
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague March 5, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Application for football league data collection and analysis

 Student: Bc. Artyom Trushin

 Supervisor: Ing. Jaroslav Kuchař, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2018/19

Instructions

The goal of the thesis is to design, implement, and test a web application for gathering football league
statistic data and carrying out analysis of it. The server will collect the data, store them to a DB, and perform
all computational tasks. GUI will present the collected and processed data including a specific interface for
complex queries.
1) Analyse existing approaches, identify requirements and resources suitable for collecting of required data.
2) Design and implement a crawler for gathering:
 - statistical data of a football league for at least the last 10 years,
 - bookmaker odds for matches.
3) Design and implement a unit performing:
 - analysis of basic statistics of the league or separate football clubs,
 - prediction of upcoming matches based on all collected statistics.
4) Design and implement REST interface and web based GUI.
5) Test all parts of the project, perform an experiment for one selected league, and evaluate the quality of
analysis and predictions.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Application for football league data

collection and analysis

Bc. Artyom Trushin

Supervisor: Ing. Jaroslav Kuchař, Ph.D.

30th June 2017

Acknowledgements

I would like to thank Ing. Jaroslav Kuchař, Ph.D for the suggestions and
personal approach. Further I would like to thank my parents, girlfriend
and friends for support throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for ad-
hering to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as school
work under the provisions of Article 60(1) of the Act.

In Prague on 30th June 2017 .

Czech Technical University in Prague
Faculty of Information Technology
© 2017 Artyom Trushin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Repub-
lic. It has been submitted at Czech Technical University in Prague, Faculty
of Information Technology. The thesis is protected by the Copyright Act
and its usage without author’s permission is prohibited (with exceptions
defined by the Copyright Act).

Citation of this thesis

Trushin, Artyom. Application for football league data collection and ana-
lysis. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2017.

Abstrakt

Hlavním cílem této diplomové práce je realizace webové aplikace pro shro-
mažd’ování a analýzu statistik fotbalové ligy. Systém bude obsahovat webovou
aplikaci a server pro poskytování dat. Webová aplikace bude zodpovědná
za poskytování shromážděných dat a analýzu uživatelům. Server poskytující
údaje bude shromažd’ovat data a provádět jejich analýzu. Kromě toho
bude vytvořen REST API pro předání dát mezi dvěma servery.

Klíčová slova Web Crawling, Web Scrapping, REST, ASP.NETMVC, Stat-
istika fotbalu, .NET

Abstract

The main goal of this thesis is to implement a web application for gather-
ing and analyzing football league statistics. The system will comprise of
a web application and data providing server. The web application will be
responsible for providing collected data and analysis to users. The data
providing server will collect data and carry out analysis of it. Furthermore,
a REST API for data transmission between two servers will be created.

ix

Keywords Web Crawling, Web Scrapping, REST, ASP.NETMVC, Football
statistics, .NET

x

Contents

Introduction 1
Motivation . 1
The goals . 1

1 Analysis 3
1.1 System functional requirements 3
1.2 System non-functional requirements 7
1.3 System use cases . 7
1.4 Target football league . 10
1.5 System sequence diagram . 10

2 Research of resources and existing solutions 13
2.1 Resources – web sites . 13
2.2 Resources – web services . 19
2.3 Bookmaker odds for upcoming matches 21
2.4 Existing solution . 21

3 Design 33
3.1 Data producing server . 34
3.2 Web application server . 49
3.3 Frameworks . 52

4 Implementation and testing 55
4.1 REST implementation . 55
4.2 Prediction algorithm . 57
4.3 Statistics searching . 58
4.4 Testing . 59

Conclusion 63

xi

Future work . 64

Bibliography 65

A Acronyms 67

B Contents of enclosed CD 69

xii

List of Figures

1.1 Sequence diagram of entire system 11

2.1 Example of standing table . 22

2.2 Results of 38. round . 22

2.3 List of top strikers . 23

2.4 Sample of match stats: Betis vs Getafe 24

2.5 Form table for last 5 matches . 25

2.6 Sample of BTTS table . 25

2.7 Sample of Under/Over table . 26

2.8 Top of the HT/FT table . 26

2.9 Odds Comparison: Deportivo La Coruña – Real Madrid 27

2.10 Example of individual averages table – corners 27

2.11 Top fragment of result matrix – corners 28

2.12 Over/Under corner table . 28

2.13 Sample of scoring minutes table 28

2.14 Example of the table – both teams scored. 29

2.15 Results of first 7 rounds . 30

2.16 Most profitable teams . 31

3.1 General architecture of the system 34

3.2 Class diagram of data collectors 35

3.3 Class diagram of data collectors 36

3.4 Class diagram of data collectors 39

3.5 Scheduling database model . 43

3.6 Search engine class diagram . 45

3.7 Database Log table and Logger class 46

3.8 How ASP.NET MVC works. Source: [7] 50

3.9 Searching tool mock-up . 51

3.10 Database model for web application 51

xiii

List of Tables

1.1 Mapping of Use Cases to Functional Requirements 10

2.1 List of web resources . 18

xv

Introduction

Motivation

Football is one of the most popular games around the World. It is the most
popular sport in terms of fans [2]. Nowadays, there are lots of websites,
blogs, and other resources highlighting tons of football matches and tour-
naments. Especially, it concerns the best football leagues – World Cup,
UEFA Champions League, FA Premier League and others.

They provide all possible statistics, but I couldn’t find a website that
covers all stats in one place. Sometimes it’s complicated to find the stats
you want if you are searching something special. For example, if the user
intends to find the information about the longest streak without draws in
the league in some particular season, he couldn’t do that without a usage
of some helper tools. That is why I decided to implement the system that
will:

• gather all possible statistic data

• make new stats by analyzing collected info and provide it

• provide an interface for searching specific information that is inter-
esting for particular user.

The goals

The main goal of the thesis is to gather all possible football statistics,
provide analysis of it and show all data and result of the analysis to the
user. The additional goal of this work is to provide the proper interface
that could be used by the user for searching some specific statistics.

For these purposes, I should define requirements and use cases for
the project. Then, I need to research existing approaches and resources

1

Introduction

suitable for data gathering. Finally, I have to implement a Web application
that will show all gathered data, generated analysis results and provide
the tool for searching specific statistics.

2

Chapter1

Analysis

The analysis part is the initial point in software development. In this
chapter, I have defined all requirements - functional and non-functional.
Furthermore, I have described use cases, a sequence diagram of the sys-
tem and made a decision about target football league, which data I’m
going to use on this project.

The entire system will be composed of several separate components:
Crawler of statistical data of a football league, Bookmakers odds crawler,
Data analyzer, GUI – website.

1.1 System functional requirements

All system functional requirements could be divided into several groups
by system components.

1.1.1 Crawler of statistical data – finished matches

F1. The system should gather general statistical data of all finished games:

• Match participants - home and away team names

• Date and time

• Season and the round of the season

• Result score

• Available betting odds (optional – not from bookmakers web sites)

3

1. Analysis

F2. The system should gather additional statistics of all games (all points
are optional - if required information is available):

• Players who scored and goal time

• Assists

• Goal attempts – shots on/off target and blocked shots

• Ball possession

• Yellow/red cards

• Penalties, fouls, offsides

• Free/Corner kicks

1.1.2 Bookmaker odds crawler – upcoming matches

F3. The system should gather next betting odds for all upcoming games:

• Match Result – home/draw/away

• Double Chance

• Both Teams to Score – Yes/No

• Total Match Goals - Over/Under 2.5 Goals

• First goal/ last goal (optional)

• Correct score (optional)

• Half Time/Full Time (optional)

• Total Goals O/U - Team 1/Team 2 (optional)

• Total Match Goals Over/Under X.X Goals (optional)

F4. The system must allow the administrator to specify a crawl schedule
(default crawler frequency will be defined in the Design part).

4

1.1. System functional requirements

1.1.3 Analysis and prediction algorithm

F5. The system must provide the entire league statistical analysis by sea-
son:

• Number and percentage of draws and home/away team wins

• Standard table with current season results:

– Rows – names of all teams

– Columns – matches played, home wins, draws, away wins, num-
ber of goals scored, amount of goals conceded, goals difference,
points, games with total under/over 2.5 (optional), games when
both teams score/and opposite (optional)

• Statistics by rounds:

– Average number of draws and home/away team wins

– Average number of goals in round

– Average number of matches with total goals under/over 2.5

– Average number of matches when both teams score and oppos-
ite number

– Average number of corners, yellow cards/red cards, penalties
(optional)

F6. The system must separately provide statistical analysis of football
clubs:

• Team form – last 5/10 games:

– Number of draws, wins and losses

– Original and average number of goals scored and conceded.

– Number of points in the period and average points per game

– Average numbers of corners, yellow/red cards, penalty kicks,
received penalty (optional)

– Number and percentage of goals in 1st/2nd halftimes (or in con-
crete time periods: 1-15, 16-30, 31-45 .., 75-90 minutes) (op-
tional)

• Match preview statistical analysis:

– Teams confrontation statistic – all matches of teams, and stand-
ard statistics

5

1. Analysis

– Both teams season statistics

F7. The system must provide simple prediction algorithm based on collec-
ted data.

1.1.4 Web-based GUI and REST interface

F8. The system must provide web-based GUI for displaying all gathering
data and statistical analysis in a user-friendly form.

F9. The systemmust implement REST interface for communication between
computing server and GUI.

F10. The GUI must implement specific interface for complex users quer-
ies. The query will contain next parameters:

• Specific period – could be set as range of dates, season rounds or
range of seasons

• Condition(-s) – defined what matches are interested for the user.
Types of condition:

– Team name – could be selected only Home games, Away games
or all games

– Result of game – Home/Away win or draw

– Total goals – over/under X.X goals, where X.X could be = {0.5,
1.5, 2.5, 3.5, 4.5, 6.5, 7.5}

– Both teams score – Yes/No

– Selected/Opposite team total of goals

– Total goals at 1st/ 2nd halftime (optional)

– Both teams score at 1st/ 2nd halftime (optional)

– Games on which the specific player has participated (optional)

• Result – user could select one of predefined result form:

– All suitable matches

– Only count of all suitable matches

– Maximal/minimal streak of suitable matches

– Number of streaks with count of matches over/under selected
number

6

1.2. System non-functional requirements

1.2 System non-functional requirements

NF1. Legal resources – all used data should be free to use, or data usage
permission should be received (prior authorization).

