
Czech Technical University in Prague
Faculty of Electrical Engineering

Diploma Thesis

Colorization of black-and-white images
using deep neural networks

David Futschik

Supervisor:
doc. Ing. Daniel Sýkora, Ph.D.

January 2018

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických prin-
cip̊u při př́ıpravě vysokoškolských závěrečných praćı.

Declaration

I hereby declare that I created the presented thesis independently and that I cited all used
sources of information in accord with Methodical instructions about ethical principles for
writing academic theses.

V Praze dne
Podpis autora práce

Acknowledgements

I would like to thank my supervisor, doc. Ing. Daniel Sýkora, Ph.D., for initial guidance,
suggesting the used dataset and allowing me to work on this thesis. Furthermore, my
family and friends deserve a big thanks for all the support that I received during my
studies and during the work on this thesis.

Abstrakt

Automatické obarvovańı šedotónových obrázk̊u se v posledńıch letech stalo v́ıce zkouma-
nou oblast́ı, zejména d́ıky rozš́ı̌renému použ́ıváńı hlubokých konvolučńıch neuronových śıt́ı.
Ćılem této práce je pokusit se aplikovat tuto metodu na automatické obarvováńı sńımk̊u
kresleného seriálu. Předchoźı výzkum v této oblasti se zaměřoval předevš́ım na obarvovańı
přirozených obrázk̊u a fotografíı. Kreslené seriály se tradičně obarvuj́ı metodami, které
vyžaduj́ı lidskou asistenci. V této práci je navrženo plně automatické řešeńı, k dosažeńı
kterého použ́ıváme dvě r̊uzné architektury konvolučńı śıtě trénované za použit́ı r̊uzných
chybových funkćı. Trénované varianty porovnáváme na základě źıskaných výsledk̊u jako
jednotlivé obrázky i videosekvence.

Abstract

Colorization of grayscale images has become a more researched area in the recent years,
thanks to the advent of deep convolutional neural networks. We attempt to apply this
concept to colorization of cartoon images obtained from video sequences. Previous similar
research focused mainly colorization of natural images, while colorization of cartoons is
traditionally done by leveraging manual scribble methods. Our proposed method is a fully
automated process. To implement it, we propose and compare two distinct convolutional
neural network architectures trained under various loss functions. We aim to compare
each variant based on results obtained as individual images and videos.

Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 Thesis goals . 2

1.3 Outline . 3

2 Deep Convultional Neural Networks 4

2.1 History . 4

2.2 Basic concepts . 5

2.2.1 Layer . 5

2.2.2 Convolutional layer . 6

2.2.3 Pooling layer . 9

2.2.4 Element-wise layer . 9

2.2.5 Training . 10

2.2.6 Loss function . 10

2.2.7 Dropout layer . 11

2.2.8 Hyperparameters . 11

2.2.9 Normalization . 11

2.2.10 Initialization . 12

2.2.11 Optimization algorithm . 12

2.2.12 Transfer learning . 13

3 Related Work 15

3.1 User provided color hints . 16

3.2 Automatic color transfer . 17

3.3 Using CNNs . 18

4 Dataset 20

4.1 Rumcajs dataset . 20

4.1.1 Format of the data . 20

4.1.2 Method of extraction . 20

4.1.3 Filtering credits . 21

4.1.4 Training and testing sets . 22

4.1.5 Additional remarks . 23

4.2 Difficulty of the set . 24

4.3 Acknowledgement . 25

5 Method 26

5.1 Overall approach . 26

5.1.1 Color space . 27

CONTENTS

5.2 Color channels estimation . 28
5.3 Loss function . 30

6 Network architecture 32
6.1 Pooling layers . 32
6.2 Plain CNN model . 32
6.3 Residual CNN model . 34

7 Training details 38
7.1 Trained variants . 38
7.2 Initializations . 39
7.3 Optimizer . 39
7.4 Training . 39

8 Results and experiments 41
8.1 Testing set results . 41
8.2 Visual comparison of variants . 43

8.2.1 Forms of failure . 44
8.2.2 Variant comparison . 45

8.3 Comparison to color transfer methods . 51
8.4 Possible refinements . 52

8.4.1 Segmentation with flood fill . 52
8.4.2 Ensemble as mean . 53

8.5 Applicability in video . 54

9 Conclusion and future work 56
9.1 Future work . 56

A Contents of the attached CD 60

B Additional results 62

Chapter 1

Introduction

In this thesis, we concern ourselves with the possibility of automated grayscale image
colorization using deep convultional neural networks, trained on and applied to a unique
cartoon dataset.

Generally, the idea of coloring a grayscale image is a task that is simple for the human
mind, we learn from an early age to fill in missing colors in coloring books, by remembering
that grass is green, the sky is blue with white clouds or that an apple can be red or green.

In some domains, automatic colorization can be very useful even without semantic
understanding of the image, the simple act of adding color can increase the amount of
information that we gather from an image. For example, it is commonly used in medical
imaging to improve visual quality when viewed by human eye. Majority of equipment used
for medical imaging captures grayscale images, and these images may contain parts that
are difficult to interpret, due to inability of the eye of an average person to distinguish
more than a few hues of gray [1].

As a computer vision task, several user-assisted methods have been proposed for colo-
rization, be it for natural or hand-drawn images, and expect supplied localized color hints,
or provided reference images that are semantically similar to the target image that we can
transfer color from, or even just keywords describing the image, to search the web for the
reference images automatically.

However, the high-level understanding of scene composition and object relations re-
quired for colorization of more complex images remains the reason developing new, fully
automated solutions is problematic.

Recently, the approach to this task has shifted significantly from the human-assisted
methods to fully automated solutions, implemented predominantly by convolutional neural
networks. Research in this area seeks to make automated colorization cheaper and less
time consuming, and by that, allowing its application on larger scale.

With the advent of deep convolutional neural networks, the task has been getting
increased amounts of attention as a representative issue for complete visual understanding
of artificial intelligence, similar to what many thought object recognition to be previously,
since to truly convincingly colorize a target image, the method needs to be able to correctly
solve a number of subtasks similar to segmentation, classification and localization.

1.1 Problem statement

Consider a color image I - we can decompose such image into two essential components,
luminance and chrominance. With this knowledge, we can express the original image
as I = (Il, Ic). The image can be fully reconstructed given the two components, but having

1

2 CHAPTER 1. INTRODUCTION

either of the components alone is incomplete. Luminance images can still be viewed and
appear naturally, since this component conveys most of the visual information, such as
object edges and lighting effects.

Example of such decomposition can be observed in Figure 1.1, notice that the lumi-
nance component is what is commonly known as a grayscale image, and in some contexts,
the two concepts overlap.

(a) (b) (c)

Figure 1.1: Color image (a) decomposed into (b) luminance and (c) chrominance in the
Lab color space.

The problem this thesis attempts to explore is one where the grayscale Il is available,
but Ic is not known and must be derived automatically. For each pixel of the grayscale
target image, we look for a color value to assign to this pixel. This estimation is com-
monly performed in the Lab color space, as it attempts to maximize the decorrelation of
luminance and chrominance channels. In other words, we seek to learn a mapping

P̂ = F(P) (1.1)

from the pixels P ∈ RH×W of the grayscale image to the associated color channels
P̂ ∈ RH×W×2.

Notice that this problem is necessarily multimodal in its nature, as there are multiple
plausible colorizations of many objects. We state that there is no one correct solution - in
fact, almost any object can take on a wide range of colors. However, the colorization can
be dependent on the context hidden within the scene which the object is a part of.

As such, even comparing two resulting colorizations can be difficult, since there are
many methods to defining an image distance function, and traditional metrics penalize
plausibly but incorrectly colorized images. For instance, when comparing an image of
a car that is colored blue, but appears red in the ground truth image, most metrics
will calculate high error rate. Thus, colorization results require subjective inspection, as
deciding whether an image is plausibly colored via automated means is a problem nearly
as difficult as colorization itself.

1.2 Thesis goals

In this thesis, we investigate colorization on a specific subset of images extracted from a
cartoon movie. It is common for cartoons to be drawn without colors, but the presence of
color greatly increases the visual appeal of the movie. Traditionally, the colors are added
later on in the creative process by scribble based methods, which require considerable
effort on the part of the user. Automatic colorization would lead to increase in the creation

1.3. OUTLINE 3

pipeline throughput, saving artists the time spent on colorization while requiring limited
amounts of intervention.

The main goal of the thesis is to determine whether it is possible to use convolutional
neural networks for fully automated colorization of black-and-white (grayscale) cartoon
images plausibly, as standalone images and when put into video sequences. These images
fundamentally differ from natural images by containing fewer textures, making the task
of inferring semantic information harder.

To achieve this, we propose several variants of convolutional neural networks and com-
pare their performance on the data, using two distinct neural network architectures; one
more traditional, plain convolutional network, and one inspired by residual convolutional
neural networks, which has not been used for colorization previously.

1.3 Outline

First, in Chapter 2, we provide an introduction into the domain of convolutional neural
networks for the reader, focused on the concepts important for this thesis, along with
brief historical context. Then, in Chapter 3, we present a comprehensive overview of work
related to the task of colorization, including manual scribble methods, automated color
transferring methods and research using convolutional neural networks. In Chapter 4,
we describe the used dataset, give reasons for choosing the Rumcajs dataset and provide
details about its extraction, composition and comparison to natural image datasets.

The method of our colorization is described in detail in Chapter 5. In Chapter 6,
we define the two particular neural network architectures used in this thesis, complete
with particular layers and hyperparameters and in Chapter 7 we provide details about all
the trained variants and the process of their training. Chapter 8 contains overview and
discussion of results, where we present side-by-side comparisons for all trained variants and
compare our method to current automatic color transfer methods. In Chapter 9 the work
is summarized, and we express thoughts about possible future extensions to it. Appendix
A contains detailed description of supplementary material provided on the attached CD
and Appendix B contains additional image results generated by our networks.

Chapter 2

Deep Convultional Neural
Networks

This chapter explores previous work related to deep convolutional neural networks. We
first describe brief history of the concept, mentioning the most important milestones and
work relating to this thesis. Then, we outline and explain basic concepts surrounding
convolutional neural networks we used for the task.

Convultional neural networks are a class of neural networks which contain convolutio-
nal layers. They are most commonly used in image related tasks, and though their use is
not strictly limited to the image domain, it is commonly expected that they will operate
on 2 or 3 dimensional data.

2.1 History

Since 2012, convolutional neural networks (often shortened to ConvNets, CNNs, dCNNs)
have taken the world by storm, despite not being entirely new technology. In fact, the
first documented commercial use of CNNs dates back to 1998, with LeNet-5. Designed
by LeCun et al. [2] after spending years researching CNNs, it was used for text character
recognition based on 32x32 pixel images. This area of computer vision has been practically
dominated by CNNs since then, surpassing results obtainable by other machine learning
methods.

However, large scale application of CNNs would not be possible until at least a decade
later, just as computational power needed to train efficiently became more accessible and
memory less restrictive, researchers started using CNNs more widely and found that CNNs
could be leveraged even when applied to larger image datasets.

The CNN boom is famously attributed to 2012 ImageNet Large Scale Visual Recog-
nition Challenge entry of Alex Krizhevsky et al. [3] and their AlexNet. When this CNN
based model won that year’s image classification challenge by a significant margin, it took
most of the computer vision research community by surprise and sparked a large amount
of interest.

Following this event, CNNs have quickly started becoming a staple in the computer
vision field and many others. They have been successfully applied to countless problems,
such as image recognition, video sequence tracking, automatic image segmentation, facial
recognition, handwriting to text conversion [4], natural language processing or automated
translations [5].

CNNs have proven to be models that are able to learn very complex mappings of inputs
to outputs from large amounts of data, functioning as automatic data encoders. In the

4

2.2. BASIC CONCEPTS 5

case of image recognition (classification) challenges, CNN models have shown dominance
ever since 2012, pushing the state of the art every year in the process.

Year 2014 brought the 16 layers deep VGG-16 and the 22 layers deep GoogLeNet
models, both of which surpass the projected human error in the image classification task
on the ImageNet dataset (with later refinements). They are still frequently used today,
especially as starting points to use for transfer learning or for building classifiers, using
them as feature extractors.

A year later, in 2015, Microsoft Research Asia introduced an alternative architectural
approach to traditional (plain) convolutional networks, called residual networks (shortened
to ResNets), achieving state-of-the-art accuracy on ImageNet classification. This archi-
tecture allowed the team to significantly increase the depth of their networks, the best
performing model consisted of 152 layers [6].

2.2 Basic concepts

Here, several basic concepts are introduced. This section is meant to serve as a reference
to how these terms are used in this thesis or as a brief introduction into ideas behind
CNNs.

2.2.1 Layer

CNNs are composed of smaller building blocks called layers. Each layer acts as a single
step in the overall input to output transformation. These layers can take on many forms
and may serve a multitude of purposes. Traditionally, a layer takes an input, such as an
array representing an image, and produces an output, realizing a function of the form:

y = σ(Wx+ b), (2.1)

where x ∈ Rn and y ∈ Rm are the inputs and outputs of the layer, respectively, W ∈ Rm×n
are the weights associated with the layer, b ∈ Rm is the bias vector, which serves as an
additive component to the transformation, and σ : R → R is a non-linear per-input
activation function.

A layer can optionally take more than one input and produce more than one output,
which can be represented as a concatenation of the inputs or outputs to produce a single
input or output.

Weight matrix and bias vector are also called the parameters of the layer, and are
learned through back-propagation of loss calculated as the error between the network’s
prediction and training data ground truth label[7].

The activation function provides the network with the ability to learn non-linear map-
pings, as the weight and bias components are only able to produce linear transformations.
The most common examples of activation functions include the sigmoid function:

σ(x) =
1

1 + e−x
(2.2)

a hyperbolic function, such as hyperbolic tangent:

σ(x) = tanh(x) (2.3)

and in the case of CNNs especially, the Rectified Linear Unit (ReLU) function:

σ(x) = max(0, x) (2.4)

6 CHAPTER 2. DEEP CONVULTIONAL NEURAL NETWORKS

Each of these functions will result in non-linearity being introduced into the network.
Note that it is also possible to represent the activation function as a separate layer with
identity matrix W and a zero vector b, and that this is a common practice in many CNN
frameworks.

2.2.2 Convolutional layer

Convolutional (conv) layers are the basic layers used in CNNs (hence the name). They
represent the convolution operation performed on input with weights as parameters of the
convolutional kernel, in the 2 dimensional case:

yi,j =

i+b k
2
c∑

m=i−b k
2
c

j+b k
2
c∑

n=j−b k
2
c

xm,nWm−i+b k
2
c,n−j+b k

2
c + bm−i+b k

2
c,n−j+b k

2
c (2.5)

where k is the size of the convolution kernel (also called filter), assuming it is odd (com-
putation is ambiguous for even sizes and is therefore implementation dependent) and W
and b simply run from the first index to the last. As we can see, the weights are stored
per kernel and not per input, meaning that the layer does not need to have a fixed size
input, acting as a sliding window. The weights are spatially identical for all parts of the
input, which makes convolutional layers shift invariant.

