
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Computer Science

Lock-chart solving
Doctoral Thesis

Radomír Černoch, MSc.

Prague, October 2017

Ph.D. Programme:
Electrical Engineering and Information Technology

Branch of study:
Artificial Intelligence and Biocybernetics

Supervisor: prof. Ing. Filip Železný, Ph.D.

A B S T R A C T

Lock-chart solving (also known as master key system solving) is
a process for designing mechanical keys and locks so that every
key can open and be blocked in a user-defined set of locks. This
work is an algorithmic study of lock-chart solving.

Literature on this topic [34, 38, 44, 53] has established that the
extension variant of the problem is NP-complete, reformulated
lock-chart solving as a constraint satisfaction problem (CSP) with
set variables, applied a local search algorithm, and defined a
symmetry-breaking algorithm using automorphisms.

However, the otherwise standard decision problem with a dis-
crete search space has a twist. After a lock-chart is solved and its
solution is fixed, new keys and locks may be added as a part of
an extension, and the original solution should be prepared for
this. In the first formal treatment of extensions, several scenarios
are proposed, and effects on lock-chart solving algorithms are
discussed.

First, we formalise lock-chart solving. 6 variants of lock-charts
and 4 constraint frameworks of increasing generality and appli-
cability to real-world problems are formulated. Their hierarchy
is used to extend the classification of lock-chart solving prob-
lems into computational complexity classes. A close relationship
between the most realistic framework and the Boolean satisfiabil-
ity problem (SAT) is established. Mechanical profiles are shown
to express NP-complete problems as a complement to the pre-
vious result on the extension problem variant. We give the first
proof that diagonal lock-charts (systems with only one master
key) can be solved in P using an algorithm known as rotating
constant method.

The practical part proposes several algorithms for lock-chart solv-
ing. The problem is translated into SAT, into CSP (with stan-
dard variables) and partly into the maximum independent set
problem. The SAT translation inspires a model-counting algo-
rithm tailored for lock-charts. Finally, we describe a customised
depth-first-search (DFS) algorithm that uses the model-counter
for pruning non-perspective parts of the search space. In the
empirical evaluation, CSP and the customised DFS improve the
performance of the previous automorphism algorithm.

ii

A B S T R A K T

Řešením systému generálního a hlavních klíčů (SGHK) se myslí
návrh uzávěrů mechanických klíčů a blokovacích prvků zámků.
Návrh musí respektovat požadavek, aby každý klíč v systému
otevíral uživatelem zadanou množinu zámků. Tato práce posky-
tuje algoritmickou analýzu SGHK.

Relevantní literatura [34, 38, 44, 53] již dokázala jednu variantu
problému jako NP-úplnou, přeformulovala problém jako pro-
gramování s omezujícími podmínkami (CSP) s použitím množi-
nových proměnných, aplikovala simulované žíhání a definovala
symetrie stavového prostoru pomocí automorfismu.

Jinak běžná úloha s diskrétním stavovým prostorem má háček.
Zákazník může objednat tzv. rozšíření – přidání nových klíčů
a zámků do již vyrobeného SGHK. Prvotní řešení proto musí
počítat s omezujícími podmínkami, jejichž přesná forma není
v době návrhu známa. Tato práce je dle našich znalostí první
formální studí problému rozšíření SGHK.

Práce nejdříve formalizuje pojem SGHK v několika variantách
a navrhuje čtyři způsoby formalizace omezujících podmínek od
nejjednodušší po nejrealističtější. Hierarchie rozhodovacích úloh
je využita pro klasifikaci do tříd výpočetní složitosti. Nejdříve je
popsána úzká vazba na úlohu splnitelnosti výrokových formulí
(SAT). Mechanické profily se ukazují dostatečně expresivní pro
překlad NP-úplných úloh, což doplňuje již existující výsledek.
Práce obsahuje první důkaz příslušnosti diagonální úlohy (SGHK
s generálním klíčem, ale bez dalších hlavních klíčů) do třídy P

pomocí tzv. rotating constant method.

Praktická část práce navrhuje několik algoritmů pro řešení SGHK.
Problém je přeložen na SAT, na CSP a jeho část na úlohu hledání
maximální nezávislé množiny. Pro počítání počtu klíčů splňující
omezující podmínky je použito dynamické programování a prin-
cip inkluze a exkluze. Závěrem je popsán upravený algoritmus
prohledávání do hloubky (DFS), který prořezává neperspektivní
části stavového prostoru pomocí počitadla klíčů. V emprickém
porovnání CSP a upravené DFS algoritmy prokázaly přínos stá-
vajícímu algoritmu využívající automorfismy.

iii

P U B L I C AT I O N S

List of publications is presented for the purpose of dissertation
defence. The degree of authorship is split between all authors of
every publication equally.

impacted journal articles relevant to the topic of

this dissertation :

[1] Radomír Černoch, Ondřej Kuželka, and Filip Železný. “Poly-
nomial and extensible solutions in lock-chart solving”. In:
Applied Artificial Intelligence 30.10 (2016), pp. 923–941.

other articles in impacted journals :

[1] Roman Barták, Radomír Černoch, Ondřej Kuželka, and
Filip Železný. “Formulating the template ILP consistency
problem as a constraint satisfaction problem”. In: Constraints
18.2 (2013), pp. 144–165.

other peer-reviewed conference papers :

[1] Radomír Černoch and Filip Železný. “Speeding Up Plan-
ning through Minimal Generalizations of Partially Ordered
Plans”. In: Inductive Logic Programming: 20th International
Conference, ILP 2010, Florence, Italy, June 27-30, 2010. Revised
Papers. Ed. by Paolo Frasconi and Francesca A. Lisi. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 269–276.
isbn: 978-3-642-21295-6.

[2] Radomír Černoch and Filip Železný. “Subgroup Discov-
ery Using Bump Hunting on Multi-relational Histograms”.
In: Inductive Logic Programming: 21st International Confer-
ence, ILP 2011, Windsor Great Park, UK, July 31 – August 3,
2011, Revised Selected Papers. Ed. by Stephen H. Muggleton,
Alireza Tamaddoni-Nezhad, and Francesca A. Lisi. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 76–90.
isbn: 978-3-642-31951-8.

[3] Radomír Černoch and Filip Železný. “Probabilistic Rule
Learning through Integer Linear Programming”. In: Znalosti
2011, Czech and Slovak Knowledge Technology Conference. Vol. 801.
Workshop Proceedings. CEUR, 2011.

iv

C O N T E N T S

1 introduction 1

1.1 Mechanical locks 1

1.2 Related literature 9

1.3 Goals and disclaimer 10

1.4 Acknowledgements 11

2 lock-chart formalisation 12

2.1 Preliminaries 12

2.2 Constraints 13

2.3 Lock-charts 19

2.4 Optimisation 27

2.5 Extensions 28

3 complexity classes 32

3.1 Preliminaries 32

3.2 Verifying solutions 34

3.3 SAT correspondence 35

3.4 Melted profiles lock-charts 37

3.5 Lock-chart of independent keys 38

3.6 Diagonal lock-charts 39

3.7 Conclusion 44

4 propositionalization 48

4.1 Preliminaries 48

4.2 Boolean satisfiability 49

4.3 Integer linear programming 57

5 cutting counting 59

5.1 Asymmetric framework 59

5.2 General framework 62

5.3 Explicit framework 68

6 backtrackers 77

6.1 Automorphism algorithm 78

6.2 Constraint satisfaction 84

6.3 Implicit domains 87

6.4 GVC minimisation 91

7 conclusions 108

v

L I S T O F F I G U R E S

Figure 1.1 Wooden door lock dated 1889 2

Figure 1.2 Keys for a pin and disc tumbler locks 3

Figure 1.3 Internal components of a tumbler lock 3

Figure 1.4 Drawings of Scandinavian padlocks 4

Figure 1.5 Principle of the Scandinavian padlock 4

Figure 1.6 Lock-chart displayed as a table 6

Figure 1.7 Lock-chart in a Hlavatý-like format 6

Figure 1.8 Master-keyed pin tumbler lock 7

Figure 2.1 Börkey 954-2 Key Cutting Machine 14

Figure 2.2 Hierarchy of constraint frameworks 19

Figure 2.3 Diagonal and key-to-differ lock-charts 20

Figure 2.4 Physical profiles 23

Figure 2.5 Small profile map and a profiled lock-chart 26

Figure 2.6 Hierarchy of lock-chart types 26

Figure 2.7 Lock-chart of 4 independent keys 30

Figure 3.1 Unsuitable cuttings grouped into Sq sets 42

Figure 3.2 Diagonal lock-chart size in vanilla fr. 47

Figure 3.3 Problem complexity in the vanilla fr. 47

Figure 5.1 Template and its expansion 72

Figure 5.2 Independence graph 72

Figure 5.3 Same-as-general heuristic evaluation 75

Figure 5.4 Greedy approximation evaluation 76

Figure 6.1 Convergence of |Λ| in N102 lock-chart 103

vi

L I S T O F TA B L E S

Table 3.1 Independent keys lock-chart’s solution 39

Table 3.2 Diagonal lock-chart size in vanilla fr. 45

Table 3.3 Values of the dp

|Sq̂|
ratio in vanilla fr. 46

Table 4.1 Size of the straightforward translation 53

Table 4.2 MiniSat absolute performance 55

Table 4.3 MiniSat relative performance 56

Table 5.1 Code space size on a real-world 69

Table 5.2 Cutting counting in explicit fr. 74

Table 6.1 Real-world dataset 94

Table 6.2 Synthetic dataset 95

Table 6.3 Lock-charts solved within the timeout 99

Table 6.4 Decision runtime on the real-world dataset 101

Table 6.5 Decision runtime on the synthetic dataset 102

Table 6.6 Decision runtime pair-wise comparison 104

Table 6.7 |Λ| in the real-world dataset 105

Table 6.8 |Λ| in the synthetic dataset 106

Table 6.9 Optimisation time in the real-world dataset 107

L I S T O F A L G O R I T H M S

Algorithm 3.1 Solution verifier 34

Algorithm 5.1 Cutting-counting in the asymmetric fr. 63

Algorithm 6.1 Depth-first-search solver 77

Algorithm 6.2 Domain pruning for a CSP 86

Algorithm 6.3 All-different pruning for a CSP 88

Algorithm 6.4 All-different pruning for the general fr. 92

Algorithm 6.5 SAT-based |Λ| minimiser 97

vii

1
I N T R O D U C T I O N

1.1 mechanical locks

There is hardly any technology as old, as trusted and as ubiq-
uitous as mechanical keys and locks. The technology dates back
to ancient Egypt [33, 46] and some sources put it even further
in history [32]. Highly refined during the industrial revolution
with notable improvements by famous Linus Yale, Sr. and Jr. [46],
mechanical keys and locks are omnipresent. Given the modern
industry, they can be produced in large quantities and for low
prices. In other words – if you do not have a mechanical lock at
work, your house is probably equipped with one.

Even to this day, mechanical locks have remained somewhat ro-
manticised. It is hard to imagine the Wild West without a safe
robbery and even today words like “vault” and “burgled” make
newspaper headlines [27]. Lock-picking, the activity of overcom-
ing locks without the proper key, has recently attracted many en-
thusiasts. Supported by a growing number of books [26, 40, 43],
holding regular competitions, supporters practice it as a hobby
or a so-called locksport without malicious intents and they em-
phasise an ethical code [55]. The emotional side of mechanical
locks is best illustrated by publication titles such as “The Secret
Life of Keys” [53], which carries on the 19

th-century tradition
of bold statements about “indestructible” and “pick-proof” [46]
locks.

Mechanical locks are not only old but also resilient and refusing
to die out. Admittedly, the most prominent competitor – the elec-
tronic lock – has certain advantages. Computer-equipped locks
can, for example, restrict users on a time-scheduled basis or keep
track of the users who opened them (or tried to open). Recent
advancements [42] fit an electronic lock inside a standardised
Euro-profile shell, which reduces the cost of electronic lock de-
ployment. Especially in hotels, where keys are temporary, elec-
tronic locks possess a significant advantage.

Nevertheless, the mechanical lock still keeps a higher reliabil-
ity, probably due to larger and sturdier components. Also, if a
metal key is sunk in water, thrown in fire or exposed to freez-
ing temperatures, there is still a good chance it will work. The
implication on security is reflected in cheaper insurance of cars
equipped with mechanical locks [33]. And finally, there is a prag-

1

Figure 1.1: Wooden door lock dated 1889 from the Pitt Rivers Museum,
Oxford. Photo © Filip Železný.

matic argument. Many use cases do not need a high-tech solu-
tion, which makes the low price of mechanical locks a decisive
advantage. It is likely that our homes will use mechanical locks
for many years to come.

There is also a reason to believe in the future of mechanical locks
in the long term. High-security applications might use locks,
which are both electronic and mechanical, such as CLIQ [42].
Both components are independent – hence for a key to open
a lock, the key’s physical shape must be correct as well as the
code inside its computer. An attacker attempting to make an il-
legal copy of a key must copy both components, which requires
two different skill sets. The James Bond of the future will have
to be a good hacker, merely to open a door.

tumbler locks . The fundamental principle of mechanical
locks has remained the same for thousands of years. Inside the
lock, there is a small movable part, which obstructs the lock’s
opening. The movable part is hard to reach by hand or by tools
but can be pushed out of its place by inserting a correctly shaped
key.

Since the industrial revolution, this idea has been realized in
many ways. Using [46] we can pinpoint two important types,
which are relevant to lock-chart solving. They serve merely as
an example, other lock types might be relevant as well.

2

Figure 1.2: Keys for a pin tumbler lock (left) and disc tumbler lock
(right). Images are in the public domain [11, 13].

1

2

3

4

shear-line

driver pin

key pin

spring

plug

casing

Figure 1.3: Internal components of a tumbler lock with 4 chambers in
the locked (left) and unlocked (right) states.

First, there are pin tumbler locks, illustrated in Figure 1.3. Pin tum-
bler locks have several cylindrical holes called chambers drilled
through the plug and the casing, in which spring-loaded pins can
travel up and down. In the locked state (left) the plug cannot ro-
tate in the casing, because driver pins are stuck between the two.
Inserting a correct key (right) moves the key pins as well as the
driver pins against the spring. Since all gaps between pins align
with the shear-line, the key with the plug can be rotated.

Second, there are disc tumbler locks. Their mechanism is best ex-
plained using the Scandinavian padlock (shown in Figure 1.4), in
Scandinavia better known as Polhem padlock after its inventor. It
lacks some features of a modern disc tumbler lock (e.g. locking
bars), but that only makes the principle easier to explain. The
key has several facets aligned with the key’s central axis, each
rotated at a different angle (see Figure 1.2 on the right). The pad-
lock’s body contains several circular discs with protrusions on its
inner perimeter, displayed in Figure 1.5. A key is inserted and
starts turning. Facets start hitting the protrusions, each at a dif-
ferent angle and eventually turn the discs. When notches on the
discs’ outer perimeters are aligned, the shackle is released.

A particular type of locks together with the number of cham-
bers, discs, cutting depths, facet angles etc. will be called a plat-
form. Platforms come with constraints – either formal or informal
rules that must be satisfied by all keys and locks.

Please keep in mind that the terminology differs between manu-
facturers and languages. A translation table can be found in [46].

3

Figure 1.4: Left: Advertisement for a Scandinavian padlock, year 1874.
Right: Drawing of an unlocked Scandinavian padlock. Im-
ages are in the public domain [12, 14].

facet

shackle

disc

rotation

protrusionnotch

body

key

Figure 1.5: Cross section of a simplified Scandinavian padlock through
one of its discs illustrates disc tumbler locks.

4

lock-charts . For large buildings such as offices or factories,
their owners specify access rights of each person to each room.
Typically most users can only open their office, some have access
to an entire floor and usually, there is one key which can open
every door of the building. This is known as master keying, where
each lock is opened by one associated key called an individual
key and also by a limited number of master keys. The term is
contrasted with maison keying, where a single lock is opened by
many individual keys in the system [46], which can be used e.g.
for the main door of the building.

However, in general, access rights can be arbitrary – a key can
open any number of locks and vice versa. Such requirements are
encoded in a lock-chart. Lock-charts can be visualised in many
forms, the simplest of which is a table as in Figure 1.6. Its rows
correspond to the locks and columns to the keys. When a key
should open a lock, the respective cell in the table contains a
tick. Lock-charts tend to have a large number of individual keys,
which makes the table hard to visualise on a small screen. Fig-
ure 1.7 shows the same lock-chart in a format inspired by the
Hlavatý calculation software, developed for the FAB company,
now ASSA ABLOY Czech & Slovakia s.r.o. The format only dis-
plays locks and master keys. If a lock is opened by an individual
key the “I” symbol is printed in the row.

The production of a master keyed system involves several par-
ties. The customer’s requirements are encoded in a lock-chart,
which is sent to a key manufacturer. They must design the cut-
tings of the keys and the internal components of the locks so
that all constraints and access rights are respected, manufacture
them and send them to the customer. We call the process of de-
signing keys and locks lock-chart solving. Algorithms for this task
are the main contribution of this dissertation.

master keyed locks . How can two or more keys open a
mechanical lock? Ordinary pin tumbler lock in Figure 1.3 opens
when gaps between all key pins and driver pins align with the
shear-line. By introducing additional driver pins called spacer
pins as in Figure 1.8, the number of gaps increases. Any com-
bination of gaps from different chambers lets one key enter the
lock. Disc tumbler locks can be modified similarly. If the disc’s
outer perimeter in Figure 1.5 had more notches, the disc could
be rotated at multiple angles and still allow the shackle to be
released.

Are all lock mechanisms suitable for master keying? The plethora
of ideas accumulated over centuries of development makes this
a hard question. A comprehensive encyclopedic answer is pro-
vided by [46]. However, for the purposes of this text, we consider
a platform suitable for master keying if:

5

l1

l2

l3

l4

k1 k2 k3 k4g

l5

l6

l7

l8

l9

l10

l11

l12

k5 k6 k7 k8 k9 k10 k11 k12m1 m2 m3

Figure 1.6: Lock-chart with 12 locks and 16 keys, displayed as a table.

+---------+
| g m m m |
| 1 2 3 |
+---------+
| M M M M |

+---+-+---------+
l1	I	* * . .
l2	I	* * . .
l3	I	* * . .
l4	I	* * . .
l5	I	* . * .
l6	I	* . * .
l7	I	* . * .
l8	I	* . * .
l9	I	* . . *
l10	I	* . . *
l11	I	* . . *
l12	I	* . . *
+---+-+---------+

Figure 1.7: Lock-chart with 12 locks and 16 keys, displayed in a
Hlavatý-like format.

6

1

2

3

4

shear line

1

2

3

4

shear line

spacer pin

Figure 1.8: Master-keyed pin tumbler lock. Because of the added
spacer pins, there are 8 different shear lines, each corre-
sponding to a key cutting that opens the lock. Two of them
are shown in the picture: (1, 2, 1, 1) and (1, 4, 4, 1).

Given an arbitrary set of keys (from one platform), it
is possible to manufacture a lock opened (at least) by
all of them.

An example of technology outside of this definition is a wafer
tumbler lock. Master-keyed wafer locks are opened by at most
two keys [46]. Furthermore, the key’s teeth are shifted either to
the left or right. Consequently, no lock can be operated by two
different “left” keys or by two different “right” keys, which dra-
matically reduces the set of lock-charts that can be manufactured.
Hence wafer tumbler locks are not considered in this text.

Even platforms suitable for master keying have restrictions. Some
master keyed locks are “forbidden”, because of higher manufac-
turing costs or their susceptibility to lock picking. A typical ex-
ample is an overly small spacer pin in a pin tumbler lock. How-
ever, from our experience, the effects of lock constraints are less
significant than of those applied on keys. In this text, we consid-
ered only key constraints and assumed that lock constraints do
not exist or that their effect can be nullified by a mathematical
transformation (see Section 2.2).

On the other hand, our approach embraces many platforms and
mechanical lock features. Besides pin tumbler locks and disc
tumbler locks, this work is also well suited for side pins, both

7

active and passive [46]. Side pins are similar to chambers in a
pin tumbler lock, except they are binary. Usually located on the
side of the key, side pin appears either as a dimple or a flat sur-
face. Despite their low contribution to lock-picking protection,
for lock-chart solving they behave exactly like a regular cham-
ber.

innovation. It may seem that a centuries-old technology is
stable and does not evolve. In reality, the opposite is true.

One of the business promises made to customers is that a key
cannot be duplicated without authorisation. Before issuing a du-
plicate key, customers must typically present a “key cutting ID
card”, otherwise kept at a safe place. This scheme ensures that a
temporarily lost or lent key once returned is still the only exist-
ing copy.

How can a manufacturer ensure that no other party starts a
business by issuing compatible key blanks and duplicating keys
without authorisation? After all, a key cutting ID card has no le-
gal status. However, by filing a patent for a particular platform,
a legal protection of the scheme is guaranteed.

After a patent expires (20 years in the United States), the manu-
facturer is forced to update the platform and file a new patent.
Sometimes, the old and new platforms are made incompatible
only by changing the external dimensions, but often a chamber
or a disc is added [46], which also affects the calculation.

extensions . Our industrial partner introduced us to yet an-
other aspect of lock-chart solving. Buildings get remodeled, new
floors are added, dividing walls are moved, and all such changes
affect lock-charts. For example, when a new room is built, the
lock-chart receives a new lock. Or, when someone loses their
key, a new key might be added. Such modification to an existing
master key system is called an extension.

Extensions pose two challenges. First, a lock-chart solving soft-
ware must anticipate such modifications. When a brand new
master key system is calculated, which we call from-scratch solv-
ing, the keys and locks must be designed in a way to allow new
keys and locks to be added in future. The tricky part is that the
exact lock-chart with the extension is not known during the ini-
tial calculation. The second challenge called extension lock-chart
solving is to accept a lock-chart with some of its keys and locks
fixed during the from-scratch solution.

Our industrial partner stressed the importance of this aspect be-
cause, businesswise, the majority of their orders were extensions
of already existing master-key systems.

8

This text focuses on lock-chart solving algorithms that are gen-
eral, parametrizable, support a significant range of platforms,
and are suitable for both the from-scratch and extension tasks.

1.2 related literature

Despite a clean mathematical formulation of lock-chart solving
and the constraints, the problem has not received adequate atten-
tion of computer scientists or the industry. From our experience
of working together with a major player in the industry, many
key manufacturers still solve lock-charts manually, merely with
computer-assisted validation of design decisions made by a hu-
man operator. Most software we know only solve special cases of
lock-charts or require their lengthy manual preprocessing. The
underappreciation of lock-chart solving is reflected by a limited
number of algorithmic studies.

The first study on lock-chart solving known to us is [34]. Junker
used a constraint satisfaction problem (CSP) solver for solving
lock-charts. In particular, his main contribution is a procedure,
which decomposes a CSP representing a lock-chart into a tree
hierarchy of subproblems of smaller size. Since the primal graph
of the hierarchy is almost a tree, it can be solved in polynomial
time in the size of the tree and in exponential time in the size of
the subproblems [22]. The algorithm used the ILOG library and
was verified on a set of problems, whose exact structure has not
been disclosed.

Lawer’s contribution to lock-chart solving in her thesis [38] is
manyfold. The main theoretical contribution is a proof of NP-
completeness. In particular, the SAT problem was translated into
an extension lock-chart. In the practical part, she focused on
inter-customer security. Key manufacturers try to prevent keys
belonging to one customer from opening locks belonging to an-
other customer (if all produced in the same mechanical plat-
form). Lawer proposed and tested several algorithms that min-
imise the number of keys unusable for future calculations. Also,
the work contains a list of lock-charts used for benchmarking.

The newest contribution [53] to the field contains an explanation
of NP-completeness and reports good experience with a sim-
ulated annealing algorithm. The work is accessible and might
serve as a good introduction. Since the algorithm’s description
and important claims somewhat lack formal precision, this text
is more inspired by the former two works. Readers interested in
this resource should be aware that the formalisation of a key and
a lock seem swapped when compared to this text and all other
work on lock-chart solving cited here.

9

Besides the computer science community, lock-chart solving is
discussed in training manuals for professionals who solve lock-
charts by hand [44]. For example, the description of the rotating
constant method can be viewed as an executable algorithm. How-
ever, we were unable to find any optimality proofs or an analysis
of the method’s limitations. We decided to include the work here
and fit it into our theoretical concepts.

extensions . To the best of our knowledge, the extension as-
pect of lock-chart solving has not been studied before. Hence we
also reviewed the literature about general combinatorial prob-
lems which are solved without the knowledge of future con-
straints.

The seminal work on dynamic CSPs in [18] attempts to reuse a
solution to one CSP in a slightly modified CSP. [28] proposed su-
per solutions as a method of preparing a solution for small mod-
ifications of the constraints and minimise the number of neces-
sary changes. Other approaches allow using soft constraints in
the form of MAX-CSP [21] or weighted CSP [15]. It looks promis-
ing to formulate extensibility as an optimisation criterion using
a clever reformulation. Our initial attempt was to use existing
CSP solvers, but even without the extensibility criterion, an off-
the-shelf, state-of-the-art CSP solver Choco [45] proved orders of
magnitude slower than the pruning procedure with the heuris-
tics we present here.

1.3 goals and disclaimer

This text was written with several goals in mind:

• Capture our experience from 4-year long industrial collabo-
ration with ASSA ABLOY Czech & Slovakia, ASSA ABLOY
Belgium and the ASSA ABLOY EMEA.

• Formalise all known variations of the lock-chart solving
problem and establish relationships to existing literature.
Find a reasonable compromise between the theory’s strength
and its assumptions.

• Extend the NP-completeness proof from [38] to non-extension
variants of lock-chart solving. Find classes of polynomial
instances.

• Find efficient algorithms for lock-chart solving. Evaluate
them on a dataset of lock-chart with a focus on real-world
problems. Describe means of increasing extensibility.

• Provide an introduction to lock-chart solving for computer
scientists without a background in mechanical engineer-
ing.

10

We stress out topics which are not part of this text:

• Non-disclosure agreements with our partners were hon-
oured. We tried to generalise our knowledge and provide
theoretical insight without details about the particular tech-
nology, constraints or security measures.

• Despite the fact that some constraints affect lock-chart solv-
ing and they also affect resistance to lock-picking, we do
not establish any relationship between the two here. Here,
we assume that experts design all security measures and
formulate their implications as constraints for lock-chart
solving.

• Conversely, this text is not meant to help lock-pickers. If
any property of an algorithm or an insight presented here
leads to a new lock-picking technique (which we doubt), it
should be disclosed publicly following the industry’s best
practices [46].

• Data structures for algorithms’ efficient implementation
are out of scope together with an analysis of asymptotic
time complexity. First, most of the problems considered
here are NP-complete and entail an exponential runtime
(based on the current knowledge) that hides effects of most
efficient data structures. Second, computational aspects of
lock-chart solving are too little explored. We felt that a
broad exploration of different algorithms should precede
fine-tuning of their implementation.

1.4 acknowledgements

I would like to thank ASSA ABLOY for a long-term collaboration
and for funding research, which has lead to publishing this text.

Several ideas in this text are products of teamwork, usually spring-
ing out of a lively discussion with colleagues. Chronologically,
the CSP algorithm in Section 6.2 was suggested and first imple-
mented by Ondřej Kuželka. The idea of using SAT solvers de-
scribed in Section 4.2 and the first prototype shall be credited to
Jiří Vyskočil. Several optimisations by Josef Hájíček and Martin
Hořeňovský affected the code used here. The dynamic program-
ming scheme in Section 5.2 came out of the collaboration with
Václav Voráček.

I am also grateful to my supervisor, who was always there if the
project needed a new direction to continue.

My biggest thanks belong to my partner and my son, who made
the greatest sacrifice. Without their support and time, this text
would never have been created.

11

2
L O C K - C H A RT F O R M A L I S AT I O N

The previous text provided an introduction to mechanical keys
and lock-charts. This chapter will formalise these notions and
give a mathematical model. The formalisation will be used as
the input and output of a lock-chart solving algorithm.

2.1 preliminaries

This section is a quick review of mathematical notions used in
the remaining text. Since all notions are within a common com-
puter science curriculum, we tried to keep the definitions short
and provided references for further investigation. Readers are
encouraged to use this section merely as a “knowledge check-
list”.

Although some notions are complex enough to write a book, we
have tried to find a reasonable compromise. For the reason of
low relevancy rather then author’s ignorance, we will not dis-
cuss the paradoxes of set theory, nor avoid them by axiomatiza-
tion. Here, we define sets in a narrower sense.

sets . Let there be finitely many symbols d1, . . . ,dn. The col-
lection {d1, . . . ,dn} is a set. Deleting arbitrary items from a set A
yields a set B, (written A ⊆ B) called a subset. Sets are written
with capital letters A,B,C, . . . , its items are referred as members
of the set (a ∈ A) and the number of items in a set is its cardinal-
ity, written as |A|. An empty set ∅ is a set, whose cardinality is 0.
If B is a subset of A and |A| > |B|, then B is a proper subset of A,
written B ⊂ A. Given two sets A,B, their intersection, union and
difference are A∩B, A∪B and A \B respectively.

Given n sets T1, . . . , Tn, a collection of n ordered items t1 ∈
T1, . . . , tn ∈ Tn is called a tuple t = (t1, . . . , tn) of arity n. If
n = 2, the tuple is a pair. The cartesian product T1 × · · · × Tn is a
set of all tuples on T1, . . . , Tn. A subset of a cartesian product is
called a relation. If n = 1, the relation is unary and if n = 2, the
relation is binary.

Let R be a relation on D×D. For all d,d ′,d ′′ ∈ D: If no (d,d) ∈ R,
then R is irreflexive. If (d,d) ∈ R, then R is reflexive. If (d,d ′) ∈
R and (d ′,d) ∈ R implies d = d ′, then R is antisymmetric. If
(d,d ′) ∈ R and (d ′,d ′′) ∈ R implies (d,d ′′) ∈ R, the relation is

12

transitive. A reflexive, antisymmetric and transitive relation is a
partial order. The inverse relation R−1 is defined as (d,d ′) ∈ R iff
(d ′,d) ∈ R−1.

functions . Let D and R be sets (called function’s domain and
the function’s range). A partial function f : D ⇀ R is a binary rela-
tion on D×R, which has the right-unique property — if (d, r1) ∈ f

and (d, r2) ∈ f then r1 = r2. Furthermore, a partial function is
a function f : D → R if it is left-total — if d ∈ D then there
must be r ∈ R s.t. (d, r) ∈ f. A function is surjective if has the
right-total property — if r ∈ R then there must be d ∈ D s.t.
(d, r) ∈ f. A function is injective if it has the left-unique property
— if (d1, r) ∈ f and (d2, r) ∈ f then d1 = d2. A function, which is
both surjective and injective, is a bijection. Throughout the text,
the standard notation f(d) = r is used instead of (d, r) ∈ f and
also a less-standard notation f ∪ (d,h) to define an extension of
a partial function f (partial functions are sets of pairs).

graphs. Graph is a pair (V ,E) of vertices and edges, where E

is a binary relation on V . We say that vertex v ′ is adjacent to
v if there is an edge from one vertex to the other (v, v ′) ∈ E.
The graph is simple if E is irreflexive. Vertices adjacent to v are
denoted E(v). The degree of vertex v is |E(v)|. A graph is undirected
if E is a symmetric relation: if (v, v ′) ∈ V , then (v ′, v) ∈ V . A
graph is bipartite with partite sets U and U ′ if U ∩U ′ = ∅, U ∪
U ′ = V and E ⊆ (U×U ′) ∪ (U ′ ×U), which will be written as
(U∪U ′,E).

integers . The set of integers is Z = {. . . ,−2,−1, 0, 1, 2, . . .},
the set of whole numbers is W = {0, 1, 2, 3, . . .} and the set of
natural numbers N = {1, 2, 3, . . .}. Addition, subtraction, multi-
plication, quotient and remainder of natural numbers x,y will
be denoted x+ y, x− y, x · y, x÷ y and x%y. By x

y
we mean a

division of two rational numbers.

