
Czech Technical University in Prague 
Faculty of Mechanical Engineering 

Department of Aerospace Engineering 
 

Master’s Thesis 

 

 

A Conceptual Design of a Four-Seat  

GA Aircraft 

 

 

Bc. Daniel Stastny 

 

Prague 2017 

 

 

 

 

 

 



II 

 

Annotation List 

Author: Bc. Daniel Stastny 

Supervisor: Ing. Jiří Brabec, Ph.D. 

Academic year 2017/2018 

 

Name of Master’s Thesis in english: A Conceptual Design of a Four-Seat GA Aircraft 

Name of Master’s Thesis in czech: Koncepční návrh čtyřmístného letounu kategorie GA 

 

Bibliographic data:   Number of pages:  63 

     Number of characters: 55 982 

 

 

 

Keywords:  Conceptual design, GA aircraft, constraint analysis, four seating configuration, 

initial design.  

 

 

 

 

 

Abstract:  

In this Thesis, a conceptual design is proposed for a four seat GA aircraft. The objective is to 

design an aircraft which has a cruising speed of 300 km/h and should have a range of 2000 km. 

The weight will be estimated according to the mission profile for our flight. All the aerodynamic 

characteristics of this aircraft such as lift and drag polar will be established, followed by the 

moment characteristics.    
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1 Introduction 

 
Since the invention of the first motorized airplane over one hundred years ago, much has 

changed in aviation. Now there exist aircraft of almost any imaginable shape and size mend 

for any kind of purpose. No matter how a design may look like, everything starts with 

a sophisticated research being done for the class of aircraft one wants to design. To minimize 

any confrontation with problems at such early stage regarding the capabilities of a design, 

one must study the Certification Specifications of the design class. For General Aviation 

Aircraft it is the CS-23 ref. [1] in which it is stated that the upper allowable takeoff limit 

weight should not exceed 5670 kg. A second limitation is the required minimum stall speed 

at landing configuration VS0 which must not exceed 113 km/h. Each seat occupied must be 

certified for an occupant of 77 kg, however for GA a value of 91 kg is recommended as 

stated in Table 12-14 in ref. [2]. On the other hand, such a high weight will decrease the 

useful load which is the sum of total occupants, fuel and payload. For this reason, a slightly 

smaller value of 86 kg, see ref [] per occupant will be chosen. Taking compromises and 

choosing a lower value then the recommend one saves a hypothetical weight of 20 kg which 

then could be used for extra fuel or payload.  

Ideally the designer wants to have an aircraft of low empty weight, easy handling and 

inexpensive manufacture and maintenance as well as a good performance, etc. All those 

problems the designer must face and each of those requires an individual approach. As an 

example, if the designer’s only intention is to have a low stalling speed and a long range, 

which means a lot of fuel capacity, then an excellent solution for this would be a large wing 

area. Larger wing area on the other hand means a higher structural weight, loss of 

performance and a significant increase in drag. Taking this into account, the designer is faced 

not only to balance but also to take compromises in his design. For this reason, trade studies 

are done. Companies spend a lot of money and time for this early stage to study and achieve 

the best possible solution. 

 

2 Objective 

 
The objective of this thesis is to come up with a conceptual design for a four-seating 

configuration GA aircraft. It should be capable of achieving a cruising speed of at least 300 

km/h and have a range of 2000km. All the main aircraft parameters should be presented.    

 

3 Research 

 
After deciding what aircraft class and Certification Specification, it is then the next step to 

find some similar already existing aircraft and study their data. The best source for this is 

a series of books called: “Jane's All the World's Aircraft” in particular the Aircraft “In 

Service, Production and Development” where all important parameters are listed. The goal 

is to find similar aircraft regarding performance, endurance and size as our mission profile 

for our design. 
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 Setting the requirements 

  
Before starting any kind of research, design goals should be set. By setting some important 

parameters for our design such as range and cruising speed, we limit the search to some 

aircraft preferred which are listed in Table 2.1.  

The minimum Design requirements for the Aircraft are as followed: 

• Four-Seating configuration assuming occupant weight of 86 kg 

• Luggage weight per occupant = 8 kg   

• Cruising speed VC ≥ 310 km/h 

• Stall speed VS0 ≤ 110 km/h 

• Service ceiling hceiling ≥ 6000 m 

• Rate of climb ROC ≥ 7 m/s 

• Takeoff ground run < 400 m  

• Range = 2000 km 

   

Corvalis 

TTx 

Cirrus 

SR22 

Mooney 

M20R 

 

Pipistrel 

Panthera 

 

Solaris 

Aviation 

Sigma 

310 

Average 

Value 

MTOW [kg] 1633 1542 1528 1315 1352 1474 

Empty Mass [kg] 1134 1009 1009 815 850 963 

Fuel Mass [kg] 278 250 242 350 250 274 

Rated Power [kW] 231 231 224 194 231 222 

Max. Wing Loading [kg/m2] 125 111 94 117 105 110 

Wing Area [m2] 13,12 13,9 16,26 11,2 12,94 13,48 

Wing Span [m] 10,97 11,68 11 10,86 9,5 10,80 

Wing Aspect Ratio [-] 9,17 9,81 7,44 10,53 6,97 8,78 

Wing Taper Ratio [-] 0,73 0,5 0,49 0,51 0,63 0,57 

VC [km/h] 332 343 356 367 320 344 

Vymax [m/s] 7,12 7,12 6,35 7,9 6,65 7,03 

VS0 [km/h] 110 112 110 112 106 110 

Range [km] 2315 1942 2370 1852 1555 2007 

Takeoff distance [m]* 393 480 792 540 427 526 

*Takeoff distance – Distance till aircraft reaches 15 m above ground (obstacle height) 

Table 3.1. Statistical Parameters of similar GA Aircraft 

Table 3.1. will serve as an orientation for initial design.  

 
Figure 3.1. Corvalis TTx, ref [13] 

 
Figure 3.2. Cirrus SR22, ref [14] 
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Figure 3.3. Mooney M20R, ref [14] 

 
Figure 3.4. Pipistrel Panthera, ref. [13] 

 
Figure 3.5. Solaris Aviation Sigma 310, ref [15] 
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4 Constraint analysis 
 

 The method of constraining 
 

At this point we can start with the constraint analysis with the parameters we defined in the 

previous chapter. The main advantage of a Constraint Analysis is that it can be used to assess 

the optimum design point(s) required for the wing area and power plant design, such that it 

will meet all performance requirements. 

The following general performance characteristics are used for this analysis: 

 

• Level constant velocity turn 

• Desired rate of climb (ROT) 

• Desired T-O distance 

• Desired cruise airspeed 

• Service ceiling limitations 

• Stalling speed requirement 

• Desired ground run 

 

 

 

In addition to this we also need to perform a first estimation of the gross weight. Since our 

design is intended for a four-seater aircraft and as required according to CS 23.25 weight 

limits – maximum weight, the weight should not be less than with: 

(i) 

• each seat occupied, assuming a weight of 77kg for each occupant; 

• oil at full capacity; 

• at least enough fuel for maximum continuous power operation of at least 30 minutes 

for day VFR approved airplanes and at least 45 minutes for night VFR and IFR 

approved airplanes; 

(ii) 

• the required minimum crew, and fuel and oil to full tank capacity. 

According to ref. [3] the Author D. Stinton has an equation for the first estimation of gross 

weight (MTOW or MTOM). 

MTOM = factor ∗ payload (4.1) 

where the factor for small aircraft such as very light aircraft starts from 2,5. Aircraft designed 

for long range flights may have factors of 6 to 8 times the payload. Again, the statistical data 

can help to guess a factor value. In equation (4.1) the payload is referred to the weight of the 

occupants and the luggage weight. For the first estimation, a factor of 4 will be used. This 

blends in with our statistical data. 

 
          Figure 4.1. Typical Constraint Diagram, ref. [2] 
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Now the total payload (occupants and luggage) can be calculated. The max. occupant weight 

was set to 86 kg and the max luggage weight to 8 kg, thus giving a total payload of 376 kg 

According to the equation (3.1) the maximum take-off weight is as followed: 

MTOW = 4·376 = 1504 kg 

Now a constraint analysis according to the set parameters can be performed. Some 

parameters such as the min. drag coefficient 𝐶𝐷 𝑚𝑖𝑛, the estimated drag coefficient at takeoff 

configuration CDTO as well as the lift coefficient at takeoff configuration CLTO must be 

defined. At this point, it can only be estimated, therefore for a high performance GA Aircraft 

the values below are from Table 3-1 according to ref [2]. The aspect ratio is chosen according 

to statistical data.  

▪ aspect ratio = 9 [-] 

▪ minimum drag coefficient (estimated) = 0,025 [-] 

▪ drag coefficient at takeoff configuration (estimated) = 0,035 [-] 

▪ lift coefficient at takeoff configuration (estimated) = 0,7 [-] 

In order to plot a graph as seen in Figure 3.1, equations which are a function of wing loading 

[kg/m2] need to be set, from which is then calculated the required T/W ratio for each desired 

requirement. 

 

 Constraining for a level constant-velocity turn  
For a level constant-velocity turn or in other words the trust required to maintain a specific 

banking load factor n at a specific airspeed and altitude, the following equation can be used: 

(
T

W
)
1
= q1 [

CD min
M
S g

+ k (
n

q1
)
2M

S
g]  ; [−] (4.2) 

q1 =
1

2
ρ1vc

2  ; [N/m2] (4.3) 

ρ1 = ρ0 (1 −
0,0065

288,15
h)

4,256

  ; [kg/m3] (4.4) 

where q1 is dynamic pressure at cruising altitude h, and cruising speed vC and ρ1 is density 

at cruising altitude h, where ρ0 is density at sea level according to ISA. k is the lift induced 

drag constant which will be explained later in more detail. M/S is the wing loading, the 

dependent variable. It will be defined in a range from 20 to 200 kg/m2. The banking load 

factor n, for which a max. bank angle ϕ of 45° at cruising speed was set, leads to a value of 

√2 ≈ 1,414 according to equation: 

n =
1

cosϕ
  ; [−] (4.5) 
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 Constraining for a desired rate of climb 

 
The required thrust to weight ratio for a desired rate of climb can be found according to the 

following equation: 

(
T

W
)
2
=

vv
vclimb

+
q2
M
S ∗ g

∗ CD min +
k

q2
∗
M

S
∗ g  ; [−] (4.6) 

q2 =
1

2
∗ ρ0 ∗ vclimb

2   ; [N/m2] (4.7) 

where q2 is dynamic pressure at sea level and climb speed vclimb. The climb speed is based 

on statistical data from which the average was taken. (Cirrus SR22 – 101 KTS; Pipistrel 

Panthera 80 KTS) see references [4], [5] respectively. The average of 90,5 KTS ≈170 km/h 

rounded off to the nearest ten. vv is the required rate of climb.  

