CzECH TECHNICAL UNIVERSITY IN PRAGUE /
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Survey and example of trusted platform (TPM)
Student: Andrea Holoubkové

Supervisor: Ing. Jifi Bucek

Study Programme: Informatics

Study Branch: Information Technology

Department: Department of Computer Systems

Validity: Until the end of winter semester 2018/19

Instructions

Perform a survey of existing standards for trusted computing with security chips and integrated components,
focus mainly on Trusted Platform Modules (TPM) and Trusted Execution Environment (TEE). Create an
example usage of TPM in a simple case such as disk encryption. Demonstrate the effect of changes in the
platform on the access to the secured resource (disk).

References

Will be provided by the supervisor.

prof. Ing. Rébert Lorencz, CSc. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague September 11, 2017

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacurLTy OF INFORMATION TECHNOLOGY /

DEPARTMENT OF COMPUTER SYSTEMS

Bachelor’s thesis

Survey and example of trusted platform
(TPM)

Andrea Holoubkovd

Supervisor: Ing. Jifi Bucek

3rd January 2018

Acknowledgements

I would like to express my sincere thanks to my supervisor Ing. Jifi Bucek
for his advice and patience with introducing me to disk encryption issues.
Thanks to my friend Marian who read my thesis first and helped me with
proofreading. Finally, thanks must go to my family and friends for love,
inspiration and support throughout my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 3rd January 2018

Czech Technical University in Prague

Faculty of Information Technology

© 2018 Andrea Holoubkova. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Holoubkova, Andrea. Survey and example of trusted platform (TPM). Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2018.

Abstrakt

Bakalarska prace se zaméfuje na pruzkum feSeni pro realizaci davéryhodné
platformy. Podrobnéjsi popis je vénovéan standardim organizaci Trusted Com-
puting Group (TCG) a GlobalPlatform. Jednd se o bezpeénostni ¢ip Trusted
Platform Module (TPM) a integrovanou bezpeénou zénou procesoru nazyvanou
Trusted Execution Environment (TEE). Soucésti feseni bakalarské préace je
také praktickd ukazka pouziti ¢cipu TPM na bézném pocitaci pod opera¢nim
systémem Linux. Praktickd ¢ast se vénuje Sifrovani externiho média (USB
disku) a ulozeni klice do TPM.

Klicova slova

Trusted Computing, Trusted Platform, Trusted Platform Module, Trusted
Execution Environment, Sifrovani disku, bezpecnost

Abstract

The bachelor thesis focuses on survey of solutions to implement a trusted
platform. A more detailed description is devoted to the standards of Trusted
Computing Group (TCG) and GlobalPlatform organizations. It concerns a

vii

Trusted Platform Module (TPM) security chip and an integrated secure pro-
cessor zone called Trusted Execution Environment (TEE). Part of the bachelor
thesis is also a practical demonstration of using a TPM chip on a regular PC
computer under the Linux operating system. Practical part is devoted to
encryption of external media (USB disk) and storing the key in the TPM.

Keywords

Trusted Computing, Trusted Platform, Trusted Platform Module, Trusted
Execution Environment, disk encryption, security

viii

Introduction]

[1 Trusted Computing|

|2 Practical part - Analysis|

2.1 Disk encryption tools in Linux|

[3.2 Detecting the presence of the TPM chip|

[3.3 TPM chip initialization|
3.4 Emnabling the TPM|
[3.5 Installing necessary packages|
3.6 Taking ownership[.
3.7 Use of PCR registers|

4 Developed scripts|

iConclusion|

|Bibliography|

|IA Acronyms|

ix

Contents

57
59
61

67

71

List of Figures

1.1 Conventional platform vs trusted platform [1]| 4
1.2 TPM architectureﬂ 8
1.3 Tree hierarchy of TPM keys [3]] o v v oo vttt . 10
1.4 Attestation with the help of a Certification Authority 4. 15
1.5 Measurement process J4] 16
1.6 TSSlayers Pl 19
1.7 GlobalPlatform’s TEE system Architecture [5]] 21
1.8 Typical TrustZone boot process [0 v v oo oo .. 23
[1.9 Three potential architectural options for realizing a TEE architec- |

ture (adapted from [6])] o oL 25
1.10 Modes in an ARM core implementing the Security Extensions [0 . 27
2.1 Principle of practical example|o 29
2.2 LUKS header [7] 33
2.3 Booting with TrustedGRUB 8] 39
2.4 Operational modes [9]], .. 44
[3.1 Screenshot of unlocking the volume|. 55
4.1 Storing indexes into NVRAM| 58

xi

List of Tables

[1.1 Measurements of PCR registers [10]] 12

[2.1 Comparison table of cryptographic tools in Linux [11]f 30

xiii

Introduction

Current computer systems are open platforms where users can run many useful
programs but there may be a number of malicious programs. Combined with
the many sensitive data we store, the need to secure a computer system is
required. The main causes of low security are for example the high complexity
of today’s operating systems, low security hardware support and weak user
safety habits.

These problems can be addressed by Trusted Computing (TC). The first
technology I am going to deal with is the Trusted Module Platform (TPM)
security chip, which aims to protect sensitive data (passwords, keys, certi-
ficates). There are more than 100 million TPM chips in the top brands of
HP, Dell, Sony, Lenovo, Toshiba and others [I2]. The second technology is
the Trusted Execution Environment (TEE). It is an environment that allows
for secure execution of applications. Hardware-based TEEs have been widely
deployed in mobile devices for over a decade [I3]. The TEE can be used to
ask the user in a secure way to apply a money transfer and is ensured that
the confirmation is from a specific device.

The aim of the thesis is to perform a survey of existing standards for trusted
computing with security chips and integrated components, focusing mainly on
TPM and TEE. As a practical part, to create an example usage of TPM in
a case such as disk encryption and demonstrate the effect of changes in the
platform on the access to the secured resource (disk). Lenovo ThinkPad x61s
with Linux Mint version 18.01 will be available for a practical demonstration.
The chip version will be TPM 1.2.

CHAPTER 1

Trusted Computing

1.1 Generally about Trusted Computing

According to [14 15] Trusted Computing means an approach to building com-
puter systems and infrastructure components which:

e Strongly identify themselves - using public key cryptography, involving
a secret key strongly tied to the platform itself.

o Strongly identify their current configuration/running software - using
cryptographic hashes of object code, and other mechanisms.

o Allow us to make informed decisions about the level of trust to invest in
them.

As implies from the name of Trusted Computing (TC), trust is needed to
achieve the security. The term trust has for TC according to [16] the following
meaning: “Trust is the expectation that a device will behave in a particular
manner for a specific purpose.” The trust itself does not mean safety. In
general, we need trusted components to build secure systems. Trustworthy
systems are ones that we rely on to have correct and predictable operations
[15]. Some goals of Trusted Computing are according to [I] as follows:

o Improve security of existing computer systems

e Reuse existing software modules

Applicable to different operating systems
e Open architecture
« Efficient portability

e Avoiding potential misuse of trusted computing

1. TRUSTED COMPUTING

The general concept of Trusted Computing refers to a set of technologies
that allow the safe run-time on a trusted hardware and software. Support
for Trusted Computing requires hardware support. In the context of Trusted
Computing, there is a term named trusted platform. It’s a set of trusted com-
ponents in hardware and software that provide trusted security functions. It
creates a trusted basis for running applications and provides hardware protec-
tion for sensitive data [I]. Comparison of conventional and trusted platform
is in the figure[1.1

Conventional platform Trusted platform

Application || Application Application || Application
oS oS ‘ Trusted component ‘
HW HW ‘ Trusted component ‘

Figure 1.1: Conventional platform vs trusted platform [I]

The following elementary components are required to create a trusted system
[1:

o Integrity verification (attestation) - Allows the platform to verify
its status.

e Secure storage - Securely stores data on untrusted storage.
o Safe input and output - Provides safe operations between endpoints.

e Process isolation - Provides separate, secure storage space for pro-
cesses

1.1.1 Approaches to implementation of Trusted Platform

Many types of devices either fit this definition of “trusted computing platform”
or have sufficient overlap that we must consider their contribution to the
family’s lineage [17].

1.1.1.1 Software based attestation schemes

These techniques are based only on software. Some examples are summar-
ized in [I§]. The software-based attestation schemes will never give the same
confidence level as the hardware mechanisms of a closed platform [18].

1.1. Generally about Trusted Computing

1.1.1.2 Secure coprocessors

Probably the purest example of a trusted computing platform [I7]. The copro-
cessor only executes authenticated code and physical shielding provides hard-
ware tamper resistance [I8]. Applications running on this computing system
can use this isolated environment to achieve a security that cannot otherwise
be easily obtained.

1.1.1.2.1 Smart cards

In some sense the latest generation of smart card meets the definition of se-
cure coprocessor. Originally smart cards have been constrained in processing
power and storage capacity and a dedicated smart card reader was needed.
Application of this cards was limited to some specific tasks (e.g. SIM cards,
elD cards, credit cards). Latest generation of smart cards contains high speed
interface, higher amout of memory and more powerful microprocessor [18].

1.1.1.2.2 Trusted execution environment

Trusted execution environment (TEE) is a strongly isolated environment in-
side the main microprocessor. Standards are defined by organization Global-
Platform. It is used mainly in mobile world [I5]. TEE will be described in
more detail in section L3

1.1.1.3 Cryptographic accelerators

Special-purpose hardware to off-load cryptographic operations from the main
computing engines. It was designed because the deployers of the crypto-
graphic computations (such as banking systems) felt that this machines were
not suitable enough for a cryptogtaphy, because of the slow computations of
RSA, DSA, Diffie-Hellman when the modulus increases several times. This
accelerators has a range from single-chip coprocessors to a bigger stand-alone
modules.

1.1.1.4 Dongles

Small device, attached to a machine, that a software vendor provides to ensure
the user abides by licensing agreement. It is used to prevent copying the
software.

1.1.1.5 Personal tokens

Hardware which user carries to enable authentication, cryptographic opera-
tions, or other services. Similar properties as smart cards.

1. TRUSTED COMPUTING

1.1.1.6 Trusted platform module

Trusted platform module is a hardware security chip defined by organization
Trusted Computing Group (TCG). It provides basic cryptographic functions
for key generation, signing and hash generation. The TPM contains a trusted
memory that can only be accessed by itself - it can not be robbed by software.
From a security point of view, it acts as the Root of Trust, it must be trusted
for all components. The rest of the system is connected to the bus. It can
be part of PCs, mobile phones or embedded devices. TPM will be deeply
described in section [.2l

1.1.1.7 Virtualized platforms

In this way a security critical application can run on a dedicated Virtual
Machine (VM) isolated from the VM that hosts the legacy operating system.
The integrity of the application VM and the hypervisor can be verified with a
remote attestation protocol [I8]. Running virtual machines can be migrated
and copied, and allow for both good utilization of resources and also strong
isolation among the contents of the virtualized containers [15].

1.1.2 Examples of use

The use of Trusted Computing is very wide, here are some practical examples
of use:

e Network Connection Security - The server will only communicate with
a computer that knows based on parameters that can not be modified.

o Platform Integrity - If none of the hardware and software components
have been modified by malicious code, it can be considered trusted for
running applications.

o Digital Right Management - Restriction of digital content, e.g. can be
played only on a specific device.

e Hard disk encryption - the data on the disk is encrypted with a sym-
metric cipher, the key is securely stored in the trusted hardware.

There is also a criticism of Trusted Computing usage. Some opinions are
summarized in [I5].

1.2 Trusted Platform Module

TPM is a component described in standards released by organization Trusted
Computing Group.

1.2. Trusted Platform Module

1.2.1 Trusted Computing Group’s specification

Trusted Computing Group TPM Main specification, which describes TPM
has several versions - 1.1b, 1.2 and 2.0 [19] 20].

1.2.1.1 TCG Main Specification Version 1.1b

TCG Main Specification Version 1.1b was in the form of a release for a few
years, and was finally released according to [10, p. 1-2] in 2003 as a TCPA (pre-
decessor of TCG) Main Specification, Version 1.1b. The basic functions (key
generation, storage, secure authorization) of a TPM were available. Function-
ality to help guarantee privacy was available through the anonymous identity
keys based on certificates that could be provided with the TPM, for example,
owner authorization. The TCG has different specifications with respect to
version 1.1b and each addresses the different aspects of the secure design of
the system. The disadvantage of TPM 1.1b was incompatibility at the hard-
ware level. TPM vendors had slightly different interfaces requiring different
drivers.

1.2.1.2 TCG Main Specification 1.2.

TPM version 1.2 is upgrading and replacing version 1.1b. Therefore, studies
of implementations based on TPM version 1.1b can be directly applied to the
Specification 1.2 (but not vice versa). Version 1.2 was developed in 2005-2009
and went through several versions. It includes a standard software interface
known as a TIS (TPM Interface Specification, see driver which is de-
signed to support TPM from various manufacturers. In TCG Main Specifica-
tion Version 1.1b there was no protection against an attacker trying to guess
the right password. This attack is known as Dictionary Attack. The TPM 1.2
specification required TPM protection against these attacks by specifying the
wrong password entry limit. The privacy groups complained about the lack of
implementation of the Certification Authorities for Personal Data Protection
(explained in section . The latest version of the specification 1.2 is
named TPM Main Specification Level 2 Version 1.2, Revision 116 [19]. TPM
1.2 was deployed on most x86-based client PCs from 2005 on, began to appear
on servers around 2008, and eventually appeared on most servers.

1.2.1.3 TCG Main Specification 2.0.

For TPM 2.0, the specification is named Trusted Platform Module Library
Specification, Family 72.0”, Level 00, Revision 01.38 and was last edited in
September 2016 [20]. Its version from 2015 have been approved ad the Inter-
national Standard ISO/IEC 11889:2015, Parts 1-4, in 2015 [20]. TCG Main
Specification 2.0. was created because of the attack on the SHA-1 digest
algorithm. The TPM 1.2 architecture has SHA-1 implemented everywhere

1. TRUSTED COMPUTING

[21]. Therefore TCG began work on a TPM 2.0 specification that would not
hard code SHA-1 or any other algorithm but rather would incorporate an
algorithm identifier that would allow any encryption algorithm without chan-
ging the specification. The main reason for the TPM 2.0 was to create TPM
1.2 plus an algorithm identifier. But in the end it was a lot more than just
this improvement. It is because, the TPM 1.1b and 1.2 versions were com-
pact enough to be encrypted with a 2048-bit RSA key in a single encryption.
This means that there were only 2 048 bits to work with and no symmetric
algorithms were implemented. TPM 2.0. had to provide for algorithms that
were larger than SHA-1’s 20 bytes, making the existing structures very large
in comparison to 2048 bits (256 bytes) in previous versions. RSA key could
not use encrypt the large structures in single operation, and multiple use of
encryption was too slow. Bigger size of the RSA key would mean using sizes
of key that were not in supported in the industry and would also change the
key structures, and slow down the chip. TPM Work Group wrote specification
TPM 2.0 which allowed to use new encryption: Encrypting a symmetric key
with the asymmetric key and the data with the symmetric key. ”Symmet-
ric key operations are well suited for encrypting large byte streams, because
they are much faster than asymmetric operations. Symmetric key encryption
thus removed the barrier on the size of structures. This lead manufacturers to
create several functions that were not included in TPM 1.2” [10].

1.2.2 HW architecture
General HW architecture of TPM is in figure [I.2] It consists of these blocks:

Crypto llflirr;?t?gr] PCR
engine Generator registers
110
Non-volatile Volatile Execution
memory memory engine

Figure 1.2: TPM architecture [2]

o I/O component is a gatekeeper mechanism that manages the inform-
ation flow in the communication bus. TPM chip is connected to the

1.2. Trusted Platform Module

board via the LPC bus or the SMBus [22]. The TPM chip behaves only
as a "slave”, it only responds to commands that come from the TPM
Device Driver.