The two dimensions are often called width and height, just like in an image.

Figure 2.1: Visual explanation of convolutions

As we can see from Figure 2.1, a convolution’s main hyperparameter is the size of
its kernel. This size is usually given as a single number, or writen as a multiplication,
e.g. 3 × 3 for a kernel of size 3. In theory, the size can be non-square, however, it is not
practical for the purposes of this thesis to consider such cases.

As far as the output is concerned, there are several hyperparameters traditionally as-
sociated with a convolution layer. First, a layer generally does not consist of a single
kernel, but several kernel filters are learned instead, and their outputs spatially conca-
tenated (stacked) into a 3 dimensional volume. This hyperparameter is called number
of outputs. If connected to another convolutional layer, the latter layer then treats the
concatenated dimension as a fixed size dimension (also called depth) and learns its filters
along the full length of depth. For example, if a convolution layer calculates its outputs
on a 256× 256 image and contains 64 filters, the output will be of shape 256× 256× 64.
Should another convolutional layer ”sit on top of” this one and have kernel size of 3, its
convolution kernel filters will be of shape 3× 3× 64.

2.2. BASIC CONCEPTS 7

The convolution calculation does not need to be perfomed for every point of input,
for example, we can skip every nth input point in either direction. This concept is called
stride - in this example we are computing the output with stride of n+ 1. A convolution
without any striding applied is said to have a stride of 1. Stride is an important concept,
as it essentially allows us to downsample input resolution through convulution quickly.

Upsampling on the other hand can be implemented by transposed convolution, where
the input matrix is spread out by zero padding, producing output resolution higher than
the input resolution (can be thought of as having stride lower than 1).

We can also notice that convolutions cannot be calculated around the edges of the
input, as there are no values to calculate with. As a result, the output will thus be bk2c
smaller along each edge, for example, given a 256 × 256 input, performing a convultion
with kernel size of 7 will result in an output size of 250 × 250. To counteract this effect,
padding is added to the input, such that we can calculate the output even for edge points.
This padding can be simply zero filled, as is most commonly used, or we can wrap the
inputs around the other side.

The final formula for calculating the output size is:

wO =
wI − k + 2p

s
+ 1, (2.6)

where wO is the width of the output, wI is width of the input, k is the kernel filter
size, p is the size of edge padding and s stands for stride. The calculation is analogous for
height.

Initially, CNN models used wide ranges of k values, though generally not greater than
11× 11. For example a common choice for low level feature layers was k = 7 as proposed
in [3]. In recent years, filters of size 3 × 3 seem to be dominating in most models, some
models choose to use 3 × 3 kernels exclusively [8]. One notable exception here is the
GoogLeNet model, which builds on the idea of using filters of multiple sizes on the same
input data and concatenating the results, which essentially lets the training process learn
which values of k produce the most useful information [9].

A network in which many convultional layers are stacked on top of each other is called
a Deep convolutional neural network, or a deep CNN, though it is not a precise term;
there is no definition of how many layers need to be present in order for a network to be
called deep.

Dilated convolution

More complex schemes of convolution have be devised, such as the recently introduced
concept of dilated convolutions (also known as ”atrous” convolution). Instead of using
contiguous neighboring inputs to calculate the output value of a convolution operation,
we insert gaps of size d ∈ N0 between the inputs. This hyperparameter is called the
dilation of convolution. Normal convolutions have dilation of 0 (some sources define
regular convolution dilation to be 1). In Figure 2.2 we can see a visual explanation of the
operation. Dilation allows convolution layers to have larger effective receptive field while
retaining a lower amount of parameters. Using this technique has been shown to help
alleviate overfitting as well as improve performance [10].

Effective receptive field

A single convolutional layer with a kernel of size k can only encode relations between its
inputs in k×k patches. The inputs are connected in a local region, in case of a kernel size

8 CHAPTER 2. DEEP CONVULTIONAL NEURAL NETWORKS

Figure 2.2: Visual explanation of dilated convolutions, yellow cells are inputs to be
convolved with the kernel to produce the value of the red output cell

of 3 on an image, we can only hope to represent connections between pixels not further
apart than 2 pixels. As this would be rather limiting, convolutional layers are put in a
sequence.

When we stack convultional layers on top of one another, the effective reach of con-
nections increases, in the example of 3×3 kernel, two stacked layers would yield a function
of a 5× 5 patch of the original input as the final output, since the second set of convolu-
tions operates on inputs that are the outputs of the previous convolution. This concept
is called the effective receptive field of the network and can be viewed as the size of
the field of initial inputs that can influence a final output. Some sources also refer to this
concept as field-of-view.

It is important to realize that not every input, even if it falls into the receptive field
of an output, will be able to influence the output in the same way, as shown by Luo et
al. [11]. Intuitively, the input units (pixels or voxels) spatially closer to the output units
can influence it more significantly, as they are used in more convolution calculations when
computing the output’s value. When the effective receptive field is mentioned in regards
to a network, it is understood as the size of the field of an arbitrary output in relation to
the network’s inputs.

Effective receptive field is a critical concept when considering CNN architectures, as it
provides a way of reasoning about individual outputs.

It follows naturally that the receptive field of a CNN can be increased by employing
different methods. Every method tends to have advantages and disadvantages, some
more severe than others. The simplest means of increasing the receptive field is to stack
more layers. This comes with the huge downside of significantly impacting training times
and increasing memory requirements (though this is framework dependent), as well as,
generally, increasing the number of epochs needed for training to converge. However, on
the flip side, this method increases the number of spatially independent parameters in the
network as a side-effect, which can be beneficial to increasing accuracy if overfitting is
accounted for.

Another technique is using subsampling, either through increasing the stride of some
convolutional layers or by pooling. Through reducing the size of one layer’s output, we

2.2. BASIC CONCEPTS 9

are effectively ”packing” or ”compressing” those pixels into a smaller spatial area, which
means that successive layer’s receptive field will increase to a larger patch of the original
input. Subsampling has the advantage of spatially decreasing the size of inputs, which
translates into improved training times, and can help with overfitting, as it is more likely to
force the network to generalize, even though it does not necessarily reduce the parameter
space. On the other hand, subsampling can make certain features harder to extract due
to lowered resolution - typically subtle details in input images and smaller objects become
lost in the process.

A relatively recent and popular method of enlarging the receptive fiend is using dilated
convolutions. Most commonly the dilation is set to a small number, as the beneficial effect
seems to diminish quickly with increased dilation. The biggest advantage to using dilated
convolutions is the ability to expand the receptive field without losing resolution, unlike
increasing stride or pooling. Dilated convolutional layers allow us to quickly grow the
effective receptive field, much more aggressively than non-dilated convolutions.

Note that the receptive field of a single layer is equal to the size of its filters, as that
is the extent of the inputs that contribute to individual output’s value.

2.2.3 Pooling layer

Pooling layers represent one method of resolution reduction in CNNs, which serves as
a way of increasing the effective receptive field of the network. Their functionality can
be intuitively described as applying a function to a local field, producing a single value.
Traditionally, pooling layers have predefined filters and no trainable parameters. Common
examples include the maxpooling layer, which calculates its value as:

yi,j =
ik+k−1
max
m=ik

jk−1
max
n=jk

xm,n (2.7)

Maxpooling layer is taken as the default pooling layer and in most contexts it is referred
to simply as the pooling layer.

Notice that the pooling is very ”destructive” toward its input data, plainly dropping
information in the process of producing output. In the image classification tasks, this is
not considered harmful, because the final output of the network is not directly proportional
to the size of the input (sans receptive field size). In fact, using pooling layers often helps
prevent overfitting. However, in tasks like colorization or segmentation, using pooling
layers can result in negative influence on final accuracy, as the resolution of the output is
directly proportional to the size of input.

2.2.4 Element-wise layer

Element-wise layers are basic operations which take n inputs of the same shape and per-
form a function in an element-wise fashion. These functions are most commonly mul-
tiplications or additions, but can also include max or min function. The output for 2
dimensional case is calculated as:

yi,j = f(x1i,j , x2i,j , . . . , xni,j) (2.8)

where f stands for the function peformed.

10 CHAPTER 2. DEEP CONVULTIONAL NEURAL NETWORKS

2.2.5 Training

Collectively, parameters of all layers in the network combined are called network’s para-
meters or network’s weights. These parameters need to be learned from user provided
data, and the process of acquiring the weights is called training.

Weight adjusting in CNNs is done through a process of backpropagation. Back-
propagation can be summarized in four steps: the forward pass, the loss function, the
backward pass and the weight update.

During the forward pass we take a training example x and pass it through the network’s
layers to obtain the prediction. Based on this prediction, we calculate the error between
the prediction and the ground truth label of the training example, measured as the value
of a chosen loss function. We call this value the Loss of the network, given example x.

Since our goal is to minimize Loss, we need to update the weights in all layers of the
network, which is why we perform the backward pass. We calculate the discrete partial
derivatives between the network’s weights the loss function output as dLoss

dW , and in the
weight update step, we update the weights as follows:

w = wi − η
dLoss

dW
(2.9)

where η is the learning rate hyperparameter and wi stands for the current weights.
This concept is applied to every layer in the backward direction of the forward pass, repla-
cing dLoss for partial derivatives of the previous layer in every step. In practice, update
Formula 2.9 will be more complicated, as it has been gradually improved as more research
has been carried out and is influenced by the optimization algorithm’s hyperparameters
[12].

This implies the requirement for a known label for every point of training data, which
means that CNNs are a method of supervised learning. For example, if we are training
the network to predict an object’s type from an image, for every image in the dataset we
must know its correct classification in advance.

2.2.6 Loss function

A network’s loss (cost, objective) function is defined as a function of its prediction and the
ground truth. The value of this function measures the error of the prediction in relation
to the predefined label and is essential to training the network.

The function can be custom-tailored to the task the network is supposed to learn, but
in practice, there are several commonly used functions, such as Euclidean L2 norm, or
cross-entropy loss.

A loss function must conform to two assumptions in order to be applicable in any
learning algorithm used today. First, we must be able to decompose the loss of the entire
training set into an average of loss functions of individual training examples:

F =
1

n

∑
x

Fx (2.10)

this assumption is necessary in order to be able to compute partial derivatives of the
loss function for a single training example to use in the backpropagation algorithm and
still be able to make the assumption that averaging over those partial derivatives will yield
the differences of the whole data set. This data-iterative optimization is called stochastic
gradient descent (SGD).

2.2. BASIC CONCEPTS 11

The second assumption is that it must be a function of the networks output, which is
also implied by the definition.

Note that iterating over all examples too many times tends to result in overfitting -
the weights learn to encode the training dataset rather than generalize well on unseen
examples, especially if the dataset is small and parameter space is large.

2.2.7 Dropout layer

A technique developed to help prevent training data overfitting is including dropout
layers. These layers do not have any parameters, but instead randomly set previous
layer’s activations to zero with a probability equal to their dropout ratio hyperparameter
setting.

This forces the training process to incorporate a degree redundancy into the learned
model, which prevents too much co-adaption. After training, dropout layers are removed
to take advantage of the full predictive power of the network. Using these layers has been
shown to improve performance on tasks where overfitting is a problem.

Common dropout ratios for convolutional layers range between 0.1 and 0.3. [13]

2.2.8 Hyperparameters

Hyperparameters of a network are any parameters which affect the whole network, whereas
parameters of the network refer to layer weights. Individual layers may also have their
hyperparameters, such as the size of convulutional kernels in the case of convolutional
layers.

Some hyperparameters are closely linked to network’s architecture , which describes
the overall layout and connectivity between layers, such as number of layers, chosen non-
linearity functions or input to output size ratio. Others influence the training phase -
these include optimization algorithm choice, weight initialization method, weight decay
multiplier, learning rate or momentum.

Two important training hyperparameters here are the number of epochs, which regu-
late how many times the network will use each example to update its weights (one epoch
translates into passing each example once) and the batch size, which controls the number
of training examples for which weight updates are accumulated before being applied. Ba-
tching is performed to take advantage of hardware parallelism during training phase, but
larger batch sizes have been shown to slow down convergence rate [14].

Tuning these hyperparameters can prove to be quite a difficult task, and may appear
to be more of an art rather than exact science.

2.2.9 Normalization

When training a CNN, there are two types of normalization that are commonly performed.
The first type deals with input normalization, making sure that any input that enters the
network is clamped or rescaled to the same ranges. This is necessary because of the global
learning rate hyperparameter; if some inputs operate on a different scale of values, it is
significantly harder to train evenly.

In addition, it is beneficial to scale all inputs into a 0-1 range. There are several reasons
for this, normalization leads to improved convergence speeds, as the absolute size of inputs
will have to be adjusted for by tuning the learning rate of the network, and higher learning
rate values can lead to weight oscillation. Another reason is purely technical - considering
that weights are commonly represented as double-precision floating-point numbers, making

12 CHAPTER 2. DEEP CONVULTIONAL NEURAL NETWORKS

use of the denormalized interval can improve accuracy, as it allows parameters to learn
more finely.

Optionally, we can subtract the mean of the training data to center the values around
0, which has also been shown to improve convergence rates.

The second type of normalization deals with internal covariate shift. During the trai-
ning of a network, the distribution of each of network’s input’s absolute values are likely
to change as the parameters of previous layers change. This slows down the training
by requiring frequent modifications of the learning rate and the effect is especially pro-
nounced when using the ReLU activation function, as it does not naturally normalize its
outputs. The mechanism that has shown to be effective at combating these ”exploding”
(or vanishing analogously) outputs is called Batch Normalization [15].

We can make the batch normalization step a part of the architecture itself, and perform
the normalization on a per-layer basis, or between every block of layers. The normalization
is normally done by subtracting the expected value and dividing by the standard deviation.
These values are calculated and stored as a statistic across each batch of the training.

2.2.10 Initialization

In order to begin training the network, initial weights are required as a starting point to
update from. Weight initialization has severe effects on the convergence rate and improper
initialization can lead to vanishing or exploding gradients. Common initializations include
zero-weight initialization, however, this turns out to be detrimental to the convergence
rate (and in some cases it may cause the network to never converge), because performing
forward pass can completely negate any effect that input has on the outputs.

In practice, a good initialization is using random weights, normalized for the size of
input and output, as shown by Glorot and Bengio [16], called Xavier initialization:

W = rand(N (0,
2

nin + nout
)) (2.11)

where n stands for the size of the layer’s inputs and outputs and function rand genera-
tes random samples from the normal distribution. This initialization produces numbers of
small absolute value, both positive and negative, which introduces the asymmetry lacked
by zero-weight initialization.