2.2 constraints

The combinatorial problem of lock-chart solving consists of 2 parts.
First, there is the lock-chart, which is specified by the customer.
Second, there are some constraints, which capture the engineer-
ing limitations specified by the manufacturer. We start by de-
scribing the constraints in this section.

During the industrial collaboration, we met 12 mechanical plat-
forms with roughly 20 types of constraints of various types. To-
gether they make up a big „zoo“, which is hard to analyse as a
whole. There are roughly two taxonomies of such constraints.

13

Figure 2.1: Börkey 954-2 Key Cutting Machine with a close-up of the
milling wheel. © Dennis van Zuijlekom, CC BY-SA 2.0 [57].

security and manufacturing . There is an intuitive dis-
tinction between security and manufacturing constraints. An ex-
ample of a manufacturing constraint is the “maximum differ-
ence between neighbouring positions on a key”, which we call
the jump. Figure 2.1 shows a detail of a milling machine. Its
milling wheel is V-shaped, where the deepest cutting point cuts
the desired position into a flat key blank. However, the shallower
parts of the milling wheel might still cut too deeply in neighbour-
ing positions. As a countermeasure, the jump constraint ensures
that neighbouring positions still have enough metal to be milled
properly.

An example of a security constraint is the delta constraint, which
prescribes the “minimum difference of key’s cutting depth from
the lock’s shear-line” if the key should be blocked in the lock.1

Increasing the delta lowers the chances of an accidental opening,
which makes it a security constraint.

Increasing the delta constraint also affects manufacturing. As-
suming delta = 3mm, it makes no sense to manufacture pins of
size 2mm or smaller, because they would be unable to block a
key. Hence, the delta is often accompanied with the forbidden pins
constraint, which “forbids prescribed pin heights from a lock”.2

Consequently, increasing delta also affects manufacturing by in-
creasing components’ sizes and reducing the need for tight toler-
ances. The distinction between security and manufacturing con-
straints is used in the industry, but form the computational point
of view, it is not very crisp.

computational constraints . Another distinction can be
made from the formal point of view. Constraints can

1. affect a single key; e.g. the jump

1 If the key should open the lock, then delta must be 0.
2 A strong heuristic is to forbid pins, whose size is “not modulo delta” — in

this case, pins of size 1mm, 2mm, 4mm, 5mm, 7mm, . . . An even simpler
heuristic is to ignore certain cuttings depths completely and reduce the entire
code space.

14

https://creativecommons.org/licenses/by-sa/2.0/

2. affect a single lock; e.g. forbidden pins

3. affect the blocking between a key and a lock; e.g. the delta

4. affect a pair of keys

In this text, we decided to focus on the first type only. First, the
example above shows that types 2 and 3 can be closely related or
they can even be eliminated by reducing the code space. More-
over, out of the 20 types of constraints we know, the majority (15)
is of the first type.

Finally, we know of only one constraint of the fourth type, namely
“minimum difference of two key cuttings”. Because it is almost
always set to value 1, later in this section will show how to sat-
isfy it as a by-product of Corollary 26.

two types of platforms . Different mechanical platforms
call for different formalisms. On one side, there are old and low-
cost platforms. Locks in these platforms have a small number of
chambers, typically 5 or 6, and their components are manufac-
tured with high tolerances. As an effect, lock’s reliability must
be increased by prescribing a large number of constraints. Even
though these platforms can have up to 10 cutting depths, a high
value of the delta constraint decreases this number to 3, 4 or 5.
In the end, these platforms can be characterized by ∼ 106 or less
keys that satisfy all constraints.

On the other side, locks in modern platforms typically have a
large number of chambers. This value is usually larger than 10,
the largest platform known to us has 30 chambers. Cheaper plat-
forms may have a low number of cutting depths, say 2, 3 or 4,
but some have 7. Tight tolerances allow delta = 1. In the end,
these platforms have ∼ 107 or more valid key cuttings.

The effect on computation can be dramatic. In older platforms,
current computers can easily generate all key cuttings and keep
them in memory. Even with 2 bytes per chamber, this requires
roughly 12 · 105 B ∼= 1MiB for all valid key codes. In newer plat-
forms, it may not even be feasible to iterate through all valid key
cuttings.

cuttings and cylinders . This section will describe differ-
ent ways of formalising constraints for calculating lock-charts,
called a framework. Each framework will be associated with 2

numbers – the number of positions p, which counts the number
of chambers, side pins, etc. and the number of cutting depths d,
which counts available values that each position can take.

Definition 1 (Cutting, cylinder). Let p,d ∈N. A cutting depth is a
number di ∈N s.t. di ⩽ d. A key cutting is a p-tuple (d1, . . . ,dp)

15

of cutting depths. A cylinder is a p-tuple (D1, . . . ,Dp), where
each Di is a set of cutting depths.

From now on, we will distinguish between a key and a cutting
and similarly between a lock and a cylinder. Cuttings and cylin-
ders will represent physical metal objects. Keys and locks repre-
sent rows and columns in the lock-chart.

The definition of cuttings and cylinders requires p and d. Since
every framework comes with the two numbers, we will omit
them whenever they become obvious from the context.

A cutting will be denoted by γ and a cylinder by λ. The i-th cut-
ting depth (resp. i-th set of cutting depths) will be γi (resp. λi).
By a union of cylinders or cuttings, we mean a cylinder, whose
cutting depths are a union of cutting depths in the respective
positions. Example:

(1, 3, 2)∪ ({1, 2}, {1}, {2}) = ({1, 2}, {1, 3}, {2})

Definition 2 (Shear-line). Let λ be a cylinder. A cutting γ which
satisfies γi ∈ λi for all 1 ⩽ i ⩽ p is a shear-line of γ.

If γ is a shear-line of λ we will say that “γ enters λ”. Otherwise
“λ blocks γ”.

Given p and d, there are at most dp cutting depths. However, in
general, not all of them satisfy the constraints. For that reason,
each framework will be associated with a set of cuttings S called
a code space. If γ ∈ S, we will say that “γ is a valid cutting”.

We will also speak about the set of all cylinders T . Since con-
straints on cylinders are not in the scope of this text, any union
of cuttings yields a valid cylinder

T =

 ∪
γ∈S ′

γ | for every S ′ ⊆ S

 , (2.1)

so that there are at most 2d·p different cylinders.

four frameworks . The simplest constraint framework, which
is mostly of theoretical interest, is defined first and then we pro-
ceed to more complex ones, aiming at describing real-world plat-
forms.

Definition 3 (Vanilla framework). Let p,d ∈ N. In the vanilla
framework, all dp cuttings are valid.

The vanilla framework has two major advantages. First, the code
space is perfectly symmetric. Swapping two positions has no

16

effect on the code space as well as swapping arbitrary cutting
depths. Second, the code space is defined using two parameters
only. This makes it suitable for benchmarking and easy-to-read
plots.

How well do real-world platforms fit in the vanilla framework?
During our industrial collaboration, we met only one platform,
which has approx. 97% of dp valid key cuttings,3 hence the an-
swer would be “almost”. The encyclopedia of lock-chart plat-
forms [46] mentions platforms (such as Mul-T-Lock) without
constraints, merely with a varying number of cutting depths be-
tween positions. A step towards real-world platforms is to allow
different positions to have a different number of cutting depths.

Definition 4 (Asymmetric framework). Let p,d ∈N. The deepest
cutting is a cutting denoted (d̃1, . . . , d̃p). A cutting (d1, . . . ,dp)

is valid in the asymmetric framework if all its cutting depths are
below the deepest cut: di ⩽ d̃i for all 1 ⩽ i ⩽ p.

The asymmetric framework needs p+ 1 parameters to define the
deepest cutting. When compared to the vanilla framework, the
symmetry is somewhat reduced. Swapping two cutting depths
on the same position is fine, swapping two positions i and j can
be done as long as d̃i = d̃j.

In order to completely specify most real-world platforms, yet
avoid the complexity of its constraints, the general framework is
proposed.

Definition 5 (General framework). Let p,d ∈ N. A general con-
straint (gecon) is a p-tuple (c1, . . . , cp), where either ci is a cut-
ting depth or ci = ? called a wildcard. A key cutting (d1, . . . ,dp)

satisfies the gecon if there is a position i, which is not a wildcard
ci ̸= ? and where ci ̸= di. A key cutting is valid in the general
framework if it satisfies all gecons.

Example 6. Let p = 3, d = 5 and assume there is a gecon (1, 4, ?).
Is the cutting (1, 5, 5) valid? Yes, because on the second position
i = 2, the cutting depth d2 = 5 does not match the depth in the
gecon c2 = 4. The conditions ci ̸= di and ci ̸= ? are satisfied.
Also all invalid cuttings are (1, 4, 1), (1, 4, 2), (1, 4, 3), (1, 4, 4) and
(1, 4, 5).

The intuitive meaning of the gecon from the example is: “First
and second positions cannot have depths 1 and 4 respectively.”
The wildcard symbol ? means “any value”. Hence a gecon with-
out wildcards makes exactly 1 cutting invalid. A gecon with
wildcards on all positions invalidates all cuttings, which is why
it is rarely used.

3 Other platforms had less than that, roughly between 1% and 50%.

17

Why do gecons have the word “general” in their name? Most
constraints that we met can be translated into gecons.

Example 7. Let p = 3, d = 5 and take the jump = 2 constraint,
which can be rephrased as “difference of neighbouring positions
larger or equal than 3 is forbidden”. This constraint can be ex-
pressed using 6 gecons (1, 4, ?), (1, 5, ?), (2, 5, ?), (?, 1, 4), (?, 1, 5)
and (?, 2, 5).

In general, the jump constraint is equivalent to

1

2
· jump · (jump + 1) · (p− 1)

gecons. The number of gecons is polynomial, which is also true
for most of the 15 constraints we know.

Software engineers have a proverb that the lengthiest task is
not to develop the software, but to make the customer realize
his/her expectations. In lock-chart solving, the same applies for
obtaining a complete, non-ambiguous specification of constraints.

It helps a lot if the manufacturer provides a list of all valid key
cuttings in a text file. When it is the case, some algorithms can
use the list directly.

Definition 8 (Explicit framework). In the explicit framework, the
code space S is a part of the algorithm’s input.

This framework is suited for older platforms, where |S| is a feasi-
ble number for the current generation of computers.

hierarchy. There is a certain hierarchy among the 4 frame-
works. The vanilla framework is a special case of the asymmet-
ric framework. By setting the deepest cutting (d̃1, . . . , d̃p) =

(d, . . . ,d), both frameworks generate the same code space.

The asymmetric framework is a special case of the general frame-
work. Start from the deepest cutting (d̃1, . . . , d̃p) and for ev-
ery positions 1 ⩽ i ⩽ p and every forbidden cutting depth
d̃i < j ⩽ d, generate 1 gecon:

(?, ?, . . . , ?︸ ︷︷ ︸
i−1

, j, ?, . . . , ?︸ ︷︷ ︸
p−i

) (2.2)

This gecon effectively forbids the cutting depth j at position i.
Also, note that there are polynomially many such gecons; no
more than d · p.

The relationship between the general and the explicit frameworks
is not that obvious. A brute force algorithm may iterate over all

18

vanilla framework

asymmetric framework

general framework

explicit framework

Figure 2.2: Hierarchy of constraint frameworks. An arrow points from
a special case to a more general framework.

dp cuttings, check if the cutting is in S or check against all gecons.
However, this procedure is not polynomial in p. As we will see
later, sub-exponential algorithms do not exist.4

Figure 2.2 concludes this section by a schema of frameworks’
hierarchy, which will be referred in the future chapters.

2.3 lock-charts

This section formalises the notion of a lock-chart. Their purpose
is to define the computational task together with a constraint
framework. A solution will be defined w.r.t. to a lock-chart.

The catch is that different manufacturers have different practices,
which lead to different calculation procedures. Hence here we
propose multiple definitions of “the lock-chart” together with
their relationships, which will be used to analyse the computa-
tional complexity.

Definition 9 (Basic lock-chart). A basic lock-chart (K,L,E) consists
of a key-set K, a lock-set L, which are disjoint K ∩ L = ∅ and a
binary relation E on K× L called an edge-set.

Since we will speak about basic lock-charts most of the time, they
will be referred simply as “lock-charts” if not stated otherwise.

There is an parallel between lock-charts and graphs [38]. Every
lock-chart (K,L,E) is by definition an undirected bipartite graph
(K ∪ L,E ∪ E−1) with partite sets K and L. This simplifies the ter-
minology. Incident vertices are denoted as

E(k) = {l ∈ L | (k, l) ∈ E} , E(l) = {k ∈ K | (k, l) ∈ E} ,

4 This holds unless P = NP.

19

l1

l2

l3

l4

k1 k2 k3 k4g

l1

l2

l3

l4

k1 k2 k3 k4

Figure 2.3: Diagonal lock-chart (left) and key-to-differ lock-chart (right)
with 4 individual keys.

If (k, l) ∈ E, then we say that “k opens l”, otherwise “l stops k”.

Example 10. Figure 1.6 shows a basic lock-chart. Keys are in
columns, locks in rows. If the cell is black, the row-lock opens
the key-column. The lock-chart is formalised as follows:

K = {g,m1,m2,m3,k1,k2, . . . ,k12}, L = {l1, l2, . . . , l12} ,

E = {(g, l1), (g, l2), . . . , (m1, l1), (m1, l2), . . . , (k1, l1), (k2, l2), . . .} .

By the defined notation, the following statements hold: E(g) = L,
E(m1) = {l1, l2, l3, l4} and E(ki) = E(li) for 1 ⩽ i ⩽ 12.

Definition 11 (General, master and individual keys). Let K be
a key-set, L a lock-set, E an edge-set and k ∈ K. If |E(k)| = 1

then k is an individual key. If |E(k)| > 1 then k is a master key. If
|E(k)| = |L| then k is the general key.

Lock-chart in Figure 1.6 has the general key g, 4 master keys g,
m1, m2, m3 and 12 individual keys k1 to k12.

Perhaps the simplest class of lock-chart with the general key are
diagonal lock-charts. Each is determined by a single parameter
— the number of individual keys.

Definition 12 (Diagonal lock-chart). A lock-chart with 1 general
key and no other master key is a diagonal lock-chart.

Figure 2.3 left shows a diagonal lock-chart. It has 5 keys K =

{g,k1, . . . ,k4} and 4 locks L = {l1, . . . , l4}. Each individual key
k1, . . . ,k4 opens exactly 1 lock E(ki) = {li}, the general key g

opens all locks E(g) = L.

If the general key is removed from a diagonal lock-chart, we
get an even simpler lock-chart. Such lock-charts are occasionally
used in practice, nevertheless they play a major role in the theo-
retical analysis.

Definition 13 (Key-to-differ). A lock-chart without master keys
is a key-to-differ lock-chart.

An example of a key-to-diff lock-chart is shown in Figure 2.3 on
the right.

20

solutions . Having formalised the input to a calculation al-
gorithm, next we specify its output.

Definition 14 (Assignment). Let K be a key-set, L a lock-set and
S a code space. Key-assignment is a function s : K→ S that assigns
cuttings to keys and lock-assignment is a function t : L → T that
assigns cylinders to locks. An assignment is a function s ∪ t. We
speak about a partial assignment if any of the two functions s or
t is partial.

By inspecting each cell in the lock-chart, we check the correctness
of an assignment.

Definition 15 (Solution). Let (K,L,E) be a lock-chart and s∪ t a
(partial) assignment. If for every (k,γ) ∈ s and for every (l, λ) ∈ t

γ enters λ if and only if k opens l , (2.3)

then s∪ t is a (partial) solution.

For clarity, partial assignments and solutions will be denoted as
ŝ unless stated otherwise.

A possibly non-trivial finding is that a lock-assignment can be
ignored by a deterministic extension of a key-assignment.

First note that the more cutting depths a cylinder has the more
shear-lines it contains. There are exactly |D1|× · · · × |Dp| shear-
lines in a cylinder (D1, . . . Dp). This motivates a method to gen-
erate cylinders that block as many cuttings as possible.

Proposition 16 (Least-cut). Let (K,L,E) be a lock-chart and s∪ t its
solution. Then the assignment s∪ t ′, where

t ′(l) =
∪

k∈E(l)

s(k) (2.4)

is also a solution.

Proof. Take any lock l. In order to satisfy key openings,

t ′(l) ⊆
∪

k∈E(l)

s(k) ⊆ t(l) . (2.5)

Since the blocking ability only weakens with additional cutting
depths, each set t ′(l)i is as small as possible.

Hence further in the text, when a key-assignment s : K → S is
referred as a “solution”, we speak about a solution s∪ t ′, where
t ′ is defined by (2.4). When it is the case, we took the liberty
of writing s(l) for l ∈ L, which really means t ′(l), just to avoid
overly complex notation.

21

Example 17. Suppose that the diagonal lock-chart from Figure 2.3
is assigned cuttings as follows: s(g) = (1, 1, 1, 1), s(k1) = (1, 1, 2, 2),
s(k2) = (1, 2, 2, 1), s(k3) = (2, 2, 1, 1), s(k4) = (2, 1, 1, 2). Then the
locks become

t ′(l1) = ({1}, {1}, {1, 2}, {1, 2})

t ′(l2) = ({1}, {1, 2}, {1, 2}, {1})

t ′(l3) = ({1, 2}, {1, 2}, {1}, {1})

t ′(l4) = ({1, 2}, {1}, {1}, {1, 2})

The assignment is a solution: Key k2 is blocked in l1 in the 2
nd

position, because s(k2)2 = 2 is a cutting depth not present in
t ′(l1)2 = {1}. Similarly, key k3 is blocked in l1 in the 1

st and 2
nd

position and key k4 only in the 1
st position. The same is true for

locks l2, . . . , l4.

Note that the proposition can reduce the number of available
cylinders T . It is no longer necessary to consider all combinations
of all cuttings as in (2.1). The union in (2.4) iterates over E(l),
hence every lock l is assigned a cylinder, which is a union of at
most |E(l)| different cuttings.

Remark 18. Let (K,L,E) be a lock-chart and S a code space. Every
lock-assignment t satisfies t ⊆ L× T ′, where

T ′ =

 ∪
γ∈S ′

γ | for every S ′ ⊆ S s.t. |S ′| ⩽ max
l∈L

|E(l)|

 . (2.6)

Can the proposition be applied to partial key-assignments ŝ :

K ⇀ S as well? Adapting equation (2.4) needs only a cosmetic
modification

t ′(l) =
∪

k∈E(l) and ŝ(k) is defined

ŝ(k) , (2.7)

and the definition of partial solutions still holds.

Observe that using (2.7), a partial key-assignment ŝ yields a
lock-assignment t ′, which is not partial. Even if ŝ is an empty
function, the lock-assignment prescribes an empty cylinder to
all locks t ′(l) = (∅, . . . , ∅).

extension lock-charts . An extension is a naturally oc-
curring industrial problem when a customer orders master-key-
systems in multiple batches. Each batch adds new keys or locks
into the lock-chart, yet the solution to the original lock-chart
remains fixed because it has already been manufactured and
shipped.

22

Figure 2.4: A physical profile on a cutting and in a cylinder (left) and
key-profiles from a profile map (right).
Source: patent US 2011 0271723 A1 [54]

Definition 19 (Extension lock-chart). Let (K,L,E) be a lock-chart
and ŝ∪ t̂ its partial solution. The extension lock-chart is (K,L,E, ŝ∪
t̂). A (partial) assignment s∪ t is a (partial) solution of (K,L,E, ŝ∪
t̂) if ŝ ⊆ s, t̂ ⊂ t and ŝ∪ t̂ is a (partial) solution of (K,L,E).

Extension lock-charts with ŝ = t̂ = ∅ are called from-scratch lock-
charts. Therefore basic lock-charts are a special case of extension
lock-charts in the following sense: A assignment s of a basic
lock-chart (K,L,E) is a solution if and only if it is a solution of
the from-scratch lock-chart (K,L,E, ∅).

profile maps . Some mechanical platforms contain profiles
and profile maps. A profile is a particular shape of a flat key’s
cross section or the keyway in a lock. Figure 2.4 shows examples
of profile maps. Profiles can ensure that some flat keys cannot
be physically inserted into certain keyways so that the blocking
does not have to be done by pins, discs or any other elements
inside the cylinder. This alleviates the number of blockings a
cylinder must ensure, hence enlarging the capacity of the lock-
chart.

Each key and lock in a lock-chart gets assigned one profile. The
general key is usually assigned the profile with the least amount
of metal. Like that, it enters all cylinders in the lock-chart. Typ-
ically, other master keys have more metal and individual keys
have the most. This implies a reverse hierarchy among locks.
Locks opened merely by a few master keys will be assigned pro-
files with more metal and less air than locks opened by individ-
ual keys.

Definition 20 (Profile map). A profile map (P,⪯) consists of a set
of profiles P and a partial order ⪯ on P. Profile assignment is a
function a : (K ∪ L) → P, which assigns profiles to keys and
locks.

23

Let be a profile map (P,⪯) and p and p ′ be profiles in P. If p ⪯ p ′

we say that “p is above p ′” or “p ′ is below p”. If p ̸⪯ p ′ and p ′ ̸⪯ p

we say that “p and p ′ are independent”.

Example 21. Figure 2.5 on the left shows a profile map with
5 profiles P = {1, 2, 3, 4, 5}. Arrows pointing from p to p ′ means
p ⪯ p ′ (transitive and reflexive tuples in⪯ are hidden for clarity).
Profiles 2, 3 and 4 are all pair-wise independent. No other two
profiles are independent.

The strategy for dealing with profile maps varies. Some manu-
facturers let the software find a profile assignment, some hand-
code it manually for better control of future extensions. It is not
hard to formalise the first approach. The algorithm would have
to find a solution s and a profile assignment a as its output.

There are two reasons why we focused on the second approach.
First, there is the practical experience. We have dealt mostly with
lock-charts, whose profiles have been hand-coded, and hence
our knowledge of efficient methods for finding profile assign-
ments is not very deep. Second, ideas that will be presented in
the next chapter require a fixed profile assignment.

Assuming that a is fixed, the definition of the combinatorial
problem can be simplified. Given an assignment, some block-
ings are ensured by means of profiles, not necessarily by pins in
chambers.

Definition 22 (Profiled lock-chart). Let (K,L,E) be a lock-chart
chart, (P,⪯) a profile-map and a : (K ∪ L) → P a profile assign-
ment. A profiled lock-chart is a tuple (K,L,E,P,⪯,a). Let s ∪ t be
an assignment. If for every (k,γ) ∈ s and (l, λ) ∈ t

k opens l if and only if γ enters λ and a(k) ⪯ a(l) (2.8)

then s∪ t is a (partial) solution of (K,L,E,P,⪯,a).

The definition might be clearer by rewriting (2.8) into an equiva-
lent form using De Morgan’s law:

l stops k if and only if λ blocks γ or a(k) ̸⪯ a(l) (2.9)

Basic lock-charts are a special case of profiled lock-charts in the
following sense: An assignment s to a basic lock-chart (K,L,E)
is a solution if and only if it is a solution to a profiled lock-
chart (K,L,E, {p}, {(p,p)}, (K ∪ L)× {p}) with a single-profile pro-
file map. This follows from a(k) = p ⪯ p = a(l) for all keys and
locks and hence conditions (2.3) and (2.8) overlap.

Also note an immediate consequence of (2.8). For every lock l

opened by some key k, the k’s profile must be above the l’s pro-
file: a(k) ⪯ a(l); otherwise the lock-chart has no solution. Pro-
file assignments that satisfy this condition are called well-formed

24

profile assignments. Since other profile assignments are meritless,
from now on we will assume that all profile assignments are
well-formed.

Because of the “or” in (2.9), in a profiled lock-chart each key-lock
pair (k, l) falls into 3 cases:

1. Either k opens l,

2. or k is blocked in l by means of profiles a(k) ̸⪯ a(l),

3. or k is blocked in l not by profiles a(k) ⪯ a(l).

Example 23. Let the lock-chart from Figure 1.6 be assigned pro-
files from the profile map in Figure 2.5 left as follows: a(g) = 1,
a(m1) = a(ki) = a(li) = 2 for 1 ⩽ i ⩽ 4, a(m2) = a(ki) =

a(li) = 3 for 5 ⩽ i ⩽ 8 and a(m3) = a(ki) = a(li) = 3 for
9 ⩽ i ⩽ 12. Then Figure 2.5 on the right visualises the lock-chart,
whose case 1 cells are filled black, case 2 are filled grey and case
3 are white.

These 3 cases of a profiled lock-chart’s cells are reflected in the
last definition of a lock-chart.

Definition 24 (Melted profiles lock-chart). The melted profiles lock-
chart (K,L,E,B) consists of a key-set K a lock-set L and two edge-
sets E, B s.t. K ∩ L = ∅ and E ∩ B = ∅. Let s ∪ t be a (partial)
assignment. If for every (k,γ) ∈ s and (l, λ) ∈ L these conditions
hold:

if (k, l) ∈ E then s(k) enters t(l) and

if (k, l) ∈ B then t(l) blocks s(k) ,
(2.10)

then s∪ t is a (partial) solution to (K,L,E,B).

Profiled lock-charts are a special case of a melted profiles lock-
charts in the following sense: An assignment s∪ t is a solution to
(K,L,E,P,⪯,a) if and only if it is a solution to (K,L,E,B), where

B = {(k, l) ∈ K× L | k ̸∈ E(l) and a(k) ⪯ a(l)} . (2.11)

hierarchy. This section presented 5 types of lock-charts in
Definitions 9, 12, 13, 19 and 24. Figure 2.6 shows their relation-
ship graphically.

uniqueness . Finally, we discuss an important assumption.
Can two keys open the same set of locks (and two locks be
opened by the same set of keys)? Theoretically yes, but there
is a good reason not to allow this.

First, the “duplicate” keys k and k ′ in a basic lock-chart, whose
E(k) = E(k ′) can always be assigned the same cutting s(k) =

25

1

32 4

5

l1

l2

l3

l4

k1 k2 k3 k4g

l5

l6

l7

l8

l9

l10

l11

l12

k5 k6 k7 k8 k9 k10 k11 k12m1 m2 k3

Figure 2.5: A small profile map (left) and a profiled lock-chart which
use the profile map (right). Grey cells indicate blocking by
profile.

diagonal key-to-differ

basic

profiled

melted

extension

Figure 2.6: Hierarchy of lock-chart types. An arrow points from a spe-
cial case to its generalisation.

26

s(k ′). Assigning different cuttings would only weaken blocking
properties of opened locks. Hence, from the calculation point of
view, the duplicate keys are irrelevant. A similar reasoning goes
for locks.

Assumption 25. Let K be a key-set, L a lock-set and E an edge-set.
For any x,y ∈ K∪ L, if x ̸= y then E(x) ̸= E(y).

Corollary 26. Let (K,L,E, ŝ) be an extension lock-chart and s its so-
lution. Any two distinct keys k ̸= k ′ are assigned distinct cuttings
s(k) ̸= s(k ′).

Proof. Assume that the key k opens some lock l. Since s is a
solution, s(k) enters s(l). Assume there is another key k ′ with
the same cutting s(k) = s(k ′). Since s(k ′) enters s(l) and s is
a solution, k ′ opens l. This reasoning holds for any lock l ∈ L,
hence E(k) ⊆ E(k ′). Symmetric reasoning from k ′ to k yields
E(k) = E(k ′). This violates Assumption 25.

The main purpose of this corollary will become apparent in
Chapter 6. Here, it helps to understand the structure of a lock-
chart.

Remark 27. No two individual keys open the same lock and no
two locks are opened by the same individual key. Therefore,
there the relation E contains a bijection between individual keys
and their associated locks, which will be called individual locks.

Profiled and melted lock-charts are more complicated. We still
apply the Assumption 25 (so that the previous remark is valid),
but the Corollary 26 no longer holds. Its proof inferred that both
k and k ′ opens l using (2.3). In profiled lock-charts, lock l does
not have to exist if profiles of k and k ′ are independent.

2.4 optimisation

The lock-chart and its solution defined so far are sufficient to ask:
“Does a solution exist?” or “Provide a solution, please.” However,
for various reasons, manufacturers often prefer some solutions
over other ones. This naturally leads to finding a criterion to
measure solution’s quality and to rephrase lock-chart solving as
an optimisation problem.

Especially high-end, patented platforms are advertised with a
security guarantee that any key cutting issued for one customer
is never reused for a different customer. Calculation software ful-
fils this promise by dividing the code space into regions, each as-
signed to one lock-chart. A natural manufacturer’s requirement
is to make such regions as small as possible so that it is possible
to calculate as many lock-charts as possible using one platform.

27

Definition 28 (Global virtual cylinder). Let K be a key-set and s

an assignment. The global virtual cylinder Λ (abbreviated GVC) is
a cylinder defined as the union of all cuttings assigned by s:

Λ =
∪
k∈K

s(k)

The GVC is used to define two criteria, which minimise the size
of a region allocated to a lock-chart.

Criterion 29 (Maximizing prefix). Let (K,L,E) be a lock-chart and s

its solution. The prefix is the largest r-tuple (d1,d2, . . . ,dr) of cutting
depths s.t. Λi = {di} for all 1 ⩽ i ⩽ r. A solution with a longer prefix
is preferred over a solution with a shorter prefix.

The prefix is a well-established criterion in the industry. Its prac-
tical advantage is that every lock-chart is associated with 1 tuple,
that defines its region in the code space. Then all new calcula-
tions cannot reuse the prefix. This can be done by translating
prefixes into gecons. Adding a gecon (3, 5, 2, ?, ?) to a platform
prevents all keys from reusing the prefix (3, 5, 2).

The prefix has a disadvantage when used as a criterion for com-
paring algorithms’ performance. During prototyping, we often
found that there is a critical prefix length r, which is achieved
quickly by almost all algorithms, yet extending r by 1 is in-
tractable by all algorithms. For that reason we use a different
criterion in this work, taken from [38], where it was defined as
“consumed key codes”:

Criterion 30 (Minimise shear-lines). Let (K,L,E) be a lock-chart
and s its solution. The number of shear-lines in GVC, denoted |Λ|,
is defined as |Λ| = |Λ1| · |Λ2| · · · |Λp|. A solution with a smaller |Λ| is
preferred over a solution with a bigger |Λ|.

Each GVC after a calculation defines shear-lines that cannot be
used in new calculations. It is not feasible to translate a forbid-
den region defined by a GVC into gecons as it was done with
prefixes.5 Instead solving a basic lock-chart (K,L,E) with a for-
bidden GVC Λ is equivalent to solving an extension lock-chart
(K,L ′,E, ŝ) with 1 additional lock L ′ = L∪ {v}, whose cylinder is
fixed ŝ(v) = Λ. Since the new lock v stops all keys, no keys in K

can be assigned a cutting which enters Λ.