To calculate the lift induced drag constant k, the so-called Oswald’s span efficiency for 

a straight wing must be estimated. This can be calculated according to the equation (3.8) and 

the lift induced drag according to the equation (3.9).  

𝑒 = 1,78 ∗ (1 − 0,045 ∗ 𝐴𝑅0,68) − 0,64 (4.8) 

For the chosen aspect ratio, the equation (3.8) will give a span efficiency of 0,7831. This 

equation is defined by Raymer, ref. [6]. More sophisticated equations do exist, however, for 

their estimation more parameters are required which for our design are simply not available. 

According to the wing theory, the induced drag coefficient of a 3D wing with an elliptical 

lift distribution equals the square of the lift coefficient divided by the product of aspect ratio 

and π. However, few wings actually have an elliptical lift distribution. The extra drag due to 

the nonelliptical lift distribution and the flow separation can be accounted for using “e”.  

The lift induced drag constant k can be found according to the following equation:  

𝑘 =
1

𝜋 ∗ 𝐴𝑅 ∗ 𝑒
(4.9) 

 

 Constraining for a desired take-off distance 
The required trust to weight ratio to achieve a desired take-off distance can be calculated 

according to the equation: 

(
𝑇

𝑊
)
3
=

𝑣𝐿𝑂𝐹
2

2 ∗ 𝑔 ∗ 𝑆𝐺
+
𝑞3 ∗ 𝐶𝐷 𝑇𝑂
𝑀
𝑆 ∗ 𝑔

+ 𝜇 ∗ (1 −
𝑞3 ∗ 𝐶𝐿 𝑇𝑂
𝑀
𝑆 ∗ 𝑔

) (4.10) 

𝑞3 =
1

2
∗ 𝜌0 ∗ (

𝑣𝐿𝑂𝐹

√2
)
2

(4.11) 

where vLOF is the lift-off speed at the point where the wheels lift of the ground, SG is the 

ground run as can be seen in Figure 3.2. μ is the ground friction coefficient according to 

Table 17-3 Ground Roll Friction Coefficients as presented in ref [2]. For our design we will 
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assume a value of 0,04. The dynamic pressure q3 is calculated at ground density ρ0 and for 
𝑣𝐿𝑂𝐹

√2
, as is explained below. 

 
Figure 4.2. Schema of ground run, lift-off speed and its graphical explanation, ref. [2]  

If we would consider the acceleration at point 1, where the acceleration is at its highest, the 

ground run would be much lower. The opposite is true at point 3 where the acceleration is 

very small and therefore, if point 3 would be considered, the ground run would be much 

larger. This implies that somewhere between these two points must exist a speed for which 

the ground run agrees well to experimental data. This speed is 
𝑣𝐿𝑂𝐹

√2
. 

 

 Constraining for a desired cruise airspeed  
The required trust to weight ratio to achieve a certain speed, in this case the cruise speed, 

can be calculated according to the equation: 

(
𝑇

𝑊
)
4
= 𝑞1 ∗ 𝐶𝐷 𝑚𝑖𝑛 ∗

1

𝑀
𝑆 ∗ 𝑔

+
𝑘

𝑞1
∗
𝑀

𝑆
∗ 𝑔 (4.12) 

where q1 is the dynamic pressure according to the equation (3.3) where the cruise speed VC 

is implemented. 

 

 Constraining for a desired service ceiling  
The required trust to weight ratio to achieve a desired service ceiling, can be calculated 

according to the equation: 

(
𝑇

𝑊
)
5
=

𝑣𝑣 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

√2
𝜌 ∗

𝑀
𝑆 ∗ 𝑔 ∗

√
𝑘

3 ∗ 𝐶𝐷 𝑚𝑖𝑛

+ 4 ∗ √
𝑘 ∗ 𝐶𝐷 𝑚𝑖𝑛

3
(4.13)

 

𝜌2 = 𝜌0 ∗ (1 −
0,0065

288,15
∗ ℎ𝑐𝑒𝑖𝑙𝑖𝑛𝑔)

4,256

(4.14) 
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where vv ceiling is the lowest acceptable rate of climb, usually 100 fpm = 0,508 m/s and ρ2 is 

the density at service ceiling. However, many aircraft manufacturer certify their aircraft only 

up to a maximum certified ceiling of 7620 m since any higher would require a cabin 

pressurization. This means that these aircraft can reach higher ceilings as they are certified 

for and since they do not reach the minimum acceptable rate of climb at the certified altitude, 

they have a greater advantage over those who are certified truly to the absolute service 

ceiling. 

For the constraint analysis, the software MATLAB was used. For every other calculation, 

Microsoft Office Excel. 

 

 Plotting the results 

 

      Figure 4.3. Constrain diagram showing the Wing loading vs. Thrust loading 

We can see that everything above a wing loading of 37 kg/m2 is influenced by the climb 

requirement only. The optimum point lies therefore at the minima of curve for the climb 

requirement as can be seen in the figure above. For a wing loading of 103 kg/m2 the required 

thrust to weight ratio is 0,21544. Meaning that, if we take the estimated design mass MTOM 

of 1504 kg, then this would require a wing area of 14,6 m2. A rather large area compared to 

our statistical data. The required thrust as well as the Power for this point can be calculated 

according to the following equations: 

𝑇 =
𝑇

𝑊
𝑀𝑔  ; [𝑁] (4.15) 

𝑃 =
𝑇𝑣𝑐𝑙𝑖𝑚𝑏
𝜂1000

  ; [𝑘𝑊] (4.16) 

For our design, we estimate a propeller efficiency of 0,85. However, we must bear in mind 

that such can only be achieved with a perfect Constant-speed propeller. Thrust and Power 

required to fulfill the climb requirement therefore are: 
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𝑇 = 3177,6 𝑁 

𝑃 = 176,53 𝑘𝑊 

This is however only true for the climb requirement, since it is not altitude dependent. All 

other requirements, except for the take-off requirement, are dependent on altitude and must 

be normalized to the performance which is needed at sea level.  

It is now possible to plot the required Power as a function of wing loading as seen in the 

figure below. 

Figure 4.4. Plotted graph for various requirements showing the thrust to weight ratio converted 

from figure 3.3 to the power required at each altitude. 

It is evident that the optimum point has shifted to a lower wing loading. However, the turn 

requirement is starting to dominate and is the most challenging to compute with as will be 

seen in the next figure. 

 

Figure 4.5. Required Power for the various requirements normalized to sea level conditions. From 

this figure, we now can select our engine. 
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After converting the required power for each requirement to sea level conditions, the so-

called Power normalization, we can now choose an engine for which its power will fulfill all 

the requirements in this constraint analysis. However, we can no longer consider the 

optimum points from figure 3.3. and figure 3.4. since it would not fulfill the required CLmax. 

The new optimum point bounded by the service ceiling and the turn requirement has a wing 

loading of 163 kg/m2 which is unrealistic for our design. It would more over require a CLmax 

of 2,79 at a wing area of 9,227 m2 and a wingspan of 9,11 m. One must be careful not to 

come to any sudden conclusions. One must choose a point which lies in the boundary area 

as well as be realistically viable. From this new point, we can select the required engine. For 

the design, a wing loading of 125 kg/m2 was chosen which gives as a CLmax of 2.14 that can 

be solved with an ordinary high-lift device. 
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5 Selecting an appropriate engine 

 

 Engine choice 
From our design point in figure 3.5. we can see that for a wing loading of 125 kg/m2 an 

engine of at least 206 kW rated power should be selected. Since most GA aircraft fly with 

piston engines it would be only wise to choose this one as well. The second thing to consider 

when selecting an engine is the type of fuel used. The chosen engine must be certified for 

the type of fuel one wants to use. The most important points to bear in mind is that the overall 

take-off weight as well as other parameters in our design may change. The MTOW generally 

never stays as low as estimated and therefore we must take this potential weight into account. 

The propeller efficiency of 0,85 was chosen very optimistically and therefore we must reflect 

that the real value will probably be lower, somewhere around 0,8 and 0,85. Last but not least, 

the coefficient of lift and drag at take-off configuration as well as the minimum drag 

coefficient are only recommended values and may change slightly for our design, generally 

the minimum drag coefficient increases. Recalculating the constrain analysis and 

considering, since our calculations are set very optimistically, a structure that weights 50kg 

more, a guessed value, and a decreased propeller efficiency of 0,8 due to imperfections, then 

for the same wing loading we will get a required rated power at sea level conditions of 226 

kW or 303 BHP. However, the maximum coefficient of lift CLmax also increases to 2,27.  

Most common piston engines for high performance single engine aircraft are Lycoming or 

Continental Motors. Lycoming engines tend to weight little more than their competitors but 

it is lastly up to the manufacturer which of those he chooses. From our statistical data, four 

out of 5 use a Continental engine. 

For our design, a Continental Motors 550series engine was chosen. In the table below are 

three variations of the same engine type, N, P and R. It is evident that the IO-550-P engine 

has the highest power to mass ratio and the lowest dry weight. This is the engine used for 

our design. 

 

Table 5.1. Continental Motors, engine specification according to manufacturer ref. [7] 

 Effect of altitude on engine power 

 
Since the power, for a piston engine, decreases with altitude we have to find the optimum 

power selection for our cruising altitude of 2500 m. Smaller GA aircraft generally fly 

between 1500 and 3500 m. 
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There are many models for how to calculate the power-altitude dependency. For our design, 

we are going to compare two models. A simple altitude-dependency model and the Gagg & 

Ferrar model, ref. [2]. 

Simple altitude-dependency model: 

P = PSL (
ρ

ρSL
) = PSL𝜎  ; [𝑘𝑊] (5.1) 

where P is the Power at alttitude, PSL is Power at sea level, ρ is the density at altitude and σ 

is the density ratio at altitude. 

Gagg and Ferrar model: 

P = PSL [σ − (
1 − σ

7,55
)]  ; [𝐵𝐻𝑃] (5.2) 

where PSL is the Power at altitude in BHP, therefore P, the power at altitude will also be in 

BHP. σ is the density ratio. 

After calculating each model to our desired service ceiling, we will get the following 

dependency. 

 

Table 5.2. Piston Engine Power dependency on Altitude 

The Gagg and Ferrar model matches much better with the manufacturer data then the other 

model. This is why it is recomended to use for design work. Ref. [2]. 
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 Engine power and the requirement for fuel consumption   
The rated fuel consumption for each cruising power can be found in the engines manual. 

