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Abstract:  
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of CubeSAT sizes. First, a small overview of centrifuges is presented, afterwards will be performed 

calculation of needed performance according to requirements and given conditions. Last, design of the 

centrifuge machine will be performed using known methods and technics, like analytical hands 

calculations, analytical calculations with the help of MATLAB® software and Finite Element Method 

(FEM).  

 

 

 



iii 

 

 

 

 

 

 

 

 

 

Declaration: 

 I declare that I wrote my master (diploma) thesis independently and I used only 

references that are mentioned in attached list 

 

 

Prohlášení: 

 

Prohlašuji, že jsem svou bakalářskou práci vypracoval samostatně a použil jsem pouze podklady 

uvedené v přiloženém seznamu. 

 

 

In Prague date/ V Praze dne ....................   Signature/ podpis  ..................................... 

 

  



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements:   

 

 

I would like to thank supervisor of this work Mgr. Jaroslav Kousal Ph.D., for professional guidance, 

valuable advice and time he devoted to me. In addition, I want to say words of gratitude to Ing. Jaromir 

Kučera for the practical advises and showing me some technical aspects that I didn’t know before.



v 

 

Contents 
 

1. Introduction ........................................................................................................................................... 1 

2. Preliminary Performance Calculation ................................................................................................... 2 

2.1. The Centrifugal and Drag Force ................................................................................................... 2 

2.2. Preliminary calculation of the performance and arm length ......................................................... 4 

2.3. Acceleration and time when the required speed will be reached. ................................................. 8 

3. Design ................................................................................................................................................. 12 

3.1. Centrifuge arms strength calculation .......................................................................................... 12 

3.1.1. Static case ............................................................................................................................ 12 

3.1.2. Motion case ......................................................................................................................... 14 

3.1.3. Summary ............................................................................................................................. 21 

3.2. Belt transmission ......................................................................................................................... 22 

3.3. Rotating Shaft ............................................................................................................................. 26 

3.3.1. Shaft. Static ......................................................................................................................... 26 

3.3.2. Critical speed of the shaft .................................................................................................... 32 

3.4. Motor mounting .......................................................................................................................... 46 

3.5. Lug and pin design ...................................................................................................................... 47 

3.5.1. Lug design ........................................................................................................................... 47 

3.5.2. Pin design ............................................................................................................................ 56 

3.6. Centrifuges head ......................................................................................................................... 65 

3.7. Frame .......................................................................................................................................... 67 

4. FEM Analysis ..................................................................................................................................... 68 

4.1. Requirements .............................................................................................................................. 68 

4.2. Lug .............................................................................................................................................. 69 

4.3. Pin ............................................................................................................................................... 70 

4.4. Lug out plate ............................................................................................................................... 74 

4.4.1. Two-beam plate (2B) .......................................................................................................... 74 

4.4.2. One – beam plate................................................................................................................. 76 

4.5. Motor base plate .......................................................................................................................... 77 

4.6. Bearing house .............................................................................................................................. 80 

4.7. Frame, 2B variant ........................................................................................................................ 83 

Case I .................................................................................................................................................. 84 

Case II ................................................................................................................................................. 87 



vi 

 

4.7.1. Results, Frame 2B variants ................................................................................................. 94 

4.8. Frame, 1B variant ........................................................................................................................ 95 

4.8.1. Results, Frame 1B variants ................................................................................................. 96 

4.9. Centrifuge’s head ........................................................................................................................ 97 

4.9.1. Centrifuge’s Head Plate ...................................................................................................... 97 

4.9.2. Hub ...................................................................................................................................... 99 

4.10. Shaft’s critical speed ............................................................................................................. 100 

4.11. Shaft’s force (Buckling) ........................................................................................................ 102 

4.12. Fasteners ............................................................................................................................... 103 

5. Remarks ............................................................................................................................................ 104 

6. Conclusion ........................................................................................................................................ 107 

References ................................................................................................................................................. 108 

 

 

Attachment’s content 

1.  Drawings 

 10 – 02 – 002      Centrifuge 2B – R  

 11 – 00 – 001      Bearing House Assembly 

 11 – 01 – 001      Bearing House 

 11 – 02 – 001      Bearing House Plate 

 12 – 00 – 001     Centrifuge Head 1B 

 12 – 00 – 002      Centrifuge Head 2B 

 12 – 01 – 001      Centrifuge Head’s Plate 

 12 – 02 – 001      Hub 

 12 – 03 – 001      Lug 

 12 – 04 – 001      Lug – out 1B 

 12 – 04 – 002      Lug – out 2B 

 12 – 05 – 001      Pin 1B 

 12 – 05 – 002      Pin 2B 

 12 – 06 – 001      Arm 1B (4545 – 2000 1B) 

 12 – 06 – 002      Arm 2B (4545-2000 2B) 



vii 

 

 13 – 00 – 002      Frame – R 

 14 – 01 – 001      Motor Base Plate 

 15 – 01 – 001      Shaft 

2. DVD 

 CAD files 

 Drawings is PDF 

Excel file 

 FEM files 

 Matlab files 

 Word and PDF document of thesis 

 

 

List of used software 

Siemens NX 11.0 

Microsoft Excel/Word 2013 

Beta CAE Ansa 16.0 

Siemens FEMAP v11.3 

Matlab R2014b 

  



viii 

 

List of Figures  
 

Figure 1-1 C60, geotechnical centrifuge [1] .................................................................................................................. 1 
Figure 1-2 Phoenix centrifuge [2] .................................................................................................................................. 1 

Figure 2-1 Centrifugal force [3]..................................................................................................................................... 2 
Figure 2-2 ...................................................................................................................................................................... 2 

Figure 2-3 Torque vs speed char, of the ES-MH 34xx series [4] .................................................................................. 3 
Figure 2-4 Dependency of the Drag Coefficient on the Re [5] ...................................................................................... 4 
Figure 2-5 Inclination angle........................................................................................................................................... 5 

Figure 2-6 Velocity versus arm length r ........................................................................................................................ 6 
Figure 2-7 Drag moment and revolution with the changing arm length r...................................................................... 6 

Figure 2-8 Acceleration gradient, dependency of a acceleration on rps of the capsule's centre of gravity. ................... 8 
Figure 2-9 Preliminary mass moment of inertia ............................................................................................................ 9 
Figure 2-10 Moment equilibrium diagram (For only one arm loaded) ........................................................................ 10 

Figure 2-11 Time versus rps ........................................................................................................................................ 10 
Figure 2-12 Time increasing with moment of inertia .................................................................................................. 11 

Figure 3-1 Static case loading ...................................................................................................................................... 12 
Figure 3-2 Shear Force and bending moment distribution along arm ......................................................................... 13 
Figure 3-3 Profile parameters [6]................................................................................................................................. 13 

Figure 3-4 Velocities in arm for each element............................................................................................................. 15 
Figure 3-5 Drag force on profile .................................................................................................................................. 16 

Figure 3-6 Displaced of preliminary tested capsule. Dimensions are in mm .............................................................. 17 
Figure 3-7 Y-X view load ............................................................................................................................................ 17 

Figure 3-8 Distribution of Shear force and Bending moment...................................................................................... 18 
Figure 3-9 Z-Y View. Torque loading ......................................................................................................................... 19 
Figure 3-10 X-Z view load .......................................................................................................................................... 19 

Figure 3-11 Shearing force and Bending moment distribution .................................................................................... 20 
Figure 3-12 Taper bush dimensions [8] ....................................................................................................................... 22 

Figure 3-13 Equilibrium of moments for various gear ratios, for two loaded arms..................................................... 24 
Figure 3-14 Equilibrium for gear ratio 1.5, for only one resisting moment (second arm free) .................................... 25 
Figure 3-15 Schematic diagram of the loaded shaft .................................................................................................... 26 

Figure 3-16 First version of the shaft; 1,2,3 and 4 are so called “sections” ................................................................. 26 
Figure 3-17 Bending moment of the shaft ................................................................................................................... 27 

Figure 3-18 Bearing life calculation ............................................................................................................................ 29 
Figure 3-19 Loads on the shaft and hub with feather key. [9, p. 38] ........................................................................... 30 
Figure 3-20 TB list. Pikron s.r.o .................................................................................................................................. 31 

Figure 3-21 Simplified diagram of the shaft for Eigen frequency calculation, I II III and IV represents each section. 

Black rectangles represents mass wheels ..................................................................................................................... 32 

Figure 3-22 Defection y as a function of angular velocity, e=0 .................................................................................. 33 

Figure 3-23 Deflection of the shaft as a function of angular velocity, e ≠0 ................................................................ 34 

Figure 3-24 Shaft, calculation model ........................................................................................................................... 36 
Figure 3-25 y(ω) diagram for M1 ................................................................................................................................. 38 
Figure 3-26 Bending moment distribution for the load of 1N at the place of force O1................................................ 39 

Figure 3-27 y(ω) for M1 with allowable deflection ..................................................................................................... 39 
Figure 3-28 y(ω) for the mass M2 ................................................................................................................................ 41 

Figure 3-29 y1(ω) for the both mass attached .............................................................................................................. 43 
Figure 3-30 y2(ω) for the both mass attached .............................................................................................................. 43 
Figure 3-31 Bending distribution on the shaft with O1=1N and O2 = O1/15................................................................ 44 

Figure 3-32 y1.(ω) with showing allowable deflection. For both mass attached. ......................................................... 45 
Figure 3-33 Center distance adjusting [12] .................................................................................................................. 46 

Figure 3-34 Adjustable idler pulley [12] ..................................................................................................................... 46 

file:///C:/Users/Suren/Cloud.Mail/Diploma/Diploma_work_Ali-Ogly.docx%23_Toc489338602
file:///C:/Users/Suren/Cloud.Mail/Diploma/Diploma_work_Ali-Ogly.docx%23_Toc489338621
file:///C:/Users/Suren/Cloud.Mail/Diploma/Diploma_work_Ali-Ogly.docx%23_Toc489338621
file:///C:/Users/Suren/Cloud.Mail/Diploma/Diploma_work_Ali-Ogly.docx%23_Toc489338623


ix 

 

Figure 3-35 Motor adjusting through screw (preliminary design) ............................................................................... 46 
Figure 3-36 Pin loading ............................................................................................................................................... 47 

Figure 3-37 Lug dimensions ........................................................................................................................................ 48 
Figure 3-38 Types of lug loads .................................................................................................................................... 48 

Figure 3-39 Lug tension and shear-tear out failures .................................................................................................... 48 
Figure 3-40 Shear-Bearing efficiency factor [13] ........................................................................................................ 49 
Figure 3-41 Lug efficiency factor for tension [13] ...................................................................................................... 50 

Figure 3-42 Yield factor .............................................................................................................................................. 51 
Figure 3-43 Lugs subjected to transverse load ............................................................................................................ 51 

Figure 3-44 Efficiency factor for transverse load [13] ................................................................................................ 52 
Figure 3-45 SKF 61801 bearing parameters [14] ........................................................................................................ 55 

Figure 3-46 Peak Pin Load .......................................................................................................................................... 56 
Figure 3-47 First mode of the pin loading ................................................................................................................... 56 
Figure 3-48 Free body diagram of the Mode I ............................................................................................................. 57 

Figure 3-49 Shearing Force distribution force, loading of Mode I .............................................................................. 57 
Figure 3-50 Bending moment distribution, Mode I ..................................................................................................... 58 

Figure 3-51 II mode of pin loading .............................................................................................................................. 59 
Figure 3-52 Free body diagram, mode II ..................................................................................................................... 59 
Figure 3-53 Shearing force distributions, Mode II ...................................................................................................... 60 

Figure 3-54 Bending moment, Mode II ....................................................................................................................... 60 
Figure 3-55 A. Mode II, f1       B. Mode II, f2 ...................................................................................................... 61 

Figure 3-56 Point of force applied on capsule, Fd is a drag force, Fc is a centrifugal force ........................................ 63 
Figure 3-57 Pin loading, according drag effect (1B modification) .............................................................................. 64 
Figure 3-58 Centrifuge Head, 1B variant .................................................................................................................... 65 

Figure 3-59 Centrifuge Head, 2B variant .................................................................................................................... 66 
Figure 3-60 Centrifuge's Head Plate dimensions. ........................................................................................................ 66 

Figure 3-61 Frame of the Centrifuge machine, 1B or 2B var., without reinforcement ................................................ 67 
Figure 4-1 Lug FEM analysis model ........................................................................................................................... 69 

Figure 4-2 Results for Lug, fringe = Von Misses stress, deformation shows resultant translation deformation (1000x 

bigger than actual deformation) ................................................................................................................................... 69 
Figure 4-3 Pin drawing for 1B modification. .............................................................................................................. 70 

Figure 4-4 Pin (1B) results .......................................................................................................................................... 70 
Figure 4-5 Pin (1B) no-drag loading............................................................................................................................ 71 

Figure 4-6 CAD model of 2B modification, view to the lugs ...................................................................................... 71 
Figure 4-7 Pin for 2B modification, drawing............................................................................................................... 72 
Figure 4-8 Force applied on the capsule (red) and its value translated to the plate (green) ......................................... 72 

Figure 4-9 FEM model, Lug out plate ......................................................................................................................... 73 
Figure 4-10 Pin 2B variant results, color = beam stress, deformation = 1000x total deformation .............................. 73 

Figure 4-11 Free body diagram of pin (2B var.) .......................................................................................................... 74 
Figure 4-12a  Lug out plate (2B var.) FEM results, colourbar represents Von Misses stress, deformation = Total 

deformation (100x bigger than actual deformation) .................................................................................................... 74 

Figure 4-13 Lug out plate (2B var.), weld area. ........................................................................................................... 75 
Figure 4-14 Lug-out plate, 1B variant, Deformation results (100x actual deformation, white is undeformed) ........... 76 

Figure 4-15 Lug-out plate, 1B variant, Von Misses stress results ............................................................................... 76 
Figure 4-16 CAD model of the motor connected to the MBP and frame .................................................................... 77 

Figure 4-17 FEM model of the MBP ........................................................................................................................... 78 
Figure 4-18 MBP Von Misses Stress result ................................................................................................................. 78 
Figure 4-19 Deformation of MBP, 2000x bigger than actual deformation .................................................................. 79 

Figure 4-20 MPB stress and deformation results (400 N total load) ........................................................................... 79 
Figure 4-21 CAD model of a Bearing house ............................................................................................................... 80 

Figure 4-22 Bearing housing FEM model ................................................................................................................... 81 

Figure 4-23 Von Misses stress on Bearing house plate (using nonlinear static solver→ no stability loss) .................. 81 

file:///C:/Users/Suren/Cloud.Mail/Diploma/Diploma_work_Ali-Ogly.docx%23_Toc489338636
file:///C:/Users/Suren/Cloud.Mail/Diploma/Diploma_work_Ali-Ogly.docx%23_Toc489338637
file:///C:/Users/Suren/Cloud.Mail/Diploma/Diploma_work_Ali-Ogly.docx%23_Toc489338648


x 

 

Figure 4-24 Deformation of Bearing house plate (800x of actual deformation) ......................................................... 82 
Figure 4-25 Bearing house results made of steel (colourbar - Von Misses stress, deformation - total deformation 10 

000x bigger than actual deformation) .......................................................................................................................... 82 
Figure 4-26 FEM results of a Bearing house made of AlMgSi0.5F25 (clourbar - stress, deformation is 5000x bigger 

than actual one) ............................................................................................................................................................ 83 
Figure 4-27 0 deg. centrifuge's arm position, 2B var. .................................................................................................. 84 
Figure 4-28 CaseI.1, 2B var. 0deg. FEM model .......................................................................................................... 84 

Figure 4-29 CaseI.1, 2B var. Deformation results (50x bigger than actual deformation, white is undeformed state) . 85 
Figure 4-30 CaseI.1, 2B var. Frame deformation result (1000x times bigger than actual deformation) ..................... 85 

Figure 4-31 CaseI.2, 2B var. Deformation results ....................................................................................................... 86 
Figure 4-32 CaseI.3, 2B var. Deformation results (50x bigger than actual size, black is undeformed) ...................... 87 

Figure 4-33 Case I.3, 2B var. Frame deformation result (1000x bigger than actual deformation) .............................. 87 
Figure 4-34 Case II.1, 2B var. FEM analyzing model ................................................................................................. 88 
Figure 4-35 Case II.1, 2B var. Deformation results (10x of actual scale, black is undeformed state) ......................... 88 

Figure 4-36 Case II.1, 2B var. Frame deformation result (100x actual deformation) .................................................. 88 
Figure 4-37 CAD model with one reinforced frame member, 2B-R frame variant ..................................................... 89 

Figure 4-38 Case II.1 2B-R var. Frame deformation result (100x actual deformation, white is undeformed) ............ 89 
Figure 4-39 All window reinforced (AWR) model of a frame, 2B-AWR frame variant ............................................. 89 
Figure 4-40 Case II.1 2B - AWR version, deformation results ................................................................................... 90 

Figure 4-41 Case II.2 2B var. Deformation result (10x actual deformation) ............................................................... 90 
Figure 4-42 Case II.2 2B var. Frame deformation (100x of actual deformation) ........................................................ 91 

Figure 4-43 Case II.2 2B-R var. Frame deformation (200x actual deformation) ........................................................ 91 
Figure 4-44 Case II.2 2B-AWR var. Frame deformation (200x actual deformation) .................................................. 91 
Figure 4-45 Case II.3 2B var. Deformation result (10x actual deformation) ............................................................... 92 

Figure 4-46 Case II.3 2B var. Frame deformation (100x actual deformation) ............................................................ 92 
Figure 4-47 Case II.3 2B-R var. Frame deformation (100x actual deformation) ........................................................ 93 

Figure 4-48 Case II.3 2B-AWR var. Frame deformation (100x actual size) ............................................................... 93 
Figure 4-49 Deformation vs time, 10g load, 2B-R var., Frame ................................................................................... 95 

Figure 4-50 Deformation vs time, 10g load, 2B-R var., Arms .................................................................................... 95 
Figure 4-51 Cad model of 1B variant, with loading Case II.1 ..................................................................................... 95 
Figure 4-52 CHP, 1B, Case I, steel made .................................................................................................................... 97 

Figure 4-53 CHP, 1B, Case II, steel made ................................................................................................................... 97 
Figure 4-54 CHP, 2B, Case I, steel made .................................................................................................................... 98 

Figure 4-55 CHP, 2B, Case II, steel made ................................................................................................................... 98 
Figure 4-56 Hub, 1B, Case II, steel made .................................................................................................................... 99 
Figure 4-57 Shaft FEM model (CBEAM) ................................................................................................................. 100 

Figure 4-58 Campbell Diagram ................................................................................................................................. 101 
Figure 4-59 Shaft rotational shape, Mod 1 = Mod 2 (f=2.52 Hz), Mod 3 = Mod 4 (f = 5.55 Hz) and Mod 5 = Mod 6 

(f = 6.65 Hz) .............................................................................................................................................................. 102 
Figure 4-60 Shaft's node deformation vs Force ......................................................................................................... 102 
Figure 5-1 Time demand for specific rotational speed, for I=40kg.m2 and a drag from both sides of arms.............. 104 

Figure 5-2 1B centrifuge with rope (or rod) support ................................................................................................. 105 
Figure 5-3 CAD model of centrifuge with wooden cover ......................................................................................... 106 

 

List of Tables 

Table 1 Finding optimum values ................................................................................................................................... 5 

Table 2 Selected parameters .......................................................................................................................................... 6 
Table 3 Time calculation ............................................................................................................................................. 10 
Table 4 Inertia vs Time ................................................................................................................................................ 11 

Table 5 Material property ............................................................................................................................................ 13 



xi 

 

Table 6 Drag forces on profile ..................................................................................................................................... 16 
Table 7 Taper bushes parameters................................................................................................................................. 22 

Table 8 Pulleys ............................................................................................................................................................ 23 
Table 9 Table of desired speed .................................................................................................................................... 24 

Table 10 Transmission combination, i = 1.6 ............................................................................................................... 25 
Table 11 Shaft dimensions........................................................................................................................................... 26 
Table 12 Normal stresses from bending moment in each section ................................................................................ 27 

Table 13 AlMgSi0.5F25 general properties................................................................................................................. 27 
Table 14 Autodesk Inventor Bearing calculation for CSN 024630 SKF ..................................................................... 29 

Table 15 Modified shaft dimensions ........................................................................................................................... 31 
Table 16 Mohr's integral values for the shaft at loading O1, for unit load at support B ............................................... 36 

Table 17 Mohr's integral values for the shaft at loading O1, for unit load at the place of O1 ...................................... 37 
Table 18 Eigen values for case 1 ................................................................................................................................. 38 
Table 19 Integral values for the shaft at loading O2=F2, for unit load at support B (apply for (3.75)) ........................ 40 

Table 20 Integral values for equation (3.76) ................................................................................................................ 40 
Table 21 Eigen values for mass M2 ............................................................................................................................. 40 

Table 22 Integral values to solve (3.76) to find y12 ..................................................................................................... 41 
Table 23 Integral values to solve (3.76)  to find y21 .................................................................................................... 42 
Table 24 Lug dimensions............................................................................................................................................. 49 

Table 25 lug dimension ratios ...................................................................................................................................... 53 
Table 26 Axial case factors.......................................................................................................................................... 53 

Table 27 Strength parameters for one lug mode .......................................................................................................... 55 
Table 28 Lug strength result, geometry modified for bearing SKF 61801 .................................................................. 55 
Table 29 Lug results .................................................................................................................................................... 70 

Table 30 Pin 1B results ................................................................................................................................................ 71 
Table 31 Pin 2B result table......................................................................................................................................... 74 

Table 32 Lug-out part result, 2B .................................................................................................................................. 76 
Table 33 Lug-out part result, 1B .................................................................................................................................. 77 

Table 34 Material parameters for steel [16] ................................................................................................................. 78 
Table 35 MBP result table, plate thickness 6mm ........................................................................................................ 79 
Table 36 MBP result table, plate thickness 5mm ........................................................................................................ 80 

Table 37 Bearing house plate results ........................................................................................................................... 81 
Table 38 Bearing house results .................................................................................................................................... 82 

Table 39 Bearing house results made of aluminum alloy, with the loading of 4000 N ............................................... 83 
Table 40 Frame deformation results for 10g accelerated mass of 15kg for two-beam modification of the centrifuge 

machine........................................................................................................................................................................ 94 

Table 41 Table of deformation results for 1B variants ................................................................................................ 96 
Table 42 CHP, 1B, Case I result table ......................................................................................................................... 97 

Table 43 CHP, 1B, Case II result table ........................................................................................................................ 98 
Table 44 CHP, 2B, Case I, result table ........................................................................................................................ 98 
Table 45 CHP, 2B, Case II, result table ....................................................................................................................... 99 

Table 46 Hub, 1B, Case II, table result ........................................................................................................................ 99 
Table 47 Fasteners FEM result table ......................................................................................................................... 103 

Table 48 ..................................................................................................................................................................... 104 
 

  



xii 

 

Nomenclature, Abbreviations, Acronyms 

1B – one-beam centrifuge’s head variant/ simple one-beam centrifuge variant 

1B-AWR – one-beam centrifuge with all possible windows reinforced variant 

1B-R – one-beam centrifuge with one reinforced frame window variant 

2B – AWR – two-beam centrifuge with all possible windows reinforced variant 

2B – two-beam centrifuge’s head variant/ simple two-beam centrifuge variant 

2B-R – two-beam centrifuge with one reinforced frame window variant 

A – area 

CHP – centrifuge head’s plate 

𝐶𝑐 – centrifugal force of a capsule 

𝐶𝐷, 𝑐𝐷 – drag coefficient [-] 

CG – centre of gravity 

𝐷𝑃 – pitch diameter [mm] 

e – eccentricity   

E – Young’s modulus [MPa] 

𝐹𝐶 – Capsule force, for (3.85) p. 47 

𝐹𝐶 – centrifugal force [N] 

𝐹𝐷 , 𝐹𝑑 – drag force [N] 

𝐺𝑃 – the weight load of 45x45 profile 

g – gravitational acceleration, g = 9.81 [m.s-2] 

G – shear modulus [MPa] 

Gc – the weight loading of a capsule 

I – mass moment of inertia [kg.m2] 

j – reserve factor [-] 

J – second polar moment of area [m4], [mm4] 

k – stiffness [N/m], [N/mm] 

𝑘𝑏𝑟𝑢 – shear – bearing efficiency factor 

𝑘𝑡 – net tension efficiency factor 

𝑘𝑡𝑟𝑦 – efficiency factor for transverse yield load 

M, M(x) – moment, Bending moment [N.m], [N.mm]  
MBP – motor base plate 

𝑀𝐷 ,𝑀𝑑 – moment caused by drag force/ Drag moment [N.mm], [N.mm] 

𝑚 – mass [kg] 
𝑚𝐶 – mass of a capsule [kg] 
𝑚𝑃 – mass of a 45x45 profile [kg] 

n – number of revolutions 

O – centrifugal force on a rotating shaft 

p – contact pressure (feather key) 

𝑃𝑌 – yield transverse load 

𝑃𝑏𝑟𝑢 – ultimate load for shear – tear out and bearing failure 

𝑃𝑏𝑟𝑦 – bushing yield bearing load 

𝑃𝑡𝑢 – ultimate load for tension failure 

q – distributed force [N.m-1], [N.mm-1] 

r – radius/ rotational distance [m], [mm] 

Re – Reynolds number [-] 

RF – reserve factor [-] 

Rp0.2 – yield strength [MPa] 

rpm – number of revolutions per minute 

rps – number of revolutions per second 



xiii 

 

t – time [s] 

T – torque [N.m], [N.mm] 

TB – taper bush 

v – circumferential velocity/ translation velocity [m/s] 

V, V(x) – shearing force [N] 

w – distributed force [N.m-1], [N.mm-1] 

W – section modulus [m3], [cm3], [mm3] 

λ – fitting factor [-] 

Ω – eigen frequency/ critical angular velocity  

𝐿 – angular momentum [kg.m2.s-1] 

𝑓 – safety factor [-] 

𝜌 – density [kg.m-3]   

𝜎 – stress [MPa] 

𝜎𝑌 – yield stress [MPa] 

𝜎𝑐𝑦 – compression yield stress of bushing material 

𝜎𝑟𝑒𝑑 – reduced stress [MPa] 

𝜎𝑡𝑢𝑥 – ultimate tensile stress in x – direction of the material  

𝜎𝑡𝑦𝑦 – tensile yield stress of lug material in y – direction 

𝜏 – shear stress [MPa] 

𝑣  - deflection [mm] 
𝜔 – angular velocity [rad/s]   

 

   



1 

 

 

1. Introduction  
 

A centrifuge is a machine, respectively device, which uses a rotation of an object around fixed axis to 

produce a centripetal force, and due to reaction – centrifugal force.  

