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Abstract
Drug smuggling is perceived as the

main threat for the security of U.S citizens
and the U.S. Since the 70s the U.S. invests
billions of dollars into programs focused
on reducing the flow of illicit drugs in the
U.S, however, the result of the program
is mixed. One of the possibilities how
to improve the success rate of these pro-
grams is to use a game theory framework,
which has been already successfully ap-
plied on a range of domains dealing with
security. One of the factors which limit
the usage of game theory is the assump-
tion that all plays are fully rational, how-
ever, this assumption is not satisfied in
real world situations. The solution how to
deal with this problem is usage of so-called
behavioral models. This work proposes
the solution how to apply current state of
the art algorithms on network Stackelberg
games. Next contribution of this work is
the formalization of the network Stackel-
berg game again QR adversary as normal
form game with sequential strategies en-
abling compact representation via Markov
decision processes a solving the problem
as network flow optimization. The last
contribution of this thesis is the formula-
tion of the marine smuggling problem as
the above-mentioned games.

Keywords: Game Theory, Smuggling,
Quantal Response,SHARP,NFGSS,
Adaptive Behaviour, Security,Stackelberg,
Behavioral models

Abstrakt
Pašovaní drog představuje hlavní hrozbu
pro bezpečnost obyvatel Spojených států
amerických. Od 70. let Spojené státy in-
vestovaly miliardy dolarů do programů
zaměřených na zamezení toku ilegálních
drog do Spojených států, ovšem s nejas-
ným výsledkem. Jednou z možností, jak
zlepšit úspěšnost těchto strategií je pou-
žití teorie her, která byla úspěšně apliko-
vána na spoustu domén zabývajících se
bezpečností. Teorie her ovšem stále naráží
na problém předpokladu, že všichni hráči
jsou naprosto racionální, což v reálném
světě není splněno. Jednou z možností, jak
vyřešit tento problém je použití tzv. be-
haviorálních modelů. Tato práce navrhuje
možnost aplikace současných „state of the
art“ modelů adaptivního chovaní na Stac-
kelbergovské grafové hry. Tato práce také
jako první navrhuje formalizaci Stackel-
bergovské hry na grafech proti QR útoč-
níkovi, jako takzvanou normální hru se
sekvenčními strategiemi umožňující kom-
paktní reprezentaci pomocí Markovských
rozhodovacích procesů a řešení problému
jako optimalizaci toku v síti. Dále tato
práce ukazuje, možnosti použití behavi-
orálních modelů na doméně námořního
pašování.

Klíčová slova: Teorie Her, Pašování,
Quantal Response,SHARP, NFGSS,
Adaptivní Chování, Bezpečnost,
Behaviorální modely
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Chapter 1
Introduction

1.1 Introduction

Drug smuggling is perceived as the main threat for the security of U.S citizens
and the U.S. Since the 70s the U.S. invests billions of dollars into programs
focused on reducing the flow of illicit drugs in the U.S., however, the result
of the program is mixed. The temporal success leads to an improvement
of smugglers’ equipment or into a change of their routes. The result of the
programs is so-called balloon effect proposed by Fran Morata[2], who compare
attempts to interruption of the illicit drug flow by squeezing the latex balloon.
When the air not disappear, but it moves into place with lower resistance.

Currently, the biggest problem of U.S border protection is the southern
part of the border stretching from California to Florida from where more than
95% of all drugs arrive into the United States. Due to still growing airspace
protection smugglers use more and more smuggling through ships across the
Caribbean archipelago. Which consists of more than 700 islands spread over
an area of 15,000 square miles, where only a third of them are inhabited.
Which makes it difficult to regulate and detection of illegal activities in its
waters, especially if we consider the very high frequency of maritime traffic
in the area it provides another advantage to the smugglers.

Due to the disadvantageous environment and limited resources for patrolling
it is necessary to use the most sophisticated planning methods. The most
appropriate method for solving this problem is a game theory, which has
already been successfully applied to solve patrol problems several times.The
greatest limitation of the usage of game theory is the assumption that the
attacker and defender behave rationally, which, of course, does not apply in
the real world. The possible solution is the use of so-called behavioral models
that allow modeling of sub-rational behavior one of the players. In our work,
we are dealing with the expansion of scalable game theoretical algorithms
by adaptive sub-rational behavior and their application on the domain of
maritime smuggling.
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...................................... 1.2. Goals of the Thesis

1.2 Goals of the Thesis

Our work has the following objectives:. Understand the principles of human behavior modeling
In the third chapter, we study the principles of human behavior modeling.
Firstly, we introduce the most common concept for behavior modeling the
quantal response(QR). Then we provide an overview of OR extensions
which allows more precise behavior modeling and dealing with an adaptive
component. In this chapter, we also define Stackelberg equilibrium again
QR adversary as well as baseline algorithm for computation optimal
defender strategy from normal form game.. Understand the problem of marine drug smuggling
In the second chapter, we propose an overview of known information
about the marine drug smuggling in which we provide available infor-
mation about smugglers tactic and used vessels as well as information
about important environmental factor influencing smugglers’ behavior.
At the end of the chapter, we prose list of published work dealing with
marine smuggling.. Extends existing behavioral models by adding adaptive subrational
decision process
In the third chapter, we provide the models based on quantal response
taking into account adaptive behavior. In the fourth chapter we firstly
formalized the algorithm for solving network Stackelberg security game
again QR adversary and, as the first one, we define the algorithm for
computing Stackelberg equilibrium for normal form game with sequential
strategies again QR adversary as well as a fast algorithm for computing
QR adversary best response.. Apply the model extension on the problem of maritime drug smuggling
modeling
In the fourth chapter, we formalized the problem of marine drug smug-
gling as two games where the adversary is modeled by QR model ex-
tended by adaptive behavior. The first simplified solution is represented
as network security Stackelberg game and the second which one reflects
real world attacker movement is represented as normal form game with
sequential strategies.. Create a set of scenarios demonstrating the properties of the model
In the fifth chapter, we firstly describe our simulation algorithm and
then we create set of small scenarios for demonstrating the properties
of the model. At the end of the chapter, we also provide an example of
usage in the real world scenario.
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1.3 Structure of the Thesis

Our thesis is divided into 5 chapters.
Chapter 2 provides an overview of known information about the marine

drug smuggling: a tactic, used vessels as well as information about important
environmental factor influencing smugglers’ behavior. The chapter change
with the list of published work dealing with marine smuggling.

Chapter 3 is divided into two sections and provides background information
necessary for understanding this for. In the first part of the chapter focuses
on slight introduction into game theory where the different games are formally
defined together with solution concepts with mainly focus one game with
sequential strategies. The second part of the chapter focuses on problematic
of behavioral modeling an algorithm for solving optimal or nearly optimal
strategy again behavioral adversary.

Chapter 4 provides two mathematical formulations of the marine smuggling
problem represented as network Stackelberg security game and normal form
game with sequential strategies. Together with novel algorithms for comput-
ing nearly optimal strategy again behavioral adversary in these games and
algorithm for computing adversary’s best response again defender strategy.

Chapter 5 provides the description of several scenarios in which we demon-
strate the property of the models as well as the demonstration itself.

3



Chapter 2
Domain Background

In the first part of this chapter, we provided available information about
smugglers’ tactic and used technologies. In the second part, we propose an
overview of current programs which have to deal with the problem of marine
drug smuggling.