This is found in table 2.7. IO-550-P Specification in ref. [7]. 

 

Table 5.3. Engine Power and Fuel consumption according to manual 

 

 

 

 

 

On the right side are the fuel consumption for each power level. Note that these are the 

maximum values. For best power or best economy we must refer to the performance chart 

presented in the engine manual, see figure 2-34 ref. [7].  

 

 

 

 

 

Table 5.4. Fuel consumption according to engine manual, ref. [7] 
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6 Weight estimation 

 

 The mission profile 

 
Based on the target performance, various performance parameters were calculated and 

plotted to find the optimal design point. The next step is to estimate the initial empty and 

gross weight by calculating the weight ratios. Those Ratios can either be obtained from 

statistical data or by calculating them directly from the mission profile. How such a typical 

mission profile looks like, can be seen below. Ref.[6]. 

The mission profile is divided into 6 sections: 

• 0 → 1: Warmup & Takeoff - 
W1

W0
 

• 1 → 2: Climb - 
W2

W1
 

• 2 → 3: Cruise - 
W3

W2
 

• 3 → 4: Loiter - 
W4

W3
 

• 4 → 5: Descent - 
W5

W4
 

• 5 → 6: Land - 
W6

W5
 

Each section has its weight ratio 

based on its previous point. To find 

the total mission weight ratio, we must take the product of all the sections, hence, we get  
𝑊6

𝑊0
. 

According to ref. [2], the weight ratios for warm-up, takeoff, climb and landing remain more 

or less constant for any particular class of aircraft, thus we will use the weight ratio for those 

section according to table 20-6 Weight ratios for GA aircraft, Single-engine piston, in ref. 

[2]. 

• Warm-up and takeoff = 0,995 

• Climb = 0,988 

• Descent = 0,997 

• Landing = 0,995 

The weight ratio for cruise and loiter must be calculated since they depend strongly on the 

cruise setting, specifically the fuel consumption, altitude, cruise speed, propeller efficiency, 

range, and last but not least the overall climate conditions. However, we are assuming ideal 

ISA conditions, a propeller efficiency of 0,85, a fuel consumption for best power at 45 kg/h 

for cruise and 54 kg/h at continuous power for loiter, see figure 2-34 in ref. [7] as well as 

a cruising speed of 330 km/h at 2500 m. Finally, for our design we want to achieve a range 

of at least 2000 km. Regarding the loiter time, fuel for maximum continuous power operation 

of at least 30 minutes for day VFR must be available. 

 

 

 

      Table 6.1. Typical mission profile, ref [6] 
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The specific fuel consumption for the cruise and loiter section can be calculated as followed: 

𝑐𝑡 =
𝑞𝑓𝑐,𝑙 ∙ 𝑔

𝑃 ∙ 1000 ∙ 3600 ∙ 𝜂 
𝑣𝐶   ; [

1
𝑠⁄ ] (6.1) 

where qfC,L is the mass fuel consumption per hour for cruise and loiter respectively. P is the 

power available at cruise altitude, η is the propeller efficiency and vC is the cruising speed. 

For cruise, ct = 7,64147·10-5 [1/s] 

For loiter, ct = 9,16977·10-5 [1/s]  

For a aspect ratio of 9,2 Oswald’s span efficiency e is 0,7778 and therefore, induced drag 

constant k will be 0,0445.    

(CL/CD) max or the smallest coefficient of drag at the greatest coefficient of lift which in fact 

represents the point where a line, whose origin is at the zero point, is tangent to the drag 

polar. However, at this moment we can only assume the point since we do not have enough 

data to create a drag polar. (CL/CD) max can be estimated by the following equation. However, 

assuming the simplified drag model: 

𝐿𝐷𝑚𝑎𝑥 = (
𝐶𝐿
𝐶𝐷
)
𝑚𝑎𝑥

=
1

√4 ∙ 𝐶𝐷𝑚𝑖𝑛 ∙ 𝑘
  ; [−] (6.2) 

For cruise, (CL/CD) max = 14,993 [-] 

For loiter, see ref. [6] it is 0,866·(CL/CD) max of cruise = 12,984 [-] 

To make a better prediction of (CL/CD) max the adjusted drag model can be calculated by the 

following equation: 

𝐿𝐷𝑚𝑎𝑥 = (
𝐶𝐿
𝐶𝐷
)
𝑚𝑎𝑥

=
1

√4 ∙ 𝐶𝐷𝑚𝑖𝑛 ∙ 𝑘 + (2𝑘 ∙ 𝐶𝐿𝑚𝑖𝑛𝐷)2 − 2𝑘 ∙ 𝐶𝐿𝑚𝑖𝑛𝐷
  ; [−] (6.3) 

However, we are not going to use this equation at this point since we are not able to make 

a prediction for CLminD, the lift at CDmin. In the illustration below are both models represented.  

 

Figure 6.1. True Drag Polar illustrating the simplified and the adjusted drag model, ref. [2] 
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The total mission weight ratio: 

𝑊6

𝑊0
=
𝑊1

𝑊0

𝑊2

𝑊1

𝑊3

𝑊2

𝑊4

𝑊3

𝑊5

𝑊4

𝑊6

𝑊5
  ; [−] (6.4) 

If the mass before and after the cruise sections is known, the cruising range can be determent, 

ref. [6]. 

𝑅 =
𝑣𝑐
𝑐𝑡

𝐿

𝐷
ln
𝑊𝑖−1

𝑊𝑖
  ; [𝑘𝑚] (6.5) 

then: 

𝑊𝑖

𝑊𝑖−1
= 𝑒

(
−𝑅∙𝑐𝑡

𝑣𝑐∙
𝐿
𝐷

)

  ; [−] (6.6)
 

The same is valid for the Endurance at loiter. If 30 minutes for day VFR are required the 

equation for endurance is as followed, ref. [6]: 

𝐸 =
𝐿
𝐷⁄

𝑐𝑡
ln
𝑊𝑖−1

𝑊𝑖
  ; [𝑚𝑖𝑛𝑢𝑡𝑒𝑠, ℎ𝑜𝑢𝑟𝑠] (6.7) 

then: 

𝑊𝑖

𝑊𝑖−1
= 𝑒

(
−𝐸∙𝑐𝑡
𝐿
𝐷⁄
)

  ; [−] (6.8) 

Therefore, the weight ratio for the cruise section is:  

𝑊3

𝑊2
= 0,8948 [−] 

and the weight ratio for the loiter section is:  

𝑊4

𝑊3
= 0,9874 [−] 

The total mission weight ratio according to equation (5.4.) therefore is: 

𝑊6

𝑊0
= 0,8616 [−] 

According to Raymer in equation 3.11 ref. [6], the total fuel fraction, assuming 6% for 

reserve and trapped fuel, can be calculated as followed: 

𝑊𝑓

𝑊0
= 1,06 (1 −

𝑊𝑥
𝑊0
)  ; [−] (6.9) 

where the fraction Wx/W0 represents the total mission weight ratio. 

Hence, the fuel fraction ratio for our mission is: 

𝑊𝑓

𝑊0
= 0,1468 [−] 
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Equation for estimating the gross weight, according to ref. [6] equation (6.1) 

𝑊0 =
𝑊𝐶𝑟𝑒𝑤 +𝑊𝐿𝑢𝑔𝑔𝑎𝑔𝑒

1 −
𝑊𝑓
𝑊0

−
𝑊𝑒
𝑊0

(6.10)
 

where 𝑊𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 is the total mass of passengers, including the pilot. 𝑊𝐿𝑢𝑔𝑔𝑎𝑔𝑒 is the total 

mass of the luggage.  

From ref. [2] equation 6-14, we can estimate the empty fraction for our design where W0 is 

in kg. This equation is based on statistical data, see figure 6-2 in same reference.  

𝑊𝑒
𝑊0

= 0,8578 − 0,0333 ∙ ln𝑊0,𝑔𝑢𝑒𝑠𝑠  [−] (6.11) 

After substituting equation (5.11) into (5.10) we can get, after interpolation the estimated 

takeoff weight for our design. 

Estimated MTOW = 1565 kg 

Hence, fuel mass Mf = 230 kg and the empty mass ratio of 0,6129 → Me = 959 kg. 

Raymer, ref. [6], is describing a more complex statistical method for estimating the empty 

mass ratio which is a function of aspect ratio, vmax, wing loading, power loading, gross 

weight and the constants as can be seen below. 

 

Table 6.2. Statistical method of estimating the empty mass ratio 

Since at this point, the maximum speed for our aircraft is unknown, we may not use this 

equation. 

 

 Component weight estimation  
Raymer, ref. [6] table15.2, gives a first approximation for the empty weight build up. 

 

Table 6.3. Estimation of empty weight build up. 
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Since the weight for our engine is known the fraction for “Installed Engine” was changed 

from originally 1.4 to 1.601 to reflect the true weight. Also, the fraction for all “else empty” 

was changed from originally 0.1 to 0.162 in order to fulfill our estimated empty weight of 

959 kg.  

 

6.2.1 Installed Engine weight 

In order to estimate the installed weight for our aircraft, we will use the following 

approximations from ref. [6]. 

𝑊𝐸𝐼 = 2,575 ∙ 𝑊𝐸𝑁𝐺
0,922 ∙ 𝑁𝐸𝑁𝐺 (6.12) 

where WENG is the uninstalled weight of the engine in lbf and NENG is the number of the 

engines. Thus, the installed engine weight is 688,45 lbf or 312,3 kg. 

 

6.2.2 Estimating the wing weight 

The equation for estimating the weight of the wing, according to Raymer: 

𝑊𝑊 = 0,036 ∙ 𝑆𝑊
0,758𝑊𝐹𝑊

0,0035 (
𝐴𝑅𝑊
𝑐𝑜𝑠2𝛬𝑐

4

)

0,6

𝑞0,006𝜆0,04(
100 ∙

𝑡
𝑐

𝑐𝑜𝑠𝛬𝑐
4

)

−0,3

(𝑛𝑍𝑊0)
0,49 (6.13) 

where SW is the wing area in ft2, WFW is the fuel weight in the wing, however for estimating 

the weight of the wing structure only 𝑊𝐹𝑊
0,0035 = 1, ARW is the wings aspect ratio. 𝛬𝑐

4
 is the 

wing sweep at 25% MGC in radians, q is the dynamic pressure at cruise in lbf/ft2, λ is the 

taper ratio of the wing, t/c is the wing thickness to chord ratio, nZ is the ultimate load factor 

described by 1.5·nmax and W0 is the estimated gross weight. 

