problems:

• The collector needs to gather all data or at least increment their lo-
gical time even if they will not be used in later analysis or data haven’t
changed. A preferable solution would be to gather this logical time only
on failed states. If there was a smaller number of them, fewer counters
would need to be adjusted.

• Another issue will be if the collector restarts. If the counters would not
be saved in some persistent memory, all of them can appear as if they
happened at the same time and also without any time relationship.

If the condition of saving logical time and collecting in uniform sample
rate is met, an algorithm could go as follows:

1. Collect in time = 0 data from the monitoring system, give zero logical
time for data items which are marked by the system as failing.

2. If there is a new item in the next sample, give it zero logical time and
create relationship from old item to new detected item.

Based on the described algorithm, the result can look like this:
In figure 4.2, we can see the problems of logical time. The analysis con-

sidered data item IO Wait on server minoring.company.com with Number of
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Figure 4.2: Diagram of failed items with logical time

Processes on server db-frontend-01.company.com in the same period, even
though the difference between them is twenty seconds. Analysis correctly
marked two relationships from items of the box of same time notice to item
Number of Processes on server elastic-01.company.com. Of course, some
administrators would consider the box as correct one because twenty seconds
is not a significant time distance. But that wasn’t the case. The problem
was that collector noticed this item in the same sampling period which was
thirty seconds. That’s why monitoring created one cluster of two items which
happened relatively close together.

4.3.2 Real-time

In real time, we have a timestamp for each failed item. These are numbers
which can be easily compared and sorted. They do not give us an opportunity
for creating fast clusters based on the sampling period, yet they change the
collecting process much more.

For the logical time, we made a sample in fixed time delay. Monitoring
systems do not sample the data items at fixed intervals. Some of the items
have shown trend and do not need to be collected that often. Those can be
system uptime or system time. That’s why collector needs to keep separate
interval for each item.

An algorithm will then sort the items and create relationships. Since there
is hardly any item which happens at exactly the same time, it is always going
to be a linear graph (figure 4.3).
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Figure 4.3: Diagram of failed items sorted in time

To reconsider the sampling period and maybe profit from easy clustering
from logical time, each timestamp can be stripped from the last bits. That
could create classes of data items noticed in the same logic period. For ex-
ample, items seen in one minute can be marked as noticed at the same time
because seconds do not give any extra meaning.

Stripping the bits from timestamp can be created with few bit operations:

int(
int(item[’time_of_last_notice’])

) ^ (
int(item[’time_of_last_notice’]) & 63

)

This would in later analysis mark items noticed in one minute and few
seconds as noticed at the same time. 63 is a mask for bits which can be omit-
ted. To mark in the same way half a minute, mask would be 31. The following
diagram creates relationships with strip bits for fifteen seconds (figure 4.4).
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Figure 4.4: Diagram of failed items sorted in time with stripped bits

Since items in the blue box have a difference of ten seconds, the algorithm
has put them in together.

Creating time-based relationship is not so complicated task. To establish
some different graphs than linear relations, logical time was also considered.
The time was incremented in sampling periods. That proved to be more
tricky than helpful. A more convenient approach was to collect data items
in different periods based on the monitoring system data items interval. This
approach has not left any space for clusters creating a linear graph only. To
tackle the issue, stripping few bits from a timestamp was introduced. Even
after exploring these possibilities, a more significant question is if the graph
is usable, the more user-based analysis needs to be provided.

4.4 Fail states aggregation
We have already shown some aggregation of fail states. In this case, we have
multiple alerts which happened in different time periods. These alerts are only
bound by time-based relationships. That means we have a long line giving no
additional information to the administrator. What if we cluster those alerts
and show just the clusters?

Let’s have two clusters of alerts (figure 4.5). These alerts are connected to
a slowly depleted resource, so the alerts gradually occur and when the requests
peak, the alerts gradually go away. To make two clusters, this incident had
happened twice. The time of occurred alerts will center around two peaks.
Let’s simulate this state with normal distributions.

4.4.1 Logical time aggregation

Logical aggregation would give a fast creation of clustering alarms based on
sampling frequency. If we would set sampling period to thirty seconds the
alarms would be divided into multiple windows. That would make much
smaller number of all alarms. The problem is that clusters would not cover
everything and with the higher sampling frequency, we would get exactly the
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4.4. Fail states aggregation

Figure 4.5: Two normal distribution escalating crisis in system

same result. Higher frequency is a desirable state, so it would be unreasonable
to rely on this method.

The example (figure 4.6) clearly shows that two clusters would be formed.
That is correct, yet the first one apparently cut peak of the first normal
distribution in half. Since we can’t make a decision when sampling happens,
this state is normal.