Execution engine runs program code to execute the TPM commands
received from the I/O port.

Crypto Engine performs encryption and decryption algorithms in the
chip. According to the specification of TPM 1.2, a RSA , SHA-1 , and
a HMAC engines are implemented and also, a keys which are 512, 1024
or 2048 bits long are required.

Volatile storage (RAM) - memory that is dependent on the power
supply and the contents inside will be lost during the disconnection time.
It holds the current state of the chip, cryptographic keys, authentication
session - it is used to store temporary data, i.e. the most frequently
cryptographic keys currently loaded.

Non-volatile storage (NVRAM, flash) - memory, whose content
remain inside even during the interruption of the power supply.

Random Number Generator (RNG) - serves as the basis for the
encryption algorithm.

Platform Configuration Registers - registers for measurements of
the platform. These registers are deeply discussed in the separate section

2.4

1.

TRUSTED COMPUTING

1.2.3 Keys

The non-volatile storage stores the following data and these main keys:

10

Endorsement Key

EK

Storage Root Key

SRK

Storage Key Storage Key
Usert e o o UserX
Signing Key Binding Key Signing Key Binding Key
useri user1i « e e userx userX

Figure 1.3: Tree hierarchy of TPM keys [3]

o Endorsement Key (EK) - A pair of RSA keys that are set by the

manufacturer. The private part of the key is never disclosed. It remains
inside the chip throughout its lifetime. Its size is 2048 bits.

Storage Root Key (SRK) — It is created when the user or adminis-
trator takes ownership over the system by using the TPM_TakeOwnerShip
command. This key pair is generated by the TPM chip based on the
owner password specification, and never leaves the chip. Additional stor-
age keys can be saved. A tree hierarchy is created where the root is the
SRK that covers the other keys. It is generated every time the chip
changes the owner.

Attestation Identity Keys (AIK) - Protects a device from unau-
thorized modification of firmware and software by having critical parts
of firmware and software hashed before they are executed. When the
system tries to connect to a network, hash values are sent to the server
to verify that they match the expected values. If they do not match,
the system will not be able to access the network. It is stored in non-
volatile memory of TPM. It is used to sign the PCR values, which will
be discussed in section Confirms integrity reports. It can replace

1.2. Trusted Platform Module

the EK, but if we sign a message with EK, it would mean that we would
always disclose our identity, it would be clear which TPM chip signed
the message. Usually, it’s enough to prove that the signature comes from
a some TPM chip.

The keys form the tree structure where the root is EK. They are divided
according to purpose as follow:

e Storage key - Used to store additional keys. The child key is always
encrypted by the public key of the storage key. For the loading a key to
the TPM, its master storage key must be pre-loaded and the authoriza-
tion to use this master key (password) must be completed. It is a RSA
key that serves only to decrypt other keys (Root of Trust for Storage).

e Binding key - It is a public RSA key that is used to encrypt a small
amount of messages, data, or other symmetric keys to encrypt a large
amount of data. It can not be used to encrypt other RSA keys [4]. Used
for binding, which will be described in section [I.2.6]

e Signing key - To ensure the integrity of any files stored on the platform.
The private key part can only be used for signing.

Keys are also divided by the possibility of moving to another TPM. These
keys have flags:

e« Non-migrable key - This key can not be migrated to another TPM
chip. Their private parts never leave the key. It is safer than a migrable
key. The only risk is the burning of the motherboard. Its data can not be
undone, so they will be lost forever. However, with its advantages comes
the disadvantages in the form of reduced flexibility (e.g. impossible to
decrypt the file on another PC platform with another TPM chip with
the same owner). Non-migrable keys include EK and SRK.

o Migrable key - This key can be migrated to another TPM chip. There
is an increased risk of an operation called migration. The owner will
provide another public key to the TPM chip, then he may have access
to other secret keys. All these operations must be performed by the
owner.

1.2.4 Platform Configuration Registers

In volatile memory, the TPM has a minimum of 16 (the newer have 24, e.g.,
Infineon SLB 9635 TPM) Platform Configuration Registers (PCR). Each of
them has a size of 20 bytes because the SHA-1 hash has 20 bytes. These re-
gisters store platform integrity measurement results. Here is meant a platform
consisting of several components. Typical components are BIOS, Master Boot

11

1. TRUSTED COMPUTING

Record, Boot Sectors, The Boot Loader, and finally the operating system and
application software. The component can measure another component (counts
its hash) and puts this measurement into the PCR (before it passes control
to that component). PCR p is extended with m by the following formula:

p := SHA-1(p||m)

This insertion is an irreversible process and is called extend. PCR is used
for secure boot (Trusted Boot). We can not directly write value to them, we
can only extend the value by a new one. The entire measurement history is
stored there. The consequence of this functionality is that neither we nor the
attacker can write down the specific value, so that the measurements that are
stored in the PCR can not be additionally falsified.

The table shows what measurements are stored in the PCR registers.

PCR | Allocation

BIOS

BIOS configuration

Option ROMS

Option ROMS Configuration
MBR (Master Boot Record)
MBR Configuration

State transitions and wake events
Platform manufacturer specific measurements
-15 | Static operating system

16 Debug

23 Application Support

0 O Ui W N~ O

Table 1.1: Measurements of PCR registers [10]

1.2.4.1 Access to the PCR

PCR needs a 32-bit index, which determines the maximum usable PCR index.
All indexes beginning with the 230, have been reserved by TCG for higher or
later versions of the specification.

PCRs and the protected capabilities that operate upon them may not be
used until Power-On Self-Test (TPM POST) has completed. If TPM POST
fails, the TPM_Extend operation will fail. In addition, the TPM_Quote operation
and TPM_Seal operations that report and control the PCR values also fail.
After successful TPM POST execution, all PCRs have to be set to preset
values [23].

12

1.2. Trusted Platform Module

1.2.4.2 Usage of individual configuration registers

PCRs from 0 to 7 are used for SRTM (see section [1.2.5.3)). They are defined
for use within the Pre-Operating System state. Their resetting is only pos-
sible when the whole platform is reset. During the BIOS boot process a log
of all executable code is created and extended into PCRs. [24] The other
8 registers (PCR 8 to 15) are used after the operating system has been de-
ployed (Operating System Present State). The CRTM may measure itself to
PCR 0 and POST BIOS, including manufacturer-controlled embedded Option
ROMs, firmware, etc., that are provided as part of the motherboard. Only ex-
ecutable code is logged. Configuration data such as ESCD (Extended System
Configuration Data) should not be measured as part of this PCR [23] 24].

The motherboard and other hardware configuration metrics are located in
PCR 1.

Measurements made over optional ROM (Option ROM) devices that are
not part of the motherboard (Non-Host Platform Adapters) are placed in
PCR 2. There are two options of Option ROMs: visible and hidden. Each
is measured and logged to PCR 2. Visible must be measured by the BIOS.
Option ROM is responsible for measuring the hidden code. The code must
be measured before it is executed. Option ROM may have configuration and
other data that are relevant to the trust properties of the Host Platform. For
example an SCSI controller’s configuration of its hard disks, e.g., RAID type,
drive assignments is measured into PCR 3 [24].

PCR 4 measures the process of attempting to boot different hardware
paths , e.g. from a DVD or a hard drive, and the IPL Code that is loaded and
executed from the device. Information about which paths was selected will
be recorded by the IPL code in the PCR 5. PCR 6 contains measurements of
the Platform Manufacturer during boot and later by an OS. Platform Man-
ufacturers use the PCR to measure what turned on the platform. PCR 7 is
reserved for platform manufacturer applications. Which means that the plat-
form manufacturer’s application can use this PCR before the Pre-Operating
System State is introduced.

PCR 16 is for debugging. It is is for use by any entity on the Host Platform.

PCR 17-23 is used for DRTM (see [1.2.5.3.2)).

1.2.5 Root of Trust

A set of features that are always trusted by the OS. It is a component that
must be trusted implicitly because it is not possible to verify that it is doing

13

1. TRUSTED COMPUTING

what is expected of it. It is divided into:

¢ Root of Trust for Measurement
¢ Root of Trust for Storage

¢ Root of Trust for Reporting

Before individual components are analyzed, it will be explained the term
Attestation. According to [4], the Attestation is the means by which a trusted
computer assures a remote computer of its trustworthy status. In connec-
tion with the TPM chip, the term Remote Attestation is used. The TPM is
manufactured with an EK key (see section built into TPM hardware
that contains the public and private section. The public part of the EK is
certified by the appropriate certification authority as the EK of a particular
TPM chip. Each individual TPM has a unique EK, so it can sign a statement
of its trustworthy status using its private part. The remote computer can
verify that these statements have been signed by a trusted TPM. However,
the anonymity of the TPM is lost, because the EK is its unique identifier and
if a digital signature was performed by the EK, then it can be tracked. So the
use of the EK as a signature does not ensure privacy.

The attestation identification key (AIK see section is the solution. AIK
is the key pair created during the attestation for using of a concrete applica-
tion. It is used instead of EK for several reasons:

1. Reduces direct access to TPM
2. Helps to prevent EK cryptonalysis

3. Solves privacy issues because AIK is not directly connected to hardware

1.2.5.1 Root of Trust for Reporting

Root of Trust for Reporting (RTR) is in charge of a trusted status report. As
noted above, a remote attestation or attestation, is a method that proves to
a remote person that a local computer is a trusted platform and displays its
current configuration of registers. The key to this method is RTR. To avoid
this key being EK (due to the anonymity of the TPM chip), the AIK key is
generated to sign the configuration. The AIK key has the same properties for
the verifier as the EK.

According to the version 1.2 specification, this cryptographic primitive is
only present from this version and I will continue to build on it.

To allow an anonymous attestation, TCG has adopted two different ap-
proaches to enable it:

14

1.2. Trusted Platform Module

e Use of a certification authority
ATIK, which is signed by the EK| is first sent to a trusted partner, called
Certification Authority (CA). He checks the signature and status of the
EK and signs AIK. The remote computer will see one AIK signed by the
CA and can not connect it to the EK. New AIKs will be generated for
new needs so they can not be interconnected. For a better understand-
ing, here is a picture illustrating this method:

Attestator Challenger

Ask for attestation

-t

(AIK) g,

Trusted third
party

(AIK certificate),,,

(PCRval), ., SML, (AIK cert)

AIK?

TP >

Figure 1.4: Attestation with the help of a Certification Authority [4]

The Attestator generates a key pair of AIK public and private key upon
receipt of a Challenger request and sends the public part signed by its
EK to a trusted third party (TTP in the picture called Certification
Authority. It verifies its EK and generates an AIK certificate. The
certificate is signed by the TTP and sent back to the confirmation. The
Attestator can now send the Challenger its PCR values (signed by AIK),
its Stored Measurement Log (SML), and the received AIK certificate.

¢ Direct Anonymous Attestation
Complicated protocol that does not use CA but is also anonymous. For
more information, read here [25].

1.2.5.2 Root of Trust for Storage

Root of Trust for Storage (RTS) is responsible for protecting the external
TPM objects that lie in the unprotected memory (e.g. AIK is stored on the
disk but is encrypted with a key stored in the TPM) due to a small memory
of the TPM. Each key is encrypted with its parent key (see figure . The

15

1. TRUSTED COMPUTING

root of this tree hierarchy is the EK, which is permanently stored in the TPM
(non-migrable key). Other keys are generated by the TPM, encrypted with
some keys, and then stored on the disk. In order to use a key, for example, to
decrypt, we need to use its parent keys together with it. This entire decryption
process ends with the EK, using a key stored directly in the TPM, which is
considered to be Root of Trust for Storage.

1.2.5.3 Root of Trust for Measurement

Root of Trust for Measurement, (RTM) is an initialization process that is cap-
able of performing a reliable integrity measurement. It consists of Core Root
of Trust for Measurements (CRTM) and component. The credibility of RTM
is based on platform certification.

CRTM is part of the unmodifiable and indelible part of the BIOS. The CRTM
is the initialization part of the code that is executed on the platform when the
computer starts up. It runs before it loads the BIOS so it can measure all its
components before it passes control. It measures the rest of the BIOS, calcu-
lates its cryptographic hash, writes the result to the PCR register, then boots
the BIOS and initializes it. The BIOS measures the hardware configuration
as shown in Fig. [I.5}

Hardware
— 1
4
1 8
CRTM 3 BIOS 7 Bootloader | 10 oS
—
~C —
\\\ 6 %

S Vi e Measuring — g
pAY PCR /A Passing control >
N Storing >

Figure 1.5: Measurement process [4]

Next it measures the bootloader of the operating system. It retrieves it
from the disk, calculates its hash, and store a calculation to the PCR registers
using the extend operation. Then the bootloader starts, which measures the
kernel OS and also saves the result in the PCR register before it starts. We can
see all the measured components and their cryptographic sums by checking
the status of the PCR registers and see if the OS is running in the expected
state or not.

16

1.2. Trusted Platform Module

There are two ways of how the Root of Trust for Measurements can be
measured. These methods are named Static Root of Trust for Measurements
(SRTM) and Dynamic Root of Trust for Measurements (DRTM).

1.2.5.3.1 Static Root of Trust for Measurements (SRTM)

SRTM occures at a system boot. The first thing being processed at boot is the
static, unchangeable piece of code called Core Root of Trust for Measurements
(CRTM). Trusted Platform needs an additional entity, which would measure
the BIOS itself and act as a CRTM. This entity is called a Trusted Building
Block (TBB) which remains unchanged during the lifetime of the platform.
There are two ways to integrate the CRTM with the BIOS. First, the whole
CRTM code is contained in the BIOS boot block, so the rest of the BIOS can
be updated. The inconvenience of this way is that rest of the BIOS has to be
measured by CRTM for integrity. Second way is that whole BIOS becomes a
part of TBB, so the whole BIOS is CRTM. Any change to any of this requires
new measurements

1.2.5.3.2 Dynamic Root of Trust for Measurements (DRTM)

The term was introduced in specification 1.2. This method addresses the dis-
advantage of the SRTM, which is that many modern systems (e.g. Microsoft
Windows and Linux) require executable content to be measured (executable
libraries, shell scripts etc.). Those components which were once measured are
often updating while the system is running, and also some of the elements
may be executed in different orders, which gives rise to different measurement
values in PCRs. DRTM allows launch of the measured environment at any
time without a platform reset. So the goal of DRTM is to create a trusted
environment from an untrusted state. Implementation of Intel is called Trus-
ted Execution Technology (TXT) while AMD use the name Secure Virtual
Machine (SVM). DRTM uses PCRs 17-22. Command SENTER is one of a new
instruction introduced by TXT (SMX operations - CPU instructions). It is
used for TXT late launch from untrusted to a trusted system without reboot.
These instructions enable some pieces of code to be executed in an isolated
environment and cryptographic hash of a code is calculated before execution.
The hash is extended into a PCR on TPM chip. And it is always loaded
dynamically.

More information about this technique can be found on [§].

1.2.6 Classes of protected message exchange

Keys are communication endpoints and improperly managed keys can result
in loss of security. TCG defines the four classes of protected message exchange
[26]:

17

1. TRUSTED COMPUTING

1.2.6.1 Binding

Binding is the encryption of a public key message, called binding key, which is
stored in the TPM chip. If the binding key is non-migrable, the corresponding
private key can only use the TPM where the key was created. Therefore, the
encrypted object is effectively bound to a specific TPM.

1.2.6.2 Sealing

Sealing is an extension of the binding operation. Not only is the encrypted
message tied to a particular TPM, it can also be decrypted only if the current
configuration of the platform matches the PCR values at the time of creation.
Once the data has been decrypted, the TPM verifies that the system status
is the same as the values recorded by the PCR. If so, it gives the data to the
user.