NF2. The entire project would be implemented in C# (using .Net Frame-
work version 4.5 or higher).

NF3. Store gathered data – all data gathered by crawler should be stored
to local database.

NF4. Target data – for simplicity only one league data will be gathered,
the covered league will be defined later.

NF5. The amount of gathered data – should be collected data of at least
10 last seasons.

NF6. Failure handling - all bugs, problems with gathering and errors
should be logged.

NF7. Reusability – the application should be designed and implemented
that will allow reuse as many as possible components of the application
for extending functionality.

NF8. Extensibility – all components of the project should be created us-
ing technologies that will allow to extend and create new features in the
future easily.

1.3 System use cases

1.3.1 User views main league statistics

1. The user opens the web application.

2. The user goes to "Football stats" page and chooses a season that is
interesting for him. (By default, a current season will be opened).

3. The user can now see the main statistics of the chosen season –
standing table and the last tour matches results.

1.3.2 User views list of season games

1. The user opens the web application and go to Football stats.

7

1. Analysis

2. The user chooses season and go to Results tab.

3. Now the user can see all played matches in the selected season.

1.3.3 User views a played game details

1. The user opens the list of season games.

2. The user finds game that is interesting for him – all games ordered
by date.

3. The user clicks on game he has found.

4. Now, the user can see match details: match summary, statistics,
head-to-head stats and bookmaker odds (if available).

1.3.4 Admin sets up schedule for bookmaker odds crawler

1. The admin connects to the server where the crawler deployed.

2. The admin finds the configuration file – path and other related info
will be documented.

3. The admin changes in configuration file the necessary parameters.

4. The admin restarts the crawler to apply new settings.

1.3.5 User views league aggregated stats

1. The user opens the web application and goes to "Football stats" page.

2. The user opens Aggregated stats tab and chooses a season if needed.

3. The user now can see all provided aggregated stats.

1.3.6 User views a particular team statistics

1. The user opens the web application and goes to the "Football stats"
page.

2. The user chooses season and goes to Teams tab.

3. The user clicks on a team name which stats he wants to see.

4. The user now can view all stats of the team in the selected season.

8

1.3. System use cases

1.3.7 User searches specific stats by using provided tool

1. The user opens the web application and goes to the "Statistics search"
page.

2. The user chooses the period he is interested in.

3. The user defines match conditions that he is interested in. Maximal
number of conditions will be defined in design part.

4. The user defines result format.

5. The user taps on Start searching to view required stats.

6. After search request is processed the user can see the result of the
search.

1.3.8 User views predictions on upcoming matches

1. The user opens the web application and goes to the "Predictions"
page.

2. The user chooses a match from shown list of matches.

3. The user now can see a prediction with odds on the chosen game.

1.3.9 User views upcoming game information

1. The user opens the web application and goes to the "Football stats"
page.

2. The user taps on Fixtures tab.

3. The user now can see the list of upcoming matches on the next 1-2
tours.

4. The user chooses a concrete match that is interesting for him.

5. The user now can see the match details.

The table 1.1 below demonstrates the mapping of all use cases to func-
tional requirements. This table helps to verify that all functional require-
ments are covered by use cases.

9

1. Analysis

Table 1.1: Mapping of Use Cases to Functional Requirements

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
UC1 X X X X
UC2 X X X
UC3 X X X X X
UC4 X
UC5 X +/- X X X
UC6 X X X X X X
UC7 X X +/- +/- X X
UC8 X ? X X X X X
UC9 X X X X

1.4 Target football league

Before starting research of football data resources and all other prepara-
tion, I need to choose what league will be covered in this project.
There are five most popular football leagues in the Europe: French Ligue
1, Italian Serie A, German Bundesliga, Spanish La Liga and English Premier
League. Therefore, I decided to choose one of them, because they have
better media coverage and more web resources. Also, I took into account
that two most popular teams in the world – Barcelona and Real Madrid
are playing in Spanish La Liga. Therefore, Spanish La Liga was chosen as
target league that will be covered in this Diploma.

1.5 System sequence diagram

A sequence diagram is an interaction diagram that depicts program object
interactions arranged in time sequence. It helps better understanding of
the entire system workflow.

As can be seen from Figure 1.1 particular components of the whole sys-
tem work independently. When the user opens some webpage with stats,
the web server sends a request to REST API for every required data. REST
API gets data from Database and return them to the web server, while data
collectors work independently on their schedule. Analyzer checks avail-
ability of the new data. If new data comes, it will start to analyze them
and produce out-coming stats. The result of data analysis finally sent to
database and work of analyzer is done for that moment.

10

1.5. System sequence diagram

F
ig
u
re

1
.1
:
S
e
q
u
e
n
ce

d
ia
g
ra
m

o
f
e
n
ti
re

sy
st
e
m

11

Chapter2

Research of resources and
existing solutions

2.1 Resources – web sites

In this section I am going to research all available resources that contain
required data.

2.1.1 Research criteria

At the beginning I need to define most important criteria of the research:

1. Legality of the usage – this criterion defines if data from analyzed
resource are free to use or if it is under copyright law and prior
authorization from the Provider is required for using these data

2. Data amount – how many last seasons of chosen league are covered
in the resource

3. Variety of data – how many different statistical data are covered in
the resource

4. Bookmaker odds – variety of bookmaker odds contained in the re-
source

5. Original data source – define the original data resource if data are
taken from an another resource

6. Data structure – defines how difficult it is to parse data from the
resource. Will be estimated by 3 levels – good, mediocre and bad
structured

7. Addition criteria (optional)

13

2. Research of resources and existing solutions

2.1.2 List of resources

1. Flashscore.com or analogues There are lots of sites that have al-
most or exactly the same design and data structure as Flashscore
(Livesports.cz, Soccer24.com, Myscore.ru, Myscore.com.ua, . . .). Those
websites are user-friendly, provide live-scores and historical data for
lots of sports. This resource covers almost all professional football
leagues. The following criteria are applied:

1. Under copyright law, prior authorization is required

2. Covered all seasons from 1998-1999, 19 last seasons + current
season

3. Provided a lot of different stats. All required statistical data are
covered

4. The resource contains a lot of bookmaker odds

5. Used data from Enetpulse.com(link below)

6. Good data structure – easy to parse

Result: If prior authorization will be acquired, then it will be a good
choice for the project.

2. Football-Data (www.football-data.co.uk) This website looks more
like a big commercial for gambling than a website on football statist-
ics, but it also contains a lot of statistical information and live-scores.
A user could find all football data on livescore.football-data.co.uk.
There are all historical data of Spanish La Liga from the season
1999-2000. This site is not suitable for web scrapping (crawling),
because all moves on the site are realized by POST requests. But on
the other side, all data are provided in .csv format, so web-scrapping
is not required. The following research criteria are applied:

1. Free to use

2. 20+ last seasons + current season

3. For all seasons basic stats are covered and starting from season
2005-2006 additional stats are also covered

4. All general bookmaker odds are covered

5. Not linked to another resources – own data

6. All data in CSV format – the best structure for gathering data

7. It doesn’t guarantee the correctness of provided information

Result: Good choice for the project.

14

2.1. Resources – web sites

3. SoccerSTATS.com This resource provides statistics and results for
most of the world leagues. It contains general game stats and a lot
of accumulated statistics in unusual format. It’s very complicated to
parse. The following research criteria are applied:

1. Under copyright law

2. Only 6 last seasons + current season

3. Only general stats and some specific accumulated stats are avail-
able

4. Doesn’t contain bookmaker odds

5. Not mentioned another resources – own data

6. Bad data structure – hard to parse

Result: Bad choice for gathering data, but a good example of specific
statistics.

4. StatBunker Statbunker offers many statistics on Spanish La Liga and
the stats cover the last 9 seasons. It is a very user-friendly website,
but doesn’t contain all needed stats. Also, it contains a lot of specific
aggregated statistics, so it’s a good example of analyzing data. Prob-
ably the most interesting feature of this website is the possibility to
restrict league tables to a specific range of minutes. For example, its
possible to get the table of the Premier League considering only the
points for the first 10 or 15 minutes of play.

1. Under copyright law, however, doesn’t clearly define what data
are forbidden to use

2. Covers 9 last seasons + current season

3. Contains general stats and some additional stats as cards and
penalties, but doesn’t contain another required data

4. Doesn’t contain bookmaker odds

5. Not mentioned another resources – own data

6. Mediocre data structure

Result: Not the best choice, but could be used as alternative.

5. Footstats Footstats provides classic football statistics only on the top
European leagues like fouls, corners, cards, goals, etc. It covers 15
last seasons + current season. All data are taken from Football-Data
web resource, essentially this site is representation of gathered data
from another website with basic searching in the data. But it lacks
bookmaker odds.

15

2. Research of resources and existing solutions

1. Free to use

2. Covers 15 last seasons + current season

3. All required statistics

4. Doesn’t contain bookmaker odds

5. Football-Data [2.1.2]

6. Mediocre data structure

Result: Not the best choice, because it’s better to use original data
source.

6. Soccerway Soccerway is very popular football website that covers
over 1000 football leagues and cups from 134+ countries. It is the
world’s largest football database and is owned and powered by di-
gital sports media business PERFORM. It’s very user-friendly and
contains good statistical graphics.

1. Under copyright law.

2. Covers 23 last seasons + current season.

3. It contains all required statistics for last 6 and current seasons.
Only general stats are covered for later seasons.

4. This resource doesn’t focus on any bookmaker odds.

5. Data provider – Opta.

6. Data structure is not very convenient for parsing – normal level.

Result: Because of criteria 1,3,4 this resource is not suitable for the
project.