4.4.2 Kernel density

Other way of finding these clusters would be to perform some clustering tech-
nique. There are plenty of them, but there is a catch. Clustering is usually
performed in higher dimensions than just 1D. Using such an algorithm would
lead to unnecessary use of system resources.

That is why the right way is to use kernel density estimation functions.
It is a non-parametric way to estimate the probability density function of a
random variable. The occurrence of alarms indeed is a random variable.

Kernel density function can be defined as follows: Let (x1, x2, . . . , xn) be a
univariate independent and identically distributed sample collected from some
distribution with an unknown density function f . The resulting function f
has its kernel density estimator as:

f̂h(x) = 1
n

n∑
i=1

Kh(x− xi) = 1
nh

n∑
i=1

K

(
x− xi
h

)
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Figure 4.6: Uniform sampled data

Where K is the kernel function with constraints: function is non-negative
with integrates to one and h > 0. h is called bandwidth and it is used as
smoothing parameter. A kernel with h as subscript is called the scaled kernel
and is defined as Kh(x) = 1

hK
(
x
h

)
. Choosing the h according to the data is

not a trivial task. In this paper we choose Gaussian kernel function [37].

K(x) = (1/
√

2π)e
−x2

2

There are constraints to use this kernel, and that is to have univariate
data, like in our case. Another significant feature is that Gaussian kernel
generates functions which can be straightforward derivative. That is going to
be very useful for further cluster computation.

To estimate correct bandwidth, we can perform a full search starting from
0 ending at 1. If we neglect that h ∈ R[0,1] we would need to search with
discrete increment which would enlarge possible error. Intuition says the lower
the bandwidth, the better. That does not need to be true. We can again use
AIC [28] to estimate the best fit. Another way would be to use mean integrated
square error (MISE) or asymptotic mean integrated squared error (AMISE)
to find the smallest difference between a real density function, and that would
be our best-fitted bandwidth. This is really time consuming and unnecessary
for our task. The other way of estimating bandwidth would be to use some
rule of thumb.

Silverman’s rule [38] which also works only for one-dimensional data, es-

timate h =
(

4σ5

3n

) 1
5 where n is the size of data and σ is the standard
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4.4. Fail states aggregation

Figure 4.7: Kernel density estimation with bandwidth from Scott’s rule of
thumb

deviation. The method is based on the assumption that the underly-
ing distribution of data is a normal distribution, which in our case is
certainly true without any doubt.

Scott’s rule does not have any constraints for higher dimensions, h is estim-
ated as follows Ĥ = 1

nd+4
∑ 1

2 where ∑ 1
2 is the Covariance matrix and

d is dimension. This rule is the generalization of Silverman rule [39] for
higher dimensions. The result would not give just one h but matrix of
Ĥ which would show correspondent h for each dimension.

Using the rule of thumb speeds up whole computation and makes the usage
of the result much faster. After applying the kernel density estimation to the
data, we would get little difference in outcome:

As the figures (figure 4.7, figure 4.8) show, both methods of bandwidth
estimation clearly discovered two normally distributed alarm events. The
difference is in the sizes of spikes. This is the reason why an only Gaussian
method is used, to create a function which has derivation in all of its course.
The intuition again dictates the bigger the hills are, the better the following
results.

To estimate the clusters, we will find local maxima and minima of a density
function and divide data into groups by the minima of a function (figure 4.9).
Apparently, from the figure (figure 4.7) we can see that Scott’s rule of thumb
prepared the function for such an analysis better.
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Figure 4.8: Kernel density estimation with bandwidth from Silverman’s rule
of thumb

So after finding the local minima and maxima, we would have two separ-
ated clusters:

Creating clusters of alarms can provide a better overview in time of crisis.
Count of failed items can get to huge numbers. A human expert can get
lost. Having some kind of aggregation can focus administrator directly on the
problems. Logical clustering proved to be related precisely to the sampling
period of the data items, that is not good enough because sampling does not
give any context of data. Kernel density function estimation proved to be
much better and with Scott rule of thumb helped discover the structure of
input data far better. For further use, this approach will be the preferred one.

4.5 Correlations
Another compelling way how to compare two time series and decide what
they have in common is correlation. Correlation is not causation, so the
results should always be checked from the human expert who understands the
meaning of data. Based on statistical distance we can decide if there is maybe
something familiar. In this case, we will use Pearson correlation coefficient.
There are some problems which can make correlation useless in the monitoring
system analysis.