Recently, there has also been development in training-data-dependent initialization
by Philipp Krähenbühl et al. [17], based on unsupervised learning algorithms. This
approach has also been shown to significantly improve convergence rates and to produce
initializations under which majority of units in the network train at roughly the same rate,
which helps avoid vanishing or exploding gradient problems and prevents huge variances
in per-parameter learning rates in optimization algorithms which support it.

2.2.11 Optimization algorithm

Optimization algorithm, also called the solver, is the algorithm used to actually update
weights in accordance with Formula 2.9. Updating the weights without any modifications
to the formula results in regular SGD algorithm, which has been observed to have several
problems.

To deal with those, varying concepts are employed. One is that of a momentum;
SGD optimization may be very slow when encountered with ravines such as those around
local minima. Adding a momentum term helps keep SGD optimizing in roughly the same

2.2. BASIC CONCEPTS 13

direction, if possible, and prevent oscillations. With the momentum term, Formula 2.9
changes to:

w = wi − ui (2.12)

ui = γui−1 + η
dLoss

dW
(2.13)

where γ is called the momentum coefficient and ui is the current velocity vector, which
is of the same size as the updated weights - there is a separate parameter for each weight,
allowing SGD to update individual weights using steps of varying magnitudes.[18]

Numerous other algorithms that deal with the different problems SGD suffers from
have been devised, often building on top of the previous improvements.

Adam (Adaptive Moment Estimation) is undoubtedly the most popular algorithm for
updating weights when training CNNs currently. Adam computes an adaptive learning
rate for each parameter separately, effectively expanding the idea of a global learning rate
to weights (though a global learning rate is still used as a multiplier) and greatly reducing
the benefits of manual adjustments of the learning rate during the training process. In
addition, Adam stores an exponentially decaying average of previous gradients, an idea
very similar to momentum:

mi = β1mi−1 + (1− β1)
dLoss

dW
(2.14)

vi = β2vi−1 + (1− β2)(
dLoss

dW
)2 (2.15)

mi and vi are thus moving averages that estimate the first two moments of the per-
parameter gradients (mean and uncentered variance). Hyperparameters β1, β2 control the
exponential decay rate of these averages. However, since these averages are initialized to
vectors of zero, the estimates are biased towards zero, especially during initial steps. To
counteract this, the estimates are bias-corrected to:

m̂i =
mi

1− βi1
(2.16)

v̂i =
vi

1− βi2
(2.17)

These bias-corrected estimates are then used to normalize the gradients and multiplied
by the global learning rate to update the weights [19]:

Wi+1 = Wi −
η√
v̂i + ε

m̂i (2.18)

Since the Adam algorithm is the only one used in our work, we limit ourselves to
describing only this optimizer.

2.2.12 Transfer learning

It is not always required to train the network from random initialization values, many
newer networks use a pretrained model as its initialization instead. When training a model
that deals with a similar problem as an already trained network, this can be extremely
beneficial, increasing convergence rate and improving performance.

One disadvantage of doing so is that it imposes constraints on used network architec-
ture, as the weights that are fine-tuned from are generally locked into a specific structure.

14 CHAPTER 2. DEEP CONVULTIONAL NEURAL NETWORKS

It is, however, possible to use only some layers (typically the initial ones) of a reference
model and build new layers on top of them.

The already-learned layers might be frozen during training (receiving no weight upda-
tes), or have reduced learning rates (receiving damped weight updates) to preserve their
properties. This technique is called transfer learning or fine-tuning.

Chapter 3

Related Work

This chapter is dedicated to creating an overview of previous work in the field of automatic
colorization, with particular focus on works that have inspired, influenced and helped shape
this thesis.

In general, working with color channels in images is a rather well studied and surveyed
area. However, compared to other similar problems, the idea of generating some or all of
the color information given other data is one that has seen relatively limited amount of
widespread application and, conversely, research. However, it is quickly becoming one of
the more popular image-to-image tasks in the computer vision field, with several works
published in the recent years using various approaches.

Countless algorithms that are not considered colorization methods, but rather mere
color enhancements which aim to improve existing poor color information or modify the
color palette of an image are worth mentioning in this section, as they serve as a sort of a
precursor to full colorization techniques. The goal of these methods is to take images with
color data as their inputs and transform them into images with better visual properties.
Often they serve to remedy certain camera defects, such as overexposure or underexposure
contrast adjustment through histogram equalization[20], as shown in Figure 3.1.

The simple transformations performed by these non-parametric methods are frequently
used to describe behaviors of other, more complex algorithms, even in the domain of
CNNs. It is for example possible to say that one of the transformations performed by a
CNN resembles histogram equalization.

(a) (b)

Figure 3.1: (a) Overexposed image. (b) Image after color enhancement using histogram
normalization.

15

16 CHAPTER 3. RELATED WORK

When considering full image colorization, there are generally three major types of
approaches that have been used. Firstly, a non-parametric approach, in which the user
provides hints to an algorithm as to what the final colorization should look like. These
hints come in the form of scribbles - small patches of color in specific areas of the image.

More automated methods developed still rely on additional user input, but instead of
providing direct color data, the user is expected to provide one or more reference images
from which to perform color transfer onto the target image using statistical data or
texture matching.

Recently, with the advent CNNs, the approach has shifted more towards a fully auto-
mated solution, where the only input provided by the user is the target grayscale image.
However, this enormous advatage can also turn into a disadvantage - in case the CNN re-
sult turns out to be unsatisfactory, there are few to no options to easily remedy it trivially,
unless the model has been specifically designed with this requirement in mind.

3.1 User provided color hints

Colorization methods that depend on color scribbles generally use an optimization frame-
work without explicit parameter learning to propagate the color from the color patches
onto the whole image. The scribbles are usually provided as a separate image in the form
of a color-transparency mask, and the segments of the image that have no explicit color
defined in this mask should have color information propagated to them. The basic as-
sumption behind most of these methods is that nearby pixels of similar intensities should
also have similar colors.

In the method proposed by Levin et al. [21], the colorization is achieved by solving a
convex quadratic cost function obtained as differences of intensities between neighboring
pixels. With further improvements by Huang et al. [22] to exploit edge detection in order
to reduce common problems with color bleeding over object boundaries, this has become
a relatively popular technique to interactively colorize natural images.

Luan et al. [23] presented a method extending the use of scribbles to texture simila-
rity, automatically labeling pixels that should share roughly similar colors and grouping
them into coherent regions. They extend the color locality assumption, seeking remote
pixels with similar textures to color alike to effectively propagate the colorization, further
improving the technique. A similar approach to transferring the color from scribbles, in-
troduced by Qu et al. [24], is extracting statistical pattern features of local neighborhoods
to measure texture continuity, resulting in fewer scribbles required.

A completely different method of optimization was introduced by Sýkora et al. with
LazyBrush [25], along with relaxing the requirement of complete spatial accuracy of scrib-
bles for the purposes of cartoon image colorization, by solving a multiway cut problem

(a) Target image (b) User created scribbles (c) Resulting image

Figure 3.2: Example of Levin’s method

3.2. AUTOMATIC COLOR TRANSFER 17

on a graph defined over image’s pixels with edge weights calculated based on neighboring
pixels’ relative intensity levels, which, unlike the other algorithms, works well on images
with large homogeneous regions.

As apparent from Figure 3.2, these methods can require significant amounts of user
input. The advantage that they provide is in the ease of result refinement, as changing or
adding more scribbles can effectively propagate the desired colorization.

3.2 Automatic color transfer

Much like scribble-based methods, algorithms which perform image-to-image color trans-
ferring expect the user to provide extra inputs. Simpler methods only transfer coloring
onto the target image from a single image, though it is more common to define a set
of images which serve as references for color extraction based on statistical properties.
Some algorithms choose to process the target image with color enhancement algorithms
discussed previously, to remove effects such as varying illuminance [26] or enforce global
properties of the result, such as a desired or known color histogram [27].

Most algorithms extract various image features from the set, such as SURF, Gabor,
patch or Daisy descriptors, and learn a mapping of these features to color channel data.
These descriptors are then also extracted from the target image and mapped color distri-
butions are transferred onto the regions that the obtained descriptors represent, such as
in the work of Welsh et al. [28], who propose a method in which the features selected are
the luminance value and statistical properties of 5× 5 local neighborhood. Each pixel in
the target image is matched to a set of these features extracted from the source image.

The set is produced by jittered sampling or using manually defined rectangular samples.
After the best matching features are found, the color information is transferred onto the
target pixel. The luminance channel remains unchanged, as is common to most colorization
methods.

Gupta et al. [29] improve this approach by using a number of more advanced features
which have rotational invariance and are extracted at multiple scale levels of the image.
They attempt to make their method close to fully automated by running a web search
on popular image sharing websites, based on keywords provided by the user instead of
requiring reference images, acquiring semantically relevant results. The retrieved images
are scored based on their colorfulness and non fitting images, such as grayscale or images
with filtering effects applied, are discarded, creating reference image sets of up to 2000
images.

Similarly, Chia et al. [30] choose to perform an automated web search in conjunction
with user provided foreground-background segmentation cues. This provides the user
with more control over the resulting colorization, while retaining the automated nature
of image-to-image color transfer. Liu et al. [26] automatically generate scribbles from the
reference images obtained from the web and propagate them by using Levin’s method,
combined with automatic segmentation.

In Deep Colorization by Cheng et al. [31], a large dataset is divided up into smaller
clusters based on global descriptors such as intensity histograms. For each cluster, a
neural network consisting of 3 fully connected layers is trained, using multiple local feature
descriptors computed at random pixel locations from images in the reference set as training
data. The result is obtained as per-pixel colorization prediction of the network which has
been trained on the reference set that most closely matches the target image based on the
global descriptors, instead of explicitly defining the color transferring method.

Deshpande et al. [27] minimize an objective function automatically learned from ex-

18 CHAPTER 3. RELATED WORK

ample sets and subsequently train a forest of regression trees for color prediction, using
multiple image filters to handle scale invariance. To choose good reference images and
choose the used trees, bag-of-features retrieval on the training set is used.

While these methods generally require less from the user compared to scribble-based
methods, they make it more difficult to influence the colorization output, due to reliance
on data that are not straight-forward to interpret by visually inspecting the reference
image set - such as feature descriptors.

3.3 Using CNNs

All methods described previously, with the exception of Deep Colorization, require some
form of user assistance, which reduces their theoretical throughput for large scale colori-
zation and can make them inconvenient to use, possibly resulting in having to resort to
trial-and-error in order to obtain a satisfactory result. Given that their running times
are generally in orders of minutes, that makes them not suitable for colorizing too many
images.

However, with the CNN boom described in Section 2.1 some researchers started tackling
this to a higher degree of success as a fully automated process by training CNNs on large
datasets such as SUN or ImageNet. Currently, these methods are the state-of-the-art for
natural image colorization.

It is worth noting that even the application of CNNs to this task can be viewed as a
form of automatic color or style transfer - with the references automatically pre-selected
by the choice of the original CNN training set - using a complex method learned and
realized by the network. However, by using training set which contains a large variety of
semantically different scenes and commonly occurring objects (such as ImageNet), it is
expected that the chosen color transfer should be the best matching one.

Zhang et al. [32] propose a plain CNN with 22 convolutional layers on a subset of the
ImageNet dataset, employing a custom tailored multinomial cross entropy loss with class
rebalancing based on prior color distribution obtained from the training set to predict a
color histogram for each output pixel to handle the multi-modal nature of the task.

Similarly, Larsson et al. [33] also predict a color histogram, however, they choose to
use a 16-layer convolutional model attached to a fully connected hypercolumn layer to
predict pixels’ chromatic values, pretrained on image classification task and fine-tuned for
colorization. Rather than train densely and predict the colorization of the whole image in
one pass, the CNN is trained on spatially sparse samples of grayscale patches of size equal
to the receptive field of the network, predicting the color value of the central pixel. Larsson
et al. also explore the possibility of transferring a known ground truth color histogram
(as a global descriptor) to improve the colorization.

Iizuka et al. [8] propose a network which combines two paths of computation, one
to predict the global features of the target image and the other to specialize in local
features. To achieve this, the global features are trained for image classification rather
than colorization and are subsequently concatenated to the local features that are trained
directly for colorization using L2 Euclidean loss function. This technique allows their
model to gain a higher semantic understanding of the image, producing very consistent
colorizations.

Recent developments in the field of conditional generative adversarial networks (GAN),
a model in which two distinct networks are trained - a generator and a discriminator - have

3.3. USING CNNS 19

lead researchers to attempt to use them for colorization. In the domain of colorization,
the generator is used to produce a colorized image of the target grayscale image, and the
discriminator is then trained to decide whether the generated image looks more convincing
than the ground truth coloring. If that is not the case, the weights of the generator are
updated in the direction of making the image more convincing for the discriminator,
essentially using the discriminator as an adaptive loss function [34].

Cao et al. [35] show application of GAN to colorization of natural images while produ-
cing highly convincing colorizations on the SUN dataset. Along with the target grayscale
image, a random noise vector is given to the generator as input (known as latent space
sample), reintroducing some user-defined influence over the colorization result exhibited
by methods in Section 3.2, albeit one that may be difficult to reason about.

Fu et al. [36] also use a cartoon movie dataset and choose to train a GAN model for
automatic colorization, though their data source is of larger magnitude (over 15 hours of
raw footage compared to less than 1.5 hours of our data). Their image extraction method
is also different - sampling every 50 frames in the original footage - and, most importantly,
their testing and validation sets are sampled randomly, which, due to the nature of the data
source, skews the results, as it is reasonable to assume that randomly chosen frames may
be mere translations of frames included in the training set, or that background information
will easily be learned by recognizing objects in the image. Therefore, it is hard to compare
the results of our work to results of Fu et al.

Chapter 4

Dataset

This chapter is focused on describing and discussing the chosen dataset and outlining its
uniqueness compared to natural images as well as detailing the method of its extraction.

4.1 Rumcajs dataset

Since working with smaller datasets of natural images may yield visually unappealing
results due to insufficient information included, and learning on larger datasets (such as
ImageNet) makes for extremely unwieldy experimentation and hyperparameter tuning and
also poses a significant challenge due their scope related to increased training times, we
choose to limit ourselves to a smaller set containing cartoon images obtained from a Czech
cartoon movie called O loupežńıku Rumcajsovi .

This dataset has been hand-colorized by scribble methods, which makes attempting to
learn to colorize it automatically unique and interesting at the same time. Compared to
learning natural image colorization, it forces the network to behave differently, as objects in
scenes usually appear very sharply, without overly smoothed edges and with fewer textural
cues, with large homogeneous regions. Rather than learning inherent colorization, it should
aim to learn a perception of the images that is closer to how a human brain views it.