7. 24score.com This is common sport score website that is available in
Russian and English. It contains specific aggregated statistics. The
nice feature of this resource – it contains statistics about all referees
worked during the season.

1. Doesn’t contain any information about copyrights – free to use.

2. Provides data for last 8 and current seasons.

3. Covers all required statistics and provides some specific stats.

4. Contains some bookmaker odds, not all required data is covered.

5. Not mentioned another resources – own data.

6. Good data structure – easy to parse.

16

2.1. Resources – web sites

Result: Despite of the fact that not all required data are covered, it’s
still a good choice for the project.

8. Football-Lineups Football-Lineups.com is a collaborative Database
where football fans can review and post teams tactics and forma-
tions[link]. Contains all needed information except bookmaker odds.
Good structured data for web scrapping.

1. Under copyright law, but this website grants a limited license to
download the material on it solely for personal, noncommercial
use.

2. Covers last 16 and current seasons.

3. Provides all required stats for all seasons and some additional
statistics are provided for the last 5 seasons.

4. Doesn’t contain any bookmaker odds.

5. Own data.

6. Very good structure for parsing and web-crawling.

Result: Alternative choice for the project, the only negative side of
it, that it doesn’t cover bookmaker odds.

9. SoccerVista It’s a good free-to-use resource, any way of usage web
site’s content are not forbidden. The website contains a lot of addi-
tional information for matches, but doesn’t contain all required data
for this diploma project.

1. Copyrights info is not mentioned – free to use.

2. Provides only 2 last and current seasons for Spanish La Liga.

3. For target league only general stats are provided.

4. Contains only basic bookmaker odds.

5. Not mentioned another resources – own data.

6. Normal data structure.

Result: Bad choice because of lack of required data.

10. Betstudy Betstudy provides only the most common statistics, but it
does so for most of the world leagues and it is also possible to order
all the tables by any field. The website is simple and clear and it also
features predictions on future fixtures.

1. Under copyright law – but doesn’t clearly define what data are
forbidden to use.

17

2. Research of resources and existing solutions

2. Covers 23 last and current seasons.

3. Only common stats.

4. Provides bookmaker odds only for upcoming matches, doesn’t
provide historical data.

5. Own data.

6. Normal data structure.

Result: Not the best choice, it doesn’t contain all required data.

Summary
I have analyzed 20+ web resources, not all of them are mentioned in this
part (see the Table 2.1). Almost all suitable resources, which covers all
required data for this project, use data from 2 biggest football data pro-
viders – Opta and EnetPulse. And those websites are under copyrights
low. Only one suitable free-to-use resource has been detected - Football-
Data. Also, I really liked the data structure and coverage of sites that use
data from Enetpulse, so I will try to get prior authorization.

Table 2.1: List of web resources

web recource Research criteria Result
Flashscore.com - X X X - X alternative
SoccerSTATS.com - - - - X -
Football-Data X X X X X X to use
STATBUNKER +/- X +/- - X X
Footstats - X X - - X
Soccerway - X X - - X
24score.com X +/- X +/- X X
Football-Lineups +/- X +/- - X X
SoccerVista - - +/- +/- X X
Betstudy +/- X - - X X
livefutbol.com - X +/- - X -
worldfootball.com - X X - X +/-
vitibet.com X - - +/- X X
futbol24 X X - - X X
scibet.com - X +/- - X +/-
annabet.com X X X X X X
soccercenter.com X - - X X X
betexplorer - X +/- - X X
betvirus.com - X X X X -
scorecenter.com X X - X X +/-

18

2.2. Resources – web services

2.2 Resources – web services

2.2.1 Research criteria

Firstly, I have to define research criteria as I did in previous subsection:

1. Data amount

2. Variety of data

3. Data structure

4. Price

2.2.2 List of resources

1. Opta Opta is the world’s leading sports data provider. It provides
a lot of services with a wide variety of data. They collect, pack-
age, analyze and distribute more live data, in more detail, than any-
one else. This is global company that works with well-known book-
makers (Sky Bet, Paddy Power, William Hill, betfair, etc.) , TV chan-
nels (Eurosport, Fox sports, Sky sports, etc.), famous sport clubs
(Arsenal, Roma, Bayern Munich, Barcelona, etc.) and other world-
known brands (Nike, Adidas, Bloomberg, etc.) (The whole list could
be found on official Opta web page). This resource provides all re-
quired for my project data, but it is very expensive choice. Criteria:

1. Provides probably all possible data for all seasons.

2. Covers all data required for the project.

3. Doesn’t define all possible ways of delivering data, but possibil-
ity of XML format is mentioned.

4. Price depends on services you want to use. Talking about foot-
ball feeds, Opta offer around 40 feeds - from play by play stats
to more detailed summaries. Price range starts at $600 runs to
a couple of thousand per month.

Result: It’s a very good choice for commercial profitable project, but
too expensive for this diploma work.

2. EnetPulse Enetpulse covers more than 30 sports around the clock in
various degrees of detail [1]. As the previous resource, this is global
company from Denmark that works with a lot of well-known firms
– sports media (tennis.com, livescore.com, UOL Brazil, etc.), sport
betting (Betfair, 10Bet, SportingBet, etc.), broadcasters (TV2 Den-
mark, Viasat, TVP.pl, etc.) and applications (WhoScored, Sportflash,

19

2. Research of resources and existing solutions

etc.). The company provides several solutions: Historical Sports
Data, Odds Comparison, Live Stats, fixtures and others. This data
provider covers all required data in this project, but it also very ex-
pensive choice.
Criteria:

1. Doesn’t mention number of covered seasons. But as we know
Flashscore use this data provider, therefore we could guess that
it provides more than 20 seasons.

2. Covers all required stats for last 5 seasons, for later season only
general statistics are covered.

3. All data delivered via XML Push or by using Sports Data API.

4. All required data for last 5 seasons (for 1 league) costs $2500.
If consumer want to use more leagues, he should buy a monthly
subscription to the service. For example the subscription to top-
5 leagues costs $1200 per month.

Result: As well as Opta it’s a very good choice for commercial pro-
jects. But couldn’t be used in this project because of the high cost.

3. XMLSoccer This resource is specialized in providing a cheap and
stable machine-readable data-feed from their always up to date data-
base. It doesn’t provide any graphical stats as unlike previous re-
sources, therefore it’s a lot of cheaper than others. However, it cov-
ers all data I need for this work. Another interesting feature of this
resource is providing parsing libraries in Java, .Net, PHP.
Criteria:

1. Provides data for 17 last seasons.

2. Covers all data for the project.

3. As the name of service implies, it provides data in XML format.

4. 10$ for 1 month full access, or 90$ for one year.

Result: Very good and cheap choice for commercial purpose.

Summary
I have looked at 3 data providers, 2 of them are global companies that
provide a wide variety of data including some graphical stats for TV and
other media. Those 2 are very expensive for the project. Last one is cheap
and simple solution, that provides enough data for the project. It could be
used if the project was for commerce.

20

2.3. Bookmaker odds for upcoming matches

2.3 Bookmaker odds for upcoming matches

Because of the fact, that I want to track and gather only common book-
maker odds, I could use any bookmakers for data gathering. I have ana-
lyzed a lot of bookmakers and all of them have almost the same data struc-
ture, data coverage, etc. Therefore, I could randomly choose one of them
for my project. There are bookmakers that provide data in English: Bwin,
Paddy Power, bet365, William Hill, Unibet. Also, Czech bookmakers could
be used: Tipsport, Chance, Fortuna.
Result: I have decided to use Bwin and as alternative Chance bookmakers.

2.4 Existing solution

In this section, I will briefly describe a lot of statistics that existing solu-
tions provide. In addition to almost all descriptions, there is an attached
example that shows how it usually looks like. First of all, I want to men-
tion common statistics that appear almost at all web resources focused on
football stats.
Note: all pictures in this section are related to La Liga season 2015/2016.

2.4.1 Common statistics

Standing table – commonly rows represent team names, and columns
represent next indicators:

• Matches played (MP)

• Wins (W), Draws (D) and Losses(L)

• Goals (G) – in format goals-scored:goals-conceded. Sometimes it rep-
resents as 2 columns: Goal For (GF) and Goals Against

• Goal Difference (GD or dif or +/-) - optional column, it’s calculated
from previous indicator

• Points (Pts) – count of earned points, could be calculated form W (3
points for win), D (1 point for draw) and L(0 pts)

The table 2.1 usually could show all played matches or only Home/Away
matches.
Results – list of all played matches grouped by rounds or date. As a rule
each matched row has a link of game details and stats. Usually it contains
the following indicators:

• Date and time of match

21

2. Research of resources and existing solutions

Figure 2.1: Example of standing table

• Round of league season

• Competitors – names of football clubs

• Result score

• Red cards (optional)

Figure 2.2: Results of 38. round

List of seasons – list of covered in resource seasons, usually with name
of a season champion.

Top Scorers – a list of players who scored the most goals (see Figure 2.3).
Usually it is represented as a table with the next columns:

• Position in table – rank

22

2.4. Existing solution

• Player and team name

• Number of goals

• Less common – minutes played and minutes-per-goal

• Less common – assists and very rare – assists+goals

• Very rare – number of penalty goals

Figure 2.3: List of top strikers

23

2. Research of resources and existing solutions

Match details and stats – different web resources have different cover-
age of match statistics and details. The most popular details are :

• Teams starting lineups and substitutes

• Goals – name of scorer and optional – name of the assisted player.
Also could be indicated as penalty

• Substitutions – team name and names of substituted players, who is
In and who is Out

• Yellow/red cards – player name and team, and minute of game.

The common stats of match are: ball possession, goal attempts, shots
on/off goal, blocked shots, free and corner kicks, offsides, fouls, red and
yellow cards (see below on Figure 2.4).