• Time needed for computation of Pearson coefficient could be a real draw-
back and create whole monitoring analysis too slow.
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4.5. Correlations

Figure 4.9: Minima division of data into two clusters

• Trends can give correlation much bigger significance than it has. Trend
removal needs to be introduced to tackle the issue. This should remove
linear trends which are very significant in correlation.

These issues need to be solved. In this case, the correlation represents
the meaning of distance between time series. Therefore, the time plays a
significant role in this computation.

4.5.1 Time of computation
Processing Pearson correlation coefficient is a well known process, and used
platforms offer their implementation. Selecting time series from a database
and then counting correlation could lead to unnecessary overhead. Used data-
base platform PostgreSQL offers aggregation operator corr [40]. The basic
idea was to select data from records and forward them for the computation.

Listing 4.1: Algorithm to select data over PostgreSQL database and compute
Pearson correlation coefficient over them
WITH subst1 AS (

SELECT cast ( r e s u l t as f loat ) as r e s1
FROM record
WHERE hostname = ’ e l a s t i c −01.company . com ’

AND s e r v i c e = ’ Ava i l ab l e ␣memory ’
AND t ime_execution > 400556032 ORDER BY t ime_execution DESC

) ,
subst2 AS (
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SELECT cast ( r e s u l t as f loat ) as r e s2
FROM record
WHERE hostname = ’db−f rontend −01.company . com ’

AND s e r v i c e = ’ Ava i l ab l e ␣memory ’
AND t ime_execution > 400556032 ORDER BY t ime_execution DESC

)
SELECT co r r ( subst1 . res1 , subst2 . r e s2 ) from subst1 , subst2 ;

There are some implementation drawbacks. PostgreSQL does not allow
to use of bitmap indices [41] defined directly in table definition. That leaves
space for query processing and sometimes can give much greater performance
if the query is formulated correctly. This is not the case since we are selecting
two subsets and later comparing them. For each SELECT in a subquery, filter
scan is performed. There is no speed up in caching because the data are from
different subsets.

Listing 4.2: Query plan of query
QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Aggregate ( co s t =891754 .15 . .891754 .16 rows=1 width=8)

CTE subst1
−> Sort ( co s t =114078 .98 . .114089 .59 rows=4243 width=16)

Sort Key : r ecord . t ime_execution DESC
−> Seq Scan on record (

co s t =0 .00 . . 113823 .33 rows=4243 width=16)
F i l t e r : ( ( t ime_execution > 400556032)

AND ( ( hostname ) : : t ex t = ’ e l a s t i c −01.company . com ’ : : t ex t )
AND ( ( s e r v i c e ) : : t ex t = ’ Ava i l ab l e ␣memory ’ : : t ex t ) )

CTE subst2
−> Sort ( co s t =114280 .14 . .114297 .51 rows=6947 width=16)

Sort Key : record_1 . t ime_execution DESC
−> Seq Scan on record record_1 (

co s t =0 .00 . . 113836 .85 rows=6947 width=16)
F i l t e r : ( ( t ime_execution > 400556032)

AND ( ( hostname ) : : t ex t = ’db−f rontend −01.company . com ’ : : t ex t )
AND ( ( s e r v i c e ) : : t ex t = ’ Ava i l ab l e ␣memory ’ : : t ex t ) )

−> Nested Loop ( co s t =0 .00 . . 589676 .75 rows=29476121 width=16)
−> CTE Scan on subst1 ( co s t =0 . 00 . . 8 4 . 86 rows=4243 width=8)
−> CTE Scan on subst2 ( co s t =0 .00 . . 138 . 94 rows=6947 width=8)

As we can see, both queries performance have similar costs. Opposite to
bitmap operation, execution of query instead chooses a filter which better
maps the nature of AND expressions. The reason could be because after inser-
tion of a vast portion of data, a cardinality of a column might become too big
for bitmap operations.

Better results could be reached by using materialized views. Because cor-
relation is counted each time when some analysis is needed, the view would
need to be updated multiple times. This can generate big overhead on data-
base processing and slow down other operations.
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In the end, the fastest method was to transfer data from database to ap-
plication memory and count the correlation during runtime. The application
can memoize the subsets of data and use them multiple times before the task
is finished. Another problem is that PostgreSQL does not have functions
for signal processing which is needed for trend removal. The implementation
would need to be created and generate another overhead.

4.5.2 Trend removal
If we closely think about Pearson correlation coefficient we have to consider
that the correlation coefficient is between +1 (a perfect linear relationship) and
−1 (perfectly inversely related) – zero state no linear relationship. Numbers
bigger than 0.5 state significant statistical relationship and that is all we can
deduce from the coefficient. It does not give us anything more and less. A
big responsibility is put on human experts who should judge by themselves
through by inspecting both time series.