There are variety of the applications of a centrifuge. It is widely used in pharmaceutical, food and general 

chemistry industry (using sedimentation principle). Centrifuge that can provide very high rotational speed 

can separate particles to an extremely low scale, down to molecules for example. Washing machines, pumps 

also uses centrifuge for their work. It can be used for geotechnical purposes. For example geotechnical 

centrifuge C60 (Figure 1-1), which is designed by Actidyn, can simulate behavior of structures on 

foundation and of soil mechanics, with the help of reduced scale model.  

 

Figure 1-1 C60, geotechnical centrifuge [1] 

Another industries, where centrifuge is used are aviation and space technologies. Using centrifuge machines 

we can simulate flight phases, loading factors from maneuvers and so on.  This can be very helpful for 

pilots who just have begun their professional path.  For example, using a Phoenix centrifuge (Figure 1-2) 

of NASTAR Center we can simulate human performance under high accelerations, space training, high risk 

maneuvers training. [2] 

 

Figure 1-2 Phoenix centrifuge [2] 

Purpose of this work is to design a centrifuge that can carry a payload of 15 kg and can accelerate up to 

10g. Normally to simulate a space launch for the small centrifuges, for example CubeSat, required 

acceleration of 5g, however it is advantageous to use a centrifuge for a larger scope of work, that’s why 

was made a decision to design a centrifuge for 10g.  

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjl34LY6IjVAhUG7hoKHfoaDtUQjRwIBw&url=https://www.youtube.com/watch?v%3DrAyHX1efT74&psig=AFQjCNFjBFpeVXMFA05q98l8H1UF5IM3gQ&ust=1500123232339577
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2. Preliminary Performance Calculation 
 

The assignment of this part is to find the optimum performance characteristic as well as the optimum arm 

length of the arm-centrifuge machine.  

The demand is to obtain the gravity acceleration of the value of 10 g, by using an advantage of the 

centrifugal force. We have given preliminary design parameters of the capsule, where will be hold the 

experimental unit. The capsule has the shape of the cylinder with the height of H = 0.65 m, diameter D = 

0.34 m and mass m = 15 kg.  

2.1. The Centrifugal and Drag Force 

 

Figure 2-1 Centrifugal force [3] 

According to Newton's Law of Inertia, an object in motion tends to follow a straight line. Applying a 

sideways force on the object can overcome the inertia and cause the object to take a curved path. That force 

is called a centripetal force. 

Newton's Third Law or Action-Reaction Law states that for every applied force, there is an equal and 

opposite force. In other words, when you apply a force on a rope in swinging an object around you, you 

will feel an equal and opposite force pulling the object away from you. This force is the centrifugal force. 

[3] 

 

Figure 2-2 

The centrifugal force is: 

 𝐹𝐶 = 𝑚𝜔2𝑟 → 𝑣 = 𝜔𝑟 →
𝑚𝑣2

𝑟
 (2.1) 

 

Required gravitational acceleration is 10 g. Then: 

 𝑚 ∗ 10𝑔 = 𝑚𝜔2𝑟 =
𝑚𝑣2

𝑟
 (2.2) 
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Where m is the mass of the capsule with experimental unit. 

We can see that the mass is located on the boss sides of the equation, so we can using advantage of the 

equation calculation and cut them.  

 10𝑔 =  𝜔2𝑟 = (2𝜋𝑛)2𝑟   𝑜𝑟  10𝑔 =
𝑣2

𝑟
 (2.3) 

The task is to find the most useful and the most advantageous angular velocity (rotations) and arm radius.  

Limitation parameters are the electric motor performances, where the one of the most important parameter 

is the torque of a motor. The values of torque are represented as the dependency diagram of Torque [N.m] 

versus speed [rps].  

The given electric motor is ES-MH 342200 3-phase steepen motor. Torque-speed characteristic are shown 

on the Figure 2-3 

 

Figure 2-3 Torque vs speed char, of the ES-MH 34xx series [4] 

Very important thing that have to be considered during calculations of optimum values of speed and arm 

length is the drag force that will act opposite direction of the circumferential velocity of the structure, other 

words, the drag force will cause a resistance force and moment to the working structure. It will directly 

effect on the ability of structure to reach the maximum angular speed. If the moment caused by drag force 

will be lower than a toque of a motor, the centrifugal machine will have ability to increase the revolution 

speed. The machine cannot overcome the specific value of angular velocity, because t=otherwise the drag 

moment will be higher than motor torque. This specific value is the maximum speed that is reached when 

the drag moment is equal to the torque of the given motor. Note that the torque is different for every different 

rotation speed. 

 The equation of the drag force is: 

 𝐹𝐷 =
1

2
𝜌𝑣2𝐴𝑐𝐷 (2.4) 

Where 𝜌 is the density of the working fluid, which is the air in our case. For the first shoot of the calculation 

will be used the value of 1.225 kg/m3, that represents the air density on the sea level at 15 °𝐶. More correct 

value will be obtained from ambient condition of the laboratory.  

𝐶𝐷 is the drag coefficient. Its value depends on the working fluid, shape of streamlining body (cylinder) 

and Reynolds number. See Figure 2-4. 
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𝐴 is the normal cross-section area of the streamlined body. Specifically in our case: 

 𝐴 = 𝐻 ∗ 𝐷 = 0.65 ∗ 0.34 = 0.221 [𝑚2] (2.5) 

 

 

  Figure 2-4 Dependency of the Drag Coefficient on the Re [5] 

 

2.2. Preliminary calculation of the performance and arm length 
 

As it was mentioned in the beginning, the required load should reach 10 g = 𝑔𝑟𝑒𝑞. As the first step we will 

try to guess the arm length. Let’s say it will be r = 0.5 m. Then using this value of radius we will find the 

appropriate angular velocity. 

 𝜔𝑟𝑒𝑞 = √
𝑔𝑟𝑒𝑞

𝑟
= √

9.81

0.5
= 14.00714 [

𝑟𝑎𝑑

𝑠
] (2.6) 

 

Transform it to the revolutions speed: 

 

𝑟𝑝𝑠 =
𝜔

2𝜋
=

14

2𝜋
= 2.2293 [𝑟𝑝𝑠] 

Or 

𝑟𝑝𝑚 = 60 ∗
𝜔

2𝜋
= 60 ∗

14

2𝜋
= 133.7583 [𝑟𝑝𝑚] (2.7) 

 

The circumferential speed on the tip of the arm is: 

 𝑣 =  𝜔𝑟 = 14 ∗ 0.5 = 7 [
𝑚

𝑠
] (2.8) 

Respective Reynolds number for obtained speed and cylindrical speed is: 

 𝑅𝑒 = 𝑣 ∗
𝐷

𝜈
= 7 ∗

0.34

1.46 ∗ 10−5
= 163097 [−] (2.9) 

 

The suitable drag coefficient for this Reynolds number is 𝑐𝐷 = 1.1 [−]. The drag force acted on the capsule 

is then: 

 𝐹𝐷𝐶
=

1

2
𝜌𝑣2 ∗ 𝐴 ∗ 𝑐𝐷 =

1

2
∗ 1.225 ∗ 72 ∗ 0.221 ∗ 1.1 = 7.3035 [𝑁] (2.10) 

 



5 

 

Moment caused by drag force of capsule. Note that this moment caused only by one loaded arm. 

 𝑀𝐷𝑐
= 𝐹𝐷𝐶

∗ 𝑟 = 7.3035 ∗ 0.5 = 3.6517 [𝑁.𝑚] (2.11) 

 

Applying same method for other radiuses, we will construct tables.  

Arm [m] 0.5 0.6 0.75 1 1.25 1.5 1.75  

ω [rad/s] 14.007 12.786 11.436 9.904 8.859 8.087 7.487  

rps 2.229 2.035 1.8202205 1.576 1.409937 1.28709 1.192  

rpm 133.758 122.1041 109.21323 94.581 84.5962 77.22542 71.497  

Angle [ᴼ] 84.29 84.29 84.29 84.29 84.29 84.29 84.29  

𝑣𝑐𝑖𝑟𝑐𝑢𝑚 [m/s] 7.004 7.672 8.577 9.904 11.073 12.131 13.102  

𝐹𝐷𝐶
 [N] 7.303 8.76 10.955 14.61 18.25 21.91 25.56  

𝑀𝐷 [N.mm] 3.6517 5.258 8.216 14.61 22.823 32.866 44.733  

Re [-] 163096 178663 199752 230653 257878 282492 305126  

 

Arm [m] 2  2.25  2.5  

ω [rad/s] 7.003  6.603  6.264  

rps 1.115  1.051  0.997  

rpm 66.88  63.05  59.82  

Angle [ᴼ] 84.29  84.29  84.29  

𝑣𝑐𝑖𝑟𝑐𝑢𝑚 [m/s] 14.007  14.856  15.66  

𝐹𝐷𝐶
 [N] 29.21393  32.86568  36.517  

𝑀𝐷 [N.mm] 58.43  73.95  91.29  

Re [-] 326193  345980  364695  

 

Table 1 Finding optimum values 

Angle is the angle of inclination that is denoted as a on a figure below. 

 

Figure 2-5 Inclination angle 

For easier comparison of obtained values, we will construct dependency diagrams.  

𝛼 
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Figure 2-6 Velocity versus arm length r 

 

Figure 2-7 Drag moment and revolution with the changing arm length r 

The less the moment caused by drag force, the better. The smallest one is convenient for smallest radius, 

but for smallest radius, we have to have the higher speed. As my personal view, the optimum solution is 

the arm length of 1m. 

Arm [m] 1 

ω [rad/s] 9.904 

rps 1.576 

rpm 94.581 

Angle [ᴼ] 84.29 

𝑣𝑐𝑖𝑟𝑐𝑢𝑚 [m/s] 9.904 

𝐹𝐷𝐶
 [N] 14.61 

𝑀𝐷 [N.mm] 14.61 

Re [-] 230653 
Table 2 Selected parameters 

For these chosen values will be continued further calculations. 
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The essential difference between a centrifuge with a swinging capsule and a centrifuge with a fixed one is 

the way how the centrifugal force applies on the capsule. The bottom of the capsule is constantly 

perpendicular to the sum of the earth gravitation vector and of the centrifuge acceleration vector and the 

distance between centre of gravity of the capsule and center of rotation increases and this causes the 

increment of acceleration of a particular point, like centre of gravity. In order to find a gradient of the 

acceleration of this point, including the effect of an angle increasing (increasing a distance between point 

and rotation centre) we will use an assumption that arm length is 1m and the distance between arm’s tip 

and centre of gravity of the tested capsule is 425 mm, see Figure 3-6, p.17. Dependency between 

centrifugal acceleration of a point distanced from rotation centre and rotational speed can be found using 

equation (2.1), where radius r is: 

 𝑟 = 𝑅 + 𝑎 = 𝑅 + 0.425 ∗ sin 𝛼 (2.12) 

Where R = 1m, is the chosen arm length, 𝑎 is an additional distance due to capsule displacement, 𝛼 is a 

deflection angle and determined by the equation (2.13).  

 

tan 𝛼 =
𝑔𝑟

𝑔
=

𝑥 ∗ 𝑔

𝑔
= 𝑥 

𝛼 = atan 𝑥 (2.13) 

 Where x is a coefficient describing a centrifugal acceleration. For example, if we are talking about 10g 

acceleration, then x = 10.  

Using that logic we can state that: 

 

𝑥 ∗ 𝑔 = 𝜔2 ∗ (𝑅 + 𝑎 ∗ sin 𝛼) 

𝑥 ∗ 𝑔 = 𝜔2 ∗ (𝑅 + 𝑎 ∗ sin(atan 𝑥)) (2.14) 

 

The expression shown in (2.14) can be solved iteratively. 

 

1)         𝑥𝑖 ∗ 𝑔 = 𝜔𝑖 
2 ∗ (𝑅 + 𝑎 ∗ sin 𝛼𝑖) 

2)         𝑎𝑖+1 = atan(𝑥𝑖) 

3)         𝑥𝑖+1 ∗ 𝑔 = 𝜔𝑖
2 ∗ (𝑅 + 𝑎 ∗ sin(𝛼𝑖+1)) 

4)         𝑥𝑖 = 𝑥𝑖+1;    𝛼𝑖 = 𝛼𝑖+1;  𝜔𝑖 = 𝜔𝑖+1 (2.15) 

 

Initial conditions are: 

 𝛼(𝜔0) = 0, 𝜔0 = 0.001 [
𝑟𝑎𝑑

𝑠
] (2.16) 

 

Then the gradient of centrifugal acceleration can be constructed as a graph, that is shown on the Figure 2-8. 

From this figure, we can see that in fact we will reach 10g acceleration in CG of a capsule when arms will 

rotate at 1.33 rotations per second, 1.2 rps for the bottom and 1.5 rps for the top. Even though we found a 

rotation speed for which preliminary CG of a tested cylindrical capsule of 650x350 mm dimension reaches 

10g, and this value is less than the one mention in Table 2, we will use for further calculations the speed of 

1.567 rps. The reason is that the centre gravity point is not necessarily located in middle of a capsule or 

tested sample might be located in different point than the capsule geometrical centre, but rotation speed 

1.567 rps corresponds to the 10g acceleration at 1m distance far from rotation centre.  
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Figure 2-8 Acceleration gradient, dependency of a acceleration on rps of the capsule's centre of gravity. 

 

2.3. Acceleration and time when the required speed will be reached. 
Preliminary 

To find the angular acceleration of the structure as the first step we have to find the angular momentum.  

 𝐿 = 𝐼 ∗ 𝜔 [
𝑘𝑔

𝑠
𝑚2] (2.17) 

Where the 𝐼 is the moment of inertia and 𝜔 is the angular speed.  

To find the moment of inertia there was created the very first preliminary design of arms together with the 

capsules on the both sides of it. Using properties function of CAD software Inventor 2016® we have found 

the preliminary moment of inertias. I have created two variants: 1st when it is on static and when we have 

reached our required 10g. 

 

 

Imax = 36127435.887 [kg.mm2] = Iyy  ≈ 40 [kg.m2] 

Figure 2 – 9 a 
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Figure 2-9 b Preliminary moment of Inertia 

Imax = 60548333.883 [kg.mm2] ≈ 60 [kg.m2]. 

The next calculation will be provided for I = 60 [kg.m2]. Using (2.17) we find L = 594.2726 [kg.m2/s] 

If torque is given from the motor characteristics, using formula (2.18) we can find a required time until the 

machine reach required angular speed.  

 

𝑇 =
𝑑𝐿

𝑑𝑡
 

𝑇𝑑𝑡 = 𝑑𝐿 

∫𝑇𝑑𝑡 = ∫𝑑𝐿 
(2.18) 

  

If we assume that torque is constant from 0 to 2 rps, it value will be 20 [N.m]. 

 

20∫𝑑𝑡 = 𝐿 

∫𝑑𝑡 =
𝐿

20
=

594.2726

20
= 29.7136 

∫ 𝑑𝑡
𝑡

𝑜

= 𝑡 = 29.7136 ≈ 30 [𝑠] 
(2.19) 

Calculation within drag force resistance will be performed with assumption that drag force will be a 

constant value.  

 

𝑇′ = 𝑇 − 𝑀𝐷𝐶
 

𝑇′ = 20 − 14.6069 = 5.3930 [𝑁.𝑚] (2.20) 

 

Using (2.19) we can recalculate the time. 

 𝑡 =
𝐿

𝑇′
=

594.2726

5.3930
= 110.1927 [𝑠] ≈ 115 [𝑠] (2.21) 

 

For results that are more accurate, we will no longer assume the torque of a motor as a constant value and 

drag moment too. Next table will help to create it numerically. 
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T [N.m] ω[rad/s] v [m/s] Re[-] 𝑀𝐷[N.m] α[rad/s^2] ΔT [N.m] α' [rad/s2] t'[s] 

20 0 0 0 0 0.33 20 0.33 0 

20.5 2.325 2.325 54139 0.805 0.342 19.695 0.328 7.082 

21.2 5.97 5.97 139004 5.305 0.353 15.895 0.265 22.532 

20.44 9.425 9.425 219481 13.587 0.341 6.853 0.114 82.515 

20.35 9.905 9.905 230653 15.005 0.34 5.345 0.09 111.19 

20.05 12.566 12.566 292641 23.513 0.334 -3.463 -0.058 -217.72 
Table 3 Time calculation 

 

 

Figure 2-10 Moment equilibrium diagram (For only one arm loaded) 

 

Figure 2-11 Time versus rps 

If we will remain the arm length as 1m, but there will be additionally added some more materials it will 

increase the mass of the structure, which follows into increasing of inertia moment. This will have 

consequences like time increasing and increasing loading. 
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I [kg.m2] α' [rad/s2] t[s] t[min] 

20 0.267 37.063 0.618 

30 0.1782 55.595 0.9266 

50 0.107 92.658 1.544 

80 0.067 148.25 2.471 

100 0.053 185.32 3.1 

120 0.0445 222.38 3.71 

150 0.036 277.975 4.633 

200 0.027 370.633 6.18 

250 0.0214 463.291 7.72 

300 0.0178 555.95 9.266 

400 0.0134 741.266 12.35 
Table 4 Inertia vs Time 

 

 

Figure 2-12 Time increasing with moment of inertia  

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500

t 
[s

]

I [kg.m^2]

Time changes with the moment of inertia



12 

 

3. Design 
 

This chapter is dedicated for the general design steps of specific centrifuge’s parts, such as: Centrifuge 

arms; Transmission design; Shaft design; Motor mounting; Lug and Pin design; Centrifuge Head and 

Frame. 

3.1. Centrifuge arms strength calculation 
Centrifuge arms are the part of the centrifuge machine that carry two significant loadings, which are mass 

load of the tasted sample (cylindrical capsule) and centrifugal force appeared on this sample due to rotation 

around fixed axis. Generally, we can divide loadings for two separate cases that arms will carry, those are 

Static case (when no rotation of the centrifuge happens) and Motion case (with rotation).  

3.1.1. Static case 
Static case it is the case when the structure of the centrifugal machine is loaded only by weight of capsule 

and own weight.  

 

Figure 3-1 Static case loading 

Where Gc represents the weight loading of a capsule. 𝐺𝑃 represents the weight load of 45x45 profile and 

can be represented as distributed load w. 𝑅𝐵 and Mb are reaction at the fixed connection, which is the center 

of rotation. Their values are: 

 

𝑤 = 𝑚𝑃 ∗
𝑔

𝐿
=

𝐺𝑃

𝐿
= 4 ∗

9.81

1
≈ 40 [

𝑁

𝑚
] 

𝐺𝐶 = 𝑚𝑐 ∗ 𝑔 = 15 ∗ 9.81 ≈ 150 [𝑁] (3.1) 

 

Calculation 

 𝑅𝐵 = 𝐺𝐶 + 𝐺𝑃 = 150 + 40 = 190 [𝑁] (3.2) 

 𝑀𝐵 = 𝐺𝐶 ∗ 𝐿 + 𝑤 ∗ 𝐿 ∗
𝐿

2
= 𝐿 ∗ (𝐺𝐶 +

1

2
∗ 𝐺𝑃) = 1 ∗ (150 +

1

2
∗ 40) = 170 [𝑁.𝑚] (3.3) 

 

Shearing force and bending moment: 

 

𝑉(𝑥) =  −𝑅𝐵 + 𝑤 ∗ 𝑥 

𝑀(𝑥) =  −𝑀𝐵 + 𝑅𝐵 ∗ 𝑥 − 𝑤 ∗
𝑥2

2
 (3.4) 

Where x is from 0 to L (=1m). 
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Stress calculation 

 𝜎max  =
𝑓 ∗ 𝑀(𝑥)max  

𝐼
∗ 𝑟 =

𝑓 ∗ 𝑀(𝑥)max  

𝑊
 (3.5) 

Where W is the section modulus. f –is the safety factor. The maximum stress can be said as the yielding 

stress of the material. Material is AlMgSi0.5F25 and its strength parameters are: 

Rp02 200 [MPa] 

E 70000 [MPa] 

µ 0.33 [-] 

G 27000 [MPa] 

ro 2700 [kg/m3] 
Table 5 Material property 

In order to find the needed amount of profiles to be assembled to handle the loading of the structure, we 

will find the section modulus W and compare it with the W of the given profile, which is 45 x 45 Alutec 

k&k.  

 

Figure 3-3 Profile parameters [6] 

 𝑊 = 𝑓 ∗
𝑀(𝑥)max  

𝑅𝑃02

= 2 ∗
170

200 ∗ 106
= 1.7 ∗ 10−6 [𝑚3] = 1.7[𝑐𝑚3] (3.6) 

Compare it with the profile W: 
7.72

1.7
= 4.5 times it is bigger than we are required. It means that one profile 

is enough to handle the loading stress. 

Deformation calculation: 

We will use Mohr’s integral for that. 
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Figure 3-2 Shear Force and bending moment distribution along arm 
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𝑣𝐼 = ∫
𝑀(𝑥)

𝐸𝐼
∗ 𝑚(𝑥)𝑑𝑥

𝐿

0

= 0.004520 [𝑚] = 4.52 [𝑚𝑚] 

where m(x) = x-1 (3.7) 

 

Which is acceptable. 

Reserve factor 

 Reserve factor “j” for chosen one profile will follow from next calculations: 

 𝜎max  = 𝑓 ∗
𝑀(𝑥)max  

𝑊
= 2 ∗

170

7.72 ∗ 10−6
= 22020725 [𝑃𝑎] = 22.0207 [𝑀𝑃𝑎] (3.8) 

 

Shear stress: 

 𝜏max  = 𝑓 ∗
𝑉(𝑥)max  

𝐴𝑃

= 2 ∗
190

9.096 ∗ 10−4
= 417786.3 [𝑃𝑎] = 0.4178 [𝑀𝑃𝑎] (3.9) 

Where 𝐴𝑃 is the cross-section area of the 45 x 45 profile. 

Using HMH (von Mises) stress criterion we will find a reduced stress, also known as equivalent stress. 

 𝜎𝑟𝑒𝑑 = √𝜎2 + (√3 ∗ 𝜏) (3.10) 

In our case it will be: 

 𝜎𝑟𝑒𝑑 = √22.02072 + 3 ∗ 0.41782 = 22.0326 [𝑀𝑃𝑎] (3.11) 

 

Comparing this value with Yielding stress of the material we will find out what is the reserve factor for 

this kind of load. Comparison is providing by dividing yielding stress to the maximum applicable stress 

on the structure, and the value of the reserve factor must be bigger than one, j(=RF)>1.  

 𝒋 =
𝑹𝑷𝟎𝟐

𝝈𝒓𝒆𝒅

=
𝟐𝟎𝟎

𝟐𝟐. 𝟎𝟑𝟐𝟔
≈ 𝟗 [−] > 𝟏 (3.12) 

 

3.1.2. Motion case 
In this case will be calculated strength criterion for the load that will be applied on the structure during the 

required motion, which is 10g load on the capsule and 94.6 rpm.  

Now the applied forces have been changed relative to the previous loading case. Besides GC and GP (w) 

will appear: 

Centrifugal force on capsule: 𝑪𝑪 = 𝑚𝑐𝜔
2𝑟 = 15 ∗ 9.9045 ∗ 1 = 𝟏𝟒𝟕𝟏. 𝟓 [𝑵] 

Centrifugal force on profile (calculated by dividing arm for 10 parts, calculating for each part the C force, 

and then summarize them, since they are acting on the same axis on the same direction. We will neglect the 

force couple (moment) from the place where centrifugal force acts to the central axis of profile, since the 

deformation distance is very small) using formula (2.1)   𝑪𝑷 = 𝟏𝟑𝟓 [𝑵] . 