This is one of the most powerful ways to use the TPM because protected
messages can only be viewed if we have a functional platform and know its
specific features in advance.

1.2.6.3 Signing

Signing is an operation that ensures data integrity.

1.2.6.4 Sealed Signing

Sealed Signing are operations that extends signing. These operations are
linked to the PCR registers to make sure that the platform that signed the
report is in a state that matches its requirements.

1.2.7 TCG Software Stack

The Trusted Software Stack (T'SS) has been defined by the TCG to make the
TPM chip functions available to the program. It provides a standard API
and extends limited chip capabilities. T'SS simplifies working with TPM and
provides additional services:

o Ability to store keys on disk
o Remote TPM access through the network

o Data conversion between portable formats (data blocks)

The stack according to the standard has many layers and interfaces. On
the lowest layer is the TPM chip driver and on the top layer is the service
library that is called from the application programs. In this section we will
describe the TSS architecture from the lowest level to the highest. The TSS
architecture is shown in Fig.

18

1.2. Trusted Platform Module

‘ Application ‘

‘ Tspi
‘ TCG Service Provider (TSP) ‘

Userspace ‘ Tesi
‘ TCG Core Services (TCS) ‘

‘ Tddi

‘ TCG Device Driver Library (TDDL) ‘

TPM device driver

Kernel

HW | TPM |

Figure 1.6: TSS layers [2]

1.2.7.1 Description of the TSS architecture

On the lowest layer of hardware is the TPM chip that communicates with the
TPM Device Driver in the kernel. The TCG Device Driver Library (TDDL)
is on the lowest layer of userspace. This library communicates with the device
driver inside the kernel.

1.2.7.1.1 TPM Device Driver

The TPM Device Driver (TDD) is located in the kernel of the operating
system. It is a software that communicates with the TPM via the LPC bus
where the TPM chip is connected to the rest of the system. The driver receives
messages from the top of the TCG Device Driver Library (TDDL) and sends it
back to the TPM. TDDL contains only 4 commands - open, close, transmit,
receive. It is used to connect the TCS daemon to it. In the TCG specification
is assumed to run in a kernel mode, because in most operating systems, the
user application has no direct access to hardware that is necessary for TDD.
TDDL does not deal with Multithreading.

1.2.7.1.2 TCG Core Services

TCG Core Services (TCS) runs as a daemon, which is the only process in the
system that accesses the TPM through the TDDL and its Tddli interface. TCS
resolves efficient TPM resource management, manages resources, and switches
TPM contexts. Because the TPM can not handle commands in parallel, the
solution to this phenomenon has been implemented at the TCS level. The
TPM requires TCS to be run as an operating system service if it is in the

19

1. TRUSTED COMPUTING

platform’s capabilities. TDDL provides only one TDD connection, so there
can be no more than one TCS service. The TCS interface is Tesi.

1.2.7.1.3 TCG Service Provider

TCG Service Provider (TSP) is a shared library that links applications. It
is a module that provides an object-oriented interface for applications where
we want to use all the TPM options. It accesses TCS and has some of its
own services. Provides an individual key store for users. The interface used
by TSP access applications is Tspi. Tspi is an interface in C language. TSP
provides additional TPM auxiliary functions, such as signature verification.

1.3 Trusted Execution Environment

1.3.1 Specification

The Trusted Execution Environment (TEE) has about 12 published specific-
ations, which are maintained by GlobalPlatform. GlobalPlatform is a non-
profit organization that develops security-related specifications. It has more
than 120 members (eg AMD, Apple, ARM). Technologies from this organiz-
ation are globally used in many areas such as finance, telecommunications,
cars, etc. All specifications are published on GlobalPlatform website [27].
TEE is a technology that allows running security applications independ-
ently of the operating system (isolated run), after implementation in the pro-
cessor. A protected application is not accessible by any software tool from a
major operating system, which is more vulnerable in terms of safety. Every
specification contain an important information about this technology.

« TEE Client API [27, TEE Client API Specification v1.0] specification
is a low level communication interface which enables access of Client
application running in the Rich OS to exchange data with a Trusted
Application running inside a Trusted Execution Environment. The

« TEE System Architecture [27, TEE System Architecture v1.1]
defines the hardware and software architecture that constitutes the TEE.

o TEE Internal Core API |27, TEE Internal Core API Specification
v.1.1.1] defines interfaces available within a TEE, such as memory man-
agement, cryptographic primitives and secure storage for the TA devel-
opment. The definition of others specification is part of the GlobalPlat-
form website, which is also an initializer of standardization. Standard-
izing is very important, because every company which creates TEE has
another architectural option.

20

1.3. Trusted Execution Environment

1.3.2 Fundamentals of TEE

TEE serves to secure a trusted platform on the smartphone and uses isolation
principle of the the critical application from the rest of the system. OSs for
smartphones are designed to be more secure than OSs for PCs but security
is routinely defeated using techniques such as jailbreaking on iOS and rooting
13, p. 159-178] on Android OS. On a common operating system in the
TEE terminology called the Rich Execution Environment (REE), a number of
applications may run. Possible malicious applications may disrupt the security
of other applications in this environment. To implement TEE technology,
support is required directly in the processor. Specific implementations of TEE
vary among processors manufacturers. The Intel processor manufacturer calls
it Intel Software Guard Extensions (SGX), the manufacturer ARM calls it
TrustZone. TEE technology is mainly used in mobile phones and embedded
devices. Because the dominant processors on these platforms are from the
manufacturer ARM, this thesis will focus on the TrustZone technology.

REE

REE Client
- applications
applications (cA)s

N

TEE

Trusted

applications

(TA)s
N

(TEE Internal Core API]

[TEE Clientlapt |
J [J

L8

Rich OS

A N

N y

f——————
Public “—> Messages :<— Trusted
Peripherals }J = =~ == ===« Peripherals

Platform Hardware

Figure 1.7: GlobalPlatform’s TEE system Architecture [5]

Using the terminology introduced by GlobalPlatform [18], Figure de-
scribes the concepts of TEE.
1.3.2.1 Rich Execution Environment

The word "rich” means an operating environment which is hugely extensible
but they are more prone to being attacked for example modern platforms such
as Android, iOS, Microsoft Windows or Linux, where runs the majority of the

21

1. TRUSTED COMPUTING

platform software, including the primary operating system [27, TEE System
Architecture v1.1].

1.3.2.2 Trusted application

An application logic that runs inside the TEE is referred to as a trusted applic-
ation (TA). It provides security related functionality to Client Application (for
example a service style application which provides a cryptographic keystore)
[27, TEE System Architecture v1.1].

1.3.2.3 Client application

The REE application, which initiates and interacts with the the TA, is called
a client application (CA)E It is for example browser or e-mail client.

1.3.3 Use of TEE

TEE can efficiently protect sensitive data, however, it is not impermeable.
User can downloaded a new update for their device which contains malware,
which can masquerade as a legitimate CA, therefore the attacker can freely
use the sensitive data stored in the TEE and decrypt data as a super user,
however, the TEE would still hold the key which will not be revealed. Despite
these shortcomings, TEE and its functions still prevail the risks of not using
it [5]. TEE is widely used for mobile devices, which contains these functions:
[13], [28]:

e Secure Boot CPU boot in "secure kernel mode” in ROM. The ROM
itself is a ROM Boot Loader and it is booting in a mode called Secure
Boot. ROM Boot Loader has a digital signature of TEE OS. Before it
passes execution to the TEE OS, it will verify the signature. Then it
starts executing the TEE and the TEE itself will verify Rich OS integrity
with digital signature. Basically, each stage of the boot sequence verifies
the signature associated with the next stage software before loading it
into the secure world. As long as each stage verifies the signature of the
code image of the next stage, only authenticated code can be executed.
One of these loads a non-secure, non-authenticated bootloader in the
normal world which in turn loads the main operating system [6]. Secure
boot does not guarantee that the device is free of security issues; rather
it can certify that the components that have booted are the best known
configuration as provided by a trusted source. The idea of the TEE
separation is to apply secure boot to the TEE, but not necessarily to
the main OS.

LCA is widely used as a shortcut for Certificate Authority.

22

1.3. Trusted Execution Environment

System Running

t

Normal World OS Boot

%

Normal World Bootloader

f

1
Secure World OS Boot

Any Secure world
bootloaders may need

Flash Device Bootloader to implement secure
(Second Level Boot) boot protocols to defend

1 / against some attacks.

ROM SoC Bootloader
(First Level Boot)

t

Device Power On

Figure 1.8: Typical TrustZone boot process [6]

Secure storage Secure storage is used to protect the integrity of the
data while they are not in use.

Remote attestation For remote verifying the integrity of the service
that is actually talking to the software on the device. It allows end
points that communicate with a secure execution environment to verify
the authenticity of the software and hardware implemented by the TEE.

Trusted path Sending and receiving communication from and to the
outside world while guaranteeing the authenticity of the communicated
data and optionally also the secrecy and availability should be possible.
This should allow the one of the end point, whether human or not, to
verify that the data transmitted comes from the execution environment
and also it should ensure that data from peripherals received in the
environment is authentic [28)].

Digital Rights Managements (DRM): Media industry uses TEE
widely. For protecting the media stream from piracy the data is encryp-
ted with a key that is generally device or session specific. The TEE
protects this key and can safely display the data in the other part of the
system. Taken from the GlobalPlatform website: ”"The TFEE is the ideal
environment for content providers offering a video for a limited period

23

1.

TRUSTED COMPUTING

of time that need to keep their premium content (e.g. HD wvideo) secure
so that it cannot be shared for free [29].”

Key storage: TEE can be used for a storage of cryptographic keys
or certificates, which makes it more difficult to extract them from the
device. When keys are stored in a TEE, a CA can make use of them
through a key-store Application Programming Interface (API) and these
tokens are not exposed to user space [5].

One example of using TEE is in mobile banking. Since many sensitive

use cases lead to an interaction with the user, they are mainly related to bill
payment, money transfer etc. Mobile banking application communicates with
a back-end of a bank. These use cases forms a whole application following
these requirements:

e No one should have access to the execution of the banking application

and the data stored in it. To achieve this, it is necessary to have a secure
storage.

Instance of the application and the back-end should be able to securely
communicate with each other. Remote authentication provides the abil-
ity to authenticate the application. Secure storage is used to store cre-
dentials needed to setup a secure and authenticated connection with the
back-end.

The user should confirm the transaction safely on its display without
anyone interfering. Display should with the trusted path show the trans-
action details and allow user to securely confirm a transaction by enter-
ing a PIN.

1.3.4 Architecture of the TEE

There are different ways to achieve a TEE.

24

1.3. Trusted Execution Environment

External Extel
Memories Memones

Chypto | ON-SoC Crypto | ON-SoC Cryptd] On-SoC
Accelerators RAM Accelerators RAM Accelerators
| Processor Processor [Processor
ccore(s) core(s) core(s)
ROM . Peripherals ROM Peripherals | ROM] Peripherals
orp o | orP
Fields Fields On-chip Fields
Security
Subsystem
TrustZone®

Co-processor
External Secure Element Embedded Secure Element Processor Secure Environment

- TEE component

Figure 1.9: Three potential architectural options for realizing a TEE archi-
tecture (adapted from [6])

1.3.4.1 TEE component as a coprocessor

A coprocessor is a computer processor used to supplement the functions of
the primary processor. It is a separate core with its own peripherals, is used
to remove tasks which are critical for security from the main processor. Its
advantage is that its operation can be completely isolated from the rest of the
environment, and running with the main core, but the drawbacks are trans-
ferring data to and from the core which can slow down the entire operation.
It is less powerful than the main core. It can be divided as follows [5]:

o External security coprocessor is a coprocessor outside the physical
chip (commonly referred to as "System on Chip” or SoC) containing the
main core, where the coprocessor is isolated from it, and do not share
any resources with the SoC and provides no functionality.

« Embedded security coprocessor is embedded into the main SoC and
has the capability to share some of the resources of the main system. It
is still isolated from the main processor. These two processors will not
have the same performance (coprocessor will be slower) and it will not
be able to interact in a same way.

Because none of the options is sufficient as a TEE component, the TEE
has to be in each part of the whole processor and share all the resources. This
configuration is referred to as the Processor Secure environment.

25

1. TRUSTED COMPUTING

1.3.5 ARM TrustZone

ARM TrustZone is one of these configurations. It is a technology that adds
security features to the ARM cores. An overview of ARM TrustZone is given
in a white paper [6] by ARM. In this section an overview of ARM TrustZone
based on this white paper will be given.

TrustZone allows us have on the same CPU two parallel worlds - "Normal
world” and ”Secure world” logically separated to be running at the same
time. So if we run, for example, an Android application and exists a ”Secure
world”, the only way for us to determine that there is another one running is
to do parallel measurements. Both domains have the same capabilities, but
operate in a separate memory space. It enables a single physical processor
core to execute from both the Normal world and the Secure world, where
Normal world components cannot access secure world resources. TrustZone is
implemented in Cortex-A5/A7/A8/A9/A15, and ARMv8 64-bit Cortex-A53
and A57. Smartphones and netbooks typically utilize this line of processors.
Below are a few usage examples for TrustZone as listed by ARM [30]:

e Secured PIN entry for enhanced user authentication in mobile payments
and banking

e Software license management

e Access control of cloud-based documents

One advantage is that no additional security hardware, such as cryptopro-
cessor, is needed.

1.3.5.1 Switching the worlds

TrustZone relies on the so-called NS (Non-Secure) bit. The value of NS bit is
transferred throughout the AMBA3 AXI system bus to separate the execution
between a secure world and a non-secure world [6]. The NS bit informs a
system which mode the processor is currently running in. If the NS-bit is set
to 1, the processor is working in a non secure mode and is not able to access
secure memory or devices. If the NS-bit is set to 0, the processor is working
in a secure mode and is able to access any hardware within the system. The
NS bit value in a special register called the Secure Configuration Register
indicates whether the processor executes in the secure or normal world at any
given moment.

26

1.3. Trusted Execution Environment

Normal world Secure world
Normal world Secure world
user mode user mode
Normal world Secure world
privilieged modes privilieged modes

L :Il Monitor mode }J

Figure 1.10: Modes in an ARM core implementing the Security Extensions

[6]

Switching from one world to another can be compared to a regular context
switch. To switch the context between worlds, we need a mechanism known
as monitor mode [6]. It is a small piece of software which will make sure
neither processor will have access to registers belonging to the other after a
switch between the worlds. The monitor also prevents the untrusted processor
from using secure memory or devices by managing NS bit. Secure monitor
is only running in monitor mode and only a trusted processor can run in
monitor mode. An instruction Secure Monitor Call (SMC) is used to trigger
the processor running in normal world to enter "monitor mode” that gives the
enter to the secure world.

Monitor stores all registers of the currently running world and loads pre-
viously stored registers of the world into which is switching to.

Because the monitor is trusted and runs in the secure world, it can store
the secure world’s register information in its own address space without risk
of leakage of information. The secure monitor call must be used in order to
enter the monitor and switch to the secure world, because CA need to access
functions of TA. A supervisor call, SVC, must first be made, because the secure
monitor call can only be used when in supervisor modeﬂ When returning
to normal world, everything must be repeated the same way. If the secure
world does not have a user mode, a supervisor call may not be necessary.

1.3.6 Other techniques

There are a number of techniques that also can provide a TEE, not only just
a secure hardware. I will cover one of them in this section and also I will refer
to [31) p. 32, section 2.5] for the others.

2 A privileged mode entered whenever the CPU is reset or when a SVC (Supervisor Call)
instruction is executed.

27

1. TRUSTED COMPUTING

1.3.6.1 Software

Using TEE only in software is also possible, even though this solution does
not coincide with the definition that there is no hardware separation. I am
including it here just for completeness. There is an open source solution
called Open-TEE, a virtual TEE implemented in software, which follows GP
specifications. As it is written on its page: “Primary motivation for the virtual
TEE is to use it as a tool for developers of Trusted Applications and researchers
interested in using TEEs or building new protocols and systems on top of it
[32].”