In another case, we can introduce linear similarity just by adding trends
[42]. If two time series have the same trend, the linear relationship is getting
significantly larger. That can present some lousy interpretation. The internet
is full of examples of poorly interpreted correlations between time series – those
are usually referenced as spurious correlations [43]. The main idea should be
first to remove the trends and then explore correlation. We are not going
to consider secular trends which are underlying time series in long periods
of time. In this case, the trend removal is going to be done in small time
windows (five to ten minutes). Data were divided into small pieces because
of long computation time, therefore administrator is going to see only the
correlations in a span of a few minutes.

Of course, trends are not to be generally a bad thing. Obtained knowledge
is always exploring the linearity of time series. In the process of exploring
relationships between two time series, the main result is to discover variations
of one series with others. Trends just make it more difficult.

So with the need for trend removal, we have two simple algorithms which
can prepare the data:

• With a method of first differences we will remove trend by subtracting
each point with the point of directly preceding it. This can be formulated
as function mapping old values to new ones:

ynew(n) = X(n)−X(n− 1)

• Another method is called link relatives. Opposite to first differences
the method divides each point by direct last point.

ynew(n) = X(n)/X(n− 1)

61



4. Root cause analysis

Figure 4.10: Comparison of trend removal functions

An obvious problem with first differences is that all the values have to
be non zero. Python’s library function scipy.signal [44] offers function for
removing the trend which uses linear model of data. In a first step, a regression
model is constructed with simple least square method. In a second step, the
function subtracts data model points from real data.

Listing 4.3: Algorithm to remove trend in data with polynoma of first order
(only a ·X + b) fitting
def detrend_avg ( l s t ) :

z = np . p o l y f i t ( l i s t ( range (1 , len ( l s t ) + 1 ) ) , l s t , 2)
p = np . poly1d ( z )
print (p)
new_lst = [ ]
for i in range (1 , len ( l s t ) + 1 ) :

new_lst . append ( l s t [ i − 1 ] − p( i ) )
return new_lst

To test the implementations of all three trend removal functions, a test
data were generated. These data were taken from random function and added
with linear trend. Notice (figure 4.10) that Signal detrend which is library
function, is fully overlapped with Line fit which is a function from (listing
4.3) above.

The decision needs to be made. We need to estimate which function for
removing the trend is the fastest. Another point which needs to be considered
is which function removes the trend better. This can be done by measuring
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4.5. Correlations

Name Time
First differences 16.43598 [seconds]
Link relatives 16.924389 [seconds]
Signal detrend 15.01764 [seconds]

Table 4.1: Speed of different functions of trend removal

Functions Standard deviation
Original data 288674.99
First differences 1.99
Link relatives 0.0033
Signal detrend 1.414

Table 4.2: Standard deviation of data with and without trend

standard deviation of each function. If the function keeps reasonable big
deviation it could be used for later analysis.

The speed was considered from a data sample of 10000000 length. Only the
trend removal was considered. Library function timeit was used. The plat-
form of testing was Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz. Keep in
mind that these values are almost irrational. If we consider data item which
is collected every half a minute from the monitoring server, the number of
10000000 sampled values would be roughly about two years of data. From
Amdahl law [45] we can conclude that optimizing this part of code is not that
important.

Another measurement which is necessary to obtain is standard deviation.
If result from trend removal function removes all the variate from the data
and leave them as constant, no further analysis would be able to establish any
meaningful results. There are some obvious observations. Original data series
should have the largest standard deviation – the smallest one is going to be
the worst one.

We can see (figure 4.2) that signal trend removal with regression model
was slightly worse in keeping the deviation than method of first differences.
This observation is clearly visible in graph (figure 4.10). The decision of which
function is going to be used seems to be unsolvable with methods of comparing
standard deviation. That would also mean the human expert should decide
which method should be used. That would be unreasonable for larger set of
time series. That’s why the most general function should be used.

Using library function proved to be the safest way. This was not decided
because of the standard deviation of data but because of the speed. Another
point is that counting the correlation is not slower than the speed of the
trend removal. If we took data from speed testing and counted the speed of
correlation computation, it never went under 27.40 seconds (estimate created
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by more than forty measurements). After a lot of measurements, it seems
that primary drawback is the speed of database. Retrieving the data of a time
series proved to take too much time. Due to memoization this cost procedure
is always done just once for each data item which is considered in computation.
Because of other computations (future predictions, time distance relationships,
. . . ) also need a lot of database connections, the whole process of relationships
estimations is slowed down just because of correlation algorithm.