2.5 extensions

Empirical evidence indicates that finding a solution (or disprov-
ing its existence) to the extension lock-chart is easier than solving

5 In the worst case |Λ| grows exponentially in p. This would generate an expo-
nential number of constraints.

28

a basic lock-chart.6 The difficult part is to solve the from-scratch
lock-chart so that its future extension is still solvable.

In general, this task is practically impossible. For almost any
solution, there is an extension, which is unsolvable. Take two
locks l, l ′, their cylinders s(l) and s(l ′) and assume they do not
share any shear-line. If the extension contains a new key k s.t.
{l, l ′} ⊆ E(k), the extension lock-chart has no solution.

Inevitably, one must specify which extensions should be expected
and for which one optimises the solver. This section will discuss
their various types. When all expected extensions of the cho-
sen type are added, the largest solvable lock-chart is formed.
Such lock-chart will be called the extremal lock-chart. This section
will define two types of extremal lock-charts and further chap-
ters will describe their solutions. A practical algorithm designed
to solve from-scratch lock-charts can use cuttings from the ex-
tremal’s lock-chart solution, which effectively prepares the solu-
tion for future extensions.

independent master keys . The first extremal lock-chart
is suited for extensions, whose locks might be opened by an
arbitrary combination of master keys. We formulate it for the
vanilla framework with p positions and d cutting depths.

Definition 31. Let there be |K| = p · (d − 1) + 1 keys denoted
K = {k1,k2, . . .} and 2|K| locks denoted L = {l1, l2, . . .}. In the
lock-chart of independent keys (K,L,E) is a lock-chart, whose every
lock is opened by a unique combination of keys:

E =
{
(ki, lj) ∈ K× L | (j− 1)%2i < 2i−1

}
Independent keys are meant for people, whose access to rooms
or corridors might be arbitrarily changed. Say there is a lock l

opened by keys E(l) and the access of key k should be added
or removed. The extension is formed by adding a lock opened
by keys E(l) ∪ {k} or E(l) \ {k}. Knowing that a solution to the
extremal lock-chart exists, the extension must be solvable.

The flexibility stems from the exponential number of locks. How-
ever, this comes at the price of a small number of keys. Essen-
tially, there is a trade-off between knowing the structure of fu-
ture extensions and maximizing the number of keys in the ex-
tension. Independent master keys are one side of a spectrum
and individual keys are the on other one.

non-independent master keys . What happens if master
keys are not marked as independent? We interpret this case by

6 This is probably due to the fact that a partial solution reduces the number of
free parameters in the calculation.

29

l1

l2

l3

l4

k1 k2 k3 k4

l5

l6

l7

l8

l9

l10

l11

l12

l13

l14

l15

l16

example of a

its largest extension

from-scratch lock-chart

Figure 2.7: The lock-chart of 4 independent keys for p = 3, d = 2.

not expecting a new combination of master keys in an extension
other than those combinations that appeared in the from-scratch
problem.

The experience we gained when building commercial solvers
suggests to “compress” master keys into the smallest code space
possible. First individual keys are removed from the lock-chart
and then the solver finds a solution which minimises |Λ| (see
Criterion 30) from master-keys’ cuttings, which remained in the
lock-chart. Practical algorithms with this objective will be pre-
sented in Section 6.4.

Admittedly, despite the practical experience, this approach lacks
formal justification. Its analysis is one of the topics for future
work.

individual keys . A typical use-case for extensions is when
a customer adds a new room to the building or loses a key and
asks for a safe replacement. Both involve adding 1 individual
key and 1 lock opened by the key to a lock-chart so that the new
key doesn’t open any previously shipped locks and the new lock
blocks all existing individual keys.

The lock-chart, which maximizes the code space for individual
keys, yet keeps at least some master keys, is the diagonal lock-
chart. Considering diagonal lock-chart as the extremal, a natural
question is: “What is the size of the largest diagonal lock-chart”?

30

Section 3.6 will give a definitive answer for the vanilla frame-
work. The same question for the asymmetric and generic frame-
works, to which we have found a partial answer, is presented in
Chapter 5.

central locks . Central locks are used for the main door of
a building or doors on corridors or floors. As such, they are ex-
pected to be opened by many keys, often by most keys in the
lock-chart. Hence we define central lock as a lock, which is ex-
pected to be opened by new keys in an extension. Central locks
are usually marked as such by the customer.

The issue with central locks is to estimate the number of shear-
lines in their cylinders. Implicit solutions add as few cutting
depths into cylinders as possible (see Proposition 16). The risk
is that there are too few shear-lines in a cylinder and that they
will not allow new keys from an extension to enter them. On
the other hand, central locks still have to block some keys and
going too far by adding all d · p cutting depths is certainly not
desirable.

Mitigation of this issue is to add superfluous cutting depths into
cylinders. How much and where? My experience says that this
question is only of theoretical importance. Manufacturers usu-
ally specify roughly how many new keys are expected in new
extensions. New cutting depths might be added until this crite-
rion is reached.

conclusion. Extensibility in all its forms can make a con-
straint for the decision problem or a criterion for the optimisa-
tion problem. Take independent keys, which can be rephrased
both as “find a solution with all keys independent” or “find a
solution with as many keys marked as independent as possible”.
My personal experience shows greater success with the former
approach; nevertheless, such choice depends heavily on the busi-
ness case and a particular algorithm employed.

31

3
C O M P L E X I T Y C L A S S E S

The question of the highest interest to all the customers, manu-
facturers and programmers, who design lock-chart solving algo-
rithms, is probably: “Can I get a solution to this particular lock-
chart in a reasonable time?” But the question has a tricky part –
the notion of a reasonable time. For manufacturers that we worked
with, the reasonable time was somewhere between 1 minute and
1 hour. As programmers, we tried to persuade them that 1 day is
also a reasonable time. And that within a few years, computers
will become fast enough to meet the 1 hour deadline.

Such disputes are of no concern to computer scientists. Most
computers ranging from mobile phones to Konrad Zuse’s me-
chanical machines share the same mathematic model. The model
works in time that is not proportional to our physical time and
hence asking for the processing time of any particular lock-chart
is meaningless. Instead, the right question to ask in this chapter
is: “How does the run-time evolve when the size of the lock-chart
grows?” Since the mathematical model more or less captures all
current computers, it also shapes our expectations for practical
algorithms.

3.1 preliminaries

tractability. Let there be a combinatorial problem, whose
instances are written in a formal language and let the instance
size be n. A decision problem is a problem, to which the answer
is yes or no. A Turing machine has time complexity T(n) if it ac-
cepts the formal description of the problem instance and gives a
yes/no answer in at most T(n) time steps. A decision problem is
in P, if there exists a deterministic Turing machine with a time
complexity polynomial in n. A decision problem is in NP, if a

solution to the yes-instance can be verified in P. The P
?
= NP

hypothesis, recently surveyed in [1] has not been proved at the
time of writing this text.

A polynomial reduction is an algorithm that translates a formal
description of one problem into another one. A decision problem
is NP-hard if every problem in NP can be polynomially reduced
to it. A decision problem is NP-complete if it is NP-hard and in
NP [29].

32

propositional logic . Let X denote the set of variables de-
noted x1, x2, . . . , xn. Every variable is a formula. If F and F ′ are
formulas, then a negation of a formula ¬F, a conjunction of for-
mulas F∧ F ′, a disjunction of formulas F∨ F ′, an implication of
formulas F ⇒ F ′, and an equivalence of formulas F ⇔ F ′ are also
formulas.

An interpretation is a function I : X → {0, 1}. The domain of I

is recursively extended to all formulas: I(¬F) = 1− I(F), I(F∧
F ′) = min {I(F), I(F ′)}, I(F∨ F ′) = max {I(F), I(F ′)}, s(F ⇒ F ′) =

I(¬F∨ F ′), I(F⇔ F ′) = I((F⇒ F ′)∧ (F ′ ⇒ F)). An interpretation
I is a model of a formula F if I(F) = 1. Two formulas F and F ′ are
semantically equivalent if I is a model of F if and only if I is also a
model of F ′.

conjunctive normal form . Next, we consider a restricted
class of formulas. Every variable x is associated a positive literal
x and a negative literal x̄. A disjunction of literals C = x̄1 ∨ x̄2 ∨

· · ·∨ x̄i ∨ xi+1 ∨ xi+2 ∨ · · ·∨ xj is called a clause (with the first
i literals negative). The size of a clause |C| is the number of its
literals (j in this case). A conjunction of clauses is called a formula
in the conjunctive normal form, abbreviated as CNF. The size of a
CNF |F| is the number of its clauses.

The Boolean satisfiability problem (SAT) is a combinatorial prob-
lem of finding a model to a CNF. SAT is NP-complete. The 2-
satisfiability problem (2SAT) is a SAT for clauses with at most 2

literals. The 2SAT problem is in P. The sharp-SAT problem (#SAT)
is the problem of counting the number of models to a CNF. The
#SAT problem is in the class #P.

graph problems . Let (V ,E) be an undirected graph and k ∈
N. A set of nodes I ⊆ V is independent if no vertices in I are ad-
jacent. The maximum independent set problem (MIS) is a problem
of finding some largest independent set [52]. The independent set
decision problem asks if the graph contains an independent set of
size at least k. The problem is NP-complete. A graph colouring
function is a function c : V → {1, 2, . . . ,k}, which assigns dis-
tinct values to all adjacent vertices. The graph colouring problem
is an NP-complete problem to determine if there exists a graph
colouring function given k.

combinatorics . Let n,k ∈W. Factorial is the function n! =
n · (n− 1) · · · 2 · 1. The corner case is defined as 0! = 1. The bino-
mial coefficient

(
n
k

)
= n!

k!·(n−k)! counts the choices of k items out
of a basket with n items.

33

3.2 verifying solutions

The ultimate goal of this chapter is to show NP-completeness of
the lock-chart solving. First, we deal with the easier part, namely
proving that lock-chart solving is in NP.

Lock-chart solving is in NP if the solution can be verified in
polynomial time. This can be done by checking if an assignment
is a solution using Definition 15, exemplified by Algorithm 3.1.
Its runtime is polynomial in |K|, |L|, |E|, |B|, |S|, p and d.

The algorithm is formulated for the explicit constraint frame-
work, where we can easily check s(k) ∈ S by iterating over the
set. However, if the code space S was not given explicitly, the
algorithm can be easily extended. The general framework can
be used simply by writing a procedure for checking a cutting
against a gecon (see Example 6).1

This shows that all lock-charts defined in Chapter 2 are NP.

input : lock-chart (K,L,E,B), partial solution ŝ, solution s

output : true if the solution is correct, otherwise false

1 foreach k ∈ K do
2 if s(k) ̸= ŝ(k) then
3 return false
4 end
5 foreach l ∈ L do
6 if (k, l) ∈ E then
7 if s(l) blocks s(k) then
8 return false
9 end

10 end
11 if (k, l) ∈ B then
12 if s(k) opens s(l) then
13 return false
14 end
15 end
16 end
17 end
18 return true

Algorithm 3.1: Solution verifier for partially-solved melted
profiles lock-charts.

1 If still in doubt, fast forward to Section 4.2. An equivalence-version of CNF
constructed with a partial solution ŝ = s has all clauses with at most 2 lit-
erals (after unit propagation). Since 2SAT is in P, lock-charts in the general
framework are in NP, which also entails vanilla and asymmetric frameworks.

34

3.3 sat correspondence

general constraints . At the beginning of the discussion
of tractability, we discuss the constraints themselves. Are gecons
expressive enough to encode complex combinatorial problems?

Theorem 32. Solving the 1× 0 lock-chart ({k} , ∅, ∅) in the general
framework is NP-complete.

This theorem will be proved by creating a many-one polynomial
reduction from SAT to the lock-chart problem. However, the first
reduction is not presented in this section. The high-level idea of
the reduction procedure uses an equivalence between a clause
and a gecon. A gecon ensures that at least one cutting depth on
a non-wildcard position must “deviate” from the constraint. The
“at least one” corresponds to the disjunctions ∨ in a clause.

Claim 33. Let there be a CNF with variables x1, . . . , xn. A lock-
chart ({k}, ∅, ∅) with p = n, d = 2 will be constructed. For every
clause C let there be 1 gecon (c1, . . . , cp). For every positive lit-
eral xi ∈ C, the constriant has ci = 1. For every negative literal
x̄i ∈ C, the constraint has ci = 2. For all remaining variables
ci =?. The lock-chart has a solution s if and only if I is a model
of the CNF, where I(xi) = s(k)i − 1.

Proof. (⇒) Assume s is a solution to the lock-chart, yet I is not
a model of the CNF. Then there must be a clause C = x̄1 ∨ x̄2 ∨

· · ·∨ x̄i ∨ xi+1 ∨ xi+2 ∨ · · ·∨ xj s.t. I(C) = 0 and therefore all
its literals evaluate to 0. For any negative literal I(x̄i) = 0 =

1 − I(xi), hence s(k)i = 2. Similarly for all positive literals xj,
s(k)i = 1. There is no position, where s(k) deviates from the non-
wildcard positions in the constraint created from C. The cutting
s(k) does not satisfy the gecon and therefore s is not a solution
(a contradiction).

(⇐) Assume I is a model of the CNF, yet there is no solution
to the lock-chart. As there is no blocking cell in the lock-chart,
a gecon must have been violated by s(k). A contradiction is
reached by similar reasoning as above. The violated constraint is
associated with a clause, which must evaluate to 0 under I.

The result also applies to diagonal lock-charts. Observe that a di-
agonal lock-chart has as many locks as individual keys. A diago-
nal lock-chart with 0 individual keys has exactly 1 key (the gen-
eral key) and no locks. Hence the 1× 0 lock-chart is the smallest
diagonal lock-chart and therefore solving diagonal lock-charts
in the general framework are NP-complete.

Extending the result to the 1× 1 key-to-differ lock-chart can be
made by adding a redundant lock. The proofs in this section

35

would neither change a lot, neither provide additional insight.
Instead, the result is generalised to the whole class of key-to-
differ lock-charts.

key-to-differ lock-charts . For clarity, a key-to-differ lock-
chart is assumed to contain n keys and n locks K = {k1, . . . kn},
L = {l1, . . . , ln} and both sets will indexed “conveniently” s.t.
E = {(k1, l1), (k2, l2), . . . , (kn, ln)}.

Lemma 34. A key-to-differ lock-chart with n keys/locks has a solution
if and only if there are at least n available cuttings in the set of available
keys S.

Proof. All keys are individual. Hence all cylinders contain a sin-
gle shear-line — namely the i-th lock’s only shear-line is the i-th
key’s cutting. Such cylinder prevents all remaining keys kj ̸= ki
from having the same cutting. By the pigeonhole principle it is
possible to assign |S| cuttings to n keys if and only if n ⩽ |S|.

This lemma implies results to some trivial decision problems.

Corollary 35. A key-to-differ lock-chart with n keys/locks is solvable
in P if a) n ⩽ dp in vanilla framework, b) n ⩽ d̃1 · d̃2 · · · · · d̃p

in asymmetric framework with the deepest cutting (d̃1, . . . , d̃p) or c)
n ⩽ |S| if the set S is given by the explicit framework.

The only remaining question is whether key-to-diff lock-charts
are solvable in the general framework.

Corollary 36. The problem of finding the largest key-to-differ lock-
chart in the general framework is in #P.

Proof. As in the proof of Claim 33, every model is equivalent to
1 valid key cutting s(k). By Lemma 34 every model corresponds
to one key in a key-to-differ lock-chart. The number of models
to a CNF is given by the #SAT problem, which is in #P.

extensions lock-charts . The idea of having two cutting
depths for two boolean values and one position per variable, that
we used in Lemma 33, is not new. Lawer [38] used a similar trans-
lation procedure to turn SAT into an extension lock-chart in the
vanilla framework. Theorem 32 will be related to Lawer’s main
result by a reduction of a basic lock-chart in general framework
into an extension lock-chart in vanilla framework.

Lemma 37. Let (c1, . . . , cp) be a gecon. A universal cylinder is
(D1, . . . ,Dn), s.t. if ci = ? then Di = {1, 2, . . . ,d}; otherwise Di =

{ci}. A key cutting (d1, . . . ,dp) satisfies the gecon if and only if it is
blocked in its universal cylinder.

36

Proof. If the cutting depth satisfies the constraint, there is a po-
sition i, s.t. ci ̸= ? and ci ̸= di. Hence di ̸∈ Di and the cylinder
blocks the cutting. If the cutting depth violates the constraint, all
di ∈ Di and hence the cylinder is opened by the cutting.

The lemma gives a mechanism to turn constraints into exten-
sion’s locks. Given a lock-chart (K,L,E) with n gecons, an exten-
sion lock-chart (K,L ′,E, ŝ) is constructed by adding one new lock
for each constraint: L ′ = L ∪ {u1, . . . ,un}. The partial solution
ŝ(ui) fixes the i-th added lock to a universal cylinder associated
with the i-th gecon. Because every key is blocked in every ui,
the newly added locks have the same effect on the solution as
the gecons.

Corollary 38. Extension lock-charts in the vanilla framework are NP-
complete.

Since gecons are slightly less expressive than blocking by (uni-
versal) cylinders, our result in the previous section is a slight
generalization of Lawer’s result.

3.4 melted profiles lock-charts

While designing commercial solvers, which all ran in exponen-
tial time, we were constantly bothered with the question whether
basic lock-charts in the vanilla framework can’t be in P. Such
eventuality would turn all such algorithms in vain. The closest
we got to answer this question is a result on melted profiles lock-
charts.

There is also a second motivation. NP-completeness results so far
relied on a growing number of positions. However, in some real-
world platforms, the p parameter is fixed and quite low, some-
times as low as 5. Practically speaking, this makes it possible
to iterate over dp cuttings on current CPUs. From a theoretical
point of view, having p fixed makes dp a constant-factor slow-
down. Hence a practical algorithm, which scales badly in dp, but
well in other parameters (|K|, |L|, |E|, . . .) might still exist.

Admittedly, we were unable neither to prove or disprove the
existence of such algorithm for basic lock-charts. Instead, this
section has an NP-completeness result on melted profiles lock-
charts with the property of having p = 1.

Theorem 39. Let (V , F) be an undirected graph and k a natural num-
ber. The graph colouring problem is translated into a melted profile
lock-chart (K,L,E,B). The lock-chart has a key ki and a lock li for
each vertex vi ∈ V . The relation E connects i-th key with i-th lock
only (as in the key-to-differ lock-chart). The relation of stopped keys

37

and locks B connects ki and lj if (vi, vj) ∈ F.2 The vanilla framework
is used with p = 1 and d = k. Given a solution to the lock-chart s, a
graph colouring function f defined as f(vi) = s(ki)1 is a solution to
the graph colouring problem. Solving melted profiles lock-charts in the
vanilla framework is NP-complete.

The proof will show that f solves the graph colouring problem.

Proof. Graph colouring function cannot assign the same color to
adjacent vertices. Suppose it does by having some (vi, vj) ∈ F, s.t.
f(vi) = f(vj) = x. Then both keys ki and kj were assigned the
cutting (x) and lock li (which is opened by ki only) was assigned
the cylinder ({x}). Therefore kj is not blocked in li, which is a
contradiction.

This concludes the discussion of NP-completeness. The rest of
this chapter will identify problems that are solvable in P.

3.5 lock-chart of independent keys

The NP-completeness from previous sections motivates finding
classes of lock-charts, whose solution can be found in polyno-
mial time. Mechanical constraints, which can be almost arbi-
trary in practice, make it difficult to devise polynomial-time al-
gorithms. Therefore from now on, the proofs will be restricted to
a simple class of mechanical constraints to achieve a polynomial-
time algorithm. This section starts with lock-charts of indepen-
dent keys.

Theorem 40. Let K be the set of keys in a lock-chart of independent
keys. The i-th key is associated numbers x,y, where x = 1+ (i− 2)÷
(d− 1) and y = 2+ (i− 2)%(d− 1), except for the key k1 which gets
x = y = 1. The assignment s is a solution, where

s(ki) = (1, . . . , 1︸ ︷︷ ︸
x−1

,y, 1, . . . , 1︸ ︷︷ ︸
p−x

) .

Proof. First note that every key has a unique tuple (x,y) (because
the formula is reversible: i = (x − 1) · (d − 1) + y). The proof
follows Definition 15. Take any lock l. From each key k ∈ E(l),
the cylinder s(l) contains the cutting depth y at the x-th position:
y ∈ s(l)x. Take any stopped key k ′ ∈ K \ E(l) and its x ′ and y ′

values. By the same reasoning, y ′ ̸∈ s(l)x ′ , therefore s(k ′) is
blocked in s(l).

2 Since (V ,E) is simple, E∩B = ∅, which ensures that (K,L,E,B) is a valid melted
profiles lock-chart.

38

Key x y cutting

k1 1 1 (1, 1, 1)
k2 1 2 (2, 1, 1)
k3 2 2 (1, 2, 1)
k4 3 2 (1, 1, 2)

Table 3.1: Solution to the lock-chart of 4 independent keys for p = 3,
d = 2.

Example 41. Assume p = 3, d = 2. Figure 2.7 on page 30 shows
the corresponding lock-chart of independent keys with 4 keys.
The solution is shown in Table 3.1.

Corollary 42. Lock-chart of independent keys in the vanilla framework
is solvable in P merely by deciding |K| ⩽ p · (d− 1) + 1.

For clarity, the theory is formulated for the vanilla framework,
but it can be easily extended to asymmetric ones. The principle
is to spread x,y values across cutting depths on all positions. In
vanilla framework, there are 1+p · (d− 1) such pairs, meanwhile
in the asymmetric framework, there are

1+
∏

1⩽i⩽p

(d̃i − 1) of them.

3.6 diagonal lock-charts

The proof of diagonal lock-charts’ feasibility in this section is
one of the main results of the text. We were able to formulate
the result in the vanilla framework.

The strategy for assigning key cuttings is not a new invention.
In the industry, it is known as the rotating constant method. To
the best of our knowledge, the only publication on this subject
is [44], even though the method is widely recognized and used
by many business partners. This section does not provide a wide
introduction into rotating constant method; we focus on a proof
of its completeness and assumptions behind it.

This section starts with a lower bound on the size of the largest
solvable diagonal lock-chart without assuming any particular
constraint framework. Then, assuming vanilla framework, this
we prove an upper bound, which concludes the P time solvabil-
ity of vanilla diagonal lock-charts.

Definition 43. Let γg be the general key’s cutting and q ∈W s.t.
q ⩽ p, Then Sq is a set of all key cuttings, which are equal to the
general key exactly in q positions.

39

Example 44. If the general key is (1, 1, 1, 1), the S1 cuttings in-
clude e.g. (1, 2, 2, 2) and (2, 2, 1, 2), but neither (1, 2, 2, 1) nor (2, 2, 2, 2).
Example 17 contains shapes only from the S2 set.

Even though Sp is a perfectly well defined set, q < p is assumed
in this section, which excludes Sp from the reasoning. Cuttings
from Sq are used for individual keys in a diagonal lock-chart
and since Sp = {γg}, it makes no sense to reuse the general key’s
cutting for the first and only individual key.

Theorem 45 (Lower bound). The largest solvable diagonal lock-chart
has at least maxq |Sq| individual keys.

Proof. Take any key ki, which should be blocked (i ̸= j) in some
lock lj, which is opened only by g and kj. Let key cuttings be
s(ki) = (di

1, . . . ,di
p), s(kj) = (dj

1, . . . ,dj
p) and s(g) = (dg

1 , . . . ,dg
p)

and cylinder pins s(lj) = (Dj
1, . . . Dj

p). The proof is done by find-
ing some blocking position r, s.t. di

r ̸∈ D
j
r.

Let Ai = {ri1, . . . , riq} be the set of q positions, where the cutting
of ki is equal to the cutting of the general key g. Formally

Ai = {r ∈N | s(ki)r = s(g)r} .

a) Ai = Aj. Since ki, kj and g have different cuttings (by Corol-
lary 26) and q < p, there must be at least one position r ̸∈ Ai

where di
r ̸= d

j
r and di

r ̸= d
g
r . On r, pins D

j
r = {d

g
r ,dj

r}, which
implies di

r ̸∈ D
j
r.

b) Ai ̸= Aj: Since |Ai| = |Aj| = q, there is at least one position
r ∈ Aj \Ai where kj equals g (dj

r = d
g
r), but ki is not di

r ̸= d
j
r.

On r, pins D
j
r = {d

g
r }, which implies di

r ̸∈ D
j
r.

In both cases, s(ki) is blocked in s(lj) on the r-th position.

The proof of the upper bound is preceded with a few lemmas.
First, a code-space symmetry is described, which proves that
using the cutting (1, . . . , 1) for the general key is as good as any
other cutting.

Lemma 46. Given q, in the vanilla framework, the size of Sq is con-
stant, irrespective of the general key’s cutting:

|Sq| =

(
p

p− q

)
· (d− 1)p−q (3.1)

Proof. Suppose there is a general key cutting (g1, . . . ,gp) and a
cutting (d1, . . . ,dp) ∈ Sq. There are q positions where the cut-
ting depth matches gi = di. In the p− q remaining positions, di

can take any value 1 ⩽ di ⩽ d except for gi.

40

Definition 47. Given the general key g, and two cuttings γ, γ ′.
The cutting γ is unsuitable for individual keys in a diagonal lock-
chart with γ ′ if the cylinder g∪γ is entered by γ ′ or the cylinder
g∪ γ ′ is entered by γ.

The plan behind unsuitable cuttings is to find the largest set of
suitable cuttings, which then forms a solution for the diagonal
lock-chart.

Lemma 48. Let 0 ⩽ r ⩽ q ⩽ p. In a single lock-chart, every cutting
γq ∈ Sq has

(
p−r
q−r

)
unsuitable cuttings in Sr. Every cutting γr ∈

Sr has
(

q
q−r

)
· (d − 1)q−r unsuitable keys in Sq. The ratio of these

numbers is

Ω =

(
p−r
q−r

)(
q

q−r

)
· (d− 1)q−r

=
|Sq|

|Sr|
. (3.2)

Proof. A cutting γr ∈ Sr differs from the general key in p − r

positions. By “overwriting” them in some q− r positions by the
depth of the general key, the newly obtained cutting γq differs
from the general in (p − r) − (q − r) = p − q positions, hence
γq ∈ Sq. There are exactly

(
p−r
q−r

)
such overwritings.

Similarly, there are exactly
(

q
q−r

)
combinations of positions, where

“diverting” from the general key moves a key from Sq to Sr. In
each of them, there are exactly d− 1 available depths different
from the general. This gives the

(
q

q−r

)
· (d− 1)q−r formula.

Let γq and γr be cuttings obtained by overwriting or divert-
ing. Cylinder g∪ γr can only have more shear-lines than g∪ γq,
which is entered by γq. Hence γq also enters g∪ γr and γq and
γr are not suitable.

The last equality for Ω is proven by simple algebra (using xy ·
xz = xy+z,

(
n
k

)
=
(

n
n−k

)
and the definition of the binomial coef-

ficient.

Example 49. Let p = 4, d = 2 and (1, 1, 1, 1). The cutting γ =

(1, 1, 2, 2) ∈ S2 is unsuitable with
(
4−2
3−2

)
= 2 cuttings from S3,

namely (1, 1, 1, 2) and (1, 1, 2, 1), because neither of them is blocked
in cylinder γ ∪ g = ({1}, {1}, {1, 2}, {1, 2}). Similarly γ is unsuit-
able with

(
2

2−1

)
· (2− 1)2−1 = 2 cuttings from S1, namely γ ′ =

(1, 2, 2, 2) and γ ′′ = (2, 1, 2, 2), because γ is blocked neither in
g∪ γ ′, nor in g∪ γ ′′.

Lemma 50. No two distinct cuttings γ,γ ′ ∈ Sq are unsuitable with
the same set of cuttings from a different Sr set.

Proof. Let g be the general key’s cutting. a) r < q: If two keys are
assigned distinct γ,γ ′, their opened locks have cylinders g ∪ γ,
g ∪ γ ′ that are also distinct and therefore both are opened by
different sets of cuttings from Sr. b) r > q: Reasoning is similar,
by considering cylinders of keys unsuitable with γ and γ ′.

41

(3, 3, 1) (3, 2, 1)

(2, 3, 1) (2, 2, 1)

(3, 1, 3) (3, 1, 2)

(2, 1, 3) (2, 1, 2)

(1, 3, 3) (1, 3, 2)

(1, 2, 3) (1, 2, 2)

S1 = Sq

(2, 3, 3)

(3, 3, 3)

(2, 3, 2) (2, 2, 3)

(3, 3, 2) (3, 2, 3)

(2, 2, 2)

(3, 2, 2)

S0 = Sr

(
p−r
q−r

)
=

(
3−0
1−0

)
= 3

(
q

q−r

)
· (d− 1)q−r =

(1, 1, 2)

(1, 1, 3)

(1, 2, 1)

(1, 3, 1)

(2, 1, 1)

(3, 1, 1)

(1, 1, 1)

=
(

1
1−0

)
· 21 =

= 2

S3 = Sp

S2

general key’s cutting

Figure 3.1: All cuttings from a vanilla framework p = 3, d = 3,
grouped into Sq sets w.r.t. the general key (1, 1, 1). Selected
pairs of unsuitable cuttings are joined by red lines.

The last lemma needed for the main theorem generalises the
binomial coefficient.

Lemma 51. Let C be a set of all subsets of {1, . . . ,n}, whose cardinality
is k (∀K ∈ C. |K| = k). If every i ∈ {1, . . . ,n} appears in at most
r subsets, then |C| ⩽ n

k
· r. If moreover k and n are divisible, then

|C| = n
k
· r.

Example. For n = 4, k = 2 and r unrestricted, C has
(
4
2

)
= 6 sub-

sets C = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. By deleting {1, 2}
and {3, 4}, every number appears exactly r = 2 times. Indeed
n
k
· r = 4 remaining subsets.

Note. From the binomial coefficient n
k
· r = |C| ⩽

(
n
k

)
. Therefore

r ⩽
(
n
k

)
/n
k

and hence r ⩽
(
n−1
k−1

)
.

Proof. Inequality: Let Ci denote the elements of C which contain
i. By definition |Ci| ⩽ r and therefore

∑n
i=1 |Ci| ⩽ n · r. Also

|C| · k =
∑

i |Ci| ⩽ n · r which yields the inequality.

Equality: 1. Initialise r = 0 and C = ∅. 2. Take a permutation π =

{π1, . . . ,πn} of the set {1, . . . ,n} and chop it into chunks of size k

(assuming n and k divisible) to obtain sets c1 = {π1,π2, . . . ,πk},
c2 = {πk+1, . . . ,π2k}, . . ., cn

k
= {πn−k+1, . . . ,πn}. 3. If C does not

contain any of the c sets, then increase r by 1 and add all c sets

42

(n
k

many of them) into C. 4. Reiterate from step 2. This algorithm
has 2 invariants: |C| = n

k
· r and Ci = r.

Theorem 52 (Upper bound). The largest solvable diagonal lock-chart
has at most maxq |Sq| individual keys.

Proof. Take any two distinct sets Sr and Sq. Suppose there is a
lock-chart with a solution s ′, whose individual keys are assigned
cuttings S ′

r ∪ S ′
q, where S ′

r ⊆ Sr and S ′
q ⊆ Sq. Their comple-

ments are denoted S̄ ′
r = Sr \ S

′
r and S̄ ′

q = Sq \ S ′
q. This proof

will show that there is another solvable lock-chart with at least
max{|Sr|, |Sq|} individual keys.