1.3.7 TEE enabled devices and a need for standardization

Commercial implementation of TEE that has been qualified by GlobalPlat-
form, can be found here [33] and many other TEE products offer a high
level of compatibility with GlobalPlatform standards, such as Sony, Toshiba,
HTC, Lenovo, etc. Even platforms using the same type of TEE are often not
able to exchange and make use of information. An application written for
one TrustZone-based platform does not have to run on a different TrustZone-
based platform. They may be using different TEE OSs or different REE OS
drivers. Developers are less interested in the complexity of low-level software
or hardware, but they are more occupied with the problem of using TEE cap-
abilities easily and through different vendors and platforms which would need
a standardization.

Detailed information about standardization can be found in [B, p. 13,
section 2.4].

1.4 Conclusion

Both of these trusted platform specifications are a way how to secure com-
puting devices. Both are designed on a hardware-based method. While TPM
is a piece of hardware specifically created to do cryptographic calculation and
is physically isolated from the rest of the processing system as a separate in-
tegrated circuit on the mainboard, the TEE is an secure area inside a SoC.
Both share the common goal and have a lot of the same elements - secure
boot, secure storage, remote attestation etc. The TEE can also be used on
PC platforms, but more practical use is in mobile devices (money transfer,
mobile payment). TPM is mainly for a PC platform, but can be used also
for a mobile devices as written in white paper [34] which combines these two
technologies.

TPM was described more deeply, because this technology will be used in
practical part of this thesis.

28

CHAPTER 2

Practical part - Analysis

As a practical demonstration of using the TPM, I have chosen to encrypt USB
mass storage device and save a key in the TPM.

Principle of my design is in the figure USB mass storage device can
be used as a storage for sensitive data. It will not be used to transfer data
between other PCs but will be connected to a single trusted computer. The
disk data is encrypted with a symmetric cipher. The key to the cipher will
be safely stored in the TPM module. It releases the key only if the platform
integrity is not compromised, using the PCR registers functions that store the
computer configuration. In the case of disk lost, theft or trusted PC attack,
the target computer will be untrusted. There is no key for decryption and the
data on the encrypted disk are protected against misuse.

Key for disk decryption is available

Encrypted | USB Trusted V
disk PC

Key for disk decryption not is available

Encrypted | usB Untrusted X
disk PC

Figure 2.1: Principle of practical example

This chapter is a survey and description of tools which will be used for
practical demonstration. It deals with disk encryption, trusted bootloader
and tools for communication with the TPM.

29

2. PRACTICAL PART - ANALYSIS

2.1 Disk encryption tools in Linux

2.1.1 Awvailable methods and tools

In the table is a comparison of cryptographic tools used for disk encryption

in Linux.
dm- t
Tool Loop-AES +7_1 E%pr(S Truecrypt eCryptf EncFs
block block block stacked stacked
Type device device device filesystem filesystem
encryption encryption | encryption encryption encryption
lightl
longest- de-facto slightly
o very faster than .
existing standard easiest one
portable, EncFS;
. one; for block N to use;
Main . . well- individual
. possibly device . supports
selling . polished, encrypted
. the fastest; encryption non-root
points . self- files ..
works on on Linux; . administra-
contained portable .
legacy very . tion
. solution between
systems flexible
systems
kernel
modules: kernel
already module:
st shlpped truecrypt ah'"eady
manuall with 7.1a-2 shipped
In com iley default (read-only with encfs
Linux P kernel; features in default
custom
tools: later kernel;
kernel . .
device- versions) tools:
mapper, ecryptfs-
cryptsetup utils
[core]

Table 2.1: Comparison table of cryptographic tools in Linux [I1]

The available disk encryption methods can be separated into two types by

their layer of operation:

o Stacked file-system encryption (layer that stacks on top of an ex-
isting file-system). It is an encryption where individual files or direct-
ories are encrypted by the file system itself. All files are written to an
encryption-enabled folder which will be encrypted while on-the-fly be-
fore the underlying file-system writes them to disk and decrypts them

whenever the file-system reads them from disk.

30

2.1. Disk encryption tools in Linux

e Block device encryption "method operate below the file-system layer
and make sure that everything written to a certain block device is en-
crypted. This means that while the block device is offline, its whole
content looks like a large blob of random data, with no way of determ-
ining what kind of file-system and data it contains. Accessing the data
happens, again, by mounting the protected container (in this case the
block device) to an arbitrary location [11)].”

The method of accessing the data of protected (encrypted) container is
possible by a device-mapper. Device-mapper provides creating of virtual
layers of block devices. The encrypted data can be unlocked by mapping
partitions to a new device name. This informs kernel that device is actually
an encrypted device and should be used through dm-crypt (device-mapper
crypt) using the /dev/mapper/dmname.

2.1.1.1 Stacked file-system encryption tools

Tools for encrypting file-system are eCryptfs and EncFS [I1].

eCryptfs is an encryption stacked on an existing filesystem, stores metadata
in the header of each file.

EncFS creates a transparent on-the-fly encrypted space. This space looks
like a regular disk. It encrypts files which will have encrypted all content and
a name. Everything is stored back in their directory. Its advantage is that
there is no need to create a containei| in advance.

2.1.1.2 Block device encryption tools

There are a few tools for block encryption in Linux: Loop-AES, TrueCrypt,
and dm-crypt. Loop-AES requires a custom kernel module, it is more work to
install, and also is considered less-user friendly. TrueCrypt is not supported for
TPM, see manual for TrueCrypt [35, p. 129]. It does not use an authenticity
of the platform as a trustfulness. Also, TrueCrypt has stopped development
in May 2014. The follower is Veracrypt. The best choice is certainly dm-crypt
with LUKS (Linux Unified Key Setup) extension. Others will not be discussed
in this work.

2.1.2 dm-crypt/LUKS

Dm-crypt is a specific Linux kernel subsystem versions 2.6 and later that
uses the device mapper infrastructure and Linux CryptoAPI to create a
transparent layer for online encryption and decryption of block devices.

3While using block device encryption, we have to create a container in a file to which
we will then store sensitive data. However, this process has the drawback. It’s static, it
occupies one large disk space and we have to dimension it to the capacity we want in the
future. Manipulating with it is difficult.

31

2.

PRACTICAL PART - ANALYSIS

Linux distributions support the use of dm-crypt on the root file system.
These distributions use initrd to prompt the user to enter a passphrase
at the console. Most of distributions have dm-crypt included by default.
Dm-crypt device mapper target resides in kernel space and relies on user
space front-ends known as a cryptsetup. It is the interface and command
line tool for dm-crypt to create, access and manage encrypted devices.

The tool is used as follows:

cryptsetup <OPTIONS> <action> <action-specific-

— options> <device> <dmname>

where <OPTIONS> is for example —key-file (uses file as a key material) or
—verify-passphrase (set passphrase) or —cipher (cipher specification string).
When device is encrypted, it is protected by a key, which can be either a
passphrase of a key-file. Both keys have maximum sizes: passphrases can be
up to 512 characters and key-files up to size 8192 kiB. The <action> is an
operation for mapping. Cryptsetup has a five operations for mapping in plain
dm-crypt mode - create, remove, reload, status, resize. Options <device> is
the selected device, which we want do encrypt and <dmname> is a name for
device-mapper.

Cryptsetup has different encryption modes with dm-crypt: LUKS, plain,

loopaes and terypt (TrueCrypt). Default mode is a LUKS.

¢ LUKS mode is a dm-crypt superstructure that has two-level encryption,

key management, and a function PBKDFﬂ which is used for reinforce-
ment of user password. The LUKS specification is multiplatform and
can be used to create encrypted containers that can be opened on other
operating systems (such as the FreeOTFE application for Microsoft Win-
dows).

Each disk/partition that is encrypted with LUKS is equipped with a
LUKS header with the cipher, hash, encryption mode, and master key
checksum.

Two-level encryption for LUKS means that the volume itself is encryp-
ted by a randomly generated master key, which is then encrypted by
a user password and stored in one of the 8 slots, each of which has a
LUKS header. On the one hand, it is a great advantage in terms of the
independence of user password encryption, and therefore the possibility
of a revocation of an existing access password, on the other hand, it is a
disadvantage of potential loss of data when the key header(of which we
did not have a backup) is overwritten. LUKS header also ensures that a
partition will not be seen as a file-system (ext2, vfat) and other. A plain

‘PBKDF?2 (Password-Based Key Derivation Function 2) is key derivation functions with

a sliding computational cost, aimed to reduce the vulnerability of encrypted keys to brute
force attacks.

32

2.1. Disk encryption tools in Linux

dm-crypt partition may look like a unencrypted filesystem, and has a
chance of being accidentally overwritten and destroy our data. LUKS
improves ease of use and cryptographic security. We can easily change
the password without having to re-encrypt the partition. Likewise, we
can use multiple passwords to allow multiple users to access the encryp-
ted disk/partition. LUKS is a standard for storing keys which are used
by dmcrypt for encrypting the disk. Passphrases or key-files are hashed
and stored on disk in the LUKS header in the encrypted partition.

Plain mode does not store the type of encryption used, it requires sup-
plying the same options each time (it does not contain LUKS header).
”In dm-crypt plain mode, there is no master-key on the device, so there
is mo need to set it up. Instead the encryption options to be employed
are used directly to create the mapping between an encrypted disk and a
named device. The mapping can be created against a partition or a full
device [36].” Plain mode has a lot of disadvantages. It does not provide
the password management (single device has single password). These
problems are solved by LUKS mode.

The syntax for using cryptsetup with LUKS extension:

cryptsetup -v luksFormat <device>

This is a command to create a new LUKS partition on device with default
parameters. The cryptsetup action to set up a new encrypted device in
LUKS mode is luksFormat which does not format the device, but sets up
the LUKS header for selected device and encrypts the master-key with the
desired cryptographic options.

Another LUKS actions are:

luksOpen - opens the LUKS partition and sets the initial key
luksClose - same as remove
luksAddKey - adds key-file/passphrase to a LUKS partition

luksDump - prints the information about the LUKS header

2.1.2.1 LUKS header

LUKS header stores cryptographic metadata and wrapped encryption key.

[LUKS phdr [KM1[KM2][- [KMS] bulk data |

Figure 2.2: LUKS header [7]

33

2. PRACTICAL PART - ANALYSIS

A LUKS partition starts with the LUKS partition header (phdr). It con-
tains information about the cipher name, cipher mode, the key length, a
uuid, master key checksum. Following example is a sample of the luksDump
command that lists the LUKS header content of the LUKS. Assuming, that
/dev/sdb2 is the LUKS enabled device:

cryptsetup luksDump /dev/sdb2
LUKS header information for /dev/sdb2

Version: 1

Cipher name: aes

Cipher mode: cbc-essiv:sha2b6

Hash spec: shal

Payload offset: 4096

MK bits: 256

MK digest: eb5 88 07 f2 4b ce 79 21 85 34 £f7 a6
— e3 Ob 6b b2 a7 b8 d5 al

MK salt: Oc dd 95 3d 1e 30 1f 66 d4 5e 31 03

— 12 a0 61 29
eb ef 34 8e 13 5d 80 76 8b 4a 0Oa c3
— 55 02 22 d3
MK iterations: 5750
UUID: e4971160-047b-49ce-8246-b63f1£fb67db9

Key Slot O0: ENABLED
Iterations: 23233
Salt: ff bc fc 78 98 5d 35
— 50 97 76 37 b4 70 99 38 44
9f bd al b9 02 2d 4d
— 1d 18 b5 dc £f6
— 4c a0 37 fc

Key material offset: 8
AF stripes: 4000
Key Slot 1: DISABLED
Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED

Key Slot 7: DISABLED

LUKS header also contains an information about the key slots which stores
up to 8 keys material from Key Slot 0 to 7. The bulk data is encrypted by
the master key.

The phdr stores an information about every single key slot, which is asso-

34

2.1. Disk encryption tools in Linux

ciated with a key material section after the phdr. If the key slot is activated
(ENABLED), it stores an encrypted copy of the master key in its key ma-
terial section, which is then locked by user password which are we prompted
to enter. Otherwise it is set do DISABLED. This user password unlocks the
master key. The master key then can unlock the bulk data. The information
how to decrypt a key material of a key slot with a given user password is
stored in the phdr (e.g. salt, iteration depth). A LUKS partition can have up
to 8 passwords, because the number of key slots is 8. To get to an encrypted
partition, we can enter only one of these password [7].

2.1.3 Cryptsetup settings

This section is meant to provide an information to the individual cryptographic
primitives used in dm-crypt/LUKS and how to set it up with the cryptsetup.

Cipher-name and chainmode must be compatible among different LUKS-
based implementations. The user chooses an encryption algorithm with the
—cipher parameter:

cryptsetup ——cipher=<cipher name>-<chainmode>-<IV
— generator>

LUKS has to map them into something convenient to ensure, that the under-
lying cipher system can utilize the cipher name and chainmode strings, and
these strings might not always be native to the cipher system.

Valid cipher names are AES, Twofish, Serpent, Castb, Cast6. Valid chain-

modes are ech, cbe-plain, cbe-essiv:hash, xts-plain64.
Chainmodes using IVs (initialization vector) and tweaks must start from the
all-zero IV /tweak. "These IVs and tweaks cipher modes cut the cipher stream
into independent blocks by reseeding tweaks or IVs at sector boundaries. The
all-zero 1V /tweak requirement for the first encrypted/decrypted block is equi-
valent to the requirement that the first block is defined to rest at sector 0 [7].”
Valid hashes are hash-spec, shal, sha256, sha 512 and ripemd160. A compli-
ant implementation does not have to support all cipher, chainmode or hash
specifications.

Default mode is configurable during compilation, you can see compiled-in
default options. When we enter command cryptsetup with the parameter
—--help, at the bottom is an information about Default compiled-in device
cipher parameters.

cryptsetup -- help
LUKS1: aes-xts-plain64, Key: 256 bits,
LUKS header hashing: shal, RNG: /dev/urandom

The cipher consists of three parts in format: cipher-chainmode-IV gener-
ator. The hash is used to create the key from the passphrase. To view full list

35

2. PRACTICAL PART - ANALYSIS

of the supported ciphers and modes, we should check /proc/crypto. We can
change it in command line using <OPTIONS> and select —cipher as described
in section 2.1.2

2.1.3.1 Ciphers
2.1.3.1.1 AES

The Advanced Encryption Standard [37], originally named Rijndael, is a sym-
metric block cipher that encrypts and decrypts with the same key data divided
into blocks of fixed length. The cipher was published by Vincent Rijmen and
Joan Daemen in 1998. AES cipher is fast in software and hardware [38] and,
unlike its predecessor, DES does not use the Feistel network, but it consists
of several rounds of substitution and permutation. It won its name in AES
contestPl

2.1.3.1.2 Twofish

Twofish [39] is a block cipher which was published by Bruce Schneier. Twofish
is related to the earlier block cipher Blowfish. It uses a Feistel network and its

S-boxes are key-dependent. Size of the key are most commonly implemented
with key sizes of either 128, 192, or 256 bits.

2.1.3.1.3 Serpent

Serpent [40] is a symmetric key block cipher which was designed by Ross An-
derson, Eli Biham, and Lars Knudsen. Size of the key are also most commonly
implemented with key of either 128, 192, or 256 bits. It is an extensive to a
DES. Serpent was designed for maximum security. Authors considered 16-
round Serpent to be sufficiently secure against known types of attack, but the
published version of Serpent used 32 rounds. Serpent was nearly unbreakable,
but at the expense of its speed and it did not won AES contest but ended up
second.