4.1.1 Format of the data

Every image that is in either training or testing set shares the same format. Image size
is limited to 256 × 256 pixels, resized from the original 704 × 528 frame resolution. We
decrease the resolution in order to increase the speed of training and reduce the amount
of memory required to train. Since blurring (during potential upsampling back to original
dimensions) the chrominance channel generally does not result in big visual differences,
this is acceptable. 256 × 256 or 224 × 224 are sizes conventionally used for most image
processing CNNs.

4.1.2 Method of extraction

Since the origin of the data set is a cartoon movie, there is a couple of problems surrounding
the extraction of images. First, the movie is running at 25 frames per second, which means
that many of the frames will be near-identical images. Therefore, a method of extracting
images must be able to detect duplicate images and filter them out.

Secondly, there are some parts of the cartoon that we might not want to include in
the data set, namely the opening and closing credits. The reason for removing the images
depicting the credits is their uniformness and their general prevalence in the set. If we

20

4.1. RUMCAJS DATASET 21

were to leave the credits frames in the data set, it may have resulted in increased tendency
of the network to, for example, use shades of blue (since the credits are mostly a uniformly
colored blue screen) even in images that were not credit frames.

To ensure that only reasonably differing images were extracted, we used simple squared
mean thresholding, acting on consecutive frames extracted from the movie:∑

p∈P (framen(p)− framen−k(p))2

|P |
> t (4.1)

where framen is the currently processed frame, framen−k is the last frame accepted
as unique, P is the set of pixel locations, and t is an empirically obtained threshold, t = 20.

This effectively means that any noticeable difference in the two consecutive frames
would result in the newer frame being accepted as a unique frame. Comparing against
the last accepted frame rather than the last frame allows small changes to accumulate
between accepted images.

This approach can be disadvantageous due to random noise present in the images,
but working under the assumption that the amount of noise present in frames is roughly
constant and similar in most frames, we can disregard it by accounting for it in the
threshold value.

This simple method accomplishes the desired effect of filtering out duplicate frames
and only preserving unique images. There are several instances where images are repeated
due to the nature of the movie rather than frame difference (scenes that repeat the same
sequences several times for example) but those are not common enough to warrant handling
such cases specifically and those duplicates are allowed into the final data set.

Following the duplicate filtration, every frame was resized to 256× 256 image size and
saved into a lossless PNG file format, as using a compressed file format such as JPEG
would result in loss of precision, which is particularly observable around object edges on
this dataset and negatively impairs performance of the models.

4.1.3 Filtering credits

The extracted images contained both the opening and closing credits of the cartoon, and
since they made up quite a large portion of the overall number of images (roughly 4%), we
decided that it would be beneficial to filter those images out and not use them for CNN
training to minimize their impact on the final colorization.

The credits appear with fade in and fade out to black effects near their start and end,
respectivelly. Since the credits are mostly static, the duplicate frame filtering algorithm
already removes majority of them, usually leaving just a single image, with the exception
of the first and last ones due to the fading effect.

Whenever the credits appear or disappear, the cartoon’s images also fade out and in
while staying constant, for that reason, we decided to also remove some of those faded
frames as they generally bring very little new information into the set. Such step is not
absolutely necessary, and in fact, these frames could act as a form of data augmentation,
which is the reason we leave a small number of them in the dataset.

As can be seen in Figure 4.1, credit frames have a very specific format of blue back-
ground with centered white text in the middle. There are several issues that the filtering
algorithm needs to deal with in order to successfully classify a frame as credits. What is
perhaps even more important, however, is to reduce false positive rate to a minimum in
order not to lose any additional images.

22 CHAPTER 4. DATASET

Figure 4.1: Representative image of opening credits

First, the algorithm needs to be able to detect credits regardless of the fading effect,
or at least correctly classify for the majority of the duration of the fading to limit resi-
dual images. Second, to reduce false positives, it must be able to provide a measure of
confidence.

For this task, we elect to use a form of unsupervised machine learning. An image
is converted into a collection of its pixels, yielding 65536 data points. Then we use the
k-means algorithm to cluster these pixels into exactly two clusters based on their RGB
values. The resulting centroids are then taken as objects of interest.

These centroids give us two RGB values which we examine further. What we are
looking for is a large blue cluster representing the background, and a smaller white cluster
for the text.

In order to make classification invariant to fading, we convert the RBG values to HSV
color space and ignore the Value component of resulting colors. This technique seems to
work rather well, as the fading is applied as a grayscale filter only.

Next, we check the hue and saturation values of the centroids as the main step of the
classification. The blue centroid must have hue value between 190 and 260 and saturation
of at least 250, while the white cluster is required to have a hue value between 190 and
250 and its saturation must not be greater than 120.

Via empirical testing, we concluded that credit images generally contain over 80%
of pixels that can be considered blue. Thus, we also test sizes of the clusters, with the
hypothesis that the blue cluster’s magnitude is greater than 0.8.

These last two necessary conditions are strong enough to ensure that no legitimate
frames were classified as credit frames. In practice, this algorithm was able to filter out
the majority of the credit frames, which also provided offsets into the dataset, so that any
remaining images could be filtered out by hand.

4.1.4 Training and testing sets

The cartoon movie itself is naturally split into 13 distinct episodes of roughly the same
length. Despite that, there are several options of splitting the data into training and
testing sets, so the choice warrants a more detailed explanation.

4.1. RUMCAJS DATASET 23

The first option would be to disregard episodes altogether and simply choose images at
random to leave for the testing set, until a desired training/testing split is obtained. On
less correlated data, this would be a good way to ensure generality, as the chosen testing
data would span the entire data set and contain images independently on their position
inside the set.

However, since the origin of the images is a movie, chances are that we would pick
images that are very close to, or near identical to images contained in the training set
(as identical as the initial filtration allowed), which would result in poor reflection of
generalization - our testing data could be highly correlated with the training data.

Another way of splitting the data would have been to extract a portion of frames from
every episode to use as testing data. The obvious disadvantage of this approach is that
there is generally a limited number of objects that appear in an episode and therefore tend
to appear at multiple points of it.

That could result in accidental overlap of training and testing data and making parts
of testing data very representative of the training set, which would also poorly reflect the
ability of the learned network to generalize.

Perhaps the most obvious one, and the one that we choose to use, is to leave some
of the episodes as testing data. This has the advantage of conceptually making certain
that most of the image sequences in testing data are previously unseen data during the
training of the network.

Thus, the data is representative of the network’s ability to generalize colorization
onto new images. However, it also poses a challenge - if we choose an episode that is
fundamentally different from the rest of the set, we may find that the resulting network
will not perform well at all. We aim to choose such segment which contains some elements
that were previously seen, but also many elements that are not present in the rest of the
training data. We choose to leave the first of the 13 episodes (as they appear on the DVD)
for testing.

In total, the training dataset contains 42715 images, while testing set contains 4434
images. However, these figures are overly generous, and the actual meaningful magni-
tude of the training set is much smaller, as most images contain simple modifications of
previously seen frames such as subtle character movements or camera translations. Even
though they introduce limited amount of new information into the training set, they act
as a sort of data augmentation that is very natural to the origin of the images, video
sequences.

Other common image data augmentation techniques include mirroring, randomized
cropping and scaling, additive luminosity changes, randomized rotations, shearing, blur-
ring or noise adding; none of these simulate video sequences particularly well. This is the
reason why we allow the dataset images to have data differences smaller than is perhaps
common, as well as the fact that there are at most several thousands of truly unique ima-
ges included in the original video source. For instance, if we were to sample images every
50 frames of the original source, we would have a dataset of around 2620 images in total.

4.1.5 Additional remarks

The images were originally extracted from O Loupežńıku Rumcajsovi 1, re-released on
DVD in 2005 with updated colorization applied by manual scribble methods. 26 addi-
tional episodes exist, though those have not been recolored and therefore it would be
unreasonable to include them in the training set, as their color properties are vastly dif-
ferent from the training images. We use one of these additional episodes to demonstrate
the generalization properties of our learned models in Chapter 8.

24 CHAPTER 4. DATASET

4.2 Difficulty of the set

Compared to natural image datasets used by Larsson et al. [33] and Zhang et al. [32], the
Rumcajs dataset has several specific features. While in natural images, many objects have
distinct textures which help used methods to correctly select a color, the images in this
dataset generally contain fewer texture types, consisting of sets of homogeneous regions of
constant grayscale levels and so the trained model has to rely mostly on learning shapes
(e.g. hats are shaped in a specific way and are red, boots are brown, ..) and spatial
information (green grass tends to be in the lower part of the image, blue sky in the upper
part) only.

Since texture often carries a large amount of information about the intended color,
under missing texture information, objects are truly multimodal - it is significantly easier
to colorize a wall with brick texture than a uniform grayscale region. Images 4.2a and
4.2b in Figure 4.2 perfectly illustrate this point, having differently colored backgrounds
with only a few irregularities in the grayscale images.

(a) (b)

Figure 4.2: Example of input data with ground truth colorizations. Notice the large
regions of uniform intensity with little texture.

On top of that, the total number of different objects in the training set is relatively
low (orders of magnitude lower than natural image datasets), which makes learning gene-
ralization to unseen objects more difficult. We hypothesize that these two point make the
dataset significantly harder to automatically plausibly colorize overall.

4.3. ACKNOWLEDGEMENT 25

4.3 Acknowledgement

We acknowledge that the used dataset is copyrighted material owned by Česká televize.

Chapter 5

Method

In this chapter, we look at several challenges that this task presents and how we choose
to solve them. First, we discuss the various possible approaches to the problem in terms
of overall design. Then, we take a more detailed look at individual components.

When considering the usage of CNN for this task, a natural question that may arise is
whether it would be possible to use transfer learning as described in Section 2.2.12. Other
networks that deal with related problems exist, such as ResNet mentioned in Section 2.1
designed for image classification. It is indeed true that many traits of the networks are
shared, particularly the low level image feature extraction layers, and thus it may be
possible to successfully fine-tune using at least the initial layers of a network trained for a
task like image classification.

However, the first problem appears from the fact that all publicly available classification
networks are trained on colored images and their performance on grayscale images is
generally much lower. This is not a fundamental architectural problem, the network can
still produce features from grayscale images, but the features are likely to turn out to be
inefficient for the colorization task.

Another problem comes from the inner representation learned by the other networks.
Since the color data is expected to be present in the input image, it is unlikely that
networks trained for classification would be able to generate it based on grayscale image,
if we were to train e.g. an extension on top of the hypercolumn image representation of
the VGG network architecture.

Larsson et al. [33] train a fully connected model while using modified VGG-16 con-
volution layers, fine-tuned on grayscale image classification, but only choose to predict
a single pixel’s color at a time. During experiments, we attempted training a network
on top of up to 9 initial layers of VGG-16 with frozen weights (disabled updates) that
performed dense prediction, however, we conclude that training networks for colorization
from scratch to be the best course of action, as it resulted in better outcomes.

5.1 Overall approach

In this task, our goal is to take a grayscale image, a single channel of image data, and
transform it into a standard RGB image, an image with three channels of data.

We pose the problem as learning a mapping C such that R = C(G), where R ∈
RH×W×3 represents an image with RGB channels and G ∈ RH×W represents an image
with grayscale values only. To learn this mapping, we use CNN based models. To simplify

26

5.1. OVERALL APPROACH 27

training and reduce memory requirements to tractable amounts, we downsample the input
images to 224×224 resolution and output a 56×56 resolution colorization, which is scaled
up to match the grayscale input dimensions. Despite the radical decrease in resolution, it
should be possible to learn a good looking colorization, as evident from the work of Zhang
et al. [32], even if some finer detail is lost.

The input’s total number of pixels is 50176 and output’s total number is 3136. To
upsample the colorized result, we use a conventional spline interpolation algorithm.

We can observe several properties of the formulation that influence how we approach
the task.

5.1.1 Color space

First, we notice that as much information in the grayscale image ought to remain unchan-
ged in the final, colored image, and that it should act as a passthrough channel. Therefore,
color information would preferably be separate channels added to the grayscale image to
obtain the result.

This effect is easily achievable by working in the CIE Lab color space. The Lab color
space was deliberately designed to more closely match human perception of an image,
compared to more standard RGB color space, and to contain a channel with a measure
of luminance maximally decorrelated from chrominance. An image in the Lab color space
therefore consists of one channel for achromatic luminance (L) and two color channels (ab,
sometimes noted as αβ). The a channel controls hues between green and red, while the
b channel has control over hues between blue and yellow. See Figure 5.1 for channel-wise
decomposition of the Lab color space.

By convention, the values range from 0 to 100 for the L channel, and from -128 to 127
for a and b channels, though not every combination of these values maps into the visible
sRGB color gamut, especially the marginal values of a and b, and for that reason, we only
consider values in the range of -110 to 110.

Still, in this range there are combinations which do not map back into the sRGB space
naturally, in which case the conversion values are clamped into the conventional RBG
space of 〈 0, 255 〉 [37].

In this color space, our grayscale input image is seamlessly represented by the lumi-
nance channel, leaving us with the task of estimating the chrominance channels a and
b. HSL and HCL could alternatively be used, as they implement a similar concept of
separating the lightness channel.

28 CHAPTER 5. METHOD

Figure 5.1: Lab color space decomposition. (a) L channel with a, b = 0. (b) a channel
with L = 65, b = 0. (c) b channel with L = 65, a = 0.

5.2 Color channels estimation

When estimating the a and b channels, there are several possible approaches to choose
from. The choice can significantly affect the resulting visual colorization, training time or
final CNN performance.

A straightforward option would be to estimate the values of a and b for each pixel
directly. The advantage of this approach is the simplicity, both in terms of reasoning
and implementation. It provides the option of using a simple loss functions, such as L2

Euclidean norm, which speeds up training.

Disadvantages are more subtle. One disadvantage is that this approach leaves no room
for the notion of probability distribution over possible results, possibly resulting in jarring
transitions between colors. For example, when a CNN predicts a pixel to have red color,
there is no method of retrieving other possible colorizations or the level of confidence in
the prediction.

Additionally, this approach does not handle multimodality well. If an object can take
on a range of different ab values, the optimal solution to the Euclidean loss will tend to
average out towards zero, producing desaturated colors. This approach is used by Iizuka
et al. [8], in conjunction with Euclidean norm in ab space as loss function.

A completely different approach is to pose the task as a classification problem, which is
a well-studied area in the domain of CNNs, essentially turning the problem into estimating
a color histogram for every pixel in the target image. We use the notion of color histogram
in this context, but it is equivalent to confidence probability distribution predicted by the

5.2. COLOR CHANNELS ESTIMATION 29

network for every pixel, since the final layer uses a softmax activation function, which
normalizes the outputs to form a proper distribution.