We have to also consider the effect of the drag force appeared by the air resistance during motion.  
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Drag force on applied in the capsule have already been calculated in Table 2 and its value is: 𝑭𝑫𝑪
=

𝟏𝟒. 𝟔𝟎𝟕𝟎 [𝑵] 

The calculation of the drag force on profile will be more complicated since circumferential velocity depends 

on radius (𝑣 =  𝜔𝑟) and drag force according to (2.10) is function of area and square of circumferential 

velocity. This makes some complication the calculation procedure. 

For easier and simplify, but relatively accurate calculation, I have decided to divide the arm for 10 equal 

parts, which is ∆r=1/10 = 0.1m each part and I assume that velocity is constant for each part, which is the 

velocity appeared in the center of its part. For better understanding see Figure 3-4. Velocity is calculated 

by: 

 𝑣𝑖 = 𝜔 ∗ ((𝑖 − 1) +
1

2
)𝑑𝑟  … 𝑖 = 1…10 (3.13) 

 

 

Figure 3-4 Velocities in arm for each element 

Since ∆r is constant, the cross-section area required for drag force calculation will be also constant.  

 ∆𝐴 = ∆𝑟 ∗ (45 ∗ 10−3) = 0.0045 [𝑚2] (3.14) 

The drag force will be calculated by equation (2.10): 

 𝐹𝐷𝑃𝑖
=

1

2
𝜌𝑣𝑖

2∆𝐴 ∗ 𝑐𝐷𝑝
 (3.15) 

Where 𝑐𝐷𝑃 = 2.5 [−] is the drag coefficient for rectangular shapes, since there is no information provided 

about aerodynamic characteristics of this profile.  

Provided calculation were tabulated, see Table 6.  
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   𝐹𝐷𝑃𝑖
  

v1 0.495227 [m/s] 0.00142 [N] 

v2 1.485682 [m/s] 0.012776 [N] 

v3 2.476136 [m/s] 0.035488 [N] 

v4 3.466591 [m/s] 0.069557 [N] 

v5 4.457045 [m/s] 0.114983 [N] 

v6 5.447499 [m/s] 0.171764 [N] 

v7 6.437954 [m/s] 0.239902 [N] 

v8 7.428408 [m/s] 0.319396 [N] 

v9 8.418863 [m/s] 0.410246 [N] 

v10 9.409317 [m/s] 0.512453 [N] 
Table 6 Drag forces on profile 

 

Figure 3-5 Drag force on profile 

Let us assume this drag force as the distributed force as function of distance r, →q(r). We need to find this 

function q(r). The easiest way to find analytical function of this force is to make a trend line with analytical 

function by special function of Microsoft Office Excel® software. This function is: 

 𝑦 = 0.676𝑥2 (3.16) 

If we try to find analytically by ourselves we will obtain: 

 

𝑘 =
1

2
∗ 𝜌 ∗ (45 ∙ 10−3) ∗ 𝜔2 ∗ 𝑐𝐷𝑃

∗
∆𝑟

𝐿
=

1

2
∙ 1.225 ∗ (45 ∙ 10−3) ∙ 9.90452 ∙ 2.5 ∙

0.1

1
= 

= 0.67597 [
𝑁

𝑚3
] 

 

(3.17) 

 

 𝑞(𝑟) = 𝑘 ∗ 𝑟2 = 0.67597 ∗ 𝑟2 (3.18) 

In order to provide strength calculation we should know external applied forces and geometrical values. 

Geometrical values for this load case were taken from Figure 3-6.  
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Figure 3-6 Displaced of preliminary tested capsule. Dimensions are in mm 

If we assume that forces, that were mentioned above, acts in the center of gravity (centroid) and inclination 

angle is 84°, we can analytically calculate required distances a and b. 

 

𝑎 = (0.325 + 0.1) ∗ sin 84° ≈ 0.4 [𝑚] 
𝑏 = (0.325 + 0.1) ∗ cos 84° ≈ 0.04 [𝑚] (3.19) 

 

Calculation of strength 

X-Y plane 

 

Figure 3-7 Y-X view load 

Drag force: 

 𝐹𝐷𝑝𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡
= ∫ 𝑞(𝑟)𝑑𝑟 =

𝐿

0

∫ 0.676 ∗ 𝑟2𝑑𝑟 = 0,676 ∗
𝐿3

3

𝐿

0

= 0.2253 [𝑁] (3.20) 

 

Place where drag force (3.20) is applied: 

 𝑥𝐶 =
∫ 𝑞(𝑥) ∗ 𝑥 𝑑𝑥

𝐿

0

∫ 𝑞(𝑥)𝑑𝑥
𝐿

0

=
0.676 ∗

𝐿4

4

0.676 ∗
𝐿3

3

=
3

4
𝐿 (3.21) 

Using relative force transformation theory from analytical static mechanics the centrifugal arm will be 

loaded by next load: 

Moment caused by capsule’s drag force: 
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 𝑚𝐹𝐷𝑐
= 𝐹𝐷𝑐 ∗ 𝑎 = 14.607 ∗ 0.4 = 5.843 [𝑁.𝑚] (3.22) 

 

The transformed drag force itself 𝐹𝐷𝐶 = 14.607 [𝑁]. 

Reactions: 

 

𝑀𝑏
𝐼𝐼 = 𝐹𝐷𝑐 ∗ 𝐿 + 𝑚𝐹𝐷𝑐

+ 𝐹𝐷𝑝 ∗ 𝑥𝑐 

𝑀𝑏
𝐼𝐼 = 14.607 ∗ 1 + 5.843 + 0.2253 ∗

3

4
= 20.6 [𝑁.𝑚] (3.23) 

 

 𝑅𝑏
𝐼𝐼 = 𝐹𝐷𝑐 + 𝐹𝐷𝑝 = 14,607 + 0.2253 = 14.832 [𝑁] (3.24) 

Shearing force: 

 𝑉(𝑥) =  −𝑅𝐵
𝐼𝐼 + 𝑘 ∗

𝑥3

3
= −14.832 + 0.676 ∗

𝑥3

3
, …𝑥 = 0 𝑡𝑜 𝐿 (3.25) 

 

Bending moment: 

 𝑀(𝑥) = 𝑅𝐵
𝐼𝐼 ∗ 𝑥 − 𝑘 ∗

𝑥3

3
∗

𝑥

4
− 𝑀𝐵

𝐼𝐼 = 14.832 ∗ 𝑥 −
0.676𝑥4

12
− 20.6  … 𝑥 = 0 𝑡𝑜 𝐿 (3.26) 

 

 

Figure 3-8 Distribution of Shear force and Bending moment 

Maximum Shearing force is 𝑉(𝑥)max  = 14.8323 [𝑁] 

Maximum Bending moment 𝑀(𝑥)max  = 20.6000 [𝑁.𝑚] 

Shear stress: 

 𝜏max  = 𝑓 ∗
𝑉(𝑥)max  

𝐴
= 2 ∗

14.8323

9.096 ∗ 10−4
= 32614.3543[𝑃𝑎] = 0.0326 [𝑀𝑃𝑎] (3.27) 

 

Bending stress: 

 𝜎𝑧max  
= 𝑓 ∗

𝑀(𝑥)max  

𝑊
= 2 ∗

−20.6

7.72 ∗ 10−6
= −5341644.275 [𝑃𝑎] =  −5.34166 [𝑀𝑃𝑎]  (3.28) 
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Z-Y Plane 

 

Figure 3-9 Z-Y View. Torque loading 

 𝑇 = 𝐹𝐷𝑐 ∗ 𝑏 = 14.607 ∗ 0.04 = 0.5813 [𝑁.𝑚] (3.29) 

Shear stress from torque: 

 𝜏𝑇 = 𝑓 ∗ 𝑇 ∗
𝑡max  

𝐽
 (3.30) 

Where 𝑡max  is the maximum thickness = 4 mm, J is polar moment of inertia 

 𝐽 = 𝐼𝑋 + 𝐼𝑌 = 1.738 ∗ 10−7 + 1.738 ∗ 10−7 = 3.476 ∗ 10−7[𝑚4] (3.31) 

 

 𝜏𝑇 = 2 ∗ 0.5813 ∗
0.004

3.476 ∗ 10−7
= 13380.41 [𝑃𝑎] = 0.013 [𝑀𝑃𝑎] (3.32) 

X-Z Plane 

 

Figure 3-10 X-Z view load 

External loads: 𝑚𝐺𝐶
= 𝐺𝐶 ∗ 𝑎 = 60 [𝑁.𝑚]; 𝑚𝐶𝐶

= 𝐶𝐶 ∗ 𝑏 = 58.56789 [𝑁.𝑚] 

Reactions: 

 𝑅𝑋 = 𝐶𝐶 + 𝐶𝑃 = 1471.5 + 135 = 1606.5 [𝑁] (3.33) 

 

𝑀𝐵
𝐼 = 𝐺𝐶 ∗ 𝐿 + 𝐺𝑃 ∗

𝐿

2
− 𝑚𝐶𝑐 + 𝑚𝐺𝑐 = 171.4321 [𝑁.𝑚] 

𝑅𝐵
𝐼 = 𝑀𝐵

𝐼 + 𝐺𝑃 ∗
𝐿

2
− 𝑚𝐺𝑐 + 𝑚𝐶𝑐 = 192.8642 [𝑁] (3.34) 

 

Shearing force: 

 𝑉(𝑥) = −𝑅𝐵
𝐼 + 𝑤𝑥 = 192.8642 + 40 ∗ 𝑥  … 𝑥 = 0 𝑡𝑜 𝐿 (3.35) 

Bending Moment: 

 𝑀(𝑥) = 𝑅𝐵
𝐼 ∗ 𝑥 − 𝑀𝐵

𝐼 − 𝑤 ∗
𝑥2

2
  … 𝑥 = 0 𝑡𝑜 𝐿 (3.36) 

Normal internal force (neglecting temperature expansion) 

 𝑁(𝑥) = 𝐶 = 𝐶𝐶 + 𝐶𝑃 = 1606.5 (3.37) 
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Figure 3-11 Shearing force and Bending moment distribution 

Tensile stress: 

 𝜎𝑥 =
𝑁(𝑥)

𝐴
=

𝑓 ∗ 1606.5

9.096 ∗ 10−4
= 4098483.2160 [𝑃𝑎] = 4.0984 [𝑀𝑃𝑎] (3.38) 

 

Bending Stress: 

 𝜎𝑦 = 𝑓 ∗
𝑀(𝑥)max  

𝑊
= 2 ∗ −

171.432

7.72 ∗ 10−7
= −44412463.99 [𝑃𝑎] = −44.4124 [𝑀𝑃𝑎] (3.39) 

 

Shear stress: 

 𝜏 = 𝑓 ∗
𝑉(𝑥)max  

𝐴
= 2 ∗

−192.8642

9.096 ∗ 10−4
= −42.4084.3268 [𝑃𝑎] = 0.4241 [𝑀𝑃𝑎] (3.40) 

 

HMH stress criterion and reserve factor 

Von Misses (HMH) stress criterion reduce all stress components to one total normal stress. 

 𝜎𝑟𝑒𝑑 = √
1

2
∗ [(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑧 − 𝜎𝑥)

2 + 6 ∗ (𝜏𝑥
2 + 𝜏𝑦

2 + 𝜏𝑧
2)] (3.41) 

 

Specifically in our load case: 

 
𝜎𝑟𝑒𝑑 = √

1

2
[(4.1 − (−44.41))

2
+ (−44.41 − 5.34)2 + (−5.34 − 4.1)2 + 6(0.422 + 0.0132 + 0.0332)] 

𝝈𝒓𝒆𝒅 = 𝟒𝟗. 𝟓𝟗 ≈ 𝟓𝟎 [𝑴𝑷𝒂] (3.42) 

 

Using relation (3.12) for finding reserve factor: 

 𝒋 =
𝑹𝑷𝟎𝟐

𝝈𝒓𝒆𝒅

=
𝟐𝟎𝟎

𝟓𝟎
= 𝟒 [−] > 1 (3.43) 
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3.1.3. Summary  
 

Calculations that were provided shows us that it is enough to use one 45 x 45 profile of 1m length, 

because it satisfies stress requirements for static case load (when centrifuge is not rotating) and motion 

case load (for maximum rotational speed). Even though using one 45x45 profile is enough for centrifugal 

arm, the machine, specifically the rotating head (=centrifuge head) will be designed in order to have an 

option to use 2-beam of 45x45 profile for one arm, preliminary design if this variant was shown on the 

Figure 2-9. Since one “centrifuge head” will support both variants, it is good to create an identifications 

for each variant of a centrifuge. One-beam variant will have a designation 1B, two-beam variant will have 

a designation 2B.  
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3.2.  Belt transmission 
 

Since the centrifugal machines will be driven by electric motor, it is sufficient and reliable to design a 

machine the way, that electric motor will transfer its torque and revolutions by belt transmission. It will 

help to avoid problems with rotation axis misalignment that can negatively affect work of the motor by 

damaging a motor bearing and decreasing efficient of the motor performance. For this purpose a timing belt 

(teeth belt) transmission was chosen, because this kind of a belt has better transmission characteristics due 

to lack of slipping.   

Traditionally belt transmission consists of sprockets and belt. Considering that manufacturing abilities and 

budget are limited, the best solution here will be to choose desirable sprockets and belts that are already 

manufactured and can be easily found in the market.  

The supplier of the belt transmission components is chosen Pikron s.r.o. 

Sprockets 

As the point to start form, we will use information about shaft diameter of the motor. Diameter of 

the electric motor ES-MH342200 [7] is 19 [mm], feather key length is s=30 [mm], feather key 

width is b =6 [mm]. Motor torque will be assumes constant in the level of 20 [Nm].  

Sprocket for timing belt requires a special taper bush. From the web page of the supplier of a belt 

transmission, we can barely choose from: 

TB 1210 1610 2012 

Dmax [mm] 47.5 57 70 

L [mm] 25.4 25.4 31.8 

Clamping moment [Nm] 20 20 31 

Prize [CZK] 100 105 140 
Table 7 Taper bushes parameters 

 

Figure 3-12 Taper bush dimensions [8] 

For the tapper bushes that are mentioned in the Table 7 matches pulleys from the Table 8. 
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TB1210 z Belt width [mm] Type D_pitch [mm] Pitch [mm] Prize [CZK] F_Te [N] 

HTD 5M 

48 15 8F 76.39 5.0 180 0.523629 

56 15 8F 89.13 5.0 220 0.448783 

64 15 8F 101.72 5.0 280 0.393236 

HTD/GT 8M 
28 30 5F 71.3 8.0 195 0.56101 

28 50 5F 71.3 8.0 580 0.56101 

L 
30 100 5F 90.96 9.5 245 0.439754 

32 100 3F 97.02 9.5 270 0.412286 

                

TB1610 z Belt width [mm] Type D_pitch [mm] Pitch [mm] Prize [CZK] F_Te [N] 

HTD 5M 

72 15 8F 114.59 5.0 320 0.349071 

80 15 8F 127.32 5.0 370 0.314169 

90 15 7A 143.24 5.0 475 0.279252 

112 15 7A 178.25 5.0 730 0.224404 

HTD/GT 8M 

32 20 5F 81.49 8.0 195 0.490858 

34 20 5F 86.58 8.0 215 0.462 

38 20 5F 96.77 8.0 255 0.413351 

40 20 5F 101.86 8.0 270 0.392696 

TB 2012 z Belt width [mm] Type D_pitch [mm] Pitch [mm] Prize [CZK] F_Te [N] 

HTD/8M 

44 20 8F 112.05 8.0   0.356983 

48 20 8F 122.23 8.0   0.327252 

56 20 8F 142.6 8.0   0.280505 

64 20 8WF 162.96 8.0   0.245459 

72 20 8WF 183.35 8.0   0.218162 

80 20 8W 203.72 8.0   0.196348 

Table 8 Pulleys 

Where FTe is the effective tension force which is calculated by: 

 𝐹𝑇𝑒 = 2 ∗
𝑇

𝐷𝑝

= 2 ∗
20

𝐷𝑝

 [𝑁] (3.44) 

Gear ratio for the toothed pulleys can be calculated by next equation: 

 𝑖 =
𝐷𝑃1

𝐷𝑃2

 (3.45) 

For example, I marked in the Table 8 by blue colour pulleys for motor shaft (driver) and centrifuge shaft 

(driven), with the gear ratio of 1.33, by green line I marked fitted pulleys with the gear ratio 1.25. 

Different gear ratios needs for different torque requirements. For example, for fixed driving torque of 20 

N.m the bigger gear ratio will make bigger torque for driven pulley, with relation shown in equation (3.50)  

Ratios that we can reach using items from the chosen supplier are 1.25, 1.375, 1.4, 1.6, 1.75, and 2. In 

order to compare them and to choose the optimum one, we will construct equilibrium diagram, where we 

will compare drag moment from rotation and the torque.  
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𝑇 1: 𝑖 = 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑇𝑖𝑛𝑝𝑢𝑡(= 𝑇 1: 1) ∗ 𝑖 ∗ 𝜂  

where η = 0.95.  

(3.46) 

 

Figure 3-13 Equilibrium of moments for various gear ratios, for two loaded arms 

Previously we stated that the required rotational speed is 1.58 [rps = 1/s] (see paragraph §2.2), with this 

speed our shaft has to rotate in order to reach desired acceleration of 10g. In this case rotor of an electric 

motor has to rotate with rotational speed of 1.58 * i. See table below. 

Ratio [-] 1.25 1.375 1.4 1.5 1.6 1.75 

Rotor speed [1/s] 1.9704465 2.167491153 2.20690008 2.3645358 2.522172 2.7586251 
Table 9 Table of desired speed 

We have to reference these values of the rps when working with Figure 3-13. For gearing ratio i = 1.25 

rotor speed should be 1.97 [1/s] and according to the Figure 3-13, maximum rotational speed of centrifuge 

arms that we can reach is about 1.437 [1/s], which does not satisfy desired task. From the diagram also we 

can read that maximum reachable speed is approximately the same as needed rotational speed, that is 1.58 

[1/s] for ratio i = 1.5.   

For example if we choose i = 1.5, then we can find what excess capacity of a torque, that will help us to 

decrease time to reach needed rotational speed.  

 𝐿 = 𝐼 ∗ 𝜔;   𝑇 =
𝑑𝐿

𝑑𝑡
 → 𝑑𝑡 =

𝑑(𝐼𝜔)

𝑑𝑇
→ ∆𝑡 =

∆𝐿

∆𝑇
 (3.47) 

 Equation (3.47) states, that the more excess of the torque we have the less time we need, as well as the less 

angular momentum makes less time. ∆𝑇 is shown on the Figure 3-14. This figure shows, that to rotate shaft 

by transmitting force using a timing belt with efficiency η = 0.95 with the angular speed ωout = 1.58 rad/s, 

we need to reach the speed of the electric motor rotor ωin = 2.3645 rad/s, where the torque transmitted by 

the shaft to the centrifuge’s arms is approximately 28.4 N.m. The difference between this torque and 

resistive drag moment relative to the ωout angular speed will be our excess capacity of the torque that will 

influence the time to reach desired angular velocity.  
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Figure 3-14 Equilibrium for gear ratio 1.5, for only one resisting moment (second arm free) 

As the final decision, there were chosen next items, which combination will make gearing ratio i = 1.6: 

 Driving Driven 

Taper bush TB 1615 - 19 TB 2012 - 50 

Sprocket HTD/GT  40 – 8M – 20 HTD/GT 64 – 8M – 20 

Table 10 Transmission combination, i = 1.6 
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3.3. Rotating Shaft 
A shaft is an important part of a centrifuge machine that transfers rotation from a motor (or any other 

driver) to the centrifuge’s head and connects centrifuge’s head to a frame. Hence, a shaft should be 

designed not only to carry static load from the centrifuge’s head (arms, tested sample under the 10g load 

for symmetric and asymmetric case etc.), but also rotates at desired speed with required mass attached 

safely.  That is why this chapter is divided for two parts: Static Calculation and Calculation of a Critical 

Speed 

3.3.1. Shaft. Static 
For shaft, design there was draw schematic diagram of it with relatable loadings on it on the Figure 3-15. 

Preliminary shaft design is shown on the Figure 3-16, it just shows tendency of how is shaft needed to be 

design acceding to the constructions requirements, diameters can be changed. 

       
 

A 
   

 

B   

   
T     c      d MB 

 

   

  

  

       

       

                       a b  

       
Figure 3-15 Schematic diagram of the loaded shaft 

 

Figure 3-16 First version of the shaft; 1,2,3 and 4 are so called “sections” 

L1 100  [mm] d1 22 [mm] a 322   [mm] 

L2 60 [mm] d2 28 [mm] b 63     [mm] 

L3 210   [mm] d3 32 [mm] c 37.5  [mm] 

L4 30   [mm] d4 25 [mm] d 40     [mm] 

Table 11 Shaft dimensions 

Note that, diameters are temporary, after provided calculations all diameter values will be changed. 

Support reactions are:  

𝐵 ∗ 𝑎 + 𝑀𝐵 = 0 

 𝐵 =
−𝑀𝐵

𝑎
= −

−600000

322
= 1863.45 [𝑁] =  −𝐴 (3.48) 

4 3 2 1 
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Bending moment distribution is shown on the Figure 3-17, where the maximum absolute value of the 

bending moment is equal to 600000 N.mm.  

 

Figure 3-17 Bending moment of the shaft 

If we apply for all section (1,2,3 and 4) this maximum bending moment, normal stresses on these sections 

are (using equation 𝜎 =
𝑀

𝑍
, 𝑤ℎ𝑒𝑟𝑒 𝑍 =

𝐽

𝑟
=

𝜋𝑑3

32
): 

i [-] 4 3 2 1 

σ [MPa] 391.14 186.51 278.41 573.96 
Table 12 Normal stresses from bending moment in each section 

If we use the same material to produce the shaft as material that are Alutek profiles are made from, than its 

properties are: 

Rp02=σy 200 [MPa] 

E 70000 [MPa] 

µ 0.33 [-] 

G 27000 [MPa] 

ρ 2700 [kg/m3] 

Table 13 AlMgSi0.5F25 general properties 

Then, from known material properties we will find allowable stress and comparing it with the values from 

Table 12, we can say if this design is safe or not.  

 𝜎𝑎𝑙𝑙 =
𝜎𝑦

𝑓
=

200

2
= 100 [𝑀𝑃𝑎] (3.49) 

It is clearly seen, that no values from the Table 12 are smaller than 100 MPa, i.e. that we have to redesign 

shaft diameters.  

We also have to take into account the fact of the presence of shearing stress from the torque T, which is 

located between sections 1 and 2. To consider the affection of the shearing stress we will use HMH 

hypothesis to reduce normal and shearing stresses into one equivalent stress, and according to designing 

philosophy, this value has to be less than allowable stress 𝜎𝑎𝑙𝑙. The value of the torque for the gear ratio i = 

1.6 is 32 224 N.mm. 

 𝜎𝑟𝑒𝑑 = √𝜎
 
2 + 3 ∗ 𝜏2 ≤ 𝜎𝑎𝑙𝑙  (3.50) 

 𝜎𝑎𝑙𝑙
2 ≥ 𝜎

 
2 + 3 ∗ 𝜏2 =

𝑀𝐵
2

𝑍2
+

𝑇2

𝑊2
,   𝑤ℎ𝑒𝑟𝑒 𝑍 =

𝜋𝑑3

32
;   𝑊 =

𝜋𝑑3

16
, (3.51) 
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𝑑 ≥ √
((32𝑀𝐵)2 + (16𝑇)2)

(𝜋𝜎𝑎𝑙𝑙)
2

6

 

𝑑 ≥ 39.39 [𝑚𝑚], and we choose 𝒅 = 𝟒𝟓 [𝒎𝒎] 

This diameter is minimum required one, so it is referred to the d4, but according to the chosen design, it is 

minimum dimeter of the shaft, so we will reference this value as the minimum one.  

Since, we have change the diameter, we have to recalculate bearing for the shaft at section 4, tapper bush 

and sprocket for shaft’s section 3 and for both sections recalculate and re-choose feather keys.  

Bearings 

Using very useful tool for bearing life calculation from bearing producer itself (SKF Engineering tool: 

http://www.skf.com/group/knowledge-centre/engineering-tools/skfbearingcalculator.html), we can calculate, if specific 

bearing satisfies given conditions. We choose bearing SKF with designation 16009  
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Figure 3-18 Bearing life calculation 

Analogical bearing to SKF 16009 is CSN 024630 SKF. To be sure if provided bearing calculation using 

SKF bearing calculator tool are correct, we will provide calculation of the bearing life using Autodesk 

Inventor® 2016 Professional, special bearing designer tool. Results are shown in Table 14. Results are very 

similar, so we can surely state that the CSN 024640 SKF bearing with inner diameter of 45 mm and width 

10 mm is sufficient to fulfill needed requirements. 