2.1.3.1.4 Casth

CAST5 (alternatively CAST-128, defined in RFC 2144 in 1997) is a sym-
metric key block cipher. CASTS5 is a 16-round Feistel cipher, with each round
using 4 S-boxes with 8-bit input and 32-bit output. The algorithm was created
in 1996 by Carlisle Adams and Stafford Tavares.

5The AES contest was organized by NIST and its goal was to choose a new block cipher
and name it AES.
Shttps://tools.ietf.org/html/rfc2144

36

https://tools.ietf.org/html/rfc2144

2.1. Disk encryption tools in Linux

2.1.3.1.5 Cast6

CAST-256 uses the same elements as its predecessor CAST-128, including S-
boxes, but is adapted for a block size of 128 bits — twice the size of its 64-bit
CAST-128. CAST-256 is composed of 48 rounds Feistel cipher. It was not
among the five AES finalists.

2.1.3.2 Initialization vector mode

Initialization vector (IV) is a random number which can be used with a secret
key for encryption of data (message, plain text etc.). Using IV makes decryp-
tion much more difficult, because a sequence of an encrypted text might look
similar, so the attacker could guess the corresponding text in the message us-
ing dictionary attack. The IV prevent the appearance of duplicate characters
in encrypted text.

2.1.3.3 Block cipher mode of operation - chainmode

The purpose of cipher modes [41] is to mask patterns which exist in encrypted
data. The long plaintext stream is divided into a series of blocks, and each
cipher operates on these blocks one at a time.

2.1.3.3.1 ecb

Electronic Codebook (ECB) is the simplest block cipher mode of operation.
The plain text stream is divided into blocks, and each block is encrypted
independently following the same process with the same key. There are not
used I'Vs.

2.1.3.3.2 cbc-plain

Cipher Block Chaining (CBC) was invented by Ehrsam, Meyer, Smith and
Tuchman in 1976. In CBC mode, in compare to EBC, each block of plain
text stream is XORed with the previous ciphertext block and then encrypted.
Each block depends on all plaintext blocks processed up to that point. The
CBC chaining is cut every sector, and reinitialized with the sector number as
initial vector used in the first block. Plain is meant here to be an initialization
vector mode Plain-IV, which initializes IV with the sector number converted
to 32-bit version of the number encoded in little-endian padded with zeros as
described with this formula:

IV (sector) = le32(sector)

So the whole —cipher option can be a combination of a block cipher mode
and its IV mode. Or we can also add a hash as described below.

37

2. PRACTICAL PART - ANALYSIS

2.1.3.3.3 cbc-essiv:hash

Encrypted Salt-Sector IV (ESSIV) mode is used here for operating with cipher.
It is also an initialization vector mode defined as:

IV (sector) = esqi(sector)

ESSIV has the IV from the key material due to an encryption of the sector
number with a hashed version of the key material which is named a salf]
Hash is used for generating the IV key for the original key. For instance,
when using shab12 as hash, the chainmode is cbc-essiv:sha512. Digest size of
the hash must be a valid key size for the block cipher. For example, sha256 is
a good choice for AES, because sha256 produces a 256-bit digest. This mode
was developed for linux 2.6.10 to prevent watermarking attacksﬂ

2.1.3.3.4 xts-plain64

XTS is for the purpose of disk encryption and it is recommended in an IEEE
standard [43]. XTS is tweakable mode of operation and it is derived from
XEX cipher. XEX stands for XOR Encrypt XOR. Plain64 is 64-bit version
of plain initial vector.

2.2 Trusted bootloader

Trusted bootloader is an extension of the bootloader with TCG support and
one of the implementations is TrustedGRUB (Trusted Grand Unified Boot-
loader). To run TrustedGRUB, the system must include a TPM and a compat-
ible TCG 1.1b BIOS. It is a free software under the GNU GPL (GNU General
Public Licence). After the CRTM measures the BIOS and BIOS measures
additional ROMs and stores them in specified PCRs, bootloader comes in a
row and completes an idea of chain of trust.

GRUB is able to boot more OS so we can use any including Linux as well
as other Unix-based platforms and Microsoft Windows without need to specify
the physical address of the kernel on the disk. It also supports the multiboot.
The path to the kernel can be given by specifying a name of the file, drive and
partition in which kernel is stored.

GRUB consists of multiple stages. The first stage, Stage 1, is located in
the boot sector or in the MBR. Its size is always 512 bytes. Next stage can
be located on different media (e.g. a hard disk or floppy), so Stage 1 have

It is a misapply of the term “salt”, because a salt is usually generated randomly. Here
it is deduced from key material.

8Watermarking attack is an attack on disk encryption methods where the presence of a
specially crafted piece of data can be detected by an attacker without knowing the encryption
key [42].

38

2.2. Trusted bootloader

to support addressing modes - two for hard drives (Logical Block Addressing
(LBA) and Cylinder Head Sector (CHS)) and one for floppy disks.

If you boot from a hard drive, Stage 1.5 will be used. Stage 1 measures the
first sector of Stage 1.5. The first sector of Stage 1.5 measures the remaining
sectors. After loading the remaining sectors, Stage 1.5 measures stage 2.
Stage 2 is the main part of GRUB. Its task is to arrange that the operating
system kernel can be loaded. The whole booting process with TrustedGRUB
is illustrated in Fig.

Multiboot Modules) Additional files (optional)

¥’
)
‘J e
7 Command List GRUB
Fi 7 configuration
/ ‘,-"
]
¥

{ Boot Loader Stage 2

J Extended
- Boot Loader

{ Boot Loader Stage 1 J

CRTM Extended
Hardware
==% transfers control to
cPu == is measured by

Root Host

Figure 2.3: Booting with TrustedGRUB [§]

After successful deployment, TrustedGRUB measures the grub configura-
tion file and stores it into PCR 5.
TrustegGRUB has an additional functionality called ”checkfile -option” where
verifies given files by comparing SHA-1 results in PCR with checkfile (which
was precalculated) and store its values into PCR 13. The files to be measured
with SHA-1 hash of the succeeding file and given path of file in the option
checkfile [8]. The check file itself contains a list of tuples of arbitrary length
and must not be larger than 8096 Bytes. Its syntax is as follows:

2647 eeae7290c5a58dacb87347bal074de7e47bac (hd0,1)/etc/
— passwd

a97fbdbad8d4a6340baff683941079dde56044e0 (hdO,1)/etc/
— shadow

6fc01c858d17593a309b91d5fe5859¢c545409861 (hd0,0) /home
<~ /test.sh

39

2. PRACTICAL PART - ANALYSIS

The first value is a 40 byte SHA1 hash value of the succeeding file, fol-
lowed by a single white space character. The second component is absolute
path together with the drive reference of the file corresponding to the hash
value, followed by a new line character. Syntax must be correct, otherwise
TrustedGRUB is not able to boot. The integrity of all files listed in this check
file is checked when your system is booted. It compares the referenced hash
values to newly computed ones. If values do not match, our option is either
continue booting into a untrusted system or stop the boot process.

2.3 Tools for communication with the TPM

To communicate with the TPM, tools tpm_tools and TrouSerS, needs to be
installed. A brief description of tools used for my thesis is presented in this
section.

2.3.1 TrouSerS

TrouSerS is an open-source implementation of TSS Specification 1.2 (see sec-
tion [1.2.7)). The latest version is 0.3.14 by [44]. The driver has been designed
to meet TIS specification (TPM Interface Specification) and supports TPM
from various manufacturers - Atmel, Infineon, STM. According to specifica-
tion 1.2 [45], this interface has been standardized for every manufacturer. This
module is called tpm_tis. All parts are included in the trousers package. It
has also several component:

TCS daemon(tcsd) is running only in a user mode. According the TSS
specification, only tcsd have access to the TPM device driver. ”At boot time,
tesd should be started, it should open the TPM device driver and from that
point on, all requests to the TPM should go through the TSS stack. The
tesd manages TPM resources and handles requests from TSP’s both local and
remote [£6]].”

The TSP shared library allows communication between applications
and tesd locally or remotely. The TSP controls the resources used for their
communication.

Persistent Storage (PS) files - can be a database for keys with each
key indexed by UUID (Universal Unique Identifier). It exists two different
kind of PS for keys:

e User PS is maintained by the shared TSP library. Each user will have
their own custom PS, which is stored in the ~/.trousers/user.data
file. If we want the TSP to use a different file for the custom PS, set the
path to it using the TSS_USER_PS_FILE environment variable. This
file will be created when the first application key is saved.

40

2.3. Tools for communication with the TPM

e System PS is maintained by TCS. The saved keys are available even
after tcsd has been rebooted or system reset until we explicitly request
removal.

In usr/local/var/lib/tpm/system.data is the System PS file by de-
fault. This file is created by taking ownership of the TPM.

A config file (tcsd.conf) - Located in /usr/local/etc/tcsd.conf by
default [46].

2.3.2 tpm-tools

Tpm-tools is an open-source package that allows users and applications to use
the TPM. The latest version is 1.3.9.1 in 2017 [47, in Files]. The package
also contains commands to use some of the available features in the TPM
PKCS#11 interface implemented in OpenCryptoki [47]. If this is not the
case, tpm-tools will only contain TPM commands after the compilation.

2.3.2.1 TPM commands

To communicate and perform a command with the TPM, the tpm-tools
provides the list’] of commands. Here are one of the most used:

tpm_takeownership sets the TPM owner. The command asks for new
password for SRK and TPM owner, and then asks for confirmation.

tpm_changeownerauth changes authorization credentials for SRK and
TPM owner. The command prompts you to enter the current and new pass-
word and asks for a new password.

tpm_clear transfers TPM to ”"Unowned”, "Disabled”, and ”Inactive”.
This command clears all the information associated with the TPM owner.

tpm_createek creates an EK. This command is rarely used, because in
most cases the EK is generated during TPM production.

tpm_getpubek will show the public section of the EK. This operation
may be limited and require TPM owner authorization.

tpm_restrictpubek only the TPM owner can read the public part of the
EK. To successfully complete this command, we need to prove that we know
the TPM owner’s secret.

tpm_selftest asks the TPM for self-testing. Its result will be printed. If
the self-test does not succeed, the TPM goes into a failure mode in which no
further command is received. tpm_setactive changes the state of TPM from
“active” to "inactive” or vice versa. The command requires authorization of
the TPM owner.

tpm_setclearable disables the TPM clear operation.

%https://www.mankier.com/package/tpm-tools

41

https://www.mankier.com/package/tpm-tools

2. PRACTICAL PART - ANALYSIS

tpm_setenable changes the TPM status from ”accessible” to ”disabled”
or vice versa. The command requires authorization of the TPM owner.

tpm_version prints the manufacturer and the TPM version.

tpm_sealdata seals sensitive input data to the SRK of the system’s TPM
and optionally a PCR configuration.

tpm_unsealdata the opposite function to the seal function.

2.3.2.2 TPM commands which access to NVRAM

NVRAM is a storage area inside TPM. It has only 1280 bytes. They are
controlled by an owner but permission can be delegated. The full list of
permissions is described in [48].

There are plenty of way to use NVRAM [49].

e Storage for data that can serve as reference

— It is harder to modify than data on disk
— Hashes for integrity checking

e Storage for high-value data

— Keys

— Certificates

Commands for work with NVRAM:
tpm_nvdefine defines a new NVRAM area at the given index and of

given size. Permissions bits that control access to the NVRAM area must be
set by user. One of the permission must be a protection on write to NV area
otherwise will not be created.

tpm_nvinfo displays information about defined NVRAM areas using
parameters -i to display NVRAM area with the given index. With parameter
-n, it displays only available NVRAM areas indices.

tpm_nvrelease releases an NVRAM area of a given index if it is used.
If owner authentication is required then the user must provide the owner
password.

tpm_nvwrite writes data to an NVRAM area. There are two main para-
metres - the index of NVRAM area and the data to write.

tpm_nvread reads data from the NVRAM area and either displays them
on a command line with the parameter -i (index) or writes them into a file
with the -f parameter.

More information can be found on a manpage [50].

42

2.3. Tools for communication with the TPM

2.3.3 Initialization of the TPM

Tpm_init command is a method of initialising the TPM and puts it into a
state where it waits for the tpm_startup command. TPM_init is a physical
method of initializing a TPM. On a PC this command arrives to the TPM via
the bus (LPC, SMBus) and informs the TPM that the platfom is performing
a boot process so that is not a command that any software can execute.

2.3.3.1 Tpm_startup command
The type of startup mode of TPM is divided into these three modes:

e Clear - results in the TPM values are being set to a default state.

e Save - TPM recovers saved state, including PCR values, with the exe-
cution of the tpm_SaveState command.

e Deactivated - state, which informs a TPM than any further operations
should not be allowed. From now on, TPM can be only reset by execut-
ing tpm_init command again.

According to [5I] not all TPM functions are available until the TPM acquires
an owner.

2.3.4 Enabling the TPM chip

There are three discrete states of the TPM - enabled/disabled, active/inactive
and owned/unowned. These stated form eight operational modes ilustrated
in Fig.

The TPM chip is delivered on the motherboard in the operational mode
S8 which is Disabled, Inactive and Unowned state. The most important
operation is to enable the TPM chip in BIOS for initiating a communication.
If we do not enable it in BIOS, it will not be visible and accessible.

The TPM chip never starts a communication itself, only responds to the
commands that comes from above.

43

2. PRACTICAL PART - ANALYSIS

S1 Enabled - Active - Owned

S2 Disabled - Active - Owned

S3 Enabled - Inactive - Owned

S4 Disabled - Inactive - Owned

S5 Enabled - Active - Unowned

S6 Disabled - Active - Unowned

S7 Enabled - Inactive - Unowned

S8 Disabled - Inactive - Unowned

-« _J _J L _J o _J_J_J L _J

Figure 2.4: Operational modes [9]

To clarify what some of the mode can be useful for, here are some examples
from practice as written in a specification [9]: "Mode S5 can be used for when
a corporate customer wishes to have platforms shipped to their employees and
the IT department wishes to take control of the TPM remotely. When the
platform connects to the corporate LAN the IT department would execute the
TPM_TakeOwnerShip.”

S1 mode if mode where all TPM functions are available. S8 mode is a
mode where all TPM functions are off.

Practical part will contain a demonstration of how to get to mode 1 from
mode 8 and 7.

2.4 Conclusion

Dm-crypt along with its superstructure LUKS offers a great deal of possibilit-
ies to encrypt our disk, simply by choosing the right cryptographic parameter
option to encrypt our data. It is also only one cryptographic tool that is
compatible with the TPM under the Linux. Default mode is aes-xts-plain6/.
These cryptographic functions were chosen because they are among the ones
most commonly used in the disk-encryption and they are sufficient to fulfill
most requirements.

Security is also increased by the fact that the TCG has introduced a limit-
ation that only TCS daemon can communicate with TPM via TDDL. To run
this driver (see , we need a module that runs it. The module TIS
was standardized for all manufacturers, however not all PCs loads this kernel
module automatically. In practical part I will explain how to load it manually.

44

CHAPTER 3

Practical part - Realization

This chapter deals with the USB mass storage device encryption and demon-
strates the entire effect of changes in the platform on the access to the secured
disk using TrustedBoot. It serves as a guide of how to set up the TPM for
testing one specific function - sealing.

For ease of use, encryption of the USB mass storage device (USB disk)
has been selected. USB disk encryption is more practical and safer for trying
out TPM chip manipulation. This whole section contains a sample code and
simple commands which encrypt only one USB disk with one partition. This
is simply for the readers to better understand simple issues. Whole bash script
with more features is attached to this work.

More used method of an encryption is a full disk encryption, where we can
encrypt the entire root file-system. Unfortunately, this is not good method
for a demonstration, but in practice, we would use this method. One of the
possible guide is here [52].