2.1 Tactic of smuggling

The knowledge about marine drug smuggling tactic is quite limited. Decker
and Champan[3] try to fill this lack of information. They publish an interview
with trapped drug smuggler imprisoned in the U.S., who provides them insight
into a different phase of smuggling operations. The methods how to avoid
the authorities can be divided into two categories – speed and stealth. Using
the speed method, the smugglers are trying to cross the monitored are as
fast as possible and hope that the patrol will be looking elsewhere. Using
the stealth method, smugglers try to blend in with the surroundings in many
ways like appearing as legal vessels, or by camouflaging themselves ( for
example by blue tarp), so they will not be spotted by the patrol. In most of
the operations, the smugglers combine both stealth and speed method. The
most common tactic is using speedboats, when the boats sails during night
by high speed (speed tactic) and at sun rinse the crew stop the engine and
cover the boat by the blue trap and drift whole day with turned of engines
until the sunset (stealth method), when the retrieve the tarp start up the
engine and continue in the sail[4].

2.2 Smugglers’ Vessels

The vessels used by the smugglers can be according to the Ramirez report[1]
divided into three categories: submersible vessels, semi-submersible vessels
and low profile vessels.
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.......................................2.2. Smugglers’ Vessels

Vessel Category Description Advantages Disadvantages
Semi-
submersible

These vessels are
capable of bal-
lasting down to
lower their sur-
face profile and
controlling their
running depth,
but cannot fully
submerge.

Can control run-
ning depth and
direction. Capa-
ble of carrying 2
tons of narcotics.

Can be detected
rather easily rel-
ative to LPVs
and submarines
as they cannot
submerge fully.

Submersible
Submarine

Submarine with
self propul-
sion capability
and ability
to submerge
fully under
water. Equipped
with advanced
radar, GPS,
navigational
technology. In-
visible on radar
and infrared
when below the
surface.

Can travel at a
speed of 11 mph
for a distance
of 3.200 km
while carrying
10 tons of nar-
cotics. Almost
undetectable as
they are capable
of diving 30
feet under the
surface.

Most expensive
to design, de-
velop and build.
Take some time
to build, require
many parts to
manufacture, as
well as someone
with knowledge
and skills.

Submersible Tor-
pedo

A convert
transportation
torpedo canister
which is towed
by another
vessel

Can travel at a
depth of about
30 meeters at al-
most the speed
that ’towing’ ves-
sel is travelling.
Capable of carry-
ing 2 to 5 tons.

Not able to
control direction
as they are un-
manned. They
rely on towing
vessel. Re-
duced carrying
capacity.

Low Profile Ves-
sels

Resemble the
shape of sealed
’go-fast’ boats.
Their design has
improved, mak-
ing them lower
to the water
surface and al-
most completely
submergible.
Equipped with
navigation sys-
tems, anti-radar
features, and
water-cooled
mufflers.

Can carry up
to 10 tons of
narcotics. Have
300hp motor.
Built mostly
from fiberglass.
Stealthy design
and upper lead
shielding helps
to minimize
their heat signa-
ture. Carry a
crew of five.

They are not
able to submerge
fully under wa-
ter. They can
be detected from
the air.

Table 2.1: Vessel type comparison taken from [1]
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2.2.1 Low Profile Vessels

The surface vessels or the low-profile vessels(LPV) are mostly represented
by so-called go-fast boats, which are in general most common vessel used
by smugglers[5]. The go-fast boats are 10 – 15 meters long with a narrow
beam and powerful engine with up to 1000 horsepower[6]. In the history,
the smuggler uses ships like for example Eduardono. In recent years, the
smugglers start to use the modern types of ships made from fiberglass which
have low radar profile, higher speed, and less fuel consumption. Another
type of LPV is co-called Panga which is smaller and slower version of go-fast
vessels.

Figure 2.1: Low profile vessel, Source : Guatemala Ministry of Defence

2.2.2 Semi-submersible Vessels

The semi-submersible vessels(SSV) are capable of ballasting down to lower
their profile but not fully submerging. Some sources incorrectly report that
SSVs are the most used category of smugglers vessels because they classified
into this class also fully closed go-fast ships, but in fact, SSVs are very rare
and only one specimen was seized in 1993.

2.2.3 Submersible Vessels

The submersible vessels can be divided more into two sub-categories of
submarines with self-propulsion capability and narco torpedoes.

6



..................................... 2.3. Environmental Factors

The narco torpedoes are a compromise between LVP and submarines.
They are much harder to detect then LPV but cheaper than proper crewed
submarines. The torpedoes are towed behind a legally looking boat (disguised
as a fishing, commercial or leisure craft) at depth of about 30m. The torpedo
is released if the authorities approach, and discharges beacons after a set
period of time to allow recovery by a backup boat after the authorities have
left the area.

The submersible vessels with self-propulsion capability are the most ad-
vanced and expensive type of the vessels, which are quite rare due to their
price and big demands on manufacturing. To this day, there is no evidence
about successful operation using the crewed submarines, however, several
of them were seized in different function status. The first submarine was
seized in 1995 and was 10 meters long with capacity of 1.5 tons. In 2000 the
Factiva submarine with height 30 meters and capacity 20 tons was seized.
The Factiva was based on Russian diesel-electric submarines with expected
12-member crewed.

2.3 Environmental Factors

We are not sure which environmental factor are significant for the behavior
of the drug smugglers because of the lack of the information. However, we
can assume that weather plays a significant role in their reasoning because
it is used all productional used models like[7] or [8]. The weather cut both
ways. The clear weather conditions increase safety and speed of the sail, but
also increase the ability of the authorities’ surveillance technology. The bad
weather reduces the rage of authorities’ surveillance technology, but also make
the sail more dangerous. So, the smugglers could prefer such condition that
would be still safe to pass through but maximally reduce the range. Another
important factor is currents especially when the stealth method is used when
the proper currents can bring the smugglers near to their targets and on the
other hand, bad currents can bring the smugglers into risky waters.

As a source of weather data, we use Meteorological and Oceanographic
(METOC) data from US Navy Fleet Numerical Meteorology and Oceanog-
raphy Center which provides the highest quality and the most relevant and
timely worldwide Meteorology and Oceanography support to U.S. and coali-
tion forces. The data from this service are not publicly available, however,
the simulation is developed to work with them via BANDIT simulation
platform[9] and tested on dummy data.

METOC provides both historical and the weather prediction data which
allows us to work with accurate data when we simulate the real historical
event and use the weather prediction to compute fleet allocation for the near
future. The provided data contains information about currents, wind and
waves height where the wave height is scalar information and the currents
and wind are vector information and space are represented as the rectangular
grid.

7
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2.4 State of the art works

J. Hansen[7] creates the predictive model of maritime pirates activities called
Piracy Attack Risk Surface(PARS). The model combines several data layers
like wave and ocean current information and historical pirate activity and
computes the suitability of pirate activity as a function of location and
time.The PARS model is operationally used by U.S., and NATO interdiction
forces. In our work, we used the PARS’ data layers as inputs to the utility
function.

Pattipati et al.[8][10] focus on applying optimization techniques for counter-
smuggling operations in east Pacific and Caribbean sea. The key objective
is to find routes for a set of assets, given the start and end locations, such
that the total travel traversal time, dispatch time and the wait time at each
intermediate location is minimized. Given a task graph over time-dependent
multi-objective risk maps, they formulate and solve a time-dependent multi-
objective shortest path problem to determine asset routes in a multi-task
scenario.

Hrstka et al.[11][9] provide an agent-based large-scale simulation of maritime
traffic in the Caribbean sea, called BANDIT, which allow evaluating the
quality of asset allocation with respect to maritime drug smuggling activities.
The platform is provided in the form of web services and is operationally
used by Naval Research Laboratory in Monterey. In our work, we use the
BANDIT as a source of METOC data.

Jakob et al.[12] provide another agent-based simulation of maritime traffic
called AgentC. The AgentC simulates the traffic in the Indian Ocean and
contains several components allowing effective modeling of maritime traffic
with adversarial forces present: (1) set of behavioral models of pirates’ ac-
tivities in the Indian Ocean, (2) multi-objective planner of maritime transit
routes throw. (3) a set of optimization modules allowing game-theoretic path
planning, asset allocation, and transit grouping. But unlike our work, their
game-theoretic models don’t take into account behavioral models.