 

Results 

Basic rating life L10 77467 hr 

Adjusted rating life Lna 77467 hr 

Calculated static safety factor s0c 8.00000[-] 

Power lost by friction Pz 
0.66268 

W 

Necessary minimum load Fmin 108 N 

Static equivalent load P0 1950 N 

Dynamic equivalent load P 1880 N 

Over-revolving factor kn 72.000 [-] 

Equivalent speed ne 120 rpm 

Strength Check Positive 

Table 14 Autodesk Inventor Bearing calculation for CSN 024630 SKF 
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Feather Key 

 

Figure 3-19 Loads on the shaft and hub with feather key. [9, p. 38] 

Contact pressure is 

 𝑝 =
4𝑀𝑘

𝑑 ∗ ℎ ∗ 𝑙𝑎
 (3.52) 

Where Mk is the torque applied to a shaft, which is in our case is T2. 𝑙𝑎 = 𝑙 − 𝑏 is the effective feather key 

length.  

Centrifuge head 

In the section 4, for the shaft diameter 45 mm, according to standards [10] we will choose feather key CSN 

02 2562 A 14 x 9 x l.  

Suitable, 𝑙 can be determined using equation (3.52), if we assume 𝑝 as allowable pressure 𝑝𝑎𝑙𝑙 ≈ 𝜏𝑎𝑙𝑙 =

70 [𝑀𝑃𝑎]. Then 𝑙𝑎min  
= 15.6 [𝑚𝑚]. To be suitable to the standard we call 𝑙𝑎 = 26[𝑚𝑚], so that 𝑙 =

40 [𝑚𝑚]. Therefore, needed feather key is CSN 02 2562A 14 x 9 x 40. 

Contact pressure is: 

 𝑝 =
4𝑇

𝑑 ∗ ℎ ∗ 𝑙𝑎
=

4 ∗ 32224

45 ∗ 9 ∗ (40 − 14)
= 12.2 [𝑀𝑃𝑎] (3.53) 

Value of contact pressure of 12.2 MPa is several times less, than allowable one. Required safety j > 5. 

In the section 4, for the shaft diameter 45 mm, according to standards [10] we will choose feather key CSN 

02 2562 A 14 x 9 x 40.  
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Tupper bush 

The taper bush is manufactured for usage with a feather key and the shaft diameter calculation should take 

into account this fact. 

For the chosen diameter of the shaft of 28 mm, desirable taper bush TB2012, according to manufacturer, 

has a pocket with the width of b = 14mm, see Figure 3-20. 

 

Figure 3-20 TB list. Pikron s.r.o 

From the Czech standard tables, suitable feather key can be CSN 02 2562A 14 x 9 x 40. 

Contact pressure is: 

 𝑝 =
4𝑇

𝑑 ∗ ℎ ∗ 𝑙𝑎
=

4 ∗ 32224

50 ∗ 9 ∗ (40 − 14)
= 11.016 [𝑀𝑃𝑎] (3.54) 

Value of contact pressure of 11.016 MPa is several times less, than allowable one. Required safety j > 4. 

Conclusion of the shaft static design 

Section 2 of the shaft will have diameter d3 = 55 mm, so it will refer as the pulley support. Shaft diameter 

of the section 1, will be 45 mm, which was calculated for maximum bending moment of absolute value 600 

000 N.mm. For this diameter is suitable thrust bearing and its housing – UCF209 by GISS.  

Final table of the shaft dimensions is: 

Section Length Diameter 

1 100 45 

2 60 50 

3 210 55 

4 30 45 

Table 15 Modified shaft dimensions 
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IV 

3.3.2. Critical speed of the shaft 
Critical angular velocity of a rotating shaft is the angular velocity that will reach the value of Eigen 

frequency (Eigen angular velocity) of the shaft with all masses attached. If the angular velocity of the shaft 

will be the same value as the Eigen velocity of the working shaft will appear the phenomena called 

Resonant, which means that the deformation at some point of the shaft will be infinity big value that, 

obviously, will cause a failure of a part.  

In order to find Eigen frequencies of the shaft, we are going to solve this problem with consideration that 

the shaft is massless and ideal, i.e. has no eccentricity (e = 0). The shaft has two masses attached to it, first 

one is the pulley from the belt transmission, second is the combination of several parts (arms, working 

capsule or another test examples, fasteners, bearings, lugs etc.), assumed as one solid. For the more precise 

calculation, we will respect non-homogeneity of shaft’s cross-section (resp. second polar moment of area) 

and its character of the support (resp. boundary conditions). See Figure 3-21. 

 

 

 

 

 

 

3.3.2.1. Massless shaft, zero eccentricity and one mass attached 
If there is no eccentricity (e =0 mm), then the location of the centrifugal force OI,II from the attached mass 

exists on the shaft’s axis of rotation.  

First, we will find Eigen frequency for the first mass mounted to the shaft (mass on the section I). If we 

assume that the material of the shaft will have linear behavior according and will behave like a spring, then 

the next equation will be valid 

 𝐹 = 𝑘 ∗ 𝑦 (3.55) 

Where k is the stiffness of the shaft at certain point, y is the deflection and F is the force needed to provide 

on the shaft the deflection y at certain point.    

If we apply these assumptions and knowing equation of the centrifugal force, then we will obtain next: 

 𝑚𝐼 ∗ 𝑦 ∗ 𝜔2 = 𝑘 ∗ 𝑦       [11] (3.56) 

The deflection 𝑦 as a function of angular velocity is then: 

 

𝑚𝐼𝑦𝜔2 − 𝑘𝑦 = 0 

𝑦(𝑚𝐼𝜔
2 − 𝑘) = 0 

𝑦 =
0

𝑚𝐼𝜔
2 − 𝑘

=
0

𝜔2 −
𝑘
𝑚𝐼

 

(3.57) 

I II III 

Figure 3-21 Simplified diagram of the shaft for Eigen frequency calculation, I II III and IV represents each section. Black 

rectangles represents mass wheels 

e 

 OI 
 OII 
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Ω 

From the equation (3.57), we can say that the deflection 𝑦 will reach any value (infinity) as soon as the 

value of angular will tend to the value of 
𝑘

𝑚
. From here, we can state, that 𝑦(𝛺) → ±∞, where Ω is: 

 𝛺2 =
𝑘

𝑚𝐼
→ 𝛺 = √

𝑘

𝑚𝐼
 (3.58) 

Same method is valid for the mass attached on the section II.  

 

 

 

 

 

 

 

Figure 3-22 Defection y as a function of angular velocity, e=0 

3.3.2.2. Massless shaft, with non-zero eccentricity and one mass attached 
For the case of non-zero eccentricity (e≠0), the equation (3.56) transforms onto the next form: 

 𝑚𝐼 ∗ (𝑦 + 𝑒) ∗ 𝜔2 = 𝑘 ∗ 𝑦 (3.59) 

The deflection as function of angular velocity, now, has this form 

 

𝑚𝐼𝑦𝜔2 + 𝑚𝑒𝜔2 − 𝑘𝑦 = 0 

𝑦(𝑚𝜔2 − 𝑘) = −𝑚𝑒𝜔2 

𝑦 =
−𝑚𝑒𝜔2

𝑚𝜔2 − 𝑘
=

𝑚𝑒𝜔2

𝑘 − 𝑚𝜔2
=

𝑒𝜔2

𝑘
𝑚

− 𝜔2
 

(3.60) 

Again, as we mentioned for the equation (3.57), the deflection y will tend to be infinity when angular 

velocity 𝜔 will tend to the value of 
𝑘

𝑚
, but now significant difference is in numerator. In case of (3.57), we 

had 0, which means, that the deflection will be zero at any angular velocity except, when it reaches the 

value of Ω. For the non-zero eccentricity numerator of the last equation in (3.60) is non-zero value, but the 

function of angular velocity and eccentricity. The presence of eccentricity represents more realistic rotor 

behavior. 

If we provide the limit of the equation (3.60), where angular velocity tends to infinity we will find that the 

deflection will be the same as eccentricity 

 
lim
𝜔→∞

𝑦(𝜔) =
𝑒𝜔2

𝑘
𝑚

− 𝜔2
=

𝑒

𝑘
𝑚
𝜔2 − 1

=
𝑒

0 − 1
= −𝑒 

(3.61) 

 

𝜔 

y 

+∞ 

−∞ 
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Ω 

e 

e 

Same method is valid for the mass attached on the section II.  

 

 

 

` 

 

 

 

 

3.3.2.3. Massless shaft, with two masses attached 
For two masses attached to the shaft without their separation, the next equation is valid 

 

 

𝑘11 ∗ 𝑦1 + 𝑘12 ∗ 𝑦1 + 𝑘22 ∗ 𝑦2 + 𝑘21 ∗ 𝑦2 = 𝑂1 + 𝑂2 

Transform to another form 

𝑦1 =
𝑂1

𝑘11

+
𝑂2

𝑘12

;    𝑦2 =
𝑂1

𝑘21

+
𝑂2

𝑘22

 

(3.62) 

 

Since centrifugal forces 𝑂1 and 𝑂2 are also functions of the deflection 𝑦1 and 𝑦2 respectively, the 

dependency of the deflection y from angular velocity 𝜔 can be determined by following equations: 

 

 

𝑦1 =
𝑚1(𝑦1 + 𝑒1)𝜔

2

𝑘11

+
𝑚2(𝑦2 + 𝑒2)𝜔

2

𝑘12

 

𝑦2 =
𝑚1(𝑦1 + 𝑒1)𝜔

2

𝑘21

+
𝑚2(𝑦2 + 𝑒2)𝜔

2

𝑘22

 

 

𝑦1 −
𝑚1𝑦1𝜔

2

𝑘11

−
𝑚2𝑦2𝜔

2

𝑘12

=
𝑚1𝑒1𝜔

2

𝑘11

+
𝑚2𝑒2𝜔

2

𝑘12

 

𝑦2 −
𝑚1𝑦1𝜔

2

𝑘21

−
𝑚2𝑦2𝜔

2

𝑘22

=
𝑚1𝑒1𝜔

2

𝑘21

+
𝑚2𝑒2𝜔

2

𝑘22

 

 

Let’s say that   
𝑚1𝑒1𝜔2

𝑘11
+

𝑚2𝑒2𝜔2

𝑘12
= 𝑆1   and    

𝑚1𝑒1𝜔2

𝑘21
+

𝑚2𝑒2𝜔2

𝑘22
= 𝑆2 

 

 

(3.63) 

𝜔 

y 

+∞ 

−∞ e 

Figure 3-23 Deflection of the shaft as a function of angular velocity, e ≠0 
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𝑦1 (1 −
𝑚1𝜔

2

𝑘11

) − 𝑦2 ∗
𝑚2𝜔

2

𝑘12

= 𝑆1 

𝑦2 (1 −
𝑚2𝜔

2

𝑘22

) − 𝑦1 ∗
𝑚1𝜔

2

𝑘21

= 𝑆2 

 

𝑦1 (1 −
𝑚1𝜔

2

𝑘11

) − 𝑦2 ∗
𝑚2𝜔

2

𝑘12

= 𝑆1 

−𝑦1 ∗
𝑚1𝜔

2

𝑘21

+ 𝑦2 (1 −
𝑚2𝜔

2

𝑘22

) = 𝑆2 

 

Let’s say that (1 −
𝑚1𝜔2

𝑘11
) = 𝑎11; 

𝑚2𝜔2

𝑘12
= 𝑎12;   

𝑚1𝜔2

𝑘21
= 𝑎21;   (1 −

𝑚2𝜔2

𝑘22
) = 𝑎22 

 

𝑦1𝑎11 − 𝑦2𝑎12 = 𝑆1 

−𝑦1𝑎21 + 𝑦2𝑎22 = 𝑆2 → −/− ∗ (−1) 

 

𝑦1𝑎11 − 𝑦2𝑎12 = 𝑆1 

𝑦1𝑎21 − 𝑦2𝑎22 = −𝑆2 

 

We can create now system of linear algebraic evacuation in matrix form: 

 

[
𝑎11 −𝑎12

𝑎21 −𝑎22
] ∗ [

𝑦1

𝑦2
] = [

𝑆1

𝑆2
] 

If        [
𝑎11 −𝑎12

𝑎21 −𝑎22
] = 𝐴, [

𝑦1

𝑦2
] = 𝑦 𝑎𝑛𝑑  [

𝑆1

𝑆2
] = 𝑆,   then 

𝑦 = 𝐴−1 ∗ 𝑆 (3.64) 

In order to find Eigen frequencies, we can assume that the matrix S, where eccentricities are, is equal to 0. 

Then the equation (3.64) has the form: 

 [
𝑎11 −𝑎12

𝑎21 −𝑎22
] ∗ [

𝑦1

𝑦2
] = [

0
0
] (3.65) 

This equation has two solutions, first it is when deflections are zero, which is not interesting for us, because 

it gives us nothing, and when system is linearly dependent and deflections y can be anything. Which means 

matrix A is singular: 

 
det [

𝑎11 −𝑎12

𝑎21 −𝑎22
] = 0 

𝑎11 ∗ (−𝑎22) + 𝑎12 ∗ 𝑎21 = 0 (3.66) 

Values for the angular velocity that we will obtain from the equation (3.66) are Eigen values, respectively, 

Eigen frequencies, Ω1 and Ω2. 
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3.3.2.4. Applying calculation 
 

In order to find Eigen frequency ΩI or II it is significantly important to calculate shaft’s bending stiffness in 

the place of centrifugal force from the attached mass.  

 

Figure 3-24 Shaft, calculation model 

Section I – Mass 1 – massless shaft 

To find deflection at the place where centrifugal force O1 is applied, we have to find reactions in supports 

(bearings) and solve Mohr’s integral. However, the way that shaft is supported is so called statically 

indeterminate (3 unknowns for 2 equilibrium equations), so we have to apply deformation conditions in 

order to find missing equation. The needed deformation condition is that the vertical deflection yB, at the 

position of the support B is equal to zero, 𝑦(𝑙1) ≈ 𝑦𝐵 = 0 𝑚𝑚. Knowing that boundary condition we can 

state, that: 

 𝑦(𝑙1) = 0 = ∫
𝑀(𝑥)

𝐸𝐼𝑥
𝑚𝑖(𝑥)𝑑𝑥

𝑙3

0

 (3.67) 

Where 𝑚𝑖(𝑥) is the bending from the unit load applied at 𝑙1.  

Since our shaft does not have constant cross-section along its length and not distributes within x by some 

specific function, we can rewrite Mohr’s integral (3.67) as the sum of integrals of each section. 

 0 = ∫
𝑀(𝑥)

𝐸𝐼1
𝑚𝑖(𝑥)𝑑𝑥

𝑙1

0

+ ∫
𝑀(𝑥)

𝐸𝐼2
𝑚𝑖(𝑥)𝑑𝑥

𝑙2

𝑙1

+ ∫
𝑀(𝑥)

𝐸𝐼3
𝑚𝑖(𝑥)𝑑𝑥

𝑙3

𝑙2

 (3.68) 

Where, if we say 𝑂1 = 𝐹1 and using the method of section we can write: 

𝑥 [0, 𝑙1] [𝑙1, 𝑙2] [𝑙2, 𝑙3] 

𝑀(𝑥) −𝐹1 ∗ 𝑥 −𝐹1 ∗ 𝑥 + 𝑅𝐵1
∗ (𝑥 − 𝑙1) 

𝑚𝑖(𝑥) 0 −(𝑥 − 𝑙1) 

𝐼 
𝜋𝑑1

4

64
 

𝜋𝑑2
4

64
 

𝜋𝑑3
4

64
 

Table 16 Mohr's integral values for the shaft at loading O1, for unit load at support B 

By solving equation (3.68) we find the reaction force 𝑅𝐵1
. Using software MATLAB® we can fast and easy 

find the needed solution. The script with the solution can be found in the attachments. 

O2 O1 

l1.5 

l1 

l2 

l3 

RB 

A 

y 

x 
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 𝑅𝐵1
= −

𝐹 ∗ (
2𝑙2

3  −  3𝑙1𝑙2
2 −  2𝑙3

3 +  3𝑙1𝑙3
2

𝐼3
−

(𝑙1 + 2𝑙2) ∗ (𝑙1  −  𝑙2)
2

𝐼2
)

− 6𝑙12𝑙2 + 6𝑙12𝑙3 +  6𝑙1𝑙2
2 − 6𝑙1𝑙3

2 −  2𝑙2
3 + 2𝑙3

3

𝐼3
−

(𝑙1  −  𝑙2)
3 ∗ 2

𝐼2

 (3.69) 

 

We assumed that the centrifugal force O1 approaches to the free end of the shaft’s section I, in order to be 

on the safety side of the problem. So the stiffness will be at this place will be 𝑘11 =
𝑂1

𝑦11
=

𝐹1

𝑦11
 , where the 

first index shows the place and second index shows the force applied, so the stiffness 𝑘11 is saying that this 

stiffness is the stiffness of the shaft at the place 1 ( where the first force is applied) from the force O1. So 

the 𝑘12 will be the stiffnes at the place 1, that will be caused by the force O2.  

To find stiffness 𝑘11 again, we have to use Mohr’s integral to find the deflection 𝑦11, with applying unit 

load at the same place as centrifugal force O1. Again using an advantage of the MATLAB®, we can solve 

the integral equation (3.70), where all needed values are written in the  

 

 𝑦11 = ∫
𝑀(𝑥)

𝐸𝐼1
𝑚𝑖(𝑥)𝑑𝑥

𝑙1

0

+ ∫
𝑀(𝑥)

𝐸𝐼2
𝑚𝑖(𝑥)𝑑𝑥

𝑙2

𝑙1

+ ∫
𝑀(𝑥)

𝐸𝐼3
𝑚𝑖(𝑥)𝑑𝑥

𝑙3

𝑙2

 (3.70) 

 

𝑥 [0, 𝑙1] [𝑙1, 𝑙2] [𝑙2, 𝑙3] 

𝑀(𝑥) −𝐹1 ∗ 𝑥 −𝐹1 ∗ 𝑥 + 𝑅𝐵1
∗ (𝑥 − 𝑙1) 

𝑚𝑖(𝑥) −1 ∗ 𝑥 −1 ∗ 𝑥 + 𝑟𝑏1
∗ (𝑥 − 𝑙1) 

𝐼 
𝜋𝑑1

4

64
 

𝜋𝑑2
4

64
 

𝜋𝑑3
4

64
 

Table 17 Mohr's integral values for the shaft at loading O1, for unit load at the place of O1 

Where 𝑟𝑏1
 is the reaction at the support B from the unit load at the place of force O1 = F1. Symbolic result 

for 𝑦11 you can find in the attachments. 

From the equation (3.55) we can find the stiffness 𝑘11, which was solved by MATLAB® with the using 

values for our shaft. Symbolic result, again, in the attachments.  

 𝑘11 =
𝐹1

𝑦11

= 1.9479329𝐸 + 04 = 19 479.329 [
𝑁

𝑚𝑚
] (3.71) 

Preliminary mass was read from the CAD file, assuming geometry and density for all parts involved at the 

place 1 according to the Figure 3-24. For “One Beam” (1B) modification the mass is 𝑚10
 = 40 kg and we 

will take a reserve 10 kg for future sensors and for additional masses if appears, so the 1B mass is 𝑚1 = 50 

kg. “Two Beam” (2B) modification has mass of 𝑀10
= 50 kg and with extra mass 2B is 𝑀1 = 60 kg. Using 

equation (3.58) we obtain: 
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Modification 1B 2B 

Eigen angular velocity, 𝛺01 [rad/s] 19.73 18.018 

Eigen frequency, 𝑓01 [1/s] 3.14 2.86 

Eigen angular velocity, 𝑛01 [rpm] 188.40 171.98 

Table 18 Eigen values for case 1 

To reach 10g acceleration for the chosen 1m arm requires 9.905 [rad/s] or 94.582 [rpm], or 1.577 [rps=1/s]. 

In order to be conservative let us assume that maximum required speed is 2 [1/s] and the related Eigen value 

should not be lower than this value. Results from Table 18 shows that we are okay. 

 

If we add the effect of eccentricity, then with the help of equation (3.60) it is possible to construct the graph 

𝑦(𝜔) for eccentricities 𝑒 ∈ [0.1; 1] 

 

Figure 3-25 y(ω) diagram for M1 

The maximum allowable deflection can be calculated from the allowable stress (bending stress). 

 𝜎𝑎𝑙𝑙 =
𝑀max  (𝐹𝑎𝑙𝑙)

𝐼
𝑟

→ 𝐹𝑎𝑙𝑙 = 𝑓(𝜎𝑎𝑙𝑙) → 𝑦11𝑎𝑙𝑙
=

𝐹𝑎𝑙𝑙

𝑘11

 (3.72) 

 In order to clearly know where is the maximum bending moment along the shaft, let’s say that the F =1 N 

so we can construct the diagram for the bending moment distribution M(x). Using information from the 

Table 16 and equation (3.69), we can construct next diagram.  

e = 0.1 : 0.1 : 1 
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Figure 3-26 Bending moment distribution for the load of 1N at the place of force O1 

From the Figure 3-26 it is seen that the maximum absolute value of the bending moment is situated when 

x = 100 mm or x = 𝑙1. In that case the maximum bending moment is 𝑀max  𝑎𝑙𝑙
= 𝐹𝑎𝑙𝑙 ∗ 𝑙1. Then follows: 

 𝜎𝑎𝑙𝑙 =
𝐹𝑎𝑙𝑙 ∗ 𝑙1

𝐼1
𝑟1

 → 𝐹𝑎𝑙𝑙 = 𝜎𝑎𝑙𝑙 ∗
𝐼1
𝑑1
2

∗
1

𝑙1
= 100 ∗

𝜋 ∗ 453

32
∗

1

100
= 8946.176 [𝑁] (3.73) 

 𝑦11𝑎𝑙𝑙
=

𝐹𝑎𝑙𝑙

𝑘11
=

8946.176

19479.329
= 0.459 [𝑚𝑚] (3.74) 

Therefore, the Figure 3-25 will finally look as follows. 

 

Figure 3-27 y(ω) for M1 with allowable deflection  

Section II – Mass 2 – massless shaft 

For the section II as well as for the first section we need to find reaction force in the bearing and then use 

it to find stiffness and after the Eigen frequency. Again, to find reaction force in the support B, we need to 

apply there a boundary condition that is saying that the vertical deflection at the support B is equal to zero. 

General equations to find the reaction at the support B for the section II will be same as for the section I, 

i.e. equation (3.67). Equation (3.68) will have another view, since the force O2 is assumed to be from the 

sprocket that has 32 mm width and assuming that the centrifugal force O2 situates exactly in the center, 

hence its position is in l2 - 32/2 mm = l1.5. 

yall 

e =0.1 :0.1 :1  
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 𝑦𝑏 = 0 = ∫
𝑀(𝑥)

𝐸𝐼1
𝑚𝑖(𝑥)𝑑𝑥

𝑙1

0

+ ∫
𝑀(𝑥)

𝐸𝐼2
𝑚𝑖(𝑥)𝑑𝑥

𝑙1.5

𝑙1

+ ∫
𝑀(𝑥)

𝐸𝐼2
𝑚𝑖(𝑥)𝑑𝑥

𝑙2

𝑙1.5

+ ∫
𝑀(𝑥)

𝐸𝐼3
𝑚𝑖(𝑥)𝑑𝑥

𝑙3

𝑙2

 (3.75) 

Values for the equation (3.75) are mentioned in the Table 19. 

x [0;𝑙1] [𝑙1; 𝑙1.5 ] [𝑙1.5; 𝑙2] [𝑙2; 𝑙3]  

𝑀(𝑥) 0 𝑅𝐵2
∗ (𝑥 − 𝑙1) 𝑅𝐵2

∗ (𝑥 − 𝑙1) − 𝐹2 ∗ (𝑥 − 𝑙1.5) 

𝑚(𝑥) 0 −1 ∗ (𝑥 − 𝑙1) 

I 
𝜋𝑑1

4

64
 

𝜋𝑑2
4

64
 

𝜋𝑑3
4

64
 

Table 19 Integral values for the shaft at loading O2=F2, for unit load at support B (apply for (3.75)) 

Using MATLAB® we can solve this integral equation and find needed value 𝑅𝐵2
 (the symbolic result for it 

you can find in attachments). 

Finding a deflection at the place where force O2 = F2 appeared we can find a related stiffness  𝑘22 =
𝐹2

𝑦22
.  