The essential question should be if the correlation is more important than
other algorithms which should help the administrators in monitoring of the in-
formation system. Because of runtime overhead in computation, results took
long to estimate. The administrator had the results after a long period of
waiting – that means whole analysis was useless. The solution of the database
slow down could be certain denormalization of database data model. This
would create another overhead to the database processing. When should this
denormalization happen? And which time series should be put into new denor-
malized tables? These are the questions which would mean total reformation
in database models implementation. Because of TimescaleDB this process
would be also computational difficult and at the end would generate another
database overhead during the denormalization.
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Chapter 5
Testing of application

Whole application was tested at the target company Lukapo. The data comes
from their Zabbix monitoring server which collects data from the customer’s
servers. Following diagrams come from the application which is the result of
this thesis. The diagrams are hand picked to show drawbacks and advantages
of the mentioned analysis.

This chapter should explain what are the outcomes of the methods used
in this thesis. We have mentioned multiple times that we have no ambition
to have an application which is one hundred percent correct, but it is trying
to give a bigger picture of the monitored topology. The issues were noticed
during the testing on production data and especially with the administrators
at their on-call shift. We will go through the issues in clustering which were
noticeable only after collecting weeks of data. In the predictions section we will
discuss problems of insufficient amount of data, which are marked as correct
without any failure state. In thresholds we will analyse further what happens
if a sudden change in data trend occurs. To see some positive perspective, we
will go through some examples when the application created correct analysis
and helped the administrator to fix or avoid failed situation.

5.1 Clustering
We have used estimation of density function on the occurrences of alerts during
the time. We also considered use of sampling which could help in the case of
speeding up the process. Both methods had their advantages and drawbacks.
In case of sampling we have considered the length of the sampling period.
That seemed to be unreasonable since we had to utilize sampling period as
a parameter which should be chosen. On the other hand, estimating density
proved to be reasonably fast and the results seemed legitimate.

There is one throwback which can have a serious impact on the result of
the method. Consider two normal distributions, the first one is distributed in
few minutes and the second one is distributed in one day. Those distributions
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5. Testing of application

are far enough from each other to be recognized as independent (in sense of
time). Our algorithm would mark them and create two clusters (figure 5.1).

The question is, how much is this going to help the administrator watching
the diagram. From user experience point of view and personal feedback from
the administrator of Lukapo, we can clearly say that the administrator has
not considered it as an error, but tried to discover why such a case happened.
After the discussion with the users of our application we found out that the
clusters should have been labelled as clusters and nothing else. Labelling
them with timestamp of the alert, which is in the center of the cluster or
saying that alerts were detected in similar time proved to be misleading. The
administrators usually have basic idea of what is a cluster, but they will never
have any idea what is a frame containing a lot of bubbles labelled Noticed
at similar time (figure 5.1) if the clusters are going to contain alerts with
distribution in a matter of days.

On the other hand, this property is not wrong in most normal cases. We
have captured in another observation different behaviour which seems to be
correct. Two disasters happened in the monitored network. First one was
pretty fast and generated cluster with items with average distance of seconds.
The reason of the disaster was an error of the VPN server on the way to the
system. The second disaster was closely bound to the first one (table 5.1).
However, the alerts were spread out in minutes. The reason was that some
application resources were unable to continue unless VPN came back up. The
algorithm correctly marked two clusters.

Figure 5.2 shows how clusters were estimated. In this case we have omitted
the graph which was the result of the analysis, we rather showed how the
density function was established.

We can see that the non-parametric cluster estimation needs some heur-
istic which marks excessive distances between alerts as inapplicable. Those
time distances can be days. There is hardly any disaster scenario which would
justify clusters of alerts within the span of days. For the case of seconds,
minutes and hours clustering proved to be working correctly. More improve-
ments can be done in case of user experience. Further testing in the field of
usability needs to be done.

5.2 Thresholds

There was one problem with thresholds which has not happened during short
testing. If we took data which contained fail state and this state was left
unnoticed for a long period of time, thresholds trained themselves on this failed
state and considered it normal. After resolving the issue or with a sudden
change in data, the threshold was fired and could confuse the administrator.
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Figure 5.1: Two clusters with different density
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Times Comment
15:55:04 VPN server ssh connection failed
15:55:14 Zabbix agent not available
15:55:25 . . . alerts related to customer applic-

ation
15:55:29
15:55:34
15:56:14
15:56:24
15:56:29 End of first cluster
16:05:16 Application check failed after al-

most 10 minutes of VPN shutdown
16:13:36 Application can not connect to some

resource in VPN network
16:17:06
16:21:56
16:25:26
16:27:06
16:30:26
16:32:06
16:32:26
16:32:46 Last alert related to the disaster

situation, end of second cluster

Table 5.1: Times of alerts with different spread

Figure 5.3: Thresholds comparison

In figure 5.3 we can see that one of the thresholds showed that Free disk
space on / is lower than one percentile. In the real scenario the administrator
just removed majority of the data from the server. It again depends on a real
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Figure 5.2: Density function estimation of two clusters with different spread
distance of alerts

situation. If we consider that it could be a result of some malicious attack, we
can hardly say that this is the fault of monitoring. We can clearly say that
thresholds do not have one hundred percent accuracy.