Yang et al.[13] provide the Protection Assistant for Wildlife Security
(PAWS) with the goal of improving wildlife ranger patrols to reduce poaching
in Uganda’s Queen Elizabeth National Park. The work is base on SUR model
which is the behavioral model based on quantal response equilibrium which
considers the adaptive behavior. We cannot use this solution because the
problem, unlike our one, is formalized as Stackelberg security game.

8
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Figure 2.2: San Andreas semi-submersible vessel, Source :
http://covertshores.blogspot.cz
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Figure 2.3: Factiva submarine, Source : http://covertshores.blogspot.cz

Figure 2.4: Narco torpedo, Source : http://covertshores.blogspot.cz
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Chapter 3
State of the Art

3.1 Introduction to Game Theory

In the following section, we present insight into game theory when we firstly
define the game representation then we describe two most common solution
concepts for solving security game. At the end we will focus on network
security game when we formalized the Stackelberg security game as it was
provided by Jain[14] and its extension to network security game. We also
describe two main concepts how to solve the network security game. We will
use the notation used in work of Shoham and Leyton-Brown[15] from which
the definitions are taken.

3.1.1 Normal Form Games

Normal form game (NFG) is simplest game formalization which can be
viewed as one-shot simultaneous move representation of single interaction
game. Formally, the NFG game is defined in Defintion3.1
Definition 3.1. Normal form gem is ordered tuple (N,A,U) where:.N = {1, 2, . . . , n} is finite set of players. A = A1 ×A2 × . . .×An is set of finite set of actions and Ai is finite set

of actions available to player i. u = (u1, u2, . . . , un) is utility function where ui : A → R is utility
function for player i

And the player strategies are defined in Definition3.2:
Definition 3.2. Let (N,A, u) be a NFG..1. By a pure strategy one denotes an assignment of an action for certain

player. Assignment of a pure strategy for all players is called a pure
strategy profile...2. Let ∆(X) be a set of all probability distributions over an arbitrary
set X. The set of a mixed strategies for player i ∈ N is Si = ∆(Ai).
S = S1 × S2 × . . .× Sn is called the mixed-strategy profile.

11



.................................. 3.1. Introduction to Game Theory..3. ui(s) =
∑
a∈A ui(a)

∏n
j=1 sj(aj) is the expected utilty for player i ∈ N

under the strategy profile s ∈ S

Finally Table3.1 shows an example of NFG with two players N = l, f where
the player l(represented by rows) has two actions Al = a, b and the player f
has also two actions Af = c, d and each cell of the matrix contains pair of
value representing utility function ul and uf for given combination of actions.

pl c d

a 2,1 4,0
b 1,0 3,1

Table 3.1: Example of 2-player NFG

3.1.2 Extensive From Games

Extensive form game(EFG) is the representation which exploits the sequential
strategies. The extensive form game is represented by a game tree where
nodes correspond to set of stats and edges correspond to actions application
which capture what information a possibility a player has at the ceratin point
of the game.The players can distinguish game stats only base on so-called
information sets. If each information sets contain always only one game state,
thus player exactly known in which node is acting, we call this game EFG
with perfect information, otherwise, we call this game EFG with imperfect
information. Another important property of EFG is the perfect recall, which
informally means, that each player perfectly remembers the actions they
play. The games with perfect recall have extremely large strategy space,
but without perfect recall the equilibrium might not exist[16]. Formally, the
extensive form game with perfect information is defined in Defintion3.4 and
imperfect information game is defined in Definition??.
Definition 3.3. A finite perfect-information game in extensive form is an
ordered tuple G = (N,A,H,Z, φ, ρ, σ, u), in which:.N = {1, 2, . . . , n} is finite set of players. A is set of actions.H is set of nonterminal choices nodes. Z is set of terminal nodes. φ : H → 2A is the action function, which assigns to each choice node a

set of possible actions. ρ : H → N is the player function which assigns to each nonterminal node
a player i ∈ n who chooses an action at that node. σ : H ×A→ H ∪ Z is successor function which maps a choice node and
an action to a new choice node or terminal node such that: ∀h1, h2 ∈ H
and ∀a1, a2 ∈ A, if σ(h1, a1) = σ(h2, a2) then h1 = h2 and a1 = a2

12
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. u = (u1, u2, . . . , un) is utility function, where ui : Z → R is real-valued
utility function for player i on the terminal nodes Z

∐
Definition 3.4. A finite imperfect-information game in extensive form is an
ordered tuple G = (N,A,H,Z, φ, ρ, σ, u, I), in which:.G = (N,A,H,Z, φ, ρ, σ, u, ) is perfect-information EFG.. I = (I1, I2, . . . , In) whereIi is set of equivalence classes on choice nodes

of a playeri with that property that ρ(h) = ρ(h′) = i and φ(h) = φ(h′),
whenever h, h′ ∈ I for some information set I ∈ Ii. φ : I → 2A is the action function, which assigns to each information set
a set of possible actions

3.1.3 Nash Equilibrium

The Nash equilibrium [17] is the standard solution concept in the game
theory, which denotes a strategy profile such that no player can gain by
unilaterally deviating to another strategy, more formally: Let G be a normal
form game define in Definition3.1 Let xi be a strategy profile of player i and
x−i be a strategy profile of all players except for player i. When each player
i ∈ {1, . . . , n} chooses strategy xi resulting in strategy profile x = (x1, . . . , xn)
then player i obtains payoff fi(x). Note that the payoff depends on the strategy
profile chosen, i.e., on the strategy chosen by player i as well as the strategies
are chosen by all the other players. A strategy profile x∗ ∈ S is a Nash
equilibrium (NE) if no unilateral deviation in strategy by any single player is
profitable for that player, that is ∀i, xi ∈ Si : fi(x∗i , x∗−i) ≥ fi(xi, x∗−i).

3.1.4 Stackelber Equilibrium

Stackelberg game was introduced to study duopoly competition by German
economist Heinrich Freiherr von Stackelberg [18]. Instead, NE where all
players have the same privileges and knowledge about the game and players
actions. In the Stackelberg games, one user acts as a leader(defender in the
case of security games) and the rest of the players are the followers(attackers).
In the first step, of the game leader plays his best repones strategy and in
the second step, the followers observe leader’s strategy and play their best
repones again leader choice lets call the attacker response function r : xl → xf .
The solution of Stackelberg game is called Stackelberg equilibrium. The two
types of Stackelberg equilibrium exists. The week Stackelberg equilibrium
defined in Definition3.5 and the strong Stackelberg equilibrium defined in
Definition3.6.
Definition 3.5. The strategy profile x = (xl, r(xl)) is week stackelberg equi-
librium if:. The leader plays the best response: fl(xl, r(xl)) ≥ fl(x′l, r(xl))), ∀x′l ∈ Sl

13



.................................. 3.1. Introduction to Game Theory

. The follower plays the best response: ff (xl, r(xl)) ≥ ff (x′l, r(xl))),∀x′f ∈
Sf

Definition 3.6. The strategy profile x = (xl, r(xl)) is strong stackelberg
equilibrium if:. The strategy profile: x = (xl, r(xl)) is week stackelberg equilibrium. The follower breaks ties in favor of the leader: fl(xl, r(xl)) ≥ fl(xl, xf )),∀x′f ∈

Sf

It would seem that the leader is disadvantaged under Stackelberg equilib-
rium compared to use well known Nash equilibrium. Conitzer and Sandolm[19]
disproved this assumption on the following example: Considered two player
normal form game defined by 3.1

When the players move according to the Nash equilibria then the only pure
strategy equilibrium exists when the leader plays strategy la and follower
plays la in which the leader obtains utility of 2. However, if the players move
according to the Stackelberg equilibria the leader chooses the strategy lb and
obtains utility of 3 since the follower will play fb to obtain higher utility.
In the case of Stackelberg equilibria, the leader can also choose the mixed
strategy when will be playing both la and lb with equal probability 0.5 which
guarantees to leader utility 3.5.