 𝑦22 = ∫
𝑀(𝑥)

𝐸𝐼1
𝑚𝑖(𝑥)𝑑𝑥

𝑙1

0

+ ∫
𝑀(𝑥)

𝐸𝐼2
𝑚𝑖(𝑥)𝑑𝑥

𝑙1.5

𝑙1

+ ∫
𝑀(𝑥)

𝐸𝐼2
𝑚𝑖(𝑥)𝑑𝑥

𝑙2

𝑙1.5

+ ∫
𝑀(𝑥)

𝐸𝐼3
𝑚𝑖(𝑥)𝑑𝑥

𝑙3

𝑙2

 (3.76) 

Where all functions are: 

x [0;𝑙1] [𝑙1; 𝑙1.5 ] [𝑙1.5; 𝑙2] [𝑙2; 𝑙3]  

𝑀(𝑥) 0 𝑅𝐵2
∗ (𝑥 − 𝑙1) 𝑅𝐵2

∗ (𝑥 − 𝑙1) − 𝐹2 ∗ (𝑥 − 𝑙1.5) 

𝑚(𝑥) 0 𝑟𝑏2
∗ (𝑥 − 𝑙1) 𝑟𝑏2

∗ (𝑥 − 𝑙1) − 1 ∗ (𝑥 − 𝑙1.5) 

I 
𝜋𝑑1

4

64
 

𝜋𝑑2
4

64
 

𝜋𝑑3
4

64
 

Table 20 Integral values for equation (3.76) 

Where 𝑟𝑏2
 is the reaction at the support B from the unit load at the place of force F2. Symbolic result for 

𝑦22 you can find in the attachments. The stiffness is then: 

 𝑘22 =
𝐹2

𝑦22

= 2.82637293𝐸 + 05 = 282 637.293 [
𝑁

𝑚𝑚
] (3.77) 

Mass of the complete sprocket is 3.45 kg, but to be on the conservative side let us assume that this mass 

will be M2 = 4 kg. Using equation (3.58) we find Eigen values. 

Eigen angular velocity, 𝛺02 [rad/s] 265.8 

Eigen frequency, 𝑓02 [1/s] 42.3 

Eigen angular velocity, 𝑛02 [rpm] 2538.2 

Table 21 Eigen values for mass M2 
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Results from the Table 21 shows that they are far beyond than required speed for 10g acceleration, which 

is I remind from conservative point of view is 120 [rpm] or 2 [1/s]. 

If we add the effect of eccentricity, then with the help of equation (3.60) it is possible to construct the graph 

𝑦(𝜔) for eccentricities 𝑒 ∈ [0.1; 1]. See Figure 3-28. 

MATLAB® shows that deflection for the angular velocity 2 ∗ 2𝜋 = 12.566 [
𝑟𝑎𝑑

𝑠
] is 2.04E-04, so for my 

point of view it is very small deflection, there is no point to solve the shaft for the allowable deflection for 

mass M2. 

 

Figure 3-28 y(ω) for the mass M2 

Shaft with both mass attached – massless shaft 

To find Eigen values for this case we have to calculate equation (3.66), which is determinant of matrix that 

contains masses, stiffness and angular velocities. This matrix was mentioned in (3.63) and (3.64).  Stiffness 

𝑘11 and 𝑘22 were found in previous parts of this paragraph. Our task now is to find stiffness 𝑘12 and 𝑘21 

which for isotropic material should be the same values, 𝑘12 = 𝑘21. To find stiffness 𝑘12 we need to find 

deflection caused by force F2 at the place of applied force F1, which is 𝑦12. 𝑘12 =
𝐹2

𝑦12
. To find 

deformation 𝑦12, will be used general equation (3.76), but will contain another functions for bending moment 

from an applied force and bending moment from a unit load. Table for this integral equation is written 

below.  

x [0;𝑙1] [𝑙1; 𝑙1.5 ] [𝑙1.5; 𝑙2] [𝑙2; 𝑙3]  

𝑀(𝑥) 0 𝑅𝐵2
(𝑥 − 𝑙1) 𝑅𝐵2

(𝑥 − 𝑙1) − 𝐹2 ∗ (𝑥 − 𝑙1.5) 

𝑚(𝑥) −𝑥 −𝑥 + 𝑟𝑏1
(𝑥 − 𝑙1) 

I 
𝜋𝑑1

4

64
 

𝜋𝑑2
4

64
 

𝜋𝑑3
4

64
 

Table 22 Integral values to solve (3.76) to find y12 

e =0.1 :0.1 :1  
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To find deflection at the place where F2 applies but from the force F1, 𝑦21 we need to use again general 

integral equation (3.76) and put there next values: 

x [0;𝑙1] [𝑙1; 𝑙1.5 ] [𝑙1.5; 𝑙2] [𝑙2; 𝑙3]  

𝑀(𝑥) −𝐹1 ∗ 𝑥 −𝐹1 ∗ 𝑥 + 𝑅𝐵1
(𝑥 − 𝑙1) 

𝑚(𝑥) 0 𝑟𝑏2
(𝑥 − 𝑙1) 𝑟𝑏2

∗ (𝑥 − 𝑙1) − 1 ∗ (𝑥 − 𝑙1.5)  

I 
𝜋𝑑1

4

64
 

𝜋𝑑2
4

64
 

𝜋𝑑3
4

64
 

Table 23 Integral values to solve (3.76)  to find y21 

Dividing each force by related deflection, we can find all needed stiffness. Constructing something like a 

stiffness matrix specifically for a designed shaft, will look like: 

 𝐾 = [
𝑘11 𝑘12

𝑘21 𝑘22
] = [

19479.329 −124295.99
−124295.99 282637.293

] [N/mm]  (3.78) 

 

This matrix confirms the theory that 𝑘12 = 𝑘21. 

Solving the equation (3.66) will give us next: 

 

det [
𝑎11 −𝑎12

𝑎21 −𝑎22
] = det 

[
 
 
 
 (1 −

𝑚1𝜔
2

𝑘11
) −

𝑚2𝜔
2

𝑘12

𝑚1𝜔
2

𝑘21
−(1 −

𝑚2𝜔
2

𝑘22
)
]
 
 
 
 

= det

[
 
 
 
 (1 −

𝜔2

Ω01
) −

𝑚2𝜔
2

𝑘12

𝑚1𝜔
2

𝑘21
−(1 −

𝜔2

Ω02
)
]
 
 
 
 

= 

det [
(1 −

𝜔2

18.018
) −

4∗𝜔2

−124295.99

60∗𝜔2

−124295.99
−(1 −

𝜔2

265.8
)
] = 0      →      𝛺 = [

𝛺1

𝛺2
] = [

18
331.6

]  [rad/s] = [
171.8
3166.5

] rpm 

 (3.79) 

Example in (3.79) was calculated for two beams modification (2B). Generally, we can exceed the rotational 

speed Ω1, if it will be done quickly, but specifically for the designed centrifugal machine we don’t need to 

reach angular speed more than 120 [rpm] = 12.556 [rad/s]. From this point of view we are satisfied with 

the designed shaft.  

Adding eccentricity 𝑒 ∈   [0.05: 1] to the shaft the function y(ω) which is (3.64) the dependency for the 

deflection 𝑦1 will be then as it shows Figure 3-29. For the 𝑦2 see Figure 3-30.  
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Figure 3-29 y1(ω) for the both mass attached 

 

 

Figure 3-30 y2(ω) for the both mass attached 

To find allowable deflection, first we need to find a maximal bending moment on the shaft, preliminary to 

find a place of it and its value we can use several assumptions in order to simplify a work.  We know that 

M1 = 60 kg and M2 = 4 kg, which makes M2 = M1 / 15 and assuming that y2 = y1 then we can write next: 

 

𝑂1 = 𝑀1 ∗ 𝑦1 ∗ 𝜔2 

𝑂2 = 𝑀2 ∗ 𝑦2 ∗ 𝜔2 =
𝑀1

15
∗ 𝑦1 ∗ 𝜔2 =

𝑂1

15
 

 

(3.80) 

e =0.05 :0.05 :1  

e =0.05 :0.05 :1  
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If  we say that centrifugal force O1 = 1 N, then O1 =1/15 N, then taking into account that we used a super 

position method which will make reaction at the support B a sum of reactions calculated for force O1 and 

O2 separately.  

 𝑅𝐵 = 𝑅𝐵1
+ 𝑅𝐵2

 (3.81) 

Using advantage of the software MATLAB®, we can construct a preliminary bending on the shaft for both 

forces applied. 

 

Figure 3-31 Bending distribution on the shaft with O1=1N and O2 = O1/15 

From the Figure 3-31 we can clearly see that the maximum moment is situated at the shaft position 𝑙1, 

which is a product of the centrifugal force O1.  

 

 

𝑀max  = 𝑂1 ∗ 𝑙1 

𝜎𝑎𝑙𝑙 =
(𝑂𝑎𝑙𝑙 ∗ 𝑙1)

𝐼1
𝑟1

 

𝑂𝑎𝑙𝑙 =
𝐼1
𝑟1

∗
1

𝑙1
∗ 𝜎𝑎𝑙𝑙 

𝑂𝑎𝑙𝑙 =
201288.96

45
2

∗
1

100
∗ 100 = 8946.17 [𝑁] 

𝑦1𝑎𝑙𝑙
=

𝑂𝑎𝑙𝑙

𝑘11 
=

8946.17

19479.329
= 0.46 [𝑚𝑚] 

(3.82) 
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Figure 3-32 y1.(ω) with showing allowable deflection. For both mass attached. 

Adding the mass of a shaft 

Mass of the shaft was read from the 3D CAD model and it is 𝑀𝑆 = 2.16 kg. It is made from aluminum and 

has density 2700 kg/m3. In order to simplify the task, I am not going to take a shaft mass as a distributed 

thing. I am going to take it as a concentrated mass in the “dangerous” points, which are the places of a 

applied centrifugal forces O1 and O2. To be on the safety side of the problem I will assume shaft as a 3 kg 

and will add this mass to each attached mass. It will make M1 = 60+3=63 kg and M2 =4+3=7 kg. Results 

are: 

      𝛺𝑠 = [
𝛺1𝑠

𝛺2𝑠

] = [
17.5
250.8

]  [rad/s] (3.83) 

Compare these results with results we’ve got in (3.79) we can say that the difference in Ω1 is 0.5 rad/s which 

is 4.77 rpm. The velocity, in this case, that we should not reach is 167 rpm. It satisfies our requirement 

maximum speed should be bigger than 120 rpm.  

 

 

 

 

 

 

 

 

e =0.05 :0.05 :1  
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3.4. Motor mounting 
We chose that we would drive the centrifugal machine using timing belt transmission and every belt 

transmission requires belt pre-tension, this can be two methods. 

First allowing the pulley distance to be varied.   

 

Figure 3-33 Center distance adjusting [12] 

Second method: Including an adjustable idler pulley or roller which may be inside or outside the belt loop. 

 

Figure 3-34 Adjustable idler pulley [12] 

From this point beyond we will focus on the first method. 

 

Figure 3-35 Motor adjusting through screw (preliminary design) 

Nut B 
Nut M 
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 On the Figure 3-35 is shown, that motor adjusting will be provided throughout screw mechanism. By 

rotating a Nut B in clock wise direction, the motor will move to the direction of the bolt along the screw 

rod. By this motion we can crate suitable pretension of the belt.  

 

3.5. Lug and pin design 
For the assembling capsule to the centrifuge arm, there should be special connection that I choose to be 

lug and pin. 

3.5.1. Lug design 
Loading 

First, we have to find what loading will appear on the lug or what loading the lug has to handle. Since I 

choose that so called “female” lug will be installed on the centrifugal arm, i.e. on the 45 x 45 profile and 

the loading will be transferred the through the pin we can find forces that will appear on the lug by 

finding reaction on beam’s supports. 

 

 

 

 

 

Reactions A and B will be the load that lug has to handle. Since, force from the capsule is situated in the 

middle of the pin, reactions are 

 𝐴 = 𝐵 =
𝐹𝑐

2
 (3.84) 

Force FC was found in the paragraph §3.1.2 p.14, it is the resultant force of mass force and centrifugal. Its 

value is: 

 𝐹𝑐 = √𝐺𝑐
2 + 𝐶𝑐

2 = √1502 + 15002 = 1507.5 ≈ 1510 [𝑁] (3.85) 

 

Note that, the real values of the Gc is 147.15 [N] and centrifugal force is Cc = 1471.5 [N] for acceleration 

of a = 10g, but to be on the safety side we have to be conservative.  

Finally, force in the supports and at the same time forces that lug has to handle is  

𝑨 = 𝑩 =
𝟏𝟓𝟏𝟎

𝟐
= 𝟕𝟓𝟓 [𝑵] 

 

 

 

 

Fc 

A B 

Figure 3-36 Pin loading 
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Figure 3-37 Lug dimensions 

Lug design 

The material the lug will be made from has a significant influence on the lug strength (lug geometry). For 

now we will continue to use same material as the profile is made from, which is AlMgSi0.5F25 or also 

known as Al 6063A. Its mechanical properties were shown in the Table 13. There just has to be added 

information about its ultimate tensile stress, which is σult = 130 [MPa]. Using method that was described in 

the book “Airframe stress analyses and sizing” by Michael C. Y. Niu [13, p. 321] we can check if chosen 

dimensions are valid or not. 

As the first step we have to guess what values we will use. They are: 

 

 

Exists 3 types of lug loads: axial, transverse and oblique.  

 

Figure 3-38 Types of lug loads 

Case I – Axial load 

The lug failure modes for this load case are Share – Bearing failure and Tension failure. 

Share – Bearing Failure 

Failure consists of shear tear-out of the lug along a 400 angle on both sides of the pin (see Figure 3-39), 

while bearing failure involves the crushing of the lug by the pin bearing. 

 

Figure 3-39 Lug tension and shear-tear out failures 
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The ultimate load for this type of failure is given by the equation 

 𝑃𝑏𝑟𝑢 = 𝑘𝑏𝑟 ∗ 𝜎𝑡𝑢𝑥 ∗ 𝐴𝑏𝑟 (3.86) 

Where 𝑃𝑏𝑟𝑢 – ultimate load for shear – tear out and bearing failure; 𝑘𝑏𝑟𝑢 – Shear – bearing efficiency factor 

see Figure 3-40; 𝐴𝑏𝑟 – Projected bearing area 𝐴𝑏𝑟 = 𝐷 ∗ 𝑡; 𝜎𝑡𝑢𝑥 – Ultimate tensile stress in x – direction of 

the material.  

 

Figure 3-40 Shear-Bearing efficiency factor [13] 

Tension failure 

Tension failure is given by: 

 𝑃𝑡𝑢 = 𝑘𝑡 ∗ 𝜎𝑡𝑢𝑥 ∗ 𝐴𝑡 (3.87) 

Where 𝑃𝑡𝑢 – Ultimate load for tension failure; 𝑘𝑡 – Net tension efficiency factor, see ; 𝜎𝑡𝑢𝑥 – Ultimate 

tensile stress in x – direction of the material; 𝐴𝑡 – Minimum net section for tension 𝐴𝑡 = (𝑊 − 𝐷)𝑡 

Table 24 Lug dimensions 

D 18 [mm] 

t 2 [mm] 

a 15 [mm] 

W 30 [mm] 
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Figure 3-41 Lug efficiency factor for tension [13] 

Yield Failure – lug 

Lug yield failure attributable to shear – bearing is given by: 

 𝑃𝑌,0 = 𝐶 ∗ (
𝜎𝑡𝑦𝑥

𝜎𝑡𝑢𝑥

) ∗ 𝑃𝑢min  
 (3.88) 

 Where 𝑃𝑌 – Yield load; C – Yield factor see Figure 3-42; 𝜎𝑡𝑦𝑥 – Tensile yield stress of lug material in 

load direction; 𝑃𝑢min  
 - The smaller 𝑃𝑏𝑟𝑢 or 𝑃𝑡𝑢 

Yield Failure – bushing 

Bushing yield bearing load attributable to shear – bearing is given by: 

 𝑃𝑏𝑟𝑦 = 1.85 ∗ 𝜎𝑐𝑦 ∗ 𝐴𝑏𝑟𝑏 (3.89) 

Where 𝑃𝑏𝑟𝑦 – Bushing yield bearing load; 𝜎𝑐𝑦 – Compression yield stress of bushing material, 𝐴𝑏𝑟𝑏 – the 

smaller of the bearing areas of bushing on pin or bushing on lug. 
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Figure 3-42 Yield factor 

 

Case II – Transverse Load (α = 90ᴼ) 

 

Figure 3-43 Lugs subjected to transverse load 

For further calculation we have to compute: Projecting bearing area 𝐴𝑏𝑟 and Average area 𝐴𝑎𝑣 

 

𝐴𝑏𝑟 = 𝐷𝑡 

𝐴𝑎𝑣 =
6

3
𝐴1

+
1
𝐴2

+
1
𝐴3

+
1
𝐴4

 

(3.90) 

The ultimate load is obtained using next equation: 

 𝑃𝑡𝑟𝑢 = 𝑘𝑡𝑟𝑢 ∗ 𝐴𝑏𝑟 ∗ 𝜎𝑡𝑢𝑦 (3.91) 

Where: 𝑃𝑡𝑟𝑢 – Ultimate transverse load; 𝑘𝑡𝑟𝑢 -Efficiency factor for transverse ultimate load see Figure 3-44; 

𝜎𝑡𝑢𝑦 – Ultimate tensile stress of lug material in y – direction.  
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Figure 3-44 Efficiency factor for transverse load [13] 

The Yield load can be obtained then by next equation. 

 𝑃𝑌,90 = 𝑘𝑡𝑟𝑦 ∗ 𝐴𝑏𝑟 ∗ 𝜎𝑡𝑦𝑦 (3.92) 

Where: 𝑃𝑌 – Yield transverse load; 𝑘𝑡𝑟𝑦 – Efficiency factor for transverse yield load, see Figure 3-44; 𝜎𝑡𝑦𝑦 

– Tensile yield stress of lug material in y – direction.  

Case III – Oblique Load 

For Ultimate load 

 𝑗 =
1

(𝑅𝑎,𝑢
1.6 + 𝑅𝑡𝑟,𝑢

1.6 )
0.625 

(3.93) 

For Yield load 

 
𝑗 =

1

(𝑅𝑎,𝑦
1.6 + 𝑅𝑡𝑟,𝑦

1.6 )
0.625 

(3.94) 
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Where; 𝑗 –Reserve factor; 𝑅𝑎(𝑡𝑟),𝑢(𝑦) – axial or transverse component (indices “a” or “tr” respectively) of 

applied ultimate or yield (limit) load (indices “u” or “y” respectively) divided by smaller of 𝑃𝑏𝑟𝑢 or 𝑃𝑡𝑢 

from equation (3.86) or (3.87) respectively, or 𝑃𝑌,0 (3.88) or 𝑃𝑌,90 (3.92) for yielding.  

Application 

Axial load 

Using material information and guessed dimensions written above, in the beginning of this part we have 

following ratios: 

D/t 9 

a/D 0.83 

W/D 1.67 
Table 25 lug dimension ratios 

Following factors 𝑘𝑏𝑟𝑢, 𝑘𝑡 and C were read from Figure 3-40, Figure 3-41 and Figure 3-42 respectively. 

𝑘𝑏𝑟𝑢 0.6 

𝑘𝑡 0.74 

C 1.1 
Table 26 Axial case factors 

Using equation (3.86) we find ultimate Pbru 

 𝑃𝑏𝑟𝑢 = 0.6 ∗ 130 ∗ (18 ∗ 2) = 2808 [𝑁] (3.95) 

By equations (3.87) we can compute Ptu 

 𝑃𝑡𝑢 = 0.74 ∗ 130 ∗ (30 − 18) ∗ 2 = 2308.8 [𝑁] (3.96) 

Yield axial load with the use of equation (3.88) 

 
𝑃𝑌,0 = 1.1 ∗ (

100

130
) ∗ 2308.8 = 1953.6 [𝑁] 

(3.97) 

Theoretically, this Yield load satisfies given conditions, when the arm of the centrifuge is loaded by weight 

of the capsule only, which makes in ideal case pure axial load. Numerically, female lug it has to stand load 

of 
150

2
= 75 [𝑁], where the reserve factor is then 𝑗 =

1953.6

75∗𝑓,(𝑓=2)∗𝜆,(𝜆=1.15)
= 11.3 [−], of course it is more 

than we need, but we have to leave chosen dimension, because we have to calculate further transverse load 

and oblique one, which’s loads are much bigger than axial one.  

Transverse Load 

Projecting bearing area 𝐴𝑏𝑟 = 18 ∗ 2 = 36 [𝑚𝑚2] and Average area specifically for our case  

 𝐴𝑎𝑣 =
6

3

𝑡(
𝑊
2 −

𝐷
2∗sin45)

+
1

(
𝑊
2 −

𝐷
2)𝑡 

+
1

(
𝑊
2 −

𝐷
2)𝑡

+
1

𝑡(
𝑊
2 −

𝐷
2∗sin45)

=
6

1

17.2721
+

1

12
+

1

12
+

1

17.2721

= 15.066 [𝑚𝑚2] 

The areas ratio is then 
𝐴𝑎𝑣

𝐴𝑏𝑟
= 0.4185 [−], for the curve (1) of Figure 3-44 the efficiency factor for transverse 

ultimate load 𝑘𝑡𝑟𝑢 ≈ 0.5 [−], so as the same factor for yield load 𝑘𝑡𝑟𝑦 ≈ 0.5 [−]. 

The ultimate load is computed by equation (3.91) and yield load by equation (3.92) 
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𝑃𝑡𝑟𝑢 = 0.5 ∗ (18 ∗ 2) ∗ 130 = 2340 [𝑁] 

𝑃𝑌,90 = 0.5 ∗ (18 ∗ 2) ∗ 100 = 1800 [𝑁] 
(3.98) 

Oblique load 

The reserve factor for the ultimate load for oblique case: 

 

𝑗 =
1

𝜆 ∗ ((
𝑓 ∗ 75
2308.9

)
1.6

+ (
𝑓 ∗ 750
2340

)
1.6

)

0.625 = 1.33 [−] 

Where λ is fitting factor and λ=1.15, f is safety factor, f = 2 (3.99) 

 

If we want to be safe, we have to be on the conservative side of the problem. This means, that we will use 

yield characteristics to calculate reserve factor, with the usage of ultimate loads, which are limit loads * 

safety factor, where limit load are 150/2 N for axial load and 1500/2 N for transversal load.  

 

𝑗 =
1

𝜆 ∗ ((
𝑓 ∗ 75
1953.6

)
1.6

+ (
𝑓 ∗ 750
1800

)
1.6

)

0.625 = 1.02 

(3.100) 

 

If we change the orientation of the lug the way that axial force on one lug will be 1500/2 N, and transversal 

force will 150/2 N, the reserve factor is then 

 

𝑗 =
1

𝜆 ∗ ((
𝑓 ∗ 75
1953.6

)
1.6

+ (
𝑓 ∗ 750
1800

)
1.6

)

0.625 = 1.11 

(3.101) 

Changing the orientation of the lug, we have increased reserve factor for the yield load, but it will decrease 

reserve factor for ultimate load for 1.33 to 1.31  

Reserve factor j should be bigger than 1, j>1 and we have satisfied the obligatory requirement that the 

reserve factor for yield load should be bigger than 1, j = 1.11> 1. Note that the calculation above were done 

for the orientation of lug where centrifugal force will be applied in the direction of axial load, there were 

used safety factor f = 2, fitting factor λ = 1.15 and external load that this lug has to stand were artificially 

increased for little bit, so we can conclude that final dimensions of the lug  

In case we need that one lug will stay full scope of the loading, i.e. that axial loading that will be applied 

on the one lug will be no longer divided by two, Fa = 1500 N, not Fa = 1500/2 =759 N. Then lug has to be 

modified by further steps: increase the thickness for 1 mm (t = 3 mm), increase distance “a” from 15 mm 

to 16 mm and width “W” from 30 mm to 32 mm (see Figure 3-37). Output parameters are then shown in 

Table 27 
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Geometry Axial Transversal Reserve factors for oblique 

D/t 6 [-] kbru 0.8 [-] ktru 0.57 [-] jult 1.22 [-] 

a/D 0.889 [-] kt 0.785 [-] ktry 0.578 [-] jy 1.03 [-] 

W/D 1.778 [-] C 1.1 [-] Ptru 4001.4 [N]    

   Pbru 5616 [N] Py,90 3121.2 [N]    

   Ptu 4286.1 [N]       

   Py,0 3626.7 [N]       
Table 27 Strength parameters for one lug mode 

Results in the Table 27 are acceptable since reserve factors for yielding stress and ultimate stress are 

bigger than one, which means they satisfies necessary requirements. Thickness of the lug for this result is 

3mm, but bearings of width 3mm of SKF manufacturer can not carry the load of 755 N. The closest 

bearing that can carry the load and being in geometrical limits of the lug that can be mounted to the beam 

of 45x45 profile is SKF 61801. It has next parameters: 

 

 

Figure 3-45 SKF 61801 bearing parameters [14] 

Because of this bearing we need to increase the bore diameter up to 12 mm, which will be also pin 

diameter in further calculation. Thickness should increase minimum to 5 mm (for the construction 

purposes it will be increased to 7 mm). In that case strength parameters of the lug that has parameteers are 

shown in the  

Geometry Axial Transversal Reserve factors for oblique 

D/t 1.71 [-] 𝑘𝑏𝑟𝑢 1.3 [-] 𝑘𝑡𝑟𝑢 1.1 [-] 𝑗𝑢𝑙𝑡 13.31 [-] 

a/D 1.375 [-] 𝑘𝑡 0.75 [-] 𝑘𝑡𝑟𝑦 1.2 [-] 𝑗𝑦 11.55 [-] 

W/D 3.75 [-] C 1.08 [-] 𝑃𝑡𝑟𝑢 23100 [N]    

   𝑃𝑏𝑟𝑢 27300 [N] 𝑃𝑦 20160 [N]    

   𝑃𝑡𝑢 43313 [N]       

   𝑃𝑦 23587 [N]       
Table 28 Lug strength result, geometry modified for bearing SKF 61801 
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3.5.2. Pin design 
Pin shear – off failure [13, pp. 326-329] 

Pin single shear – off failure is given by: 

 𝑃𝑝,𝑠 = 𝜏𝑢𝑙𝑡 ∗ (
𝜋𝐷2

4
) (3.102) 

Where: 𝑃𝑝,𝑠 = Ultimate load for pin shear – off failure; 𝜏𝑢𝑙𝑖𝑡 – ultimate shear stress of the pin material. 