For a airfoil thickness of 0,131, such as the airfoil MS (1)-0313, a wing area of 12,52m2 or 

134.76 ft2, a wing sweep at the quarter chord line of 1,59°, a dynamic pressure of 84 lbf/ft2, 

ultimate load factor of 5.7, cruise density at 2500m of 0.001857 slugs/ft3 as well as for a 

gross weight of 1565 kg or 3450 lbf, the weight of the wing was estimated as 150,32 kg. 

 

6.2.3 Estimating the fuselage weight 

Raymer, ref. [6], is describing a equation for estimating the fuselage weight. For main 

fuselage dimensions, revere to chapter 6. 

WHT = 0,052 ∙ 𝑆𝐹𝑈𝑆
1,086(nZW0)

0,177𝑙𝐻𝑇
−0,051 (

𝑙𝐹𝑆
𝑑𝐹𝑆

)
−0,072

𝑞0,241 + 11,9(𝑉𝑃∆𝑃)
0,271 (6.14) 

where SFUS is the wetted fuselage area in ft2 measured directly from the 3D cad model 

as18,966 m2 or 204,148 ft2, 𝑙𝐻𝑇 is the tail arm, 𝑙𝐹𝑆 is the fuselage length, 𝑑𝐹𝑆 is the depth of 

the fuselage, q is the dynamic pressure at cruise altitude, VP is the volume of the cabin ≈ 

2,562 m3 or ≈ 90,47 ft3 and ΔP is the cabin differential pressure, typically 8 psi.  

Thus, the estimated weight for the fuselage is 107,15 kg. 
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On the other hand, Nicolai, see also ref. [2], describes this estimation as followed: 

WHT = 200 ∙ [(
nZW0

105
)
0,286

(
lF
10
)
0,857

(
𝜔𝐹 + 𝑑𝐹
10

) (
𝑉𝐻
100

)
0,338

]

1,1

(6.15) 

where lF is the length of the fuselage, 𝜔𝐹 is the max width of the fuselage, 𝑑𝐹 is the max 

depth of the fuselage and VH is the maximum level airspeed at sea level in knots. This value 

can be estimated according to the simplified drag model. The equation for determining Vmax 

or also written as VH and described as the maximum level airspeed, is a very important 

parameter for any aircraft manufacturer since it has a great marketing appeal. 

Thus, the equation for Vmax, see ref. [2], chapter 19,  is: 

𝑉𝑚𝑎𝑥 = √
𝑇𝑚𝑎𝑥 +√𝑇𝑚𝑎𝑥2 − 4𝐶𝐷𝑚𝑖𝑛𝑘𝑊2

𝜌𝑆𝐶𝐷𝑚𝑖𝑛
  ; [
𝑚

𝑠
] (6.16) 

However, since Thrust is a function of airspeed itself, it is almost impossible that thrust is 

known at vmax. Since T = Pη/v we can substitute this into equation 5.16. 

Hence, giving, after manipulation: 

𝜌𝑆𝐶𝐷𝑚𝑖𝑛𝑉𝑚𝑎𝑥
3 = 𝜂𝑝𝑃 +√(𝜂𝑝𝑃)

2
− 4𝑊2𝑉𝑚𝑎𝑥2 𝐶𝐷𝑚𝑖𝑛𝑘 (6.17) 

Vmax can be found by iteration and by guessing a first possible value. 

However, this can be a very time-consuming process. This is why a different method was 

used, the so-called bisection method. See ref. [2] and the VB code in the attachments. 

Therefore, after solving, Vmax leads to 354 km/h or 191 knots. 

Hence, the weight estimation according to Nicolai is 116,04 kg.  

 

6.2.4 Estimating the weight of the horizontal tail 

According to Raymer, the HT can be estimated as: 

WHT = 0,016(nZW0)
0,414q0,168SHT

0,896(
100 ∙

t
c

cosΛHT
)

−0,12

(
ARHT
cos2ΛHT

)
0,043

λHT
−0,02 (6.18) 

where q is the dynamic pressure at cruise altitude, SHT is the horizontal tail area, ΛHT is the 

HT sweep angle at 25% MGC in radians.  

Thus, the estimated weight for the HT is 16,03 kg. However, since this estimated weight 

turned out lower, then the estimated weight in table 5.3, the following equation according to 

Nicolai, see also ref. [2] for estimating the HT will be used.  

WHT = 127 ∙ [(
nZW0

105
)
0,87

(
SHT
100

)
1,2

(
lHT
10
)
0,483

√
bHT

tHT max
]

0,458

(6.19) 
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where bHT is the HT span in feet, tHT max is the HT max root chord thickness in inches. 

Thus, giving a closer estimation of the HT weight of 21,41 kg. 

 

6.2.5 Estimating the weight of the vertical tail 

According to Raymer, the equation for estimating the weight of the VT is: 

WHT = 0,073(1 + 0,2𝐹𝑡𝑎𝑖𝑙)(nZW0)
0,376q0,122SVT

0,873(
100 ∙

t
c

cosΛVT
)

−0,49

(
ARVT
cos2ΛVT

)
0,357

λVT
0,039 (6.20) 

where for a conventional tail, Ftail = 0, SVT is the vertical tail area in feet. 

Thus, for a NACA 0012 profile, the estimated weight for the vertical weight is 8,33 kg. This 

estimation is unrealistically low, considering a vertical area of 1,49 m2. Multiplying this 

value by 2 will come the result estimated in table 5.3. closer. Other components such as the 

landing gear will be estimated according to table 5.3. However, the estimated 76 kg for a 

retractable main landing gear seems to be too much. This would otherwise add an equivalent 

of half of the wing weight.    

 

6.2.6 Component weight as a fraction of empty weight 

The purpose of this section is to find out the weight distribution as a fraction of the total 

empty weight, thus making it possible for a designer to design parts with emphasis on weight 

and to locate any specific components or locations on the aircraft which need to be reduced 

in weight. This is the so-called weight budgeting. 

This is especially important for estimating the center of gravity, thus making it possible to 

create the so-called C.G. Envelope under various loading scenarios.  

 

Table 6.4. Component weight as a fraction of empty weight. 

As can be seen from table 6.4 our empty mass target of 959 kg was not reached, saving 87 

kg of weight. However, at this moment it is only an estimation. A more detailed direct weight 
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estimation would very likely lead to a different result. The weight reduction factor 

Wcomp/Wmetal, ref. [8] is a factor used when converting from a metal aircraft or part to a 

aircraft or part made from composite. 

 

7 Designing the aircraft components 

 

 Selection of the airfoil for the wing layout 

 
Many GA aircraft of the past use a four up to a six digit NACA airfoil or some kind of 

modification of its original geometry. Many tunnel data experiments are published and it can 

be sad that they are well studied. Many aircraft designers used therefore those airfoils. For a 

modern GA aircraft, as well as to keep up with the competitors of today, designers switch 

their choice to a more modern and advanced airfoil such as the Natural laminar flow airfoils 

(NLF), thus making it possible to sustain a laminar flow as far as 50% of the chord. Such 

airfoils generate less drag and tend to have a extended drag bucket. A region where the usual 

drag polar drops to a lower drag coefficient. This region is in big favor for takeoff and climb 

and many NLF airfoils are designed in such a way, that the drag bucket region extends 

greatly for low up to medium coefficients of lift. However, besides sustaining a longer 

laminar flow, NLF airfoils tend to be very sensitive when it comes to imperfections such as 

insects, icing or dirt. This imperfection may cause an imbalance between the left and right 

wing and may lead to unpredictable stall handling. This is why, when choosing an airfoil, a 

a high coefficient of lift and a low coefficient of drag are not the only criteria. Besides the 

type of stall characteristic, choosing an adequate moment coefficient will reduce the trim 

drag. However, there is no need to focus to much on cm0 and weigh it more than the other 

two. A proper empennage design will accommodate this problem.        

To find the different characteristics of such airfoils, a comparison between 5 of such airfoils 

was made and will be discussed. 

The NLF (1)-0115 has a thickness to chord ratio of 15% at 44,1% and a maximum camber 

of 1,8% at 30% chord. It was designed to achieve a Clmax of 1,5 at Re = 2,6·106 with no flaps. 

The moment coefficient at zero angle of attack, cm0 is around -0,055. The hinge moment cH 

for a 20% aileron is same as for a NACA 632-215. The loss in Clmax due to edge roughness, 

rain or insects at Re=2,6·106 is 11%. However, this airfoil was primarily designed for a wing 

loading of 719 to 958 N/m2 or 73-97 kg/m2. Since our expected wing loading is going to be 

higher, the airfoil becomes unusable for our design.  

Other analyzed airfoils were NLF (1)-0416, NLF (1)-0215F, NLF 0414F and MS (1)-0313 

as can be seen in table 6.1 and 6.2. It is clear that airfoil NLF-0215F has the highest pitching 

moment coefficient, however it also has the best stall characteristic out of the airfoils as well 

as the second highest Clmax of 1,846 at αcr ≈18°. Thus, the average moment coefficient for 

the linear part is -0,147. This said, we cannot blindly believe that these values are exact. 

From experience, it is known that the software xflr5, which is just a more user-friendly 

version of xfoil, overestimates and sometimes even underestimates certain values. 

Measurements from a wind tunnel, if available, should always be rated above any simulated 

data. The measured Clmax of the wind tunnel was 1,56 at αcr =11,2°. Thus, the measured Clmax 

is 18,3% lower and αcr is as much as 61% lower. see ref. [9] 
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Table 7.1. The lift coefficient vs alpha for our studied airfoils. 

 

Figure 7.2. Tunnel measurements for a NLF 0215F at Re=3·106 and M=0,1. ref. [9] 



 
23 

 

 

Table 7.3. Pitching moment coefficient dependent on alpha for various airfoils 

For our design, the airfoil MS (1)-0313 will be used since it has the highest coefficient of lift 

and a moderate moment coefficient.  

 

Table 7.4. Tunnel data for the airfoil MS (1)-0313. 

However real wind tunnel data will also be used. See ref. [10] 

The following measurements are available for the airfoil MS (1)-0313 

Thus, for a first estimation of the Reynolds number and for a root chord of 1,5 m as well as 

the stall speed of 107 km/h will give Re ≈ 3·106.  

𝑅𝑒 =
𝜌𝑉𝐶

𝜇
≈ 68500𝑉𝐶  ; [−] (7.1) 

where μ is air viscosity, ρ is air density, V is reference speed and C is the reference chord. 
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For a trapezoidal wing configuration, the following equation can be used to calculate the 

coefficient of lift for the wing. 

