
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 21, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Collection, Transformation, and Integration of Data from the Web Services Domain

 Student: Bc. Radmir Usmanov

 Supervisor: Ing. Milan Dojčinovski

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2018/19

Instructions

Currently, there are several repositories and data models that provide descriptions for Web APIs. The main
goal of the thesis is to establish an automated collection, transformation, and integration of several data
sources with Web API descriptions.
Guidelines:
- Analyze and get familiar with existing datasets and data models for Web APIs.
- Establish mappings between different data models.
- For each individual data source, design and implement an automated collection, transformation, and
integration into the unified data model. The Linked Web APIs model will provide the basis and if needed
further extended.
- Validate and evaluate the knowledge extraction process for each identified Web API dataset.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Collection, Transformation, and
Integration of Data from the Web Services
Domain

Bc. Radmir Usmanov

Supervisor: Milan Dojčinovski

29th June 2017

Acknowledgements

I would like to thank my supervisor Milan Dojčinovski for his guidance, con-
structive notes and insights.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 29th June 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Radmir Usmanov. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Usmanov, Radmir. Collection, Transformation, and Integration of Data from
the Web Services Domain. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2017.

Abstrakt

V současné době existuje několik repozitář̊u a datových model̊u, které poskytuj́ı
popisy webových služeb. Diplomová práce řeš́ı problém transformace popis̊u
webových služeb z několika datových model̊u do jednoho sjednoceného datového
modelu. Práce analýzuje existuj́ıćı datasety a datové modely pro webové
služby, vytvář́ı mapováńı mezi r̊uznými datovými modely, automatizuje sběr,
transformace a integrace datových model̊u webových služeb do jednotného
datového modelu, ověřuje a vyhodnocuje výsledky extrakce.

Kĺıčová slova Sémantický web, Linked Data, Sémantické webové služby,
RDF, Linked Web API, Web Scrapping, Web Crawling, WSMO, WSMO-Lite

Abstract

Currently, there are several repositories and data models that provide de-
scriptions for Web APIs. The diploma thesis tackles the problem of trans-
forming descriptions of Web APIs from several data models into one unified
data model. It analyzes existing datasets and data models for Web APIs,
establishes mappings between different data models, collects, transforms and
integrates Web APIs data models into the unified data model, validates and
evaluates extraction results.

ix

Keywords Semantic Web, Linked Data, Semantic Web Services, RDF, Linked
Web API, Web Scrapping, Web Crawling, WSMO, WSMO-Lite

x

Contents

Introduction 1
Motivation . 1
The goal . 1
Thesis structure . 2

1 Background and related work 3
1.1 Background . 3
1.2 Web Services description models 10
1.3 Web API data sources . 16

2 Analysis and Design 19
2.1 Requirements . 19
2.2 Vocabularies . 20
2.3 Use cases . 21
2.4 The architecture . 22
2.5 Domain model . 28

3 Implementation 31
3.1 Used technologies . 31
3.2 Application architecture . 35
3.3 Deployment . 42
3.4 Implementation issues . 43

4 Validation and experiments 47
4.1 Coverage . 47
4.2 Quality . 48

Conclusion 51
Future work . 52

xi

Bibliography 53

A Acronyms 57

B Contents of enclosed CD 59

C RML rules 61

D Deployment instructions 71
D.1 Requirements . 71
D.2 Instructions . 71
D.3 Application commands . 73
D.4 Application source . 74

xii

List of Figures

1.1 Web API [1] . 4
1.2 Web Scrapping Architecture[2] . 7
1.3 WSDL schema [3] . 11
1.4 hRESTS microformat . 12
1.5 Web Services Description Models [4] 16

2.1 User interaction use cases . 22
2.2 Domain model process . 29
2.3 Extended Linked Web APIs data model 30

3.1 RML processing diagram [5] . 34
3.2 Components dependency diagram 36
3.3 Components interaction diagram 37
3.4 Parser’s UML diagram . 39

xiii

List of Tables

4.1 Provided and extracted APIs . 47
4.2 Extraction results . 48

xv

Introduction

Motivation

The World Wide Web is an information space where documents and other web
resources are identified by Uniform Resource Locators (URLs), interlinked by
hypertext links, and can be accessed via the Internet.