First, we define a set of canonical colors as classes to predict. Larsson et al. [33] propose
sampling the ab space (or in their case, the hue/chroma space) based on evenly spaced
Gaussian quantiles and selects 1024 values around the origin, but due to this sampling,
this method may heavily favor more desaturated colors thanks to over-representation.
Similarly to Zhang et al. [32], we quantize the ab grid space into evenly spaced bins,
taking a point every 10 units of the grid and remove any points that do not map to colors
inside of the sRGB gamut. This leaves us with 313 proper ab pairs which can be used.

To convert a given value from ab to a color histogram, we find k-nearest-neighbor
(k = 5) values in this quantized set and create a convex combination that closely mat-
ches the original value (proportionate to the distances from the neighbors). Furthermore,
this ”sharp” histogram is smoothed with a Gaussian kernel (σ = 5) to speed up CNN
training convergence. This process is very similar to color quantization. This method
works better than e.g. 1-hot encoding of the closest point on the grid, because it simulates
the computation performed by CNN (it is harder to learn sharp peaks than smoothed
distributions).

The CNN’s function is then to estimate color histogram for every pixel of the output
image, essentially classifying each pixel’s color. In our case, that means estimating a
matrix of the shape 56×56×313. The cost function then calculates loss based on the this
prediction and colors of the ground truth image encoded by the scheme described above.

Afterwards, there are multiple methods of converting the predicted color histogram
back into an ab pair in order to obtain the result.

1. Mode - treating the histogram as 1-hot encoding and assigning the pixel the color
of the bin with highest prediction confidence.

2. Expectation - summing over the bins’ ab values, weighted by the histogram value.

3. Sampling - drawing a random sample from the estimated probability distribution.

Since in our framework this conversion has to be done per-pixel, using mode tends
to create areas with frequent and jarring color shifts where the prediction peaks change.
When an artifact is produced, the area is very crisply defined. Sampling tends to create
color jittering in locations where the prediction of the network creates color histograms
with multiple peaks. We find that using expectation achieves the best visual quality of
the result, which is consistent with findings of [32], [33]. Instead of creating artifacts that
have crisp boundaries, expectation ”blends” them in.

The prediction layer is activated by the softmax function, as is common when predicting
probability distributions. To extract colorization results in Lab color space, an additional
1x1x313 conv layer with 2 output channels can be inserted after the prediction layer. This
produces ab values for every pixel by implementing the expectation calculation of the
form:

ab =

313∑
i=1

pi · qi (5.1)

where p are the predicted probabilities and q are the canonical 2-dimensional ab points
we selected on the ab grid.

To obtain the colorization of the input image, the ab values are treated as a 2 channel
image, upsampled through conventional spline interpolation to match the original image
dimensions (256× 256) and concatenated to the input image L channel, producing a Lab
image that can be converted back into RGB space.

30 CHAPTER 5. METHOD

5.3 Loss function

Regardless of the output color representation, we require a loss function to measure pre-
diction errors and obtain meaningful gradients to update the network’s weights.

Since the color histograms are closely related (by construction) to probability distri-
butions, we use the Kullback–Leibler divergence function as a natural distance function
of two probability distributions.

Additionally, we enhance the loss function by using a prior-boosting reweighting factor,
a technique called class rebalancing. The distribution of ab values in most images is
strongly biased towards certain ab values, due to the presence of backgrounds such as
blue sky, or green grass which take up significant portions of images. Figure 5.2 shows
the measured distribution of pixels in ab space, gathered from all images in the training
set. Notice that the number of pixels using more desaturated shades of blue and green is
significantly higher than more vibrant colors.

Figure 5.2: Measured prior color distribution on the training set, showing 49 most common
colors with column heights proportionate to relative probability of occurrence. The last
column shows the mass belonging to all remaining colors combined.

With that in mind, the loss function becomes:

L(P̂ , P) = −
∑
h,w

v(Ph,w)

313∑
q=1

(log(P̂h,w,q)− log(Ph,w,q)) (5.2)

where P are the ground truth image’s colors encoded into color histograms, P̂ is the
network prediction of color histograms for pixels, h,w represent pixel indices and v is the
weighting term (a function of the ground truth’s histogram) that we use to rebalance the
loss to emphasize usage of rare colors defined by Zhang et al. [32] as

v(Ph,w) = wq? , q
? = arg max

q
Ph,w,q (5.3)

w ≈ 1

(1− λ)r + λ
313

(5.4)

where r is the empirical prior distribution of ab pairs calculated over the training set
and λ is a term used to create a mixture of the training set prior probability and a uniform
distribution. During all training, we set λ = 0.5. The mixture of uniform distribution
with prior probability ensures that the loss function does not favor one color over another

too disproportionately. Weighing term w is normalized such that
∑
q

rqwq = 1 holds.

5.3. LOSS FUNCTION 31

Effectively, loss defined in this manner rebalances each pixels’ contribution to the final
loss inversely proportionate to how rare the color of the ground truth pixel is according
to the prior distribution. Zhang provides hints that compared to non-rebalanced or L2

loss function, this cost function may result in lower accuracy, but generally produces more
plausible colorizations thanks to the strong preference of rare colors.

Chapter 6

Network architecture

In this chapter, we will descripe the used CNN architectures, including individual layers
and their hyperparameters. We choose to train two different architectures.

The first CNN architecture is a classical CNN with convolutional layers stacked on
top of one another in a straight-forward way. The second architecture draws inspiration
from the ResNet architecture, providing shortcut connections in between layers that are
not directly on top of each other in the convolutional layer ”pipeline”.

Both networks are capable of processing images of arbitrary size, downsampling the
output by a factor of 4, producing same output form for easy comparison, but work best
on the image size they were trained on - 224× 224.

In Chapter 8, we compare the results produced by both networks, and attempt to
point out their strengths and weaknesses on two different data sets.

6.1 Pooling layers

An important feature that both network architectures have in common is that they employ
no pooling layers. Part of the reasoning for this decision was given in Section 2.2.3, pointing
out that pooling layers are a form of downsampling. Even though some downsampling
is required to effectively expand the network’s receptive field, we found pooling to have
adverse effects on the results in both architectures, which we attribute to the fact that
pooling layers drop too much information about the inputs.

Instead, downsampling is achieved through increasing the stride of some of the convo-
lutional layers. This is a more natural fit for the task of colorization, as more information
is preserved and can reach the later layers of the network.

6.2 Plain CNN model

The first model that we train variants of is identical to the model used by Zhang et
al. [32] for natural image colorization on ImageNet. It is a model composed of stacked
convolutional layers only (hence plain). A general overview of network architecture can
be seen in Figure 6.1, and a detailed listing of layers and their hyperparameters is shown
in Table 6.1.

Each block of conv layers refers to a groupping of 2 to 3 convolutional layers followed
by rectified linear unit activation for each individual conv layer. Between blocks, a batch
normalization layer is inserted to help prevent exploding or vanishing gradient problems
and speed up convergence. All convolutional layers learn filters of size 3 × 3, with the

32

6.2. PLAIN CNN MODEL 33

Figure 6.1: Plain CNN network architecture

exception of the upsampling transposed convolution (”deconvolutional” in Caffe) conv8 1,
which uses 4× 4 filters instead.

In total, there are 22 convolutional layers split into 8 blocks, plus the prediction layer
at the end. Initial layers contain a lower number of output channels, to simulate the use
of a moderate number of low level features, usually very similar to filters that are used
by many corner or edge detection algorithms. This can be more difficult to recognize and
have a less noticeable effect when using small filter sizes, but encodes information equally
well.

The initial layers function as feature extractors, while the later layers have the role of
information encoding.

The resolution is quickly reduced to half of input size and quarter of input size after
2 and 4 layers, respectively. It is further reduced to one eighth of input size in the conv3
block and later upsampled back to one fourth by block conv8 via learned upsampling
filters. One fourth of input size is the total prediction output resolution.

Using lower resolution for the densest layers helps prevent overfitting and requires the
model to learn effective encoding of the input, allowing denser concentration of information
in the encoding layers, which are in blocks conv4 through conv7, as well as rapid growth
of effective receptive field, shown in the ERF column of Table 6.1. This is where most
of the network’s parameters are located, over 27.13 million of the total 32.23 million
parameters learned by the network.

Blocks conv5 and conv6 have dilated convolutions with dilation set to 1, further
increasing the growth of receptive field. Every conv layer has input zero padding set such
that its convolutions have valid ranges to operate over all of the previous layer’s outputs,
which translates to 2 pixels of padding in layers with dilation set to 1 and 1 pixel of
padding in the remaining layers.

34 CHAPTER 6. NETWORK ARCHITECTURE

Block Layer id R O S D ERF P

- data 224 1 - - - -

conv1
conv1 1 224 64 1 0 3 0.5
conv1 2 112 64 2 0 5 36.8

conv2
conv2 1 112 128 1 0 9 73.7
conv2 2 56 128 2 0 13 147.4

conv3
conv3 1 56 256 1 0 21 294.9
conv3 2 56 256 1 0 29 589.8
conv3 3 28 256 2 0 37 589.8

conv4
conv4 1 28 512 1 0 53 1179.6
conv4 2 28 512 1 0 69 2359.2
conv4 3 28 512 1 0 85 2359.2

conv5
conv5 1 28 512 1 1 117 2359.2
conv5 2 28 512 1 1 149 2359.2
conv5 3 28 512 1 1 181 2359.2

conv6
conv6 1 28 512 1 1 213 2359.2
conv6 2 28 512 1 1 245 2359.2
conv6 3 28 512 1 1 277 2359.2

conv7
conv7 1 28 256 1 0 293 2359.2
conv7 2 28 256 1 0 309 2359.2
conv7 3 28 256 1 0 325 2359.2

conv8
conv8 1 56 128 0.5 0 341 2097.1
conv8 2 56 128 1 0 349 589.8
conv8 3 56 128 1 0 357 589.8

pred pred 313 56 313 1 0 357 80.1

Table 6.1: Plain CNN network architecture. R spatial resolution of output, O number
of channels in output, S layer stride, D layer dilation, ERF effective receptive field with
regards to data layer, P number of learned parameters in thousands rounded off

6.3 Residual CNN model

The second model that we introduce and train is one that is inspired by the success of
the ResNet models in area of image classification, mentioned in Section 2.1. These models
show much faster convergence rates as well as improved performance.

As more research was carried out in the field of training various deep CNNs archi-
tectures, it became apparent that the problems vanishing or exploding gradients, which
can mostly be resolved by applying normalization, were not the only factors hampering
convergence and accuracy of networks.

In particular, a problem of accuracy degradation was uncovered [6], [38]; during the
training stage, accuracy gets saturated, as is expected when training converges. However,
if training continues past the saturation point, accuracy starts degrading rapidly. A similar
phenomenon is known as overfitting, but this is not the cause of degradation, since adding
more layers to the model results in increased training error as well as reduced accuracy,
the opposite of what would be expected in the case of overfitting. With increased model

6.3. RESIDUAL CNN MODEL 35

Figure 6.2: Building block of residual learning, the number of conv layers between shortcut
connections generally does not exceed 3-4 layers

Figure 6.3: Residual CNN network architecture

variance, overfitting would result in further reduced training error.

This indicates that deeper models are more difficult to train, even when vanishing/exploding
gradient problem is accounted for by normalization, with the likely culprit being the num-
ber of stacked non-linearity functions [39]. In plain convolutional networks, the expectation
is that each few stacked layers (blocks in the Plain CNN architecture) learn the under-
lying mapping produced by the following block of layers, denoted as H(x), which gets
progressively more difficult to learn effectively as we add more layers.

36 CHAPTER 6. NETWORK ARCHITECTURE

Several techniques to alleviate this problem have been proposed, such as using better
optimizing algorithms like Adam (described in Section 2.2.11)) or improved initialization
techniques (Section 2.2.10).

ResNet models choose to solve this problem by using a different approach. Instead
of expecting every block to learn the mapping H(x), the stacked layers are allowed to fit
mapping F(x) = H(x) − x. In [6], the authors hypothesize that it is inherently easier to
optimize this residual mapping.

In the CNN, the modification of the mapping is realized with ”shortcut connections”
between blocks of layers, as shown in Figure 6.2. After a block of layers has computed its
outputs, the original inputs are added to it via element-wise summing.

Block Branch Layer id R O S D ERF P BN&S

- - data 224 1 - - - - -
- - conv0 224 64 1 0 3 0.5 -

conv1
top conv1 branch2a 112 128 1 0 5 73.7 -
top conv1 branch2b 112 256 2 0 9 294.9 Yes

bottom conv1 branch1 112 256 1 0 5 147.5 Yes

sum1 - res1 112 256 - - 13 0 -

conv2
top conv2 branch2a 112 256 1 0 13 589.8 -
top conv2 branch2a 112 256 1 0 17 589.8 Yes

sum2 - res2 112 256 - - 21 0 -

conv3

top conv3 branch2a 56 512 2 0 21 1179.6 -
top conv3 branch2b 56 512 1 1 37 2359.2 -
top conv3 branch2c 56 256 1 1 53 1179.6 Yes

bottom conv3 branch1 56 256 2 0 29 589.8 Yes

sum3 - res3 56 256 - - 69 0 -

conv4
top conv4 branch2a 56 512 1 1 69 1179.6 -
top conv4 branch2b 56 512 1 1 85 2359.2 Yes

bottom conv4 branch1 56 512 1 0 77 1179.6 Yes

sum4 - res4 56 512 1 0 93 0 -

conv5
- conv5 1 56 256 1 0 93 1179.6 -
- conv5 2 56 512 1 1 109 2359.2 -
- conv5 3 56 512 1 0 117 1179.6 Yes

pred - pred 313 56 313 1 0 117 160.2 -

Table 6.2: Residual network architecture. R spatial resolution of output, O number of
channels in output, S layer stride, D layer dilation, ERF effective receptive field with
regards to data layer, P number of learnt parameters in thousands rounded off, BN&S is
followed by a sequence of batch normalization and scaling layers

The overall network architecture that we propose can be seen in Figure 6.3, and a
detailed overview of layers is found in Table 6.2.

In the original ResNet model, the shortcut connections are simply identity operations
with no modification of the per-block input x. In our case, due to the necessity of do-
wnsampling the input early on, the shortcut connections perform a single conv operation

6.3. RESIDUAL CNN MODEL 37

where necessary, downsampling by increasing stride. These layers are denoted in Table
6.2 as being in the bottom branch.

Compared to the original ResNet, we also include a scale layer after any conv layer
that connects its outputs directly to the element-wise sum layers res1, res2, res3 and
res4 to allow the netwok to rebalance residual weights on a per-parameter basis.

The network does not contain a shortcut connection between the last conv block
(conv5) and the prediction layer, as we found that this connection caused obvious ar-
tifacts on images with low overall luminance. This can be seen as an analog to a fully
connected layer at the end of a classification network, which also usually does not receive
shortcuts.