𝐶𝐿𝑚𝑎𝑥 = 0,95𝐶𝑙𝑚𝑎𝑥 + 1,1
𝑏𝑓𝑙𝑎𝑝𝑠
𝑏
2⁄
  ; [−] (7.2)

where 
𝑏𝑓𝑙𝑎𝑝𝑠
𝑏
2⁄

 was chosen as 0,5. 

Then, and by using the equation of the trend line, we get a Clmax of 1,83. 

Hence, CLmax is therefore 2,288.  

Then the required wing area should be according to equation: 

𝑆 =
2𝑀𝑔

𝜌𝑣𝑠2𝐶𝐿𝑚𝑎𝑥
  ; [𝑚2] (7.3) 

Since a first estimation of the aspect ratio for the wing, see constraint analyzes was set, we 

now can calculate the required wing span as: 

𝑏 = √𝐴𝑅 ∙ 𝑆  ; [𝑚] (7.4) 

Thus, the root chord can be calculated as: 

𝐶𝑅 =
2𝑆

𝑏(1 + 𝜆)
  ; [𝑚] (7.5) 

Hence, we get a first estimation of S = 11.71 m, b = 10.38 m and CR = 1,4 m. Its Re now will 

be different as the estimated reference chord has changed. After iteration by changing the 

estimated Re of 3·106 to 2.88·106 will lead to a close match with the new estimated value. 

Hence, the new values then are CLmax is 2,276 for a wing span S of 11,775 m and a root chord 

length of 1,414 m. 

The slope of the lifting curve 𝐶𝑙
𝛼 according to the new Reynolds number will be 0,1178° or 

6,7494 radians. 

In order to find the lift distribution as well as the spanwise location where the wing will stall 

first. we will use the software “Glauert III v1.00”. From which leads that the CLmax of the 

wing is 1,646, and with flaps 2,114. Therefore, the new required wing area will be 12,678m. 

From this newly completed wing area we will determine the final wing span for our design 

and all other necessary dimensions. We also need to check if the 5% margin of the total 

sectional lift at the root location of the aileron is available. 
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Figure 7.1. The spanwise lift distribution for the non-twisted wing design. 

After applying adequate twist to the root and tip chord, till the required 5% at the root of the 

aileron is fulfilled. 

Thus, giving the following lift distribution. 

 

Figure 7.2. The lift distribution for a twisted wing design. 
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The final wing layout will can be seen below. 

 

Figure 7.3. A schematic drawing of the twisted wing design. 

  

 Cockpit layout 
A modern GA aircraft should be able to accommodate a 95th percentile male. Meaning, that 

95 % of all people are below or as tall as that. Thus, the cockpit should be sized so that 

a 186,7 cm tall male could sit inside without any problem.  

Since our aircraft is going to have a standard 2 + 2 seating configuration, meaning that 2 

seats in front and 2 in the back, our cockpit layout should be such that nor the passenger 

sitting next to the pilot nor the people behind him should limit the pilot’s field of view in 

any way. Such a recommended field of view as well as a min. internal width and height of 

the cabin can be seen in the figure below.  

 

Figure 7.4. Recommended field of view for the pilot and minimum internal cockpit dimensions. 
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A typical modern cockpit may look like as seen in figure 6.2. 

 

 

Figure 7.5. A typical 2+2 seating configuration cockpit layout. Image is showing a cabin of 

Pipistrel Pathera aircraft. 

For our design, such a cockpit layout was chosen, so it fulfills the design requirements for a 

modern GA aircraft.  

Figure 7.6. Field of view for the cockpit configuration layout. 

http://www.panthera-aircraft.com/discover
http://www.panthera-aircraft.com/discover
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Figure 7.7. Main dimensions of our designed fuselage 

 Empennage 
Sizing the tail surfaces correctly and determining the required tail arm can be a tricky task. 

Therefore, statistical data will help to find a first estimation of the tail volume, aspect as well 

as taper ratio. 

 

Table 7.8. Main parameters of the empennage 

Since most GA aircraft tail surfaces tent to have the center of mass very close to each other, 

it is possible to use the same tail arm for both, the horizontal as well as the vertical tail. This 

makes it easier for an optimization of the tail surfaces.  

To study the dependency of the tail arm on surface area, we will assume the following 

simplified model, see ref. [2] 
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It is assumed that the fuselage between the wing quarter chord line and the tail quarter chord 

line has a conical shape. Further, the horizontal and vertical tail quarter chord lines are 

equally located. 

Thus, the surface area of the frustum is: 

𝑆𝐹 = 𝜋(𝑅1 + 𝑅2) ∙ 𝑙𝑇 (7.6) 

where R1 and R2 is the start and end cone radius and 𝑙𝑇 is the tail arm. 

The total wetted area is therefore: 

𝑆𝑤𝑒𝑡 ≈ 𝑆𝐹 + 2𝑆𝐻𝑇 + 𝑆𝑉𝑇 (7.7) 

where SHT and SVT is the surface area of horizontal and vertical tail respectively. 

Thus, SHT and SVT is calculated as: 

𝑆𝐻𝑇 =
𝑉𝐻𝑇 ∙ 𝑆𝑟𝑒𝑓 ∙ 𝑐𝑟𝑒𝑓

𝑙𝑇
(7.8) 

𝑆𝑉𝑇 =
𝑉𝑉𝑇 ∙ 𝑆𝑟𝑒𝑓 ∙ 𝑏𝑟𝑒𝑓

𝑙𝑇
(7.9) 

Where Sref, cref and bref are reference dimensions taken from the wing. 

Thus, the surface area dependency for HT vs tail arm will be 

 

 

 

 

 

 

 

Figure 7.8. Simplified model for determining the tail arm. 
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Figure 7.9. Wetted area of tail vs tail arm 

To find the min. wetted area and therefore the optimum tail arm, the VT is considered as 

well. 

Figure 7.2. The dependency of HT Tail volume on tail arm 
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Figure 7.10. The optimum point for the empennage. 

However, in order to achieve an optimum design, hence a minimum wetted area for the tail, 

a tail arm of 2,8 length would be required, thus unbalancing the aircraft and therefore tending 

to have an unstable design.   

The initial tail sizing, considering the horizontal and vertical tail is: 

𝑙𝑇 = √
2𝑆𝑟𝑒𝑓(𝑉𝐻𝑇 ∙ 𝑐𝑟𝑒𝑓 + 𝑉𝑉𝑇 ∙ 𝑏𝑟𝑒𝑓)

𝜋(𝑅1 + 𝑅2)
(7.10) 

Thus, for our design the initial tail surfaces will have the following parameters 

 

Table 7.4. Initial tail dimensions 
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8 Weight analysis and the center of gravity 
 

To calculate the center of gravity for our design, we will use table 5.4 and record each 

components center of gravity. 

Thus C.G. can be calculates as followed   

xCG = ∑
xti∙mi

mi

n
i             

yCG = ∑
yti∙mi

mi

n
i             

zCG = ∑
zti∙mi

mi

n
i             

From it, the possible weight configurations are calculated from which the C.G. envelope 

follows.  

 

Table 8.1. Loading configurations and the forward and aft c.g limits. 

From the CG envelope, we can see that the center of gravity in the flight configuration moves 

between 20 and 35 % of the mean geometric chord. 
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Table 8.2. The Loading configurations for Ground and Inflight and their location on the MGC. 
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9 Aerodynamic characteristics 

 

 Neutral point 

 
9.1.1 Shift of neutral point due to influence of fuselage 

It is a point on the aircraft where the pitching moment is constant when the aerodynamic 

forces act on it. It plays a great part in the longitudinal static stability of the aircraft. 

To fulfill the requirements for longitudinal static stability, the CG must be in front of the 

neutral point. For this case, the recommendations for the location of CG are: (20-35) % 

MGC. 

To find the neutral point on the aircraft we have to shift the aerodynamic center of the wing. 

This shift is the cause of the interaction of the tail and the wing. The tail has a positive effect 

for the neutral point which shifts the location of the neutral point into the positive direction 

of x axis, whereas the fuselage has the opposite effect. 

The fuselage has a destabilizing effect on to the neutral point which moves the aerodynamic 

center of the wing lying at 25 % of MGC into the negative direction of the x axis, denoted 

by equation 

∆x̅NB f = −ktr ∙
1

cLwing
α ∙

Str
S
∙
ltr
cMGC

(9.1) 

The coefficient Ktr can be read of from ref. [16] 

The slenderness ratio of the fuselage 𝜆tr as well as the location of the c.g. on the fuselage 

with origin point being the tip of the aircraft is chosen together with the length ltr and width 

ctr of the fuselage. 

λf =
ltr
𝑐𝑡𝑟

=
6.695

1.269
= 5,28 [−] (9.2) 

xtr
ltr
=
2,562

6,695
= 0,38 [−] (9.3) 

Then from the graph in the attachments from ref. [19] we can read:  

Ktr = 0,0026 [-] 

cLwing
α = 5,3814 rad-1 or 0,0939 1/deg as was calculated by Glauert for our twisted wing 

design. 

∆x̅NB f = −ktr ∙
1

cLwing
α ∙

Str
S
∙
ltr
cMGC

= −0,0026 ∙
1

0,0939
∙
6,695 ∙ 1,269

12,678
∙
6,695

1,198
= −10,37 %  

This rather large shift due to the fuselage can be partially explained by looking at the cad 

model and how the fuselage was modeled. By analyzing the cad model, it can be seen that a 

rather large portion of the total volume of the fuselage lies near the tail section due to 

incorrect modeling. This shifts the center of gravity much further back. Unfortunately, it was 

not considered at the time of modeling.    
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9.1.2 Shift of neutral point due to the influence of the horizontal tail 

As has already been mentioned before the tail surfaces have a positive effect on the neutral 

point which shift it into the positive direction of the x axis. cLHT
α = 0,07496 1/deg (Glauert). 

x̅NBHT = cLHT
α ∙ (

1

cLwing
α − D) ∙ VHT ∙ kHT (9.4) 

𝐷 =
𝑑𝜀

𝑑𝐶𝐿𝑤
(9.5) 

D can be alternatively calculated, see ref [19]  

𝐷𝑤 𝐻𝑇 =
46,2

𝐴𝑅
𝑥1𝑥2𝑥3 (9.6) 

 

where D is the derivative of the downwash. 