Pin Bending Failure 

If the pin used in the lug is not big enough to resist the bending that appeared from the load, the bend of 

the pin can participate failure in the lug. Because, as the pin bends, the stress distribution action on the 

inner side of the lug tends to peak rather than form an even distribution, as shown on Figure 3-46. 

 

Figure 3-46 Peak Pin Load 

For the pin bending failure check, we will use two different modes of the pin loading and which of these 

methods will be less dangerous being close to the failure will be used as the final version.  

 I mode – one male cylindrical lug of width 43 mm 

 II mode – two inner lug of 3 mm thickness \ 

 

I mode) 

 

Figure 3-47 First mode of the pin loading 
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q 

As simple free body diagram it can be shown as following: 

 

 

 

 

 

 

 

 

 

Using equation (3.102) we can find ultimate load for the pin shear. 

 𝑃𝑝,𝑠 = 100 ∗ (
𝜋122

4
) = 11 309.73 [𝑁] (3.103) 

Where D = 12 mm, 𝜏 = 100 [𝑀𝑃𝑎]. The reason why D = 12 mm is in inner diameter of the bearing that 

was chosen in the paragraph §3.5.1.   

 

 
𝑅1 = 𝑅2 =

𝑞 ∗ (54 − 5.5 ∗ 2) ∗ (
54 − 5.5 ∗ 2

2
+ 5.5)

54
= 755 [𝑁] 

 

(3.104) 

𝑀(𝑥) = 𝑅1 ∗ 𝑥 ,                              𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 0 𝑡𝑜 5.5 𝑚𝑚 

𝑀(𝑥) = 𝑅1 ∗ 𝑥 − 𝑞 ∗
(𝑥 − 5.5)2

2
, 𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 5.5 𝑡𝑜 27 (=

54

2
) , 

 𝑠𝑖𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙, 𝑖𝑡 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑒𝑛𝑜𝑢𝑔ℎ (3.105) 

Shearing force and Bending moment diagrams are then shown on the figures below, with the peak for 

Shearing force 755 N (or -755 N) and the peak for bending moment 12268,75 [N.mm] at x =27 mm. 

 

Figure 3-49 Shearing Force distribution force, loading of Mode I 
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V
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N
]
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54 mm 5.5 mm 5.5 mm 

R1 R2 

1510 N 

Figure 3-48 Free body diagram of the Mode I 
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Figure 3-50 Bending moment distribution, Mode I 

The normal stress is then: 

 𝜎max  =
𝑀max  

𝐼
𝑟

=
12268.75

𝜋 ∗
𝐷3

32

= 72.32 [𝑀𝑃𝑎] (3.106) 

Shear stress 

 𝜏 =
4

3
∗

𝑉max  

𝜋𝐷2

4

=
4

3
∗

755

𝜋 ∗
122

4

= 8.9 [𝑀𝑃𝑎] (3.107) 

HMH hypothesis for equivalent stress 

 𝜎𝑒𝑞 = √𝜎2 + (3 ∗ 𝜏)2 = 𝟕𝟕. 𝟏 [𝑴𝑷𝒂] (3.108) 

 Allowable stress for the material mentioned in the Table 13, for safety factor 𝑓 = 2 [−], is 100 MPa, the 

reserve factor in this case is: 

 𝒋 =
𝟏𝟎𝟎

𝟕𝟕. 𝟏
= 𝟏. 𝟐𝟗 > 1 [−], 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 (3.109) 

 

Maximum deflection is expected to be in the middle of the pin, so we apply there the unit force. Using the 

Mohr’s integral (equation (3.110)) we can find the deflection at the required point 

 𝑦𝑖 = ∫
𝑀(𝑥)

𝐸𝐼
𝑚𝑖   𝑑𝑥 

 

(𝐿)

 (3.110) 

Since we have isotropic material with constant cross-section of Young’s modulus and second moment of 

inertia can be considered as constants, hence may be taken out of integral1.  

 

𝑦𝑖 =
1

𝐸𝐼
∫𝑀(𝑥) ∗ 𝑚𝑖  𝑑𝑥

𝐿

0

=
1

𝐸𝐼
[∫ (𝑅1𝑥 ∗

1

2
𝑥) 𝑑𝑥 + ∫ ((𝑅1𝑥 −

𝑞(𝑥 − 5.5)2

2
) ∗

1

2
𝑥) 𝑑𝑥

27

5.5

5.5

𝑜

] ∗ 2(1) = 

= 2 ∗ [
𝑞(54 − 11)

4𝐸𝐼
∗
5.53

3
+

1

𝐸𝐼
∫ (

𝑞(54 − 11)

4
𝑥2 −

𝑞

4
(𝑥 − 5.5)2𝑥) 𝑑𝑥

27

5.5

] = 

= 2 ∗ 0.00029 +
2

70000 ∗ 1017.876
 
𝑞

4
[43 ∗ (

𝑥3

3
)

5.5

27

− (
𝑥4

4
)

5.5

27

+ 2 ∗ 5.5 (
𝑥3

3
)

5.5

27

− 5.52 (
𝑥2

2
)

5.5

27

] = 

= 𝑦𝐿
2

= (0.000294 + (−0.02564)) ∗ 2 = −𝟎. 𝟎𝟓𝟏 [𝒎𝒎]  

 (3.111) 

                                                      
(1) Times 2 due to symmetricity of the problem 
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II mode) 

            

Figure 3-51 II mode of pin loading 

This mode of the loading transfer can be represented as free body diagram as shown on the figure below. 

 

Figure 3-52 Free body diagram, mode II 

 

𝑅1 = 𝑅2 =
𝑞 ∗ 𝑎 ∗ (2 (

𝑎
2

+ 𝑎1) + (𝑏 + 2 ∗
𝑎
2
))

𝐿
, 𝑖𝑓 𝑏 = 𝐿 − 2(𝑎1 + 𝑎), 𝑡ℎ𝑒𝑛 

𝑅1 = 𝑅2 =
𝑞𝑎 (2 ∗ (

𝑎
2

+ 𝑎1) + (𝐿 − 2𝑎1 − 2𝑎 + 𝑎))

𝐿
=

𝑞 ∗ 𝑎 ∗ 𝐿

𝐿
= 𝑞 ∗ 𝑎 

𝑹𝟏 = 𝑹𝟐 = 𝟐𝟓𝟏. 𝟔𝟔𝟕 ∗ 𝟑 = 𝟕𝟓𝟓 [𝑵] (3.112) 

   

 

𝑀(𝑥) = 𝑅1 ∗ 𝑥,                                                          𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑎1 

𝑀(𝑥) = 𝑅1 ∗ 𝑥 − 𝑞 ∗
(𝑥 − 𝑎1)

2

2
,                           𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 𝑎1𝑡𝑜 𝑎2 

𝑀(𝑥) = 𝑅1 ∗ 𝑥 − 𝑞 ∗ 𝑎 ∗ (𝑥 − (𝑎1 +
𝑎

2
)) , 𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 𝑎2 𝑡𝑜

𝐿

2
 

(3.113) 

Shearing force and Bending moment diagrams are then shown on the diagrams below, with their peaks 

755 N (or -755 N) for Shearing force and 5285 [N.mm] for bending moment. 
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Figure 3-53 Shearing force distributions, Mode II 

 

Figure 3-54 Bending moment, Mode II 

As we can see, the bending moment, in the loading of the mode II, decreased more than two time, compare 

to the mode I. Taking into account that shearing force remain the same in both cases, shearing stress will 

not be changed, hence equivalent stress will decrease, which will make pin more safety. Bending stress is: 

 𝜎max  =
𝑀max  

𝐼
𝑟

=
5285

𝜋 ∗
𝐷3

32

= 31.15 [𝑀𝑃𝑎] (3.114) 

 𝜎𝑒𝑞 = √𝜎2 + (3 ∗ 𝜏)2 = 𝟒𝟏. 𝟎𝟑 [𝑴𝑷𝒂] (3.115) 

 

 𝒋 =
𝟏𝟎𝟎

𝟒𝟏. 𝟎𝟑
= 𝟐. 𝟒𝟑 > 1 [−],𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 (3.116) 

Comparing reserve factors from the mode I [(3.112)] and II [(3.116)], we can make a statement, that from the 

strengthen point of view mode II is more desirable. It is 1.88 time safer. To find how different maximum 

deflections are, we, again, will use Mohr’s integral, which formula was shown in (3.107). 

Since the problem is a little complex, compare to the mode I, we will use an advantage of the super position 

method. Which is: 

 𝑦𝑖 = 𝑦𝑖(𝑓1) + 𝑦𝑖(𝑓2) (3.117) 

Where 𝑓1 and 𝑓2 are cases, when the pin is only loaded by left or right distributed load, 𝑓1 represents left 

one, 𝑓2 represents the right one, from the view that is shown on the Figure 3-52. But dew to symmetricity 

both deflection will be the same, so the final form of the equation (3.117) is 𝑦𝑖 = 2 ∗ 𝑦𝑖(𝑓1) = 2 ∗ 𝑦𝑖(𝑓2) 
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   Figure 3-55 A. Mode II, f1       B. Mode II, f2         

 

𝑅2 =
𝑞𝑎(

𝑎

2
+𝑎1)

𝐿
= 97.9 [𝑁] ,     𝑅1 =

𝑞𝑎(
𝑎

2
+𝑏+𝑎2)

𝐿
= 657 [𝑁]  

Bending moments from loading 𝑓1 

𝑥 ∈ [0; 𝑎1] → 𝑀(𝑥) = 𝑅1𝑥;  

 𝑥 ∈ [𝑎1; 𝑎2] → 𝑀(𝑥) = 𝑅1𝑥 −
𝑞(𝑥 − 𝑎1)

2

2
 

𝑥 ∈ [𝑎2; 𝐿] → 𝑀(𝑥) = 𝑅1𝑥 − 𝑞𝑎 (𝑥 − 𝑎1 −
𝑎

2
) 

𝑜𝑟   �̅� ∈ [0; 0.5𝐿] → 𝑀(�̅�) = 𝑅2�̅� 

Bending moment form Unite force “1” 

𝑥 ∈ [0;
𝐿

2
] → 𝑚𝑖(𝑥) =

1

2
𝑥 

𝑥 ∈ [
𝐿

2
; 𝐿] → 𝑚𝑖(𝑥) =

𝐿

2
−

1

2
𝑥  

𝑜𝑟     �̅�  ∈ [0;
𝐿

2
] → 𝑚𝑖(𝑥) =

1

2
�̅� 

Due to symmetricity follows: 

𝑅1 = 97.9 [𝑁];   𝑅2 = 677 [𝑁] 

Bending moment from the load 𝑓2  

�̅� ∈ [0; 𝑎1] → 𝑀(�̅�) = 𝑅2�̅� 

�̅� ∈ [𝑎1; 𝑎2] → 𝑀(�̅�) = 𝑅2�̅� −
𝑞(�̅� − 𝑎1)

2

2
 

𝑥 ∈ [0; 0.5𝐿] → 𝑀(𝑥) = 𝑅1𝑥 

Bending moments from unite force 

 

�̅�  ∈ [0;
𝐿

2
] → 𝑚𝑖(𝑥) =

1

2
�̅� 

𝑥 ∈ [0;
𝐿

2
] → 𝑚𝑖(𝑥) =

1

2
𝑥 

 Type equation here. (3.118) 

From obtained equations we can solve the Mohr’s integral for the load 𝑓1 and then multiply it by 2, 

because of symmetricity. 

 

 

 

 

�̅� 𝑥 
�̅� 𝑥 
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𝑦𝐿
2

(𝑓1) = ∫
1

𝐸𝐼
∗ 𝑀(𝑥) ∗ 𝑚𝑖(𝑥)𝑑𝑥 →

 

(𝐿)

 

1

𝐸𝐼
∗

[
 
 
 
 

∫ 𝑅1𝑥 ∗
1

2
𝑥 𝑑𝑥

𝑎1

0

+ ∫ (𝑅1𝑥 − 𝑞 ∗
(𝑥 − 𝑎1)

2

2
) ∗

1

2
𝑥  𝑑𝑥

𝑎2

𝑎1

+ ∫(𝑅1𝑥 − 𝑞𝑎 (𝑥 − 𝑎1 −
𝑎

2
)) ∗

1

2
𝑥  𝑑𝑥

𝐿
2

𝑎2

+ ∫𝑅2 ∗ �̅�

𝐿
2

0

∗
1

2
∗ �̅�  𝑑�̅�

]
 
 
 
 

 

For the simplification each part of the integral will be solved individually and then summed 

∫ 𝑅1𝑥 ∗
1

2
𝑥 𝑑𝑥

𝑎1

0

=
𝑅1

2
∗ (

𝑥3

3
)

01

𝑎

=
𝑅1

2
∗ (

𝑎1
3

3
) =

657

2
∗

5.53

3
= 18221.657 [𝑁.𝑚𝑚3]                     (1) 

∫ (𝑅1𝑥 − 𝑞 ∗
(𝑥 − 𝑎1)

2

2
) ∗

1

2
𝑥  𝑑𝑥

𝑎2

𝑎1

=
𝑅1

2
(
𝑎2

3

3
−

𝑎1
3

3
) −

𝑞

4
∗ [(

𝑎2
4

4
−

𝑎1
4

4
) − 2𝑎1 (

𝑎2
3

3
−

𝑎1
3

3
) + 𝑎1

2 (
𝑎2

2

2
−

𝑎1
2

2
)] 

=
657

2
(
8.53

3
−

5.53

3
) −

251.667

4
[(

8.54

2
−

5.54

2
) − 2 ∗ 5.5 (

8.53

3
−

5.53

3
) + 5.52 (

8.52

2
−

5.52

2
)]

= 44649.861 [𝑁.𝑚𝑚3]                                                                                           (2) 

∫(𝑅1𝑥 − 𝑞𝑎 (𝑥 − 𝑎1 −
𝑎

2
)) ∗

1

2
𝑥  𝑑𝑥

𝐿
2

𝑎2

= 556684.63 [𝑁.𝑚𝑚3]                                                      (3) 

∫𝑅2 ∗ �̅�

𝐿
2

0

∗
1

2
∗ �̅�  𝑑�̅� =

97.9

2
∗ (

273

3
) = 321063.75 [𝑁.𝑚𝑚3 ]                                                        (4) 

 

𝒚𝑳
𝟐

(𝒇𝟏) =
1

𝐸𝐼
∗ [18221.657 + 44649.861 + 556684.63 + 321063.75]

=
1

70000 ∗ 1017.876
∗ 940619.9 = 𝟎. 𝟎𝟏𝟑𝟐 [𝒎𝒎]  

                                                                                                                                                             (5) 

 (3.119) 

The positive meaning of the deflection is in the direction of the applied force. 

Since we mentioned that due to symmetricity of the case, the complete deflection will be twice more than 

it has been calculated in (3.119). 

 𝒚𝑳
𝟐

= 𝟎. 𝟎𝟏𝟑𝟐 + 𝟎. 𝟎𝟏𝟑𝟐 = 𝟎. 𝟎𝟐𝟔𝟒 𝒐𝒓 − 𝟎. 𝟎𝟐𝟔𝟒[𝒎𝒎] (3.120) 
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Comparing the deflection results of the mode I and mode II, we can see that: −0.051 > 0.0264, in almost 

two times (1.93). 

From the obtained results of the stress safety and deflection, I conclude, that the more reliable and loading 

mode is the mode II. This mode will be used for further calculations.   

In reality, the loading of the pin during arms rotation will not be symmetric and trivial as it was represented 

Figure 3-52. There was not mentioned the presence of the extra forces that will appear with moment from 

the drag force. The drag force can be determined through classic formula 𝐹𝐷 =
1

2
𝜌𝑣2 ∗ 𝑆 ∗ 𝑐𝐷, where 𝑐𝐷 is 

the drag coefficient of the cylinder. The velocity 𝑣 is circumferential that is the function of the rotational 

speed and radius of rotation. For the 10g loading, for our case of machine, corresponds angular velocity of 

9.9045 rad/s and arm can is 1m plus distance to the drag force concentration point. The distance to the drag 

force concentration point from the lug’s eye center as shown on the Figure 3-56: 

 

Figure 3-56 Point of force applied on capsule, Fd is a drag force, Fc is a centrifugal force 

 

𝑟 =
𝐿𝑐

2
+ 𝑠 =

650

2
+ 60 = 385 [𝑚𝑚] 

𝑎 = 𝑟 ∗ cos(90 − 𝛼) = 385 ∗ cos(90 − 84) = 382.89 ≈ 383 [𝑚𝑚] 

𝑏 = 𝑟 ∗ sin(90 − 𝛼) = 385 ∗ sin(90 − 84) = 40.24 [𝑚𝑚] 

(3.121) 

Therefore, the drag force is: 

 𝐹𝐷 =
1

2
∗ 1.225 ∗ (9.9045 ∗ (1 +

0.65

2
+ 0.06)

2

) ∗ 0.65 ∗ 0.35 ∗ 1 = 20.2 [𝑁] (3.122) 

 

The drag force will have effect of moment to the pin. The moment has value of: 

 𝑀 = 𝐹𝐷 ∗ 𝑟 = 20.2 ∗ 385 = 7777 [𝑁.𝑚𝑚] (3.123) 

The moment M will be transferred to the pin by inner lugs as forces (distributed forces), which values are: 
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𝑀 = 𝐹𝑀1 ∗ 𝑟𝑝1
+ 𝐹𝑀2 ∗ 𝑟𝑝2

 

𝑖𝑓 𝑟𝑝1
= 𝑟𝑝2

= 𝑟𝑝 =
𝑎

2
+

𝑏

2
+

𝑎

2
= 20 [𝑚𝑚] 𝑎𝑛𝑑 𝐹𝑀1 = 𝐹𝑀2 

𝑀 = 2 ∗ 𝐹𝑀 ∗ 𝑟𝑝 → 𝐹𝑀 =
𝑀

2𝑟𝑝
 

𝐹𝑀 =
7777

2 ∗ 20
= 194.425 [𝑁] 

 (3.124) 

The next step is just to add appeared forces on the pin from drag according to the logic shown on the Figure 

3-57  

 

𝐹1 =
1510

2
+ 𝐹𝑀 = 755 + 194.425 = 949.425 [𝑁] ≈ 950 [𝑁] 

𝐹2 =
1510

2
− 𝐹𝑀 = 755 − 194.425 = 560.575 [𝑁] ≈ 561 [𝑁] 

(3.125) 

So, the final form of the pin loading looks like as how on the figure below, if we assume distributed force 

as the point force (if we imagine 3mm distance as the point). 

 

Figure 3-57 Pin loading, according drag effect (1B modification)  

 

𝐹1 ∗ 𝑎 + 𝐹2 ∗ (𝑎 + 𝑏) − 𝑅2 ∗ 𝑙 = 0 

𝑅2 =
𝐹1𝑎 + 𝐹2(𝑎 + 𝑏)

𝑙
= 611.426 [𝑁] 

𝑅1 = 𝐹1 + 𝐹2 − 𝑅2 = 899.6 [𝑁] 

 (3.126) 

 

𝜎max  =
𝑀max  

𝐽
𝑟

=
𝑅1𝑎

𝜋𝐷3

32

= 37.12 [𝑀𝑃𝑎] 

𝜏 =
4

3
∗

𝑉max  

𝜋𝐷2

4

= 11.2 [𝑀𝑃𝑎] 

𝜎𝑒𝑞 = √𝜎2 + (3𝜏)2 = 50 [𝑀𝑃𝑎] 

𝑗 =
𝜎𝑎𝑙𝑙

𝜎𝑒𝑞
=

100

50
= 2 [−] 

(3.127) 
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3.6. Centrifuges head 
 

As is it was mentioned on the page 21 there will be two major variant of the centrifuge’s head. One-Beam 

variant – when only one beam on each arm carries a tested sample, its designation is 1B. Two-Beam variant 

– when two beams on each arm carries a load from the tested sample accelerated up to 10g. Has a 2B 

designation. This variant needs in order to decrease the risk of failure and decrease deflection of the beams 

under the load.  

The centrifuges head should be designed the way that it will be easier in future to disassemble one variant 

and assemble another one. In order to complete this task, the cheapest and easiest way is to make a part, 

where beams are assembled, the same for both variants. After several iteration and design experiment I 

came to the next solution: 

 Centrifuge Head will consist from: 

1) Hub – the part that is assembled to the rotating shaft 

2) Head’s Plate – the part, which is connected to the Hub and will carry beams. 

3) Fasteners – connection elements.  

All of the mentioned should be the same for 1B or 2B variant, and made of steel, in order to make it more 

rigid, stiffer.   

Final solution are shown on the following figures. 

 

Figure 3-58 Centrifuge Head, 1B variant 

Hub 

Centrifuge’s plate 
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asten
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g
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Figure 3-59 Centrifuge Head, 2B variant 

As we see from Figure 3-58 and Figure 3-59, there is used one Head’s Plate (pink) and one Hub (grey). 

Using Finite Element Method we will check their dimensions (thicknesses), in the paragraph §4.9, p. 97. 

On the Figure 3-60 shown Centrifuge’s Head Plate (CHP) dimensions . Holes that are situated on the 

upper part (72.5 mm far from the center of the 190 mm side) and lower part belongs for the 2B variant, 

when holes on the middle (center of the 190 mm side) belongs for 1B variant. Holes that are allocated as a 

radial pattern feature of 82 mm diameter are for the fastening CHP and Hub.  

Hub transfers torque from shaft through the feather key. Contact pressure of the hub is similar to the 

contact pressure of the shaft of the relatable section, that was calculated in equation (3.53) p. 30. Contact 

pressure  p = 12.2 MPa, and reserve factor is j >10. 

 

Figure 3-60 Centrifuge's Head Plate dimensions. 
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3.7. Frame 
 

The frame of the centrifuge is primary consist of 45x45 Alutec profile, its material parameters are 

mentioned on the Table 13. Connection elements were also chosen from the same supplier, which is 

Alutec KK s.r.o. Rigidity of the Frame is checked in the paragraph §4.7 and §4.8. Generally the frame 

was designed the way that it will balance centrifuge in any arms position and will have as minimum as it 

possible frame members deflection.  

 

Figure 3-61 Frame of the Centrifuge machine, 1B or 2B var., without reinforcement 
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4. FEM Analysis 
 

To check if separate parts, assemblies and complete object respond to the strength and rigidity requirements 

we will use Finite Element Method with the help of pre-processor Siemens FEMAP 11.3 and Beta CAE 

ANSA 16.0. Processor (solver) was used NX Nastran, integrated to the FEMAP.   

 

4.1. Requirements 
 

Maximum stress appeared on the part should not accede allowable stress of the part.  

 𝜎max  ≤ 𝜎𝑎𝑙𝑙 (4.1) 

Where 𝜎𝑎𝑙𝑙 is allowable stress and can be calculated by 

 𝜎𝑎𝑙𝑙 =
𝜎𝑦

𝑓
,   (4.2) 

Where 𝑓 is a safety factor, 𝑓 = 2[−] and 𝜎𝑦 is the Yield stress of the material.  

For every case reserve factor j should be bigger than 1. 

 𝑗 =
𝜎𝑎𝑙𝑙

𝜎max  

> 1 (4.3) 

For the static stability cases (for the columns, frame members loaded for compression) 

 𝐹 ≤ 𝐹𝑐𝑟𝑖𝑡 (4.4) 

Where 𝐹 is the compression force applied on the member and 𝐹𝑐𝑟𝑖𝑡 is the critical force. 

However it is better to design frame the way that it will fit deflection requirements that are written in the 

acceptable standard. For our case I use ISO 4356:1977. This standard contains large scope of requirements, 

however to simplify the work I choose the smallest from them all which is  

 ∆𝑖=
𝐿

500
 (4.5) 

Where ∆𝑖 is the suggested limited value for deflection of specific 𝑖 – member of length 𝐿, both in 

millimeters.  
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4.2. Lug 
How it was mentioned before lug is made of same material as 45 x 45 profile, which is AlMgSi0.5F25, and 

its mechanical parameters were mentioned in Table 13. 