Stackelberg Security Game

In previous paragraphs, we formally define the normal form game and Stack-
elberg equilibrium. In the following section, we define Stackelberg security
game(SSG) as it was defined by Jin et at. [14] which we’ll use for describing
the algorithm for solving SSG again quantal response adversary.

Yin et. al propose the SSG as NFG game with a single defender and at least
one attacker. Where defender has to protect a set of targets T = t1, t2, . . . , t|t|
from being attacked by the attackers using a set of resources γ. The pure
strategy of the defender is defined as an assignment of all resources to the
set of the targets. The pure strategy of the attacker is defined as attacking a
single target. The defender strategy set contains all possible assignments of
all resources and the attacker strategy set contains all targets. The utility
for both players dependent on which target t ∈ T is attacked and whether is
target protected by a defender. Formally, let d denote the defender and a the
attacker. When the attacker attack on target i which is not covered then get
rewardRai and defender received the penalty P di . On the other hand when
the attacker attack on target i which is covered then the attacker get penalty
P ai and the defender received the reward Rdi . An important feature of the
security game is that Rdi ≥ P di and P ai ≤ Rai . The SSG used the compact
representation of the defender strategy, introduced by Kiekintveld et al.[20]
which uses the probability that each target will be covered. The defender’s
mixed strategy then can be denoted by vector X(x1, x2, . . . , x|T |) where xi
denote the probability that target ti is covered by the defender, instead of

14
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distribution over all pure strategies. The expected utility defender given
the mixed strategy x when the attacker attacks target ti can be calculated
via Equation3.1 and the attacker’s expected utility can be calculated via
Equation3.2.

Udi (x) = (1− x)P di + xiR
d
i (3.1)

Uai (x) = xP di + (1− xi)Rdi (3.2)

Network Stackelberg Security Game

In this section, we propose SSG formulation on network graph proposed
by [21] which corresponds with our problem. The game is played on graph
G = (N,E) where N is set of nodes and E is set of edges. The attacker starts
in one of its source nodes s ∈ S ⊂ N and travels through graph to one of
the target nodes tinT ⊂ N . The set of attacker’s pure strategy set consists
of all path from some start node s ∈ S to some target node t ∈ T denoted
as Ai. The goal of the defender is to catch the attacker by covering some
edges. Let M is the total number of security resources then defender’s pure
strategy set consist of all subset from E with M elements. If the attacker
chose the path i which has at least one edge covered by the defender receives
penalty P ai and the defender receives reward Rdi . Otherwise, the attacker
receives rewardRai and the defender receives penaltypdi . where important
feature of the security game is that Rdi ≥ P di and P ai ≤ Rai . Let denote x
the defender’s compact mixed strategy represented by vector X(xi, ∀i ∈ E)
where xi denote the probability that edge xi is covered by the defender and
let pi be a probability that attacker will be captured while defender plays
mixed strategy x i.e, the probability that at least one edge from path Ai is
covered by defender. The expected defender’s utility given the mixed strategy
x when the attacker choices path Ai can be calculated via Equation3.3 and
the attacker’s expected utility can be calculated via Equation3.4.

Udi (x) = (1− pi(x))P di + pi(x)Rdi (3.3)

Uai (x) = pi(x)P di + (1− pi(x))Rdi (3.4)

3.1.5 Normal Form Games with Sequential Strategies

Normal Form Game with sequential strategies(NFGSS). Lays somewhere
between normal form and extensive form games. The players have sequential
strategies, however, cannot observe and react on immediate of their actions
during the game.Their strategies typically represent movement on graph
in time like for example marine tranist[22] or securing road networks [23]
and according to definition provided by Bosansky et al.[24] are formalized
like finite-horizon and acyclic Markov Decision Process (MDP)(each player
follows different MDP) ([25][26]) this representation can be combine strategy
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generation ([23][22]). The MDP for player i is represented by MDPi =
(Si, Ai, Ti) where Si is set of states available for player i, Ai is set of actions
available for player i and Ti : Si × Ai × Si is probability that state sii will
be reached when the player play action a− i in state si. given the marginal
utility U((s1, a1), (s2, a2)) the utility of the game when the player i plays
mixed strategy δi and opponent plays mixed strategy δ2 can be computed
according following equation:
U(δi, δ2) =

∑
S1×A1

∑
S2×A2 δ1(s1, a1)δ2(s2, a2)U((s1, a1), (s2, a2))

where the δi(si, ai) is probability that state si will be reached and the
actionai will be played in this state when the player plays mixed strategy δ1

3.2 Adversary Behavioral Modeling

3.2.1 Quantal Response Equilibrium

The (logic) Quantal response equilibrium (QRE) is solution concept intro-
duced by McKelvey and Palfrey for Normal form game[27] as well as for
extensive form game[28]. It is based on single-agent problems and brings into
account the idea that instead of strictly maximizing utility, players respond
stochastically, in the sense that players are more likely to choose better
strategies than worse strategies but do not play the best response with a
probability one. Given the attacker utilities Ua, the attacker modeled as QR
select strategy i with probability given by:

qi(x) = eλU
a
i (x)∑

tk∈T e
λa
k

(x) (3.5)

where Uai (x) is the expected utility for the attacker for selecting pure
strategy i. λ is the parameter that captures the rational level of player. When
λ = 0, then player plays uniformly random; in the other extreme case when
λ→ inf the quantal response is identical to the best repones.

3.2.2 Quantal Equilibrium Extensions

Subjective Utility Quantal Response

Nguyen et. al[29] propose the subjective expected utility(SEU) for security
Stackelberg games. The SEU is based on the idea as proposed in behavioral
decision-making[30][31] that individuals have their own evaluations of each
alternative strategy. The SEU was proposed as the linear combination of
marginal coverage on target t (xt); the subject’s reward and penalty (Rat , P at )
and optionally the defender’s reward and penalty (Rdt , P dt ).

Uat = ω1xt + ω2R
a
t + ω3P

a
t + (ω4R

d
t + ω5P

d
t ) (3.6)

Despite the model’s simplicity, it leads to higher prediction quality than the
expected value function, This fact corresponds to results of several studies in
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other domain which demonstrate the prediction quality of feature combination
as for example ([32];[33]).

SHARP model

Kar et. al [34] proposed new model SHARP (Stochastic Human behavior
model with AttRactiveness and Probability weighting) solving three key
limitations of SEU behavioral model.

Firstly, SHARP reasons about similarity between exposed and unexposed
areas of the attack surface. Secondly, the SHARP assumption is based
on success or failure of the adversary’s past actions and thirdly, SHARPS
integrate non-linear probability weighting function to capture the adversary’s
true weighting of probability.

The first improvement is solved by defining so called the attack surface
and target profile. The attack surface α is n-dimensional space of features
used for modeling adversary behavior. Formally,

α =< F 1, F 2, . . . , Fn > for features F j(∀j; 1 ≤ j ≤ n)

The target profile βk ∈ α is a point on the attack surface which can be
associated with the target. Formally, βk =< F 1, F 2, . . . , Fn > denotes the
kth target profile on the attack surface. One target profile can be associated
with many targets.βik denotes that target profile βk is associated with target
profile i.

The second improvement is based on two observations, which are also
consistent with the “spillover effect” in psychology [35] and is solved by
introducing the vulnerability and attractiveness which are associated with
target profiles.
Observation 3.1. Adversaries who have succeeded in attacking a target
associated with a particular target profile in one round, tend to attack a
target with ‘similar’ target profiles in next round.
Observation 3.2. Adversaries who have failed in attacking a target associated
with a particular target profile in one round, tend not to attack a target with
‘similar’ target profiles in the next round

The vulnerability for target profile βi in round r is denoted V r
βi

and is
define as number of successes and failures on the concerned target profile in
that round. Formally,

V r
βi =

sucessrβi − failure
r
βi

sucessrβi + failurerβi

I.e, the target profile with few failures and more successful attacks is highly
vulnerable in given round.