Given that the solution is correct, all keys from S ′
r ∪ S ′

q are pair-
wise suitable. Theorem 45 implies that all keys from Sr are pair-
wise suitable, as well as keys from Sq. Therefore, the only pairs
of unsuitable keys are I. in S ′

r × S̄ ′
q, II. in S ′

q × S̄ ′
r and III. in

S̄ ′
r × S̄ ′

q.

Consider the case I. (resp. II.) and assume r < q WLOG. By
Lemma 48, every cutting in S ′

r (resp. S ′
q) has

(
p−r
q−r

)
(resp.

(
q
r

)
·

(d−1)q−r) unsuitable cuttings in S̄ ′
q (resp. S̄ ′

r). By Lemma 50, for
every cutting in S ′

r (resp. S ′
q), there is a distinct combination of

cuttings in S̄ ′
q (resp. S̄ ′

r). By the same reasoning, a cutting can ap-
pear in at most

(
q
r

)
· (d− 1)q−r (resp.

(
p−r
q−r

)
) such combinations

(again by Lemma 48). This gives two formulas as applications of
Lemma 51:

|S̄ ′
q|(

p−r
q−r

) · [(q

q− r

)
· (d− 1)q−r

]
=

|Sq|− |S ′
q|

Ω
⩾ |S ′

r| . (3.3)

(
resp.

|Sr|− |S ′
r|(

q
q−r

)
· (d− 1)q−r

·
(
p− r

q− r

)
= Ω ·

(
|Sr|− |S ′

r|
)
⩾ |S ′

q|

)
(3.4)

Next, assume Sq ⩾ Sr, which gives Ω ⩾ 1 (resp. Sr ⩾ Sq, Ω ⩽ 1).
The equation can be rewritten as |Sq| ⩾ |S ′

r| ·Ω+ |S ′
q| ⩾ |S ′

r|+ |S ′
q|

(resp. |Sr| ⩾
|S ′

q|

Ω
+ |S ′

r| ⩾ |S ′
q|+ |S ′

r|). Therefore S ′
r ∪S ′

q, arbitrarily
chosen subsets of Sr and Sq, cannot be larger than Sq (resp. Sr).
Since Sq is bigger than Sr (resp. Sr is bigger than Sq), there is
a diagonal lock-chart, whose individual keys take cuttings form
Sq (resp. Sr), which is bigger than |S ′

r ∪ S ′
q|. By pair-wise com-

parison, we can maximize over all S0, . . . ,Sp.

Theorems 45 and 52 together imply that by finding some optimal
value q̂ = arg maxq |Sq| the cuttings from Sq̂ allow solving the
largest possible lock-chart. Next, we show how to find q̂ even
faster than by iterating over all Sqs.

43

Theorem 53. An optimal value q̂, which maximizes |Sq| is

q̂ =

⌊
p+ 1

d

⌋
. (3.5)

Proof. a) |Sq̂| ⩾ |Sq̂+1|:(
p

q̂

)
· (d− 1)p−q̂ ⩾

(
p

q̂+ 1

)
· (d− 1)p−(q̂+1) (3.6)

(d− 1) ⩾ p− q̂

q̂+ 1
(3.7)

q̂ ⩾ p+ 1

d
− 1 (3.8)

b) |Sq̂| ⩽ |Sq̂−1|. Similar reasoning yields q̂ ⩽ p+1
d

.

actual numbers . The size of a diagonal lock-chart in the
vanilla framework depends purely on two parameters (p and
d) and can be easily computed using closed form formulas. Ta-
ble 3.2 and Figure 3.2 show the actual numbers obtained by for-
mulas (3.1 and 3.5) in Lemma 46 and Theorem 53. The dp

|Sq̂|
ratio

in Table 3.3 tells how many cuttings in the code space are there
per one individual key in the largest diagonal lock-chart. They
might be used a quick reference for comparing different plat-
forms.

3.7 conclusion

Results of the entire chapter can be summarised as follows: In
the general framework, all non-trivial lock-chart problems are
NP-complete. In the asymmetric framework, the only known
fact is a trivial result on key-to-differ lock-charts, which are in P.
In the vanilla framework, melted profiles lock-charts and exten-
sion lock-charts are NP-complete, but diagonal and key-to-differ
lock-charts are in P. The situation in the vanilla framework is vi-
sualised in Figure 3.3.

Finally, let us conjecture that profiles do not express additional
complexity over basic lock-charts. Consider a key-to-differ pro-
filed lock-chart with a profile-map (P,⪯) in the vanilla frame-
work with. If p = d = 1, blockings must be ensured by the
profile assignment a and therefore lock ki is blocked in lj if and
only if a(ki) and a(lj) are independent. Finding the largest set
of independent profiles in a profile-map (P,⪯) corresponds to
finding the largest anti-chain in the partial order ⪯, which is a
problem in the P class [20]. The interaction between profiles and
positions is a good topic for future research.

44

d
=

2
d
=

3
d
=

4
d
=

5
d
=

6
d
=

7
d
=

8
d
=

9
d
=

1
0

d
=

1
1

p
=

1
1

2
3

4
5

6
7

8
9

1
0

p
=

2
2

4
9

1
6

2
5

3
6

4
9

6
4

8
1

1
0
0

p
=

3
3

1
2

2
7

6
4

1
2
5

2
1
6

3
4
3

5
1
2

7
2
9

1
0
0
0

p
=

4
6

3
2

1
0
8

2
5
6

6
2
5

1
2
9
6

2
4
0
1

4
0
9
6

6
5
6
1

1
·1
0
4

p
=

5
1
0

8
0

4
0
5

1
2
8
0

3
1
2
5

7
7
7
6

1
6
8
0
7

3
2
7
6
8

5
9
0
4
9

1
·1
0
5

p
=

6
2
0

2
4
0

1
4
5
8

6
1
4
4

1
8
7
5
0

4
6
6
5
6

1
1
7
6
4
9

2
6
2
1
4
4

5
3
1
4
4
1

1
·1
0
6

p
=

7
3
5

6
7
2

5
1
0
3

2
8
6
7
2

1
0
9
3
7
5

3
2
6
5
9
2

8
2
3
5
4
3

2
0
9
7
1
5
2

4
7
8
2
9
6
9

1
·1
0
7

p
=

8
7
0

1
7
9
2

2
0
4
1
2

1
3
1
0
7
2

6
2
5
0
0
0

2
2
3
9
4
8
8

6
5
8
8
3
4
4

1
6
7
7
7
2
1
6

4
3
0
4
6
7
2
1

1
·1
0
8

p
=

9
1
2
6

5
3
7
6

7
8
7
3
2

5
8
9
8
2
4

3
5
1
5
6
2
5

1
5
1
1
6
5
4
4

5
1
8
8
3
2
0
9

1
5
0
9
9
4
9
4
4

3
8
7
4
2
0
4
8
9

1
·1
0
9

p
=

1
0

2
5
2

1
5
3
6
0

2
9
5
2
4
5

2
9
4
9
1
2
0

1
9
5
3
1
2
5
0

1
0
0
7
7
6
9
6
0

4
0
3
5
3
6
0
7
0

1
3
4
2
1
7
7
2
8
0

3
8
7
4
2
0
4
8
9
0

1
· 1
0
1
0

p
=

1
1

4
6
2

4
2
2
4
0

1
0
8
2
5
6
5

1
4
4
1
7
9
2
0

1
0
7
4
2
1
8
7
5

6
6
5
1
2
7
9
3
6

3
1
0
7
2
2
7
7
3
9

1
1
8
1
1
1
6
0
0
6
4

3
8
3
5
4
6
2
8
4
1
1

1
1
·1
0
1
0

p
=

1
2

9
2
4

1
2
6
7
2
0

4
3
3
0
2
6
0

6
9
2
0
6
0
1
6

6
4
4
5
3
1
2
5
0

4
3
5
3
5
6
4
6
7
2

2
3
7
2
7
9
2
0
9
1
6

1
0
3
0
7
9
2
1
5
1
0
4

3
7
6
5
7
2
7
1
5
3
0
8

1
2
·1
0
1
1

p
=

1
3

1
7
1
6

3
6
6
0
8
0

1
6
8
8
8
0
1
4

3
2
7
1
5
5
7
1
2

3
8
0
8
5
9
3
7
5
0

2
8
2
9
8
1
7
0
3
6
8

1
7
9
9
3
6
7
3
3
6
1
3

8
9
3
3
5
3
1
9
7
5
6
8

3
6
7
1
5
8
3
9
7
4
2
5
3

1
3
·1
0
1
2

p
=

1
4

3
4
3
2

1
0
2
5
0
2
4

6
4
4
8
1
5
0
8

1
5
2
6
7
2
6
6
5
6

2
2
2
1
6
7
9
6
8
7
5

1
9
8
0
8
7
1
9
2
5
7
6

1
3
5
6
4
4
6
1
4
5
6
9
8

7
6
9
6
5
8
1
3
9
4
4
3
2

3
5
5
8
6
1
2
1
5
9
6
6
0
6

1
4
·1
0
1
3

p
=

1
5

6
4
3
5

3
0
7
5
0
7
2

2
4
1
8
0
5
6
5
5

7
6
3
3
6
3
3
2
8
0

1
2
8
1
7
3
8
2
8
1
2
5

1
3
7
1
3
7
2
8
7
1
6
8
0

1
0
1
7
3
3
4
6
0
9
2
7
3
5

6
5
9
7
0
6
9
7
6
6
6
5
6
0

3
4
3
1
5
1
8
8
6
8
2
4
4
1
5

1
5
·1
0
1
4

p
=

1
6

1
2
8
7
0

8
9
4
5
6
6
4

9
6
7
2
2
2
6
2
0

3
7
5
8
0
9
6
3
8
4
0

7
3
2
4
2
1
8
7
5
0
0
0

9
4
0
3
6
9
9
6
9
1
5
2
0

8
1
3
8
6
7
6
8
7
4
1
8
8
0

5
6
2
9
4
9
9
5
3
4
2
1
3
1
2

3
2
9
4
2
5
8
1
1
3
5
1
4
3
8
4

1
6
·1
0
1
5

Ta
bl

e
3

.2
:E

xa
ct

si
ze

of
th

e
la

rg
es

t
di

ag
on

al
lo

ck
-c

ha
rt

in
th

e
va

ni
lla

fr
am

ew
or

k.
N

ot
ic

e
ho

w
q̂

ch
an

ge
s

be
tw

ee
n

ro
w

s
p
=

1
0

an
d
p
=

1
1

.

45

d
=

2
d
=

3
d
=

4
d
=

5
d
=

6
d
=

7
d
=

8
d
=

9
d
=

1
0

d
=

1
1

d
=

1
2

d
=

1
3

d
=

1
4

d
=

1
5

d
=

1
6

p
=

1
2.0

0
1.5

0
1.3

3
1.2

5
1.2

0
1.1

7
1.1

4
1.1

2
1.1

1
1.1

0
1.0

9
1.0

8
1.0

8
1.0

7
1.0

7

p
=

2
2.0

0
2.2

5
1.7

8
1.5

6
1.4

4
1.3

6
1.3

1
1.2

7
1.2

3
1.2

1
1.1

9
1.1

7
1.1

6
1.1

5
1.1

4

p
=

3
2.6

7
2.2

5
2.3

7
1.9

5
1.7

3
1.5

9
1.4

9
1.4

2
1.3

7
1.3

3
1.3

0
1.2

7
1.2

5
1.2

3
1.2

1

p
=

4
2.6

7
2.5

3
2.3

7
2.4

4
2.0

7
1.8

5
1.7

1
1.6

0
1.5

2
1.4

6
1.4

2
1.3

8
1.3

5
1.3

2
1.2

9

p
=

5
3.2

0
3.0

4
2.5

3
2.4

4
2.4

9
2.1

6
1.9

5
1.8

0
1.6

9
1.6

1
1.5

5
1.4

9
1.4

5
1.4

1
1.3

8

p
=

6
3.2

0
3.0

4
2.8

1
2.5

4
2.4

9
2.5

2
2.2

3
2.0

3
1.8

8
1.7

7
1.6

9
1.6

2
1.5

6
1.5

1
1.4

7

p
=

7
3.6

6
3.2

5
3.2

1
2.7

2
2.5

6
2.5

2
2.5

5
2.2

8
2.0

9
1.9

5
1.8

4
1.7

5
1.6

8
1.6

2
1.5

7

p
=

8
3.6

6
3.6

6
3.2

1
2.9

8
2.6

9
2.5

7
2.5

5
2.5

7
2.3

2
2.1

4
2.0

1
1.9

0
1.8

1
1.7

4
1.6

8

p
=

9
4.0

6
3.6

6
3.3

3
3.3

1
2.8

7
2.6

7
2.5

9
2.5

7
2.5

8
2.3

6
2.1

9
2.0

6
1.9

5
1.8

6
1.7

9

p
=

1
0

4.0
6

3.8
4

3.5
5

3.3
1

3.1
0

2.8
0

2.6
6

2.6
0

2.5
8

2.5
9

2.3
9

2.2
3

2.1
0

1.9
9

1.9
1

p
=

1
1

4.4
3

4.1
9

3.8
7

3.3
9

3.3
8

2.9
7

2.7
6

2.6
6

2.6
1

2.5
9

2.6
0

2.4
1

2.2
6

2.1
4

2.0
3

p
=

1
2

4.4
3

4.1
9

3.8
7

3.5
3

3.3
8

3.1
8

2.9
0

2.7
4

2.6
6

2.6
2

2.6
0

2.6
1

2.4
3

2.2
9

2.1
7

p
=

1
3

4.7
7

4.3
6

3.9
7

3.7
3

3.4
3

3.4
2

3.0
6

2.8
5

2.7
2

2.6
6

2.6
2

2.6
1

2.6
2

2.4
5

2.3
1

p
=

1
4

4.7
7

4.6
7

4.1
6

4.0
0

3.5
3

3.4
2

3.2
4

2.9
7

2.8
1

2.7
1

2.6
6

2.6
3

2.6
2

2.6
3

2.4
7

p
=

1
5

5.0
9

4.6
7

4.4
4

4.0
0

3.6
7

3.4
6

3.4
6

3.1
2

2.9
1

2.7
8

2.7
0

2.6
6

2.6
3

2.6
3

2.6
3

p
=

1
6

5.0
9

4.8
1

4.4
4

4.0
6

3.8
5

3.5
3

3.4
6

3.2
9

3.0
4

2.8
7

2.7
7

2.7
0

2.6
6

2.6
4

2.6
3

Table
3.

3:The
d
p

|S
q̂
|

ratio
tells

how
m

any
cuttings

in
the

code
space

are
there

per
one

individualkey
in

the
largest

diagonallock-chart.

46

2

2

2
2

4

4

4

4
4

6
6

6

6

8
8

8

8

10

10

10

12

12

14

14

16

18

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

d(number of depths)

p
(n

um
be

r
of

po
si

ti
on

s)

0

2

4

6

8

10

12

14

16

18

Figure 3.2: 2D contour plot of the largest diagonal lock-chart size in
vanilla framework in log10 scale. E.g. for p = 14, dmax = 3,
we get |Sq̂| = |S5| = 1025024 ≃ 106, which corresponds to
the value 6 in the chart.

diagonal key-to-differ

basic

profiled

melted

extension

Figure 3.3: Lock-chart problem complexity in the vanilla framework.
P variants are printed green, NP-complete variants are
printed blue.

47

4
P R O P O S I T I O N A L I Z AT I O N

In combinatorial optimisation, there is usually a trade-off be-
tween algorithm’s generality and its performance. Given a spe-
cific problem, one can improve the runtime by better analysis,
discovering symmetries in the search-space or by improving data
structures and their implementation. But development takes time.
Hence a “practical approach” to lock-chart solving should start
from the other end. In this chapter, we try picking a state-of-the-
art general solver geared towards NP-complete problems and
translating the lock-chart problem into its formalism.

We called the approach propositionalization, a term used by [37] to
describe a process of rephrasing a problem in a higher-complexity
language into a lower-complexity one. Here lock-charts defined
in relational algebra are rewritten into propositional logic.

4.1 preliminaries

This chapter will use notions of SAT, clause, formula and CNF,
defined in the preliminaries of Chapter 3. However, for better
readability, we use several concise notations, all of which pre-
serve semantic equivalence.

syntactic sugar for cnf. A clause with the first i literals
negative can be written using the implication as (x1 ∧ x2,∧ · · ·∧
xi) ⇒ (xi+1 ∨ xi+2 ∨ · · · ∨ xj). A clause with at most 1 posi-
tive literal is a Horn clause. An equivalence with a disjunction
x0 ⇔ (x1 ∨ x2 ∨ · · · ∨ xn) is rewritten into a CNF with n + 1

clauses: (x0 ⇒ (x1 ∨ x2 ∨ · · ·∨ xn))∧ (x0 ⇐ x1)∧ (x0 ⇐ x2)∧

· · ·∧ (x0 ⇐ xn). An equivalence with a conjunction x0 ⇔ (x1 ∧

x2 ∧ · · ·∧ xn) is rewritten into a CNF with n+ 1 clauses: (x0 ⇒
x1)∧ (x0 ⇒ x2)∧ . . .∧ (x0 ⇒ xn)∧ (x0 ⇐ (x1 ∧ x2 ∧ · · ·∧ xn)).
To remove most parentheses from the previous definitions, we
define the operator priority to parse ¬x̄1 ∨ x2 ∧ x3 ⇒ x4 ⇔ x5
into ((((¬(x̄1))∨ x2)∧ x3)⇒ x4)⇔ x5.

convex optimisation. Linear programming is the problem
of finding an n-dimensional vector x = (x1, . . . , xn) or ratio-
nal numbers, which maximizes the dot product cTx subject to
Ax ⩽ b, where c is a vector, A is a n ×m matrix and b an

48

m-dimensional vector (the inequality Ax ⩽ b describes m inde-
pendent constraints, all of which must be satisfied). Integer lin-
ear programming (ILP) is a linear problem, where x1, . . . , xn ∈ Z.
Quadratic programming is the problem of finding an n-dimensional
vector x = (x1, . . . , xn), which minimises 1

2
xTQx+ cT · x subject

to Ax ⩽ b, where Q is a n×n matrix. Linear programming is in
P, integer linear programming is NP-hard.

4.2 boolean satisfiability

This section describes a procedure to translate the lock-chart
problem in the general framework into a CNF, which can be
solved by an off-the-shelf SAT solver.

There is a good motivation behind this idea. First, the quite
large SAT solving community organizes yearly competitions,1

where SAT solvers are benchmarked on various industrial and
synthetic instances. Using the final scores, one can quickly pick
state-of-the-art algorithms from the vast pool of existing libraries.
Second, there is a widely adopted text format for representing
CNFs called DIMACS.2 A simple format shared by most SAT
solving libraries allows quick prototyping and benchmarking.

Algorithms for SAT are roughly of two types. Local search algo-
rithms start from a random interpretation (a point in the |X|-
dimensional space), which might not satisfy the CNF. The as-
signment is gradually improved by flipping variable polarities
(searching the neighbourhood of the point). A notable example
is the GSAT algorithm [49], which picks the flipped variable by
the number of unsatisfied clauses in which it appears. The dan-
ger of becoming trapped in local minima inspired the WalkSAT
algorithm [48], which randomly picks an unsatisfied clause and
flips one of its variables. Since WalkSAT is not guaranteed make
the globally best move unlike GSAT, the two algorithms can be
viewed as instances of hill-climbing and gradient descent respec-
tively [35].

The second type of algorithms are descendants of the Davis–Putnam
and Davis–Putnam–Logemann–Loveland [16, 17] algorithms, usu-
ally referred as DPLL-based algorithms. They are backtracking al-
gorithms with a decision phase and a unit propagation phase. In
the simplest form, decision phase picks a variable and assigns
a polarity to it. Clauses which contain the variable in a positive
literal are ignored (until a backtrack). Negative literals of the as-
signed variable are removed from all clauses (until a backtrack).
Clauses with exactly 1 unassigned remaining literal are called

1 http://www.satcompetition.org
2 http://www.satcompetition.org/2009/format-benchmarks2009.html

49

http://www.satcompetition.org
http://www.satcompetition.org/2009/format-benchmarks2009.html

unitary. Unit propagation is a procedure that assigns the truth
value of the remaining literal, possibly rendering more clauses
unitary – a process which resembles a chain-reaction. If a vari-
able is assigned both 0 and 1 during unit propagation, a con-
flict causes the algorithm to backtrack. The strength of DPLL
algorithms stems from clever data structures, well described in
a seminal paper on the MiniSat algorithm [19]. The important
message for this text is the polynomial runtime of unit propaga-
tion.

Modern DPLL (including MiniSAT) employ some sort of Conflict-
Driven Clause Learning (CDCL). Particular implementations vary,
but in general, CDCL algorithms can analyse the clauses which
caused a conflict, simplify them and generate a conflict clause.
The conflict has two effects. First, it prunes the search space by
allowing the unit propagation to propagate variables earlier. Sec-
ond, the backtrack does not have to include a single variable,
but more of them – a technique known as backjumping (or non-
chronological backtracking). Readers interested in more details
of such techniques are once again encouraged to read the paper
on MiniSat [19]. Other algorithms that we tried were Glucose [4]
and CryptoMiniSat [50].

The translation of the lock-chart problem into SAT uses the idea
of “grounding”. Every cutting depth at every position both in
keys and locks will be represented by 1 propositional variable.
Albeit simple and straightforward, the procedure handles all
features from Chapter 2: extensions and melted profiles, which
imply support for profiled lock-charts. Since vanilla and asym-
metric frameworks are instances of the general framework, the
only unsupported framework is the explicit one.

notation. This section will translate arbitrary extension mel-
ted-profiles lock-chart (K,L,E,B) with a partial solution ŝ∪ t̂ into
a CNF. For convenience, variable k will iterate over all keys K, l
over all locks L, i over positions {1, . . . ,p} and j over all cutting
depths {1, . . . ,d} if not stated otherwise.

keys and cuttings . Each position in a key must be assigned
a cutting depth. Hence, for each position, we allocate d proposi-
tional variables and enforce only 1 of them to be true in every
model. In coding theory, this is known as “1-of-N code”.

The variable, which encodes cutting depth j on position i in key
k, will be denoted keyki,j. At least one such variable must be true
on every position. Given k and i, the requirement is expressed
in the clause

keyki,1 ∨ keyki,2 ∨ · · ·∨ keyki,d . (4.1)

50

Also, at most one variable must be true for every key k and
position i. A clause for every two distinct cutting depths j and j ′

forbids any two cutting depths to be active at the same time:

keyki,j ⇒ keyki,j ′ (4.2)

In total there are |K| · p · d variables and |K| · p ·
(
1+

d·(d−1)
2

)
clauses.3

locks and cylinders . A cylinder is encoded using the same
idea as a key. We assign p · d propositional variables denoted
as lockli,j. However, in this case, the 1-of-N constraints are not
needed, because a cylinder can have an arbitrary number of cut-
ting depths in each position. This gives |L| ·p ·d variables and no
clause.

opening . If a key k enters lock l, then its cutting must be
among the shear-lines of the cylinder. We do so by including
clauses

keyki,j ⇒ lockli,j (4.3)

for each position and cutting depth. This generates p · d · |E|
clauses.

There is one brawback of this formula. The implications allow
models to add pins into locks even if no key needs it, which
violates Proposition 16. As a counter-measure, we can replace
the implication by an equivalence ∨

k∈E(l)

keyki,j

⇔ lockli,j . (4.4)

for each position and cutting depth, which generates p ·d · (|E|+
|L|) clauses. Also note that the expansion of the equivalence (4.4)
into a CNF will generate the implications (4.3).

However, any difference in SAT solvers’ performance must be
tested empirically. The equivalence generates a smaller search-
space, because the lock variables are fully determined by the key
variables. On the other hand, the additional clauses might clog
data structures of a solver’s engine and slow down its inference.

blocking. Supppose a key k is blocked in lock l. Then there
must be 1 position, where the cutting depth of the key is blocked

3 Notice that keyki,j ⇒ keyki,j′ and keyki,j′ ⇒ keyki,j are two identical clauses. This
explains the 1

2 term.

51

by a missing pin in the lock. First, we define auxiliary variables
that detect the blocking

keyki,j ∧ lockli,j⇒blockk,l
i,j (4.5)

for each position, cutting depth, lock and a stopped key. The key’
cutting is blocked if at least one blocking variable is true∨

i,j

blockk,l
i,j (4.6)

which gives (pd+ 1) · |B| clauses and pd · |B| variables.

Note that the auxiliary blocking variables appear a positive lit-
eral in both types of clauses. Therefore they cannot be removed
by resolution, which is a common pre-processing step in SAT
solving.

Similarly to the previous case, it is possible to replace the impli-
cations in (4.5) by equivalences.

partial solution. Extension lock-chart’s solution must sat-
isfy the partial solution ŝ ∪ t̂: In every solution, keys’ cuttings
and lock’s cylinders must remain the same as in ŝ ∪ t̂. This is
achieved by adding unitary clauses lockli,j if t̂(l)i = j and its

negation lockli,j otherwise. The same idea applies to keys, even
though the negative literals may be implied by unit propagation
in DPLL algorithms. To see this, notice that a unitary clause keyki,j
renders left side of the implication (4.2) true and hence the right
side keyki,j ′ must be also true for all j ′ ̸= j.

The DPLL algorithms have a great advantage here. Since unit
propagation affects all clauses in the CNF, the solver only deals
with variables, literals and clauses not determined by the partial
solution ŝ. In other words, the complexity of solving the gener-
ated CNF correlates with the number of unassigned keys, not the
number of all keys. Consequently, DPLL solvers are very strong
at finding small extensions of arbitrarily large lock-charts, which
can be confirmed from our experience.

Including the redundant literals, there are p ·d · |ŝ| generated unit
clauses.

constraints . This straightforward translation is well suited
for incorporating mechanical constraints. One gecon translates
to one clause for each key. Let (c1, . . . , cp) be a gecon with p− r

wildcards and i1, . . . , ir be positions, where the gecon has non-
wildcard values. The clause

keyki1,ci1
∨ keyki2,ci2

∨ · · ·∨ keykir,cir
(4.7)

52

Variables Clauses
Name Allocated ⇒ ⇔

keys key pd · |K| p ·
(
1+

d·(d−1)
2

)
· |K|

locks lock pd · |L| 0

enterings pd · |E| pd · (|E|+ |L|)

blockings block pd · |B| (pd+ 1)·|B| (3pd+ 1)·|B|
constraints number of gecons · |K|
extension pd · |ŝ|

Table 4.1: Size of the straightforward translation. The number of
clauses is given for both implication and equivalence mod-
els.

ensures that the cutting differs from the gecon on at least 1 non-
wildcard position. This exactly follows the definition of gecons.

Since the asymmetric framework is a special case of the general
framework, asymmetric constraints are covered by this approach
as well. See the last paragraphs of Section 2.2 for details. Given
that the gecons (2.2) translate to a unitary clause, they take ad-
vantage of unitary propagation.

The problem with adapting the explicit framework into the gen-
eral one and the need for an exponential translation procedure
is described in the same place.

Definition 54. Assume a general framework and let (K,L,E,B)
be a melted profiles lock-chart and ŝ its partial solution. The
CNF which composes of all clauses (4.1)-(4.7) is called the lock-
chart’s straightforward translation.

Proposition 55. The straightforward translation is satisfiable if and
only if the translated lock-chart has a solution.

This proposition is left without a formal proof. There is a 1:1 cor-
respondence between every definition of the lock-chart problem
and a clause in the straightforward translation; hence a proof
would provide no additional insight.

Given this proposition and a model to the CNF, one can easily
recreate a solution to the original lock-chart. For every key and
position s(k)i = j if and only if I

(
keyki,j

)
= 1.

summary. Table 4.1 contains the size of the CNF generated
by the straightforward translation. Since real-world lock-charts
(for example diagonal lock-charts) have |B| ∼ |K| · |L|, we can see
that the blocking clauses and variables dominate all other types.

53

evaluation. Before the SAT translation algorithm shows its
strengths, which comes no earlier than in Chapter 6, I would
like to discuss its limitations. The theoretical limits have been
described in Chapter 3, but what about the practical ones?

As the simplest benchmark, we picked vanilla diagonal lock-
charts, because such a benchmark only depends on 3 parame-
ters – p, d and the number of individual keys. All results can be
summarised in a single table.

Implementation-wise, we used a C++ binary API instead of ex-
porting the CNFs to the DIMACS format. The API allows in-
cremental solving, which was used for adding keys and locks
one by one, until a the entire lock-chart was solved, the 1 hour
timeout occurred or an out-of-memory error was raised.

One may question such benchmark on the grounds of “tortur-
ing” a SAT solver on a polynomial instance. Indeed, if the SAT
solver could somehow discover the solution, which was proved
optimal in Theorems 45 and 52, such a benchmark would cer-
tainly be meaningless.

We still believe that such a benchmark is a reasonable estimate of
SAT solvers’ performance on real-world lock-charts with many
constraints. SAT solvers rarely attempt at analyzing its input or
discovering symmetries in the search-space. They are designed
and tuned for solving NP-hard problems, largely relying on their
brute-force performance.

Tables 4.2 and 4.3 show the results. They were obtained by using
the MiniSat library on an Intel Core i5 CPU running at 2.70 GHz
with 16 GiB RAM. The CNFs were obtained using the implica-
tion model both for lock and block variables.4

Until the diagonal lock-chart has 700 individual keys or less, the
solver is very likely to find a solution. Apparently the solver’s
performance peaks at around 1700 keys. With increasing p and
d, it fails to exploit the larger code space and even the absolute
numbers tend to decrease.

The main reason for dwindling performance in large code spaces
is memory depletion. Most instances, which did not achieve
100% score, ended up on an out-of-memory error. This can be
attributed to the fact that DPLL-based algorithms rely on many
clever data structures. For example, every variable is associated
with a list of clauses, in which it appears [19] to speed up propa-
gation. Since all relevant formulas in Table 4.1 have the pd factor
and |B| scales quadratically with |K|, MiniSat runs out of memory
faster with larger code space.

4 During internal testing, we found out that MiniSat beats Glucose and Crypto-
MiniSat and that the implication model beats equivalence mode.