Loading for the lug was mentioned in paragraph §3.5.1. Which is 755 N in the direction of a resultant force, 

which is for 10g acceleration of machine is  ≈ 84° from the direction of a transverse load. Analysis FEM 

model is shown on Figure 4-1. Thickness of the shell is 7mm. Constraints are defined by constraining 

translation motion of the lug in x,y and z direction in the place of lug fasteners.   

There was used static linear analysis using NASTRAN solver (NX Nastran), sol 101.  

Results shown in Figure 4-2, shows equivalent stress appeared on a model using Von Misses hypothesis, 

and appeared total deformation in scale that is 1000 times bigger than actual deformation (white color 

behind the model shows unreformed state). As we can see, maximum stress there is 7.5 MPa, when 

allowable stress for this material is 100 MPa. Reserve factor here is 𝑗 =
𝜎𝑎𝑙𝑙

7.5
=

100

7.5
= 13.3 [−]. Maximum 

deformation is 0.00285 mm, this value can be neglected. This results shows us that we are too safe, which 

means we can decrease the material use on the model, but this design approach is done due to bearing 

requirements. Smaller bearing will not be safe to use for this loading. All results and model information is 

represented as the table after the result figure. This way of representing result will be used for this and for 

further models.  

 

Figure 4-1 Lug FEM analysis model 

 

Figure 4-2 Results for Lug, fringe = Von Misses stress, deformation shows resultant translation deformation (1000x bigger than 

actual deformation) 
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Max. stress [MPa] 8 

Max. deformation [mm] 0.00285 

Stress reserve factor, j [-] 12.5 

Table 29 Lug results 

4.3. Pin 
One beam modification (1B) 

It was already performed hand calculation in paragraph §3.5.2 with results of stress shown in equation 

(3.127). We will check here the correctness of job done.  

The total length of the pin used for 1B modification is 70 mm (see), but as it was shown on the Figure 3-52, 

the functional length is 54 mm.  

 

Figure 4-3 Pin drawing for 1B modification. 

 

Figure 4-4 Pin (1B) results 

Results in Figure 4-4 shows deformation of the pin in scale of 10% of total length of the model and bending 

stress as a fringe. As we can see maximum bending stress there is 37.12 MPa. In hand calculation bending 

stress was 37.12 MPa (see eq. (3.126)), FEM model confirms that provided hand calculation were done 

correctly. Max. Shear stress is same as in hand calculation, which is 11.2 MPa, than equivalent stress is 

again 50 MPa (see eq. (3.127)). 
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Deformation is 0.0285 mm, which acceptable. Design fits all requirements. 

Max. bend. stress [MPa] 37.12 

Max. shear stress [MPa] 11.2 

Max. deformation [mm] 0.028 

Stress reserve factor, j [-] 2 

Table 30 Pin 1B results 

For the loading shown in Figure 3-52, results are shown in Figure 4-5 

 

Figure 4-5 Pin (1B) no-drag loading 

FEA results shows, that maximum bending stress is 29 [MPa], when result is eq. (3.114) gives maximum 

bending stress as 31.15 [MPa]. Deformation from FEA is 0.0247 mm, when hands calculation in eq. (3.120) 

gives us 0.0264 mm, difference in 1.7*10-3 I would count as a neglected one.  

Two beam modification  

 

Figure 4-6 CAD model of 2B modification, view to the lugs 
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Figure 4-7 Pin for 2B modification, drawing 

Determination of a precise loading applied on male lugs from implementation of 10g force on 15kg capsule 

that is fastened to the blue plate from Figure 4-6 (named as a Lug out plate) is relatively complex task, but 

thanks to FEM we can solve this problem by combining pin model and lug out plate model. Resultant force 

from centrifugal force and mass force form the capsule is equal to 1510 N (see eq. (3.85)) and this force is 

normal to the lug out plate. During rotation on the capsule will appear drag force that will act against the 

rotation. Its value was calculated in the equation (3.122). This force will be transferred to the place of 

connection that will be assumed to be in the center of the plate. After force translation will appear a moment 

form the drag force on plate at the place of connection. This force is: 

 𝑀𝐹𝐷
= 𝐹𝐷 ∗

𝐿𝑐

2
= 20.2 ∗ 325 = 6565 ≈ 6600 [𝑁.𝑚𝑚] (4.6) 

 

 

Figure 4-8 Force applied on the capsule (red) and its value translated to the plate (green) 

FEM analysis model then looks like: 
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Figure 4-9 FEM model, Lug out plate 

Results for pin only: 

 

Figure 4-10 Pin 2B variant results, color = beam stress, deformation = 1000x total deformation 

On the Figure 4-10, maximum absolute value of the stress appeared there is 0.5 MPa. From free body 

diagram we can see what reaction forces are on supports (bearing SKF 61801) see Figure 4-11. Maximum 

reaction force is 1093.8 N ≈ 1095 N. For SKF bearing with maximum loading 1.7 kN this value is sufficient. 

Maximum shear stress can be found by eq.(3.110), and its value is 13MPa. Using HMH hypothesis: 

 𝜎𝑒𝑞 = √(−0.5)2 + (3 ∗ 13)2 = 40 [𝑀𝑃𝑎] (4.7) 
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Figure 4-11 Free body diagram of pin (2B var.) 

Max. bend. stress [MPa] 0.5 

Max. shear stress [MPa] 13 

Max. deformation [mm] 0.00395 

Stress reserve factor, j [-] 2.5 

Table 31 Pin 2B result table 

4.4. Lug out plate 

4.4.1. Two-beam plate (2B) 
Since there was already preformed calculation of lug out plate of 2B variant on previous case, here will be 

shown only its results.  

 

Figure 4-12a  Lug out plate (2B var.) FEM results, colourbar represents Von Misses stress, deformation = Total deformation 

(100x bigger than actual deformation) 

0.217mm 

0.0211 mm 
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Figure 51b Lug out plate (2B var.) FEM results, trimetric view. 

It is expected, that maximum stress appeared at the place of force implementation. Value of the stress is 

72.5 MPa, which is less than allowable stress of the material used (which is AlMgSi0.5F25) 100 MPa. 

Another important point where we have to check stress is the place of the connection of lugs to the plate. 

Lugs are connected by the welding. Strength of the aluminum welding connection, according to the welding 

company ESAB, for the closest related material to ours AL 6061-T6 is 𝜎𝑢 =185 MPa [15]. With the safety 

factor 2, allowable stress for the weld is then: 

 𝜎𝑎𝑙𝑙𝑤𝑒𝑙𝑑
=

185

2
= 92.5 [𝑀𝑃𝑎]  ≈ 90 [𝑀𝑃𝑎] (4.8) 

Limiting FEM stress result only for the weld parts, results shows us that the maximum stress at the place 

where should be welding connection, we can see that maximum stress there is ≈ 40 [𝑀𝑃𝑎] and it is more 

than 2 time less than allowable stress for the weld. see Figure 4-13.  

 

 

Figure 4-13 Lug out plate (2B var.), weld area. 

Deformation of the plate in the place of applied force is 0.22 mm, which I count as acceptable one, since at 

this place this small deformation will not affect stability a centrifuge laboratory testing results. Deformation 

of the inner lugs of 2B variant Lug-out plate is 0.0211 mm, which is also very small so we can count the 

lug as a relatively rigid.  
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Max. stress [MPa] 73 

Max. stress (weld) [MPa] 40 

Max. deformation (plate) [mm] 0.22 

Max. deformation (lug) [mm] 0.02 

Stress reserve factor, j [-] 1.37 

Stress reserve factor, j (weld)[-] 2.25 

Table 32 Lug-out part result, 2B 

4.4.2. One – beam plate 
For the same loadings that are shown on the Figure 4-9 and same material there are next results: 

 

Figure 4-14 Lug-out plate, 1B variant, Deformation results (100x actual deformation, white is undeformed) 

 

Figure 4-15 Lug-out plate, 1B variant, Von Misses stress results 

As we can see, the deformation of the plate itself for 1B variant has significantly decreased compare to the 

2B variant, from 0.217 mm to 0.0482 mm. This happened because the length of the plate has decreased 

0.0203 mm 

0.0486 mm 
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when all thicknesses remain the same, by decreasing the length we have increased the slenderness ratio, 

that will follow into the higher deformation to force ratio.  

Max. stress [MPa] 49 

Max. stress (weld) [MPa] 20 

Max. deformation (plate) [mm] 0.05 

Max. deformation (lug) [mm] 0.02 

Stress reserve factor, j [-] 2 

Stress reserve factor, j (weld)[-] 4.5 

Table 33 Lug-out part result, 1B 

4.5. Motor base plate 
The main loading that will carry “Motor base plate” (MBP) is the weight of the motor. Till this step I was 

assuming that will use steepen electric motor ES-MH 342200 with the weight 12.8 kg. In order to be on a 

safety side, let us increase the weight of the motor to 20 kg, so the force will be: 

 𝐹𝑚𝑜𝑡𝑜𝑟 = 20 ∗ 9.81 = 196.2 ≈ 200[𝑁] (4.9) 

Motor is fastened to the plate by 4 M8 bolts, each is located on the same distance from the centre of gravity 

of the motor, so we can divide 𝐹𝑚𝑜𝑡𝑜𝑟 to 4 equal parts (50 N) and apply each to the place of the connection.  

Motor base is made of 6mm steel plate (ČSN 411523 (old 11 523) see ) and connected to the frame members 

at 4 points. These points will be assumed as constraints of the MBP. Another constraints that are not so 

obvious at the first sight, it is the touch between inner borders of the frame members (45x45 profile) and 

MBP. This connection will limit the motion of the plate in the Y direction (see Figure 4-16) at the point 

where the profile edge is. The FEM model is then looks like as it shown on the Figure 4-17. 

 

Figure 4-16 CAD model of the motor connected to the MBP and frame 



78 

 

 

Figure 4-17 FEM model of the MBP 

ČSN 411523 or  EN 10025-90 (Fe510) 

𝜎𝑌 [𝑀𝑃𝑎] 275 

𝜎𝑈 [𝑀𝑃𝑎] 500 

𝐸 [𝑀𝑃𝑎] 210000 

𝜇 [−] 0.3 

𝜌 [𝑘𝑔.𝑚−3] 7850 

Table 34 Material parameters for steel [16] 

Results are then for stress tensor: 

 

Figure 4-18 MBP Von Misses Stress result 

Maximum appeared stress is at the place of bolt connections, as expected.  The value of maximum stress is 

very small 6 MPa. Allowable stress for used steel is 130 MPa (see eq.(4.10)), the reserve factor is then 

j=130/6 = 21.6 [-]. Which is unnecessary big, however, strength isn’t the most important parameter for this 

part. Rigidity has here decisive character, because it is required for a motor to be on the same position in 

order to not deflect the axis of rotation or torque transfer to the from driving pull to driven. Deformation 

result is shown on Figure 4-19. 
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 𝜎𝑎𝑙𝑙𝑠𝑡𝑒𝑒𝑙
=

𝜎𝑌

𝑓
=

275

2
= 137.5 ≈ 130 [𝑀𝑃𝑎] (4.10) 

 

Figure 4-19 Deformation of MBP, 2000x bigger than actual deformation 

As we see, maximum deformation is in the center of a Motor base plate, its value is 0.013 mm. This 

deformation can be neglected.  

If in future will be decided to increase the motor torque by changing motor, I assume that this kind of 

motor will have bigger weight than the one we use. For example if motor will have a weight of 40 kg ≈ 

400 N → 4 * 100 N, then MBP’s stress and deformation will be as it shown in the Figure 4-20. 

 

Figure 4-20 MPB stress and deformation results (400 N total load) 

Max. stress (200N load) [MPa] 6 

Max. stress (400N load) [MPa] 12 

Max. deformation (200N) [mm] 0.013 

Max. deformation (400N) [mm] 0.026 

Stress reserve factor, j (200N) [-] 21.6 

Stress reserve factor, j (400N)[-] 10.8 

Table 35 MBP result table, plate thickness 6mm 
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If we decrease plate thickness from 6mm to 5mm, the results will be next: 

Max. stress (200N load) [MPa] 8.5 

Max. stress (400N load) [MPa] 17 

Max. deformation (200N) [mm] 0.022 

Max. deformation (400N) [mm] 0.045 

Stress reserve factor, j (200N) [-] 15.2 

Stress reserve factor, j (400N)[-] 7.6 

Table 36 MBP result table, plate thickness 5mm 

Results from Table 36 shows that actually we can use 5mm plate instead of 6 mm plate, because I count 

0.05 mm deformation as an acceptable one.  

4.6. Bearing house 
In the paragraph §3.3.1 we were designing shaft, for this we calculated reactions in supports A and B (see 

Figure 3-15. Support B is the bearing SKF 16009 and this bearing should to be mounted to the specific 

place named bearing housing, and I have designed it in the way as it shown on the Figure 4-21. Part where 

is a bearing placed is connected to the steel plate of 5 mm thickness by four M12 bolts. Plate is assembled 

to the frame members on the corners, this connection will be assumed as a constraint. Both parts are made 

of steel which parameters were mentioned in the Table 34. The loading will be the reaction force in the 

support, that will appear of asymmetric loading of centrifuge arms by 60 kg on one side and zero on the 

other, this loading will call a reaction in a support with the value of ≈ 1880 N, see paragraph §3.3.1 eq. 

(3.48). This force will be directed in the FEM model to the z-axis direction.  

 

 

Figure 4-21 CAD model of a Bearing house 
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Bearing house plate (BHP) 

 

Figure 4-22 Bearing housing FEM model 

 

Figure 4-23 Von Misses stress on Bearing house plate (using nonlinear static solver→ no stability loss) 

Maximum stress there is 18 MPa, which is significantly small for a steel material. However, as I 

mentioned before in calculation Motor base plate, decisive parameter here is a deformation. Maximum 

deformation is appeared to be 0.056 mm, see Figure 4-24. For this plate it sufficient, because maximum 

allowable deformation should be less than 0.1 mm.  

 

Max. stress [MPa] 18 MPa 

Max. deformation [mm] 0.056 

Stress reserve factor, j [-] 7 

Table 37 Bearing house plate results 
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Figure 4-24 Deformation of Bearing house plate (800x of actual deformation) 

Bearing house 

 

Figure 4-25 Bearing house results made of steel (colourbar - Von Misses stress, deformation - total deformation 10 000x bigger 

than actual deformation) 

Figure 4-25 shows us that stress and deformation is so small, that we can state that this part is too rigid and 

strengthen unnecessarily. It means it has much bigger weight than it could be. One of the way to decrease 

weight is to switch material from steel to aluminum, from ČSN 411523 to AlMgSi0.5F25, and then by 

decreasing density with remaining volume (geometry) we will decrease weight for 65% from initial weight. 

If this part made of steel had a weight 1.1 kg then the same detail made of aluminum alloy will have weight 

0.385 grams. FEM solution (Figure 4-26) shows that the maximum stress value hasn’t change at all (because 

we didn’t change geometry of a part). Deformation has increased, from 0.0007 mm to 0.002 mm, which is 

still very small distance. Finally, we can say that it is more effective to use aluminum alloy made part than 

steel made, because deformation that appears on Al made part is acceptable.  Results for both cases are 

represented in the Table 38. Results meets requirements, so a designed part can be safely used.  

Max. stress  [MPa] 3 

Max. deformation (steel) [mm] 0.0007 

Max. deformation (Al) [mm] 0.002 

Stress reserve factor, j (steel) [-] 43 

Stress reserve factor, j (400N)[-] 33 

Table 38 Bearing house results 
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Figure 4-26 FEM results of a Bearing house made of AlMgSi0.5F25 (clourbar - stress, deformation is 5000x bigger than actual 

one) 

For the load of 4 000 N there are results shown in the Table 39, gives us an understanding that if we increase 

the load 2 times still we are on the safe side.  

Max. stress  [MPa] 6 

Max. deformation (Al) [mm] 0.0045 

Stress reserve factor, j (400N)[-] 16 

Table 39 Bearing house results made of aluminum alloy, with the loading of 4000 N 

4.7. Frame, 2B variant 
In order to provide precise FEM analysis for a frame, I decided to create a full centrifuge model and to 

apply all loads that I know (neglecting the own weight) on it. I divided these loads for 3 types:  

1) Load from tested capsule – Centrifuge force + Capsule mass (see Figure 4-8, Figure 4-9) 

2) Load from the motor (see paragraph §4.5)   

3) Mass load transferred by the shaft – mass of the centrifuge arms (with capsules on both sides), 

lugs, plates, fasteners. As it was calculated before, maximum weight of a centrifuge head is 60 

kg, in order to be on a conservative side of a task, we will take that the maximum weight will be 

100 kg, pointed downward on the shaft.  

  Calculation will be provided for several cases: 

Case I – Symmetric loading, when both arms are loaded equally.  

 Subcase 1 – 0 degree (reference position of centrifuge arms) 

 Subcase 2 – 45 degree 

 Subcase 3 – 90 degree 

Case II – Asymmetric loading, when only one arm is loaded.  

  Subcase 1 – 0 degree 

 Subcase 2 – 45 degree 

 Subcase 3 – 90 degree 
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Results for all cases and frame variants are shown in the Table 40 in the paragraph §4.7.1 on the page 94.  

Case I 

Subcase 1 

As a reference centrifuge arm position, “0 deg”, will be taken arms position that are shown on the Figure 

4-27. Loading from centrifuge force, testing capsule’s mass, moment from a drag force are located on 

both arms, specifically in Lug-out plates. Model is constrained by fixing 6 frame legs in 6 degree of 

freedom, also in for the FEM calculation I had to constraint a shaft in rotation about its own axis, 

otherwise model won’t be calculable. FEM model is shown on the  

 

 

Figure 4-27 0 deg. centrifuge's arm position, 2B var. 

 

Figure 4-28 CaseI.1, 2B var. 0deg. FEM model 

Full model results for the deformation only is shown on the next figure. 
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Figure 4-29 CaseI.1, 2B var. Deformation results (50x bigger than actual deformation, white is undeformed state) 

Maximum deflection of 2.4 mm is located on the tip of the centrifuge arm, which is expected place. For the 

frame only, the maximum deflection is 0.0265 mm; its location is in the place of shaft connection to the 

frame (thrust bearing connected to the frame), see Figure 4-30. According to the requirement (4.5), 

deformation of a frame member should not exceed the value of its length divided by 500. ∆𝑖=
200*

500
=

0.4 [𝑚𝑚] and 0.0265 < 0.4 mm, i.e. results according to this requirement is acceptable.  

 

Figure 4-30 CaseI.1, 2B var. Frame deformation result (1000x times bigger than actual deformation) 

Subcase 2 

For the arms position of 45 degree from reference position results are: arms deflection 2.359 mm and 

maximum frame deflection is 0.0265 mm, at the same place as it was for previous subcase for both, see 

Figure 4-31. Compare to the previous subcase, deflection of the beams has increased only for 0.003 mm, 

so we can say that there was relatively no change happened, for the frame, literally there is no difference 

between deflections. Because both sides have same loadings located at the equal distances from the axis of 

a rotation, on the place of axis of a rotation appears two equal moments with different meaning (different 

signs), which cancels each other. In the end there is only one force left, which is 1000N on the shaft. This 

                                                      
* Values for the length of frame members are taken from the CAD file, also optionally can be taken from drawings. 
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force makes deformation of 0.0265 mm on those frame members where shaft is mounted by thrust bearing 

housing. All deformations are acceptable. 

 

 

Figure 4-31 CaseI.2, 2B var. Deformation results  

Subcase 3 

For the arms position of 45 degree from reference position results are: arms deflection 2.288 mm and 

maximum frame deflection is 0.0265 mm, at the same place as it was for previous subcase for both, see 

Figure 4-32 and Figure 4-33.  

With the frame happens no changes, compare to the Case I.1 and Case I.2.  

All deflections are acceptable.  

Generally we can say that for the symmetric loading of the centrifuge there are no major changes between 

different position of centrifuge arms during rotation. All frame members have small deflections and fits 

requirements. Regarding stresses that appears on the frame members by carrying loads, they are so small 

that there is no point to mention them and searching for their reserve factors. For instance, the maximum 

stress that has a frame member from all subcases of the Case I is equal to 0.07 MPa. It is located at the 

same place where is the maximum deflection of the frame or - 0.6 MPa at the constraints.  
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Figure 4-32 CaseI.3, 2B var. Deformation results (50x bigger than actual size, black is undeformed) 

 

Figure 4-33 Case I.3, 2B var. Frame deformation result (1000x bigger than actual deformation) 

 

Case II 

Subcase 1 

Reference centrifuge’s arm positions was shown on the Figure 4-27. Applying load only for the one end, 

we can solve extreme case, when only one arm is under the load. In real practice, of course it is always 

better to put some counterweight on the other side in order to decrease a moment on the center. In order to 

be on the safe side of the question we are going to solve this problem only for the one arm loading. FEM 

model for analyzing is shown on the Figure 4-34.  

Results from Figure 4-35 shows that deformation of the arm significantly increased, from 2.3 mm to 9.5 

mm, however deflection for 9.5 mm of the beam is still acceptable, since this deflection will not affect 

results of the test.  

Frame deformation is shown on the Figure 4-36. The place of the maximum deformation has changed 

from frame members that supports a shaft to the members that are connected to the Bearing house plate. 

The maximum deformation is 0.551 mm. According to requirements (4.5), allowable deflection is ∆1=
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735.8

500
= 1.47 [𝑚𝑚], for another frame member ( above it is a red font number is located on the Figure 4-36) 

allowable deflection is ∆2=
352.5

500
= 0.7 [𝑚𝑚] Maximum deformation 0.551 mm is less than limit value of 

1.47 mm and 0.7 mm. Even though obtained results from the calculation fits requirements I decided 

reinforce the frame by adding one diagonal frame member to the place where this member will not 

worsen the work of the centrifuge machine. How this reinforcement looks, you can see on the Figure 

4-37.     

 

Figure 4-34 Case II.1, 2B var. FEM analyzing model 

 

Figure 4-35 Case II.1, 2B var. Deformation results (10x of actual scale, black is undeformed state) 

 

Figure 4-36 Case II.1, 2B var. Frame deformation result (100x actual deformation) 



89 

 

 

Figure 4-37 CAD model with one reinforced frame member, 2B-R frame variant 

Deformation result of the reinforced frame model of the two-beam variant of the centrifuge (2B-R) is shown 

on the Figure 4-38. Maximum deflection now is 0.25 mm, which is twice smaller compare to the frame 

without reinforcement.  

 

Figure 4-38 Case II.1 2B-R var. Frame deformation result (100x actual deformation, white is undeformed) 

If we reinforce other “windows” except the one, where a belt goes through, then frame looks like as it is 

on the Figure 4-39.  

 

Figure 4-39 All window reinforced (AWR) model of a frame, 2B-AWR frame variant 
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Figure 4-40 Case II.1 2B - AWR version, deformation results 

As we can see from the Figure 4-40, the maximum deflection hasn’t changed that much (from 0.25 mm to 

0.236 mm) and the its place hasn’t changed at all, however, this type of reinforcement can help to decrease 

the deformation from the load Case II.2 and Case II.3. 

Subcase 2 

For the arms position at 45 degrees from reference frame and frame model without any reinforcement there 

are next results: maximum deformation of the arm beams is 9.1 mm (Figure 4-41), which is slightly smaller 

than for the Case I.1 of the same frame variant; maximum frame member deflection is 0.43 mm. Allowable 

deflection is ∆2=
352.5

500
= 0.7 [𝑚𝑚]. 0.43 < 0.7mm. It is seen that this result fits the requirement given by ISO 

4356:1977.  

 

Figure 4-41 Case II.2 2B var. Deformation result (10x actual deformation) 
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Figure 4-42 Case II.2 2B var. Frame deformation (100x of actual deformation) 

For 2B-R variant of the frame, maximum deflection is 0.232 mm (Figure 4-43). Compare to the result from 

the 2B variant this result is 46% smaller, which state that frame is more rigid. 

 

Figure 4-43 Case II.2 2B-R var. Frame deformation (200x actual deformation) 

For 2B-AWR variant of the frame, maximum deflection is 0.198 mm (Figure 4-44). Compare to the result 

from the 2B variant and 2B-R variant this result is 54% and 14% less, respectively for 2B and 2B-R.  

 

Figure 4-44 Case II.2 2B-AWR var. Frame deformation (200x actual deformation) 
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Subcase 3 

When the centrifuge arms are located on the 90 degrees from reference position, arms deformation from 

the asymmetric load for 2B variant is 8.4 mm. For the centrifuge arms it is an acceptable deformation.  

 

Figure 4-45 Case II.3 2B var. Deformation result (10x actual deformation) 

 

Figure 4-46 Case II.3 2B var. Frame deformation (100x actual deformation) 

 Maximum deformation of the frame is ≈ 0.22 mm, as it is seen from the Figure 4-46. Since the place of 

the deformation is the same, then it has similar requirements as it was for previous subcases, which is ∆1 = 

1.47 mm and ∆2 = 0.7 mm. Definitely 0.213 <0.7 mm, which means that obtained results for the asymmetric 

load case fits requirements with enough margin till the limited deflection given by ISO standard.  