To fix the issue, the application had to get more data from the Zabbix
server. After a while, the threshold alert disappeared (figure 5.4) with new
data collected from the server. That seemed to be a correct behaviour, because
the administrator was warned about the sudden change in data series and
could potentially react.

Figure 5.4: Threshold alerts have gone away with more data

This is the case of insufficient amount of data. The administrator should
know about the issue and the thresholds should adjust themselves during a
long period of time. For a better analysis, the administrator should be aware
of maintenance setting and set it for the data item at their Zabbix server.
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Figure 5.5: Alert on insufficient disk space and also predicted as failing

Items which are under maintenance are not used to compute thresholds.

5.3 Predictions

We always have to consider how much data we have to create for any predic-
tion. Having data which mark future data correctly as an alert is essential for
our solution. The problem we have encountered was that all the data from the
past were marked as an error (figure 5.5). The classifier which marked future
data as alerts had hard time to adjust to the fact that the data are correct
again. Until we have collected sufficient amount of data, the classification
failed to recognize that everything was alright again.

Now we can compare what happened if the alert was solved. Because all
the data were marked as faulty, the prediction still marks the future as a fault
(figure 5.6).

The solution was to remove classification and use thresholds only. This
step had to be used only if there was a sufficient amount of data to create
thresholds. Having small amount of data led to over sensitive thresholds.

Results were measured in another issue when the server slowly depleted
all the available memory in local storage. We can see that the prediction had
no problem to predict linear data and predicted alert in near future (figure
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Figure 5.6: Alert was closed but prediction still thinks the future contains
failure state

5.7). After a while we would be able to see normal threshold to create alert
as well.

Figure 5.7: Prediction created alert and after a while, threshold created alert
too

After removing data from the storage, both alerts disappeared. That is
the correct result of using thresholds as classifiers. We have to mention again,
that with insufficient data the issue would happen again.

Other methods are quite narrow. Sorting alarms to perform basic time
based analysis did not leave any blind spot to observe any drawbacks. Thresholds
proved to be a very reliable method to classify fault states. There are some
common aspects which could always lead to failure of the used method. Those
are:

• Not enough data

• Data marked incorrectly in time as fault data
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• Naming results of analysis in the a way human expert can not understand

Those three aspects were the case in the whole testing of the application.
On the other hand, the administrators welcomed the resulting application as
something which can help them resolve the issues faster. In some cases the
administrators were already using they own scripts to see thresholds and their
were content that they can see their results in graphs with other analysis.
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Conclusion

We have defined what should be the result of this thesis in the introduction
with the help of three questions. Discovering possibilities in attempt to answer
them was the main task of this thesis. The whole process began with exploring
the domain of monitoring. That was done by constructing the case study
(1.1) which examined small company dedicated to back end support for the
information systems. By constructing the requirements that should help such
a company, the application design was proposed. Resulting application should
explore possibilities which are available for such a small company. The main
functional requirements were stated as follows:

• Application has to provide the administrator with basic prediction of
the future

• Application has to create root cause analysis

It seemed that these requirements should help administrators with their
daily work and problem solving. Through exploration of other possibilities
(1.2), it is more than obvious that there are already some functional solutions.
We have explored Vitrage and Dynatrace, where Dynatrace exceeded all the
expectations and proved to be a very useful tool for root cause analysis. There
were obviously some reasons why the thesis hasn’t stopped there and provided
space for the exploration of all the features of Dynatrace. The main problem
with Dynatrace was that it was considerably expensive to use. Also, it is
patented and in the hands of the Dynatrace company. That is, of course,
understandable and reasonable. Another problem was lack of functionality for
predictions and the need to install new agent to the monitored information
systems.

Our solution does not have any new data agent in the information system’s
servers. It strongly relies on data from monitoring, that was already deployed.
The benefit of this approach is an easy installation and major drawback is no
ability of estimating topology of systems. Both Vitrage and Dynatrace have
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methods to analyze the whole topology and through that create an entity
diagram later used in the root causes analysis. For example, failing router
is the root cause of collapse, yet our solution would notice it only in form of
aggregations or from well constructed trigger in the monitoring system.