Nowadays the World Wide Web is used in many aspects, for studying, for
searching information, for entertainment, for communication needs and etc.
The WWW1 initially was created as a hub of information for humans, for
human needs and wasn’t adapted for machine processing.

Meanwhile, the internet has been developed as a vast network of applica-
tions communicating and interlinking with each other. The applications are
exchanging the data between each other, produce and consume it among the
network. This was made possible by Web Services and APIs2.

In the last decades, Web APIs have significantly increased in popularity. It
becomes the core technology of web functionality and affect the whole WWW.
Nevertheless, due to the lack of Web APIs semantic descriptions, Web Services
have drawbacks in discovery, sharing, composition and monitoring.

Despite the fact of existing several directories describing Web APIs, there
is still no generic Web APIs dataset. The Web APIs dataset will unify Web
Services and RESTful APIs, describe them using semantic annotations and
make them more discoverable and shareable.

The goal

The main goal of the thesis is to transform descriptions of Web APIs from
several data models into one unified data model.

To achieve this, the following tasks need to be solved:
1World Wide Web
2Application Programmable Interface

1

Introduction

• Analyze existing datasets and data models.

• Establishing mappings between data models.

• Establish an automated collection of Web APIs descriptions from data
sources.

• Transforming and integrating of extracted data into the unified data
model. The Linked Web APIs model can be taken as the basis for the
unified data model and if needed further extended.

As a result, data must become available as a Semantic Web APIs dataset
and can be consumed for further usage and development.

Thesis structure

The thesis is divided into four chapters.
The first chapter Background and related work describes basic concepts

associated with this work and research of existing solutions, such as existing
Web Services data models and Web API directories.

The second chapter which is called Analysis and Design defines functional
and non-functional requirements of the application, use cases and ontology
vocabularies that are used to create a unified data model. The concept of
unified data model is also described in this chapter. Moreover, the chapter
describes the architecture of application, approaches which provide a solution
for transforming data from multiple heterogeneous sources into semantic data
representation using RDF framework.

In the third chapter, which is called Implementation, we have represented
technologies that are used in the thesis, and the implementation of the applica-
tion. Besides, the chapter contains information about application deployment
and existing implementation issues.

The last fourth chapter describes the coverage of the work - statistics of
how many APIs were discovered and extracted. Also, the chapter classifies
the quality of the unified data model from several sides.

2

Chapter 1
Background and related work

1.1 Background

This section introduces theoretical part of the work, describing ideas and
principles that were used in creating of application. Most of the concepts and
technologies talked here are Semantic Web, Linked Data, and Web APIs.

1.1.1 API

API is a set of subroutine definitions, protocols, and tools for building ap-
plication software. In general terms, it is a set of clearly defined methods of
communication between various software components.[6] An API is an archi-
tectural approach that revolves around providing programmable interfaces of
a set of services to different applications serving different types of consumers.

1.1.1.1 Web API

A web API is an application programming interface (API) for either a web
server or a web browser.[7]

Web API is an API over the internet which can be accessed using HTTP
protocol. It is a web development concept that defines interfaces through
which interactions happen between a service and applications that use its
assets, see figure 1.1.

Web API can be separted into two types:

• Server-side API

• Client-side API

The most popular API is a server-side API, which provides a programmatic
interface consisting of public endpoints, typically expressed in JSON or XML
format. In this work we operate only with a client-side API.

3

1. Background and related work

Figure 1.1: Web API [1]

Web APIs allow the combination of multiple APIs into new applications
known as mashups.

1.1.2 Mashup

A mashup is a Web page or application that uses and combines data, presenta-
tion or functionality from two or more sources to create new services. The term
implies easy, fast integration, frequently using open APIs and data sources to
produce enriched results that were not necessarily the original reason for pro-
ducing the raw source data.[8]

The main characteristics of the mashup are combination, visualization,
and aggregation. Data provided by Web APIs become more useful offering
possibility to create new valuable services.