The main features of the TPM chip are the storage of cryptographic fin-
gerprints for hardware and software during booting and the verification if we
change the integrity of the measured platform. The TPM refuses to release
encrypted files without a password because it boots into an untrusted state.

Everything was written under the Linux. I used Bash Programming Lan-
guage for the implementation.

In the practical demonstration, I will assume, that we have an USB storage
media and its device name is /dev/sdb.

3.1 Platform used

Lenovo ThinkPad x61s computer with operation system Linux Mint version
18.01 with TPM chip version 1.2 was available for a practical demonstration.
The solution has been adapted to the possibilities of these versions. Solution
may differ, because of the various versions of Linux. The encryption of data

45

3. PRACTICAL PART - REALIZATION

on the external hard drive itself has been used with the Linux Unified Key
Setup (LUKS).

3.2 Detecting the presence of the TPM chip

In order to test TPM commands, it must be part of the computer’s mother-
board. The best indicator of its presence is the options in the BIOS. The
chip version was TPM 1.2. Its presence is indicated by the BIOS under the
Security Chip which contains these settings:

e Disabled - Security chip is hidden and disabled.
e Active - The security chip is visible and functional.

e Inactive - The security chip is visible but nonfunctional.

3.3 TPM chip initialization

The chip was in the Disabled state. I had to make it available in BIOS. The
platform I was accessing contained an option Clear in the BIOS, which was
only available when the computer was shut down and then turned on, not
after the reboot. This setting is equivalent to the tpm_clear command from

the tpm-tools package (see section [2.3.2)).

3.4 Enabling the TPM

In my case, I had to enable it by setting Active option. Different platforms
use different methodes.
If the TPM chip was detected, its driver reported in dmesg;:

dmesg | grep -i tpm
[2.616330] tpm_tis 00:05: 1.2 TPM (device-id O
— x3203, rev-id 9)

where TIS is the kernel module (driver) standardized for every manufacturer
of TPM. If kernel module is not loaded, we can load it manually by typing:

modprobe tpm_tis

and check dmesg output again.

3.5 Installing necessary packages

When working with the TPM chip, packages tpm-tools and TrouSerS needs
to be installed. Commands:

46

3.6. Taking ownership

sudo -1i
sudo aptitude install tpm-tools trousers

To determine the TCG version, type the following command:

cat /sys/devices/pnp0/00\:0%/caps
Manufacturer:

TCG version: 1.2

Firmware version: 13.9

The above output shows that the TPM/TCG chip version is 1.2.

3.6 Taking ownership

The tpm_takeownership command (see section|1.2.3) sets the TPM owner. It
creates a 2048-bit RSA SRK and then asks the owner to confirm it. It initiates
the following functions: stores the owner password, then stores the SRK and
returns the public part of the SRK to the owner. With a functional SRK, we
now have a functional TPM and we are able to create and use signing and
encryption keys.

tpm_takeownership -z
Enter owner password:
Confirm password:

The -z parameter set a secret of all zeros (20 bytes of zeros) automatically
as the SRK secret. This parameter is used for easier demonstration, because
we will not be able to ask for SRK later, when manipulating with the tpm
commands. For higher safety we would type another SRK password.

3.7 Use of PCR registers

The practical part uses the features of the PCR registers and its sealing
method (see section . When all the necessary packages are installed,
enabled TPM chip in BIOS, the contents of the PCR registers can be seen in
the /sys/class/tpm/tpm0/device/pcrs folder for Kernel versions older than
4.x or in the /sys/class/misc/tpm0/device/pcrs folder for Kernel versions
younger than 4.x. Their content looks like this:

cat /sys/class/tpm/tpmO/device/pcrs

PCR-00: 70 5F OA 19 BE E6 87 D7 3B 1D 5B 28 44 12 B3 2C 88 10 6B 9F
PCR-01: 48 DF F4 FB F3 A3 4D 56 A0 8D FC 15 04 A3 A9 D7 07 67 8F F7
PCR-02: 53 DE 58 4D CE FO 3F 6A 7D AC 1A 24 OA 83 58 93 89 6F 21 8D
PCR-03: 3A 3F 78 OF 11 A4 B4 99 69 FC AA 80 CD 6E 39 57 C3 3B 22 75
PCR-04: 7C B2 10 EC 89 79 EE 60 3A 21 9B 92 86 4C 11 E5 5F 9A 59 FD
PCR-05: 99 F4 50 AB 2B 15 13 C7 42 05 2E 83 13 A8 13 67 4A 6E 90 A8
PCR-06: 58 H5E 57 9E 48 99 7F EE 8E FD 20 83 0C 6A 84 1E B3 53 C6 28
PCR-07: 3A 3F 78 OF 11 A4 B4 99 69 FC AA 80 CD 6E 39 57 C3 3B 22 75

47

3. PRACTICAL PART - REALIZATION

PCR-08:
PCR-09:
PCR-10:
PCR-11:
PCR-12:
PCR-13:
PCR-14:
PCR-15:
PCR-16:
PCR-17:
PCR-18:
PCR-19:
PCR-20:
PCR-21:
PCR-22:
PCR-23:

00
00
F3
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
1E
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
9C
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
7
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
9D
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
Cc3
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
AB
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
EO
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
49
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
TA
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
Cc1
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

This is how PCR’s values looks like only

The first 0-7 results of PCR registers are already stored together with PCR
10, which is used for kernel and initrd measurements. To get a secure boot,
we need to install Trusted GRUB2 as mentioned in section

00
00
D1
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

with SRTM but without a Trus-
tedGRUB2 and without DRTM as mentioned in section [1.2.5.3.2]

00
00
46
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
25
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
CE
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
03
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
FD
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
ocC
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
55
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

00
00
4E
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
00

3.7.1 Installing TrustedGRUB version 2 - TrustedGRUB2

As is written at the download site, version 2 was highly inspired by the former
projects TrustedGRUB and GRUB-IMA. However Trusted GRUB2 was com-
pletely written from scratch. To perform a secure boot, TrustedGRUBﬂ
need to be installed and following commands taken from the download site
should be performed:

sudo aptitude install autogen autoconf automake gcc
— bison flex

./autogen.sh

./configure - prefix="pwd"

— platform=pc

make

sudo make install
./sbin/grub-install -directory="pwd /1lib/grub/
— 1386-pc /dev/sd<x>

sudo

After reboot, all PCR, except for PCR 12, are filled with measurements.
PCR 12 is separated for LUKS header, which we will be using later while
encrypting device. After TrustedGRUB2 being installed, we should reboot
system and check our PCR values again.

cat /sys/class/tpm/tpmO/device/pcrs

0file can be downloaded here: https://github.com/Rohde-Schwarz-Cybersecurity/
TrustedGRUB2 (last visit 24.7. 2017)

48

- -target=1i386

-with-

https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2
https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2

3.7. Use of PCR registers

PCR-08: D3 F6 C9 85 14 27 D4 09 F4 77 F9 F4 98 DD C3 5B 3C 7A 84 E4
PCR-09: B3 3A CD A8 64 4D 78 1C E4 51 A0 CO 7D DA F2 F8 15 41 A8 3C
PCR-10: AB CC 52 78 A8 F9 48 17 25 15 47 32 39 BA 7E 34 2C D7 69 B3
PCR-11: 19 6F 30 OF 19 BO 12 C7 B7 C5 20 24 3D 57 DC 74 7C C3 92 F8
PCR-12: 00 00 00 00 00 00O 00 00O 00 0O OO 00 OO OO 0O 0O 00 0O 00 OO
PCR-13: A2 62 C2 BE 50 B6 89 AF F8 BD 72 67 08 58 A7 75 C3 FO 9C 8C
PCR-14: 00 00 00 00 00 00 00 00O 00 00O OO 00 00O 0O 00O 0O 00 0O 00 OO
PCR-15: 00 00 00 OO 0O 0O 00 0O OO OO OO OO 00 OO OO OO OO 0O 00 OO
PCR-16: 00 00 00 00 00O 00O 00 0O 00 0O OO 00 00O 0O 0O 0O 00 0O 00 OO
PCR-17: FF
PCR-18: FF
PCR-19: FF
PCR-20: FF
PCR-21: FF
PCR-22: FF
PCR-23: 00 00 00 00 00 00O 00 0O 00 OO OO 00 OO OO 0O 0O 00 0O 00 OO

The PCR 8, which measures the first sector of TrustedGRUB2 kernel
(diskboot.img), the PCR 9 which measures Trusted GRUB2 kernel (core.img),
the PCR 11 which measures all command line arguments from scripts
(grub.cfg) and those entered in the shell and the PCR 13, which measures
parts of GRUB2 that are loaded from disk like GRUB2-modules are now filled
up with values (taken from the TrustedGRUB2 readme [53]). PCR 0-7 are
the same. PCR 10 was filled with a value before, and now it is again, but with
different value. This is because the component measures another component
and puts this measurement into the PCR before passing it through with the
operation extend (see . Values are expanded by a new value using the
previous value (hash) due to Chain of Trust.

3.7.2 Creating a key

For a key material, we can create either a key-file, or enter a passphrase
in command cryptsetup. Cryptographically the safest, I chose a key-file
named secret.bin as a key material, using /dev/random to create a key.
/Dev/random is a special file in the Unix systems, which is interface for an
output of PRNGE In Linux, the generator is implemented inside the kernel,
where entropy is also collected and this interface is called blocking, which ba-
sically means that in the absence of entropy it waits until it is enough entropy
again and the calling program does not continue until then. The non-blocking
variant is then /dev/urandom when a ”less random number” is returned in the
absence of entropy. In other systems, implementation may be different and
it is inappropriate for cryptographic material for key creation, so there is a

11 Pseudo-random number generator (PRNG)

49

3. PRACTICAL PART - REALIZATION

need to make random and not urandom. /Dev/random collects data from the
outside of the system, e.g. mouse moves, typing on keyboard, arrival times,
anything that can not be estimated in advance, some uncertainty. After, we
will add it to our keys for the LUKS-encryption partition and store this key
in the TPMs NVRAM (non-volatile RAM) to use for decryption.

sudo dd bs=1 count=32 if=/dev/random of=/dev/shm/
— secret.bin
chmod 700 /dev/shm/secret.bin

The device /dev/shm is a RAM disk device. It is good to have our key in
volatile memory to increase security. Maximum of the key-file size can be up
to 8192 kiB.

3.7.3 Creating a LUKS partition

To create a LUKS partition, we need to create a partition on the /dev/sdb.
In order to use the device with LUKS options, LUKS header must be added
using the luksFormat command . It will initialize a LUKS partition
and set the initial passphrase, and encrypt the master-key with the desired
cryptographic option. Default is aes-xts-plain64. First key-slot will be used. It
is necessary to backup the device (because LUKS device initialization erases
old data), do a luksFormat, and restore our backup on the now encrypted
device. Assuming, that /dev/sdbl is our new partition, we can accomplish it

by typing:

sudo cryptsetup luksFormat /dev/sdbl
WARNING!

This will overwrite data on /dev/sdbl irrevocably.

Are you sure? (Type uppercase yes): YES
Enter passphrase:
Verify passphrase:

When typing luksFormat, the device now has a LUKS header which con-
tains the type of cipher which was used to encryption. The passphrase used
to encrypt LUKS device is stored to the Key-slot 0.

3.7.4 Adding a key file to LUKS

LUKS devices may hold up to 8 different key-files/passwords. This key-file
is an additional authorization method. When adding new key-slot to LUKS
device, it asks us for a passphrase, and we type a new passphrase, but then
complains that there is no key slot with that passphrase. That is what it is
intended. We are asked a passphrase of an existing key-slot first, before we
can enter the new passphrase for the new key-slot. Otherwise we could break

20

3.7. Use of PCR registers

the encryption by just adding a new key-slot. This way, you need to know the
passphrase of one of the already configured key slots to configure a new key
slot. With known passphrase and parameter —key-file to 1luksAddkey, we can
store our secret key-file to another key-slot.

sudo cryptsetup luksAddKey /dev/sdbl /dev/shm/secret.
<~ bin

To see filled key-slots, just type:
sudo cryptsetup luksDump /dev/sdbl

It will list the LUKS header of the device with the cryptographic option used
and the two filled key-slots.

3.7.5 Storing the secret directly into the TPM
Commands that defines new NVRAM area [10]:

INDEX of NVRAM <in which we want to store our secret

Atmel TPM threw errors +f NV index 1 was wused

INDEX=2

PCRS of which we want to seal the data to

PCRS="-r0 -rl1 -r2 -r3 -r4 -r5 -r6 -r7 -r8 -r9 -ri10 -
—~ rl1l -r12 -ri13"

Creating an index of NVRAM area of given size and
> permissions

tpm_nvdefine -i $INDEX -s $(stat -c "%s" /dev/shm/
— secret.bin) -p "OWNERWRITE|OWNERREAD" -z "$PCRS
(_> n

First, we have to define a new NVRAM where we can keep a key in which
is sealed to certain PCRs, We have to create index using the tpm_nvdefine.
The parameter -i stands for the number of index, parameter -s is the size of
NVRAM area. The parameter -z uses a secret of all zeros (20 bytes of zeros) as
the owner’s secret. The parameter -r (the most important) stands for PCRs
to seal the NVRAM area to for reading (used multiple times in a variable
PCRS).

I have set the permission of the NVRAM - OWNERWRITE and OWN-
ERREAD. Both permission reading/writing requires owner authorization.
Others may be more appropriate, since it depends on our situation (see
E523).

Then, if creating an index succeeded, writing our key into the NVRAM is
needed.

tpm_nvwrite -i $INDEX -f /dev/shm/secret.bin -z

51

3. PRACTICAL PART - REALIZATION

3.7.6 Filesystem

We need to unlock the encrypted partition, map it to /dev/mapper and build
a filesystem.

cryptsetup luksOpen /dev/sdbl <dmname>
mkfs.<type>/dev/mapper/<dmname>

Using <type> as a vfat{r_ZI filesystem. When we create mapping, we should
format the filesystem in order to be able to read the content of our device-
mapper. But we should format it only once, otherwise, all our data will be
overwritten by a new formatting.

3.7.7 Making shell script executable after USB connection

Since we want USB to be immediately unlocked when we connect it in the
port, we need to write a rule in udeﬂ: "udev loads kernel modules by utilizing
coding parallelism to provide a potential performance advantage versus loading
these modules serially. The modules are therefore loaded asynchronously. The
inherent disadvantage of this method is that udev does not always load modules
in the same order on each boot. If the machine has multiple block devices, this
may manifest itself in the form of device nodes changing designations randomly
[58].7 So, if the machine has two hard drives, /dev/sda may randomly become
/dev/sdb. And also when connecting a USB, it may occure as a /dev/sd[b-z].
If we want to write an udev rule for executing a shell script, it is necessary
to write it into /etc/udev/rules.d/<x>.my-rule.rules, where <x> is the
number of rule. Rules are executed according to the numbers in the order.
My rule is:

ACTION=="add",

SUBSYSTEM=="block",

KERNEL=="sd [b-z][1-9]",
ENV{ID_FS_TYPE}=="crypto_LUKS",
RUN+="/usr/bin/tpm-luks-encrypt.sh"

Where ACTION is used when external programs runs upon certain events.
ACTION environment variable detects whether the device is being connected
or disconnected - ACTION can be either "add” or "remove”. If we want to
identify devices based on advanced properties such as vendor codes, product
numbers, serial numbers, storage capacities, number of partitions, etc., the
drivers export these information to sysfsE-] and udev allows us to incorporate

2https://www.powerdatarecovery.com/data-recovery /vfat.html

13Udev [54] is in Linux kernels 2.6 and provides a userspace solution for a dynamic /dev
directory, with persistent device naming. Udev also handles all user space events raised
while hardware devices are added or removed from the system.

14 gysfs is file-system managed by the kernel, exports basic information about the devices
currently plugged into system. udev can use this information to create device nodes corres-
ponding to your hardware [54].