   

𝐷𝑤 𝐻𝑇 =
46,2

𝐴𝑅
𝑥1𝑥2𝑥3 =

46,2

9,2
∙ 0,92 ∙ 1,16 ∙ 0,88 = 4,716 [−]  

S1 is the reduced area of the HT by the fuselage. It is measured from the cad model as 0,343 

m2. 

then S1/SHT = 0,12 [-] 

therefore kHT = 0,9 

x̅NBHT = 0,07496 ∙ (
1

0,0939
− 4,716) ∙ 0,6369 ∙ 0,9 = 25,5% 

Position of the neutral point is given according to the equation 

x̅NB = x̅AC + x̅NBtr + x̅NBVOP (9.7) 

then  x̅NB = 0,25 − 0,1037 + 0,255 = 0,401 = 40,13% 

The margin of static stability is therefore: 

Stab = x̅NB − x̅cg (9.8) 

x̅NB − x̅těž = 0,401 − 0,35 = 0,051 = 5,1 % of 𝑐𝑀𝐺𝐶 

A reasonable static lower margin should not be below 5%. See ref [16]. The calculated static 

stability margin is just above the limit. However, future work on this design could be to 

improve this value.    
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 The Lift enhancement 

 
For our design, a plain flap of 30% was chosen. The maximum deflection is 20°. In order to 

find the change of the slope of the airfoil due to flap deployment, we need to calculate the 

change in lift caused by the deployment. See ref. [11]. The incremental lift coefficient due 

to a plain flap deflection with a sealed gap is given by: 

∆cl = (δf) ∙ (
(clδ)

(clδ)theory
) ∙ (clδ)theory ∙ k

´ (9.9) 

∆clmax = k1 ∙ k2 ∙ k3 ∙ (∆clmax)base (9.10) 

(clα)δ = (
c´

c
) ∙ clα (9.11) 

 k´  0,62  correction factor  

(clδ)theory 4,55   correction factor (see attachment) 

(
(clδ)

(clδ)theory
) 1    

δf  30 [deg] flap deflection angle 

k1  1,05   correction factor  

k2  0,78   correction factor  

k3  1   correction factor 
(∆clmax)base 0,98   (see attachment for a profile thickness of 12%) 

 

Hence, 

 

∆cl = 30 ∙ π 180⁄ ∙ 1 ∙ 4,55 ∙ 0,62 = 1,4771 [-] 

∆clmax = 1,05 ∙ 0,78 ∙ 1 ∙ 0,98 = 0,8026 [-] 

(clα)δ = 1 ∙ 5,959 = 5,959 [rad−1] 

 

9.2.1 Increase in lift due to flaps see ref [11] 

 

∆cLW = Kb ∙ (∆cl) ∙ (
clαw
clα

) ∙ [
(aδ)cL
(aδ)cl

] (9.12) 

where: 

Kb 0,57 [1] flap span factor (Fig. 8.52) 

cLαw 5,3814 [1/rad] wing lift curve slope 

clα 6,749 [1/rad] profile lift curve slope 
(aδ)cL
(aδ)cl

 1,04 [1]  ratio of the 3D to the 2D flap effectiveness parameter 

 

∆cLW = 0,57 ∙ 1,4771 ∙ (
5,3814

6,749
) ∙ 1,04 = 0,6981 [-] 
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9.2.2 Slope of the lift curve with flaps deflected ref. [11] 

(cLαw)δ = cLαw ∙ [1 + (
c´

c
− 1) ∙ (

Swf
S
)] (9.13) 

(
c´

c
) ratio of extended wing chord to the flaps-up chord (for plain flaps =1) 

(
Swf

S
) ratio of the flapped wing area to the total reference area (wing)  

Swf
S
=
6,316

12,678
= 0,5218 [−] (9.14) 

 

(clαw)δ = 5,3814 ∙ [1 + (1 − 1) ∙ 0,52391] = 5,3814 rad
−1 

 

9.2.3 Increase in cLmax due to the deflection of the flaps ref. [11] 

∆cLmaxW = (∆clmax) ∙ (
Swf
S
) ∙ K∆ (9.15) 

ΔClmax 0,5968  the change in maximum lift coefficient of the profile 

K∆  0,92   correction factor for the swept wing configuration 

 

∆cLmaxW = 0,8026 ∙ 0,5218 ∙ 0,92 = 0,3853 [-] 

 

9.2.4 Maximum coefficient of lift of the wing with flaps deflected ref. [11] 

cLWmaxδ = cLw + ∆cLmaxW = 1,6459 + 0,3853 = 2,0312 [-] 

Now it is possible to construct the lifting curve for the wing with extended flaps. 

From the graph 2.1, even though the change in lift is very small, the angle of zero lift 

increased greatly.  

 

Then α0 for flaps deployed can be calculated according to: 

𝛼0 = −
𝐶𝐿0 + 𝐶𝐿𝑊
𝐶𝐿𝑊
𝛼 ∙

180

𝜋
(9.16) 

𝛼0 = −
0,316 + 0,6981

5,3814
∙
180

𝜋
= −10,8 [𝑑𝑒𝑔] 
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Figure 9.1. Lifting curve for the wing with flaps 

 

 The effect of the fuselage on the lifting curve 

 
In this section, see ref. [12] can be seen what effect the fuselage will have on the lifting curve 

of the wing, given by the following equations: 

df = √
4 ∙ Sf
π

= √
4 ∙ 1,39607

𝜋
= 1,3332 𝑚 (9.17) 

where Sf  is the cross-section of the fuselage at its maxim width and height. df is therefore 

the calculated diameter of this section.   

Kwf = 1 + 0,025 ∙ (
df
b
) + 0,25 ∙ (

df
b
)
2

(9.18) 

Kwf is a correction factor taking into account the calculated diameter and wingspan. 

Then Kwf = 0,9993 [-] 

CLαwf = CLαw ∙ Kwf (9.19) 

This correction factor decreases in this case the lift slope of the wing. 

CLαwf = 5,3775 [1/rad] 

r =
2lvop

b
= 0,6243 [−] (9.20) 

m =
2yvop

b
= 0,1054 [−] (9.21) 

The downwash derivative can be calculated per equation: 
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dε

dα
= 1,75 ∙

CLαw
π ∙ (λ ∙ r)0,25(1 + m)

= 0,3768 [−] (9.22) 

Thus giving the lifting slope of the aircraft 

CLα = CLαwf + CLαh ∙ (1 −
dϵ

dα
) ∙
sh
S
∙
qh
q

(9.23) 

qh

q
 is the ratio of dynamic pressure on the horizontal tail and the wing. 

Thus the lift at zero angle of attack of the wing together with the fuselage is: 

CL0wf = −α0 ∙ CLαwf = −3,3694 ∙ 5,3775 = 0,3162 (9.24) 

εoh =
dε

dα
∙ α = 0,0222 [−] (9.25) 

CL0 = CL0wf+CLαh ∙
sh
S
∙
qh
q
∙ (in−εoh) (9.26) 

α = −
CL0
CLα

= −
0,2979

5,8926
∙
180

𝜋
= −2,9 ° (9.27) 

 

 

Figure 9.2. Lifting curve of the wing with fuselage and lifting curve of the Aircraft 
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10 Polar of the Aircraft 

 
The total drag polar of the aircraft is constructed by calculating the drag coefficient for the 

wing, fuselage, tail surfaces, landing gear and last but not least the engine installation first 

and adding them up. 

 

 The wing drag 
The drag due to the wing only, can be calculated according to the following equations: 

cDwing = cDp + cDi[– ] (10.1) 

 

cDp  profilový odpor určen dle vztahu: 

CDp = CDpmin
∙
Swet
S

+ 0,75 ∙ ∆cDp ∙ (
CL − CLi
CLmax − CLi

)

2

[−] (10.2) 

 

CDp_min 0,0075 [1] minimum drag of profile 

Swet  10,383 [m2] wetted wing surface, (wing area without fuselage) 

CLi  0,3 [1]  coefficient of lift at CDp_min 

CLmax   1,4576 [1] maximum coefficient of lift without flaps 

 

∆cDp =
67 ∙ CLmax
(log10Re)4,5

− 0,0046 ∙ (1 + 2,75 ∙
t

c
) = 0,01274 (10.3) 

 

 

cDi induced drag coefficient can be calculated per equation: 

cDi =
CL
2

π ∙ λ
∙ (1 + δ) = 0,065699 ∙ CL

2 (10.4) 

Then the final expression for the wing drag will be: 

cDwing = 0,072075 ∙ CL
2 − 0,00383 ∙ CL + 0,007007 

 

 

 Drag due to the Horizontal tail 

 
The drag coefficient for the Horizontal tail only, can be calculated per equation: 

CDH = RwfRLSCfemp (1 + L
´ (
t

c
) + 100 ∙ (

t

c
)
4

)
SwetH
S

(10.5) 
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 Drag due to the Vertical tail 

 
The drag coefficient for the vertical tail only, can be calculated in a similar way as for the 

horizontal tail: 

CDV = RwfRLSCfemp (1 + L
´ (
t

c
) + 100 ∙ (

t

c
)
4

)
SwetV
S

(10.6) 

 Drag due to the presence of the landing gear 
 

The drag coefficient for the landing gear only, can be calculated per equation: 

cDgear =∑[{(cDgearcL=0)i
+ pi ∙ cL} ∙ (Sgear)i

S⁄ ]

n

i=1

(10.7) 

 cDgearcL=0 drag coefficient of the landing gear at zero lift 

 Sgear  reference area of the landing gear 

 pi  coefficient due to lift on the landing gear 

 

Values for the main landing gear:  Values for the nose landing gear: 

cDgearcL=0 0,69  [1]   cDgearcL=0 0,565  [1] 

Sgear  0,0385 [m2]    Sgear  0,0385 [m2] 

pi  -0,226  [1]   pi  0  [1] 

  

 Drag due to the engine installation 
 

The drag coefficient for the engine installation only, can be calculated per equation: 

cDeng =
0,015 ∙ bf ∙ hf

S
(10.8) 

 

bf 0,909 [m] maximum width of fuselage       

hf 1,368 [m] maximum height of fuselage       

S 12,105 [m2] wing area      

 

 Total drag of the aircraft 

 
The total drag of the aircraft is the sum of the hear calculated components: 

CD = CDwing + CDfus + CDH + CDV + CDgear + CDeng (10.9) 

In the next graph, it can be seen, as more and more components are added to the aircraft, the 

polar moves more and more right, having the effect of an increasing CDmin. 
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Figure 10.1. 
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11 Moment characteristics 
 

To find the pitching moment characteristics of the aircraft, we first need to find the moment 

characteristics for the wing itself, then the wing together with the fuselage and finally the 

characteristics from the tail surfaces are added. 