Mashups are often defined by the type of content they aggregate. There are
many types of mashups, such as business mashups, consumer mashups, and
data mashups. The most common type of mashup is the consumer mashup,
aimed at the general public.

1.1.3 Information extraction

Information extraction is the task of automatically extracting structured in-
formation from unstructured and semi-structured machine-readable documents.[9]

There are exist a lot of extraction techniques. The extraction techniques
can be separated into the following categories:

• Methods based on manual rules

• Wrappers

• Algorithms of machine learning

4

1.1. Background

• Bootstrapping

• Active (interactive) learning

We are not going deep in information extraction processes because it is a
topic for another thesis. In our case, we use Wrappers extraction techniques,
which helps to extract data from HTML documents traversing DOM3 struc-
ture.

1.1.3.1 Web crawling

A web crawler (also known as a robot or a spider) is a system for the bulk
downloading of web pages. Crawlers are one of the main components of web
search engines, systems that assemble a corpus of web pages, index them, and
allow users to issue queries against the index and find the web pages that
match the queries.[10]

Data on the web can be crawled using different methods:

• Data dumps
Sites may package their data and provide them as dumps.

• URL downloads
Crawling process is based on URL templates, i.e a crawler browses only
those pages which URLs are match to predefined URL template.

• Web APIs
Sites provide RESTful API for getting their data.

• Web Crawling
Crawler moves around interlinked HTML pages.

The basic web crawling algorithm is simple: Given a set of seed Uniform
Resource Locators (URLs), a crawler downloads all the web pages addressed
by the URLs, extracts the hyperlinks contained in the pages, and iteratively
downloads the web pages addressed by these hyperlinks.

Despite the apparent simplicity of this basic algorithm, web crawling has
many inherent issues:

1. Politeness
Avoid requesting website too frequently.

2. Performance
Crawlers must be implemented as multi-threaded applications or used
distributed crawling.

3Document Object Model

5

1. Background and related work

3. Crawler traps
Catching a crawler to infinite number of requests.

4. Duplicate detection
Crawler needs to avoid visiting duplicate pages.

5. Client-side scripting
Nowadays a lot of websites generates web pages using Javascript. A
crawler must be smart enough to understand Javascript, interpret and
run it. Otherwise, a crawler may miss a data, generated by Javascript.

1.1.3.2 Web scraping

Web scraping (web harvesting or web data extraction) is data scraping used for
extracting data from websites. Web scraping software may access the World
Wide Web directly using the HTTP4 protocol, or through a web browser.
While web scraping can be done manually by a software user, the term typ-
ically refers to automated processes implemented using a bot or web crawler.
It is a form of copying, in which data is gathered and copied from the web,
typically into a central data storage, for later retrieval or analysis [11].

The process of scraping information can be shown on the figure 1.2.
Current web scraping solutions range from the ad-hoc, requiring human

effort, to fully automated systems that are able to convert entire web sites
into structured information, with limitations [11]. Thus, various scraping
techniques were created:

• Human copy-and-paste
Human copy-and-paste is a technique of manually copying and pasting
the web page content.

• Text pattern matching
Text pattern matching technique is a technique based on regular expres-
sions.

• HTTP programming
HTTP programming is a technique where pages can be retrieved by
posting HTTP requests to a server.

• HTML parsing
HTML parsing is a technique of retrieving information from HTML doc-
uments using HTML structures.

• DOM parsing
The technique retrieves the dynamic content generated by client-side
Javascript.

4Hypertext Transfer Protocol

6

1.1. Background

Figure 1.2: Web Scrapping Architecture[2]

• Semantic annotation recognizing
Semantic annotation recognizing is a technique based on retrieving se-
mantic annotation.

• And couple more techniques

The application that was created in this work uses only HTTP program-
ming and HTML parsing techniques.

1.1.4 Semantic Web

According to the W3C (World Wide Web Consortium), ”The Semantic Web
provides a common framework that allows data to be shared and reused across
application, enterprise, and community boundaries”[12]. Or in other words in
article ”The Semantic Web” Berners-Lee says ”The Semantic Web is an ex-
tension of the current web in which information is given well-defined meaning,
better-enabling computers and people to work in cooperation.”