02

3.7. Use of PCR registers

sysfs-matching into our rules, using the ATTR key with a slightly different
syntax. SUBSYSTEM is written as a block, because of the sysfs tree hierarchy.
It match against the subsystem of the device, or the subsystem of any of the
parent devices. KERNEL match against the kernel name for the device. So every
USB connected will be matched as a block in a sysfs tree hierarchy and kernel
name for device will be /dev/sd<x>. We can check the all attributes and
environments variable using udevadm -q all -n /dev/sd<x>. ENV is used
for enviromental variables. Since sysfs exports basic information, udev use
these information. Some of them are stored in environmental variables. It
comes in handy e.g. when we want to know which USB device was plugged-in
using environmental variable DEVNAME or if we want to know which type of file
system is on partition using ID_FS_TYPE. I wanted to execute every partition
of the USB which has a file system type matched as crypto_LUKS which is
the result of the luksFormat command to avoid later control whether it is a
valid LUKS format or not. I used RUN option to run my script written below.

#!/bin/bash

logger "Script RUNS"
MAPPER="map_secure"

INDEX=2
OUTKEYFILE="/dev/shm/tpm_temp$$.key"
DEVDEVICE="$DEVNAME"

The logger is for logging and detecting the USB when is connected and
to control it in the log file in /var/log/syslog. MAPPER is to set device
mapper (see because encrypted data needs to be encrypted by mapping
partitions to a new device name using the device mapper which will be stored
in /dev/mapper/<dmname>. INDEX is the index of the TPM NVRAM where
the secret is stored. OUTKEYFILE is the name of the file, where will be the
key-file from the TPM temporary stored. DEVNAME is the environmental
variable and contains the name of the device. This is a demonstration of
encrypting one partition of one USB storage media, because the number of
index of NVRAM is fixed. In my work, multiple partitions and multiple USB
can be encrypted, which I will explain in a chapter 4.

#read key from TPM and copy to ram disk
tpm_nvread -i "$INDEX" -f "$OUTKEYFILE" -z
if [["$?" -ne 0]];then

#Unable to unseal

exit 1
fi

In order to get a content of the NVRAM out, the command tpm_nvread
should be used. It must produce the same output as the

sudo hexdump -C /dev/shm/secret.bin

93

3. PRACTICAL PART - REALIZATION

which is our secret key that we stored in a TPM NVRAM. If we want to read
our encrypted USB disk, we should decrypt it first using luksOpen parameter
which opens (creates a mapping with) <name> backed by device <device>.

decrypt drive
cryptsetup luksOpen "$DEVDEVICE" "$MAPPER" --key-file
<~ "$OUTKEYFILE"

zeros out the key in memory

SIZE=$(stat -c "%s" "$OUTKEYFILE")

sudo dd if=/dev/zero of="$0UTKEYFILE" bs=1c count="
— $SIZE"

remove key from ram disk

sudo rm -f "$0UTKEYFILE"

While disconnecting an USB, another rule in udev should be written for
unmounting a device mapper and closing a LUKS encrypted partition:

ACTION=="remove",

SUBSYSTEM=="block",
KERNEL=="sd [b-z] [1-9]",
RUN+="/bin/umount /dev/mapper/<dmname>"

ACTION=="remove",

SUBSYSTEM=="block",

KERNEL=="sd [b-z][1-9]1",
RUN+="/sbin/cryptsetup luksClose <dmname>"

3.7.8 Sealing the NVRAM

To seal (see our configuration, meaning the NVRAM index can not
be read if something is changed in the boot process (kernel, initrd, grub-
modules, grub-arguments, etc...), we have typed all PCRs (see B.7.5)), as
the -r parameter to a tpm_nvdefine command. The rest of PCR remain
unchanged because they are used for other purposes, for example for DRTM
(see . Now the system will not give out the keys from TPM NVRAM
when something changes in a booting.

I saved the output of the PCRs before the reboot, then I typed E in a
Trusted GRUB bootloader and after I wrote echo "Hello World" in a kernel
command line and pressed F10 to boot. We need to have GRUB interact-
ive. My system did not give me an access to USB without typing a correct
passphrase.

o4

3.7. Use of PCR registers

Computer

£S5 andrea

i Documents

& Downloads
r

Music
Pictures
os
@ Trash
Devices
',‘ 5,0 GB Encrypted
5,2 GB Encrypted
Network X

f& Browse Netwd
Enter a passphrase to unlock the volume

=
The passphrase is needed to access encrypted data
on FUJITSU MHZ2120BH G1 (120 GB Hard Disk).

Password: [|

() Forget password immediately
(© Remember password until you logout

) Remember forever

I Cancel H Connect]

Figure 3.1: Screenshot of unlocking the volume

Then I typed the diff of this two outputs of measured PCRs and this is
how it looked like:

diff before_reboot after_reboot

PCR-11: BA B5 DA 9D 5C D7 2A 4A 35 74 D8 BC 9B DB OA 58 DE 71 38 50
PCR-12: BA 69 A2 D7 70 OA 78 EE 57 89 AA DO 3C 77 48 A1 OF FD 8D 34
PCR-13: A2 62 C2 BE 50 B6 89 AF F8 BD 72 67 08 58 A7 75 C3 FO 9C 8C

PCR-11: 9E 1F 99 C5 9E B9 A7 2E 84 16 2A 10 B5 6F 80 98 57 DO 27 A0
PCR-12: 66 64 06 DD 3A 3F 78 OF 11 A4 B4 83 58 93 89 6F B2 92 AC 06
PCR-13: CB 83 03 61 AE EE 55 1D C2 44 EB 52 6D 98 B6 91 81 AE 49 5D

As we can see, the measurement has changed from PCR 11, be-
cause it contains measurement for command line changes and after re-
boot, kernel command line measurements were changed because of typing
echo "Hello World" in a TrustedGRUB (that was not measured before).
This means that system refused to give out the data from the USB without
typing a correct passphrase, because of the booting to an untrusted state.
Another indication, that TPM will not let me read the TPM NVRAM value
was, when I typed:

95

3. PRACTICAL PART - REALIZATION

tpm_nvread -i 2

Enter NVRAM access password:

Tspi_NV_ReadValue failed: 0x00000018 - layer=tpm,
— code=0018 (24), Wrong PCR value

3.7.9 System update

Previous section was a demonstration of a system change by a non-privileged
user - making changes in kernel command-line. A privileged user may also
be denied access to TPM NVRAM. This happens especially during a system
update. The whole measurements of the previous system will be changed and
access and sealed keys to the TPM NVRAM will be lost. This was resolved
by tpm—luks{T_gl and its script tpm-luks-update which was tested on RHEL 6
and Fedora 17.

When a new initramdiskE] is generated by system, a hook which is stored
in a
/etc/initramfs/post-update.d/tpm-luks-update

is executed. Tpm-luks-update (executed by a hook) then precomputes PCR
values for the new system state and migrates the current LUKS key to a new
NVRAM index in TPM. Basically, it searches for all used NV indexes. Then
creates a temporary file on the ram disk, where the TPM NVRAM keys will
be stored (of course, the user must provide himself by an owner password).
The algorithm searches for new NV indexes to store the secret in. The new
system state is precomputed and stored as a permission file, which will be
then created with the tpm_nvdefine command with the parameter -f (-f,
~filename, file containing PCR info for the NVRAM area, see manual [48§])
defines a new NVRAM area with new index. At the end, the content in the
old NVRAM index will be written into a new NVRAM index. This allows for
easy kernel updates without need for a manual intervention. Since tpm-luks
was implemented for RHEL 6 and Fedora 17, I did not tested the system
update, but I will mention this issue for further work for Ubuntu. More
information about this issue, with the script tpm-luks-update is here [56].

Yhttps://github.com/shpedoikal /tpm-luks
Tnitramdisk to which a default Grub points at the moment of execution of the tpm-
luks-update

o6

CHAPTER 4

Developed scripts

Two simple scripts were developed and are attached to this thesis. They are
meant to be useful for users who would like to learn more about this issue
and would like to secure their external drive using TPM and LUKS extension.
I have expanded their functionality by creating a script that saves multiple
keys to NVRAM at one time and decrypts them concurrently. This means we
can have more encrypted partitions on one USB disk. Therefore it may not
be just a single primary partition encrypted, but there may be more. It also
extends a functionality, that more USB disks can be encrypted and decrypted
at the same time. Before using these scripts, many manual installations, as
described in chapter 3, have to be completed.

The first script, tpm-luks-encrypt.sh, is interactive and asks us for a
partition which we want do encrypt. The list of all block devices can be found
by command 1lsblk. Then it formats partition using luksFormat parameter.
We can now choose the index where we want to store our secret key. I have
limited it to the interval of index 2 to index 128 because of the lack of memory
of the NVRAM. I have used the UUID (size of 36B) of the LUKS encrypted
partition as a key in "associative array” where is stored the key which encrypts
a given partition.

o7

4. DEVELOPED SCRIPTS

/dev/sdb

/dev/sdb1
/dev/sdb2

Secret datag

Secret datag

_/

/dev/sdc

/dev/sdc1
/dev/sdc2

LUKS

Secret datag

Secret data g)

TPM
m@

36B 32B

e e
NVRAM - INDEX 1 = UUID of sdb1 + KEY-FILE
INDEX 2 = UUID of sdb2 + KEY-FILE

INDEX 3 = UUID of sdc1 + KEY-FILE

INDEX 4 = UUID of sdc2 + KEY-FILE

Figure 4.1: Storing indexes into NVRAM

The second script, tpm-crypto-mount.sh, is executed, when USB is at-
tached using udev rule and gets out the key for decrypting all LUKS encrypted
partitions.

tpm-luks-encrypt.sh and tpm-crypto-mount.sh are written in Bash.
Detailed instructions how to use it, can be found in the provided programming-
documentation.txt file.

o8

Conclusion

This bachelor thesis consists of four chapters. In the first chapter is described
the architecture and the main functions of the TPM and TEE as a trusted
measurement, reporting and storage and all the components needed to handle
all of these requirements. The aim of this chapter was to show the credibility
of these functions and what this credibility is based on. In a TPM section
I have mainly described the PCR registers, because the whole practical part is
built on their use. The overall effort in this chapter was to create a theoretical
basis for the reader about the TPM and TEE and its provided functions.

The second chapter describes all the tools used for commissioning and
communication with TPM (TrouSerS, tpm-tools, Trusted GRUB, cryptsetup).
I was mainly concerned with cryptsetup, due to block device encryption used
in my practical part.

The primary goal of this thesis was a specific example of a TPM chip in
the form of a simple program, because more complex programs and use was
seemed to be a bit too much for introducing the reader to this issue. This
program was extensively analyzed and its description is presented in chapter
3. The solution of encryption was found to be sufficiently secure and practical
for use. So I suggested a solution that is practical for everyone, and I will like
my scripts, that are introduced in chapter 4, to be used by others as well as I
will be using it to decrypt my USB disk.

I would like to indicate the enhanced usage of this script and an idea
to continue: write a script that handles system update for Linux Mint and
Ubuntu.

Thanks to this work, I successfully wrote scripts, which tested the behavior
of TPM with the TrouSerS environment and I learned to encrypt and decrypt
the disk.

29

Bibliography

Sadeghi, A. R. Introduction to Trusted Computing.
2016, [accessed 2017-07-18]. Available from: https://
www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/
Group_TRUST/LectureSlides/STC-WS2016/02-Introduction_to_
Trusted_Computing.pdf

Schmidt, M. Trusted computing a Linux. [accessed 2017-07-18]. Available
from: http://docplayer.cz/46636277-Trusted-computing-a-linux-
michal-schmidt-red-hat.html

Trusted Platform Modules revisited. [OnlineJhttp://deveck.net/node/
30, [accessed 2017-07-18].

Dinh, T. T. A.; Ryan, M. D. Protected storage and Root of
Trust for Storage (RTS). [accessed 2017-07-18]. Available from:
https://www.cs.bham.ac.uk/~mdr/teaching/modules/security/
lectures/TrustedComputingTCG.html

McGillion, B. Open wirtual trusted execution environment. Master’s
thesis, Tampere University of Technology, March 2016, [accessed 2017-
07-18]. Available from: https://dspace.cc.tut.fi/dpub/bitstream/
handle/123456789/23823/Dettenborn.pdf

ARM Limited. ARM Security Technology Building a Secure System us-
ing TrustZone® Technology. 2005-2009, [accessed 2017-07-18]. Available
from: http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c

Fruhwirth, C. LUKS On-Disk Format Specification. December 2008,
[accessed 2017-07-18]. Available from: http://tomb.dyne.org/Luks_on_
disk_format.pdf

61

https://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/LectureSlides/STC-WS2016/02-Introduction_to_Trusted_Computing.pdf
https://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/LectureSlides/STC-WS2016/02-Introduction_to_Trusted_Computing.pdf
https://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/LectureSlides/STC-WS2016/02-Introduction_to_Trusted_Computing.pdf
https://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/LectureSlides/STC-WS2016/02-Introduction_to_Trusted_Computing.pdf
http://docplayer.cz/46636277-Trusted-computing-a-linux-michal-schmidt-red-hat.html
http://docplayer.cz/46636277-Trusted-computing-a-linux-michal-schmidt-red-hat.html
http://deveck.net/node/30
http://deveck.net/node/30
https://www.cs.bham.ac.uk/~mdr/teaching/modules/security/lectures/TrustedComputingTCG.html
https://www.cs.bham.ac.uk/~mdr/teaching/modules/security/lectures/TrustedComputingTCG.html
https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/23823/Dettenborn.pdf
https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/23823/Dettenborn.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c
http://tomb.dyne.org/Luks_on_disk_format.pdf
http://tomb.dyne.org/Luks_on_disk_format.pdf

BIBLIOGRAPHY

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

62

Choinyambuu, S. A Root of Trust for Measurement. Mse project re-
port, Hochschule Rapperswil, June 2011, [accessed 2017-07-18]. Available
from: http://security.hsr.ch/mse/projects/2011_Root_of_Trust_
for_Measurement.pdf

Trusted Computing Group. Design principles. March 2011, [accessed
2017-07-18]. Available from: https://trustedcomputinggroup.org/
wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_
revl116_01032011.pdf

Arthur, W.; Chalenner, D.; et al. A Practical Guide to TPM 2.0. Apres
Open, 2015, ISBN 978-1430265832.

GNU Free Documentation License 1.3 or later. Disk encryption. [accessed
2017-07-18]. Available from: https://wiki.archlinux.org/index.php/
disk_encryption

Ryan, M. Introduction to the TPM 1.2. diploma thesis, University of
Birmingham, March 2009, [accessed 2017-07-18]. Available from: [ftp:
//ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/08-intro-TPM.pdf

Vasudevan, A.; Owusu, E.; et al. Trustworthy FEzecution on Mobile

Devices: What security properties can my mobile platform give me?
Springer, Berlin, Heidelberg, 2012, ISBN 978-3-642-30921-2.

Martin, A. Trusted Infrastructure 101. 2011, [accessed 2017-07-
19]. Available from: https://www.cylab.cmu.edu/tiw/slides/martin-
tiwlO1.pdf

Martin, A. The ten-page introduction to Trusted Computing. November
2008, [accessed 2017-07-18]. Available from: https://www.cs.ox.ac.uk/
files/1873/RR-08-11.PDF

Trusted Computing Group. TCG Glossary. 2012, [accessed 2016-12-4].
Available from: http://www.trustedcomputinggroup.org/wp-content/
uploads/TCG_Glossary_Board-Approved_12.13.2012.pdf

Smith, S. W. Trusted Computing Platform. Springer, ISBN 978-7-302-
13174-8, 2014.