Something which is not so much used in analyzed systems is prediction.
There are some obvious reasons – to predict only short near future can lead
to large computational overhead. We have explained that there is a solution
in estimation of LSTM predictive model (3.3.2.4). Training such a model takes
a long time, but predictions for short near future are reasonably fast with
reasonably small error rate. Training had to be conducted on graphic card
(GeForce GTX 1060) which is not a basic equipment of the monitoring server.
Using LSTM networks proved to be very successful in terms of functionality
which has been used in the thesis application. There are also some drawbacks.
We have always assumed that there can not be any human expert based
selection of data from monitoring. We used some features which helped with
selecting the data (3.3.1). Standard deviation proved to be very useful. If
data showed no variety over time, there was no need to estimate predictions.

The root cause analysis proved to be very difficult to do just from the data
from the monitoring systems. We strongly relied on a variety of statistical
features (4). Very important proved to be the estimation of threshold (4.2)
which is also used as baselining in Dynatrace. Estimating threshold based on
data gave a very simple classifier of fail states. There were a lot of difficulties
in another feature – because of the use of a database storage for all the data
collected from the monitoring servers, counting correlation proved to be very
difficult and for large datasets even inapplicable. Data denormalization has
to be considered. Very promising was the use of clustering which – in case of
collapses – created large bubbles of alerts and the administrator could review
them as a whole.

Now we have enough information to create answers to the questions from
the introduction:

• What are the current options in monitoring?

As the case study shows, company usually uses only direct monitoring
without any further analysis. There are some more robust tools but
they are expensive or not open source. For some customers, this is
unacceptable.

• Can any system predict fail state of another system before it occurs?

From the analysis of major tools, this is not a frequently used function.
There are machine learning tools which can help with the task, but it is
hard to implement them and they take a lot of computational power. If
the monitoring system has that power and estimate models, prediction
of short time in the future proved to be no problem.
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• What are the relationships between fail states of a system?
Estimating relationships between fail states is done by root cause ana-
lysis. This is covered very well by tools such as Dynatrace and partially
covered by Vitrage (based on explicit templates). Estimating relation-
ships only from data given by the monitoring systems proved to be very
difficult. Using such a solution gives the administrator another respons-
ibility to analyze resulting analysis well based on the inner knowledge
of the system.

Root cause analysis proved to be very difficult to estimate based only on
the given data. A solution would be to use a better agent and collect more of
the system features (e.g. strace or code injections). This is already used by
Dynatrace which can estimate root cause very well. If we consider only open
source monitoring systems, we have none of these tools. That creates another
large space for improvement in the available monitoring. To have such tools
in open source domain can help improve small projects with small budgets.

We can observe in chapter Testing of application 5 what were the major
problems with the implementation. There is a large space for improvement.
We can notice that aggregation of alerts in large clusters proved to be a work-
ing concept, yet we have to add some heuristic which will divide alerts in
clusters which are based on hours or days. Because we have used kernel dens-
ity estimation 4.4.2 we need to keep in mind, that clusters could be distributed
through long time periods. Using heuristic in form of sampling clusters into
days can help the administrators to assess problems better. The whole solu-
tion works much better in case the cluster occurs in a short period of time. In
that case it has much bigger informational value.

Another problem which was mentioned multiple times in this thesis are
insufficient data. The solution is to download all data which can be relevant
for the analysis. This is not an easy task and it could result in an overhead
during communication with the monitoring server. A better solution would be
to use heuristics or even ask user what he thinks is relevant for the analysis.

There is a large space for improvement in the currently available mon-
itoring systems. If we omit paid or cloud solutions, there is no application
which could estimate root cause or create prediction. This thesis proved that
prediction is possible even from the data from current monitoring servers. It
would be unwise not to implement such a solution.

We can clearly say the whole application has large space for improvement.
There are a lot of methods which could help create better analysis. One of
the methods could be the creation of aggregation rules based on computed
clusters. Another direction which needs to be explored is the human expert
feedback which can help with the overall accuracy of the application. Interac-
tion with the application is mainly done through the monitoring system which
can be filled with data of no informational value. Collecting feedback from
the administrators can improve the whole solution.
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Appendix A
Acronyms

SLA Service Level Agreement

LSTM Long Short Term Memory

AIC Akaike Information Criterion

ARIMA Autoregressive Integrated Moving Average

PCA Principal Component Analysis

RCA Root cause Analysis

MTBF Mean Time Between Failures

MISE Mean Integrated Square Error

AMISE Asymptotic Mean Integrated Squared Error

AI Artificial Intelligence

VPN Virtual Private Network
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Repository description
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Diploma thesis repository

This repository servers as storage space for the whole thesis.