The collection of Semantic Web technologies (RDF, SPARQL, SAWSDL,
MicroWSMO, WSMO-Lite, etc.) provides an environment where application
can query data, draw inferences using vocabularies. These technologies are
discussed in next sections.

7

1. Background and related work

1.1.4.1 Linked Data

Linked Data lies at the heart of what Semantic Web, is one of the core concepts
of the Semantic Web. It is principles, best practices for publishing and linking
entities on the internet. In other words, it is a method of publishing structured
data so that it can be interlinked and become more useful through semantic
queries.

Linked Data helps to create an eco-system of web applications which pub-
lish, enrich and consume data about things in one shared global data space.[13]

It builds upon standard web technologies such as HTTP, RDF and URIs5.
Tim Berners-Lee outlined four principles of linked data:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information, using stand-
ards (RDF, SPARQL)

4. Include links to other URIs so that they can discover more things

1.1.4.2 Linked Open Data

Linked Open Data is a powerful blend of Linked Data and Open Data: it is
both linked and uses open data sources. In 2010 Tim Berners-Lee suggested
a 5-star deployment scheme for Open Data[14].

1. Make your stuff available on the Web (whatever format) under an open
license

2. Make it available as structured data (e.g., Excel instead of image scan
of a table)

3. Make it available in a non-proprietary open format (e.g., CSV6 instead
of Excel)

4. Use URIs to denote things, so that people can point at your stuff

5. Link your data to other data to provide context

1.1.4.3 RDF

RDF stands for Resource Description Framework, is a standard model for data
interchange on the Web.[15] It is a framework for describing resources on the
web; it is designed to be read and understood by computers.

5Uniform Resource Identifier
6Comma-separated values

8

1.1. Background

The information in RDF is represented by subject-predicate-object, known
as triples. Triples are written in one of RDF notations: RDF/XML, RDFa,
N-Triples, Turtle, JSON-LD and stored in a triplestore.

RDF is often used to represent, among other things, personal information,
social networks, metadata about digital artifacts, as well as to provide a means
of integration over disparate sources of information.[16]

1.1.4.4 SPARQL

SPARQL is an RDF query language, that is, a semantic query language for
databases, able to retrieve and manipulate data stored in Resource Description
Framework (RDF) format. SPARQL works for any data source that can be
mapped to RDF.

SPARQL allows users to write queries against key-value data or, more
specifically, data that can be mapped to RDF. The entire database is thus a
set of subject-predicate-object triples.

1.1.4.5 Triplestores

Triplestores are Database Management Systems (DBMS7) for data modeled
using RDF. Unlike Relational Database Management Systems (RDBMS),
which store data in relations (or tables) and are queried using SQL8, triplestores
store RDF triples and are queried using SPARQL.

Being a graph database, triplestore stores data as a network of objects
with materialized links between them. This makes RDF triplestore a preferred
choice for managing highly interconnected data. Triplestores are more flexible
and less costly than a relational database.

The RDF database often called a semantic graph database, is also capable
of handling powerful semantic queries and of using inference for uncovering
new information out of the existing relations.

1.1.4.6 Semantic Web Services

A semantic web service, like conventional web services, is the server end of a
client-server system for machine-to-machine interaction via the World Wide
Web.[17] It is a combination of web services and semantic web. Semantic web
services use markup to make data more understandable to machines, thus
making web services more understandable by machines.

Research in the Semantic Web services area is addressing the problems
of automated service discovery, invocation, composition, and monitoring by
augmenting the existing Web services standards by additional semantic layers.
For Semantic Web services to become a reality, a markup language must be

7Database Management System
8Structured Query Language

9

1. Background and related work

descriptive enough that a computer can automatically determine its mean-
ing. The following is a list of tasks such a language would be required to
perform[18]:

• Discovery
An application must be able to automatically find, or discover required
web service. A software must automatically determines its purpose
based on its semantic description.

• Invocation
An application must automatically invokes and executes a web service.
The application must to know how to interact with a service, the web
service provides detailed list of what should be done to execute the
service.

• Composition
To complete the certain objective, the application must be able to com-
bine a number of web services. The services have to interoperate with
each other in correct way to get a valid output solution.