Figure 2.4: Sample of match stats: Betis vs Getafe

24

2.4. Existing solution

Form – commonly shows last 5 or more matches of each team. On a mod-
ern website, it is usually shown as an additional column to the standing
table with icons that represent last matches (all icons are links to match
details).

Figure 2.5: Form table for last 5 matches

2.4.2 More specific statistics

In this section I have described rarely occurring statistics that seems in-
teresting for me. Focus falls on a statistical indicator or format of bunch
of stats, but a source(-s) also have been mentioned.

Both Teams To Score (BTTS) Table – shows for each team numbers
of games where both teams score (Y) and not score (N). Sometimes, the
table additionally provides percentage of each result. Not very common
statistical table though.
Resources: betstudy, soccerstats, 24score.com

Figure 2.6: Sample of BTTS table

25

2. Research of resources and existing solutions

Under/Over table – contains a number of games with total goal under or
over some special measure for each team in the league. Usually, the user
is able to choose some specific total and see how many games each team
has played under/over selected number. Often a table has three showing
modes – all matches, home/away matches – same as the standing table. In
some resources(all websites that use EnetPulse data provider) this table
additionally has icons that shows results for the last five games.
Resources: EnetPulse and Opta clients, betstudy

Figure 2.7: Sample of Under/Over table

HT/FT table – Half Time / Full Time – one of the popular bet types which
consists of betting at the same time on the half time and full time score of
a match. Therefore, there are 9 possible results for football. This type of
bet is also called Half Time / Final score, Half Time / Correct Score. This
table contains amount of each result for each team in the league. It’s very
useful statistics for gamblers.
Resources: EnetPulse and Opta clients, soccerStats, betstudy

Figure 2.8: Top of the HT/FT table

26

2.4. Existing solution

Odds Comparison – another good feature for gamblers. A lot of book-
maker odds are gathered in one place. If someone wants to start betting
on football, this information could be useful to identify most profitable
bookmakers. Also it could be used for detecting betting forks1.
Resources: OddsPortal, EnetPulse consumers

Figure 2.9: Odds Comparison: Deportivo La Coruña – Real Madrid

Tables covered specific stats
The resource (24score.org) provides next bunch of stats covered in the
same way: three types of accumulated tables. Those stats are corners,
fouls, cards, offsides and ball possession.

First type of provided table – individual averages. It contains all league
teams, number of played matches and average number of particular stat-
istical indicator.

Figure 2.10: Example of individual averages table – corners

1betting forks - specific bet type, when player receives a guaranteed profit

27

2. Research of resources and existing solutions

Second one – result matrix. This matrix contains particular statistic
scores of each played matches, in matrix format.

Figure 2.11: Top fragment of result matrix – corners

The third statistic type – Over/Under table. It’s available only for
corner and yellow card stats. The same table as for goals, but corner-
/yellow card totals are considered instead of goal totals.

Figure 2.12: Over/Under corner table

Scoring minutes table – for each team it shows the number of goals for
every specific time range of the game. Commonly, whole match time is
divided into 15 minutes ranges: 0-15, 15-30,. . . , 75-90.
Resources: betstudy, soccerStats

Figure 2.13: Sample of scoring minutes table

28

2.4. Existing solution

Tables with scoring numbers
In 24score.org the specific group of the stats is covered the same way –
the table with all teams and with the following indicators:

• Number of played matches

• Number of games for which particular statistic is true

• Percentage of those games

• Stat results of last 5 matches

• Current streak

There are three types of stats in the group: both teams scored, failed to
score, clean sheets.

Figure 2.14: Example of the table – both teams scored.

Head To Head (H2H) stats – comparison of two teams. I have found only
2 groups of sites providing this stats – Opta and EnetPulse clients. Opta
provides much more information in such comparison. EnetPulse provides
solely form of two teams and history of their confrontation. Opta also
provides those stats and in addition covers next stats:

• Table with calculated stats of all matches between two selected teams
– number of wins/draws/losses, goals, points

• Player stats – topscorers, assists leaders, first goal scorers, most
undisciplined players of each team

• Scoring minutes information

• Trophies records

Resources: EnetPulse and Opta clients

29

2. Research of resources and existing solutions

Random statistical facts pop-up – I have found it only on one website –
soccerStats. It’s available only for current season, for current situation in
the league. Interesting facts randomly pop-up in some frequencies (every
5-7 seconds). Those facts are about winning or loosing streaks, streaks of
match with/without goals, percentage of home/away wins, etc. Every fact
is related to some concrete team. Examples:

82% of Real Madrid’s matches had over 2.5 goals scored in total.
Osasuna have lost 53% of their home matches.

Atletico Madrid are undefeated in their last 11 away matches.

Those facts could be useful for gamblers and football commentators. The
latest can use it in boring moments of the match to keep alive the interest
of the public.
Resources: soccerStats

Results by rounds – shows aggregated stats by rounds. Provided number
of wins, draws and losses for each tour. In addition amount of goals (home-
away) and number of games with total under/over 2.5 are provided.
Resources: 24score.com

Figure 2.15: Results of first 7 rounds

Referees table – aggregated information about referees. The table con-
sists of next columns:

• Referee name

• Number of games he worked on

• Numbers of home team wins, draws and away team wins

• Number of all yellow cards and average number per game. Shows
number of all cards, and separately home/away team cards.

• Red cards – same as yellow cards, only without average numbers.

30

2.4. Existing solution

Resources: 24score.com

Correct scores – aggregated statistic of all match scores. There are 2
ways how to consider no draw scores – to take or not to take into account
which team won (home or away). If it is taken into account, scores 1-0
and 0-1 are different and should be calculated separately. In addition to
numbers of games there could be provided a percentage of each score to
number of all matches.
Resources: soccerStats, betstudy, futbol24.com

Team profit (betting) – one of the most interesting stats for gamblers.
It’s very specific and rare info, only one resource providing this data was
found. This table shows how much you would win or lose if you bet for
the win the same amount of money on your favorite team every match.
It’s very surprising that most winning teams do not bring much profit,
because their wins are often estimated with small coefficients.
Resources: soccervista.com

Figure 2.16: Most profitable teams

31

2. Research of resources and existing solutions

Summary
In this section I have described a lot of interesting statistics that is provided
by most popular resources. But of course I have not covered all features
because of the huge variability of stats. Only most the common and inter-
esting statistics have been covered. But still, I want to mention soccer-
Stats as the site providing the most diverse statistics.

32

Chapter3

Design

In this chapter I am going to describe the architecture of the entire pro-
ject, database structure and integration of all components integrated in
the project. Therefore, the decision on the following aspects has to be
made:

• Define general structure of a component

• Define what frameworks to use

• Define what design pattern could be used in particula cases

• Define how to integrate all components

• Define the way of data storage.

Development tools
Firstly, the technology and programming tools that will be used for the im-
plementation of the program has to be defined. As was already mentioned
in the previous chapter as non-functional requirement – the project would
be implemented using programming language C# and .Net framework
version >=4.5. In this case obvious option of IDE (Integrated Develop-
ment Environment) is Visual Studio. I have decided to use last version of
it - VS2017. As database for easier integration I decided to use also Mi-
crosoft product – MS SQL database and SQL Server Management Studio
(SSMS) tool.

General architecture
Before designing each part of the system I want to describe general view
of project structuer. The next Figure 3.1 illustrates physical separation of
components on 2 servers.

33

3. Design

Figure 3.1: General architecture of the system

Web application server contains the web based GUI and database for
storing logs and another information required for web app. As was de-
scribed earlier in the project, GUI has to provide only data collected by
crawlers and produced by analyzers. Additionally, special tool for search-
ing specific stats will be implemented as part of the project. However, all
business logic will be implemented on the server side. In case of further
development of the project there are lots of possibilities for further im-
provements for web GUI – user registrations, chat for users, comments
of predictions, etc. The future improvements will be described in more
details in Conclusion.

In comparison to web application, Data producing server contains much
more components then previous one. It is divided into the next logical
parts: bookmaker odds and football historical data collectors, several ana-
lyzers and other helper modules. Previously mentioned components will
be described in the chapters to come.

3.1 Data producing server

3.1.1 Data collectors

All data collectors and crawlers are structured in a similar way; the only
difference is their implementation.
The following simple class diagram depicts that all data collectors im-
plement IDataCollector interface, which provides only a few methods:
Start(), Stop() and GetTimeout(). All data collectors are managed by TaskMan-
ager as a result, all manipulation (start or stop) is performed by this class.
GetTimeout() method is closely connected with Stop() method, because it
is used for restarting data collector in case it hangs out.

34

3.1. Data producing server

Figure 3.2: Class diagram of data collectors

Gathering of historical data
In Analysis part I have decided to use 2 sources of data – Football-Data and
Flashscore.com or analogues [2.1.2]. In Football-Data source all provided
data already structured and saved in CSV format, so data collectors just
need to download all required files, parse them and store all data to local
database. It’s quite simple implementation. Its implementation doesn’t re-
quired external frameworks and 3rd services because .Net framework has
own libraries that allow to download file from internet (System.Web.WebClient)
and to work with CSV files (System.IO).
In next source all data are placed on different pages, so I need to imple-
ment several data collectors for each page type. Its implementation could
be divided to next steps: open a page and download its content, parse it,
store all data to database.

1. In first step could appear one problem – sometimes page with data
shows only a certain amount of all data, and for loading the rest of
data user should do some action: click on a link, scroll to the bottom
of page, etc. For solving this type of problem could be used headless
browsers. It’s a web browser without a graphical user interface,
controlled programmatically. Mostly used for automation, testing,
and web scrapping.

2. In second step program need to parse html page to some appropriate
data structure. For this purpose we could use some helper tools
that makes it easier. All possible tools and other frameworks are
described in Frameworks section [3.3].

3. In third step program just store all parsed data to database. For
interaction with database an object-relational mapping (ORM) could
be used. But firstly I need to design database model based on ana-
lysis of gathered data varieties.