Most other hyperparameters are shared with the plain convolutional model in Section
6.2. All used conv layers learn 3 × 3 filter sizes. Input and output sizes are not fixed,
but output resolution will be one fourth of input resolution. Spatial downsampling in
both branches is implemented with strides only, zero padding is added to retain resolution
where needed.

The first conv layer also produces 64 output channels to simulate low level image
features. In total, the longest path from input to output contains 13 conv layers (always
top branch), 5 of which are dilated convolutions. This is a rather low depth, but since
ResNet models generally require much higher amounts of memory to train, we found this
to be the best tradeoff with limited hardware options. In principle, the network should
exhibit even better results with added depth.

Compared to the plain CNN architecture, this model contains about half the number
of total parameters (16.6 million vs 32.2 million) and has roughly one third of the effective
receptive field size. Considering we use 224×224 images for training, this is likely to cause
the network to colorize small and moderately sized objects more evenly, but produce more
artifacts in images that are mostly homogeneous.

Chapter 7

Training details

We use the Caffe [40] framework to train all models, but fundamentally, any deep learning
framework (Theano, TensorFlow, MXNet, ..) could be used, as the differences are mostly
syntactic rather than semantic. Caffe has the advantage of providing generally good com-
putational performance, but perhaps with a slightly higher barrier to entry with prototxt
files usage, which define a domain specific language, compared to the other, mostly Python
based, frameworks.

The models are not quite trained end-to-end, the final step of concatenating predicted
ab values with the original L channel values is done outside of the network, by an external
Python script, though it could be implemented with a special concatenate layer (not
packed with Caffe by default, but used by e.g. Iizuka et al. [8] for concatenation of low
level and high level features).

To achieve the color to color-histogram conversions and for calculation of the rebalan-
cing term described in Section 5.3, we use custom Python layers.

7.1 Trained variants

For comparison and to demonstrate strengths of individual setups, we train several diffe-
rent variants of our method. Firstly, we train both networks as described in Chapters 5
and 6 without any modifications, to establish a baseline. Afterwards, we also train both
networks without the color class rebalancing term of the loss function defined in Formula
5.3 to confirm its effects and uncover possible advantages and disadvantages. Because
validation of the models is unclear (no precise metric for plausible colorization), we train
a model that uses dropout layers after each conv block in the plain convolutional model
to show that the visual failures of the method are unlikely to be caused by overfitting
and appear even with further regularization besides only batch normalization and input
normalization applied during training, as suggested by Srivastava et al. [13].

We include a dropout layer after each conv block, and progressively increase the
dropout ratio, starting with 0.1 after conv1 block and ending with 0.3 after conv8 block.

Additionally, to verify the differences between classification based colorization and ab
value prediction colorization, we train a variant of the plain convolutional network which
replaces its pred layer with a 2 channel output ab layer, which encodes ab values predicted
by the network directly, using the same output resolution as the classification networks of
input

4 .

In this network, the final softmax activation function is replaced by a tanh activation
layer (which has the convenient range of [−1, 1]), and its output is multiplied by a constant

38

7.2. INITIALIZATIONS 39

coefficient to span the whole standardized ab space. The loss function used for calculating
gradients is replaced by the Euclidean (L2) loss function without rebalancing.

Therefore, all trained variants are as follows:

1. Plain CNN

2. Plain CNN without rebalancing

3. Plain CNN with dropout

4. L2 ab CNN (plain CNN)

5. Residual CNN

6. Residual CNN without rebalancing

7.2 Initializations

The plain CNN model variants are initialized with weights derived by the MagicInit tool
developed Philipp Krähenbühl et al. [17] from 10 iterations over the whole training set.
This increases the convergence speed and helps avoid the vanishing/exploding gradient
problem.

However, the tool does not currently support scale or element-wise layers used by the
Residual model and since the calculation of initialization requires all following layers to
have been initialized, it would thus only produce a good initialization for at most the last 3
layers. We instead use the Xavier initialization described in Section 2.2.10 for initialization
of the residual CNN variants. Perhaps surprisingly, we found that compared to the data-
dependent initialization of the CNN, it did not result in noticeably worse initialization as
far as convergence speed was concerned, although initialization may not be the biggest
factor in this case - considering the architectures are different.

7.3 Optimizer

There are several options when choosing algorithm to use for weight update optimization.
Generally speaking, for training CNNs, SGD has been historically used. With later advan-
cements, Adagrad or Adadelta became the standard, and since its introduction in 2015,
Adam has been used for image CNN training almost predominantly.

Since Adam seems to be the go-to optimizing algorithm among researchers who use
CNNs, we decide to follow suit in this matter. There are certain disadvantages to using
Adam, such as increased memory usage, as it keeps at least two state variables for each
weight - generally increasing memory requirements by a factor of 3, which can cause some
issues if hardware is a limiting factor, bringing the need to reduce batch size in order to fit
the network into the GPU VRAM, but the convergence speed gains are significant when
compared to plain SGD. Note that most other algorithms also have this disadvantage.

In all training runs, we use Adam with global learning rate η initially set to 0.001,
β1 = 0.9 and β2 = 0.999. η is automatically multiplied by 0.3 after 15 epochs (when
training loss usually stagnated), to fine-train the models.

7.4 Training

All models have been trained on at least 30 epochs of the whole training dataset. Due to
different memory requirements, the batch sizes are not consistent, though Caffe allows set-

40 CHAPTER 7. TRAINING DETAILS

ting the iter size hyperparameter, which accumulates gradients for several batches before
updating the network’s parameters.

The plain CNN model was trained with batch size of 24 and iter size of 2, effectivelly
performing weight updates after every 48 data samples. The residual CNN model, as it
requires more memory, has the batch size set to 4 and iter size to 12, to retain the same
number of examples per weight update.

Additionally, the images are randomly mirrored by the Caffe framework when used
as training samples, and randomly cropped to size of 224 × 224. These augmentations
complement the dataset well. Prior to entering conv1 blocks of the networks, the images
are converted to Lab space by a special ColorConversion layer, the ab dimensions are
sliced off and used to generate ground truth color histograms. The L channel is multiplied
by constant 0.01 to normalize the 0-100 luminance to the 0-1 range and used as the input
of the network.

The training requires ∼ 890 iterations per epoch of data, and around 26700 iterations
to complete the training of 30 epochs. Normally, this could be considered a low number of
epochs to run (it is common to pass upwards of 100 epochs when training from scratch),
especially for an image-to-image CNN, but considering the points made in Section 4.1.4,
specifically the ones about many images being very similar, this can be viewed as running
many more epochs with specially augmented data.

While we observed small improvements when training past 30 epochs in some areas, it
generally came with degradation of other cases, most often unnatural color shifts observed
on large backgrounds, particularly in the variants which used color rebalancing. Note
that since input dependent rebalancing is used, the absolute value of loss attained during
training provides little information other than comparison between models. This applies to
testing loss too; plausible colorization is disproportionately penalized by any loss function,
which means that testing error has little correlation with the final visual result of the
colorization.

A single epoch takes from 10 minutes (Plain L2 ab CNN variant) to 5.25 hours (Residual
CNN variant). All training and timing tests were performed on a single Nvidia GTX 970
with 4 GB VRAM GPU with cuDNN capabilities, CUDA version 9.0, cuDNN version 7.0,
Intel i7-4790K CPU with 16 GB of RAM.

Chapter 8

Results and experiments

In this chapter, we first compare the trained variants quantifiably, with image error me-
trics compared to the ground truth colorization. Then, we present colorized results of
the different variants of the network architectures and discuss these results. In Section
8.3, we set our results side by side with automatic color transfer methods. Finally, we
propose some possible further improvements of the obtained results with post processing
algorithms.

To obtain the colorized images with the same resolution as input images, we use the
spline interpolation method implemented in the SciPy Python library [41] in all variants.
The input size used for the network prediction used are 224×224 (56×56 output). The L
channel is passed through from the input image to the output image unchanged and this
transfer is done with the highest resolution available (i.e. after upsampling of the color
channels - 256× 256) to preserve as much quality of the grayscale input as possible.

8.1 Testing set results

To compare the variants, we offer several metrics calculated between the ground truth
testing episode frames and colorized results. In Table 8.1, we provide the results of three
metrics: Root-mean-square error (RMSE), which measures direct color differences between
ground truth and colorized images, calculated as:

RMSE(Pαβ, P̂αβ) =
1

I ·N

I∑
i=1

N∑
n=1

√
‖P i,nαβ − P̂

i,n
αβ ‖2 (8.1)

where I is the number of images and N is the number of pixels in an image. The error
is calculated in de-correlated 2-channel αβ color space, used by Larsson et al. [33] and
Deshpande et al. [27], defined as

α =
B − 1

2(R+G)

L+ ε
β =

R−G
L+ ε

(8.2)

where L = R+G+B
3 , ε = 0.0001 and R,G,B channels are normalized ∈ [0, 1].

Peak signal-to-noise ratio (PSNR) metric, designed to approximate human perception
of image differences, commonly used as a quality measurement of image compression
algorithms (higher is better). While not directly related, learning colorization methods can
be seen as means of compression - by automatically inferring the missing data channels.
It is calculated in the RGB space as:

41

42 CHAPTER 8. RESULTS AND EXPERIMENTS

Model/Metric RMSE PSNR PA
Plain 0.3909 18.5312 0.1292
Plain no rebalance 0.3629 18.5768 0.1536
Plain L2 ab 0.3638 18.8571 0.0465
Plain with dropout 0.3823 18.4803 0.1344
Residual 0.3989 18.0632 0.1745
Residual no rebalance 0.3935 18.2205 0.1624

Table 8.1: Testing performance of trained variants under RMSE, PSNR and PA (thresh
= 2) metrics.

PSNR(PRGB, P̂RGB) =
1

I

I∑
m=1

−10 · log10

(∑N
n=1‖P

i,n
RGB − P̂

i,n
RGB‖2

3N

)
(8.3)

where I is the number of images and N is the number of pixels in an image.

And lastly, the custom perceivable-artifacts (PA) metric, which aims to capture the
model’s ability to produce consistent colorizations, without artifacts that were not present
in the ground truth, calculated in (L)ab space as:

PA(Pab, P̂ab) =
1

I

I∑
i=1

∑N
n=1(|P

i,n
ab − P

i,n,neigh
ab | < thresh) · (|P̂ i,nab − P̂

i,n,neigh
ab | < thresh)∑N

n=1(|P
i,n
ab − P

i,n,neigh
ab | < thresh)

(8.4)

where I is the number of images and N is the number of pixels in an image, neigh
contains pixels in valid 4-neighborhood of a pixel and thresh is a user-defined value con-
trolling the leniency of the metric. This metric calculates the ratio of pixels in the colorized
image that have a consistently colored neighborhood (all neighboring pixels have ab values
within thresh of the investigated pixel) compared to the number of consistently colored
pixels in the ground truth image. A pixel is only counted towards the error value if the
same pixel position has consistently colored neighborhood in the ground truth image, but
does not in the colorized image.

We include this metric because when comparing to ground truth images, the RMSE and
PSNR metrics will penalize reasonable, but incorrect color choices for many objects (e.g.
blue skirt instead of red skirt) more than obvious colorization artifacts. PA decouples the
color values of ground truth and the result, instead focusing on color differences between
neighboring pixels only.

Further, in Figure 8.1, we provide cumulative histograms of per-pixel RMS errors for
all model variants, as well as cumulative histograms of per-image RMS errors for all model
variants. These figures better demonstrate the distribution of error magnitudes for each
variant, showing which models achieve higher percentages of pixels (images) with low
errors. Higher per-image errors generally mean either bad spacial artifacts or incorrectly
(but perhaps plausibly) colored large sections of the image, such as uniformly colored
backgrounds.

Interpreting these results is not straight-forward, perhaps with the exception of the
PA metric. In the PA column of Table 8.1, we can clearly see that all classification
variants produce significantly more artifacts compared to simple ab prediction. Rather
than the output format, we attribute this to the loss function used during training, which,
incidentally, is why the L2 ab CNN variant performs quite well in the other two metrics

8.2. VISUAL COMPARISON OF VARIANTS 43

as well, as it is trained to predict values more akin to the metric’s calculation - in fact
RMSE is closely related to the Euclidean distance loss function used during training.

Cumulative histogram of per-pixel errors

Cumulative histogram of per-image errors

Figure 8.1: Cumulative histograms of per-pixel and per-image RMS errors. Variants
based on the plain CNN tend to perform better, with L2 ab CNN model performing best.

8.2 Visual comparison of variants

It is worth noting that while the above metrics provide a quantifiable result, they fail to
capture the semantic intricacies of particular colorizations, and therefore, it is necessary
to analyze the results quantitatively too. This is rather impossible to do rigorously, and
conclusions can be considered subjective or influenced by personal tastes. When comparing
the models, we try to provide this analysis using as many objectively observable features
as possible, but it is inevitable that some perceptions will be affected by opinions. Some
researchers choose to offload this problem by carrying out a two-alternative survey of real
vs. fake test [32], showing each image for a brief moment to the participants, however, it
would be highly impractical when comparing multiple variants.

For the purposes of comparison, we processed the testing episode described in Chapter
4 and an extra episode of the same cartoon, which has not been newly hand-recolored
(specifically, we choose the 25th episode, called ”O vodnickém kolovrátku”), in hopes of
observing generalization properties of each variant. We refer to this extra episode as

44 CHAPTER 8. RESULTS AND EXPERIMENTS

secondary dataset.
Here we present several examples of colorized images to demonstrate the basic proper-

ties of the colorization implemented by the network variants, as well as multiple examples
which show commonly seen shortcomings of the colorization method. Full results, inclu-
ding episode sequences turned into video files, are available on the attached CD described
in Appendix A. More hand-picked results can be found in Appendix B.

In some cases, our models create colorizations that are semantically plausible and while
it would be far-fetched to say that it is hard to distinguish the results from hand-made
colorization, they are far from trivial, exhibiting signs of semantic understanding of the
scene. These images usually feature characters or objects that are uniformly colored in
the training dataset (such as the bandit’s hat in the last image of Figure 8.4).

Not all variants perform consistently on the whole testing set, in fact, it is common
for each variant to perform well in some areas, while being less successful in others, even
though there are examples where none of the variants produce particularly good looking
results. Observing these differences can be quite interesting, see Figures 8.3, 8.4 and 8.5
for comparisons of all variants on selected examples.

8.2.1 Forms of failure

To properly asses strengths and weaknesses of each variant, we first describe commonly
seen forms of failure. Some failures only cause some parts of the image to become im-
plausible and others can, in some cases, cause the whole image to be perceived as badly
colorized. While some objects may still be colored naturally, other parts of the image
contain problematic areas.