• Monitoring
Software must be able to monitor service properties to control the work-
flow of web services.

1.2 Web Services description models

In order to allow machines to manipulate services, we have to add semantics to
these service descriptions. Typical examples of manipulations are service dis-
covery, invocation, composition, and monitoring which were discovered before.
This chapter will discuss Web Services Description Models such as WSMO,
WSDL, SAWSDL, hRESTS, MicroWSMO, Swagger, APIS JSON, WSMO-lite
and Linked Web APIs.

1.2.1 WSDL

WSDL9 is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented
information [19]. It was developed by Microsoft and IBM.

The WSDL provides:

• A description of a Web Service.

• The communication mechanisms it understands.

• Description of operations it can perform.
9Web Services Description Language

10

1.2. Web Services description models

Figure 1.3: WSDL schema [3]

• Description of message’s data structure.

The WSDL is often used to describe SOAP protocol using XML Schema
languages. Moreover, from version 2.0 it can be used to describe Representa-
tional State Transfer (REST) Web Services.

WSDL 2.0 document uses the following elements in the definition of ser-
vices [20]:

• Service - contains a set of functions that have been exposed to the Web-
based protocols.

• Endpoint - is connection point or address to a Web Service.

• Binding - specifies the interface and defines the SOAP binding style and
transport.

• Interface - defines a Web Service, the operations, and the messages.

11

1. Background and related work

Figure 1.4: hRESTS microformat

• Operation - defines the SOAP actions and the approach of how the
message is encoded.

• Types - describes the data type.

As were mentioned above, WSDL is an XML-based interface definition lan-
guage that is used for describing the functionality offered by Web service. But
the WSDL has no capability to describe Web Service in a semantic manner.
Thus SAWSDL model was created.

1.2.2 SAWSDL

SAWSDL10 is a Semantic Annotations for WSDL and XML11 Schema.[21] The
SAWSDL is a set of extension attributes for the WSDL and XML definition
language that describes WSDL components semantically.

The primary purpose of SAWSDL is to describe Web Services using se-
mantic annotation. The annotation helps to distinguish the meanings of Web
Services description during automatic discovery and composition of Web Ser-
vices.

1.2.3 hRESTS

hRESTS12 is a microformat for machine-readable descriptions of Web APIs,
backed by a simple service model. The hRESTS microformat describes REST-
ful APIs and most important aspects of it including operations, inputs, and
outputs.[22]

hRESTS microformat is a service description layer, it helps to markup
unstructured HTML documents, describing Web APIs, and turns it into a
machine-readable format for further processing, see figure 1.4. The micro-
format identifies key pieces of information that are already present in the
documentation, effectively creating an analog of WSDL.

The machine-readable hRESTS microformat can provide tool support or
semi-automation in future development.

10Semantic Annotation for Web Services Description Language
11Extensible Markup Language
12HTML for RESTful Services

12

1.2. Web Services description models

1.2.4 MicroWSMO

As were mentioned above, hRESTS microformat structures information from
HTML pages of RESTful web services, so the information becomes amenable
for machine processing.

Thus hRESTS forms the basis for further extensions, such as MicroWSMO.
MicroWSMO is a semantic annotation mechanism for RESTful Web ser-

vices, based on a microformat called hRESTS (HTML for RESTful Services)
for machine-readable descriptions of Web APIs, and backed by a simple service
model [23].

It helps to structure and describe RESTful APIs semantically, making it
more understandable by machines.

Because of similarity of hRESTS and WSDL, the MicroWSMO format
adopts SAWSDL properties to add a semantic annotation.

1.2.5 WSMO

WSMO 13 is a conceptual framework and formal language for semantically
describing all aspects of Web Services to gain an automation of discovery, ser-
vices composition, and invocation. The goal of WSMO is to achieve dynamic,
scalable and cost-effective infrastructure in business and public administration
[24].

The WSMO has four main concepts:

• Goals
Represent user desires.

• Ontologies
Provide the terminology used by other WSMO elements to describe the
relevant aspects of the domains.