35

3. Design

Figure 3.3 demonstrates the database model of historical data. There are
tables used by LeagueSeasonInfo, SeasonGames and GameStats collect-
ors:

Figure 3.3: Class diagram of data collectors

36

3.1. Data producing server

LeagueSeasonTeams is known as associative table for resolving many-
to-many relationships. In this case it represents all teams that played
in the league in particular season. Besides of main associative columns
– teamId and leagueSeasonId – it contains some statistics of the club
in concrete season. Those columns will be used by analyzers to store
their results.

Referee stands for referee, contains main info: full name, date of birth.
As future improvement it could be expanded with next data – nation-
ality, gender, photo, career start, etc.

LeagueSeasonReferees same as LeagueSeasonTeams table, only rep-
resents all referees that worked in particular season.

SeasonRound as the name implies it contains all season rounds with
some stats, that will be generated by analyzers. Main indicators of
each round are seasonId and round number.

Game the main information in whole database. Represents a game and
contains next information: game date, competitors, round of a sea-
son, score, result and referee. Also could be gathered additional
info, such as stadium name, game weather, attendance, etc.

GameStats this table has one-to-one relationship with Game table, so it
just expands information about game. There are stats that gathered
by data collectors. All those stats were mentioned in functional re-
quirements section.

GameResourceId simple table that contains all game IDs in different
resources. For example resource Flashscore.com in all games html
page contains id for each game that could be used for opening page
with statistics of a corresponding game.

Gathering of bookmaker odds
The process of bookmakers odds gathering is exactly the same as for gath-
ering historical data from websites. All steps are identical, so I only need
to defined database model. All bookmaker odds have been already de-
scribed in functional requirements subsection. Therefore, I just put all
of them to one table BookmakerOdds and additionally added table that
represents a bookmaker:

• Bookmaker table columns: bookmakerId (int, PK), bookmakerName
(varchar). Some additional info columns could be added.

37

3. Design

• BookmakerOdds table columns: recordId (int, PK), gameId (int, FK),
bookmakerId (int, FK), createdTime (datetime), match results = homeWin
(float), draw(float), awayWin(float), double chances = 1X(float), 12(float),
X2(float), BTTS-YES(float), BTTS-NO(float), Over2.5(float), Under2.5(float),
half-time results = homeWin (float), draw(float).

Used abbreviations
database:

PK – primary key FK – foreign key
bookmaker odds:

1X – home team wins or draw
X2 – away team wins or draw
12 – home or away team wins
BTTS-YES(NO) – both teams to score - yes (no)
Over/Under2.5 – total of game over/under 2.5

3.1.2 Analyzers

All analyzers would implement the same interface, differences are only in
their implementation. The main interface (IDataAnalyzer) provides only 2
methods: RunAnalyzing and GetTargetDataTable. First method is used for
starting analyzing process and second one returns target database table
that stores particular analyzer’s results. There are all analyzer types that
will be implemented in this project:

StandingTable analyzer – will fill columns of LeagueSeasonTeams table,
that already have been presented in database model for historical
data [3.1.1]. Next data for each team will be provided:

• game played (int)

• number of wins (int), draws (int) and losses (int)

• scored goals (goalsFor: int) and conceded goals (goalsAgainst:
int)

• points (int) and position in table (int)

Target data table – LeagueSeasonTeams (see Figure 3.3)

38

3.1. Data producing server

Figure 3.4: Class diagram of data collectors

SeasonStats analyzer – is responsible for main season stats. It will cal-
culate next data:

• number of each type of result (home/away team win, draw) and
their percentage

• count of all home/away team goals and the total number

• percentage and number of games where both teams scored

39

3. Design

• percentage and number of games where game total more then
2.5 (and may be another totals too)

Target data table – SeasonStats (see Figure 3.4)

RoundsStats analyzer – will provide data for columns of SeasonRounds
table, that also have been presented in database model for historical
data [3.1.1]. Next data for each round will be calculated:

• game played (int) and number of wins (int), draws (int) and
losses (int)

• home team goals (homeGoals: int) and away team goals (away-
Goals: int)

• number of games where both teams scored (btts-yes: int) and
opposite (btts-no: int)

• number of games where goals total more then 2.5 (over2_5: int)
and opposite (under2_5: int)

Target data table – SeasonRounds (see Figure 3.4)

AverageRoundStats analyzer – shows stats of average round. Actually it
provides same stats as SeasonStats analyzer but applied to number
of round games.
[For example, if each round composed from 8 games and season
stats percentages are: home wins – 50%, draws and away wins –
25% each, then round stats average numbers are: home wins = 4,
draws = 2, away wins = 2.]
Target data table – AverageRoundStats (see Figure 3.4)

HeadToHeadStats analyzer – is responsible for stats of two teams com-
parison. Will be calculated for each two teams in league. Next stat-
istics will be covered:

• number of each results (first/second team wins and draws) and
its percentage

• number of games with total more then 2.5 and opposite

• number of games with both teams scored and opposite

• average game total and average totals of each team goals

Target data table – HeadToHeadStats (see Figure 3.4)

40

3.1. Data producing server

FootballTeamForm analyzer – provides stats of each football team form
in the season. It contains same data as SeasonStats but for one
particular team in selected time period. Next time periods will be
covered: all season, last 10 matches and last 5 matches. Therefore,
for each team in one season target data table will be contains 3 re-
cords for each time period.
Target data table – FootballTeamForm (see Figure 3.4)

BookmakerOddsStats analyzer – provides bookmaker odds stats. It just
will calculate average and maximal/minimum values of each gathered
odd types. This type of analysis will be conducted every time new
bookmaker odds are gathered.
Target data table – BookmakerOddsStats (see Figure 3.4)

3.1.3 Game prediction

It is not an easy task to implement game prediction algorithm. There are
a lot of information that should be taken into account, such as:

• Each match staring lineup of both team – players participated in the
match

• Analysis of starting lineup for upcoming match and analysis of each
player

• Information about missing match players – injuries, red cards, num-
ber of yellow cards and another causes

• Transfers and transfer rumors

• Another less relevant data which can affect the motivation of players:

– Team manager dismissal of rumors about that

– Personal problems of players

– Significant dates for club: club foundation date, birthday of
manager or owner and much more.

Most likely almost all of those facts are taken into account by bookmakers
for analyzing and determining odds. It basically means that a very good
prediction algorithm will provide a practically identical estimate of match
as bookies.
A separate diploma thesis or research is needed to fully understand all
caveats and issues that can arise during its implementation. Because of
the fact, that this thesis lacks of this type of collected information, this

41

3. Design

problem is out of the scope of this project. Nevertheless, I implemented
simplified version of this algorithm that will use the following information:

• bookmaker odds as a probability of all outcomes

• rounds statistics

• league season streaks of results

• two teams head-to-head statistics and their streaks

3.1.4 Infrastructure components

The main logical units of the system – data collectors and analyzers –
already have been designed and described. But there are should be an-
other components for organizing and managing all those units. Next struc-
ture have been created: the main running application, will be run all time
and decide when each data collector and analyzer to start or stop. For de-
cision making will be used next helper class – Scheduler – that will provide
information about units that should be started. And the last helper class
is StatsSearchingEngine. It will provide methods for searching required
stats from the entire database.

3.1.4.1 Main windows service

It should be long-running applications that run in the background repetit-
ively without the need of any user interface or user interaction like Win-
dows Forms Application, WPF Application, Console Application. So, the
obvious decision in this case to implement this component as Windows
service. There are several frameworks for Windows service implementa-
tion and one of them – Topshelf – have been chosen (see [3.3.2]).

3.1.4.2 Task scheduling

The data server should collect data from different resources and then
analyze it, and for these purposes, crawlers and analyzers have been de-
signed. But then the question arises: how often should crawlers and ana-
lyzers be started? The simplest approach is to define some frequencies
for each crawler and run them strictly on the schedule. But this approach
has weaknesses, which is clear after analyzing the schedule of games.

Let’s take the case of La Liga. Normally a season round is played for
four days: one match on Friday and Monday, and four games Saturday and
Sunday. But some tours, few in a season, can take place on Tuesday and
Wednesday. An usually two last rounds are played in one day all matches

42

3.1. Data producing server

at the same time. Therefore, when determining the frequency for crawlers
there appear next problems:

• If it is very high (f.ex. every hour), then 99% of the runs will do
nothing, because new data appears only after the game.

• Otherwise, when frequency is low (f.ex. few times per day), then also
a lot of tasks is unnecessary. And on days when many matches are
played, the server could not show actual information for some time
period.

Another obvious approach is to run the crawler after each match. For
this approach the system need firstly to collect data about the schedule
of season games, and crawlers will be launched 2 hours after each game.
For gathering of season schedule I design additional type of crawler, that
is similar as main games stats crawler. Also next database model was
created (see Figure 3.5):

TaskExecutor stands for crawler or analyzer. An executor identified by
name, some description, name of class in code and running paramet-
ers (maximal time for run and number of retries, if run failed).

Task represents one run of one crawler or analyzer. It contains next
information: id number, status of run, time spent, result of run and
executor that is responsible for the task.

LeagueSeasonReferees defines what task should be created after some
another task is done. It includes information about two executors:
one that done his task, and another one that should be run after. Also
it specifies the time over which it’s necessary to run a new task.

Figure 3.5: Scheduling database model

43

3. Design

3.1.4.3 Statistics search engine

The last functional requirement of the project is specific interface for com-
plex users queries. For its implementation I decide to design so-called
Search Engine class that will be responsible for all complex stats searches.
Also it could be used by analyzers.

Firstly, I need to define what methods the Search Engine should im-
plement. According to mentioned functional requirement 4 methods have
been defined:

• GetGames(conditions) – returns list of game objects (List<Game>)
which fulfill conditions

• GetGamesNumber(conditions) – return number of all correspond-
ing games. In essence this method does the same search as previous
but returns less information. Therefore, should be faster then previ-
ous.

• GetMaximalStreak / GetMinimalStreak (conditions) – returns a series
of consecutive games that fulfill conditions. Since there can be many
results the method will return only first streak. Actually very rarely
someone interested in minimal streaks, so this method probably will
be removed in the future.