The attractiveness r target profile βi in round r denoted ARβi and is define
as mean vulnerability for βi from round 1 to round R. Formally,

ARβi =
∑R
r=1 V

r
βi

R
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I.e, the target profile which lead to more successful attacks over several rounds
will be perceived as more attractive.

The third improvement is motivated by Kahneman and Tversky [36]
Prospect theory, which shows that peoples weigh probability non-uniformly
and they tend to overweight low probabilities and underweight high proba-
bilities. Kar et. al use in their work two parameter probability weighting
function proposed by Gonzalez and Wu[37] that can be either (inverse)S-
shaped or S-shaped (S-shaped curve indicates that people would overweigh
high probabilities and underweight low to medium probabilities and vice
versa)

f(p) = δpγ

δpγ + (1− p)γ (3.7)

Combining all these three components together we get that the adversary
will attack target i in round R is calculated based on the Equation3.8

qri (x) = e
ASUR

βi
k

(x)

∑
i∈T e

ASUR
βi
k

(x)
(3.8)

where ASU r
Bi
k
(x) is the adaptive probability weighted subjective utility func-

tion proposed and it is computed based on the Equation3.9

ASURβi
k

= ARβiω1f(x) +ARβi

|α|∑
i=2

ωiF
i (3.9)

3.3 Computing Strategy Again QR Adversary

The goal of the defender is to maximize his expected utility:

max
x

Ud(x) =
n∑
i=1

qi(x)Udi (x) (3.10)

where Udi (x) is expected utility of defender given the mixed strategy x
when the attacker attacks target ti and can be computed according the
Equation3.1 and qi(x) is the probability with which the attacker attack on
target i observing defender strategy x and can be computed via Equation3.11

qi(x) = eR
a
i e−λ(Rai−P

a
i )xi∑

tk∈T e
λRa

ke−λ(Ra
k
−Pa

k
)xk

(3.11)

By combining all the equations together we get

maxx

∑
t∈T e

λRae−λ(Rat−Pat )xt((Rdt − P dt )xi + P dt )∑
t∈T e

λRat e−λ(Rat−Pat )xt
(3.12)∑

t∈T
xt ≤M (3.13)

0 ≤xt ≤ 1 (3.14)
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Since the objective function in equation 3.12 is non-linear and non-convex,
finding the global optimum is extremely difficult. Therefore we now propose
known methods to compute an approximately optimal strategy.

3.3.1 Best Response to Quantal Response(BRQR)

The simplest algorithm1 for providing approximately solution is the Best
Response to Quantal Response algorithm proposed by Yang at al.[38]. The
algorithm firstly converts Equation 3.12 to minimization problem and in each
iteration randomly generate the starting point and find the local optimum
using the Interior Point Algorithm. Due to random initialization in each itera-
tion, the algorithm will reach different local optima with non-zero probability
and with increasing number of iteration, the probability of reaching global
minimum increase.

Algorithm 1 BRQR
Input: IterN

1: for i← 1, . . . , IterN do
2: x(0) ← randomly generate feasible starting point
3: (optl, xl)← Find-Local-Minimum(x(0))
4: if optg > optl then
5: optg ← optl
6: xopt ← xl

7: end if
8: end for
9: return optg, x

opt

3.3.2 Binary Search Method

The more advanced algorithm which allows us to reach ε-optimal strategy
was proposed by Yang at al.[38] and use the binary search method. The idea
of binary search method is to iteratively estimate the global optimal valuep∗
of the fractional objective function, instead of searching for it directly. Firstly,
we justify the correctness of binary search method for solving fractional
programming problem

max
x∈Xf

N(x)
D(x) (3.15)

for any functions N(x) > 0 and D(X) > 0.
Let Xf is feasible region of fractional programming problem and p∗ is its

optimal value. Given a real value r, we can determine, according to lemma3.3,
if r ≤ p∗ or not by checking

r ≤ p∗ ⇐⇒ ∃x ∈ Xf : rD(x)−N(X) ≤ 0 (3.16)

So, given lower bound L and upper bound U we can find ε-optimal value in
log(U−Lε ) steps
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Lemma 3.3. For any real value r ∈ R, on of the following two conditions
holds.

r ≤ p∗ ⇐⇒ ∃x ∈ Xf : rD(x)−N(X) ≤ 0 (3.17)

r ≥ p∗ ⇐⇒ ∀x ∈ Xf : rD(x)−N(X) > 0 (3.18)

Algorithm 2 BinarySearch
Input: ε, PM , numOfRes

1: (U0, L0)← EsimateBounds(PM , numOfRes)
2: (U,L)← (U0, L0)
3: while U − L ≥ ε do
4: r ← U+L

2
5: (feasible, xr)← ChckFeasibility(x)
6: if feasible then
7: L← r
8: xL ← xr)
9: else

10: U ← r
11: end if
12: end while
13: return L, xL

The algorithm2 describes the basic structure of binary search method.
given the playoff matrix or the game tree (PM ) and the total number of
resources(numOfRes) firstly, on line 2 the algorithm initializes lower bound
(L0) and upper bound (U0) of the defender expected utility. Then in each
iteration, the r is set to be the mean of U and L. On line 6, the current r
value is checked whether satisfies feasibility condition. If so, the lower bound
of the method is increased to r as well as the valid lower bound strategy xL
is set to xr. Otherwise, the upper bound of the method is decreased to r.
The search is repeated until the difference between upper bound and lower
bounds isn’t sufficiently small.

Now we need to determine initial lower and upper bound methods.

Lower bound: Let su be any feasible defender strategy. The defender utility
based on using su against a adversary’s quantal response is a lower bound of
the optimal solution. For example uniform strategy can be used.

Upper bound: Since Udt ≤ Rdt ∀t ∈ T we have UDt ≤ maxt∈T Rdt , thus the
maxt∈T Rdt is our upper bound.

The feasibility checking: Given a real number r ∈ R to check whether the
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checking equation is satisfied Yang introduce CF-OPT:

minx∈X rD(x)−N(x) (3.19)
D(x) =

∑
t∈T

θte
−βtxt (3.20)

N(X) =
∑
t∈T

θtαtxte
−βtxt +

∑
t∈T

θtP
d
t e− βtxt (3.21)

θt = eλR
a
t (3.22)

βt = λ(Rat − P at ) (3.23)
αt = (Rdt − P dt ) (3.24)

Let δ∗ be the optimal objective function of CF-OPT. If δ∗ ≤ 0 checking
equation must be true. Therefore by solving the new optimization problem
and checking if δ∗ ≤ 0 we can answer if a given r is larger or smaller than
the global maximum, however the objective function is still non-convex.

3.3.3 Global Optimal Strategy Against Quantal response
(GOSAQ)

Global Optimal Strategy Against Quantal response (GOSAQ) proposed by
Yang at al.[38] is extension of the binary search method which solves the
problem that objective function is non-convex through the following nonlinear
invertible change of variable:

yi = e−βixi ,∀i ∈ T (3.25)

,
and rewritten function CF-OPT to GOSAQ-CP:

minyr
∑
t∈T

θtyt −
∑
t∈T

θtP
d
t yt +

∑
t∈T

αtθt
βt

ytln(yt) (3.26)

∑
t∈T

−1
βt
ln(yt) ≤M (3.27)

e−βt ≤ yt ≤ 1 (3.28)

It can be easily proof that GOSAQ-CP is strictly convex(by second deriva-
tion) thus it has only one optimal solution and can be solved in polynomial
time through the ellipsoid method or interior point method with volumetric
barrier function.
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Chapter 4
Formalization And Models

In the following section, we firstly introduce the environment representation
and the attacker and defender movement and goals. Then we formalize the
defender and utilities and at the end, we formalize our problem as network
Stackelberg security game in two variants.