• Mediators
Mediators provide interoperabilities between different WSMO elements.
It is core concept to resolve compatibility problems with data, processes,
and protocols. It helps to communicate between Web Services and to
combine them.

• Web Services
The semantic description of Web Services domain, describe functional
and behavioral aspects. Description of Web Services contains informa-
tion about services capabilities and internal working.

But WSMO considered as heavyweight solutions with adoption the top-
down approach to modeling of services, which is not suitable approach with
the current industrial development of SOA technology, such as WSDL and

13Web Services Modeling Ontology

13

1. Background and related work

REST. Thus it is better to use bottom-up approaches to service modeling
such as SAWSDL, MicroWSMO, and WSMO-Lite.

1.2.6 WSMO-Lite

WSMO-Lite is a lightweight semantic description for services on the web. It
is the next evolutionary step after SAWSDL, filling the SAWSDL annotations
with concrete semantic service descriptions.[22]

The primary goal of WSMO-Lite is to provide intelligent service integra-
tion.

WSMO-Lite advantages:

• It is very lightweight and defines a small vocabulary.

• The basic vocabulary is defined in RDFS with very limited reasoning
requirements, but it can easily accommodate more expressive languages.

• WSMO-Lite builds on WSDL. The WSDL is well-known technology for
many developers.

• Can be tightly scoped to RESTful web services.

WSMO-Lite ontology provides a possibility to describe Web Services. Fur-
thermore, the ontology broadens the applicability of SAWSDL to RESTful
services through hRESTS and MicroWSMO.

1.2.7 Swagger

Swagger is the world’s largest framework of API developer tools for the OpenAPI
Specification, enabling development across the entire API lifecycle, from design
and documentation, to test and deployment [25].

The goal of OpenAPI Specification is to define a standard, language-
agnostic interface to REST APIs which allows both humans and computers
to discover and understand the capabilities of the service without access to
source code, documentation, or through network traffic inspection.

1.2.8 APIS JSON

APIS JSON is a machine readable approach that API providers can use to
describe their API operations [26].

The format is designed for public deployment and helps to consume Web
APIs by automated software tools (robots).

The APIS JSON specification is a pre-existing set of rules and conven-
tions which helps API developers to design and build APIs. The specification
describes APIs in JSON data-interchange format.

14

1.2. Web Services description models

1.2.9 Linked Web APIs

Previous sections describe several Web Services Description models which can
be used by Web API providers to make it more self-descriptive and provide
capabilities for easy use by third parties.

Linked Web APIs is a dataset providing information about Web APIs and
mashups which utilize Web APIs in compositions [27].

The dataset provides descriptions of Web Services and RESTful APIs using
a semantic mechanism (WSMO-Lite, SAWSDL, MicroWSMO) described in
previous sections. The dataset represented as Open Linked Data and has
5-star classification:

• Make your stuff available on the Web (whatever format) under an open
license

• Make it available as structured data (e.g., Excel instead of image scan
of a table)

• Make it available in a non-proprietary open format (e.g., CSV instead
of Excel)

• Use URIs to denote things, so that people can point at your stuff

• Link your data to other data to provide context

Thus based on the classification above, Linked Web APIs is a dataset
of Web API and mashup descriptions that can be referenced, combined and
reused for further easy service use by humans and machines.

1.2.10 Summary

Figure 1.5 shows WSMO-Lite ontology position relatively SAWSDL, MicroWSMO,
WSDL, and hRESTS models.

WSDL is a standard format for Web Services descriptions. SAWSDL ex-
tends WSDL by a semantic annotation that can be pointed to WSMO-Lites
ontology.

hRESTS is a microformat for describing RESTful APIs applying on HTML
documents; it is analog of WSDL format. hRESTS format is extended by
MicroWSMO format, which adds semantic annotations to the origin. In other
words, MicroWSMO is a realization of SAWSDL annotations over hRESTS.
MicroWSMO annotations can be pointed to WSMO-Lite ontology as well as
SAWSDL.

Thus WSMO-Lite specifies a simple vocabulary that fits in SAWSDL and
MicroWSMO annotations and can be used to describe Web Services as well
as RESTful APIs.