Schellekens, D. Design and Analysis of Trusted Computing Platforms.
Dissertation thesis, Katholieke Universiteit Leuven — Faculty of Engin-
eering Science, December 2012, [accessed 2017-10-21]. Available from:
https://www.esat.kuleuven.be/cosic/publications/thesis-219.pdf

Trusted Computing Group. [accessed 2017-10-21]. Available from: https:
//trustedcomputinggroup.org/tpm-main-specification/

http://security.hsr.ch/mse/projects/2011_Root_of_Trust_for_Measurement.pdf
http://security.hsr.ch/mse/projects/2011_Root_of_Trust_for_Measurement.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://wiki.archlinux.org/index.php/disk_encryption
https://wiki.archlinux.org/index.php/disk_encryption
ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/08-intro-TPM.pdf
ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/08-intro-TPM.pdf
https://www.cylab.cmu.edu/tiw/slides/martin-tiw101.pdf
https://www.cylab.cmu.edu/tiw/slides/martin-tiw101.pdf
https://www.cs.ox.ac.uk/files/1873/RR-08-11.PDF
https://www.cs.ox.ac.uk/files/1873/RR-08-11.PDF
http://www.trustedcomputinggroup.org/wp-content/uploads/TCG_Glossary_Board-Approved_12.13.2012.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TCG_Glossary_Board-Approved_12.13.2012.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-219.pdf
https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/tpm-main-specification/

Bibliography

[20]

[21]

[27]

[28]

[29]

[30]

Trusted Computing Group. [accessed 2017-10-21]. Available from: https:
//trustedcomputinggroup.org/tpm-library-specification/

Goldman, K.; Potter, S. SHA-1 Uses in TPM wvi1.2. Trus-
ted Computing Group, April 2010, [accessed 2017-12-08]. Avail-
able from: |https://www.trustedcomputinggroup.org/wp-content/
uploads/SHA1-Impact_V2.0.pdf

SBS Implementers Forum. System Management Bus (SMBus) Specific-
ation. August 2000, [accessed 2017-07-18]. Available from: http://
tomb.dyne.org/Luks_on_disk_format.pdf

Stetsko, A. Principy a vyuZiti modulu duvéryhodné platformy. Master’s
thesis, Masarykova univerzita, 2007, [accessed 2017-10-27]. Available
from: https://is.muni.cz/th/184905/fi_m/thesis.pdf

Trusted Computing Group. TCG PC Client Specific Implementation
Specification For Conventional BIOS. July 2005, [accessed 2017-07-18].
Available from: https://trustedcomputinggroup.org/wp-content/
uploads/PC-Client-Implementation-for-BIOS.pdf

Ge, H. A Method to Implement Direct Anonymous Attestation. [accessed
2017-07-18]. Available from: https://eprint.iacr.org/2006/023.pdf

Information Technologies for IPR Protection. http://
www.cmlab.csie.ntu.edu.tw/~ipr/ipr2006/data/lecture/Lecturel3y,
20-%20Trusted’20Platform)20Module’20 (TPM).pdf, [accessed 2017-
07-18].

Device Specifications TEE system Architecture. [accessed 2017-
10-27]. Available from: https://www.globalplatform.org/
specificationsdevice.asp

Coojimans, T. Secure Key Storage and Secure Computation in An-
droid. Master’s thesis, Radboud University Nijmegen, June 2014, [ac-
cessed 2017-07-18]. Available from: www.ru.nl/publish/pages/769526/
scriptie_tim_cooijmans.pdf

GlobalPlatform made simple guide: Trusted Execution Environ-
ment (TEE) Guide. [accessed 2017-10-27]. Available from: https://
www.globalplatform.org/mediaguidetee.asp

ARM Processors. [accessed 2017-07-18]. Available from: http://
www.arm.com/products/processors

63

https://trustedcomputinggroup.org/tpm-library-specification/
https://trustedcomputinggroup.org/tpm-library-specification/
https://www.trustedcomputinggroup.org/wp-content/uploads/SHA1-Impact_V2.0.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/SHA1-Impact_V2.0.pdf
http://tomb.dyne.org/Luks_on_disk_format.pdf
http://tomb.dyne.org/Luks_on_disk_format.pdf
https://is.muni.cz/th/184905/fi_m/thesis.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Implementation-for-BIOS.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Implementation-for-BIOS.pdf
https://eprint.iacr.org/2006/023.pdf
http://www.cmlab.csie.ntu.edu.tw/~ipr/ipr2006/data/lecture/Lecture13%20-%20Trusted%20Platform%20Module%20(TPM).pdf
http://www.cmlab.csie.ntu.edu.tw/~ipr/ipr2006/data/lecture/Lecture13%20-%20Trusted%20Platform%20Module%20(TPM).pdf
http://www.cmlab.csie.ntu.edu.tw/~ipr/ipr2006/data/lecture/Lecture13%20-%20Trusted%20Platform%20Module%20(TPM).pdf
https://www.globalplatform.org/specificationsdevice.asp
https://www.globalplatform.org/specificationsdevice.asp
www.ru.nl/publish/pages/769526/scriptie_tim_cooijmans.pdf
www.ru.nl/publish/pages/769526/scriptie_tim_cooijmans.pdf
https://www.globalplatform.org/mediaguidetee.asp
https://www.globalplatform.org/mediaguidetee.asp
http://www.arm.com/products/processors
http://www.arm.com/products/processors

BIBLIOGRAPHY

[31]

[40]

[41]

64

Gongzalez, J. Operating System Support for Run-Time Security with
a Trusted FExecution FEnvironment. Dissertation thesis, IT Univer-
sity of Copenhagen, January 2015, [accessed 2017-07-18]. Avail-
able from: https://en.itu.dk/~/media/en/research/phd-programme/
phd-defences/2015/javiergonzalez_phdprintversion-pdf

Open-TEE. [Online] https://open-tee.github.io/, Visited 31.12.2017.

Qualified Products. [accessed 2017-07-18]. Available from: https://
globalplatform.org/complianceproducts.asp

Trusted Computing Group. [accessed 2017-07-18]. Available from: https:
//trustedcomputinggroup.org/work-groups/mobile/

TRUECRYPT Free open - source on-the-fly encryption USER’S GUIDE
The TrueCrypt User’s Guide for v7.la. February 2012, [accessed
2017-07-18]. Available from: https://www.grc.com/misc/truecrypt/
TrueCrypt.htm

GNU Free Documentation License 1.3 or later. dm-crypt/Device
encryption. [accessed 2017-12-25]. Available from: https:
//wiki.archlinux.org/index.php/Dm-crypt/Device_encryption

Daemen, V., J.; Rijmen. The Design of Rijndael. NJ, USA: Springer-
Verlag New York, 2002, ISBN 3540425802.

Hoang, V. T.; Rogaway, P. On Generalized Feistel Networks. Advances in
Cryptology. Springer, Berlin, Heidelberg, 2010, ISBN 978-3-642-14623-7.

Schneier, B.; Kelsey, J.; et al. Twofish: A 128-Bit Block Cipher. June
1998, [accessed 2017-07-18]. Available from: https://www.schneier.com/
academic/paperfiles/paper-twofish-paper.pdf

Anderson, R.; Biham, E.; et al. Serpent: A Proposal for the Advanced
Encryption Standard. Technical report, Cambridge University, University
of Bergen, Technion, September 1998.

Block Cipher Modes of Operation. [accessed 2017-07-18]. Avail-
able from: https://www.tutorialspoint.com/cryptography/block_
cipher_modes_of_operation.htm

Voloshynovskiy, S.; Pereira, S.; et al. Watermark attacks. 1999, [accessed
2017-07-18]. Available from: http://cvml.unige.ch/publications/
postscript/99/VoloshynovskiyPereiraPun_eww99.pdf

IEEE, New York, New York 10016-5997, USA. IEEE P1619™/D16
Standard for Cryptographic Protection of Data on Block-Oriented Storage
Devices. 2007. Available from: http://grouper.ieee.org/groups/1619/
email/pdf00086.pdf

https://en.itu.dk/~/media/en/research/phd-programme/phd-defences/2015/javiergonzalez_phdprintversion-pdf
https://en.itu.dk/~/media/en/research/phd-programme/phd-defences/2015/javiergonzalez_phdprintversion-pdf
https://open-tee.github.io/
https://globalplatform.org/complianceproducts.asp
https://globalplatform.org/complianceproducts.asp
https://trustedcomputinggroup.org/work-groups/mobile/
https://trustedcomputinggroup.org/work-groups/mobile/
https://www.grc.com/misc/truecrypt/TrueCrypt.htm
https://www.grc.com/misc/truecrypt/TrueCrypt.htm
https://wiki.archlinux.org/index.php/Dm-crypt/Device_encryption
https://wiki.archlinux.org/index.php/Dm-crypt/Device_encryption
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://www.tutorialspoint.com/cryptography/block_cipher_modes_of_operation.htm
https://www.tutorialspoint.com/cryptography/block_cipher_modes_of_operation.htm
http://cvml.unige.ch/publications/postscript/99/VoloshynovskiyPereiraPun_eww99.pdf
http://cvml.unige.ch/publications/postscript/99/VoloshynovskiyPereiraPun_eww99.pdf
http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
http://grouper.ieee.org/groups/1619/email/pdf00086.pdf

Bibliography

[44]

[45]

trousers. [accessed 2017-07-18]. Available from: https://
sourceforge.net/projects/trousers/files/trousers

Trusted Computing Group. TCG PC Client Specific TPM Inter-
face Specification (TIS). July 2005, [accessed 2017-07-18]. Available
from: https://trustedcomputinggroup.org/wp-content/uploads/
TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf

Yoder, K. tesd. TCG Software Stack, [accessed 2017-07-18]. Available
from: https://linux.die.net/man/8/tcsd

tpm-tools. 2006, [accessed 2017-07-18]. Available from: https://
sourceforge.net/p/trousers/tpm-tools/ci/master/tree

trousers-users. tpm_nvdefine. [accessed 2017-07-18]. Available from: http:
//manpages.ubuntu.com/manpages/xenial/man8/tpm_nvdefine.8.html

Segall, A. Using the TPM: Data Protection and Storage. [accessed
2017-07-18]. Available from: http://opensecuritytraining.info/
IntroToTrustedComputing_files/Day2-2-data-storage.pdf

Ubuntu manuals. [accessed 2018-01-03]. Available from: http://
manpages.ubuntu.com/manpages/wily/man8/

Mitchell, C. Trusted Computing. IET, 2008, ISBN 978-0-86341-525-8.

Corbin, K. LUKS with TPM in Ubuntu. [accessed 2017-07-18]. Available
from: http://tomkowapp.com/2016/04/09/Ubuntu-TPM-encryption/

Rohde, S. TrustedGRUB2. [accessed 2017-07-18]. Available from: https:
//github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2

Drake, D. Writing udev rules. 2008, [accessed 2017-07-18]. Available from:
http://www.reactivated.net/writing_udev_rules.html

GNU Free Documentation License 1.3 or later. udev ArchLinuz. [accessed
2017-07-18]. Available from: https://wiki.archlinux.org/index.php/
udev

Yoder, K.; Goldman, K.; et al. tpm-luks. [accessed 2017-07-18]. Available
from: https://github.com/shpedoikal/tpm-luks/blob/master/tpm-
luks/tpm-luks-update

65

https://sourceforge.net/projects/trousers/files/trousers
https://sourceforge.net/projects/trousers/files/trousers
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPMSpecification_1-20_1-00_FINAL.pdf
https://linux.die.net/man/8/tcsd
https://sourceforge.net/p/trousers/tpm-tools/ci/master/tree
https://sourceforge.net/p/trousers/tpm-tools/ci/master/tree
http://manpages.ubuntu.com/manpages/xenial/man8/tpm_nvdefine.8.html
http://manpages.ubuntu.com/manpages/xenial/man8/tpm_nvdefine.8.html
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day2-2-data-storage.pdf
http://opensecuritytraining.info/IntroToTrustedComputing_files/Day2-2-data-storage.pdf
http://manpages.ubuntu.com/manpages/wily/man8/
http://manpages.ubuntu.com/manpages/wily/man8/
http://tomkowapp.com/2016/04/09/Ubuntu-TPM-encryption/
https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2
https://github.com/Rohde-Schwarz-Cybersecurity/TrustedGRUB2
http://www.reactivated.net/writing_udev_rules.html
https://wiki.archlinux.org/index.php/udev
https://wiki.archlinux.org/index.php/udev
https://github.com/shpedoikal/tpm-luks/blob/master/tpm-luks/tpm-luks-update
https://github.com/shpedoikal/tpm-luks/blob/master/tpm-luks/tpm-luks-update

APPENDIX A

Acronyms

AES Advanced Encryption Standard

ATK Attestation Identity Keys

API Application Programming Interface
BIOS Basic Input/Output System

CA Certification Authority

CPU Central Processing Unit

CRTM Core Root of Trust for Measurements
DAA Direct Anonymous Attestation

DES Data Encryption Standard

DRTM Dynamic Root of Trust for Measurements
DSA Digital Signature Algorithm

ESCD Extended System Configuration Data
EK Endorsement Key

EXT2 Second Extended Filesystem

GNU GNU’s Not Unix!

GNU GPL GNU General Public License
HTTP Hypertext Transfer Protocol

HW Hardware

TIEC International Electrotechnical Commission

67

A. ACRONYMS

IEEE Institute of Electrical and Electronics Engineers
iOS iPhone OS

IPL Initial Program Load

ISO International Organization for Standardization
IV Initialization Vector

LBA Logical Block Addressing

LPC Low Pin Count

LUKS Linux Unified Key Setup

MBR Master Boot Record

NIST National Institute of Standards and Technology
NVRAM Non-volatile access memory

OS Operating System

PC Personal Computer

PCR Platform Configuration Registers

POST Power-On Self-Test

PBKDF2 Password-Based Key Derivation Function 2
PRNG Pseudorandom Number Generator

RAM Random Access Memory

REE Rich Execution Environment

ROM Read-Only Memory

RNG Random Number Generator

RSA Rivest, Shamir, Adleman cipher

RTM Root of Trust for Measurements

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

SCSI Small Computer System Interface

SHA Secure Hash Algorithms

68

SMBus System Management Bus
SML Stored Measurement Log

SoC System on Chip

SRK Storage Root Key

SRTM Static Root of Trust for Measurements
SVM Secure Virtual Machine

SW Software

TC Trusted Computing

TCPA Trusted Computing Platform Alliance
TDDL TCG Device Driver Library
TCG Trusted Computing Group
TCS TCG Core Services

TEE Trusted Execution Environment
TPM Trusted Platform Module
TSP TCG Service Provider (TSP)
TSS Trusted Software Stack

TTP Trusted Third Party

TXT Trusted Execution Technology
USB Universal Serial Bus

UUID Universally Unique Identifier
VFAT Virtual File Allocation Table
VM Virtual Machine

XEX Xor-Encrypt-Xor

XML Extensible Markup Language

69

APPENDIX B

Content of enclosed CD

readme.tXt . ovviiiiin i the file with CD contents description
STC ettt directory of source codes written in Bash
tscripts implementation sources of scripts

thesis.............. the directory of IXTEX source codes of the thesis
L= v PO the thesis text directory
| BP_Holoubkova Andrea 2018 .pdf...... the thesis text in PDF format

71

	Introduction
	Trusted Computing
	Generally about Trusted Computing
	Trusted Platform Module
	Trusted Execution Environment
	Conclusion

	Practical part - Analysis
	Disk encryption tools in Linux
	Trusted bootloader
	Tools for communication with the TPM
	Conclusion

	Practical part - Realization
	Platform used
	Detecting the presence of the TPM chip
	TPM chip initialization
	Enabling the TPM
	Installing necessary packages
	Taking ownership
	Use of PCR registers

	Developed scripts
	Conclusion
	Bibliography
	Acronyms
	Content of enclosed CD