• GetNumberOfStreaks (conditions) – returns the number of suitable
streaks. Besides standard conditions (described below) this method
have additional input parameter – number of games in streak. This
parameter composed of two values: comparing symbol (more,less,equal)
and interesting number (1,2,..).

Secondly, all input parameters should be defined. All methods have similar
set of input parameters – conditions. This set contains:

• TeamId – identification of interesting team.

• Game place – Home, Away or All. Used only when TeamId specified.

• Result of game – Team1, Draw or Team2. If TeamId is set the result
will be interpreted as Win, Draw or Loss. Otherwise as HomeTeam-
Win, Draw or AwayTeamWin.

• Game total of goals – composed from 2 indicators: Over or Under
and interesting number.

• Both teams to score – yes or no, simple boolean variable.

44

3.1. Data producing server

• One team total of goals – same as Game total but additionally has
3rd indicator: Team1 or Team2. If TeamId specified, Team1 = goals
scored by selected team and Team2 = goals conceded. Otherwise,
Team 1 = goals scored by home team and Team2 = guest team.

Figure 3.6: Search engine class diagram

3.1.5 Logging

Why to implement
Logging is very important process, that is useful mainly for maintain the
whole system. But actually there are 2 reasons for performing them: dia-
gnostic and audit.

Diagnostic logging shows what your code is doing: what methods are
called, define caller method, what parameters are used, and most import-
ant information about errors – code stack trace, error message, error
type, etc. So, if an error occurred, developer can investigate the prob-
lem through logs and quickly define root of issue and fix it. That’s why it
is so important.

Audit logging is a business requirement. It captures significant events
in the system, that is interesting for management or marketing. This is
things like what request is more popular or from which location comes
the greater number of requests, etc. For IT guys, who support the system,
it’s probably not very useful data. But for business purposes this can play
an important role.
How to implement
For the implementation of logging there are several effective frameworks
can be used. But at this stage of development I decide to implement log-
ging by my own. Therefore, one database table for logs and simple Logger
class have been designed. Figure 3.7 shows all columns of Log database

45

3. Design

table and methods that Logger will provide. As you can understand from
the figure, there will be 3 levels of severity: Verbose, Information and Er-
ror. Verbose level used for every program activity while Information level
is used for more important events. The data column could be used for
storing any appropriate information for the log, so it will be depends on
application or other columns.

Figure 3.7: Database Log table and Logger class

3.1.6 REST Api

The whole system is composed from 2 servers, where Web application
server just represents data from Data producing server. So the project
architecture could be interpreted as client-server application, where web
application is a thin client. Therefore, I need to design how servers will
communicate and interchange data between each other. I decide to use
REST architecture, because it suitable for these purpose and easy imple-
mented.

3.1.6.1 REST

REST is the abbreviation for Representational State Transfer. Basically it
is a a design concept or architecture for managing state information. It
defines several constraints:

• Client-Server – it is well-known network architecture. The main prin-
ciple: all network units are servers or clients. A client component,
desiring that a service be performed, sends a request to the server
via a connector. The server either rejects or performs the request
and sends a response back to the client [4].

• Statelessness – it means that the server doesn’t store any informa-
tion about client’s previous requests. Each request is treated as an
independent. That approach improve server scalability.

46

3.1. Data producing server

• Caching – it basically means that a client can save trips over the
network by reusing previous responses from a cache.

• Uniform Interface – this term unites next 4 interface constraints:

– Resource-Based – each individual resources is identified in re-
quests using URIs as resource identifiers.

– Manipulation of resources through representations – the server
describes resource state in response so a client knows a repres-
entation of a resource, including any metadata attached. So he
has enough information to modify or delete the resource on the
server, provided it has permission to do so.

– Self-descriptive messages – it means that each message includes
all necessary information to describe how to process the mes-
sage.

– The hypermedia constraint – clients deliver state via body con-
tents, query-string parameters, request headers and the reques-
ted URI. Services provide state to clients via body content, re-
sponse codes, and response headers. This is technically referred-
to as hypermedia.

• Layered System – it means that a client cannot usually detect whether
it is connected directly to the end server, or to an intermediary along
the way. Intermediary servers may improve system scalability by en-
abling load-balancing and by providing shared caches. Layers may
also enforce security policies.

• Code on Demand (optional) – the server can send executable code in
addition to data. This code is automatically deployed when the client
requests it, and will be automatically redeployed if it changes.

Access to resources on a server should be provided through Uniform Re-
source Identifier (URI) and permit four basic operations: Create, Read,
Update, Delete. These operations could be completely mapped to HTTP
methods: POST, GET, PUT, DELETE. Server responses will contain a stand-
ard code of state, type of content and body with results.

3.1.6.2 List of endpoints

For the current requirements web application need only get data from
data server, so all endpoints implement as GET operation. But for future
development it could be expanded, and users would be able to add inform-
ation to data server.
There are all methods provided by REST Api:

47

3. Design

• Leagues information

– /leagues/info/all Get list of all available leagues with short info

– /leagues/info/{leagueId} Get more detailed information about
requested league

– /leagues/{leagueId}/allseasons Get short info about all avail-
able seasons of required league

• Seasons info and game stats

– /seasons/{seasonId}/standingtable Get current standing table
for required season

– /seasons/{seasonId}/allgames Get all finished games of the sea-
son with main results

– /seasons/{seasonId}/matchstats/{id}/ Get all known stats of par-
ticular game

– /seasons/{seasonId}/totalstats/table Get table of game totals in
the season (over/under 2.5)

– /seasons/{seasonId}/btts/table Get season table of both-team-
to-score game stats (yes/no)

• Season rounds information

– /seasons/{seasonId}/allrounds Get current and all finished sea-
son rounds

– /seasons/{seasonId}/round/{roundId}/games Get all games of
particular round

– /seasons/{seasonId}/round/games Get all games of current round

– /seasons/{seasonId}/round/table Get table of main stats for each
rounds

– /seasons/{seasonId}/round/stats Get average stats of all season
rounds

• Teams information

– /seasons/{seasonId}/team/all Get list of all teams in the season

– /seasons/{seasonId}/team/{teamId} Get season stats of partic-
ular team

– /seasons/{seasonId}/team/{teamId}/form/{type} Get list of all
season games of one team [Possible types: all, home or away]

48

3.2. Web application server

– /seasons/{seasonId}/team/{teamId}/form5/{type} Get list of last
5 season games of one team

– /seasons/{seasonId}/team/{teamId}/form10/{type} Get list of
last 10 season games of one team team

– /seasons/{seasonId}/h2h/{team1Id}/{team2Id} Get head-to-head
stats of two teams

• Predictions

– /seasons/{seasonId}/predictions Get all current predictions of
upcoming games

– /seasons/{seasonId}/predictions/all Get all predictions of all sea-
son games

– /seasons/{seasonId}/predictions/finished Get all evaluated pre-
dictions and their stats

• Searching tool

– /searching/games/{params} Get all corresponding games

– /searching/games/number/{params} Get number of appropri-
ate games

– /searching/streak/maximal/{params} Get one maximal streak
of suitable games

– /searching/streak/minimal/{params} Get one minimal streak of
corresponding games

– /searching/streak/number/{params} Get number of appropri-
ate streaks

3.2 Web application server

3.2.1 Architecture

As was mentioned before, for development of the entire project I choose to
use C# and .Net framework. For web application development .Net frame-
work has ASP.NET platform. ASP.NET is an open source web framework
for building modern web apps and services with .Net [2]. It provides 2
main approaches for web application development: Web Forms and MVC.

Web Forms Microsoft first brought out ASP.NETWeb Forms. It provides
an abstraction over the HTTP protocol to make development closer to tra-
ditional desktop development and managing state information easier. The

49

3. Design

main feature of this approach is ViewState, an information that are trans-
ferring at header of requests and responses. This makes possible to create
statefulness web application. But also it is main problem for web applica-
tion performance, because ViewState is stored in the page itself resulting
increased page size.

ASP.NET MVC ASP.NET MVC is a Microsofts one more Web applic-
ation framework designed with separation of concerns and testability in
mind. It is built on CLR2 and completely based on MVC architecture and
so we think in terms of controllers and Views. It has in most cases bet-
ter performance, more understandable project structure, full control over
HTML and several other features compared with Web Forms. For better
understanding the idea and workflow of ASP.NET MVC please see Fig-
ure 3.8.

Figure 3.8: How ASP.NET MVC works. Source: [7]

ASP.NET MVC is more modern and in most aspects better framework,
so I decided to use this framework for web application development.

3.2.2 Searching tool

All required functionalities have been already described in Analysis chapter.
I just need to define the way how it could be implemented. The main
aspect that should be taken into account is a user-friendly interface. Fig-
ure 3.9 shows the design of the page with this searching tool. As you could
see, There are three parts with set parameters: time range, conditions
and result form. When the user opens this page, Time range part looks
like Result format: only selection of range type is available. After the user
chooses it, the page automatically adds next UI components depended on
the choice. Conditions part should consist from 1 to 6 conditions. For
adding new condition user have to click to Add condition button and then

2CLR – the virtual machine component of Microsoft’s .NET framework

50

3.2. Web application server

fulfill pop-up form. The pop-up form for new conditions works in the same
way as Time range. User firstly has to choose a type of condition, and
then a form will be supplemented by next required input fields. When all
fields are filled out the user can click to Save button and a new condition
is added to the table on the page. Condition editing works, in the same
way, using pop-up form.

Figure 3.9: Searching tool mock-up

3.2.3 Database

The web application server need to store their own data. It should con-
tains logging information and history of request to Data Producing server.
For current goals there are not lots of data have to stored to DB, but for
future improvements the database model will be significant expended.

The current database model will be contain only 4 tables: Log, Reques-
tHistory, ResponseHistory and RequestParams. The Log table structure
will be described in next section. The other three tables are shown on
Figure3.10

Figure 3.10: Database model for web application

51

3. Design

3.3 Frameworks

In this subsection, I am going to briefly describe all frameworks that have
been chosen for the project implementation. I have already mentioned
some of them in previous sections in this chapter.