54

d
=

2
d
=

3
d
=

4
d
=

5
d
=

6
d
=

7
d
=

8
d
=

9
d
=

1
0

d
=

1
1

d
=

1
2

d
=

1
3

d
=

1
4

d
=

1
5

d
=

1
6

p
=

1
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

p
=

2
2

4
9

1
6

2
5

3
6

4
9

6
4

8
1

1
0
0

1
2
1

1
4
4

1
6
9

1
9
6

2
2
5

p
=

3
3

1
2

2
7

6
4

1
2
5

2
1
6

3
4
3

5
1
2

7
2
9

1
0
0
0

13
27

14
86

14
51

14
18

13
72

p
=

4
6

3
2

1
0
8

2
5
6

62
1

12
93

15
97

15
56

15
06

14
36

13
74

13
21

12
72

12
29

11
89

p
=

5
1
0

8
0

4
0
5

12
65

16
62

16
10

15
06

14
20

13
47

12
84

12
29

11
81

11
38

10
99

10
63

p
=

6
2
0

2
4
0

13
78

17
04

15
87

14
69

13
99

12
96

12
29

11
72

11
22

10
78

10
39

10
03

97
0

p
=

7
3
5

6
7
2

17
49

16
10

14
69

13
93

12
96

12
00

11
38

10
85

10
39

99
8

96
2

92
9

89
8

p
=

8
7
0

17
55

17
49

15
06

14
18

13
03

11
90

11
22

10
64

10
15

97
2

93
6

90
1

86
9

84
0

p
=

9
12

2
18

32
16

81
14

20
13

37
12

29
11

22
10

58
10

03
95

7
92

1
88

0
84

8
81

9
79

2
p
=

1
0

2
5
2

18
36

15
94

14
04

12
68

11
38

10
64

10
03

95
2

91
5

87
4

83
5

80
4

77
7

75
1

p
=

1
1

4
6
2

17
78

14
36

13
39

12
09

10
85

10
15

95
7

91
8

87
2

82
8

79
6

76
7

74
1

71
6

p
=

1
2

91
1

17
02

14
52

12
82

11
58

10
39

97
2

92
9

87
8

83
5

79
3

76
2

73
4

70
9

68
6

p
=

1
3

15
65

16
35

14
00

12
32

11
13

99
8

95
1

89
3

84
4

79
6

76
2

73
2

70
5

68
1

65
9

p
=

1
4

19
80

15
81

13
49

11
87

10
72

96
2

91
6

86
0

81
3

77
3

73
4

70
5

68
0

65
7

63
5

p
=

1
5

18
49

15
28

13
03

11
47

10
36

95
2

88
5

83
1

78
6

74
1

70
9

68
1

65
7

63
4

61
3

p
=

1
6

18
47

14
79

12
62

11
11

97
2

92
2

85
7

80
5

76
1

71
7

68
7

66
0

63
6

61
4

59
4

Ta
bl

e
4
.2

:N
um

be
r

of
in

di
vi

du
al

ke
ys

in
a

va
ni

lla
di

ag
on

al
lo

ck
-c

ha
rt

,w
hi

ch
w

er
e

fo
un

d
by

th
e

M
in

iS
at

al
go

ri
th

m
.V

al
ue

s
in

it
al

ic
s

co
rr

es
po

nd
to

ru
ns

,
w

hi
ch

en
de

d
by

a
ti

m
eo

ut
or

by
an

ou
t-

of
-m

em
or

y
er

ro
r.

55

d
=

2
d
=

3
d
=

4
d
=

5
d
=

6
d
=

7
d
=

8
d
=

9
d
=

1
0

d
=

1
1

d
=

1
2

d
=

1
3

d
=

1
4

d
=

1
5

d
=

1
6

p
=

1
1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

p
=

2
1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

p
=

3
1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

1
0
0%

8
6%

6
6%

5
2%

4
1%

p
=

4
1
0
0%

1
0
0%

1
0
0%

1
0
0%

9
9%

1
0
0%

6
7%

3
8%

2
3%

1
4%

9%
6%

4%
3%

2%
p
=

5
1
0
0%

1
0
0%

1
0
0%

9
9%

5
3%

2
1%

9%
4%

2%
1%

1
0
−
2

1
0
−
2

1
0
−
3

1
0
−
3

1
0
−
3

p
=

6
1
0
0%

1
0
0%

9
5%

2
8%

8%
3%

1%
1
0
−
2

1
0
−
3

1
0
−
3

1
0
−
3

1
0
−
3

1
0
−
4

1
0
−
4

1
0
−
4

p
=

7
1
0
0%

1
0
0%

3
4%

6%
1%

1
0
−
2

1
0
−
3

1
0
−
3

1
0
−
4

1
0
−
4

1
0
−
4

1
0
−
5

1
0
−
5

1
0
−
5

1
0
−
5

p
=

8
1
0
0%

9
8%

9%
1%

1
0
−
3

1
0
−
3

1
0
−
4

1
0
−
4

1
0
−
5

1
0
−
5

1
0
−
5

1
0
−
6

1
0
−
6

1
0
−
6

1
0
−
6

p
=

9
9
7%

3
4%

2%
1
0
−
3

1
0
−
3

1
0
−
4

1
0
−
5

1
0
−
5

1
0
−
6

1
0
−
6

1
0
−
6

1
0
−
7

1
0
−
7

1
0
−
7

1
0
−
8

p
=

1
0

1
0
0%

1
2%

1
0
−
2

1
0
−
3

1
0
−
4

1
0
−
5

1
0
−
6

1
0
−
6

1
0
−
7

1
0
−
7

1
0
−
7

1
0
−
8

1
0
−
8

1
0
−
9

1
0
−
9

p
=

1
1

1
0
0%

4%
1
0
−
3

1
0
−
4

1
0
−
5

1
0
−
6

1
0
−
6

1
0
−
7

1
0
−
8

1
0
−
8

1
0
−
9

1
0
−
9

1
0
−
9

1
0
−
1
0

1
0
−
1
0

p
=

1
2

9
9%

1%
1
0
−
3

1
0
−
5

1
0
−
6

1
0
−
7

1
0
−
7

1
0
−
8

1
0
−
9

1
0
−
9

1
0
−
1
0

1
0
−
1
0

1
0
−
1
1

1
0
−
1
1

1
0
−
1
1

p
=

1
3

9
1%

1
0
−
2

1
0
−
4

1
0
−
5

1
0
−
7

1
0
−
7

1
0
−
8

1
0
−
9

1
0
−
1
0

1
0
−
1
0

1
0
−
1
1

1
0
−
1
1

1
0
−
1
2

1
0
−
1
2

1
0
−
1
2

p
=

1
4

5
8%

1
0
−
3

1
0
−
5

1
0
−
6

1
0
−
7

1
0
−
8

1
0
−
9

1
0
−
1
0

1
0
−
1
1

1
0
−
1
1

1
0
−
1
2

1
0
−
1
2

1
0
−
1
3

1
0
−
1
3

1
0
−
1
4

p
=

1
5

2
9%

1
0
−
3

1
0
−
5

1
0
−
7

1
0
−
8

1
0
−
9

1
0
−
1
0

1
0
−
1
1

1
0
−
1
2

1
0
−
1
2

1
0
−
1
3

1
0
−
1
3

1
0
−
1
4

1
0
−
1
4

1
0
−
1
5

p
=

1
6

1
4%

1
0
−
4

1
0
−
6

1
0
−
8

1
0
−
9

1
0
−
1
0

1
0
−
1
1

1
0
−
1
2

1
0
−
1
3

1
0
−
1
3

1
0
−
1
4

1
0
−
1
5

1
0
−
1
5

1
0
−
1
6

1
0
−
1
6

Table
4.

3:Percentage
of

individual
keys

solved
in

a
vanilla

diagonal
lock-chart

by
M

iniSat.
V

alue
1

0
0%

m
eans

all
invidiual

keys
in

the
largest

solvable
lock-chart

|S
q̂
|.

56

4.3 integer linear programming

Beside SAT solvers there are ILP solvers, which are also em-
ployed in hard combinatorial tasks. This section summarises our
reasoning about writing a similar translation procedure from the
lock-chart problem to ILP.

Question 56. Can ILP solvers perform better than SAT solvers at
solving the lock-chart problem?

Because NP-hard solving algorithms are tricky to compare, a
definitive answer needs an experimental evaluation. Neverthe-
less, we decided to skip it in order to focus on domain-specific
algorithms. Still, we think there are good reasons to believe ILP
solvers stand a good chance.

First, there is a pragmatic argument. Libraries such as CPLEX [30]
or Gurobi [24] are big commercial endeavours. Merely judging
from the code-base size (current binaries take up between 25MB
and 100MB of disk space) and commercial price (Gurobi license
costs between $ 14 000 and $ 56 000),5 these libraries have been
invested a lot of endeavour.

Second, the CNF obtained by the translation procedure from the
previous section can be translated once again into a binary ILP
instance easily. Assume that for every propositional variable in
the CNF, there is one binary (0 ⩽ x ⩽ 1) integer variable in the
ILP instance. A clause

C = x̄1 ∨ x̄2 ∨ · · ·∨ x̄i ∨ xi+1 ∨ xi+2 ∨ · · ·∨ xj (4.8)

is satisfied under an interpretation I if I(C) = 1. This condition
is implied by an ILP constraint

(1− x1) + (1− x2) + · · ·+ (1− xi) + xi+1 + xi+2 + · · ·+ xj ⩾ 1 .
(4.9)

This “retranslation” of the lock-chart problem might not be the
most efficient encoding, but is certainly an easy start given that
the procedure for generating CNF is implemented.

initial solution. Next, consider a common technique to
attack ILP problems: First, the “integer” constraint is relaxed,
all variables are considered real, which gives an LP relaxation.
Unlike the original problem, the relaxation is in P [36] and can
be solved by many existing algorithms quickly. Given a solution
to the relaxation, ILP solver starts the backtracking procedure by
rounding off the variables.

5 http://www.gurobi.com/products/licensing-pricing/
commercial-pricing

57

http://www.gurobi.com/products/licensing-pricing/commercial-pricing
http://www.gurobi.com/products/licensing-pricing/commercial-pricing

Given a good optimisation criterion, the LP relaxation can bring
the backtracking part close to an integer solution, which might
reduce the algorithm’s runtime. At least for diagonal lock-charts,
that clog MiniSAT, a good criterion respects the “equal to the
general key” value q from Section 3.6.

Assume that the general key is g and take any other key k. If the
cuttings of the two keys differ on position i, then

d∑
j=1

∣∣∣keygi,j − keyki,j

∣∣∣ = 2 (4.10)

Then by summing over all positions and all keys and rephrasing
the constriant as an optimisation criterion, the c vector can be
formed to minimise∣∣∣∣∣∣

 ∑
k∈K\{g}

p∑
i=1

d∑
j=1

∣∣∣keygi,j − keyki,j

∣∣∣
− 2 · q · |K|

∣∣∣∣∣∣ (4.11)

This criterion is becomes linear by replacing every absolute value
by auxiliary variables [10]. The absolute values will generate pd ·
|K| auxiliary variables, which is still linear in the number of keys.

compression. Finally, the blocking constraints, which are be-
hind MiniSat’s high memory consumption, can be encoded more
efficiently. To ensure a blocking on at least 1 position, the follow-
ing constraint can be formulated:∑

i,j

keyki,j · (1− lockli,j) ⩾ 1 (4.12)

The constraint is quadratic, which calls for quadratic program-
ming. If for whatever reason, quadratic programming was unde-
sirable, every binary quadratic integer program can be translated
into a binary ILP [9].

58

5
C U T T I N G C O U N T I N G

The cutting counting problem occurs when new mechanical plat-
forms are created. While fiddling with the physical layout of
cuttings and cylinders, the number of positions, cutting depths
and mechanical constraints, engineers need to know how their
design choices affect master-keyed systems. An algorithm for
counting key cuttings does exactly that.

The counting problems are also related to some theoretical ques-
tions, because several problems in lock-chart solving reduce to
counting problems. For example, finding a solution to a key-to-
differ lock-chart is as hard counting solutions to a 1 × 0 lock-
chart (see Section 3.3). Out of many similar questions, by cutting
counting, we specifically mean the following question:

Question 57. How to calculate the size of the code space |S| or the size
of the largest solvable diagonal-lock chart?

The first major result on cutting counting is the formula (3.1)
in the vanilla framework, which gives the size of largest solvable
diagonal lock-chart as |Sq̂|. Besides that, the simple formula |S| =

dp can also be considered as a trivial result on count cutting.
This chapter extends such results to the remaining constraint
frameworks.

5.1 asymmetric framework

Definition 58. Let (d̃1, . . . , d̃p) be the deepest cutting. The func-
tion Γ : {0, . . . ,p}× T × T → W, denoted Γ(q,E,B), counts the
number of cuttings, which have exactly q cutting depths present
in the cylinder E (on respective positions) and which are blocked
in the cylinder B. Formally

Γ(q,E,B) =
{
γ ∈ S

∣∣ B blocks γ and q = qE
γ

}
, where (5.1)

qE
γ =

∑
1⩽i⩽p

1 if γi ∈ Ei

0 if γi ̸∈ Ei

(5.2)

This function has many applications. For a start, it answers the
cutting counting question in the asymmetric framework:

59

1. Let q = 0 and E = B =

p times︷ ︸︸ ︷
(∅, . . . , ∅), which will be written

concisely as E = B = ∅ in this chapter. Then every cutting
γ is blocked in B and qE

γ = 0 = q. Therefore every cutting
satisfies the conditions and Γ function calculates the size of
the code space |S|:

Γ(0, ∅, ∅) = d̃1 · d̃2 · . . . · d̃p = |S| . (5.3)

In the vanilla framework, all cutting depths of the deepest
cutting d̃ are equal, and hence Θ(p, 0, ∅, ∅) = dp = |S|.

2. By definition, value Γ(q, (

p times︷ ︸︸ ︷
{1}, . . . , {1}), ∅) is the number of

cuttings equal to any general key1 on exactly q positions,
a number known as |Sq|. By Theorem 45, which holds in
all frameworks, the value maxq |Sq| is the lower bound on
the size of the largest solvable diagonal lock-chart. In the
vanilla framework, the Theorem 52 holds and hence the
bound is tight.

Through this section, we will be finding a faster way to evaluate
the Γ function. First, a recurrence relation is formulated, which
avoids a brute-force iteration over all cuttings γ ∈ S. Its evalua-
tion will reduce the number of operations from the order of dp

to 4p.

Lemma 59. The Γ(q,E,B) function is equal to Θ(p,q,E,B), where

Θ(i,q,E,B) =

0 if q < 0 or i < q

|E1 \B1| if i = 1 and q = 1

d̃1 − |E1 ∪B1| if i = 1 and q = 0

θ(i,q,E,B) otherwise

(5.4)

θ(i,q,E,B) = |Bi \ Ei| · Θ(i− 1,q,E,B)+ (case 1)

+ |Bi ∩ Ei| · Θ(i− 1,q− 1,E,B)+ (case 2)

+ |Ei \Bi| · Θ(i− 1,q− 1,E, ∅)+ (case 3)

+(d̃i − |Ei ∪Bi|) · Θ(i− 1,q,E, ∅) (case 4)

(5.5)

The terminating condition is defined in the formula (5.4) and the
recursion in (5.5). Note that the θ function is merely a substitu-
tion for better typography on a narrow page layout.

Before a general proof, we feel obliged to do a “sanity check”.

1 In the asymmetric framework, the size |Sq| is constant regardless of the general
key’s cutting. The reasoning is similar to the proof of Theorem 46.

60

Example 60. Let p = 3, d = 2 (deepest cutting is (2, 2, 2) in
the asymmetric framework), q = 2, E = ({1}, {1}, {1}) and B =

({1, 2}, {1}, {2}). The expected value of Θ(p,q,E,B) is 2, because
only cuttings (1, 1, 2), (1, 2, 1) and (2, 1, 1) have q = 2 cuttings
depths within E, but 1 of them enters B, namely (1, 1, 2).

Θ(3, 2,E,B) =

by case 1︷ ︸︸ ︷
1 ·Θ(2, 2,E,B)+

by case 3︷ ︸︸ ︷
1 ·Θ(2, 1,E, ∅) =

=

 by case 2︷ ︸︸ ︷
1 ·Θ(1, 1,E,B)+

by case 4︷ ︸︸ ︷
1 ·Θ(1, 2,E, ∅)

+

+

 by case 3︷ ︸︸ ︷
1 ·Θ(1, 0,E, ∅)+

by case 4︷ ︸︸ ︷
1 ·Θ(1, 1,E, ∅)

 =

=

 by i=q=1︷ ︸︸ ︷
|{1} \ {1, 2}|+

by i<q︷︸︸︷
0

+

by i=1 and q=0︷ ︸︸ ︷
2− |{1}∪ ∅| +

by i=q=1︷ ︸︸ ︷
|{1} \ ∅|

 = 2

A second “sanity check” is done by checking two special cases
in the vanilla framework:

1. The code space size |S| is given by Θ(p, 0, ∅, ∅). This follows
from Ei = Bi = ∅, which makes the factors in cases 1 to 3

evaluate to 0. Case 4 multiplies d̃i − |Ei ∪ Bi| = d exactly
p− 1 times and the terminating condition adds the last dth

factor. Therefore Θ(p, 0, ∅, ∅) = dp.

2. When deriving |Sq| = Θ(p,q, ({1}, . . . , {1}), ∅), cases 1 and 2

do not apply, because Bi = ∅. First note that the Θ func-
tion is a sum of products. Every call sequence picks p− 1

times either case 3 or 4, arrives at some terminating con-
dition and yields one product to the sum. If we were to
arrive at the terminating condition q = 1, case 3 must be
picked exactly q − 1 times. Hence the |d̃i − {1}| = d − 1

value is multiplied in the remaining p− q invocations of
case 4. This gives the (d− 1)p−q factor, which is obtained(
p−1
q−1

)
-many times. If we were to arrive at the terminating

condition q = 0, a similar reasoning gives the same fac-
tor

(
p−1
q

)
-many times. The sum of these two factors gives

formula (3.1), because[(
p− 1

q− 1

)
+

(
p− 1

q

)]
· (d−1)p−q =

(
p

p− q

)
· (d−1)p−q .

Proof of the lemma. The first parameter i iterates over all positions
and lets the function “restrict all reasoning” only to positions
{1, . . . , i} and ignore the remaining positions {i+ 1, . . . ,p}. Every

61

recursive step “extends” the reasoning to cuttings one position
longer. The proof is done by induction on i.

The base case assumes i = 1: The θ function is never invoked.
Hence only the first 3 lines of (5.4) are proved. There is only 1

position to block a cutting, hence cutting depths B1 are never
counted. The second and third line count remaining depths ei-
ther inside (resp. outside) Ei when q = 1 (resp. q = 0).

The inductive step proves correctness of Θ(i,q,E,B) = θ(i,q,E,B)
in (5.5) by assuming Θ(i− 1,q,E,B) is correct. First note the par-
titioning of cutting depths. Every cutting depth on the i-th po-
sition is either in Ei ∩ Bi, in Ei \ Bi, in Bi \ Ei or outside both
sets, of which there are d̃i − |Ei ∪ Bi| many ones. Sizes of these
sets are multiplicative factors in cases 1 to 4. This ensures that
no cutting is counted twice.

Next, take any cutting γ which matches E on q positions be-
tween 1 and i. If γi ∈ Ei then the cutting matches E on q− 1

positions between 1 and i− 1 (cases 2 and 3). Otherwise, the q

remains the same between the recursive steps (cases 1 and 4).
Hence the recursive formula does not depend on values q− 2 or
less and no cutting is left out.

Similarly if the cutting depth γi ∈ Bi, the cutting is not blocked
on the i-th position. Therefore it must have been blocked some-
where between positions 1 and i− 1. Therefore cases 1 and 2 ex-
tend Θ(i, ∗,E,B) cuttings. Cases 3 and 4 assume γi ̸∈ Bi, which
ensures (possibly additional) blocking on the i-th position and
extend Θ(i, ∗,E, ∅).

Having defined and understood Γ and Θ functions, there is the
question of their evaluation. A third, equivalent, closed-form for-
mula is unlikely to exist, and a naive execution of both func-
tions is exponential in p. Observing that parameters i and q

can only decrease during the execution of Θ calls for its evalua-
tion via a simple dynamic programming scheme. Algorithm 5.1
implements the scheme and runs in quadratic time. The algo-
rithm merely turns the terminating condition (5.4) into initiali-
sation and then applies the recursive case (5.5). A better version
would save memory (which implies better cache usage on mod-
ern CPUs) by eliminating the first dimension from the Θ array
by observing that Θ(i, ∗, ∗) only depends on Θ(i− 1, ∗, ∗).

5.2 general framework

Having formulated a cutting counting procedure for the asym-
metric framework, can the same be done for the general frame-
work?

62

input : The deepest cutting (d̃1, . . . , d̃p), a whole number q
and two cylinders E,B

output : Value of the Θ(1,q,E,B)
1 Function count((d̃1, . . . , d̃p),q,E,B):
2 declare Θ as an array of size p · (p+ 1) · 2, values

initialised to 0, for convenience indexed by
{1, . . . ,p}× {0, . . . ,p}× {B, ∅}

3 Θ(1, 1,B)← |E1 \B1|

4 Θ(1, 0,B)← d̃1 − |E1 ∪B1|

5 Θ(1, 1, ∅)← |E1|

6 Θ(1, 0, ∅)← d̃p − |E1|

7 for i ∈ {2, . . . ,p} do
8 for q ∈ {0, . . . , i} do

9

Θ(i,q,B)← |Bi \ Ei| · Θ(i− 1,q,B)+
+ |Bi ∩ Ei| · Θ(i− 1,q− 1,B)+
+ |Ei \Bi| · Θ(i− 1,q− 1, ∅)+

+ (d̃i − |Ei ∪Bi|) · Θ(i− 1,q, ∅)

10
Θ(i,q, ∅)← |Ei| · Θ(i− 1,q− 1, ∅)+

+ (d̃i − |Ei|) · Θ(i− 1,q, ∅)
11 end
12 end
13 return A(p,q,B)

Algorithm 5.1: Cutting-counting algorithm for the asymmet-
ric framework.

63

First, recall a fundamental limitation. Section 3.3 established that
the problem is NP-complete, namely, it sits in the #P class, which
kills any hope for a polynomial procedure.

sat-based approach . The SAT correspondence may yield
the first practical algorithm, which would be easy to implement.
Theorem 32 shows that every solution of the 1 × 0 lock-chart
corresponds to one cutting in S. Can we take the straightforward
translation of the 1× 0 lock-chart to CNF (from Section 4.2) and
use existing efficient libraries [8] to solve the #SAT problem?

Interested readers may try this approach, but we remain scepti-
cal. There are several issues that would have to be addressed:

• Take the DPLL-Based Model Counters (discussed in Sec-
tion 20.2.1 of [8]). Their idea is to obtain a partial solution
I : X ⇀ {0, 1}, which do not have to assign all variables
X, but stop once every clause has at least 1 positive literal.
The remaining |X|− |I| variables can be assigned arbitrar-
ily, and hence the partial solution captures 2|X|−|I| models.
However, considering the CNF instances from Section 4.2,
the solution cannot be partial (|X| = |I|), because of the bi-
nary clauses coming from the “1-of-N encoding”. If a vari-
able keyki,j is assigned 1, all other variables keyki,j ′ (for j ̸= j ′)
must be assigned 0, otherwise the binary clauses have no
positive literal.

• Another strong idea of model counters is a component anal-
ysis. Connected components of the constraint graph [8] may
be solved independently. Variables encoding different po-
sitions of a cutting indeed appear in different connected
components, but only as long as they are not joined by a
gecon, which is often the case. Hence this idea works well
only in the asymmetric framework (for which there is a
polynomial procedure).

On a different note, one may try solving a series of key-to-differ
lock-charts with increasing size by a non-counting (aka standard)
SAT-solver. Lemma 34 shows that a solution to the largest solv-
able key-to-differ lock-chart gives the set |S|. However, it is hard
to believe that such a solver would get much further than ∼ 2000

cuttings we obtained in Section 4.2 by MiniSAT on diagonal lock-
charts. Instead, here we aim at results in the order of ∼ 107.

inclusion-exclusion procedure . The probably simplest
form of the inclusion-exclusion principle says that given two sets
A,B, their sizes are related as following:

|A∪B| = |A|+ |B|− |A∩B|

64

The principle may be known from the high-school formula on
the probability of two dependent events. Here, it will be applied
to counting cuttings that are satisfied by a set of gecons.

Recall that a gecon is associated with a universal cylinder, for-
mally defined in Lemma 37. A cutting satisfies the gecon if and
only if the cutting is blocked in the associated universal cylinder.
Therefore counting cuttings that satisfy a set of gecons is equiva-
lent to the number of cuttings blocked in all associated universal
cylinders.

Lemma 61. Let C = (C1, . . . ,Cp) and D = (D1, . . . ,Dp) be two
cylinders. Their intersection denoted as

C∩D = (C1 ∩D1, . . . ,Cp ∩Dp)

blocks exactly those cuttings that are blocked in both C and D.

Proof. A cutting (c1, . . . , cp) is blocked in C if there is i ∈ {1, . . . ,p}
s.t. ci ̸∈ Ci. Therefore ci ̸∈ Ci ∩Di and hence the cutting is
blocked in C∩D. If the cutting is blocked in C∩D, then there is
i ∈ {1, . . . ,p} s.t. ci ̸∈ Ci ∩Di. Therefore either ci ̸∈ Ci or ci ̸∈ Di

and the cutting is blocked in C or D.

Having defined an intersection of cylinders, we can count the
number of blocked cuttings.

Corollary 62. Let C and D be two cylinders. Number of cuttings
blocked by both C and D is (I.) the number of cuttings blocked by C

plus (II.) the number of cuttings blocked by D minus (III.) the number
of cuttings blocked by C∩D.

Proof. If a cutting is blocked in the cylinder C only, it is only
counted in the (I.) term. If a cutting is blocked by both C and D,
it is counted in all 3 terms (I.), (II.) and (III.). Given the polarities,
two of the terms cancel out. Hence the cutting is counted only
once. Other cases are similar or trivial.

The inclusion-exclusion principle generalises the corollary to an
arbitrary number of cylinders.

Definition 63. Let Γ̄(q,E, {B1, . . . ,Bn}) be the generalised Γ func-
tion, which counts the number of cuttings, which have exactly
q cutting depths present in the cylinder E (on respective posi-

65

tions) and which are blocked by all cylinders Bi. The inclusion-
exclusion principle states

Γ̄(q,E, {B1, . . . ,Bn}) =

n∑
i=1

Γ(q,E,Bi)− (5.6)

−

n−1∑
i=1

n∑
j=i+1

Γ(q,E,Bi ∩Bj)+ (5.7)

+

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

Γ(q,E,Bi ∩Bj ∩Bk) − · · ·

(5.8)

· · · Γ(q,E,B1 ∩ · · · ∩Bn) . (5.9)

Example 64. Let p = 3, d = 2, q = 2, E = ({1}, {1}, {1}) and the
three gecons are (?, 1, 2), (1, 1, ?) and (?, 2, ?). The expected an-
swer is Γ̄(q,E, {B1,B2,B3}) = 1, because from the 3 candidate
cuttings Sq = S2 = {(1, 1, 2), (1, 2, 1), (2, 1, 1)} only (2, 1, 1) satis-
fies all 3 gecons.

First state the universal cylinders associated with the 3 gecons:

B1 = ({1, 2}, {1}, {2}), B2 = ({1}, {1}, {1, 2})

and B3 = ({1, 2}, {2}, {1, 2}) .

Let us save some work by noting that B2 ∩B3 = ({1}, ∅, {1, 2}). Ev-
ery cutting is blocked on the middle position, hence Γ(q,E,B2 ∩
B3) = Γ(q,E, ∅) = |Sq|. The same is true for B1 ∩B2 ∩B3, because
the additional cylinder B1 in the intersection cannot remove ∅
from the middle position. Therefore the terms Γ(q,E,B2 ∩ B3)

and Γ(q,E,B1 ∩B2 ∩B3) cancel out:

Γ̄(q,E, {B1,B2,B3}) =

= Γ(q,E,B1) + Γ(q,E,B2) + Γ(q,E,B3)−

− Γ(q,E,B1 ∩B2) − Γ(q,E,B1 ∩B3)

Example 60 already calculated Γ(q,E,B1) = 2. By a similar cal-
culation, by invoking count(. . .), or by observing that both B2

and B3 block exactly 2 cuttings from S2, we get Γ(q,E,B2) =

Γ(q,E,B3) = 2. The cylinder B1 ∩ B2 = ({1}, {1}, {2}) is entered
only by the cutting (1, 1, 2), hence Γ(q,E,B1 ∩B3) = 2. The cylin-
der B1 ∩B3 = ({1, 2}, ∅, {2}) has the middle position empty, which
yields Γ(q,E,B1 ∩B3) = |Sq| = 3. Substituting the values gives

Γ̄(q,E, {B1,B2,B3}) = 2+ 2+ 2− 2− 3 = 1 .

How to apply the formula to cutting counting?

66

1. Code space size: The code space size is given simply by

|S| =

p∑
q=0

Γ̄(q, ∅, {B1, . . . ,Bn}) , (5.10)

where Bi is the universal cylinder associated with the i-th
gecon.

2. Diagonal lock-charts: Unfortunatelly, in the general frame-
work, not all cutting depths are treated equally. Some may
be more constrained by gecons, some less. Therefore not
all general keys are equal and the lock-chart size depends
on the general key’s cutting. Assume for a moment that
it is given as (g1, . . . ,gp). Then the number of individual
keys in a diagonal lock-chart is at least

max
q∈{0,...,p−1}

Γ̄(q, ({g1}, . . . , {gp}), {B1, . . . ,Bn}) (5.11)

3. Finding a good general key: The last formula evaluates
a cutting for the general key by the number of individual
keys that can be added to its diagonal lock-chart. By sam-
pling (g1, . . . ,gp) ∈ S, one can pick the one which maxi-
mizes the (5.11). However, the repeated evaluation of this
formula may not be the fastest way to go. Faster algorithms
are left for future research.

evaluation. The inclusion-exclusion procedure might explo-
re all 2n combinations of n gecons, which defines its worst-case
time complexity. Depending on p,d and n, it may or may not be
faster than searching dp cuttings and checking against all con-
straints. In a joint project with Václav Voráček, an efficient proce-
dure is currently being developed. The pseudo-code and details
of the actual implementation will be published in his bachelor’s
thesis. Here is merely a short list of ideas for an efficient imple-
mentation and a short justification of the entire approach.

• Pruning: Once any intersection becomes empty, then its in-
tersection with additional cylinders must yield an empty
intersection. This idea was used in Example 64. A clever
strategy inspired by the Apriori algorithm for mining item-
sets [3] may avoid evaluating intersections, whose subsets
are empty. From our experience, this idea is the major fac-
tor for the efficiency of the inclusion-exclusion principle.

• Unitary constraints: An unitary constraint is a gecon which
has exactly 1 non-wildcard position. Such constraints can
be eliminated in the same way as unitary propagation works
in the DPLL algorithm.

67

• Caching: Assume E = ∅. Then the value of Γ(0, ∅,B) de-
pends purely on the number of cutting depths on each po-
sition, not their actual values. Hash-based caching can use
a sorted array [|B1|, . . . , |Bp|], which is shared among mul-
tiple different cylinders. This avoids redundant executions
of the count(...,B) procedure.

For a quick empirical evaluation, two real-world platforms were
shortlisted, to which we had the complete list of gecons, and
which had the highest known p and d values. Due to a non-
disclosure agreement, we cannot report specific details. Speak-
ing of approximate numbers, the first platform had 12 positions
and between 6 and 7 cutting depths and the number of un-
constrained cuttings (which satisfy merely 1 ⩽ di ⩽ d̃i) was
d̃1 · · · d̃p ≃ 3 ·109. Such cuttings were constrained by ∼ 70 gecons,
most of which had 2 non-wildcard positions and the remaining
ones had 3 non-wildcard positions. The second platform had 12

positions and between 2 and 4 cutting depths and the number of
unconstrained cuttings was d̃1 · · · d̃p ≃ 108 · 1015. The number
of gecons was ∼ 65 and they were structurally similar to the first
platform.

The Γ̄ function was evaluated on a 16-core Intel Xeon clocked
at 3.10 GHz. On the first platform, the inclusion-exclusion ap-
proach was able to count ∼ 840 · 106 valid cuttings (and gave
an exact value). The calculation took in 60 s and consumed ∼

40GB RAM. The results are summarised in Table 5.1. The ta-
ble also indicate that 27% unconstrained keys indeed satisfy all
gecons.