The failures are most commonly observable on backgrounds, as they tend to have
limited (often none at all) texture information, span large portions of the image and
appear colored with a number of different colors in the training set, with limited cues for
correct colorization (e.g. a background appears pink or blue for wall or sky respectively,
with no indication of whether the current scene happens indoors).

Observed forms of failure appearing in most variant’s results, include the following
cases, examples are shown in Figure 8.2:

– inconsistent coloring - objects contain spatially inconsistent colors, such as color
shifts or artifacts

– edge pollution - inconsistent color around the edges of the image

– color bleeding - object’s color boundary spills over its intended edges

– color deficiency - colors appear too desaturated or too uniform across the entire
image

Some of the variants also show specific failures, such as sensitivity to luma fading,
producing extremely different colorizations when the same scene is fading in or out. Many
images combine more than one of these failures, but usually, one is most noticeable.

8.2. VISUAL COMPARISON OF VARIANTS 45

(a) Inconsistent coloring (b) Edge Pollution

(c) Color Bleeding (d) Color Deficiency

Figure 8.2: Forms of failure commonly seen in colorized results.

8.2.2 Variant comparison

Here we list each variant’s general colorization properties, based on the observed colori-
zation of the testing set and secondary data. These observations are therefore hopefully
representative of their generalization abilities, given how the testing set is selected.

Plain CNN - generally produces good colorization, with fewer artifacts in back-
grounds, but more in smaller objects like character faces or clothing. It tends to use
more vibrant colors, but suffers from color bleeding and inconsistent coloring in certain
cases.

Plain CNN without rebalancing - compared to the version with rebalancing, cre-
ates bad artifacts in backgrounds, in some cases almost splits backgrounds into several
sections, all colored differently. It seems to also have problems with small objects, but
generally produces more consistent colorizations of mid-sized objects, such as fences or
doors.

However, it produces noticeable edge pollution effects in most cases. Somewhat surpri-
singly, it uses colors qualitatively only a little dimmer than the version with rebalancing,
rather than more desaturated colors that could be expected.

Plain CNN with dropout - qualitatively, compared to the variant trained without
the dropout layers, the colorization is slightly worse in almost all aspects, with more

46 CHAPTER 8. RESULTS AND EXPERIMENTS

inconsistent coloring of the backgrounds and smaller objects. Some edge pollution is also
apparent. Since the problems are generally worse counterparts of the failures produced by
the plain CNN, we conclude that the plain CNN does not suffer from overfitting on the
training data too much.

Plain L2 ab CNN - the simpler L2 ab prediction produces mostly consistently colored
images (as indicated by the PA metric result), with fewer images with noticeable edge
pollution or color bleeding, but uses much less vibrant colors (color deficiency), which is
to be expected, given the Euclidean loss function. The images appear plausibly colored,
but dull or feint in color, except in the most prevalent objects (bandit’s hat, bandit’s face),
which retain their lively colors.

Residual CNN - compared to the plain CNN variants, the residual CNN produces
visibly more color inconsistencies in the backgrounds of images, but succeeds at colorizing
smaller objects, such as character hands (which are problematic for all plain CNN variants,
for example) or character clothing (unless too large).

This could be explained by having smaller ERF than the plain model, and therefore en-
coding more information about smaller objects, even with less overall parameters available
and in fewer convolutional layers.

In terms of color usage, it is similar to the plain model, since rebalancing is used in
both variants. While the plain model is more prone to using dimmer colors for smaller
objects and more vibrant ones for larger objects or backgrounds, the residual model seems
works the other way around.

Residual CNN without rebalancing - Removing the rebalancing term of the loss
function has similar effects as with the plain CNN model, except the color shift towards
dimmer colors is more pronounced. It also suffers more from color bleeding than residual
CNN with rebalancing and from more edge pollution than residual CNN.

These traits can be largely observed on the selected examples shown in Figures 8.3, 8.4
and 8.5 as well as on the additional selected examples in Appendix B. The inconsistently
colored background problem is the most common one, but edge pollution can be seen on
the images produced by residual CNN without rebalancing in Figure 8.4. Interestingly,
compared to plain CNNs, residual variants learn different background colorization pro-
perties regardless of the usage of rebalancing, as can be observed on both cases shown in
Figure 8.5 (blue taint on the rocks, green inconsistency on the wall).

As a summary, none of the variants work perfectly. They each produce different colo-
rizations, with different strong and weak points. It would highly subjective to determine
which colorization is the most aesthetically pleasing - though plain CNN with dropout and
residual CNN without rebalancing produce visually weaker colorization when the entire
testing and secondary datasets are considered.

All of the models tend to overuse shades of blue, possibly due to overrepresentation
of sky-like backgrounds in the training set. For the most part, the number of different
colors that the models predict is somewhat limited to shades of green, light blue, varying
hues of brown, dark red and beige. We assume that even when rebalancing is used, the
rarer colors seen in the training set (light red, pink, dark blue or light yellow) are not
represented enough to be predicted unless the object is very specific.

In images where texture information is present (e.g. some foliage for grass, clouds in
the sky or darker strokes on tree trunks), the colorization tends to be much better across
all variants. This is consistent with our hypothesis made in Section 4.2.

Concerning the secondary data, there are some points that are common to all the
variants; compared to the outcomes on the testing set, colorizing the secondary data

8.2. VISUAL COMPARISON OF VARIANTS 47

results are less vibrant and generally have more faded colors, but objects show tendency
to be consistently colored more often. Common objects retain their color even on this set
however, implying well learned insensitivity to noise and luminance shifts. Surprisingly,
residual CNN model seems to produce better looking results than the other variants,
perhaps due to the fact that one of its weakest points (coloring backgrounds) becomes the
weak point of all variants.

Generally, the models trained with rebalancing produce more consistent colorizations
with better-looking colors than the models trained without rebalancing or the model using
Euclidean loss, which tends to use desaturated colors.

In Section 8.4, we explore the possibilities of improving the visual result through the
usage of additional algorithms.

48 CHAPTER 8. RESULTS AND EXPERIMENTS

Figure 8.3: Colorization example results on testing set, from upper left to lower right:
input, plain CNN, residual CNN, L2 ab CNN, plain CNN with dropout, plain CNN without
rebalancing, residual CNN without rebalancing, ground truth

8.2. VISUAL COMPARISON OF VARIANTS 49

Figure 8.4: Colorization example results on testing set, from upper left to lower right:
input, plain CNN, residual CNN, L2 ab CNN, plain CNN with dropout, plain CNN without
rebalancing, residual CNN without rebalancing, ground truth

50 CHAPTER 8. RESULTS AND EXPERIMENTS

Figure 8.5: Colorization example results on secondary data, from upper left to lower
right: input, plain CNN, residual CNN, L2 ab CNN, plain CNN with dropout, plain CNN
without rebalancing, residual CNN without rebalancing, ground truth

8.3. COMPARISON TO COLOR TRANSFER METHODS 51

8.3 Comparison to color transfer methods

To fully understand the performance of our models, we attempt to compare our models
with current color transfer methods.

Comparing algorithm performance can be quite unfair however, since most color trans-
fer methods were designed to work on natural images and do not specifically deal with
the difficulties outlined in Section 4.2. Nevertheless, we offer comparison of our fully au-
tomated method to two selected algorithms of Welsh et al. [28] and Deshpande et al. [27],
which are also used for comparison by Zhang et al. and Larsson et al. [32], [33] and their
source codes are available online.

See Figure 8.6 for three image examples colored by the different methods. On all tested
images, our method visually outperforms color transferring algorithms, but the plausibility
of the colorizations created by the color transferring methods is highly dependent on the
chosen references. Every method produces results with artifacts, but the color transferring
methods create much less visually consistent colorizations.

Welsh et al. [28] Deshpande et al.[27] Ours Ground Truth

Figure 8.6: Side-by-side comparison of color transfer colorization methods to our results.
In case of Deshpande’s algorithm, best looking results is chosen (either using GT histogram
or not), in our column, the visually best looking result is chosen - Plain CNN without
rebalance, Plain CNN and Residual CNN for the three images respectively.

Reference images for Welsh’s algorithm were hand-selected from the training set to
match the colorized image as closely as possible (semantically and color-wise), Deshpande’s
algorithm was trained on 11 hand-selected example-with-5-matches sets (Deshpande et
al. demonstrate reasonable performance with as few as 5 training sets) and colorized

52 CHAPTER 8. RESULTS AND EXPERIMENTS

images were supplied with 5 matching images chosen from the training set. The particular
selection of reference and training images can be found in the supplementary material
described in Appendix A.

Additionally, on the input size of 256 × 256, running Welsh’s color transfer took 35.3
seconds on average and Deshpande’s transfer required 174 seconds per image, which is
quite prohibitive, considering our method needed only 74 ms on average to compute full
colorization of an image on Intel Core i7-4790k CPU and NVIDIA GeForce GTX 970 GPU,
turning making colorization results into an afterthought. This is particularly important
for applying the colorization to video sequences.

8.4 Possible refinements

After obtaining the colorization results, given the unique properties of the dataset, there
are improvements that can be made in order to make the colorization look more akin to
ground truth’s style. One option would be to produce scribble images by treating the
colorization produced by the CNNs as the manual input required by other, traditionally
human assisted algorithms, described in Section 3.1. This, in turn, would make the algo-
rithms fully automatic, all the while preserving the various desirable properties that they
have otherwise been designed to have. We briefly experimented with this idea, for exam-
ple, by sampling single-pixel scribbles in areas of locally maximal classification confidence
(spatial peaks in predicted color histograms), but found that no commonly used scribble
algorithms work well on such input. Instead, we propose the following methods.

8.4.1 Segmentation with flood fill

The first refinement that we experiment with is one that attempts to make the colorization
more uniform, given that the ground truth images are colored very uniformly (e.g. no
blurring around edges or soft transitions of colors) and contain limited textures and large
regions that should be colored evenly.

After observing that edges are very clearly defined, we can do this by automatically
segmenting the grayscale input image into disjoint areas using a seeded 4-neighborhood
region growing mean-shift segmentation algorithm with empirically selected threshold va-
lue (in particular it was 3

51 for the normalized L range of [0, 1], which worked consistently
well across the whole set, though an inferred threshold value could improve the result
further, as in some images smaller or larger values provide more sensible segmentations).
For thresholding to be more effective on images with varying luminance (mostly fading
in/out of scenes), the L channel is normalized into a constant range on every image.

Seed locations are chosen iteratively at pixel positions with largest values in distance
matrix of a binary image consisting of already found regions, with first seed located at
(0, 0). The region growing segmentation continues until there are no pixels with distance
greater than 4 from any segmented region (chosen empirically).

This gives us areas which should be evenly colored. In each of these areas, we take the
ab values of all pixels and perform cluster analysis using k-means with k = 2, based on
the observation that artifacts and color shifts produced by our models rarely exceed single
color deviations. Then, the cluster with largest magnitude is selected, and its centroid is
used as the ab value for each pixel located in the area.

For a more rigorous analysis, k could be automatically selected by the elbow method,
taking the point with largest absolute second derivative value, but doing so would result in
significantly increased computation time with little benefit, making the process less viable

8.4. POSSIBLE REFINEMENTS 53

for video sequences. While the choice of k = 2 might be arbitrary, the method still creates
results that behave much better than when modus (changes across images are too sharp)
or mean (colors are too desaturated and tend to blue) are used. We can see example
results in Figure 8.7. This refinement mostly removes the effects of color bleeding and
inconsistent coloring.

w� w� w�

Figure 8.7: Example results of the automatic segmentation with flood fill algorithm. Upper
images are the colorizations produced by CNN models, lower row contains images after
running the algorithm.

Using unsupervised graph-based image segmentation, such as the algorithm by Felzen-
szwalb and Huttenlocher [42] instead of region growing is also an option, and we find it to
produce better results on the secondary data - as the object boundary edges can be more
subtle, region growing tends to spill over intended object edges or produces too many
small areas when the threshold value is decreased due to random noise and fine textures.

Full results applied to all variants on both datasets can be found on the attached CD
described in Appendix A.

8.4.2 Ensemble as mean

By having results from multiple variants of our models, we can employ ensemble learning -
combining the different results into one prediction. One way to do that is to take the mean
value of pixel colors across all variants (either in RGB or Lab, but since the luminance is
the same in all of the images, the choice is mostly irrelevant here). We generate the results
of this operation to demonstrate the properties of such combination. The fundamental idea
behind this method is that inconsistently colored regions will cancel out, while consistently
colored areas will stay mostly unaffected, even if a small number of models fails to produce
stable colorization of them.

Of course, this method inherently suffers from the same problems as using L2 loss
function - averaged multimodal predictions will drive the chrominance values towards zero,
producing more desaturated images. This effect can be observed on the example shown
in Figure 8.8, however, with the small number of variants that predict similar colors,

54 CHAPTER 8. RESULTS AND EXPERIMENTS

the effect is not as pronounced, and actual results are more satisfactory than individual
model’s results.

Figure 8.8: Example of mean image of all trained variants. Failures are averaged out at
the cost of faded colors, while consistently colored regions remain well colored.

Full results can again be found on the attached CD described in Appendix A.

Another way to accomplish ensemble learning would be to combine the color histo-
grams predicted by the networks directly, for example by choosing the value with highest
confidence across all variants (essentially choosing max instead of mean), however, this
invalidates the results of the L2 ab CNN variant, as it does not output a color histogram
for each pixel.

8.5 Applicability in video

So far, we have only described results concerning colorization on single images. However,
since the original data comes from video sequences, it comes naturally that the ultimate
goal should be to colorize a full image sequence plausibly.

Unfortunately, many problems only manifest when the images are put into a sequence
- such as the fact that most objects tend to change color with changing scale or object
rotation (translation is affected to a lesser degree, due to translational invariance of con-
volutional layers combined with using small filter sizes). This effect can also be observed
with occlusion, although it is not as severe. These problems imply that the models have
not been able to fully learn rotation or scale invariance.

Another problem that emerges is that one object’s proximity can change the coloring
of an unrelated object. This effect is shown in Figure 8.9, where two subsequent frames are
shown. Notice that the only thing changing between the frames is the position of the doves,
but this inadvertently affects the colorization of the clock face, making it inconsistent.

8.5. APPLICABILITY IN VIDEO 55

This is not limited to cases where occlusion happens, and it is most commonly seen on
backgrounds.

Figure 8.9: Two subsequent frames showing the effect of the object proximity failure.

These problems are mostly prevalent among all model variants, with no clear impro-
vements or deteriorations between the variants. It leads to strange looking sequences,
with color of objects changing as they get closer or further away from the camera or are
rotated slightly.