3.3.1 Nancy

Nancy is a lightweight, low-ceremony, framework for building HTTP based
services on .NET and Mono [10]. It is inspired by the Sinatra frame-
work for Ruby. Therefore, Nancy was named after the daughter of Frank
Sinatra. Nancy is designed to handle all types of requests: DELETE,
GET, HEAD, OPTIONS, POST, PUT and PATCH. This framework takes care
about all web service specifics, so a developer could focus on more import-
ant things: a logic of his application. It’s built, by the community, as an
open-source framework. So every developer gets full access to the source
code. Also, it is licensed under the MIT license.

3.3.2 Topshelf

Topshelf is a Windows service framework for the .NET platform. It greatly
simplifies the creation of a Windows service, especially testing, debug-
ging processes and installation into the Windows Service Control Manager
(SCM). This is a useful framework for developers, so they can focus on ser-
vice logic instead of the details of interacting with the built-in service sup-
port in the .NET framework. Developers dont need to understand the com-
plex details of service classes, perform installation via InstallUtil, or learn
how to attach the debugger to services for troubleshooting issues [11]. It’
very flexible framework that supports most of the commonly used service
installation options. Additionally, it is a lightweight tool (around 200KB)
and it’s also an open-source project. Also, it works with Mono, so it pos-
sible to deploy services to Linux.

3.3.3 PhantomJS

PhantomJS is a headless WebKit scriptable with a JavaScript API. It has
fast and native support for various web standards: DOM handling, CSS
selector, JSON, Canvas, and SVG [12]. This framework allows developers
to access the browsers DOM API. It’s helpful utility for Web scrapping. Us-
ing PhantomJS crawlers could get data, which is available only after some
user’s actions on the page. For example, for getting some information on
some page user should click on next button. Then it sends AJAX request

52

3.3. Frameworks

to the server, and after getting response required data will appears on the
page. For automating this process, this framework could be used.

3.3.4 Entity Framework

Entity Framework (EF) is an Object Relational Mapping (ORM) framework
that enables .NET developers to work with relational data using domain-
specific objects. It eliminates the need for most of the data-access code
that developers usually need to write [13]. This framework provides three
approaches for different scenarios:

• Database first – if database already have been created or the de-
veloper wants to design database ahead of other parts of the applic-
ation

• Code first – if the developer wants to focus on domain classes and
then generate the database from created domain classes

• Model first – if the developer wants to design the database schema
on the visual designer and then creates the database and classes.

There are many other ORM frameworks for .NET in the market, but the
fact, that EF is an open-source project and it is provided by Microsoft,
distinguishes it from alternatives.

53

Chapter4

Implementation and testing

Guided by the tasks of this thesis, I had to implement the application for
gathering football statistical data and analyzing it. In previous chapters,
the analysis and design of the application have been provided. Based on
results of the design part, two parts of the project have been realized.
Also, the REST API was created. During the whole implementation pro-
cess, I followed the architecture designed in the previous chapter. There
are too many classes, so I’m going to describe only most interesting of
them:

• REST implementation

• Prediction algorithm

• Statistics searching

4.1 REST implementation

In this section, I am going to describe the implementation of REST API.
It divides into two parts: server and client. The server part will be im-
plemented on the data providing server and a client will be used by web
application for querying data.

4.1.1 Server

In design part, I already have defined the list of endpoints for REST API.
Therefore, I just need to implement all those methods which are basically
selections of data from the database. Because I decided to use Nancy
framework for its implementation, it very simplifies this task.

The next listing 4.1 depicts how easy it seems to implement one of the
API methods.

55

4. Implementation and testing

Listing 4.1: An example of REST method implementation

1 LegueModule. cs
2 . . .
3 using System;
4 using FIT .Diploma.Server .DataAccess ;
5 using FIT .Diploma.Server .DataAccess ;
6 using FIT .Diploma.Shared. Service ;
7 using Nancy;
8

9 public class LeagueModule : NancyModule
10 {
11 public LeagueModule() : base(" / leagues")
12 {
13 / / " / leagues / info / a l l " endpoint implementation
14 Get[" / info / a l l "] = parameters => {
15 var leagueRepo = new LeagueRepository () ;
16 var dbLeagues = leagueRepo . GetAll () ;
17 List<LeagueObject> result = ObjectMapper .Convert(dbLeagues) ;
18 return Response .AsJson(result) ;
19 };
20

21 / / " / leagues/{leagueId}/allseasons" endpoint implementation
22 Get[" /{leagueId}/allseasons"] = parameters => {
23 . . .
24 };
25 . . .
26 }
27 }

Then I just need to implement other methods the same way.

4.1.2 Client

There are few options how to implement client:

• HttpWebRequest – the .Net pioneer class from for maximal control
of request

• HttpWebRequest – a higher-level abstraction built on top of Http-
WebRequest. It has less control of request. However, it is easier to
use and requires less code

• HttpWebRequest – The modern version of WebClient with some new
features. For example, there is availability to send requests asyn-
chronously, that could improve the performance of the application.
It is available only for the latest .Net framework versions (4.5+).

• HttpWebRequest – The alternative that is developed by the com-
munity. It is one of the only options for a portable, multi-platform,

56

4.2. Prediction algorithm

unencumbered, fully open-source HTTP client that you can use in all
of your applications [14].

First three classes, which are provided by Microsoft, have a dependency
on .Net framework and could be run only on Windows OS, whereas Rest-
Sharp is an open-source project created for use in other platforms with
.Net Core.

This project is fully implemented in C# and .Net framework. There-
fore, it doesn’t require multi-platforming features. Therefore, I have de-
cided to use HttpClient for better performance of the application. The
listing below 4.2 shows an example of a REST call.

Listing 4.2: An example of REST client call

1 RestClient . cs
2 . . .
3 public List<League> GetLeagues()
4 {
5 HttpClient client = new HttpClient () ;
6 client .BaseAddress = new Uri ("http : / / localhost :9000/") ;
7 client .DefaultRequestHeaders .Accept .Add(
8 new MediaTypeWithQualityHeaderValue("application / json")) ;
9 HttpResponseMessage resp = await client .GetAsync("leagues / info / a l l ") ;

10 i f (resp . IsSuccessStatusCode)
11 {
12 / / response parsing and mapping to the reqired format
13 . . .
14 }
15 }
16 . . .

4.2 Prediction algorithm

As was mentioned in Design part, for predictions of game result next para-
meters were used:

• bookmaker odds

• rounds statistics

• league season streaks of results

• head-to-head statistics of competitors

4.2.1 Bookmaker odds

From that parameter, I could get the probabilities of each result by the
opinion of bookmaker analytics. All bookmaker odds in the project are

57

4. Implementation and testing

collected in decimal format. For calculating the implied probability from
it, the next equation could be applied:

(1/decimalOdds) ∗ 100 = impliedProbability (4.1)

Therefore, the first step of algorithm is to calculate all results implied
probabilities.

4.2.2 Rounds statistics

This parameter shows the season rounds statistics, and compares it with
the similar stats of previous seasons. It means that algorithm takes into
account numbers of home wins, draws and away wins per round in current
season. Then it calculates the same numbers for previous seasons and
makes predictions on whole round based on this stats.

4.2.3 League season streaks

This parameter indicates the current league situation in the season. Basic-
ally, it calculate the season games streaks with one of the next conditions:

• Games without draw

• Matches where only home teams win or no guest wins

• Matches where only away teams win or no home team wins

Therefore, if there is some streak, the algorithm will increase the probab-
ility of the result that could end the streak. This strategy is based on the
fact, that all streaks come to an end at some point.

4.2.4 Head-to-head statistics

This parameter is based on similar principles as previous two, but only
games between 2 teams are taken into account.

4.3 Statistics searching

For searching specific statistics, I have designed and implemented the
web interface. A web application part is just a form on webpage in which
the user specifies the search parameters. Then web application sends all
parameters as a JSON file to the data providing server by the Rest client.
Rest server on the data server side receives the request and delegates the
search task to Search Engine.
The Search Engine class has to implement ISearchEngine (see on the
listening 4.3).

58

4.4. Testing

Listing 4.3: ISearchEngine.cs

1 public interface ISearchEngine
2 {
3 List<GameObject> GetGames(GameParameters conditions) ;
4 int GetGamesNumber(GameParameters conditions) ;
5 List<GameObject> GetMaximalStreak(GameParameters conditions) ;
6 List<GameObject> GetMinimalStreak(GameParameters conditions) ;
7 int GetNumberOfStreaks(GameParameters condition , StreakParameters

streakCond) ;
8 }

In fact, the implementation of each method then looks like a generation
of SQL SELECT query. But because I use Entity Framework for accessing
the database, it is not needed to create actual SQL query. The next listen-
ing 4.4 shows the fragment of the GetGames() method implementation.

Listing 4.4: SearchEngine.cs

1 public class SearchEngine : ISearchEngine
2 {
3 List<GameObject> GetGames(GameParameters conditions){
4 var gameRepo = new GamesRepository () ;
5 var gameStatsRepo = new GameStatsRepository () ;
6 var timePeriod = ParametersMapper.GetTimePeriod(
7 conditions .TimeRange) ;
8 var result = gameRepo. GetAll (timePeriod) ;
9 i f (! string . IsNullOrEmpty(conditions . TotalCondition)) {

10 result = result .Where(. . .) ;
11 }
12 . . .
13 return result ;
14 }
15 . . .
16 }

After the SearchEngine returns some results, Rest server converts it to
JSON format and send the response to the Rest client.

4.4 Testing

Software testing is an investigation conducted to provide stakeholders
with information about the quality of the software product or service un-
der test [9]. Essentially, it can verify if the product meets all defined re-
quirements. Moreover, testing could detect bugs and unexpected program
behavior. Additionally, the proper level of test coverage allows to provide
refactoring of the project without fear to break some functional parts.