4.1 Environment Representation

The area, on which the problem has to be solved is represented as the square
grid with the 4-neighbors relations. The grid consists of 4 types of cell :. open water (wn). land (ln). US coast (ucn). country of origin coast (ocn)

Denotes the set of all open water cells as wN , the set of all land water
cells as lN and et cetera. Each non-land cell has assigned a set of features
containing following features. wind power, represented as discretized Beaufort wind scale. current consists of two components the direction and power. discretized vessel density in given area.

Defender

The defender’s goal is to cover the limited number of cells PN ⊂ Wn ∪ ocN
such that maximize the probability that the attacker will intersect some of
the covered cells by its path. We assume that number of covered cells is lower
then number of edges that we had to remove to transform graph representing
given grid into graph with two separated components where the start cell
sn is in one component and the targettn on in the other one, otherwise the
defender would have a winning pure strategy.
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Attacker

The attacker’s goal to smuggler drugs from origin country to us i.e can be
relaxed to the problem of path finding from some start cell sn ∈ ocN to some
of the target cell tn ∈ ucN , which maximize the probability of successful sail.
In our case we have an additional information about approximately start(snA)
and target(tnA) areas and their accuracies(sζ and tζ) thus we can restrict
the set of possible targets and goal areas by:

sn ∈ ocNA|n ∈ ocNA ↔ n ∈ ocN ∧ ‖snA, n‖ ≤ sζ (4.1)

tn ∈ ucNA|n ∈ ucNA ↔ n ∈ ucN ∧ ‖tnA, n‖ ≤ tζ (4.2)

In our work, we deal with two types of attacker movement. The first one
is simplified version when the attacker is moving over a deterministic path.
The second one is based on real world model when attacker actively sails
during the night and during the day it is passively drifted by currents. The
attacker is parameterized by the set of featuresν =< t, η, σ, α, δ, γ, ω > where
t represents attacker’s toughness which determines during how strong wind
(measured on Beaufort wind scale) the attacker can sails. η represents the
attacker’s endurance i.e, through how many cells the attacker can actively
sail until it runs out of fuel. σ represents the speed, the speed is expressed as
a number of a cell through which an attacker can ride during the night. α is
attacker surface defining which features take the attacker into account during
his decisions, ω is the vector of weights defining how much is given feature
from strategy profile α important for the attacker and γ and δ features are
parameters of probability weighting function.The features t, η, σ together with
possible start and target source are used in game graph generation described
later. The features α, δ, γ, ωare parameters which defines the SHARP model
behaviour.

4.2 SHARP

In the following section, we describe the SHARP model by which is the
attacker modeled. Firstly, we define the attacker surface α. The attacker
surface α is represented by vector containing features α =< x,ϕ, φ,Ra, P a >
where x denotes the coverage probability, ϕ denotes wind power, represented
as discretized Beaufort wind scale, φ denotes vessel density in given area, Rai
is a reward which attacker received when successfully smuggles the drugs
through path i and P ai is a penalty which the attacker received which is
detained during smuggling drugs through path i . In original formalization
of the SHARP model each target i ∈ T has assigned target profileβk which
attacker take into account in their decision. In our case is target profile
replaced by edge profile βe define as βe =< xe, ϕe, φe >, and because the
attacker, according to network Stackelberg security game, make decision over
the paths we have to define our adaptive probability weighted subjective
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utility function ASU for whole path Ai instead single edge. This aggregation
is done in the following way: lets EAi =< e1

Ai
, e2
Ai
, . . . , eAi

|Ae| > is ordered
vector of the path from which the path Ai is consisted, ejAi is j-th edge on
path Ai, βAi

j

e is target profile associated to the edge ejAi and AR
β
Ai
j

e

is an

attractiveness of the target profile βAije after round R. Then the ASURAi is
computed according the Equation4.3

ASURAi = ω1f(pAi(x)) + ω2ϕAi + ω3φAi + ω4R
a
Ai + ω5P

a
Ai (4.3)

where f is two parameter probability weighted function defined in Equa-
tion3.7 ϕAi and ϕAi are aggregated wind and vessel density features and pAi
is an expected probability that attacker will be caught on path Ai.

ϕAiA = 1
N

|Ai|∑
j=1

(1− βAije )ϕA
j
i

e (4.4)

φAiA = 1
N

|Ai|∑
j=1

(1 + βAi
j

e )φA
j
i

e (4.5)

pi(x)AiA =
|Ai|∑
j=1

(1− βAije )xA
j
i

e (4.6)

4.3 Network Stackelberg Security Game
Formulation

In the following section, we formalized our problem as NSSG, which formu-
lation allows to us take into account only the simplified version of attacker
movement where the attacker doesn’t drift during the day. For obtaining
graph G = (N,E) we have to transform the grid representation in such way
that we substitute the cells by edges and vice versa. Vanek shows that we
reduce the state space by removing all edges, that doesn’t bring the attacker
near to some of his targets. The set of all attacker strategies A consists from
all paths Ai between some of his start nodess ∈ S ⊂ N and target node
t ∈ T ⊂ N ,which length is smaller then attacker endurance η and where
the any of edge doesn’t have assigned target profile βe with wind power ϕ
larger than attacker’s toughness. Set defender set of strategies consists of all
possible assignments of all resources over the edges E and we also use the
compact defender representation by the vector sum of marginal probabilities
X. We assume that the reward and penalty both for attacker and defender
are uniforms through all paths.

The goal of the defender can be formalized non-convex optimization problem
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:

maxx
∑
Ai∈A

(1− qi(x))P di + qi(x)Rdi (4.7)

qri (x) = e
ASUR

βi
k

(x)

∑
i∈Ai e

ASUR
βi
k

(x)
∀i ∈ A

(4.8)
ASURAi = ω1f(pAi(x)) + ω2ϕAi + ω3φAi + ω4R

a
Ai + ω5P

a
Ai ∀Ai ∈ A

(4.9)

ϕAiA = 1
N

|Ai|∑
j=1

(1− βAije )ϕA
j
i

e ∀Ai ∈ A

(4.10)

φAiA = 1
N

|Ai|∑
j=1

(1 + βAi
j

e )φA
j
i

e ∀Ai ∈ A

(4.11)

pi(x)AiA =
|Ai|∑
j=1

(1− βAije )xe ∀Ai ∈ A

(4.12)∑
e∈E

xe ≤M (4.13)

0 ≤ xe ≤ 1 ∀e ∈ E
(4.14)

4.4 Normal From Game with Sequential
Strategies Formulation

In the previous section we formalized the problem as NSSG, this representation
suddenly isn’t able to represent the complex movement of the attacker with
stochastic drifting during a day. One of the possibilities how to solve this
problem is to formalize the problem as EFG, however, solving this game
is nontrivial and it’s state space is huge due to prefect recall property - so
this solution is out our thesis’ scope. Another possibility is to represent
this problem as NFGSS where the strategy is represented as MDP a thus
allow the stochastic transition. This solution has also another advantage
that the representation is much more compact. In this section, we propose a
formulation of NFGSS where the attacker moves according to SHARP model
as well as formulation how to compute attacker response again defender
strategy using dynamic programming.