 

 Pitching moment curve without any high-lift-device  
 

In this section the pitching moment characteristics for the wing are calculated. First the 

pitching moment at zero lift is calculated per equation:   

cm0 = [
(λ ∙ cos2χ)

(λ + 2cosχ)
] ∙
(cm0r + cm0t)

2
= −0,0575 [−] (11.1) 

∆εcmac
=
∆cm0
εt

∙ εt (11.2) 

 

 

 λ 9,2    [1] aspect ratio 

 χ c/4 0    [1] sweep angle of the wing to the quarter chord point 

 εt -1.2    [deg] twist angle at the tip of the wing 

cm0t -0,07    [1] pitching moment coefficient for the tip profile 

cm0r -0,0753 [1] pitching moment coefficient for the root profile 

 

∆εcmac
=
−0,0012

−1
∙ (−1) = −0,0012 

cm0w = cm0 + ∆εcmac
= −0,0575 − 0,0012 = −0,0587 

The slope of the pitching curve can be found per equation: 

(
dcm
dcl

)
W

= xref − xac (11.3) 

xref  reference point (usually C.G.) 

xac  aerodynamic center of the wing at 25% MAC 

The slope of the moment curve of the wing is calculated by using the weight configuration, 

by using forward center of gravity of 25% MAC. 
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 Pitching moment coefficient of wing with influence of the fuselage 
The gain in lift caused by fuselage compared to the lift of the entire aircraft is very small and 

therefore the following can be assumed: CLwf = CLw 

 

 

 Pitching moment coefficient at zero lift wing/fuselage 
The pitching moment coefficient of the wing and its increase due to the fuselage with respect 

to the aerodynamic chord can be calculated per equation: 

(cmac)wf = (cmac)w + ∆fcmac (11.4) 

The contribution due to the fuselage can be calculated per equation: 

ΔfCmac = −1,8 ∙ (1 −
2,5 ∙ bf
lf

) ∙
π

4
∙
bf ∙ hf ∙ lf
S ∙ c̅

∙
cL0

(cLα)wf
(11.5) 

CLo  0,298 [1] coefficient of lift for αf = 0 

S  12,677 [m2] wing surface area [m2] 

c̅  1,198 [m] mean aerodynamic chord 

bf  1,269 [m] maximum width of fuselage 

hf  1,294 [m] maximum height of fuselage 

lf  6,23 [m] length of the fuselage 

(cLα)wf 5,3775 [1/rad] slope of the lifting curve of the wing/fuselage 

Pitching moment coefficient of the wing and fuselage: 

(cmac)wf = cm0w + ΔfCmac (11.6) 

The slope for the moment curve for the wing/fuselage is calculated in a similar way as for 

the wing. 

(
dcm
dcl

)
wf

= xref − xac (11.7) 

xref  reference point (usually C.G.) 

xac  aerodynamic center of the wing and fuselage 

The aerodynamic center for the wing/fuselage can be calculated per equation: 

(
xac
c̅
)
wf
= (

xac
c̅
)
w
+
Δf1xac
c̅

+
Δf2xac
c̅

(11.8) 

Δf1xac

c̅
  correction of the forward shift due to fuselage ref. [12] 

Δf1xac
c̅

= −
1,8

(clα)wf
∙
bf ∙ hf ∙ lfn
S ∙ c̅

= −0,064 [−] (11.9) 

 

Then the new aerodynamic center for the wing/fuselage will be: 
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(
xac
c̅
)
wf
= 0,25 − 0,0619 = 0,186 

The slope of the moment curve for the wing/fuselage will be: 

(
dcm
dcl

)
wf

= 0,2512 − 0,1881 = 0,164 [
1

𝑟𝑎𝑑
] 

 

 

 Setting up the horizontal tail 
The required angle of incidence relative to the fuselage datum line is: 

(ih)f =
cm0wf

+ cL0
𝑥cg − xac

c̅

clhα ∙
Sh ∙ lh
S ∙ c̅ ∙

qh
q

+

dεh
dα

(clα)w
∙ cL0 (11.10) 

𝐶𝑙ℎ𝛼  3,314 [1/rad] slope of the lifting curve of the horizontal tail 

𝑆ℎ  2,11 [m2] surface area of the horizontal tail 

𝑙ℎ  4,01 [m] horizontal tail arm 

𝑞ℎ

𝑞
  0,85  the decrease in dynamic pressure at the horizontal tail 

𝑑𝜀ℎ

𝑑𝛼
  0,37847 derivation of the downwash angle of the horizontal tail 

𝐶𝐿0  0,1139  coefficient of lift where the angle of attack equals zero  

(𝑐𝑙𝛼)𝑤  4,2474  slope of the lifting curve of the wing 

 

ih = (ih)f −
cL0
cLα

= −0,0320 rad (11.11) 

 

 Coefficient of pitching moment at zero lift, whole aircraft 
The pitching moment coefficient at zero lift for the aircraft can be found per equation: 

cm0 = (cmac
)
wf
− clhα ∙ ih ∙

Sh ∙ lh
S ∙ c̅

∙
qh
q

(11.12) 

= 0,0162 

 

 Slope of the moment curve of the aircraft 
To find the slope of the moment curve, the neutral point must be calculated first according 

to equation: 

(
xm
c̅
) = (

xac
c̅
)
wf
+
clhα
clα

∙ (1 −
dεh
dα
) ∙
Sh ∙ lh
S ∙ c̅

∙
qh
q

(11.13) 
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= 0,3696 

The slope of the moment curve for the aircraft can be calculated per equation: 

(
dcm
dcl

) = xT − xm = 0,2512 − 0,3696 = −0,1184 [
1

rad
] (11.14) 

 Final pitching moment curve 
Since all the relevant pitching moment characteristics are knows, we now can plot the graph 

for the slope of the wing, wing/fuselage and the whole aircraft. 

The line equation for the pitching moment for the aircraft: 

cm = cm0 + cL ∙
dcm
dcL

= 0,0162 − 0,1184 ∙ cL (11.15) 

This equation is valid only for a fixed stick setting and the forward C.G. 

 

Figure 11.1. Moment characteristics for wing, wing/fuselage and aircraft. 
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12 Required surface area for the Horizontal tail 
 

The required surface area for the horizontal tail will be calculated for the forward and aft 

limit, where the last will have a reserve of ∆𝑥𝑠𝑚 = 0,015 𝑙𝑉𝑂𝑃. 

 

 Balancing at the forward limit 
 

First the stability limit of 1,5% will be defined according to the requirements: 

∆𝑥𝑠𝑚 = 0,015 ∙
𝑙ℎ
𝑐̅
= 0,0422 (12.1) 

𝑙ℎ 4,01 [m]  horizontal tail arm 

Then the pitching moment coefficient of the aircraft with respect to the aircrafts A.C.: 

𝑐𝑚𝑎𝑐 = −0,3 ∙ ∆𝑐𝐿𝑤 = −0,3 ∙ 1,3589 = −0,44312 (12.2) 

 

∆𝑐𝐿𝑤  increase in the coefficient of lift previously calculated   

Not it is possible to calculate the coefficient of lift for the horizontal tail per equation: 

𝑐𝑙ℎ = −0,35 ∙ 𝐴ℎ
1
3⁄ = −0,35 ∙ 4

1
3⁄ = −0,62487 (12.3) 

𝐴ℎ aspect ratio of the horizontal tail 

Finally, the equation for the required horizontal tail: 

𝑆ℎ
𝑆
=
−
𝑐𝑚𝑎𝑐
𝑐𝐿𝑚𝑎𝑥

+ ∆𝑥𝑐𝑔 + ∆𝑥𝑎𝑐 + ∆𝑥𝑠𝑚

{(1 −
𝑑𝜀
𝑑𝛼
) ∙
𝑐𝐿ℎ𝛼
𝑐𝐿𝛼

−
𝑐𝐿ℎ
𝑐𝐿𝑚𝑎𝑥

} ∙
𝑞ℎ
𝑞

∙
𝑐̅

𝑙ℎ
= 0,268 (12.4) 

 

 Balancing at aft limit 
 

(
xh
c̅
) = (

xac
c̅
)
wf
+
clhα
clα

∙ (1 −
dεh
dα
) ∙
Sh ∙ lh
S ∙ c̅

∙
qh
q
− ∆xsm (12.5) 

After rearranging: 

Sh
S
=
(
xh
c̅
) − (

xac
c̅
)
wf
+ ∆xsm

clhα
clα

∙ (1 −
dεh
dα
) ∙
lh
c̅ ∙
qh
q

= 0,207 (12.6) 
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 Determining the required horizontal tail area 

 

The required HT area is chosen as the biggest value. 
Sh

S
= 0,2067 [−]  

Sh = 0,2067 ∙ S = 0,2067 ∙ 12,677 = 2,62 m2 

In the graph below it can be seen the dependency of the location of the C.G. and the 

requirements for the size of the horizontal tail, taking in to account the forward and aft C.G. 

limits. 

 

Table 12.1. forward and after limit for determining the required sizing of the horizontal tail. 
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13 Flight performances 

 

 Required thrust 

 
Thrust was determined, taking into consideration a steady uniform flight n = 1, where drag 

force is equal to the thrust force. 

D = Tp =
1

2
∙ cDi ∙ ρ ∙ vi

2 ∙ S (13.1) 

TSTATIC = 0.85P
2
3(2ρA2)

1
3 (1 −

Aspinner

A2
) (13.2) 

Where Aspinner is the propeller spinner area and A2 is the propeller disc area, see ref [2] 

[
 
 
 
0 0 0 1
VC
3 VC

2 VC 1

3VC
2 2VC 1 0

VH
3 VH

2 VH 1]
 
 
 

{

A
B
C
D

} =

{
 

 
TSTATIC
TC

−ηp ∙ 325.8 ∙ 𝑃/VC
2

TH }
 

 
 

 

To determine the required thrust we need to know the coefficient of drag as a function of 

coefficient of lift for different speed, from the min. value till max. value. The coefficient of 

drag for a given coefficient of lift we can read of the drag polar, and from the equation we 

can find various CL as a function of speed. 

cLi =
G

1
2 ∙ ρ ∙ vi

2 ∙ S
(13.2) 

Optimum speed can be found at the minimum of the required thrust curve or at the maximum 

cL/cD 

Maximum speed Vmax can be found where the Thrust required and the available Thrust cross. 
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 Required propulsive power 

 

 

Figure 13.1. Thrust required vs Thrust available. 