Basic topics covered in this thesis:

• collecting data from different monitoring servers (only Zabbix currently
stable)

• creating simple root cause analysis based on:
– time
– correlation
– clusters
– dynamic thresholds

• estimating future of monitored items based on the following algorithm:
– LSTM networks on CUDA (you need to use CUDA device or take immense

amounts of time with CPU TensorFlow version)
– Prophet from Facebook incubator (using SARIMA and ARIMA)

Folders list:

• ./text/ – contains all of the publications from the thesis
• ./text/main – contains DP_Beranek_Martin_2017.pdf which is the main

text of the work
• ./apps/ – contains all the applications for the resulting application
• ./task/ – contains only the written task from school’s information system
• ./resources/ – contains all the examples and programming articles I

needed to deal with the task

Application use

If you found yourself in the main directory of this repository, use:

cd apps;

Testing

The whole application stack is quite complicated. If you need the app use for
testing, use docker-compose:

Starting the app:

docker-compose -p predmon up -d;

Application will probably fail due to some configuration issues, that’s why you
need to change some small facts.

To just test the app in:

config.sh
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paste somewhere:

tests="True";

Results will show up at: http://localhost:8080/

Collector settings

At ./credentials/zabbix.yml you can set up the configuration to access zabbix
server. Do not forget to add the correct user with proper permissions. Zabbix
API permissions can be tricky.

At ./collectors/zabbix_collect/configure/hostnames.yml you can spec-
ify with Unix filenames patterns showing what machines should be monitored
and included in the analysis. Keep in mind that to monitor every machine
(expression ‘*’) in large topology could take forever to analyse. It‘s not recom-
mended to do this. Application was succesfully tested for ten machines at small
laptop (Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz with 4 GB of RAM).

Credentials

All other credentials related settings you can find in the credentials folder.

Configuration

At configuration/basics.yml you can find the following settings:

• maximum_prediction_graphs: how many png files of predictions should
be kept in ./static/classify/graphs/

• maximum_hows_graphs: how many png files of cause analysis should be
kept in ./static/hows/graphs/

• prediction_alg: which algorithm for prediction should be used, currently
available lstm, arima and Prophet

• predict_items_delay: states how much collection times per item will
the process wait until it starts predicting, for example if sampling of an
item is half a minute and predict_items_delay is set to 4, prediction
will happen on every second minute

• collect_delay: states the interval of how often is monitoring server being
asked about data items, it does not mean it will collect the items in this
interval, because data items have their own interval from the monitoring
system

• disabled_features: is a list of features which can be disabled, you can
put there: correlations, out_of_border_items
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Application services

Each service states what inputs does it need and what are the ouputs. Also,
readiness is provided from 1 (not ready) to 10 (would put it in production and
trust it with my life). For further reading open ./apps/docker-compose.yml.

collect

Collects data from monitoring servers into local database. Outputs data into
rabbitmq and postgres.

Ready 6/10

predict

Get data from collect and create prediction based on the algorithm from
configuration/basics.yml. Result doesn‘t provide any information on
whether anything in the future will fail, that’s why the result is sent to
classify.

Ready 4/10

classify

Gets data from predict sent from predictions and classify data for bad states.
Also the graph is constructed into static/classify/graphs.

Ready 5/10

hows

Create root cause analysis from data saved in postgres and rabbitmq. The result
is provided in static/hows/graphs.

Ready 5/10

frontend

Creates frontend application on http://localhost:8080/. The app simply reads
what is in static folders for predictions and root cause analysis and displays it in
browser.

Ready 7/10
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API

Creates API on 5000 port. It just makes a lists of predictions and cause analysis.
Access to pictures have to be done via frontend, API is not ready at all.

Ready 2/10

Cleaner

Reads directories:

• “static/classify/graphs”
• “static/hows/graphs”

and removes old data based on counters given in configuration/basics.yml.

Ready 9/10

Git Blame & contact and affiliation

To spare you from writting command git blame all the errors can be sent to
martin.beranek112@gmail.com. You can also reach me at the company Lukapo.

Whole thesis was tested on live data from company Lukapo and their customers.

You can also find this thesis at CTU library in Prague.
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Appendix C
Folder list on attached USB

drive

text ..................... contains all of the publications from the thesis
main.................................contains main text of the work

DP_Beranek_Martin_2017.pdf ....main written text of this thesis
apps...........contains all the applications for the resulting application
task .... contains only the written task from school’s information system
resources..contains all the examples and programming articles I needed
to deal with the task
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