First, we formalize the transformation our grid environment representation
into time-graph, G where the nodes represent states in attacker and defenders
MDP and edges represent actions. The time is discretized into time steps
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necessary for moving along the single edge and the total time of time steps is
equal to attacker’s enduranceη, if we neglect the drifting. Otherwise, we have
to add another η

σ
steps which each of these steps represents drifting during

the day. Thus different time step can represent a different amount of time.
Lets τ is a set of all time steps and stn is the node s ∈ N in time step t ∈ τ

.We also have to add two more nodes the start node ss and the target node
st. The states are same both for defender and attacker, however, the actions
or edges are different. For defender we add edge from starting node ss to all
nodes in time step 1 from and target node st to all nodes in time step |τ |.
Then we connect each stn with itself in time step t+ 1 if the t 6= |τ |. This set
of edges represent the set of defender action Ad. In defender MDP we don’t
allow stochastic transition i.e the transition function T is binary function
T : S ×Ad × S → 0, 1.

For attacker we connect we add edge from starting node ss to attacker
starting nodesS ⊂ N in time step 1 from and target node st to all nodes in
time step |τ |. When the time step t represent active sailing (t%σ 6= 0) and
t 6= |τ | we connect all nodes stn which aren’t the goal nodes n 6∈ S ⊂ N with
their neighbours in time step t+ 1 and all goal nodes we connect directly with
target node st. These edges represent active sailing and we consider that the
transitions are nonstochastic. Now we have to add the action representing the
drifting this is done by adding an action ’drift’ to each node at time stamp
where t%σ = 0 except the goal nodes. These transitions are stochastic and
the probability of reaching some node by drifting from given target is obtained
from BANDIT simulation. But always is true that transition probability of
drift action is nonzero only for states in time steps t and t+ 1. The property
that both attacker and defender can move only forward in time guarantee
that MDPs are acyclic. See the images 4.1,4.2,4.3 which shows the simple
example of Attacker and defender graph creation.

Figure 4.1: Original environment gird representation

The utility of defender is define according to work of Jiang[25] and as-
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Figure 4.2: Defender MDP graph

sume that for each combination of actions (ad, aa) applicable in some states
(sd, sa) can we have assigned marginal utility U((sd, ad)(sa, aa)) and the ex-
pected outcome of the game can be composed from marginal utilities. Lets
U(δd, δf (δd)) is mixed strategy profile then utility U of the mixed profile is
compute according to Equation4.15

(δd, δf (δd)) =
∑

Sd×Ad

∑
SA×Aa

δd(sd, ad)δa(sa, aa)U̇((sd, ad)(sa, aa)) (4.15)

where δd(sd, ad) denotes the probability that state sd will be reached and
the action ad will be played when defender follows mixed strategy δd. Thanks
to separable utility function the movement of the defender can be represented
as network flow. Lets x : Sd×Ad → R is the marginal probability that action
is being played in the mixed strategy of the defender, X is set of all network
flow strategies and x(sd) is the probability that state would be reached in
this strategy. Adoring to network flow formulation is x(s1) equal to the sum
of marginal probabilities incoming into state x(sd) when the sum of marginal
probabilities incoming into the state have to equals to the sum of marginal
probabilities outgoing from state x(sd). Also, the probability of reaching the
start node ssd is equal to 1 as well as the probability of reaching the target
nodestd. Formally:
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Figure 4.3: MDP graph for attacker with endurance = 3,speed =2 with one
starting point in node 1 and target point in target 6. The drifting time step is
denoted by dark gray

x(sd) =
∑
s

′
d
∈Sd

∑
ad ∈ A(s′

d)x(s′
d, ad)T (s′

d, ad, sd) ∀sd ∈ Sd

(4.16)
x(sd) =

∑
a ∈ A(sd)x(sd, sa) ∀sd ∈ Sd

(4.17)
x(std) = 1 (4.18)
x(ssd) = 1 (4.19)

0 ≤ x(sd, ad)) ≤ 1 ∀(sd, ad) ∈ Sd ×Ad
(4.20)

Now we have to formalize movement of the attacker. Lets U(s, x)s ∈
Sd, x ∈ X is expected utility which attacker receive if he will again QR
repones from state s observing defender strategy x. All states that represent
some of the goal nodes in arbitrary time step has the utility explicitly set
to Ra as well as all non-goal nodes in time step |τ | which has the utility
set to P a. For all other nodes in time steps when the attacker doesn’t drift
i.e t%σ 6= 0 is the value set as sum utilities of reachable nodes from given
node multiplied by the probability that attacker will move into target node
which is computed according to SHARP. In the time steps when the attacker
drifts the expected utility is computed as a sum of utilities of reachable nodes
multiplied by the probability that attacker will move into target node which
is given by transition function. Formally the movement of the attacker can
be represented by the following set of equations :
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x(sa) =
∑
s′
a∈Sa

∑
aa ∈ A(s′

a)x(s′
a, ad)T (s′

a, aa, sa) ∀sa ∈ Sa

(4.21)
x(sa) =

∑
a ∈ A(sa)x(sd, sa) ∀sa ∈ Sa

(4.22)
x(sta) = 1 (4.23)
x(ssa) = 1 (4.24)
U(sta) = Ra ∀t ∈ τ,∀a ∈ S ⊂ N

(4.25)
U(sta) = pa t = |τ |,∀a 6∈ S ⊂ N

(4.26)
U(sta) =

∑
st+1
a′ ∈S

∑
a∈A(sta)

U(st+1
a′ )q(sta, a) ∀t ∈ τ |τ%σ 6= 0,∀a 6∈ S ⊂ N

(4.27)
U(sta) =

∑
st+1
a′ ∈S

∑
a∈A(sta)

U(st+1
a′ )T (sta, a, st+1

a′ ) ∀t ∈ τ |τ%σ = 0,∀a 6∈ S ⊂ N

(4.28)
q(sta, a) = ASU(t(sta, a,X)

∑
a′∈A(sta)

ASU(t(sta, a′, X) ∀t ∈ τ |τ%σ 6= 0,∀a 6∈ S ⊂ N

(4.29)
x(sta, aa) = x(sta)q(sta, a) ∀t ∈ τ |τ%σ 6= 0,∀a 6∈ S ⊂ N

(4.30)
0 ≤ x(sa, aa)) ≤ 1 ∀(sa, aa) ∈ Sa ×Aa

(4.31)

where equations 4.21 and 4.22 represent marginal probably computation
and together with equations 4.23 4.24 guarantee flow movement. Equations
4.25 and 4.26 describe utility initialization for terminal states.Equation 4.28
describes utility computation for drifting nodes and equations 4.27 and 4.29
describe utility computation for non drifting nodes. Equations4.30 ensure
that attacker move according SHARP quantal response.

We can obtain the optimal defender strategies by maximizing the defender
utility4.15 whit respect all above-mentioned constraints. Given the vector of
defender marginal probabilities we can compute the attacker best response
using the equations4.21-4.31. This problem can be also solved by Dynamic
programing
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Chapter 5
Scenarios and Evaluation

In the following chapter, we firstly show the property of our adaptive behav-
ioral model on the small and simplified scenarios and then we describe the
application of our model to the real-world scenario with more ten 600 cells.

5.1 Model Property

In the following section, we show how the single components influence the
attacker decision. For better observability, we will evaluate the attacker be-
havior on the set of targets instead of paths according to fixed defender mixed
strategy X. For the evaluation of adaptive components we use Algorithm3
the simulation works in the following way: given the attacker profile, set
of the target T , target profiles β, defender’s mixed strategies X and the
number of iteration the simulation firstly initialize the ASU . Then in each
step, it computes and save the attacker mixed strategy using the ASU , and
samples from both attacker and defender’s mixed strategies and update the
vulnerability and ASU . This simulation is repeated 300-times and then the
results from each iteration are averaged. For all scenario we will use the same
set of target with same target profiles which is shown on Figure5.1

Algorithm 3 Simulation
Input: α, T,X, β, IterN

1: ASU0 ← init ASU
2: for i← 1, . . . , IterN do
3: Xa[i]← Compute Probability(ASU i−1)
4: a← Sample Attacker(x)
5: d← Sample defender(β)
6: vi ← compute vulnerability(a, d)
7: ASU i ← compute ASU(vi)
8: end for
9: return Xa
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Figure 5.1: Targets with Target Profiles

5.1.1 Probability weighting function

In the following scenarios, we demonstrate how the change of probability
weighting function’s parameters influences the behavior of the attacker. For
the best observability, the attacker surface will consist from the expected utility
and parameters of probability weighted function. The first scenario is modeled
by inverse s-shape function with parameters(δ = 0.6 and γ = 0.2) which
increases a small probabilities and thus push to player play all strategies more
uniformly see Figure5.1. The second scenario is modeled by s-shape function
with parameters(δ = 0.6 and γ = 1.8) which decreases small probabilities and
thus push a player to play the strategies with high defender coverage with
lower possibility than expected. The third example is laid somewhere between
above-mentioned examples it is parameterized by (δ = 0.6 and γ = 1.8) where
the parameters are initial parameters proposed in work of Kar et al.[34].