On the second platform, the calculation was not successful. For
values q < 25, 128GB RAM was not enough and resulted in an
out-of-memory error. This might be surprising, since both plat-
forms had similar constraints, both in their structure and total
number. The reason is a less efficient pruning. With a larger p,
more constraints might be intersected before reaching an empty
cylinder.

The implementation is still evolving rapidly, and the presented
results are still preliminary. Curious readers should wait for Vá-
clav Voráček’s thesis to see the full potential of this algorithm.
Nevertheless the Γ̄ function implemented using the inclusion-
exclusion principle will see an application in Section 6.3.

5.3 explicit framework

In the explicit framework, some counting problems become triv-
ial. The set S is given as the algorithm’s input and hence the
code space size |S| is obtained by a linear scan that adds 1 for

68

q |Sq| runtime

0 64 · 106 7996 ms
1 200 · 106 7298 ms
2 260 · 106 7832 ms
3 210 · 106 7044 ms
4 110 · 106 6734 ms
5 40 · 106 6754 ms
6 11 · 106 3967 ms
7 2 · 106 4011 ms
8 280 000 1755 ms
9 27 000 483 ms
10 1 700 144 ms
11 60 68 ms
12 1 64 ms∑

840 · 106 60 s

Table 5.1: Code space size on a real-world platform with p = 12 and
d̃i between 3 and 4. Values are rounded to 2 places.

every cutting in S. Also, given a cutting for the general key γg

and a value q, the algorithm scans S and counts only those cut-
tings that are equal to γg on exactly q positions. Such linear
algorithm gives the |Sq| size, which is also a lower bound on
the largest solvable diagonal lock-chart. A quadratic algorithm
might consider all choices γg ∈ S and pick the best cutting for
the general key as:

arg max
γg∈S, 0⩽q⩽p

|Sq| . (5.12)

Question 65. Are there diagonal lock-charts with more individual
keys than the formula (5.12) gives?

First, note the principal limitation. The answer to the question
can only be based on the violation of Theorem 52. In other words,
if all dp cuttings from a vanilla framework were given in S explic-
itly, the Theorem would hold, and formula (5.12) would give the
size of the largest diagonal lock-charts. Better algorithms must
be able to exploit asymmetries in the code space.

template lock-charts . One such algorithm, which will
be described in a moment, is suited for a bigger class of lock-
charts than the diagonal ones. It will be described in its general
form and then applied to diagonal lock-charts as a special case.

Definition 66. The template lock-chart is a lock-chart (K,L,E) and
the expansion function e : L → W that assigns a number of in-
dividual keys to each lock in the template. Let K = {k1, . . . ,km}

69

and L = {l1, . . . , ln}. A template lock-chart is equivalent to the
expansion lock-chart (K ′,L ′,E ′) s.t.

K ′ = {k1, . . . ,km,

expansion of l1︷ ︸︸ ︷
k11, . . . ,ke(l1)1 , . . . ,

expansion of ln︷ ︸︸ ︷
k1n, . . . ,ke(ln)n } ,

L ′ = {l11, . . . , le(l1)1︸ ︷︷ ︸
expansion of l1

, . . . , l1n, . . . , le(ln)n︸ ︷︷ ︸
expansion of ln

} .

The keys ki from the template will be referred as master keys
and the additional keys kxi as individual keys. The lock lj serves
as the prototype for all individual keys k1j , . . . ,ke(lj)j and locks l?

j.

The edges E ′ are defined as follows: Individual key kxi opens
lock l

y
j if and only if i = j and x = y. Master key ki opens

lock l
y
j , formally (ki, l

y
j) ∈ E ′, if and only if ki opens lj in the

template lock-chart (ki, lj) ∈ E.

Figure 5.1 shows an example of a template and its expansion.

A so-called individual key kxi in the expansion is always an in-
dividual key according to the Definition 11. This is because kxi
opens lxi only. Master keys are more complicated.

A so-called master key ki is also a master key by Definition 11

if and only if e(l) ⩾ 2 for some of opened locks l ∈ E(ki). For
example k1 in Figure 5.2 is not a master key, because e(l1) is
only 1. You may also notice E(k1) = E(k11), which violates As-
sumption 25.

However, such problems are only terminological and do not af-
fect the algorithm presented here. To avoid confusion, by master
and individual keys in this section we refer to Definition 66.

Remark 67. A diagonal lock-charts with n individual keys is an
extension of a 1 × 1 lock-chart ({g}, {l}, {(g, l)}) with expansion
function s(l) = n.

motivation. Template lock-charts serve as a way to disso-
ciate algorithms for master keys and individual keys (a similar
idea can be found in [38]). In this section, we assume that all mas-
ter keys have been assigned by a suitable algorithm and here an
algorithm is proposed to maximize the total number of individ-
ual keys that can be added to the system∑

l∈L

e(l) . (5.13)

Loose chaining of two different algorithms usually breaks com-
pleteness or explodes the practical time efficiency. We admit

70

this, but only for a portion of lock-charts. It is a common prac-
tice for human operators to assign the general key manually to
save “good” cuttings for hard lock-charts. In such a scenario
there are only |S|maxl |E(l)|−2 such solutions to the template lock-
chart. Moreover, iterating over all assignments of master keys is
practically feasible, because from on our experience, many lock-
charts have a small number of them. Approximate algorithms
that work reasonably fast are evaluated in Chapter 6.

translation to mis . The algorithm proposed here takes
a template lock-chart with its solution and generates an undi-
rected graph. The maximum independent set on this graph max-
imizes (5.13).

Definition 68 (Independence graph). Let (K,L,E) be a template
lock-chart and s its solution. The independence graph is an undi-
rected graph (N,H), whose nodes are pairs of locks and cuttings
N ⊆ L× S. The graph contains a vertex (l,γ) if s(l) ∪ γ blocks
all cuttings s(k) of stopped keys k ∈ K \ E(l). There is an edge
between (l,γ) and (l ′,γ ′) if either γ ′ enters s(l) ∪ γ or γ enters
s(l ′)∪ γ ′.

Lemma 69. Let (K,L,E) be a template lock-chart, s its solution and
I = {(li,γx), (lj,γy), . . .} be an independent set of the independence
graph. Let (K ′,L ′,E ′) be an expansion from e, where

e(l) = |{(li,γx) ∈ I | li = l}| .

The assignment s ′ = s ∪ (kxi ,γx) ∪ (kyj ,γy) ∪ · · · is a solution to
(K ′,L ′,E ′).

Proof. Correctness is checked by inspecting all “empty cells” in
the lock-chart. Take any lock lxi and an individual key k

y
j which

is blocked in lxi (i ̸= j or x ̸= y). By definition s ′(kyj) = γy and
s ′(lxi) = s(li)∪ γx. Since I is an independent set, vertices (li,γx)

and (lj,γy) not adjacent in (N,H) and therefore γy does not
enter s(li)∪ γx. In other words, s ′(kyj) is blocked by s ′(lxi).

If a master key kj should be blocked in lxi , then s ′(kj) = s(kj)

must be blocked in s ′(lxi) = s(li) ∪ γx. If it were not, then by
definition (li,γx) would not be a vertex in N.

Example 70. Consider the lock-chart in Figure 5.1 in the vanilla
framework p = 2, d = 3. The template is solved as follows:
s(kG) = (1, 1), s(k1) = (2, 2) and s(k2) = (1, 3). The result
is shown in Figure 5.2. Vertices with self-loops (vertices (l,γ),
where γ is a shear-line of s(l)) were omitted from the figure,
because they can never be a part of any independent set.

71

l1

l2

k1 k2g l11

l12

l22

k1 k2g k11 k12 k22

Figure 5.1: A template lock-chart (left) and its expansion from e(l1) =
1 and e(l2) = 2 (right).

l1 (3, 1) l2, (3, 3)

l2, (3, 2)

l2, (3, 1)

l1 (3, 2) l2, (2, 3)

Figure 5.2: Example of an independence graph with a detailed de-
scription in Example 70. The maximum independent set is
shown in bold.

Corollary 71. Maximizing the number of individual keys, which can
be added to a template lock-chart, can be done by finding the maximum
independent set of the independence graph.

Proof. This corollary is justified by the formula∑
l∈L

e(l) =
∑
l∈L

|{(li,γx) ∈ I | li = l}| = |I| ,

because all sets in the sum are disjoint.

Diagonal lock-charts are expansions of the 1× 1 lock-chart de-
fined in Remark 67. Hence finding the MIS of the independence
graph created from 1× 1 lock-chart constitutes the largest diag-
onal lock-chart and solves the cutting counting problem.

How to find I? The maximum independent set is an NP-complete
problem in general with an exponential best-known runtime.
Our experience suggests a greedy approximation scheme, which
picks the minimum degree vertex in each step [7, 25]. Since the
guaranteed approximation ratio on graphs with a bounded de-
gree is inverse proportional to the maximum degree in the inde-
pendence graph (which is quite high), the idea should be evalu-
ated empirically.

A final disclaimer. This translation is not a proof of NP-hardness.
If it were, the MIS would have to be translated into the problem
of finding the largest diagonal lock-chart – not the other way
round. In fact, whether the studied problem is in P or NP is still
unknown to us and makes a good research question.

72

evaluation. Finally, the technique is evaluated by finding a
solution to the largest diagonal lock-chart in the explicit frame-
work. Here is the procedure to reproduce the experiments:

1. Uniformly sample 1 ⩽ p ⩽ 6 and 2 ⩽ d ⩽ 8.

2. Generate the S set using two different methods:

a) In the uniform dataset there are no mechanical con-
straints and hence |S| = dp. Theorem 52 holds in the
uniform dataset, and formula (5.12) gives the size of
the largest diagonal lock-chart.

b) In the realistic dataset, mechanical constraints defined
by our industrial partner were initialised to random
values, and the size of S was reduced.2

3. Sample a uniform distribution over S to obtain the cutting
of the general key s(g).

4. Use a non-backtracking algorithm, which adds one indi-
vidual key and a lock at a time. 1) Initialise the lock-chart
with the general key g only and assign its cutting from the
previous step. 2) Add 1 individual key k and a lock l, s.t.
E(l) = {g,k}. 3) Pick a cutting from S by one of the evalu-
ated heuristics, assign it to k. 4) If the solution is correct,
reiterate from step 2. If not, find a different cutting in step
3. If there is no such cutting, terminate and report the size
of the lock-chart.

a) Baseline: The heuristic picks a random key from the
uniform distribution over S.

b) Same-As-General heuristics (SAG): First sort Sqs by their
cardinality.3 In step 3), start with keys from a larger
Sq. Among keys with the same Sq, choose randomly.
The result on the uniform dataset is guaranteed to be
optimal.

5. Generate the independence graph by Definition 68 with
a 1× 1 lock-chart as a template, whose only key has the
cutting of the general key.

a) Exact: If size permits, find a MIS using an exact, expo-
nential procedure. If a result is found, it is guaranteed
to be the optimal one regardless of the dataset.

b) Greedy: In each iteration of a greedy approximation
[25], pick the min-degree vertex and remove its neigh-
bours from the graph.

2 We do not list the exact constraints due to a non-disclosure agreement.
3 The cardinality was measured by iterating over S, just as the formula (5.12).

The result from Theorem 53 was not used due to the bias in the realistic
dataset.

73

baseline sag greedy exact

un
if

or
m

baseline 1 0.59 0.64 0.70

sag 1.68 1 1.07 1.00

greedy 1.57 0.93 1 1.00

exact 1.43 1.00 1.00 1

re
al

is
ti

c

baseline 1 0.76 0.79 0.86

sag 1.31 1 1.03 0.97

greedy 1.27 0.97 1 0.99

exact 1.16 1.03 1.01 1

Table 5.2: Cutting counting algorithms’ performance in the explicit
framework. Value larger than 1 means that the row-
algorithm beats the column-algorithm.

6. For all the methods above, we recorded the number of in-
dividual keys, referred as the score.

7. When two algorithms are compared, we report the ratio of
their scores. To aggregate more runs we used the geometric
mean,4 shown in Table 5.2.

conclusions . Let us focus on the uniform dataset first. The
1.0 value in the SAG column of Table 5.2 above corroborate the
optimality proof of the SAG heuristic from Theorem 52. If |S|

is small enough for the exact procedure to produce a result, the
greedy algorithm achieves a near-optimal score (up to the round-
off error). However as |S| grows, the greedy approximation loses
7% on average to the optimum.

Results in the realistic dataset are similar, merely with smaller
differences in scores. Figure 5.3 above shows that the baseline
can win over SAG only on very small lock-charts, by a factor of
2 at most. With more keys, the randomness inside the baseline
heuristic is more likely to do wrong decisions and above 100

keys SAG always performed better.

We consider the Figure 5.4 below as the most interesting. It
shows that until 10 keys, the greedy procedure achieves a better
score than SAG. This is true up to ∼ 100 keys, where both heuris-
tics are roughly even. With increasing code space, the greedy
procedure loses, which also explains the overall 3% loss. When
focused on the small instances where the exact procedure found
a result, the greedy heuristic won over SAG by 2%.

4 Example: In one run, the baseline score is 10 and the SAG score 20. In the next

one, the respective scores are 3 and 4. The final score would be
√

20
10 ·

4
3 = 1.63.

We say that on average, the SAG heuristic achieves 63% better results than the
baseline.

74

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

1 10 100 1000 10000

SA
G

baseline

0

10

20

30

40

50

0 10 20 30 40 50

SA
G

exact

Figure 5.3: Scatterplot of the number of individual keys evaluates the
same-as-general heuristic on the realistic dataset. Jitter is
±0.25.

75

0

10

20

30

40

50

0 10 20 30 40 50

gr
ee

dy

exact

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

1 10 100 1000 10000

gr
ee

dy

SAG

Figure 5.4: Scatterplot of the number of individual keys evaluates
the greedy approximation on the realistic dataset. Jitter is
±0.25.

76

6
B A C K T R A C K E R S

A solution is a function that assigns cuttings to keys. A function
is a set of binary tuples. Hence by backtrackers we mean algo-
rithms that systematically explore subsets of K× S. Unlike most
previous ideas, they do not rely on a translation to a different
formalism (e.g. SAT).

Since the search space is vast, we only deal with depth-first-
search algorithms. Unlike breadth-first-search, their memory re-
quirements scale linearly with |K|.

input : Melted profiles lock-chart (K,L,E,B), a set of
available key cuttings S and a partial solution ŝ

output : Algorithm dfs(ŝ) returns a solution s : K→ S of
the lock-chart or null if no solution exists

1 Function dfs(ŝ : K ⇀ S):

2 pick an unassigned key k

3 foreach candidate cutting γ ∈ S do
4 ŝ ′ ← ŝ∪ (k,γ)
5 if ŝ ′ is perspective then
6 s← dfs(ŝ ′)
7 if s ̸= null then
8 return s

9 end
10 end
11 end
12 return null

Algorithm 6.1: Depth-first-search solver for melted profiles
extension lock-charts.

Algorithm 6.1 shows the template for all algorithms in this chap-
ter. As a domain-specific algorithm, it is easy to modify and
tweak. Specifically, there are 4 questions that can be addressed:

1. Which keys to pick first on line 2?

2. Which cuttings to choose from on line 3?

3. Which cuttings to pick first on line 3?

4. Which assignment is perspective on line 5?

The plain version of the algorithm answers the questions as fol-
lows: 1. Pick keys sequentially from k1 to k|K|. 2. Try all cuttings.
3. Pick cuttings randomly. 4. Consider a partial assignment per-
spective if it is a solution.

77

Before finding better answers, please notice that the plain algo-
rithm is not very bad. Section 5.3 used a non-backtracking ver-
sion called the “baseline”. On average it was able to solve a diag-
onal lock-chart with 59% keys of the largest solvable lock-chart.
Speaking about the worst-case, it found at least 10% keys of the
optimum (see Figure 5.3). With backtracking in place, the algo-
rithm’s performance might only increase.

6.1 automorphism algorithm

Lawer’s seminal work [38] on lock-chart solving provided a tech-
nique to prune large portions of the search-space. Perhaps sur-
prisingly, the technique does not sacrifice completeness – if the
lock-chart has a solution, the algorithm finds it.

In this section, its main idea is presented. We decided to refor-
mulate the algorithm for two reasons. First, Lawer’s work was
hard to digest. A lengthier introduction might help some readers.
Moreover, the actual implementation of her algorithm was never
publicly released. For the experimental part of this text, we have
reimplemented the idea exactly as described here. For a com-
plete formal treatment, readers are encouraged to go through
the original document.

preliminaries . Let (V ,E) be a graph. An automorphism is a
bijection a : V → V s.t. a(v) is adjacent to a(w) if and only if
v is adjacent to w. A group of automorphisms on (V ,E) induces
an equivalence relation ≃ on the set V : Two nodes are related
v ≃ w if there is an automorphism a on (V ,E) s.t. a(v) = w.
Every equivalence relation ≃ defines a partition of V into sets
P1, . . . ,Pm called classes: Two vertices v,w ∈ Pi if and only if
v ≃ w. The classes are disjoint (for every two distinct classes Pi
and Pj: Pi ∩ Pj = ∅) and they partition V (P1 ∪ · · · ∪ Pm = V).
Hence a group of n automorphisms on (V ,E) can be efficiently
represented using P1, . . . ,Pm classes of vertices s.t. n = P1! · · · · ·
Pm!.

For convenience and a concise notation, an empty partition ∅
does not modify the set of automorphisms. Hence P1, . . . ,Pm
and P1, . . . ,Pm, ∅ define exactly the same group of automorphisms.
Given 0! = 1, the sizes are consistent P1! · · ·Pm! = P! · · ·Pm! · ∅!.

As of writing this text, it is not known whether the problem of
finding a non-trivial automorphism is NP-complete or in P [41].
The algorithm with the best known asymptotic time complexity
runs in quasipolynomial time [5, 6].

Let (V ′,E ′) be another graph. The induced subgraph isomorphism is
a function s : V → V ′ s.t. s(v) is adjacent to s(w) in (V ′,E ′) if and

78

only if v is adjacent to w in (V ,E). Consequently, the subgraph of
(V ′,E ′) induced by vertices mapped by s is isomorphic to (V ,E).
The problem of finding an induced subgraph isomorphism is
NP-complete [51]. If the two graphs are bipartite V = V1 ∪ V2,
V ′ = V ′

1 ∪ V ′
2, the bipartite induced subgraph isomorphism (BISI)

is an induced subgraph isomorphism that maps only matching
partite sets: s ⊆

(
V1 × V ′

1

)
∪
(
V2 × V ′

2

)
.

Let n,k be two integers. There number of combinations with rep-
etition

((
n
k

))
denotes the number of k-tuples (x1, x2, . . . , xk) s.t.

1 ⩽ xi ⩽ n which are ordered x1 ⩽ x2 ⩽ · · · ⩽ xn.1 The number
can be evaluated using the binomial cofficient

((
n
k

))
=
(
n+k−1

k

)
.

search space graph . Lawer’s algorithm will be presented
in several steps. The first step reduces the lock-chart problem to
finding a bipartite induced subgraph isomorphism.

Definition 72. The search space graph is a bipartite graph (S ∪
T ,R), where S is the set of all valid cuttings, T the set of all
cylinders and (γ, λ) ∈ R if γ enters λ.

Remark 73. Lock-chart (K,L,E) has a correct solution s if and only
s is a BISI from (K∪ L,E) to the search space graph (S∪ T ,R).

Proof. Let s be a correct solution. Then k is adjacent to l iff s(k)
enters s(l) by Definition 15 on page 21. This is equivalent to s(k)

being adjacent to s(l) in the search space graph by Definition 72.
Hence s is a BISI. The other direction is similar.

symmetries . The second step provides a way to prune the
search space by finding symmetries (automorphisms) in the search
space graph. The motivation behind it is to somehow “skip” iso-
morphic solutions, but still ensure that the algorithm can reach
a solution (if it exists).

Theorem 74. Let (K,L,E) be a lock-chart, s its solution and a an
automorphism on the search space graph. Assignment s ′ defined as
s ′(x) = a(s(x)) is a solution.

Proof. If a is an automorphism in the search space graph, s(k)
and s(l) are adjacent iff a(s(k)) and a(s(l)) are adjacent. There-
fore s ′ is a BISI, and by Remark 73, s ′ is a solution.

The theorem explains why having an automorphism prunes the
search space. How to find automorphisms?

1 If the ordering was strict x1 < x2 < · · · < xn, there would be
(
n
k

)
such tuples.

If there was no prescribed ordering, there would by nk tuples.

79

automorphisms by brute-force. Before proceeding, let
us report some experience with a brute-force approach, which
constructs a restricted version of the search space graph in mem-
ory. The restriction exploits Remark 18 and reduces the num-
ber of cylinders |T | from 2d·p to |S|maxl∈L |E(l)| without sacrificing
completeness. For diagonal lock-charts, the size of |T | is at most
|S|2 and the size of |U| is at most |S|3.

For experiments, we took the vanilla framework, generated all
dp cuttings, all

(
1
2
· d · (d+ 1)

)p
cylinders and the respective con-

nections R. Next we took a few small real-world platforms and
their set S. For finding all automorphisms the nauty program
[41] was used.

Quite surprisingly, nauty was able to find all dp! automorphisms
at least for small vanilla code spaces (roughly d,p ⩽ 5) within
the timeout. However, behind a certain border (around d ∼ p ∼

8), the runtime suddenly spiralled, and no solution was found
under 1 hour. We attributed this to a switch between modes in-
side nauty.

Out of the real-world platforms, none were processed in a rea-
sonable time. Even with only |S| ∼ 700 cuttings, the asymme-
tries in the code space prevented nauty from finding any iso-
morphism. The brute-force approach is probably not usable for
a practical algorithm.

lawer’s automorphisms . Instead, automorphisms in [38]
are derived theoretically. They are composed of two separate
isomorphisms, one on cutting depths and one on positions. For
representing both isomorphisms, the algorithm keeps track of
classes of depths and classes of positions. An automorphism on
the search space graph is a composition of the cutting depth
automorphism and position automorphism.

The group of automorphisms is “reduced” by a partial assign-
ment ŝ that enters the function dfs. Even though the automor-
phisms should be as “big” as possible to prune large numbers of
candidate cuttings, they must also be defined in a way that the
partial solution ŝ remains unchanged. For any automorphism in-
duced by the classes of depths and the classes of positions, we
expect

ŝ(k) = a(ŝ(k)) for all already assigned keys in ŝ. (6.1)

The depth-classes partition the set {1, . . . ,d} and are represented
by two disjoint sets U,R ⊆ {1, . . . ,d} s.t. U ∪ R = {1, . . . ,d}. The
set U contains cutting depths that form unitary classes. In other
words, if there is a unitary cutting depth ui ∈ U, then there
is one class {ui} in the partition. The set R of remaining cutting

80

depths forms a separate class. Hence given sets U = {u1, . . . ,u|U|}

and R = {1, . . . ,d} \U, the automorphism group on cutting depths
is defined by the partition {u1}, . . . , {u|U|},R that generates |R|! au-
tomorphisms.

The idea behind the isomorphism on depths is similar to the
proof of Lemma 46. Despite cutting depths are numbers, there is
no particular order among them. In any solution ŝ, by swapping
any two cutting depths on a certain position in every cutting
and every cylinder, one must arrive at a solution as well. Hence,
the set U associated with the i-th position will contain cutting
depths that appeared as ŝ(k)i for some already defined key k.
Since R contains all unused cutting depths, a candidate cutting
can try any arbitrarily chosen value from R, yet still retain com-
pleteness.

The position-classes partition the set of positions {1, . . . ,p} into
m classes P = {P1, . . . ,Pm}. Every class Px represents positions
that can be “freely permuted”. For any two positions i, j ∈ Px, if
cuttings di and dj were swapped in every cuttings ŝ(k) and sets
of depths Di and Dj were swapped in every cylidner ŝ(l), the
solution ŝ would remain exactly the same.

Every position-class is mapped to one group of depth-classes by
the function u : P → 2{1,...,d}. Let

Ux = u(Px) and Rx = {1, . . . ,d} \Ux .

Now we can describe how u prescribes all combinations of can-
didate depths di,dj, . . . to positions Px = {i, j, . . .}. First note
that by picking only one depth from the unused cutting depths
Rx (if there is one) and all choices of Ux, every position can
be assigned |Ux| + 1 candidate cutting depths. Second, depths
on positions Px can be freely permuted (see the previous para-
graph), hence by considering only sequences of increasing cut-
ting depths di ⩽ dj ⩽ · · · , completeness is not sacrificed. The
number of candidate cutting depths assignable to |Px| positions
is given by the z function, defined using the number of combina-
tions with repetition

z(Px,Ux,Rx) =

((
|Ux|+ 1

|Px|

))
if Rx ̸= ∅

((
|Ux|

|Px|

))
if Rx = ∅

(6.2)

81

By combining mupltiple position-classes, one arrives at the total
number of candidate cuttings

m∏
x=1

z(Px,Ux,Rx) . (6.3)

Example 75. Let p = 4, d = 3 and the partial solution ŝ assigns
two keys: ŝ(k1) = (1, 1, 1, 1) and ŝ(k2) = (1, 1, 1, 2). Which can-
didate cuttings are there for k3? The first three positions have
the same depth. Hence P1 = {1, 2, 3} and P2 = {2}. On positions
from P1 only the cutting depth 1 has been used: U1 = {1} and
R1 = {2, 3}. In P2 two cutting depths were used: U2 = {1, 2} and
R2 = {3}. We expect

m∏
x=1

z(Px,Ux,Rx) =

m∏
x=1

(
|Px|+ |Ux|

|Px|

)
=

(
3+ 1

3

)
·
(
1+ 2

1

)
= 12

candidate cuttings to be generated (by using
((

n
k

))
=
(
n+k−1

k

)
and Rx ̸= ∅). The class P1 generates 4 “partial” cuttings (1, 1, 1, ∗),
(1, 1, 2, ∗), (1, 2, 2, ∗) and (2, 2, 2, ∗). The class P2 generates (∗, ∗, ∗, 1),
(∗, ∗, ∗, 2) and (∗, ∗, ∗, 3). Their product is indeed 12 cuttings:

(1, 1, 1, 1) (1, 1, 2, 1) (1, 2, 2, 1) (2, 2, 2, 1)

(1, 1, 1, 2) (1, 1, 2, 2) (1, 2, 2, 2) (2, 2, 2, 2)

(1, 1, 1, 3) (1, 1, 2, 3) (1, 2, 2, 3) (2, 2, 2, 3)

modifying the dfs algorithm . A straightforward appli-
cation of Lawer’s algorithm is to modify line 3 of Algorithm 6.1
by adding two lines of code: 1) compute P and u from a partial
solution ŝ and 2) generate all candidate cuttings. However, the
first step might be implemented more efficiently.

Given the freshly assigned cutting γ, the isomorphism group
P,u can be “updated” more quickly just before passing the up-
dated isomorphisms into the recursive call on line 6. Here we
describe how to calculate the updated P ′,u ′, r ′ from P,u, r and
γ.

Initialisation is simple. Since an empty partial solution ŝ = ∅
defines no cuttings, all positions are equal and no cutting depth
has been used: P = {{1, . . . ,p}} and u({1, . . . ,p}) = ∅.

The update function will be defined concisely using the follow-
ing notion. Let γ = (d1, . . . ,dp). The cutting-based partition Qγ is
a partitioning of positions into y classes s.t. positions i and j are
in the same class i, j ∈ Q

γ
y if and only if di = dj. For example the

cutting γ = (1, 1, 1, 2) is associated with Q(1,1,1,2) = {{1, 2, 3}, {4}}.

82

Let there be m position-classes P = P1, . . . ,Pm and n cutting-
based classes Qγ = {Q

γ
1 , . . . ,Qγ

n}. Then the updated partition
is

P ′ = { P1 ∩Qγ
1 , P1 ∩Qγ

2 , · · · , P1 ∩Qγ
n,

P2 ∩Qγ
1 , P2 ∩Qγ

2 , · · · , P2 ∩Qγ
n,

...,
...,

. . . ,
...,

Pm ∩Qγ
1 , Pm ∩Qγ

2 , · · · , Pm ∩Qγ
n } .

(6.4)

Function u is updated as follows. Let Qγ
y contain positions, where

cutting γ has depth di. The updated mapping adds depth di to
the set of used depths u(Px):

u ′(Px ∩Qγ
y) = u(Px)∪ {di} .

Example 76. Let p = 4, d = 3. Isomorphism on positions is ini-
tialised to P = {{1, 2, 3, 4}}. The only class of positions has depth
isomorphism defined by u({1, 2, 3, 4}) = ∅. The first key has only(
4+0
4

)
= 1 candidate cutting, namely (1, 1, 1, 1). Let’s proceed to

the second key. Since Q(1,1,1,1) = {{1, 2, 3, 4}} has only one class,
P remains unchanged. By moving depth 1 from R to U, the only
class of positions becomes mapped as u({1, 2, 3, 4}) = {1}. Con-
sequently, the next key has

(
4+1
4

)
candidate cuttings. Indeed,

there are 5 combinations with repetitions of cutting depths {1, 2}
to be assigned to all 4 positions: (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2),
(1, 2, 2, 2) and (2, 2, 2, 2).

Let’s assume (1, 1, 1, 2) was picked. Since Q(1,1,1,2) = {{1, 2, 3}, {4}},
the partitioning P is updated to {{1, 2, 3}, {4}}. The first class P1 =

{1, 2, 3} is still mapped to u(P1) = {1}, because on these posi-
tions, the only used cutting depth is 1. The second class P2 = {4}

becomes mapped to u(P2) = {1, 2}. The automorphism is now
exactly same as in Example 75 and the third key can has 12 can-
didate cuttings.

The example illustrates something we consider a “killer feature”
of Lawer’s automorphisms. In a diagonal lock-chart, the first key
is the general key, which always gets only 1 candidate cutting.
This is in line with Lemma 46, which can be summarised as: “In
the vanilla framework, the cutting of the general key is irrele-
vant”. For the first individual key, it attempts to assign exactly 1

candidate from every Sq set.

other frameworks . The automorphisms are defined for
the vanilla framework. An extension to the asymmetric frame-
work is straightforward. If the deepest cutting is (d̃1, . . . , d̃p),
the position-classes can be initialised to P = Q(d̃1,...,d̃p). Like
this, the symmetries between positions with a different number

83

of available cutting depths is broken but retained for positions
with an equal number of available cutting depths. An extension
to the explicit framework is hard to imagine (see the brute-force
experiment above). What about the general framework?

Let us sketch an idea. Suppose there is a graph with vertices
(p,d) ∈ {1, . . . ,p}× {1, . . . d}. It may be possible to translate gecons
into edges of this graph so that (p,d) and (p,d ′) appear in the
same partition class precisely if cutting depths d and d ′ are inter-
changeable on position p. How to formalise it precisely? Is find-
ing automorphisms on a graph with p ·d vertices doable in a rea-
sonable amount of time? Moreover, will the automorphisms be
large enough save enough backtracker’s runtime? The answers
need further research and empirical evaluation.