15

1. Background and related work

Figure 1.5: Web Services Description Models [4]

It is also worth noting that Swagger is a tool for developing RESTful APIs
using OpenAPI Specification. It is a tool for describing RESTful APIs opera-
tions, inputs, outputs, etc. Whereas APIS JSON specification was created to
impose a common structure on APIs.

To efficient Web API development flow, developers should use the com-
bination of OpenAPI Specification, and APIS JSON approaches.

1.3 Web API data sources

This section describes Web APIs data sources from which information will be
collected, extracted and processed. Based on APIs research, were collected
the most valuable Web APIs directories:

• ProgrammableWeb14

• Apis.io15

14http://www.programmableweb.com
15http://apis.io

16

http://www.programmableweb.com
http://apis.io

1.3. Web API data sources

• Apis.guru16

• Api-for-that17

• Exicon18

1.3.1 Programmable Web

ProgrammableWeb is a leading source of news and information about Internet-
based application programming interfaces (APIs) and the largest searchable
Web API, mashup directory.[28]

It is the primary source of Web APIs and mashups in this work. Program-
mableWeb is the central repository of Web APIs descriptions. The Program-
mableWeb platform offers the ability to API’s providers to publish and share
their information about API with the public. The platform also provides the
capabilities to the developers to explore APIs for their specific needs.

The website contains over 17,000 Web APIs and over 7,000 mashups. It
provides API and mashup information in a human-readable interface, i.e. in
HTML format.

1.3.2 Apis.io

APIs.io is an API searchable directory. The directory provides API inform-
ation in a human-readable interface (HTML) and JSON19, more precisely in
APIs.json format. They have more than 1,000 APIs in their database.

APIs.io directory grants native API, which provides structured Web APIs
information in JSON format.

1.3.3 Apis.guru

Apis.guru is an open-source API directory. Their goal is to create a machine-
readable Wikipedia for REST APIs with the following principles:

• Open source, community driven project.

• Only publicly available APIs

• Anyone can add or change an API, not only API owners.

• All data can be accessed through a REST API.
16https://apis.guru/openapi-directory/
17http://www.apiforthat.com
18https://app.exiconglobal.com/api-dir/
19JavaScript Object Notation

17

https://apis.guru/openapi-directory/
http://www.apiforthat.com
https://app.exiconglobal.com/api-dir/

1. Background and related work

It has more than 500 APIs, and it grants a native API, which provides data
in structured JSON format.

Also, Apis.guru directory contains links to additional Web Services de-
scriptions in Swagger format. The Swagger format is described next in section
1.2.7.

1.3.4 Api-for-that

API-For-That is a hand-curated API directory. Organized into about 20 in-
dustry categories, API-For-That catalogs an estimated 500+ API profiles with
links to documentation, a provider home page, and a short description for each
API.

The directory provides its APIs only in human-readable format.

1.3.5 Exicon

Exicon is an application management service, provides a directory of 1,900
APIs sortable by industry type and category.

The directory provides API descriptions in the human-readable interface,
in HTML format.

18

Chapter 2
Analysis and Design

2.1 Requirements

The primary goal of the thesis is to extract required information from Web
Services domain, normalize and transform it into RDF format. The pro-
gram will be designed as a console application and must be able to execute
automatically in the background as daemon application. Thus the following
requirements are based on those facts.

2.1.1 Functional requirements

• The system is controlled by using a command line and configuration file.

• The system gives a choice to a user which action will be executed:

1. Extraction

2. Transformation

• The system gives a choice to a user which data source will be extracted.

• The system gives a choice to a user which data source will be trans-
formed.

• The user can modify transformation rules independently for each data
source.

2.1.2 Non-functional requirements

• The application must work on Linux operation system.

• For comfortably use, the application must be controlled using a com-
mand line.

19

2. Analysis and Design

• The application must be able to work uninterrupted during the whole
process.

• The system must be divided into two parts:

1. Extracting information from data sources.
2. Transforming information into RDF format.

• The application must be able to bypass blocking by data sources.

2.2 Vocabularies

On the Semantic Web, vocabularies define the concepts and relationships (also
referred to as ”terms”) used to describe and represent an area of concern.
Vocabularies are used to classify the terms that can be used in a particular
application, characterize possible relationships, and define possible constraints
on using those terms.