59

4. Implementation and testing

4.4.1 Unit tests

Unit testing is one of the testing types that is focused on verifying the cor-
rectness of separate units functionalities. All tested components should
be tested in isolation from other system units. Unit tests are very close to
the code itself, and they test mainly a pure functionality of units without
understanding any business logic. They can be created one time and run
every time that source code is changed to make sure that no bugs are in-
troduced [15].

For testing purposes, I have chosen the following parts of the project:
crawlers, analyzers, search engine and repositories. For testing REST
components, integration tests could be created in further development.
For the unit test implementation, the NUnit framework has been chosen.

4.4.1.1 NUnit framework

NUnit is a unit-testing framework for all .Net languages. Initially ported
from JUnit, the last production release has been completely rewritten with
many new features and support for a wide range of .NET platforms. It is
open-source software and NUnit 3.0 (last version) is released under the
MIT license. Earlier releases used the NUnit license Both of these licenses
allow the use of NUnit in free and commercial applications and libraries
without restrictions [16].

4.4.1.2 Summary

All main parts of the project have been covered by unit tests. Its imple-
mentation was written in accordance with the guide from that resource [17].

4.4.2 Prediction evaluation

For evaluation the quality of prediction algorithm I have applied it to 10
season rounds (=100 games). In result, there were 57 success and 43 fail
predictions. But those numbers don’t show the quality of algorithm. It’s
better to consider the profitability of predictions. Because a lot of success
predictions had a small coefficient, the profitability of testing cases was
a negative number. If I bet for each prediction the 100 currency units, in
the result, I would lose 857 units.
In this project, I have tested only one variant of the algorithm, with one
set of parameters. But it’s a good topic for future improvement.

This table shows how much you would win or lose if you bet for the win
the same amount of money on your favorite team every match. It’s very

60

4.4. Testing

surprising that most winning teams do not bring much profit, because
their wins are often estimated with small coefficients.

61

Conclusion

The primary task of this thesis was to design and implement the system
for gathering football statistics and carrying out analysis of it. The sec-
ondary task was to provide collected data and analysis results to the user.
Both tasks were implemented and there are some strong sides and as well
some flaws in implementation and design that occurred.

In the Analysis chapter, use cases and requirements for the program
were defined, and as well some other analysis results, that can be found
[1]. After determining requirements and target football league, the re-
search of all suitable resources and existing approaches was provided [2].
This study revealed the broad range of statistics that could be afforded by
this kind of project. Also, it helped to choose in which format this system
should provide statistics.

In the next chapter [3], the design of the project was described. The
whole system architecture was separated into the web application server
and the data server. For communication between those parts, REST API
was created. Also, the main structural components and database models
were designed. Additionally, I briefly described all main frameworks that
were used for implementation.

Based on the analysis and design parts, I have implemented the tar-
get application. The most interesting implementation parts have been
described in that chapter [4]. Also, all main parts of the project were
covered by tests. As a result, the functional system was created. Both
non-functional and functional requirements have been fulfilled. But be-
cause of the fact, that the main problem of this project is broadening, the
quality of each implemented components can be improved in the future
development.

To conclude I would like to say that this thesis was a great benefit for
me in which I have learned and tried in practice several interesting tech-

63

Conclusion

nologies. Personally, I see a promising potential of this project, the future
of which I have briefly described in the next section.

Future work

The current thesis has a lot of work that can be implemented in the future.
The most important features are described below.

Optional requirements not all optional requirements were implemen-
ted, because of the lack of data. Therefore, it could be taken as
future work for searching new data sources and implementing new
data collectors for them.

Additional statistics due to the research of existing solutions [2], lots of
statistical types was defined. And all of them or the most popular of
them should be implemented in this project. Thereby, I could create
the first web application that contains all possible statistics in one
place.

An attractive GUI in the project, the web application was created as
a user interface. But there was the minimal amount of works with
styles and JavaScript. Therefore, the output of the project doesn’t
look as attractive as I wanted it to be.

Mobile application in the future analysis of users and their devices
should be provided. And if a significant number of users comes to
the webpage through mobile phones, mobile version of the web ap-
plication has to be implemented.

64

Bibliography

[1] EnetPulse. THE MOST RELIABLE PROVIDER OF SPORTS DATA
[online]. [Accessed: 2017-06-30]. Available from: http://
www.enetpulse.com/

[2] Microsoft Corporation. ASP.NET [online]. [Accessed: 2017-06-29].
Available from: https://www.asp.net/

[3] totalSPORTEK.com. 25 Worlds Most Popular Sports (Ranked by 13
factors) [online]. [Accessed: 2017-06-29]. Available from: http://
www.totalsportek.com/most-popular-sports/

[4] Leonard Richardson, S. R., Mike Amundsen. RESTful Web APIs Ser-
vices for a Changing World. O’Reilly Media, 2013, ISBN 978-1-449-
35806-8.

[5] Sitefinity.com. ASP.NET MVC or Web forms [online]. [Accessed:
2017-06-28]. Available from: http://docs.sitefinity.com/for-
developers-asp-net-mvc-or-web-forms

[6] Martin Fowler, M. F., David Rice. Patterns of Enterprise Application
Architecture. Addison Wesley, 2002, ISBN 0-321-12742-0.

[7] CodeProjects. WebForms vs. MVC by Marla Sukesh[online]. Septem-
ber 2014, [Accessed: 2017-06-29]. Available from: https://
www.codeproject.com/Articles/528117/WebForms-vs-MVC

[8] RestApiTutorial.com. What Is REST? [online]. [Accessed: 2017-
06-24]. Available from: http://www.restapitutorial.com/lessons/
whatisrest.html

65

http://www.enetpulse.com/
http://www.enetpulse.com/
https://www.asp.net/
http://www.totalsportek.com/most-popular-sports/
http://www.totalsportek.com/most-popular-sports/
http://docs.sitefinity.com/for-developers-asp-net-mvc-or-web-forms
http://docs.sitefinity.com/for-developers-asp-net-mvc-or-web-forms
https://www.codeproject.com/Articles/528117/WebForms-vs-MVC
https://www.codeproject.com/Articles/528117/WebForms-vs-MVC
http://www.restapitutorial.com/lessons/whatisrest.html
http://www.restapitutorial.com/lessons/whatisrest.html

Bibliography

[9] Erik Hazzard’s Blog. How Logging Made me a Better Developer [on-
line]. [Accessed: 2017-06-20]. Available from: http://vasir.net/
blog/development/how-logging-made-me-a-better-developer

[10] NancyFx. Nancy documentation [online]. [Accessed: 2017-06-29].
Available from: https://github.com/NancyFx/Nancy

[11] Topshelf. Topshelf Key Concepts. [Accessed: 2017-06-29]. Available
from: http://docs.topshelf-project.com/en/latest/overview/
faq.html

[12] PhantomJS. PhantomJS overview [online]. [Accessed: 2017-06-29].
Available from: http://phantomjs.org/

[13] EntityFrameworkTutorial.net. What is Entity Frame-
work? [online]. [Accessed: 2017-06-28]. Available
from: http://www.entityframeworktutorial.net/what-is-
entityframework.aspx

[14] The Geeky Gecko. WebClient vs HttpClient vs HttpWebRe-
quest [online]. [Accessed: 2017-06-30]. Available from:
http://www.diogonunes.com/blog/webclient-vs-httpclient-
vs-httpwebrequest/

[15] Microsoft MSDN. Working with Unit Tests [online]. [Accessed:
2017-06-29]. Available from: https://msdn.microsoft.com/en-us/
library/ms182515(v=vs.90).aspx

[16] NUnit.org. What is NUnit? [online]. [Accessed: 2017-06-30]. Avail-
able from: http://www.nunit.org/

[17] Dimecasts.Net. Creating tests with NUnit [online]. [Accessed:
2017-06-29]. Available from: http://dimecasts.net/Casts/
CastDetails/

66

http://vasir.net/blog/development/how-logging-made-me-a-better-developer
http://vasir.net/blog/development/how-logging-made-me-a-better-developer
https://github.com/NancyFx/Nancy
http://docs.topshelf-project.com/en/latest/overview/faq.html
http://docs.topshelf-project.com/en/latest/overview/faq.html
http://phantomjs.org/
http://www.entityframeworktutorial.net/what-is-entityframework.aspx
http://www.entityframeworktutorial.net/what-is-entityframework.aspx
http://www.diogonunes.com/blog/webclient-vs-httpclient-vs-httpwebrequest/
http://www.diogonunes.com/blog/webclient-vs-httpclient-vs-httpwebrequest/
https://msdn.microsoft.com/en-us/library/ms182515(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ms182515(v=vs.90).aspx
http://www.nunit.org/
http://dimecasts.net/Casts/CastDetails/
http://dimecasts.net/Casts/CastDetails/

AppendixA

Acronyms

GUI Graphical user interface

XML Extensible markup language

REST Representational State Transfer

HTML Hypertext Markup Language

JSON JavaScript Object Notation

API Application Programming Interface

ORM Object Relational Mapping

JS Javascript

SQL Structured Query Language

OS Operating System

CSV Comma-separated values

DOM Extensible markup language

67

AppendixB

Contents of enclosed CD

readme.txt......................... the file with CD contents description
publish.............the published web application prepared for deploy
src...the directory of source codes

server..................................data producing server sources
web app..web application sources
shared......................shared sources that used in both servers
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf.............................. the thesis text in PDF format
thesis.ps..................................the thesis text in PS format

attachments..................the directory with electronic attachments

69

	Introduction
	Motivation
	The goals

	Analysis
	System functional requirements
	System non-functional requirements
	System use cases
	Target football league
	System sequence diagram

	Research of resources and existing solutions
	Resources – web sites
	Resources – web services
	Bookmaker odds for upcoming matches
	Existing solution

	Design
	Data producing server
	Web application server
	Frameworks

	Implementation and testing
	REST implementation
	Prediction algorithm
	Statistics searching
	Testing

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