The sequences look better when generated from images with refinements applied, but
while the color fill augmentation produces much better looking colorizations on single
images, in sequences it creates unpleasant color flickering between images in cases where
the cluster sizes change their ordering (where inconsistent coloring is too severe). Using
ensemble mean images, the results become more consistent, with no flickering and evenly
colored objects, but the colors look dimmer and are generally not as vibrant overall except
for objects that are very prevalent in the dataset (hats, faces, grass, ..). Despite this
disadvantage, we think that videos produced from mean images of the segmented and
color filled images compose into the best looking video, compared to all the to the other
options.

In summary, this is where the method falls short - perhaps due to the difficulty of the
training set (or rather its small size), moderate changes in object scale or rotation or even
object’s position relative to another can result in sweeping changes of the colorization,
producing noticeable temporal color shifts. Though the problems could be alleviated with
temporal filtering, selection of keyframes would require manual input and alterations of
the colorizations to make them more consistent with one another.

The full resulting video sequences are available on the attached CD, as described in
Appendix A.

Chapter 9

Conclusion and future work

We presented a method of fully automatic colorization of unique grayscale cartoon images
combining state-of-the-art CNN techniques. Using the right loss function and color repre-
sentation, we have shown that the method is capable of producing a plausible and vibrant
colorization of certain parts of individual images even when applied to a moderately sized
dataset that has properties which make it harder to colorize than natural images, but does
not perform as well when applied to video sequences.

In doing so, we visually and quantifiably compared several variants of CNN design,
which differed in loss functions, architectures and regularization methods. It is clear that
the models we used have a hard time learning colorization of large uniform regions such as
background sky or walls but fare better when smaller objects and characters are present.

We also proposed two methods of improving the generated results which greatly incre-
ase the visual resemblance of generated colorization to the ground truth images.

One novel contribution is using and comparing a model inspired by residual CNNs for
the task of colorization and showing that despite the smaller ERF and fewer parameters,
it can generate results that are comparable or even surpass plain convolutional neural
networks in generalization to unseen data.

9.1 Future work

In order to be applicable for video, the method would currently require further refinement,
performed manually by an artist. If trained on a larger dataset, the predictive power of
the model would increase and is likely to produce more consistent colorization.

For future work, it would be interesting to compare colorization produced by ResNet
models with significantly more depth (which require more computational resources to
train) and models based on conditional generative adversarial networks, as the results
they have been able to put together when applied to natural images are quite impressive
and allow the user to have more control over the result by adjusting the latent space
variable.

Additionally, the CNN model could be adjusted to generate scribbles to use in con-
junction with the algorithms we mentioned in Chapter 3, instead of full colorization. This
could lead to results that more closely match the currently used colorization methods that
apply color to cartoon movies.

56

Bibliography

[1] V. Bochko, P. Välisuc, T. Alho, S. Sutlnen, J. Parkkinen, and J. Alander, “Medical
image colorization using learning”, pp. 70–74, Jan. 2010.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition”, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
Nov. 1998.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, in Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS’12, Lake Tahoe,
Nevada: Curran Associates Inc., 2012, pp. 1097–1105.

[4] K. Chellapilla, S. Puri, and P. Simard, “High Performance Convolutional Neural
Networks for Document Processing”, in Tenth International Workshop on Fron-
tiers in Handwriting Recognition, G. Lorette, Ed., Université de Rennes 1, La Baule
(France): Suvisoft, Oct. 2006.

[5] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional
sequence to sequence learning”, CoRR, vol. abs/1705.03122, 2017.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,
CoRR, vol. abs/1512.03385, 2015.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed processing:
Explorations in the microstructure of cognition, vol. 1”, in Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, Vol. 1, D. E. Rumelhart,
J. L. McClelland, and C. PDP Research Group, Eds., Cambridge, MA, USA: MIT
Press, 1986, ch. Learning Internal Representations by Error Propagation, pp. 318–
362, isbn: 0-262-68053-X.

[8] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Let there be color!: Joint end-to-end
learning of global and local image priors for automatic image colorization with si-
multaneous classification”, ACM Trans. Graph., vol. 35, no. 4, 110:1–110:11, Jul.
2016, issn: 0730-0301.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions”, CoRR, vol. abs/1409.4842,
2014.

[10] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions”,
CoRR, vol. abs/1511.07122, 2015.

[11] W. Luo, Y. Li, R. Urtasun, and R. S. Zemel, “Understanding the effective receptive
field in deep convolutional neural networks”, CoRR, vol. abs/1701.04128, 2017.

[12] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553,
pp. 436–444, May 2015, issn: 0028-0836.

57

58 BIBLIOGRAPHY

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dro-
pout: A simple way to prevent neural networks from overfitting”, Journal of Machine
Learning Research, vol. 15, pp. 1929–1958, 2014.

[14] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for sto-
chastic optimization”, in Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ser. KDD ’14, New York, New
York, USA: ACM, 2014, pp. 661–670, isbn: 978-1-4503-2956-9.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”, CoRR, vol. abs/1502.03167, 2015.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks”, in Proceedings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, Y. W. Teh and M. Titterington, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 9, Chia Laguna Resort, Sardinia, Italy:
PMLR, 13–15 May 2010, pp. 249–256.

[17] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell, “Data-dependent initiali-
zations of convolutional neural networks”, CoRR, vol. abs/1511.06856, 2015.

[18] R. S. Sutton, “Two problems with backpropagation and other steepest-descent le-
arning procedures for networks”, in Proceedings of the Eighth Annual Conference of
the Cognitive Science Society, Hillsdale, NJ: Erlbaum, 1986.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, CoRR,
vol. abs/1412.6980, 2014.

[20] K. Kapoor and S. Arora, “Colour image enhancement based on histogram equaliza-
tion”, Electrical & Computer Engineering: An International Journal, vol. 4, pp. 73–
82, Sep. 2015.

[21] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization”, in ACM
SIGGRAPH 2004 Papers, ser. SIGGRAPH ’04, Los Angeles, California: ACM, 2004,
pp. 689–694.

[22] Y.-C. Huang, Y.-S. Tung, J.-C. Chen, S.-W. Wang, and J.-L. Wu, “An adaptive
edge detection based colorization algorithm and its applications”, in Proceedings of
the 13th Annual ACM International Conference on Multimedia, ser. MULTIMEDIA
’05, Hilton, Singapore: ACM, 2005, pp. 351–354, isbn: 1-59593-044-2.

[23] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and H.-Y. Shum, “Natural
image colorization”, in Eurographics Conference on Rendering Techniques, Jan. 2007,
pp. 309–320.

[24] Y. Qu, T.-T. Wong, and P.-A. Heng, “Manga colorization”, in ACM SIGGRAPH
2006 Papers, ser. SIGGRAPH ’06, Boston, Massachusetts: ACM, 2006, pp. 1214–
1220, isbn: 1-59593-364-6.

[25] D. Sýkora, J. Dingliana, and S. Collins, “LazyBrush: Flexible painting tool for hand-
drawn cartoons”, Computer Graphics Forum, vol. 28, no. 2, pp. 599–608, 2009.

[26] X. Liu, L. Wan, Y. Qu, T.-T. Wong, S. Lin, C.-S. Leung, and P.-A. Heng, “Intrinsic
colorization”, ACM Trans. Graph., vol. 27, no. 5, 152:1–152:9, Dec. 2008, issn: 0730-
0301.

[27] A. Deshpande, J. Rock, and D. Forsyth, “Learning large-scale automatic image
colorization”, in Conference: Conference: 2015 IEEE International Conference on
Computer Vision, Dec. 2015, pp. 567–575.

BIBLIOGRAPHY 59

[28] T. Welsh, M. Ashikhmin, and K. Mueller, “Transferring color to greyscale images”,
ACM Trans. Graph., vol. 21, no. 3, pp. 277–280, Jul. 2002, issn: 0730-0301.

[29] R. K. Gupta, A. Y.-S. Chia, D. Rajan, E. S. Ng, and H. Zhiyong, “Image colorization
using similar images”, in Proceedings of the 20th ACM International Conference on
Multimedia, ser. MM ’12, Nara, Japan: ACM, 2012, pp. 369–378, isbn: 978-1-4503-
1089-5.

[30] A. Y.-S. Chia, S. Zhuo, R. K. Gupta, Y.-W. Tai, S.-Y. Cho, P. Tan, and S. Lin,
“Semantic colorization with internet images”, in Proceedings of the 2011 SIGGRAPH
Asia Conference, ser. SA ’11, Hong Kong, China: ACM, 2011, 156:1–156:8, isbn:
978-1-4503-0807-6.

[31] Z. Cheng, Q. Yang, and B. Sheng, “Deep colorization”, CoRR, vol. abs/1605.00075,
2016.

[32] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization”, CoRR, vol. abs/1603.08511,
2016.

[33] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning representations for auto-
matic colorization”, CoRR, vol. abs/1603.06668, 2016.

[34] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training gans”, CoRR, vol. abs/1606.03498, 2016.

[35] Y. Cao, Z. Zhou, W. Zhang, and Y. Yu, “Unsupervised diverse colorization via
generative adversarial networks”, CoRR, vol. abs/1702.06674, 2017.

[36] Q. Fu, W.-T. Hsu, and M.-H. Yang, “Colorization using convnet and gan”, 2017.

[37] D. Ruderman, T. W. Cronin, and C.-C. Chiao, “Statistics of cone responses to
natural images: Implications for visual coding”, vol. 15, pp. 2036–2045, Aug. 1998.

[38] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks”, CoRR, vol. abs/1505.00387,
2015.

[39] ——, “Training very deep networks”, CoRR, vol. abs/1507.06228, 2015.

[40] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding”, arXiv
preprint arXiv:1408.5093, 2014.

[41] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for
Python, Online at http://www.scipy.org/; accessed 29th December 2017, 2001–.

[42] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmenta-
tion”, Int. J. Comput. Vision, vol. 59, no. 2, pp. 167–181, Sep. 2004, issn: 0920-5691.

http://www.scipy.org/

Appendix A

Contents of the attached CD

The attached CD contains:

1. All network variants’ definitions in prototxt files

2. All scripts used to create and process the dataset, all Matlab scripts used to generate
videos from the images

3. All images used for training and testing, outputs of the networks, as well as the
versions augmented by the algorithms described in Section 8.4. The images have
been converted to JPEG format with 75% quality setting in order to reduce their
overall size on the disk

4. All videos generated from these images, converted to MPEG (H.264) format to
reduce file sizes

5. Caffe distribution compiled for Linux with custom layers for fast color space con-
version and the loss function described in Section 5.3, including the custom Python
layers mentioned in Chapter 7

6. Electronic version of this thesis

The model definitions can be found in the ”networks” subdirectory, each model con-
sists of three prototxt files, one for model definition used for training (”train.prototxt”),
one for model definition used for generating results (”deploy.prototxt”) and one contai-
ning the optimizer’s settings used during training (”solver.prototxt”). Additionally, ”weig-
hts.caffemodel” file contains the caffe’s representation of a given network’s learned weights,
and Python script ”process images” is used to colorize images.

Directory ”shared resources” contains files which are common to all the models, most
notably the used ab pairs definitions (”ab pairs.npy”), prior probabilities of the pairs
calculated on the training set (”rumcajs train priors.npy”) and Python implementation of
layers handling calculation of the rebalancing terms and conversion from ab value to color
histogram in ”layers.py”.

All of the images are stored in the ”images.7z” archive, which has a self-explanatory
hierarchy. For each variant, there are at minimum directories containing all colorized
images of the testing data, secondary data and at least one directory where the ima-
ges have been refined by segmentation with flood fill, the full path follows structure of
”images/<architecture>/<variant>/<secondary, testing> <algorithm used for segmen-
tation>”, where algorithm can be either none, region growing (regiongrow) or Felzenszwalb
segmentation (fs). Mean images and source data are placed on the architecture level.

60

61

Generated videos can be found in the ”videos” directory, and they follow a similar
naming structure. Additionally, a more comprehensive comparison video is included for
both datasets, which shows the episode played with several colorizations side by side,
”CompareVid {Secondary, Testing}”.

In the directory ”scripts”, all source code can be found, including code used to generate
figures used in this thesis, Matlab functions for computing the error metrics, including
mex implementation of the PA metric, Matlab functions for generating the refined results,
including mex implementation of the region growing segmentation algorithm and scripts
we used to filter the initial dataset as described in Sections 4.1.2 and 4.1.3.

Directory ”scripts/3rd party” contains source codes and reference image sets used to
generate results shown in Section 8.3, as well as an implementation of Felzenszwalb seg-
mentation.

Appendix B

Additional results

In this Appendix, additional colorization results are included. These results are generated
both from the training set and the secondary dataset.

62

63

Figure B.1: Colorization results, from upper left to lower right: input, plain CNN, residual
CNN, L2 ab prediction, plain CNN with dropout, plain CNN without rebalancing, residual
CNN without rebalancing, ground truth

64 APPENDIX B. ADDITIONAL RESULTS

Figure B.2: Colorization results, from upper left to lower right: input, plain CNN, residual
CNN, L2 ab prediction, plain CNN with dropout, plain CNN without rebalancing, residual
CNN without rebalancing, ground truth. Last image comes from the secondary dataset

65

Figure B.3: Colorization results on testing data, from left to right: input, mean image
of all variants, mean image produced from outputs of segmentation + flood fill for all
variants, ground truth

66 APPENDIX B. ADDITIONAL RESULTS

Figure B.4: Colorization results on secondary data, from left to right: input, mean image
of all variants, mean image produced from outputs of Felzenszwalb segmentation + color
fill for all variants, ground truth

67

Figure B.5: Colorization results on secondary data, from left to right: input, mean image
of all variants, mean image produced from outputs of Felzenszwalb segmentation + color
fill for all variants, ground truth

	Introduction
	Problem statement
	Thesis goals
	Outline

	Deep Convultional Neural Networks
	History
	Basic concepts
	Layer
	Convolutional layer
	Pooling layer
	Element-wise layer
	Training
	Loss function
	Dropout layer
	Hyperparameters
	Normalization
	Initialization
	Optimization algorithm
	Transfer learning

	Related Work
	User provided color hints
	Automatic color transfer
	Using CNNs

	Dataset
	Rumcajs dataset
	Format of the data
	Method of extraction
	Filtering credits
	Training and testing sets
	Additional remarks

	Difficulty of the set
	Acknowledgement

	Method
	Overall approach
	Color space

	Color channels estimation
	Loss function

	Network architecture
	Pooling layers
	Plain CNN model
	Residual CNN model

	Training details
	Trained variants
	Initializations
	Optimizer
	Training

	Results and experiments
	Testing set results
	Visual comparison of variants
	Forms of failure
	Variant comparison

	Comparison to color transfer methods
	Possible refinements
	Segmentation with flood fill
	Ensemble as mean

	Applicability in video

	Conclusion and future work
	Future work

	Contents of the attached CD
	Additional results