6.2 constraint satisfaction

In this section, the lock-chart solving problem is formulated as a
constraint satisfaction problem (CSP) and a pruning scheme is pro-
vided. The modified algorithm keeps a list of suitable cuttings
for every key called a scope. By deleting “obviously unsuitable”
cuttings from the scopes, one may arrive at a partial solution
with less suitable cuttings that the number of unassigned keys.
This idea is known as all-different pruning [47] and allows a back-
tracker to skip huge parts of the search space by modifying line 5

of Algorithm 6.1.

As the scope keeps a set of cuttings, we assume that one can it-
erate over S. Hence, the CSP is formulated for the explicit frame-
work.

preliminaries . Let D be a set called the domain and X a
set of variables. A constraint is a pair (Σ,R), where Σ ⊆ X is its
signature (whose members will be denoted as σ1,σ2, . . .) and R a
relation on D of arity |Σ|. A constraint satisfaction problem (CSP) is
a tuple (D,X,C), where C is a set of constraints.

A solution to a CSP is a function s : X→ D, s.t. for all constraints
({σ1, . . . ,σm},R), the vector of solutions satisfies

(s(σ1), . . . , s(σm)) ∈ R .

A solution is called partial if s is a partial function. The domain
function δ : K→ 2S assigns each variable a scope.

lock-chart csp. The lock-chart problem will be reformu-
lated as a CSP. The CSP instance will have one variable for each
key, code space as the domain and one constraint for every block-
ing cell in the lock-chart.

84

Definition 77. Let (K,L,E) be a lock-chart and S the code space.
The (S,K,C) is a CSP if for every k ∈ K, l ∈ L s.t. (k, l) ̸∈ E, there
is one constraint ({k}∪ E(l),Rk,l) ∈ C, where Rk,l ={

(γ0,γ1, . . . ,γ|E(l)|) ∈ S|E(l)|
∣∣∣γ1 ∪ · · · ∪ γ|E(l)| blocks γ0

}
.

(6.5)

Remark 78. Let (K,L,E) be a lock-chart, S the code space and
(S,K,C) the CSP from Definition 77. A solution s to (S,K,C) is a
solution to the lock-chart (K,L,E).

Proof. By definition, CSP’s solution s is an assignment. Let k ∈ K,
l ∈ L. Proposition 16 ensures that if (k, l) ∈ E, then s(k) enters
s(l). Consider the (k, l) ̸∈ E case. Since s is a solution to the CSP,
there must be

(γ0,γ1, . . . ,γ|E(l)|) ∈ Rk,l .

By (6.5) γ0 is blocked in γ1 ∪ · · · ∪ γ|E(l)|. Since γ0 = s(k) and
γ1 ∪ · · · ∪ γ|E(l)| = s(l), then s(k) is blocked in s(l). By checking
all k, l, all cells in the lock-chart are satisfied.

The largest relation has |S|1+maxl |E(l)| tuples, which is too much
for storing all relations in memory. Instead, there is Algorithm 6.2,
which provides a pruning algorithm tailored for the lock-chart
CSPs and which does not store relations explicitly.

The pruning algorithm provides a guarantee: If ŝ was a solution
and γ ∈ δ(k), then by assigning γ to a unassigned key k, the
assignment ŝ∪ (k,γ) is a solution.

Lemma 79 (Consistency). Let (K,L,E) be a lock-chart, ŝ a partial
solution that assigns cuttings keys from a set K ′ ⊆ K and

δ = prune((K,L,E), ŝ) .

Assume that for any γ,γ ′ ∈ S, the cylinder γ ∪ γ ′ blocks some cut-
tings from S. Then for every constraint ({k0,k1, . . . ,k|E(l)|},Rk0,l),
for every key ki in its signature, for every cutting γi ∈ δ(ki), there is
a tuple (γ0,γ1, . . . ,γ|E(l)|) ∈ Rk,l s.t.

if kj ∈ K ′ then γj = ŝ(kj).

Proof. a) i = 0: Given kj ∈ K ′ then all locks E(kj) contain shear-
lines induced by ŝ(kj). On line 5 the pruner removes such shear-
lines from the domain of a blocked key k0 and therefore γ0 ̸∈
ŝ(k0).

b) i ⩾ 1, j = 0: The state, when k0 is blocked in l and k0 ∈ K ′ is
checked on line 13. If assigning γi to ki breaks this blocking, γi

is removed from δ(ki) on line 19.

85

Function δ = prune((K,L,E), ŝ : K ⇀ S):
input : a lock-chart and its partial solution ŝ

output : domain function δ : K→ 2S

1 let δ← array of size |K|, all cells filled with S, for
convenience indexed by keys

2 for l ∈ L do
3 Γ ← cuttings that enter ŝ(l)

/* Γ will never be blocked in any extension of ŝ. */
4 for k ̸∈ E(l) do
5 remove Γ from δ(k)
6 end
7 end

8 for l ∈ L do
9 Γ ← ∅

10 for γ ∈ S do
/* Simulate adding γ into ŝ(l) and find keys
already assigned in ŝ that should be blocked by l.
*/

11 λ← s(l)∪ γ
12 for k ̸∈ E(l) do
13 if k is assigned by ŝ and ŝ(k) enters λ then
14 add γ to Γ

15 end
16 end
17 end

/* Γ contains cuttings that violate some already
established blocking in ŝ(l). Never use them for keys
that open l. */

18 for k ∈ E(l) do
19 remove Γ from δ(k)
20 end
21 end
22 return δ

Algorithm 6.2: The domain pruning algorithm for a CSP in
the explicit framework.

86

c) i ⩾ 1, j ⩾ 1. Values in 1, . . . , |E(l)| columns come from the
cartesian product S|E(l)|. Since cylinder γ∪γ ′ blocks some other
cutting, there must be a candidate for γ0. Therefore the tuple
with γj is in Rk,l.

Note this is a weaker consistency than generalised arc-consistency
[39]. GAC would replace the “if kj ∈ K ′ then γj = s(kj)” by a
stronger condition “if kj ∈ K thenγj ∈ δ(kj)”.

all-different pruning . Next, we add a pruning scheme
for an early detection of non-perspective partial solutions. Propo-
sition 26 ensures that all keys must be assigned different key cut-
tings, which allows to impose the all-different constraint [47] on
K. Instead of the pruning algorithm based on bipartite matching
[47], here we use a simpler technique which achieves a weaker
consistency.

Let δ = prune((K,L,E), ŝ), K ′ be any subset of K and

∆ =
∪

k∈K ′

δ(k) (6.6)

be the union cuttings in their scopes. Next, every complete so-
lution s ⊇ ŝ (which extends ŝ) must assign all keys K ′. Such
keys will never be assigned cuttings outside ∆. Therefore, by the
pidgeon-hole principle, there must be at least as many cuttings
as there are keys

|∆| ⩾ |K ′| . (6.7)

If this formula does not hold, the partial solution ŝ can never be
extended to a complete correct solution.

Algorithm 6.3 is a fast test that attempts to find K ′ which violates
the formula. It adds scopes of keys to a set ∆, one-by-one. If ∆ is
too small and too many scopes have been added, the algorithm
returns false.

Finally, let constrcut a full CSP backtracking algorithm from
ideas in this section. The skeleton copies Algorithm 6.1 with the
following modifications:

• On line 3, the scopes are calculated by calling prune. Can-
didate cuttings for key k are taken from δ(k).

• On line 5, a partial solution is not considered perspective
if perspective((K,L,E), ŝ ′) returns false.

6.3 implicit domains

The last algorithm builds upon an empirical observation. When
executed on real-world datasets, the perspective(δ) procedure

87

Function perspective(δ):
input : a scope function δ : K→ 2S

output : true if it finds a K ′ ⊆ K s.t. |∆| < |K ′|

1 let ∆ be a set of cuttings
2 let K be an array of keys
3 sort K by |δ(k)| in ascending order
4 initialise ∆ = ∅
5 for i ∈ {1, . . . , |K|} do
6 ∆← ∆∪ δ(ki)
7 if |∆| < i then
8 return false
9 end

10 end
11 return true

Algorithm 6.3: Simplified all-different pruner for the CSP bac-
tracker.

usually returned false only if the set K ′ consisted of individ-
ual keys. This section formulates a different pruning algorithm
tailored specifically for individual keys. Its advantage over the
previous CSP approach is that it works in the general framework
and hence it can handle larger code spaces.

template lock-charts. The backtracker keeps track of the
available code space for individual keys. For a succinct notation,
let’s assume that the backtracker always solves a template lock-
chart (M,G, F) with an expansion function e : G→ N (see Defi-
nition 66). Keys in M represent master keys k1, . . . ,km and locks
g1, . . . ,gn will be called groups. The lock-chart (K,L,E), which
actually enters Algorithm 6.1, will be the the expansion of this
template. Keys K in the expansion will be denoted

K = {k1, . . . ,km,

expansion of g1︷ ︸︸ ︷
k11, . . . ,ke(g1)

1 , . . . ,

expansion of gn︷ ︸︸ ︷
k1n, . . . ,kgn

n } . (6.8)

Since master keys k1, . . . ,km appear both in the template and
the expansion (M ⊆ K), any partial solution ŝ associated with
the expansion lock-chart also prescribes cuttings for the template
lock-chart.

Assume further that on line 2 of Algorithm 6.1 keys are picked
in the same order as they appear in (6.8). Consequently, master
keys will be assigned before individual keys from the first group
g1. Only after that, the keys in other groups will be assigned.

pruning scheme . The proposed pruning scheme checks if
there are enough cuttings for individual keys in each group.

88

We are aiming at reusing the Γ̄(q,E, {B1, . . . ,Bn}) procedure for
counting cuttings and comparing its size with e(gi). The proce-
dure will be invoked when assigning the first individual key k1i
from group gi. Before stating a similar inequality to (6.7), which
justifies the pruning, let’s define arguments q, E and Bs.

Natural candidates for cylinders B are universal cylinders (see
Lemma 37) created from gecons in the general framework (see
Definition 5). All cuttings must these gecons, obviously includ-
ing cuttings assigned to individual keys. Let’s call such cylinders
the B cylinders of type 0.

Next, all blocking constraints in the lock-chart are translated to
B cylinders of types 1 and 2. We start with cylinders of type 1,
which ensure that a newly assigned cutting is blocked in all rel-
evant cylinders.

Lemma 80. Let (K,L,E) be the expansion s.t. K is indexed as in (6.8)
and ŝ its partial solution. If an individual key kxi is assigned a cutting
that enters some cylinder ŝ(lyj) for i ̸= j or x ̸= y, partial assignment
ŝ ′ on line 4 of Algorithm 6.1 is not a solution.

Proof. If i ̸= j or x ̸= y, lock l
y
j is not opened by kxi by Defini-

tion 66 of the template lock-chart. Therefore a cutting assigned
to kxi must be blocked in l

y
j .

Since Γ̄ counts cuttings that are blocked by cylinders B, cylinders
ŝ(lyj) can be passed as the last argument of Γ̄ . They constitute
B cylinders of type 1. Also note that many such cylinders are
equal:

Remark 81. When the individual key kxi is being assigned a cut-
ting, all cylinders ŝ(lyj) are equal to ŝ(gj) from the template if a)
j > i or b) j = i and y > x.

Proof. The set of keys E(lyj) contains some master keys and ex-
actly 1 individual key k

y
j . Key kxi appears before k

y
j in (6.8) pre-

cisely if conditions a) or b) hold. Consequently k
y
j has not been

assigned before kxi and ŝ(lyj) contains cuttings of the master keys
only. This is the exactly the cylinder ŝ(gj) from the template lock-
chart.

After removing identical cylinders, Lemma 80 generates

i−1∑
j=1

e(gj) + (n− i)

cylinders B of type 1. The sum counts all ŝ(lyj) cylinders for j < i

and the (n− i) term counts all the ŝ(gj) cylinders.

89

The cylinders B of type 2 ensure that a previously established
blocking is not violated. The prune method in Algorithm 6.2 pre-
served already established blockings by iterating over all γ ∈ S.
In the general framework, this is not feasible. Instead, an already
established blocking of key k in lock lxi translates to a gecon.

Lemma 82. Let (K,L,E) be the expansion s.t. K is indexed as in
(6.8), ŝ its partial solution, lxi be a lock and k one of its stopped keys
k ̸∈ E(lxi). Individual key kxi can be assigned cutting γ without violat-
ing the blocking of ŝ(k) in ŝ(lxi) if γ satisfies the gecon (d1, . . . ,dp)

defined as follows: The depth dj is a wildcard if ŝ(k)j ∈ ŝ(lxi)j; other-
wise dj = ŝ(k)j.

Proof. A cutting γ violates a gecon (d1, . . . ,dp) precisely if γj =

dj on all non-wildcard positions (by the Definition 5). If it does,
cylinder ŝ(lxi) will contain shear-line ŝ(k) after having assigned
γ to kxi and therefore k is not blocked in lxi . If it does not, there
is some depth γj different from a non-wildcard dj and therefore
k is blocked in lxi on the j-th position.

By satisfying gecons generated for every blocked cell in the l1i
row, the previously established blockings will not be violated.
A gecon is satisfied by a cutting γ if it is blocked in the gecon’s
universal cylinder. Therefore the Γ̄ function receives one B cylin-
der of type 2 for every blocked cell.

Together, by generating cylinders B of types 0, 1 and 2, cuttings
counted by Γ̄(q,E, {B1, . . . ,Bn}) will be blocked in existing cylin-
ders and their cylinders will block all blocked keys. How to en-
sure that cuttings within one group will be blocked amongst
each other?

Let’s motivate this question by a special case. If (K∪ L,E) was a
diagonal lock-chart and cylinder E contained a single shear-line,
namely the general key’s cutting, then (5.11) would give a lower
bound on the size (K,L,E), which is equal to the size of its only
group e(g1). How to define E for non-diagonal lock-charts?

Lemma 83. Let Γ̄(q, ŝ(gi), {∅}) count cuttings γ1,γ2, If these cut-
tings are assigned to keys k1i ,k2i , . . . then key kxi will be blocked in l

y
i

for any x ̸= y.

Proof. The proof generalises the idea from the proof of Theo-
rem 45. Let Ax be the set of positions, where the cutting ŝ(kxi)

has cutting depths present in lock ŝ(gi):

Ax =
{
r ∈ {0, . . . ,p} | ŝ(kxi)r ∈ ŝ(lyi)r

}
.

a) Ax = Ay: There is a position r ̸∈ Ax s.t. ŝ(kxi)r ̸= ŝ(kyi)r. Key
kxi is blocked in l

y
i on position r as well as key k

y
i in lxi .

90

b) Ax ̸= Ay: Since q = |Ax| = |Ay|, there is a position r ∈ Ax \Ay

and r ′ ∈ Ay \Ax. Key k
y
i is blocked in lxi on position r and key

kxi is blocked in l
y
i on r ′.

Now it is tempting to state the condition for a perspective partial
solution ŝ as

max
0⩽q⩽p

Γ̄(q, ŝ(gi),B cylinders of all 3 types) ⩾ e(gi) . (6.9)

However, this is a sufficient condition, not a necessary one, be-
cause Γ̄ provides merely a lower bound on the size of diagonal
“areas” in lock-charts. Section 5.3 found diagonal lock-charts in
the realistic dataset with more individual keys than this formula
would give. Nevertheless, the margin between the lower bound
and the exact value no bigger than 50% (see Figure 5.3 below)
and with larger code-space sizes, the margin only closed. Re-
lying merely on the following assumption, the possibly overly-
zealous pruning scheme must be evaluated empirically.

Assumption 84. If the inequality (6.9) does not hold, there are not
enough cuttings for individual keys in group gi.

The resulting pruning procedure is presented in Algorithm 6.4.
Line 1 starts with two preconditions. The procedure is executed
only when starting to assign the first key in each group of indi-
vidual keys. Also, the pruning is considered only for sufficiently
large groups, governed by a fixed threshold. Then, the procedure
constructs B cylinders of type 0 (starting on line 3), type 1 (line 6

onwards) and type 2 (line 15 onwards). Finally, the inequality
(6.9) is checked in the loop on line 25.

6.4 gvc minimisation

In the last section, all algorithms above are evaluated empiri-
cally. The methodology was taken from the automorphism algo-
rithm’s analysis in [38]. All algorithms were adapted to minimise
the number of shear-lines in a global virtual cylinder (see Def-
inition 30). The adaptations were minimal so that the decision
variant of the problem (which asks if any solution can be found)
could also be evaluated.

datasets. For the evaluation, three datasets were used. Two
of them are real-world datasets; the last was synthetic, generated
using a procedure described below.

1. The real-world dataset contains the lock-charts published
in [38], which were provided by a German manufacturer
IKON. The study does not mention the code space that

91

Function perspective((M,G, F), e, (K,L,E), ŝ, kxi):
input : The template lock-chart (M,G, F), the expansion

function e, the expansion (K,L,E), the partial
solution ŝ and a key yet to be assigned kxi

output : true if the partial solution is perspective

1 if x = 1 and e(gi) ⩾ threshold then
2 let B̄ be a set of cylinders, initialised to ∅
3 foreach gecon in the platform specification do
4 convert it to a universal cylinder and add to B̄

5 end
6 for j ∈ {1, . . . ,n} do
7 if j < i then
8 for y ∈ {1, . . . , e(gj)} do
9 add ŝ(lyj) to B̄

10 end
11 else
12 add ŝ(gj) to B̄

13 end
14 end
15 foreach master key k ̸∈ F(gi) do
16 create gecon by Lemma 82 from key k and lock gi
17 convert it to a universal cylinder and add to B̄

18 end
19 for j ∈ {1, . . . , i− 1} do
20 for y ∈ {1, . . . , e(gj)} do
21 create gecon by Lemma 82 from k

y
j and gi

22 convert it to a universal cylinder and add to B̄

23 end
24 end
25 for q ∈ {0, . . . ,p} do
26 if Γ̄(q, ŝ(gi), B̄) ⩾ e(gi) then
27 return true
28 end
29 end
30 return false
31 end
32 return true

Algorithm 6.4: All-different pruner for the general frame-
work.

92

was used to solve them, and hence we used the vanilla
framework with p and d values chosen as small as pos-
sible, which allowed at least one competing algorithm to
find a solution. The actual values are given in Table 6.1.

2. The master-only dataset contains lock-charts from the real-
world dataset, whose individual keys were deleted. The
deletion allows us to compare results presented here with
Lawer’s decision to use the GVC minimisation on master
keys only and to assign individual keys using a separate
procedure (e.g. those suggested in Section 5.3). Since lock-
chart M204 contains only individual keys, there was one
less lock-chart in the master-only dataset than in the real-
world dataset.

3. The synthetic dataset was constructed algorithmically. First,
the parameter p (number of positions), d (number of cut-
ting depths) and m (number of master keys) were chosen
randomly from values {2, 6, 10}. A lock-chart of indepen-
dent keys (Definition 31) with m keys was used as a tem-
plate, but keeping only the first 2m−1 locks. This ensures
that km was the general key. Since m ⩾ 2, no diagonal lock-
chart was not included. Next, the total number of individ-
ual keys x was sampled as either 1%, 2%, 5%, 20%, 50%
or 100% of |Sq̂|. To generate “reasonably” sized lock-charts,
yet larger than those in the real-world dataset, values out-
side of 20 ⩽ x ⩽ 200 were omitted. The expansion function
was designed to spread x individual keys between as many
combinations of master keys as possible:

e(li) = (i+ x− 1)÷ 2m−1 (6.10)

Table 6.2 contains the list of all lock-charts in the synthetic
dataset.

algorithms . The first contesting algorithm was the automor-
phism algorithm from Section 6.1, which reduces the number of
candidate cuttings from |S| to the number given by (6.3).

The other two backtrackers also used the automorphism pruning
scheme but added the all-different pruning on top of that. The
CSP algorithm followed ideas from Section 6.2 and considered
a partial solution perspective according to Algorithm 6.3. The
implicit algorithm from Section 6.3 considered a partial solution
perspective according to Algorithm 6.4.

All three backtrackers were modified as follows:

• If a solution is found, the search does not stop. It stops
when no more solutions are available.

93

Lock-chart Keys m+x Locks Positions p Depths d

ea
sy

M103 5+6 6 2 6

M108 5+14 19 4 3

M109 7+8 8 3 4

M111 4+10 10 5 2

M112 3+13 13 5 2

M201 10+9 9 4 3

M203 3+19 19 4 3

M204 0+2 2 2 2

M209 6+16 16 2 6

m
ed

iu
m

M101 8+29 29 5 3

M104 8+23 23 3 5

M106 13+19 29 3 5

M107 4+31 31 5 3

M202 9+19 19 2 9

M206 9+27 27 9 2

M208 7+34 34 9 2

ha
rd

M100 20+21 28 3 6

M102 12+60 60 3 6

M200 17+15 29 5 3

M205 20+15 33 3 5

Table 6.1: Real-world lock-charts from [38] with values of p and d used
during the experiments. Number of keys is formatted as m+
x = master + individual keys.

94

Lock-chart Keys (m+ x) Locks Pos. p Depths d

D02M0025I02P06D100R 2 + 25 25 2 6

D02M0040I02P10D050R 2 + 40 40 2 10

D02M0081I02P10D100R 2 + 81 81 2 10

D02M0020I06P02D100R 2 + 20 20 6 2

D02M0187I06P06D001R 2 + 187 187 6 6

D02M0025I10P02D010R 2 + 25 25 10 2

D02M0050I10P02D020R 2 + 50 50 10 2

D02M0126I10P02D050R 2 + 126 126 10 2

D06M0025I02P06D100R 6 + 25 25 2 6

D06M0040I02P10D050R 6 + 40 40 2 10

D06M0081I02P10D100R 6 + 81 81 2 10

D06M0020I06P02D100R 6 + 20 20 6 2

D06M0187I06P06D001R 6 + 187 187 6 6

D06M0025I10P02D010R 6 + 25 25 10 2

D06M0050I10P02D020R 6 + 50 50 10 2

D06M0126I10P02D050R 6 + 126 126 10 2

D10M0025I02P06D100R 10 + 25 25 2 6

D10M0040I02P10D050R 10 + 40 40 2 10

D10M0081I02P10D100R 10 + 81 81 2 10

D10M0020I06P02D100R 10 + 20 20 6 2

D10M0187I06P06D001R 10 + 187 187 6 6

D10M0025I10P02D010R 10 + 25 25 10 2

D10M0050I10P02D020R 10 + 50 50 10 2

D10M0126I10P02D050R 10 + 126 126 10 2

Table 6.2: Lock-charts from the synthetic dataset with values of p and
d used during the experiments. Number of keys is formatted
as m+ x = master + individual keys.

95

• The algorithm keeps track of the best solution b so far.
When a new solution s is found, b is overwritten to s if
the number of shear-lines of the GVC decreases:∣∣∣∣∣ ∪

k∈K

s(k)

∣∣∣∣∣ <
∣∣∣∣∣ ∪
k∈K

b(k)

∣∣∣∣∣ (6.11)

• To gain some more efficiency, any perspective partial solu-
tion ŝ must also satisfy∣∣∣∣∣∣

∪
(k,γ)∈ŝ

γ

∣∣∣∣∣∣ <
∣∣∣∣∣ ∪
k∈K

b(k)

∣∣∣∣∣ . (6.12)

This follows from the fact that the numuber of shear-lines
in a partial solution can only increase in its extension.

• Following the idea in [38] the assignment of individual
keys preferred cuttings, whose q value was arg maxq |Sq|.

The fourth algorithm was not a backtracker. The SAT algorithm
translates the lock-chart into a CNF as described in Section 4.2
and then it is solved by the MiniSAT library [19]. Algorithm 6.5
describes the adaptation needed to minimise the GVC using a
SAT solver.

The algorithm can be viewed as a method to find an asymmetric
framework with the deepest cutting (d̃1, . . . , d̃p). Iteratively it
tries to minimise d̃1 by forbidding the respective variables on
line 11. If that is not possible (line 18), it continues with the next
position d̃2 etc. A early-escape pruning (line 16) occurs if it fails
to minimise d̃i at all. In such a case, d̃i+1 can’t be minimised
neither and the algorithm stops. The algorithm minimises GVC
shear-lines under the following assumption.

Assumption 85. The Λ under the asymmetric framework with deepest
cutting (d̃1, . . . , d̃p) has less shear-lines than Λ under (d̃ ′

1, . . . , d̃ ′
p) if

there is a position i s.t.

d̃ ′
1 = d̃ ′

1, . . . , d̃i−1 = d̃ ′
i−1 and d̃i < d̃ ′

i . (6.13)

Since there are trivial counter-examples to this assumption, the
effects on the calculation results must be found experimentally.

Two known algorithms published by other authors were left out
of this comparison due to their incomplete specification. Junker’s
translation of lock-chart solving to CSP [34] relied on set variables,
a feature present in ILOG solver v4.0 [31], which is already 20

years old at the time of writing this text and no longer avail-
able. In the documentation of the current version of ILOG solver
[30] (now acquired by IBM) we were unable to find any refer-
ence to set variables. Hence, to the best of our knowledge, the

96

Function sat(p, d, (K,L,E,B)):
input : Number of positions p, number of cutting depths

d and a melted profiles lock-chart (K,L,E,B)
output : Solution which minimises the number of

shear-lines in the GVC or null if no solution
exists.

1 let b a solution, initialised to null
2 let C be the straightforward translation of (K∪ L,E)
3 if C has a model then
4 update b to the solution from C’s model
5 else
6 return null
7 end
8 for i ∈ {1, . . . p} do
9 for j ∈ {2, . . . d} do

10 foreach k ∈ K do
11 add a unitary clause keyki,j to C

12 end
13 if C’s model can be found within a conflict limit

then
14 update b to the solution from C’s model
15 else if j = d then
16 return b

17 else
18 break to try the next position
19 end
20 end
21 end
22 return b

Algorithm 6.5: SAT solver modified to minimise |Λ| using the
straightforward translation.

97

actual strategy for navigating through the search-space defined
by Junker’s translation procedure is buried somewhere in the
IBM archives.

The recent study [53] by Vőmel et al. adapted simulated annealing
[2] algorithm for lock-chart solving. Their objective function mea-
sured “the grade of deviation from a correct matching” and the
move from one partial solution to another did not use the plain
idea of “random exchanges”, but was “restricted at runtime” to
find “‘reasonable’ candidates from a promising neighbourhood”.
However, no formal description of reasonable or promising was
given. Despite incomplete specification, we tried implementing
a prototype of a local search procedure. Since its performance
was orders of magnitude slower than results presented in [53],
we thought it would be unfair to consider it a “reimplementa-
tion of Vőmel’s algorithm”. Merely as a “sluggish prototype of
local search”, we decided not to include it here.

hypotheses . The automorphism and CSP algorithms are com-
plete in the following sense: Given an infinite amount of time,
they always find the optimal solution. The implicit algorithm is
not complete, because of possible violations of Assumption 84

and neither is the SAT algorithm because of Assumption 85.
However, given a limited amount time, even the complete al-
gorithms may fail to find the optimal solution quickly enough.
Will the incomplete algorithms outperform them?

The implicit algorithm has an unpleasant property of invoking
an NP-complete pruning procedure in some points of the search
space. Will the overall runtime benefit from this?

Finally, how do these algorithms perform at the decision variant
of the problem? All four algorithms received a “hook”, which
reports every update of the best solution b. The first invocation
of this hook reports the runtime necessary for finding the first
solution, regardless of its quality.

disclaimer . A particular bias of these experiments should
be pointed out. One fundamental limitation of the SAT algo-
rithm was reported in Section 4.2. Due to high memory con-
sumption and the MiniSAT’s search strategy oblivious to sym-
metries in the search-space (such as picking cuttings from Sq̂
for individual keys), SAT is unlikely to solve lock-charts with
more than ∼ 1700 keys. The largest lock-chart in the dataset has
x = 200 individual keys, well below this limit. If this limit were
raised, SAT’s performance would deteriorate. Lock-charts in this
section should be considered small-sized or mid-sized.

Individual keys in the synthetic dataset follow the Definition 11

exactly. Each key either opens exactly one lock (hence individ-

98

Dataset Autom. CSP Implicit SAT

real-world (20 lock-charts)
8 8 8 20

40% 40% 40% 100%

master-only (19 lock-charts)
17 17 17 19

89% 89% 89% 100%

synthetic (24 lock-charts)
0 8 8 24

0% 33% 33% 100%

Table 6.3: Number of lock-charts solved within the 105 s timeout.

ual) or opens most locks (hence master). Our business experi-
ence confirms Lawer’s observation [38] that the hardest indus-
trial lock-charts are unstructured. They have a lot of “almost in-
dividual” or “border-line master” keys, which, e.g. complicate
picking cuttings of the Sq̂ for individual keys. Hence lock-charts
here are computationally hard due to the number of master keys
rather than the poor structure of individual keys.

We avoided overly well-structured problems, such as the diag-
onal ones. The implicit algorithm detects whether they have a
solution in linear time.2 If a solution exists, the same is true for
Lawer’s algorithm. Hence, including well-structured problems
would merely test data structures and quality of implementa-
tion, which is not the aim of these experiments.

results. All experiments were performed on a Intel Xeon
clocked at 3.10 GHz with 128 GiB RAM. All algorithms were
implemented as single-threaded. The timeout was set to 104 s,
which is ∼ 2.8hours.

Table 6.3 summarises the number of successfuly solved lock-
charts within the timeout, referred as the success rate. It shows
the algorithms’ ability to solve the decision variant of the lock-
chart solving problem. We can see that SAT unquestionably dom-
inates in all datasets having the 100% success rate.

For small lock-charts in the real-world and master-only datasets,
none of the two additional all-different pruning increases the
success rate. However, as the lock-chart’s size increases in the
synthetic dataset, both pruning strategies avoid parts of the search
space, where the automorphism algorithm got trapped. Tables 6.4
and 6.5 support this by showing absolute runtime needed for
finding the first solution – the time referred as decision runtime.

2 Right after setting the general key’s cutting (for which there is only 1 candidate
cutting), the Γ̄(q, ŝ(k1), {∅}) function is invoked exactly p+ 1 times in the only
group g1. It reduces to calling θ(p,q, ŝ(g), ∅), for which Algorithm 5.1 provides
a fast implementation.

99

In the pair-wise comparison, two algorithms are compared. The
score (runtime, shear-lines in GVC, ...) is averaged by the geomet-
ric mean in the same way as in Section 5.3 from those lock-charts,
which were solved by both compared algorithms.

Table 6.6 shows the pair-wise comparison of decision runtimes.
Values confirm the prevailing dominance of the SAT algorithm.
Between CSP and the implicit pruning schemes, the implicit al-
gorithm achieves a better runtime – a difference especially pro-
nounced in the synthetic dataset, whose lock-charts are bigger.

How do the algorithms perform at minimising the number of
shear-lines in the GVC? Table 6.7 show the results in real-world
and master-only datasets. In both, only minor differences can
be found. In one case (lock-chart M108), the automorphism algo-
rithm’s brute-force paid off by finding a better solution than all
other algorithms. In two cases (lock-charts M107 and N200), the
SAT’s brute force won over all other algorithms.

Probably the most interesting result is lock-chart N201. It is the
only lock-chart, where Assumption 85 of SAT’s optimality was
necessarily violated. Nevertheless, possible further violations in
the synthetic dataset, shown in Table 6.8, have a lesser effect
than the backtrackers’ inability to escape local minima. In 3 lock-
charts, the difference was by more than one magnitude.

Finally, we measured the optimisation runtime – time needed to
find the best solution. Such value is useful in practice for deter-
mining a reasonable timeout. If a timeout is greater than the opti-
misation runtime, then the quality of the solution (Table 6.7) will
be guaranteed. Table 6.9 summarises the optimisation runtime in
real-world and master-only datasets and support the practicality
of the SAT algorithm.