For the frame variant 2B-R the maximum deflection is in the same place as for other variants, its value is 

0.212 mm (Figure 4-47), compare to the 2B var. it is 0.47% less than 0.213 mm, or no change by other 

words. 

For the frame variant 2B-AWR the maximum deflection is in the same place as for other variants, its value 

is 0.15 mm (Figure 4-48), compare to the 2B var. it is  31% less than 0.22 mm, and for 2B-R var. it is 29.2% 

less than 0.212 mm. 
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Figure 4-47 Case II.3 2B-R var. Frame deformation (100x actual deformation) 

 

 

Figure 4-48 Case II.3 2B-AWR var. Frame deformation (100x actual size) 

 

As it was mentioned before, on the frame we check mostly deformation, since we are interested in the 

rigidity of the frame. However, if we check maximum combined stress of the beam element in the FEM 

model we will see that maximum appeared stress from all solution of Case II is ≈ 3 MPa.  
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4.7.1. Results, Frame 2B variants 

Cases Case I.1 Case I.2 Case I.3 

Var. 2B 2B-R 2B-AWR 2B 2B-R 2B-AWR 2B 2B-R 2B-AWR 

Arms deformation [mm] 2.356 2.355 2.355 2.359 2.358 2.362 2.288 2.359 2.37 

Frame deformation [mm] 0.027 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026 

∆𝑚𝑖𝑛𝑖
 [mm] 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Safety margin [mm] 0.374 0.374 0.374 0.374 0.374 0.374 0.374 0.374 0.37 

Safety margin [-]  15.094 15.094 15.504 15.094 15.094 15.504 15.094 15.094 15.50 

Frame def. 1 [%] 100.00 0.00 -2.64 100.00 0.00 -2.64 100.00 0.00 -2.64 

Frame def. 2 [%] 0.00 100.00 -2.64 0.00 100.00 -2.64 0.00 100.00 -2.64 

Cases Case II.1 Case II.2 Case II.3 

Var. 2B 2B-R 2B-AWR 2B 2B-R 2B-AWR 2B 2B-R 2B-AWR 

Arms deformation [mm] 9.453 8.673 8.63 9.075 8.6 8.5 8.401 8.531 8.346 

Frame deformation [mm] 0.551 0.25 0.236 0.421 0.231 0.199 0.213 0.212 0.15 

∆𝑚𝑖𝑛𝑖
 [mm] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

Safety margin [mm] 0.149 0.450 0.464 0.279 0.469 0.502 0.487 0.488 0.55 

Safety margin [-] 1.27 2.80 2.97 1.66 3.03 3.54 3.29 3.30 4.67 

Frame def. 1 [%] 100.0 -54.6 -57.2 100.0 -45.1 -53.0 100.0 -0.5 -29.6 

Frame def. 2 [%] 120.4 100.0 -5.6 82.3 100.0 -14.3 0.5 100.0 -29.2 

Table 40 Frame deformation results for 10g accelerated mass of 15kg for two-beam modification of the centrifuge machine 

For the symmetric case of loading, CaseI.1, CaseI.2 and Case I.3 there is no point to reinforce a frame, 

since there is no major changes between different variants neither in arms deflection nor in frame.  For the 

asymmetric loading cases Case II.1, Case II.2 and Case II.3, of course, the best variant to use is the one 

with all available windows reinforced (see Figure 4-39), however the effectiveness of its use is not that big. 

If we compare difference in frame deformations between 2B-AWR variant and 2B-R, we will see that in 

percentage difference especially for the Case II.1 is very small. In other hand, in the loading Case II.3 

percentage of the difference of the maximum frame deformation seems to be high, at the first sight, however 

the deformation itself of the initial variant 2B is relatively small and already has similar value to the 

maximum frame deformations of 2B-R frame variant.   

In order to use material with higher efficiency, I would recommend to use frame variant 2B-R, where, if 

we compare with 2B variant only one frame member is added (see Figure 4-37). In this way, we reduce the 

weight of the frame, the time demand to assemble/disassemble machine (compare to 2B-AWR var.); the 

risk of the stability loss, exceeding structural limits given by ISO 4356:1977 (compare to 2B variant); and 

finally we will have relatively same value of deformation on every position of the centrifuge arms, which 

means small fluctuation of the frame members that will provide relatively static (quasi-static) condition of 

the centrifuge machine. Frame deformation: 0.25 →0.231→0.212; Arms deformation: 8.673 → 8.6 → 8.531. 

From the diagram shown on the Figure 4-49, we can read that the amplitude of the frame maximum 

deformation is: 

 𝐴Frdef  = 0.25 − 0.212 = 0.038 [𝑚𝑚] (4.11) 

For example, amplitude for the 2B var. is 0.33 mm, for 2B-ARW var. is 0.086 mm.  
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Figure 4-49 Deformation vs time, 10g load, 2B-R var., Frame 

For the maximum arms deformation amplitude is: 

 𝐴𝑎𝑟𝑚def  
= 8.673 − 8.531 = 0.142 (4.12) 

 

Figure 4-50 Deformation vs time, 10g load, 2B-R var., Arms 

4.8. Frame, 1B variant 
Calculation approach will be similar as it was done for 2B variant, with exactly same loading values and 

their cases, as it was described in paragraph §4.7 on the page 83. There will be used same variant 

modifications as for 2B variant, which means that 3 variants will be calculated 1B, 1B-R and 1B-AWR. 

Difference between these modifications you can see on the picture Figure 4-37 for 2B-R variant (but instead 

of two beams arm will be used one beam arm), Figure 4-39 for 2B-AWR (same for 1B-AWR). For example, 

1B variant of asymmetric loading at 0 degree position of centrifuge arms (Case II.1) is shown on the Figure 

4-51.  

Since deformation profiles of arms and frame are similar to the 2B variant, I found no need to put figures 

here with of deformations. Instead, I will write just a result table analogic to the result table for 2B variant.  

All deformations results and requirements you can find on the Table 41 on the page 96. 

 

Figure 4-51 Cad model of 1B variant, with loading Case II.1 
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4.8.1. Results, Frame 1B variants 
 

Cases Case I.1 Case I.2 Case I.3 

Var. 1B 1B-R 1B-AWR 1B 1B-R 1B-AWR 1B 1B-R 1B-AWR 

Arms deformation [mm] 4.834 4.836 4.833 4.836 4.835 4.835 4.837 4.836 4.85 

Frame deformation [mm] 0.027 0.028 0.027 0.028 0.028 0.028 0.027 0.028 0.027 

∆𝑚𝑖𝑛𝑖
 [mm] 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Safety margin [mm] 0.373 0.373 0.373 0.372 0.373 0.372 0.373 0.373 0.37 

Safety margin [-]  14.760 14.545 14.925 14.493 14.545 14.493 14.760 14.545 14.93 

Frame def. 1 [%] 100.00 1.48 -1.11 100.00 -0.36 0.00 100.00 1.48 -1.11 

Frame def. 2 [%] -1.45 100.00 -2.55 0.36 100.00 0.36 -1.45 100.00 -2.55 

Cases Case II.1 Case II.2 Case II.3 

Var. 1B 1B-R 1B-AWR 1B 1B-R 1B-AWR 1B 1B-R 1B-AWR 

Arms deformation [mm] 9.459 8.496 8.441 8.96 8.408 8.279 8.337 8.33 8.13 

Frame deformation [mm] 0.582 0.267 0.251 0.458 0.245 0.208 0.221 0.22 0.153 

∆𝑚𝑖𝑛𝑖
 [mm] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

Safety margin [mm] 0.118 0.433 0.449 0.242 0.455 0.492 0.479 0.480 0.55 

Safety margin [-] 1.20 2.62 2.79 1.53 2.86 3.37 3.17 3.18 4.58 

Frame def. 1 [%] 100.0 -54.1 -56.9 100.0 -46.5 -54.6 100.0 -0.5 -30.8 

Frame def. 2 [%] 118.0 100.0 -6.0 86.9 100.0 -15.1 0.5 100.0 -30.5 

Table 41 Table of deformation results for 1B variants 

From the result table we can say that, again optimum variant to use is the 1B-R, because of same reasons 

as it was described for the Table 40 on the page 94.  

Another thing, which is interesting is the difference in deformations between 1B and 2B variants. For 

symmetric load cases, arms deformations of 1B variant are approximately twice bigger than analogical 

values of 2B variant. This result however is expected somehow, however deformations for asymmetric load 

cases are similar and deformation for 1B variants are slightly smaller than for 2B variants. For both cases 

were used same frame models, same materials, same CBEAM characteristics and was used the same solver. 

From this point of view we can state the 1B – R variant is better than 2B – R variant due to less material 

usage and assembly time. Less material usage follows in to the less weight of the centrifuge’s head that will 

decrease frame member deformation at the place of a shaft mounting to the frame by thrust bearing housing.  

At the same time for the symmetric cases, 2B-R variant is better, from the deformation point of view.  

Generally, I strongly recommend using a counterweight if only one sample is tested and it is better to make 

counterweight as close as possible to tested sample by mass characteristic and shape.   
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4.9. Centrifuge’s head  

4.9.1. Centrifuge’s Head Plate 
1B Case I  

All subcases have similar results, from all frame variants was chosen the one that has the biggest results 

from them all. 

 

Figure 4-52 CHP, 1B, Case I, steel made 

Max. stress [MPa] 31 MPa 

Max. deformation [mm] 0.068 

Stress reserve factor, j [-] 4.19 

Table 42 CHP, 1B, Case I result table 

1B Case II 

All subcases have similar results, from all frame variants was chosen the one that has the biggest results 

from them all. 

 

Figure 4-53 CHP, 1B, Case II, steel made 
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Max. stress [MPa] 42 MPa 

Max. deformation [mm] 0.13 

Stress reserve factor, j [-] 3.1 

Table 43 CHP, 1B, Case II result table 

2B Case I 

All subcases have similar results, from all frame variants was chosen the one that has the biggest results 

from them all. 

 

Figure 4-54 CHP, 2B, Case I, steel made 

Max. stress [MPa] 12 MPa 

Max. deformation [mm] 0.05 

Stress reserve factor, j [-] 10.8 

Table 44 CHP, 2B, Case I, result table 

 

Figure 4-55 CHP, 2B, Case II, steel made 
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Max. stress [MPa] 120 MPa 

Max. deformation [mm] 0.5 

Stress reserve factor, j [-] 1.1 

Table 45 CHP, 2B, Case II, result table 

Summary 

Again, we can see that for the symmetric case it is better to use a 2B variant, however when the load is 

completely asymmetric 1B variant is better for the stress and for the deformation. 

Very big value of the stress of the 2B Case II can be explained. In the FEM model holes are modulated as 

squares, which due to presence of right angle increase the stress peak much higher than it should be in 

reality, this is so called local notch. In addition the force transmitted from the Lug-out part to the Lug 

(female lug) in 2B variant is higher than for the 1B variant, see Figure 4-11.    

 

4.9.2. Hub 
 

The most critical load case is the asymmetrical load, Case II for 1B variant. Its stress and deformation are 

shown on the Figure 4-56. 

 

Figure 4-56 Hub, 1B, Case II, steel made 

Max. stress [MPa] 47 MPa 

Max. deformation [mm] 0.008 

Stress reserve factor, j [-] 2.76 

Table 46 Hub, 1B, Case II, table result 

All results satisfies all necessary condition.  
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4.10.  Shaft’s critical speed 
 

It was already provided a hand calculation for this problem in the paragraph §3.3.2, p. 32. There was made 

an assumption that the shaft is the massless, which is not true, it was done to simplify the problem. The 

advantage of the FEA will help to find the critical shaft speed with proper mass model of the shaft. For this 

purpose was used MSC Patran software as pre-processor and MSC Nastran software as a calculator.  

Shaft was designed as 1D element, namely CBEAM. Shaft was divided into 5 sections. Additional masses, 

as a centrifuge’s head of 60 kg mass and driven pulley of 4 kg mass were modeled as a shaft section with 

relatable cross-section. Driven pulley was modeled as a beam with circular cross-section of radius RM2 = 

84 mm and density 𝜌𝑀2
= 6.445 ∗ 10−6 𝑘𝑔/𝑚𝑚3 in order to have a proper mass character in this section. 

Centrifuge’s head was modeled as a thin rectangle of thickness t = 5mm, height H = 230 mm and width W 

= 190 mm, density of this section is 𝜌𝑀1
= 2.746 ∗ 10−4𝑘𝑔/𝑚3. FEM shaft model is shown on the Figure 

4-57.  

 

Figure 4-57 Shaft FEM model (CBEAM) 

Using rotor dynamic tool in MSC Patran, we have defined rotational orientation and speed unit. The 

solution method was chosen to be Complex Eigenvalue solver with direct formulation, SOL 107. The 

solution result is chosen to be given as a Campbell diagram (plot represents a system's response spectrum 

as a function of its oscillation regime; Eigen frequencies as a function of the shaft's rotation speed. This 
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case is also called "whirl speed map" [17] [18]). In addition, FEM will help to show what shape of each 

mode will be.  

From the Campbell diagram, Figure 4-58, it is seen that first critical speed is 2.52 rps (very first intersection 

between first speed and Eigen frequency of Mode 1 = Mode 2), which makes 151.2 rpm.   

 

Figure 4-58 Campbell Diagram 

Comparing results from FEM calculation with hand calculation (see eq. (3.83)) where the the frist critical 

speed was 17.5 rad/s = 2.7 rps, we can see that the result given by numerical solution is relatively smaller 

than the one we calculated by hand. It is because the FEM solution was solving with another method and 

with proper mass model of the shaft. 

Even though the FEM result is less, still it is bigger than the chosen minimum required speed, which is 2 

rps or 120 rpm. The shaft design satisfies requirements.  
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Figure 4-59 Shaft rotational shape, Mod 1 = Mod 2 (f=2.52 Hz), Mod 3 = Mod 4 (f = 5.55 Hz) and Mod 5 = Mod 6 (f = 6.65 Hz) 

4.11. Shaft’s force (Buckling) 
In order to find a critical force of the shaft in buckling, we have to use non-linear Nastran solver SOL106. 

We apply on the free end of the shaft FEM model that is shown on the Figure 4-57 a nodal force 1 000 

000 N. When a deformation of the shaft (of specific node), under the percentage of the applied load, will 

start to be non-linear, then this load will be counted as a critical load.  

 

Figure 4-60 Shaft's node deformation vs Force 



103 

 

From the Figure 4-60 it is seen that the last point when deformation has a linear dependency on the force 

is approximately 27.5% of 1 000 000 N, which is 275 000 N. 

 

𝐹𝑐𝑟𝑖𝑡 = 275 000 [𝑁] 
 

𝐹𝑎𝑙𝑙 =
𝐹𝑐𝑟𝑖𝑡

𝑓
=

275000

2
= 137 500 [𝑁] ≈ 135 000[𝑁] 

(4.13) 

Allowable compression forcce of the shaft is then 135 000 N, which is ≈ 13 500 kg. Which is far beyond 

of needs, and shaft seems to be oversized for the buckling. However, due to bending and critical speed, 

we can not reduce the diameter in order to remain sufficient margin safety. 

 

4.12. Fasteners  
 

All bolts, nuts, washers and threaded rods are chosen from the standards and can easily be purchased on the 

market. From the global FEM model, I chose the most critical stress that appeared on the fastener. All 

fasteners were modeled as a beam element with circular cross-section. The result is written in the table, 

material of standard fasteners are taken from the NX material library.  

Designation Parts connected 𝜎𝑈 [Mpa] 𝜎𝑎𝑙𝑙  [Mpa] 𝜎max   [Mpa] j [-] 

rod M5 x 80 
Lug - 45x45 

profile 
275 137.5 10 13.75 

DIN M6 x 35 CHP - Hub 275 137.5 45 3.06 

M6 x 80 45x45 - CHP 275 137.5 65 2.12 

DIN M8 x 55 BHP - 45x45 275 137.5 25 5.50 

321345.1 
45x45 - 45x45 

(angle connection) 
100 50 2 25.00 

DIN M12 x 40 
BHP - Bearing 

House 
137 68.5 5 13.70 

DIN M12 UCF 209 - 45x45 137 68.5 5 13.70 

M8 

Connection 

between Frame 

members 

137 68.5 4 17.13 

Table 47 Fasteners FEM result table 

All reserve factors are above than one, which means all designed fasteners satisfies necessary conditions. 

Some of the fasteners are oversized, however from the design point of view it is not advantageous to 

redesign these connections. 
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5. Remarks 
 

In the remarks, I would like to recalculate the time required to reach 10g and 5g with the complete 

knowledge of the mass moment of inertia and torque on that will be applied on the Centrifuge’s head.   

From the CAD software Siemens NX 11® we can read the weight characteristics of the Centrifuge’s head 

with all lugs, pins, bearings, fastener and attached capsule with 15 kg mass and size of 340 x 650 (D x H in 

mm). Final result for the mass moment of inertia for 2B centrifuge’s head is: 

 𝐼max  = 38135230 [𝑘𝑔.𝑚𝑚2] = 38.14 [𝑘𝑔.𝑚2] ≈ 40 [𝑘𝑔.𝑚2] (5.1) 

 

Using method described in the paragraph §2.3, p. 8 we can recalculate the time that will be need to reach 

such a rotation that will create a 10 g loading.  

Using gear ratio of i = 1.6, there will be next values: 

rps T [N.m] ω[rad/s] v [m/s] Re[-] 2 ∗ 𝑀𝑑 𝑇2 [N.m] α' [rad/s2] t'[s] 

0 20 0.00 0.00 0.00 0.00 30.40 0.76 0.00 

0.37 20.5 2.32 2.32 54138.68 1.61 29.55 0.74 3.15 

0.95 21.2 5.97 5.97 139004.72 10.61 21.61 0.54 11.05 

1.5 20.44 9.42 9.42 219481.13 26.45 4.62 0.12 81.66 

1.576 20.35 9.90 9.90 230653.77 29.21 1.72 0.04 230.60 

2 20.05 12.57 12.57 292641.51 47.03 -16.55 -0.41 -30.37 

Table 48 

Where 2 ∗ 𝑀𝐷 is the moment from the drag force from the both capsules of 340 x 650 mm size. 𝑇2 is the 

torque on the shaft. Time that is required to reach the tested sample of 10g acceleration is 230.6 [s]. In 

order to reach 5g load we need as rotational speed to be 1.15 rps, which makes approximate 30 seconds.  

 

Figure 5-1 Time demand for specific rotational speed, for I=40kg.m2 and a drag from both sides of arms. 

 Please note that, the drag force, respectively moment is not necessary always equal to the value that is 

written in the Table 48, since it is the function of the shape of the tested sample by manipulating with it we 

can decrease drag force, hence a resisting drag moment. The less drag moment is then less time is needed 

to reach the desired rotational speed. In addition, drag force has not to be always symmetrical, since the 

second arm can be counterweighted by a mass of different shape.  
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If we would like to reduce the time that is needed to reach specific rotational speed, also, we can use a 

motor with better torque characteristics. For example, if we use a motor with constant torque value T =35 

N.m up to 2 rps and transmission with ratio i = 1.25, the time to reach speed that will load tested sample for 

10g will be t = 41.25 s.   

Another way to improve this machine is to add a rope that will be pinned into the centrifuge’s arms and 

connected to the Holder that. For example, preliminary, as it shown on the Figure 5-2. This will help ro 

reduce a deformation of the centrifuge’s arms. 

 

Figure 5-2 1B centrifuge with rope (or rod) support 

Mainly, space rockets accelerates approximately with 5g value. For the acceleration the designed centrifuge 

machine fits perfectly with accomplishing all necessary requirements, however the maximum acceleration, 

for which the machine is designed is 10g.  

 

Technological remarks 

 Lug-out 

Centrifuge’s part Lug-out was meant to be manufactured by welding connection of two aluminum elements, 

however aluminum welding is the complicated task and requires from the person specific skills, which 

potentially can lead into the increasing of production cost, because will be needed skillful person who needs 

higher salary. Steel welding is easier compare to an aluminum one. Changing material from aluminum to 

steel if we remain geometry similar as it was before we will decrees cost by decreasing labor working time, 

but the mass of the part will be increased that will lead into the time of reaching the desired rotational speed 

(mass moment of inertia). Material swapping will simplify the task.     

I don’t find it necessary to recalculate the strength and rigidity of the part, since traditionally, steel is more 

strengthen and more rigid than aluminum. Young’s modulus of the steel is 3 times higher than aluminum 

(210 GPa against 70 GPa). It would be required to recalculate the task if we decide to change geometry 

(primarily thickness) of the part, but it is cheaper and easier to use plate of the same thickness for all shell 

parts of the machine, which is 5 mm. The reason is that it is nearly impossible to by in the market raw 
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material like a steel metal sheet of small size like 400x400mm; usually nominal size starts from 1000x1000 

mm. So all plate look alike parts of the centrifuge machine will be produced form 5mm steel sheet.    

Shaft 

At the first place shaft had to be manufactured from the aluminum material (AlMgSi0.5F25), however after 

consultation with the technology staff of Aerospace Department of Czech Technical University, it was 

stated that it is complicated task to manufacture by turning aluminum bar of 60mm cross-section with 

necessary tolerances. It was recommended, again, to change material to the designed part from aluminum 

to steel, so it will be easier for the university staff to manufacture this part.  Changing shaft material will 

increase critical speed, which is advantageous for us, but it will increase the weight of the rotating part, so 

the time required reaching the desired rotational speed will increased too. The critical speed at the first mod 

(the first critical speed) is ≈ 180 rps, which is more than enough.   

By changing the shaft material to steel, which has tensile modulus as 210 GPa and Rp02 is 275 MPa, the 

minimum diameter that can transfer loads that were mentioned in the paragraph §3.3.1 on the page 26 is 

then 35 mm. We will remain all geometry same as it was on aluminum made shaft except the section 4, the 

one that is connected to the thrust bearing. By reducing diameter from 45mm to 35mm we can change thrust 

bearing and its housing from UCF 209 to UCF 207, which will reduce the weight of the structure and cost.  

 Cover 

It is good to cover the frame of the machine by plastic or wooden plate, so the dust will have limited access 

to the moving parts of a centrifuge, such as belt, shaft, bearings etc. There is no need to calculate the strength 

of it, because cover will not transfer any loadings and will execute only decorative function and protection 

from the dust or any other small particles. How preliminary wooden cover would look like you can see on 

the Figure 5-3.  

 

Figure 5-3 CAD model of centrifuge with wooden cover 
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6. Conclusion 
 

The main goal of the work was to design a centrifuge machine that can load a tested sample up to 10g, 

which is 98.1 m.s-2. Tested sample together with its capsule (box, cylinder or any other element that will be 

connected to the centrifuge arm and will carry a tested sample) should not exceed the mass of 15 kg. In this 

work, preliminary tested sample was chosen to be a cylindrical capsule of 650mm height and 350mm 

diameter. Centrifuge performance calculation was made according to chosen capsule that will call a drag 

force during the rotation. Bearing friction was neglected due to absence of precise date without experiment, 

as well as a drag force of the arms, due to no data of drag coefficient of a 45 x 45 profile and compare to 

the drag force and then drag moment to the rotation centre it very small, so it can be neglected.  

The frame and centrifuge’s arms were made from the aluminum profile 45 x 45 from Alutec KK supplier. 

Connection elements of the profile, again, were supplied by the Alutec KK company. Parts of the centrifuge 

machine that are not standardized, the one that are not selling in the market and requires manufacturing, 

were designed in the way that it will be cheap to manufacture them by the devices that are in the Aerospace 

Department workshop.  

The centrifuge arm distance, the distance between rotation centre and pin centerline where a capsule with 

a tested sample is connected, is 1m. The centrifuge’s span is then 2m. The centrifuge’s head was designed 

in the way that it can be assembled as centrifuge with one-beam arm (1B) or two-beams arm (2B). 

Calculation showed that it is better to use 1B, due to less usage of a material and smaller deflection in 

asymmetric cases of load. However, for the symmetric loading cases the deflection of the arms is twice 

smaller for the same loading, but for 1B variant.  

According to the calculation in paragraphs §4.7.1 and §4.8.1 on the page 94 and 96 respectively the 

optimum variant of the frame is the one reinforced window 2B-R or 1B-R, as it is shown on the Figure 4-37 

p. 89.  

Preliminary time demand to reach a desired rotation when centrifuge’s arm tip reaches 10g acceleration is 

4 minutes, for the gear ratio i = 1.6. The maximum speed of a rotation and torque can be manipulated by 

changing gear ratio that can be done by changing various pulleys. For details, see Figure 3-13 p.24. All 

centrifuge elements were designed to safely operate (safety factor 𝑓=2) for the rotational speed 95 rpm, 

which we can call as a maximum allowable speed of the centrifuge. However, due to high safety margins 

it can rotate maximum up to 120 rpm.  

 𝑛𝑎𝑙𝑙 = 95 𝑟𝑝𝑚 (6.1) 

 

All necessary dimensions you can find in the attached assembly drawing for 2B-R, drawing number is 10-

02-002.  
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