Vmax = 302,4 km/h 

VLDmax = 172,8 km/h 

 

Figure 13.2. Propeller efficiency graph for a constant speed propeller showing efficiency at vmax. 
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Maximum range 

smax =
ηp

g ∙ qf
∙ (
cL
cD
)
max

∙ ln(
1

1 −
mf

m

) (13.3) 

𝑆𝑚𝑎𝑥 =
0,8

9,81 ∙ 54
∙ 14,993 ∗ ln(

1

1 −
230
1478

) = 2239 𝑘𝑚 
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14 Design speeds and envelope working loads 

 

 Design speeds 

 
Cruising speed can be calculated per: 

vc ≥ 2,4 ∙ √
G

S
= 292,28

km

h
(14.1) 

Dive speed can be calculated per:  

vD ≥ 1,25 ∙ vC = 365,34 km/h (14.2) 

 

Stall speed at flight configuration is: 

vs = √
2

ρ ∙ CLmax
∙
G

S
= 104,6

km

h
(14.3) 

Maneuvering speed till a maximum bank angle of 40° is: 

va ≥ vs ∙ √n = 124,21
km

h
(14.4) 

 

Max. speed at flaps (30°) must not exceed load factor 2 at Ude=7,62 m/s. 

 

vf ≥ 1,4 ∙ vs ≥ 1,4 ∙ 104,6 = 146,4
km

h
(14.5) 
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15 Conclusion 

 
A conceptual design of a four seat GA aircraft was proposed. After comparing it to some 

existing aircraft and studied their statistical data. The aircraft was modeled using Autodesk 

Inventor. A constraint analysis showed the required thrust to weight ratios for each 

requirement we have set in order to fulfill the mission profile. We have estimated the 

Maximum takeoff weight as 1565 kg however after a estimated component weight 

evaluation the MTOM was reduced to 1478 kg and the empty mass from before 959 kg to 

872 kg. However, the weight estimation is based on statistical data and trendlines. To 

estimate the components with more detail, a direct weight estimation method would be a 

better choice. This consists for example for the wing, by evaluating the skin, ribs and the 

beam weight separately. For the calculations, the simplified drag model was considered. This 

however considers only part of the drag polar and is to be used only for initial design. The 

aircraft was modeled using Autodesk Inventor Professional 2017. The code for the constraint 

analysis was written in Matlab R2014b. For finding the lift distribution the software Glauert 

III v1.00 was used. All other calculations were done in Microsoft Excel.      
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Matlab code used in constraint analysis  

%% Constraint Analysis 

%% 

%% 

clear global 

close all 

clc 

  

%% Requirements 

%% 

M=1565;                     %[kg] 

MtoS=20:200;                %[kg/m^2]       Weight to wing area ratio range 

239.4015:2777.0574 

AR=9.2;                     %[-]            Aspect Ratio 

n=1/cos(45*(pi/180));       %[-]            Load factor = 1/cos(phi) 

h=2500;                     %[m]            Flight Level(Cruise) 

hceiling=6000;              %[m]            Service Ceiling 

etap=0.85;                   %[-]            Propeller efficiency 

  

%% 

%Lift and Drag coefficients from Table 3-1 (Typical Aerodynamic Characteristics of 

selected Aircraft) 

CDmin=0.025;                %[-]            Minimum drag coefficient 

CDTO=0.035;                 %[-]            Drag coefficient during T-O run 

CLTO=0.7;                   %[-]            Lift coefficient during T-O run 

  

%% 

%Aircraft speed and ground run performance Charakteristics 

vc=320/3.6;                 %[m/s]          Cruise Speed 

vclimb=170/3.6;             %[m/s]          Climb Speed 

vv=7;                       %[m/s]          Rate of climb(ROC) 

vs=107/3.6;                 %[m/s]          Stall Speed 

vlof=118/3.6;               %[m/s]          Lift-off Speed (vs+10%) 

Sg=400;                     %[m]            Ground run 

  

%% 

%Constant values 



rho0=1.225;                 %[kg/m^3]       Air density 

g=9.80665;                  %[m/s^2]        Gravity 

mu=0.04;                    %[-]            Ground friction coefficient 

vvceiling=0.508;            %[m/s]          Minimum acceptable Rate of climb(ROC) 

  

%% Step 1:    Estimation of Oswald's Span efficiency(straight wings) "e" 

e=1.78*(1-0.045*AR^0.68)-0.64; %[-]  %Oswald's Span efficiency 

  

%% Step 2:    Lift-induced drag constant "k" 

k=1/(pi*AR*e); %[-]  %Lift-induced drag constant 

  

%% Step 3:    T/W for Level Constant-velocity Turn 

rho1=rho0*(1-(0.0065/288.15)*h)^4.256; %[kg/m^3] 

q1=0.5*rho1*vc^2; %[N/m^2] 

TtoW=q1*((CDmin./(MtoS*g))+k*((n/q1)^2).*(MtoS*g)); %[-] 

  

%% Step 4:    T/W for a Desired Rate of Climb 

q2=0.5*rho0*vclimb^2; %[N/m^2] 

TtoW2=(vv/vclimb)+(q2./(MtoS*g))*CDmin+(k/q2).*(MtoS*g); %[-] 

  

%% Step 5:    T/W for a Desired T-O Distance 

q3=0.5*rho0*(vlof/sqrt(2))^2; %[N/m^2] 

TtoW3=(vlof^2/(2*g*Sg))+((q3*CDTO)./(MtoS*g))+(mu*(1-((q3*CLTO)./(MtoS*g)))); %[-] 

  

%% Step 6:    T/W for a Desired Cruise Airspeed 

TtoW4=q1*CDmin*(1./(MtoS*g))+k*(1/q1).*(MtoS*g); %[-] 

  

%% Step 7:    T/W for a Service Ceiling(ROC=100fpm) 

rho2=rho0*(1-(0.0065/288.15)*hceiling)^4.256; %[kg/m^3] 

TtoW5=(1./sqrt(MtoS*g))*(vvceiling/(sqrt(((2/rho2))*(sqrt(k/(3*CDmin))))))+4*sqrt((

k*CDmin)/3); %[-] 

  

%% Step 8:    Plotting W/S vs. T/W 

figure('Name','Wing Loading vs. Thrust 

Loading','units','normalized','position',[.25 .52 .4 .4]); 

plot(MtoS,TtoW,'k'); hold on; 

plot(MtoS,TtoW2,'r'); 

plot(MtoS,TtoW3,'-.b'); 

plot(MtoS,TtoW4,'m'); 

plot(MtoS,TtoW5,'b'); 

axis([0 200 0 0.35]) 

grid 

grid minor 

title('Constraint Diagram') 

xlabel('Wing Loading, M/S [kg/m^2]') 

ylabel('Thrust Loading, T/W [-]') 

legend('Turn Requirement','Climb Requirement','T-O Requirement',... 

    'Airspeed Requirement','Service Ceiling','Location','north') 

  

%% Step 9.1: Required Engine Power(kW) 

T=TtoW*M*g;   %[N] 

T2=TtoW2*M*g; %[N] 

T3=TtoW3*M*g; %[N] 

T4=TtoW4*M*g; %[N] 

T5=TtoW5*M*g; %[N] 

  

P=((T*vc)/(etap))/1000;                                                %[kW] 

P2=((T2*vclimb)/(etap))/1000;                                          %[kW] 

P3=((T3*vclimb)/(etap))/1000;                                          %[kW] 

P4=((T4*vc)/(etap))/1000;                                              %[kW] 

P5=((T5.*(sqrt((2/rho2).*(MtoS*g)*(sqrt(k/(3*CDmin))))))/(etap))/1000; %[kW] 

  

figure('Name','Wing Loading vs. Power 

Requirements','units','normalized','position',[.46 .04 .4 .4]); 

plot(MtoS,P,'k'); hold on; 

plot(MtoS,P2,'r'); 

plot(MtoS,P3,'-.b'); 

plot(MtoS,P4,'m'); 



plot(MtoS,P5,'b'); 

axis([0 200 0 300]) 

grid 

grid minor 

title('Power Requirements') 

xlabel('Wing Loading, M/S [kg/m^2]') 

ylabel('Engine Power Required, [kW]') 

legend('Turn Requirement','Climb Requirement','T-O Requirement',... 

    'Airspeed Requirement','Service Ceiling','Location','northeast') 

  

%%  Step 9.2: Required Engine Power(BHP)-Normalized to SL conditions 

sigma=rho1/rho0; 

sigma2=rho0/rho0; 

sigma3=rho0/rho0; 

sigma4=rho1/rho0; 

sigma5=rho2/rho0; 

P_SL=P/(1.132*sigma-0.132);      %[kW] 

P_SL2=P2/(1.132*sigma2-0.132);   %[kW] 

P_SL3=P3/(1.132*sigma3-0.132);   %[kW] 

P_SL4=P4/(1.132*sigma4-0.132);   %[kW] 

P_SL5=P5/(1.132*sigma5-0.132);   %[kW] 

  

% figure('Name','Wing Loading vs. Power at Sea Level'); 

% plot(MtoS,P_SL,'k'); hold on; 

% plot(MtoS,P_SL2,'r'); 

% plot(MtoS,P_SL3,'-.b') 

% plot(MtoS,P_SL4,'m'); 

% plot(MtoS,P_SL5,'b'); 

% axis([0 200 0 300]) 

% grid 

% grid minor 

% title('Power Requirements Normalized to Sea Level') 

% xlabel('Wing Loading, M/S [kg/m^2]') 

% ylabel('Engine Power Required, [kW]') 

% legend('Turn Requirement','Climb Requirement','T-O Requirement',... 

%     'Airspeed Requirement','Service Ceiling','Location','south') 

% hold off 

  

%%  Step 10: Adding Stall Speed Limits 

qstall=(0.5*rho0*(vs^2)); 

CLmax=(1./qstall).*((MtoS)*g); 

  

%% 

figure('Name','Wing Loading vs. Power at Sea 

Level','units','normalized','position',[.052 .04 .4 .4]); 

hold on 

plot(MtoS,P_SL,'k',MtoS,P_SL2,'r',MtoS,P_SL3,'-.b',MtoS,P_SL4,'m', ... 

    MtoS,P_SL5,'b'); 

axis([0 200 0 300]) 

ax = plotyy(MtoS, P_SL, MtoS, CLmax); 

ylim([0 300]) 

set(gca,'yTick',0:50:300) 

set(ax(2),'YLim', [0 3]); 

set(ax(2),'yTick', 0:0.5:3); 

grid on 

grid minor 

title('Power Requirements Normalized to Sea Level') 

xlabel('Wing Loading, M/S [kg/m^2]') 

ylabel('Engine Power Required, P-SL [kW]') 

legend('Turn Requirement','Climb Requirement','T-O Requirement',... 

    'Airspeed Requirement','Service Ceiling','Location','south') 

  

vc_km=vc*3.6; 

vclimb_km=vclimb*3.6; 

vlof_km=vlof*3.6; 
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