For illustrative purposes, Figure 6.1 shows how the shear-lines
in GVC are reduced over time in the N102 lock-chart.

100

Dataset Autom. CSP Implicit SAT

re
al

-w
or

ld

M103 14.43 s 18.29 s 22.71 s 2.6 · 10−3 s
M108 2.8 · 103 s 5.0 · 103 s 5.0 · 103 s 0.01 s
M109 1.16 s 2.91 s 1.97 s 2.1 · 10−3 s
M111 0.01 s 2.1 · 10−3 s 2.5 · 10−3 s 3.7 · 10−3 s
M112 3.85 s 4.48 s 6.14 s 0.03 s
M201 9.2 · 10−3 s 0.01 s 0.01 s 0.03 s
M203 – – – 0.21 s
M204 7.0 · 10−6 s – – 3.1 · 10−5 s
M209 248.94 s 739.17 s 373.76 s 0.08 s
M101 – – – 0.94 s
M104 – – – 0.01 s
M106 – – – 0.01 s
M107 – 2.6 · 10−3 s 1.2 · 10−3 s 0.02 s
M202 – – – 0.01 s
M206 – – – 0.11 s
M208 – – – 0.09 s
M100 – – – 0.07 s
M102 – – – 0.08 s
M200 – – – 0.01 s
M205 – – – 0.04 s

m
as

te
r-

on
ly

N103 3.1 · 10−5 s 1.1 · 10−4 s 2.0 · 10−5 s 1.1 · 10−4 s
N108 2.1 · 10−5 s 1.4 · 10−4 s 1.6 · 10−5 s 3.8 · 10−4 s
N109 3.2 · 10−5 s 1.7 · 10−4 s 2.4 · 10−5 s 1.1 · 10−4 s
N111 1.1 · 10−5 s 3.6 · 10−5 s 9.0 · 10−6 s 4.9 · 10−5 s
N112 4.0 · 10−5 s 2.4 · 10−5 s 5.0 · 10−6 s 1.5 · 10−4 s
N201 4.9 · 10−5 s 5.8 · 10−3 s 1.0 · 10−4 s 1.7 · 10−4 s
N203 1.3 · 10−5 s 3.5 · 10−5 s 1.6 · 10−5 s 6.7 · 10−5 s
N209 9.5 · 10−5 s 1.8 · 10−4 s 2.4 · 10−5 s 1.1 · 10−4 s
N101 2.9 · 10−5 s 4.5 · 10−4 s 8.3 · 10−5 s 4.4 · 10−4 s
N104 5.4 · 10−5 s 2.0 · 10−3 s 4.6 · 10−5 s 3.8 · 10−4 s
N106 0.10 s 0.03 s 0.11 s 5.8 · 10−3 s
N107 2.2 · 10−5 s 6.4 · 10−4 s 2.9 · 10−5 s 2.3 · 10−4 s
N202 1.5 · 10−4 s 0.01 s 8.8 · 10−5 s 5.1 · 10−4 s
N206 5.5 · 10−5 s 5.4 · 10−4 s 4.4 · 10−5 s 2.7 · 10−4 s
N208 3.1 · 10−5 s 4.5 · 10−4 s 3.6 · 10−5 s 1.4 · 10−4 s
N100 – – – 9.7 · 10−3 s
N102 1.7 · 10−3 s 0.01 s 1.9 · 10−4 s 1.9 · 10−3 s
N200 0.42 s 0.14 s 0.43 s 5.5 · 10−3 s
N205 – – – 8.4 · 10−3 s

Table 6.4: Time required to find a solution (decision runtime) to the
lock-charts in the real-world and master-only datasets.

101

Dataset Autom. CSP Implicit SAT

sy
nt

he
ti

c

D02M0025I02P06D100R – – – 0.51 s
D02M0040I02P10D050R – 9.2 · 10−3 s 8.4 · 10−3 s 0.03 s
D02M0081I02P10D100R – – – 2.46 s
D02M0020I06P02D100R – – – 0.02 s
D02M0187I06P06D001R – 207.41 s 4.35 s 3.24 s
D02M0025I10P02D010R – 0.05 s 7.0 · 10−3 s 8.6 · 10−3 s
D02M0050I10P02D020R – 0.14 s 0.01 s 0.03 s
D02M0126I10P02D050R – 0.41 s 0.07 s 0.52 s
D06M0025I02P06D100R – – – 0.89 s
D06M0040I02P10D050R – 3.4 · 10−3 s 3.9 · 10−3 s 0.07 s
D06M0081I02P10D100R – – – 2.41 s
D06M0020I06P02D100R – – – 0.26 s
D06M0187I06P06D001R – 203.77 s 2.33 s 3.48 s
D06M0025I10P02D010R – – – 8.4 · 10−3 s
D06M0050I10P02D020R – – – 0.06 s
D06M0126I10P02D050R – – – 4.70 s
D10M0025I02P06D100R – – – 1.16 s
D10M0040I02P10D050R – – – 0.07 s
D10M0081I02P10D100R – – – 2.83 s
D10M0020I06P02D100R – – – 0.33 s
D10M0187I06P06D001R – 462.76 s 4.98 s 4.17 s
D10M0025I10P02D010R – – – 0.03 s
D10M0050I10P02D020R – – – 0.28 s
D10M0126I10P02D050R – – – 9.46 s

Table 6.5: Time required to find a solution (decision runtime) to the
lock-charts in the synthetic dataset.

102

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0 0
.0
0
0
1

0
.0
1

1
1
0
0

1
0
0
0
0

1
×
1
0
6

shear-linesinGVC

ru
nt

im
e

[s
]

A
ut

om
or

ph
is

m
C

SP
Im

pl
ic

it
SA

T
de

ci
si

on
ru

nt
im

e
op

ti
m

iz
at

io
n

ru
nt

im
e

al
go

ri
th

m
te

rm
in

at
ed

Fi
gu

re
6
.1

:C
on

ve
rg

en
ce

of
|Λ
|

in
th

e
be

st
so

lu
ti

on
fo

un
d

so
fa

r
(b

)
on

th
e

N1
02

lo
ck

-c
ha

rt
.

103

real-world Autom. CSP Implicit SAT

Autom. 1.00 1.04 1.10 124.17
CSP 0.96 1.00 1.15 56.33

Implicit 0.91 0.87 1.00 48.96
SAT 8.1 · 10−3 0.02 0.02 1.00

synthetic CSP Implicit SAT

CSP 1.00 4.90 9.04
Implicit 0.20 1.00 1.84

SAT 0.11 0.54 1.00

Table 6.6: Pair-wise comparison of decision runtimes, averaged by geo-
metric mean. Values ⩽ 1 mean that the row-algorithm beats
the column-algorithm. Master-only dataset is not listed, be-
cause of small absolute values in Table 6.4, whose ratio is
numerically unstable.

104

Dataset Autom. CSP Implicit SAT

re
al

-w
or

ld

M103 64 64 64 64

M108 48 64 64 64

M109 27 27 27 27

M111 25 25 25 25

M112 25 25 25 25

M201 64 64 64 64

M203 – – – 64

M204 2 – – 2

M209 64 64 64 64

M101 – – – 125

M104 – – – 162

M106 – – – 162

M107 – 125 125 100

M202 – – – 512

M206 – – – 81

M208 – – – 81

M100 – – – 729

M102 – – – 486

M200 – – – 100

M205 – – – 243

m
as

te
r-

on
ly

N103 16 16 16 16

N108 8 8 8 8

N109 9 9 9 9

N111 4 4 4 4

N112 3 3 3 3

N201 27 27 27 32

N203 3 3 3 3

N209 16 16 16 16

N101 12 12 12 12

N104 24 24 24 27

N106 54 54 54 54

N107 4 4 4 4

N202 128 128 128 128

N206 9 9 9 9

N208 7 7 7 7

N100 – – – 486

N102 27 48 27 27

N200 50 50 50 25

N205 – – – 81

Table 6.7: |Λ| by the best found solution in the real-world and master-
only datasets.

105

Dataset Autom. CSP Implicit SAT

sy
nt

he
ti

c

D02M0025I02P06D100R – – – 36

D02M0040I02P10D050R – 70 70 60

D02M0081I02P10D100R – – – 100

D02M0020I06P02D100R – – – 64

D02M0187I06P06D001R – 19440 960 864

D02M0025I10P02D010R – 256 256 128

D02M0050I10P02D020R – 512 512 512

D02M0126I10P02D050R – 1024 1024 1024

D06M0025I02P06D100R – – – 36

D06M0040I02P10D050R – 80 80 80

D06M0081I02P10D100R – – – 100

D06M0020I06P02D100R – – – 64

D06M0187I06P06D001R – 17280 1944 864

D06M0025I10P02D010R – – – 256

D06M0050I10P02D020R – – – 512

D06M0126I10P02D050R – – – 1024

D10M0025I02P06D100R – – – 36

D10M0040I02P10D050R – – – 90

D10M0081I02P10D100R – – – 100

D10M0020I06P02D100R – – – 64

D10M0187I06P06D001R – 10368 8640 1296

D10M0025I10P02D010R – – – 512

D10M0050I10P02D020R – – – 1024

D10M0126I10P02D050R – – – 1024

Table 6.8: |Λ| by the best found solution in the synthetic dataset.

106

Dataset Autom. CSP Implicit SAT

re
al

-w
or

ld

M103 14.43 s 18.29 s 22.71 s 2.6 · 10−3 s
M108 6.3 · 103 s 5.0 · 103 s 5.0 · 103 s 0.01 s
M109 31.59 s 192.35 s 100.85 s 6.4 · 10−3 s
M111 0.01 s 2.1 · 10−3 s 2.5 · 10−3 s 3.7 · 10−3 s
M112 3.85 s 4.48 s 6.14 s 0.03 s
M201 9.2 · 10−3 s 0.01 s 0.01 s 0.03 s
M203 – – – 0.21 s
M204 7.0 · 10−6 s – – 3.1 · 10−5 s
M209 248.94 s 739.17 s 373.76 s 0.08 s
M101 – – – 0.94 s
M104 – – – 0.02 s
M106 – – – 0.01 s
M107 – 2.6 · 10−3 s 1.2 · 10−3 s 0.09 s
M202 – – – 0.01 s
M206 – – – 0.11 s
M208 – – – 0.09 s
M100 – – – 0.07 s
M102 – – – 1.19 s
M200 – – – 0.02 s
M205 – – – 0.04 s

m
as

te
r-

on
ly

N103 3.1 · 10−5 s 1.1 · 10−4 s 2.0 · 10−5 s 1.1 · 10−4 s
N108 3.8 · 10−5 s 1.5 · 10−4 s 3.2 · 10−5 s 3.8 · 10−4 s
N109 0.01 s 0.03 s 0.01 s 3.2 · 10−4 s
N111 3.2 · 10−5 s 6.9 · 10−5 s 2.6 · 10−5 s 4.9 · 10−5 s
N112 5.3 · 10−5 s 2.8 · 10−5 s 8.0 · 10−6 s 1.5 · 10−4 s
N201 0.36 s 1.01 s 0.35 s 1.5 · 10−3 s
N203 2.1 · 10−5 s 4.4 · 10−5 s 2.6 · 10−5 s 6.7 · 10−5 s
N209 4.4 · 10−3 s 3.7 · 10−3 s 1.1 · 10−3 s 1.8 · 10−4 s
N101 4.4 · 10−3 s 0.22 s 0.02 s 0.01 s
N104 0.42 s 14.49 s 0.38 s 6.2 · 10−4 s
N106 567.38 s 6.2 · 103 s 593.01 s 6.8 · 10−3 s
N107 6.4 · 10−5 s 1.3 · 10−3 s 9.6 · 10−5 s 2.3 · 10−4 s
N202 4.4 · 10−3 s 0.01 s 1.4 · 10−3 s 7.2 · 10−3 s
N206 4.7 · 10−3 s 0.03 s 2.7 · 10−3 s 2.7 · 10−4 s
N208 6.3 · 10−4 s 7.4 · 10−3 s 9.4 · 10−4 s 1.4 · 10−4 s
N100 – – – 0.01 s
N102 418.56 s 911.59 s 418.73 s 5.1 · 10−3 s
N200 1.3 · 103 s 9.8 · 103 s 1.6 · 103 s 0.02 s
N205 – – – 9.2 · 10−3 s

Table 6.9: Time required to find the best solution (optimisation time)
to lock-charts in the real-world and master-only datasets.

107

7
C O N C L U S I O N S

Lock-chart solving is a complex problem, both theoretically and
practically. The formalism proposed in this study is relatively
simple, yet expressive enough to capture all intricacies of several
real-world mechanical platforms. Many real-world problems com-
ing from industrial needs, such as finding largest diagonal lock-
charts, are either polynomially solvable or can be approximated
using a polynomial procedure to a satisfactory degree. Other
real-world problems, such as solving large unstructured lock-
charts or counting available cuttings, are not practically feasible
given the state-of-the-art computers and algorithms.

Lock-chart solving is a problem overlooked by academia. We
know only of 4 publicly available studies [34, 38, 44, 53] on the
topic of computational lock-chart solving, which might be sur-
prising given that the problem has many interesting properties.
For example, the hierarchy of lock-chart formalisms contains the
P/NP boundary. This study proved that in vanilla framework,
diagonal and key-to-differ lock-charts are solvable in P, yet more
expressive lock-charts are NP-complete. Moreover, the simplistic
formalism of lock-charts allows researchers to attack the prob-
lem using various discrete optimisation approaches. Here we
have successfully applied SAT solvers and some CSP-inspired
techniques.

Lock-chart solving is a great challenge for hackers.1 Tackling NP-
complete problems has always been approached both by theoret-
ical breakthroughs and dirty tricks. The apparent structure and
symmetries in lock-charts call for many ideas of the latter kind.
Given the popularity of contests in lock-picking, which is essen-
tially a kind of mechanical hacking, there is no reason to believe
that lock-chart solving cannot become a hacking quest for IT
people.

Lock-chart solving is a good exercise for teaching algorithmiza-
tion in schools, an observation already mentioned in [53]. Stu-
dents need a low overhead to start. Since tuples are naturally
represented by arrays and tree/hash sets are one of the earli-
est taught data structures, probably the hardest notion to under-
stand before diving into lock-chart solving is a graph.

Here is a list of several opportunities for future development.

1 We mean ethical hackers.

108

• Personally, the most intriguing open question is the sta-
tus of basic lock-charts in the vanilla framework. Diago-
nal lock-charts are in P, yet extension and melted profiles
lock-charts are NP-complete. In which class do the basic
lock-charts belong to?

• Solving NP-complete tasks is usually concerned with the
runtime. Unless P = NP, the runtime is inevitably expo-
nential, which limits the algorithm capabilities. However,
in Section 4.2 we saw that the limitation of SAT solvers is
not their runtime, but memory requirements. The work on
reducing the memory footprint of SAT solvers focuses on
reducing the footprint of learnt clauses [4, 23] or proofs of
formula’s unsatisfiability [56]. Another line of research can
investigate methods of storing or reducing the CNF itself
and keep a comparable runtime to the current generation
of SAT solvers.

• Practical solvers that optimise for extensibility would bene-
fit from a deeper analysis of independent keys. What is the
largest lock-chart of independent keys if the code space is
defined in the explicit framework?

• A natural variation of employing SAT solvers is to explore
other formalisms for discrete optimisation, such as ILP as
proposed in Section 4.3.

• The cutting counting algorithm with general constraints is
in its early stages of development and offers many research
directions. For example, can the code space S be sampled
to get merely approximate values |Sq|, yet precise enough
to evaluate q̂ = arg maxq |Sq|?

• Better cutting counting algorithm can improve the scalabil-
ity of backtracking algorithms, which is the main drawback
of SAT solvers (see Section 4.2). Even though the implicit al-
gorithm (from Section 6.3) is not complete and does not en-
sure finding the optimal solution, it achieved better results
than other backtrackers did due to performance gains. The
trade-off between completeness and performance should
be explored in more detail.

Finally, there is a personal wish. It would be great to see a small
lock-chart solving community. Given a commercial interest, the
undeniable romantic flair of mechanical locks and a potential of
a healthy competition, there is no reason why the topic should
not attract more enthusiasts. Hopefully, this text will help people
willing to take up lock-chart solving. A second important com-
ponent would be a publicly available dataset of constraints from
real-world platforms and a dataset of lock-charts. I promise to
try persuading our commercial partners towards this direction.

109

B I B L I O G R A P H Y

[1] Scott Aaronson. P ?
= NP. 2017. url: https://www.scottaaronson.

com/blog/?p=3095.

[2] Emile Aarts and Jan K. Lenstra, eds. Local Search in Combi-
natorial Optimization. 1st. New York, NY, USA: John Wiley
& Sons, Inc., 1997. isbn: 0471948225.

[3] Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, eds. Fast
Algorithms for Mining Association Rules. Morgan Kaufmann,
1994, pp. 487–499.

[4] Gilles Audemard and Laurent Simon. “Predicting Learnt
Clauses Quality in Modern SAT Solvers”. In: Proceedings of
the 21st International Jont Conference on Artifical Intelligence.
IJCAI’09. Pasadena, California, USA: Morgan Kaufmann
Publishers Inc., 2009, pp. 399–404.

[5] László Babai. “Graph Isomorphism in Quasipolynomial
Time”. In: Proceedings of the Forty-eighth Annual ACM Sym-
posium on Theory of Computing. STOC ’16. Cambridge, MA,
USA: ACM, 2016, pp. 684–697. isbn: 978-1-4503-4132-5. doi:
10.1145/2897518.2897542.

[6] László Babai. Fixing the UPCC case of Split-or-Johnson. [On-
line; accessed 2-September-2017]. 2017.

[7] Piotr Berman and Martin Fürer. “Approximating Maxi-
mum Independent Set in Bounded Degree Graphs.” In:
SODA. Vol. 94. 1994, pp. 365–371.

[8] Armin Biere, Marijn Heule, Hans van Maaren, and Toby
Walsh. Handbook of Satisfiability. Amsterdam, The Nether-
lands, The Netherlands: IOS Press, 2009. isbn: 1586039296,
9781586039295.

[9] Christian Bliek, Pierre Bonami, and Andrea Lodi. “Solv-
ing mixed-integer quadratic programming problems with
IBM-CPLEX: a progress report”. In: Proceedings of the Twenty-
Sixth RAMP Symposium. Hosei University, Tokyo, Japan,
2014.

[10] Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, 2004. isbn: 0521833787.

[11] Wikimedia Commons. File:Standard-lock-key.jpg — Wikime-
dia Commons, the free media repository. [Online; accessed 20-
October-2017]. 2010. url: https://ja.wikipedia.org/wiki/
%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Standard-lock-
key.jpg.

110

https://www.scottaaronson.com/blog/?p=3095
https://www.scottaaronson.com/blog/?p=3095
https://doi.org/10.1145/2897518.2897542
https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Standard-lock-key.jpg
https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Standard-lock-key.jpg
https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Standard-lock-key.jpg

[12] Wikimedia Commons. File:Polhemslås skiss.png — Wikime-
dia Commons, the free media repository. [Online; accessed 20-
October-2017]. 2015. url: \url{https://commons.wikimedia.
org/w/index.php?title=File:Polhemsl%C3%A5s_skiss.png&
oldid=152861961}.

[13] Wikimedia Commons. File:Chiave simil-Abloy.JPG — Wiki-
media Commons, the free media repository. [Online; accessed
20-October-2017]. 2016. url: https://commons.wikimedia.
org/w/index.php?title=File:Chiave_simil- Abloy.JPG&
oldid=197571188.

[14] Wikimedia Commons. File:Ad for Scandinavian padlock.jpg
— Wikimedia Commons, the free media repository. [Online; ac-
cessed 20-October-2017]. 2017. url: https://commons.wikimedia.
org/w/index.php?title=File:Ad_for_Scandinavian_padlock.
jpg&oldid=256874604.

[15] Martin C Cooper, Simon de Givry, Martı Sánchez, Thomas
Schiex, Matthias Zytnicki, and Tomáš Werner. “Soft arc
consistency revisited”. In: Artificial Intelligence 174.7 (2010),
pp. 449–478.

[16] Martin Davis, George Logemann, and Donald Loveland.
“A Machine Program for Theorem-proving”. In: Commun.
ACM 5.7 (July 1962), pp. 394–397. issn: 0001-0782. doi: 10.
1145/368273.368557.

[17] Martin Davis and Hilary Putnam. “A Computing Proce-
dure for Quantification Theory”. In: J. ACM 7.3 (July 1960),
pp. 201–215. issn: 0004-5411. doi: 10.1145/321033.321034.

[18] Rina Dechter and Avi Dechter. Belief maintenance in dy-
namic constraint networks. University of California, Com-
puter Science Department, 1988.

[19] Niklas Eén and Niklas Sörensson. “An extensible SAT-solver”.
In: Theory and applications of satisfiability testing. Springer.
2003, pp. 502–518.

[20] Stefan Felsner, Vijay Raghavan, and Jeremy Spinrad. “Recog-
nition Algorithms for Orders of Small Width and Graphs
of Small Dilworth Number”. In: Order 20.4 (2003), pp. 351–
364. issn: 1572-9273. doi: 10 . 1023 / B : ORDE . 0000034609 .
99940.fb.

[21] Eugene C Freuder and Richard J Wallace. “Partial con-
straint satisfaction”. In: Artificial Intelligence 58.1-3 (1992),
pp. 21–70.

[22] Georg Gottlob and Stefan Szeider. “Fixed-parameter algo-
rithms for artificial intelligence, constraint satisfaction and
database problems”. In: The Computer Journal 51.3 (2008),
pp. 303–325.

111

\url{https://commons.wikimedia.org/w/index.php?title=File:Polhemsl%C3%A5s_skiss.png&oldid=152861961}
\url{https://commons.wikimedia.org/w/index.php?title=File:Polhemsl%C3%A5s_skiss.png&oldid=152861961}
\url{https://commons.wikimedia.org/w/index.php?title=File:Polhemsl%C3%A5s_skiss.png&oldid=152861961}
https://commons.wikimedia.org/w/index.php?title=File:Chiave_simil-Abloy.JPG&oldid=197571188
https://commons.wikimedia.org/w/index.php?title=File:Chiave_simil-Abloy.JPG&oldid=197571188
https://commons.wikimedia.org/w/index.php?title=File:Chiave_simil-Abloy.JPG&oldid=197571188
https://commons.wikimedia.org/w/index.php?title=File:Ad_for_Scandinavian_padlock.jpg&oldid=256874604
https://commons.wikimedia.org/w/index.php?title=File:Ad_for_Scandinavian_padlock.jpg&oldid=256874604
https://commons.wikimedia.org/w/index.php?title=File:Ad_for_Scandinavian_padlock.jpg&oldid=256874604
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1023/B:ORDE.0000034609.99940.fb
https://doi.org/10.1023/B:ORDE.0000034609.99940.fb

[23] Orna Grumberg, Assaf Schuster, and Avi Yadgar. “Mem-
ory Efficient All-Solutions SAT Solver and Its Application
for Reachability Analysis”. In: Formal Methods in Computer-
Aided Design: 5th International Conference, FMCAD 2004, Austin,
Texas, USA, November 15-17, 2004. Proceedings. Ed. by Alan
J. Hu and Andrew K. Martin. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 275–289. isbn: 978-3-540-30494-
4.

[24] Inc. Gurobi Optimization. Gurobi Optimizer Reference Man-
ual. 2017. url: http://www.gurobi.com.

[25] Magnús M Halldórsson and Jaikumar Radhakrishnan. “Greed
is good: Approximating independent sets in sparse and
bounded-degree graphs”. In: Algorithmica 18.1 (1997), pp. 145–
163.

[26] Steven Hampton. Secrets Of Lock Picking. Paladin Press,
1987.

[27] Hatton Garden safety deposit box vault burgled. 2015. url:
http://www.bbc.com/news/uk-england-london-32207974.

[28] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. “Su-
per solutions in constraint programming”. In: Integration of
AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems. Springer, 2004, pp. 157–172.

[29] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages, and Computation
(3rd Edition). Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2006. isbn: 0321455363.

[30] IBM ILOG CPLEX Optimizer. 2017. url: https://www- 01.
ibm.com/software/commerce/optimization/cplex-optimizer/.

[31] Ilog Solver. V4.0. Reference manual and user manual. 1997.

[32] Peter James and Nick Thorpe. Ancient Inventions. New York:
Ballantine Books, 1995.

[33] Luke Jones and Tom de Castella. Is the traditional metal key
becoming obsolete? 2014. url: http://www.bbc.com/news/
magazine-29817520.

[34] Ulrich Junker. “Constraint-based Problem Decomposition
for a Key Configuration Problem”. In: Principles and Prac-
tice of Constraint Programming 1520 (1999), pp. 265–279.

[35] H Kautz, B Selman, and D McAllester. “Walksat in the
SAT 2004 competition”. In: International Conference on The-
ory and Applications of Satisfiability Testing (SAT04). 2004.

[36] Leonid G Khachiyan. “A polynomial algorithm in linear
programming”. In: Doklady Akademiia Nauk SSSR. Vol. 244.
1979, pp. 1093–1096.

112

http://www.gurobi.com
http://www.bbc.com/news/uk-england-london-32207974
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.bbc.com/news/magazine-29817520
http://www.bbc.com/news/magazine-29817520

[37] Nicolas Lachiche. “Propositionalization”. In: Encyclopedia
of Machine Learning. Ed. by Claude Sammut and Geoffrey
I. Webb. Boston, MA: Springer US, 2010, pp. 812–817. isbn:
978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_680.

[38] Anna Lawer. “Calculation of Lock Systems”. MA thesis.
Royal Institute of Technology, 2004.

[39] Alan K. Mackworth. “On Reading Sketch Maps”. In: Pro-
ceedings of the 5th International Joint Conference on Artificial
Intelligence - Volume 2. IJCAI’77. Cambridge, USA: Morgan
Kaufmann Publishers Inc., 1977, pp. 598–606.

[40] Mark McCloud, Gonzalez de Santos, and Mirko Jugurdz-
ija. Visual Guide to Lock Picking. third. Standard Publica-
tions, Inc., 2007.

[41] Brendan D. McKay and Adolfo Piperno. “Practical graph
isomorphism, {II}”. In: Journal of Symbolic Computation 60.0
(2014), pp. 94 –112. issn: 0747-7171.

[42] Mul-T-Lock CLIQ. [Online; accessed 20-October-2017]. 2017.
url: http://www.mul-t-lock-cliq.com/.

[43] Deviant Ollam. Practical Lock Picking. A Physical Penetration
Tester’s Training Guide. second. Syngress, 2012.

[44] Don O’Shall. The Definitive Guide to RCM – Rotating Con-
stant Method of Master Keying. Locksmithing Education, 2015.
isbn: 9781937067137. url: https://books.google.cz/books?
id=5Hz_rQEACAAJ.

[45] Charles Prud’homme, Jean-Guillaume Fages, and Xavier
Lorca. Choco Documentation. TASC; INRIA Rennes; LINA
CNRS UMR 6241; COSLING S.A.S. 2015. url: http://www.
choco-solver.org.

[46] G.W. Pulford. High-security Mechanical Locks: An Encyclope-
dic Reference. Elsevier Butterworth-Heinemann, 2007. isbn:
9780750684378. url: https://books.google.cz/books?id=
1WeVeMMGQKEC.

[47] Francesca Rossi, Peter Van Beek, and Toby Walsh. Hand-
book of constraint programming. Elsevier, 2006.

[48] Bart Selman, Henry A Kautz, Bram Cohen, et al. “Local
search strategies for satisfiability testing.” In: Cliques, color-
ing, and satisfiability 26 (1993), pp. 521–532.

[49] Bart Selman, Hector Levesque, and David Mitchell. “A
New Method for Solving Hard Satisfiability Problems”. In:
Proceedings of the Tenth National Conference on Artificial In-
telligence. AAAI’92. San Jose, California: AAAI Press, 1992,
pp. 440–446. isbn: 0-262-51063-4.

113

https://doi.org/10.1007/978-0-387-30164-8_680
http://www.mul-t-lock-cliq.com/
https://books.google.cz/books?id=5Hz_rQEACAAJ
https://books.google.cz/books?id=5Hz_rQEACAAJ
http://www.choco-solver.org
http://www.choco-solver.org
https://books.google.cz/books?id=1WeVeMMGQKEC
https://books.google.cz/books?id=1WeVeMMGQKEC

[50] Mate Soos. “CryptoMiniSat v4”. In: Proceedings of SAT Com-
petition 2014: Solver and Benchmark Descriptions. Helsinki,
Finland: University of Helsinki, 2014. isbn: 978-951-51-0043-
6.

[51] Maciej M. Syso. “The subgraph isomorphism problem for
outerplanar graphs”. In: Theoretical Computer Science 17.1
(1982), pp. 91 –97. issn: 0304-3975.

[52] Robert Endre Tarjan and Anthony E Trojanowski. “Finding
a maximum independent set”. In: SIAM Journal on Comput-
ing 6.3 (1977), pp. 537–546.

[53] Christof Vomel, Flavio de Lorenzi, Samuel Beer, and Er-
win Fuchs. “The Secret Life of Keys: On the Calculation
of Mechanical Lock Systems”. In: SIAM Review 59.2 (2017),
pp. 393–422.

[54] B. Widén. Cylinder lock with profiled keyway. US Patent App.
13/184,305. 2011. url: https://www.google.cz/patents/
US20110271723.

[55] Wikipedia. Locksport — Wikipedia, The Free Encyclopedia. [On-
line; accessed 20-October-2017]. 2017. url: https : / / en .
wikipedia . org / w / index . php ? title = Locksport & oldid =
798922145.

[56] Lintao Zhang and Sharad Malik. “Validating SAT Solvers
Using an Independent Resolution-Based Checker: Practi-
cal Implementations and Other Applications”. In: Proceed-
ings of the Conference on Design, Automation and Test in Eu-
rope - Volume 1. DATE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 10880–. isbn: 0-7695-1870-2.

[57] Dennis van Zuijlekom. Börkey 954-2 Key Cutting Machine.
2013. url: https://www.flickr.com/photos/dvanzuijlekom/
8489934067/.

114

https://www.google.cz/patents/US20110271723
https://www.google.cz/patents/US20110271723
https://en.wikipedia.org/w/index.php?title=Locksport&oldid=798922145
https://en.wikipedia.org/w/index.php?title=Locksport&oldid=798922145
https://en.wikipedia.org/w/index.php?title=Locksport&oldid=798922145
https://www.flickr.com/photos/dvanzuijlekom/8489934067/
https://www.flickr.com/photos/dvanzuijlekom/8489934067/

	Introduction
	Mechanical locks
	Related literature
	Goals and disclaimer
	Acknowledgements

	Lock-chart formalisation
	Preliminaries
	Constraints
	Lock-charts
	Optimisation
	Extensions

	Complexity classes
	Preliminaries
	Verifying solutions
	SAT correspondence
	Melted profiles lock-charts
	Lock-chart of independent keys
	Diagonal lock-charts
	Conclusion

	Propositionalization
	Preliminaries
	Boolean satisfiability
	Integer linear programming

	Cutting counting
	Asymmetric framework
	General framework
	Explicit framework

	Backtrackers
	Automorphism algorithm
	Constraint satisfaction
	Implicit domains
	GVC minimisation

	Conclusions