0.249 0.278
0.356 0.278
0.297 0.312

Table 5.1: Expected defender’s probability distribution after mapping by two
parameter probability weighting function with parameters δ = 0.6 and γ = 0.2

0.002 0.11
0.22 0.011
0.025 0.047

Table 5.2: Expected defender’s probability distribution after mapping by two
parameter probability weighting function with parameters δ = 0.6 and γ = 1.8
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0.010 0.034
0.385 0.034
0.069 0.11

Table 5.3: Expected defender’s probability distribution after mapping by two
parameter probability weighting function with parameters δ = 1.2 and γ = 1.6

5.1.2 Subjective utility

In the following scenarios, we demonstrate the possibility of subjective and
show that SU cuts in both ways. Again, for the best observability, we will
neglect the probability weighting function. The attacker surface α will consist
from the expected utility xt, attacker’s penalty P a, attacker’s rewards Ra
,discretized wind power ϕ denotes wind power and discretized vessel density
φ. The first scenario shows the attacker probability distribution when the
QR is computed in basic variant according to Equation5.1

q(i|X) = (1− xi)Rai − (xi)P ai∑
i′∈T (1− x′

i)Rai′
(5.1)

and the resulting distribution is given shown in Figure5.4
The second scenario shows the bad example of subject utility function

usage where the vector of weights ω is set 1 or −1 based on whether the
feature represents a benefit or not with neglecting the fact that the values of
single features differ in the order of magnitude. We assume that Ra and φ
are positive features and P a,xi and ϕ are negative features. Then the self
utility is computed as :

SUi = Ra + φi − P a − xi − ϕi

where the big Ra causes that the attacker will play almost uniformly as is
shown in Figure5.5.

The third scenario shows the proper example of subject utility function
which allows us to integrate domain knowledge in attacker modeling where
we neglect the features that are same for all targets (P a, Ra) and this will
increase the model sensitivity and accuracy. As in the previous case, we
expect that φ positive features and xi and ϕ are negative features. The x1
is from range (0, 1) while ϕ and φ are from range 1, 10 therefor we set ωx to
-10z‘. Now we have three feature in the same order of magnitude. We can also
assume that high vessels density is not omnipotent and can help us only in
half of the cases thus set the ωφ to 0.5 and the probability that the weather
is markedly worse is relatively small thus set the ωϕ to 0.3. The resulting
distribution is given shown in Figure5.5

5.1.3 Adaptive Behavior

The most important component of the SHARP model is the adaptive behavior
and the concept of attractiveness which allows to the attacker to learn from
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0.195 0.183
0.108 0.183
0.170 0.158

Table 5.4: Quantal response without subjective utility

0.1658 0.1664
0.1668 0.1664
0.167 0.167

Table 5.5: Quantal response with incorrectly selected subjective utility

interaction with the defender or with the environment in general and for
certain time he can assume that the probability is two time bigger than is
the given probability. Let’s make the following experiment when the defender
will always cover the upper left target without respect to his mixed strategy.
Nevertheless, the left upper target is best suited to attack, after the round
when the attacker will be caught by defender in this target the probability of
attacking again will be decreased as is shown in Figure .

5.1.4 Attacker Surface

The last property is that according to SHARP model the attacked doesn’t
make the decision over the targets, but over targets profile and therefore is
able to make the decision about unknown state only based on their similarity.
Let’s repeat a previous experiment with two change. 1) the defender without
respect to his distribution either covers the upper right or the middle right
target 2) attacker without respect to his distribution never attacks right
middle target. Although that attacker never attacks the middle right target
his attractiveness of this target is changes according the upper right’s target
reasoning about similarity with upper right target’s profile. The attractiveness
for all targets ,after the whole simulation, is shown in figre5.9

5.2 Real World Scenario

To show the example of adaptive behavior in the large real-world scenario
we create a simulation using the BANDIT which take into account whole
Central America. The simulation was run on the squared grid with 625 cells
and eight directional neighbors, where each cell represents square where the
length of the edge equals to 1 degree which is approximately 100 km. There
were 5 starts nodes and 6 targets nodes see 5.2, where the targets and sources
approximatively match the real world most common places from which and
where the drugs are smuggled.

The simulation was performed on real data provided by METOC for
2/21/2016. Due to good weather condition and missing information about
vessel density the attacker surface α consisted of expected defender coverage,
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0.010 0.034
0.385 0.034
0.069 0.11

Table 5.6: Quantal response with correctly selected subjective utility

0.198 0.183
0.108 0.183
0.170 0.158

Table 5.7: probability before first step

penalty P a and reward P d. The parameters of probability weighted function
γ and δ were set to 0.8 and 1 respectively. To make the adaptive behavior
visible as much as possible the importance of expected defender coverage was
disproportionately in relation to other elements in weight vector ω.

Figure 5.2: Real World Scenario - Sources and Targets
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0.185 0.185
0.109 0.185
0.172 0.160

Table 5.8: Probability after is caught in left upper target

0.177 -0.05
0.18 -0.05
0.06 0.15

Table 5.9: Value of attacker attractiveness function after the simulation

Figure 5.3: Real World Scenario - Initial Behavior
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Figure 5.4: Real World Scenario - First braking point

Figure 5.5: Real World Scenario - Second breaking point
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Figure 5.6: Real World Scenario - Behavior at the end
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Chapter 6
Conclusion

In our work we dealt with the problem of modeling adaptive subrational
behavior in game theoretical models. Where our goal was extended current
game theoretical domain applicable on drug smuggling domain model by
sub ration behavior. We solved this problem for two most common NFG
formalization which can be play on graph. Where the first one is compute
over attacker strategies when the attacker make only one subrational decision
while he is choosing the path through which he will sail denoted Network
Security Stackelberg Game. And the second one is represented by Markov
decision process and the subrational decision is applied in each node, which
corresponds to formalization of quantal response equilibria. We call this
representation normal form game with sequential strategies. The subrational
behavior is modeled by reformulation of current state of the art model for
modeling adaptive subrational behavior (SHARP) for sequential strategies.
We have also create set of small scenarios/examples which show the property
of subrational adaptive behavior as well as real-world scenarios.

6.1 Future Work

In our work, several issues remained unresolved. The first unresolved problem
which has to be solved is that in our work, we are able to find an optimal or
nearly optimal strategy for the defender if we know all parameters by which
the attacker behavior model is parameterized. This problem can be solved by
an extension of our work by nontrivial parameter estimation machine learning
framework, due the number of records that can be used for estimation is very
small and we have only positive samples. Another unresolved problem is
that in our work we optimize again one attacker type but in the real world
each attacker has the different parameter which leads to a Bayesian game
which can deal with multiple types of an attacker at the expense of scalability.
The last open question is the NFGSS representation of Stackelberg game
again QR adversary in our work we propose a formulation of the problem,
however, it is necessary to propose some scalable algorithms dealing with the
advantage of NFGSS’s - the compact representation.
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