Some of the vocabularies do not cover the full scope of the domain. Thus
it requires the combination of vocabularies to describe the whole particular
domain such as Web Services. Besides, creating of own vocabulary usually
required.

2.2.1 Dublin Core

Dublin core is a small set of terms to describe web resources or other physical
resources. Dublin Core vocabulary is used to describe basic information about
Web Services such as Web API’s title, created date, creator, publisher, and
description.

2.2.2 XSD

XSD20, a recommendation of the World Wide Web Consortium, specifies how
to formally describe the elements in an Extensible Markup Language (XML)
document.[29] XSD can be used to express a set of rules to which an XML
document must be valid.

XSD vocabulary is used to describe data type of objects.

2.2.3 FOAF

FOAF21 is an RDF based schema to describe persons, their activities and their
relations to other people and object. It is a descriptive vocabulary expressed
using the Resource Description Framework and OWL22.

20XML Schema Definition
21friend of a friend
22Web Ontology Language

20

2.3. Use cases

Also, it can be used to describe different areas such as Web Services.
The FOAF vocabulary can describe categorization of Web Services and basic
description, such as name and homepage.

2.2.4 RDFS

RDFS (Resource Description Framework Schema) is a set of classes with
certain properties using the RDF extensible knowledge representation data
model, providing basic elements for the description of ontologies, otherwise
called RDF vocabularies, intended to structure RDF resources. The rdfs:label
is used to describe labels of resources.

2.2.5 VCARD

VCARD vocabulary is used for the description of people and organizations.
For example vcard:email term is used to describe APIs contact email.

2.2.6 PROV

Provenance is information about entities, activities, and people involved in
producing a piece of data or thing, which can be used to form assessments
about its quality, reliability or trustworthiness. The PROV Family of Doc-
uments defines a model, corresponding serializations, and other supporting
definitions to enable the inter-operable interchange of provenance information
in heterogeneous environments such as the Web.[29]

The PROV ontology is used in the application to define a relationship
between providers, APIs and mashups entities. The ontology is used to define
mashups and APIs association with providers and to determine what APIs
are used in mashups.

2.2.7 Linked Web APIs

Linked Web APIs is a custom vocabulary used for describing Web Services
domain. It was created specifically to help to describe Web Services which
were not completely described by others vocabularies.

2.3 Use cases

The system was designed as a console application. All interaction with users
is made through the command line with predefined console commands. The
list of commands can be found in appendix section D.3

21

2. Analysis and Design

Figure 2.1: User interaction use cases

As you can see on above image, a user can launch the application for two
purposes: extracting API directories and transforming extracted APIs to RDF
format. No matter which action is chosen, the application must be specified
with what data source it should work.

2.4 The architecture

Before implementing the application, it needs to be designed in well-structured
architecture. As were mentioned before, the primary purpose of the thesis
is to provide a solution for transforming data from multiple heterogeneous
sources into semantic representation using RDF framework. The object of the
application is data. Thus were decided to separate the application based on
the data concept.

The data concept is divided the application into three parts: data collec-
tion, data normalization and data transformation. The controller orchestrates
the whole application process from data collection to data integration. Thus
thanks to controller component these processes become more independent.

22

2.4. The architecture

2.4.1 Data collection

Data collection is one of the most important parts of the application. Data
collection part is based on using an extraction component. An extraction
component consists of a crawler part and a parser part.

When data collection process starts, the application begins to crawl a
data source and collects all possible links referenced to Web APIs. The data
collection process runs on the following data sources:

• ProgrammableWeb APIs
Crawler entry point: http://www.programmableweb.com/category/
all/apis?page=1&deadpool=1

• Apis.io
Crawler entry point: http://apis.io/api/apis?limit=99999

• Apis.guru
Crawler entry point: https://api.apis.guru/v2/list.json

• Api-for-that
Crawler entry point: http://www.apiforthat.com/apis?page=1

• Exicon
Crawler entry point: https://app.exiconglobal.com/apis?terms=
&companyId=&show=50&page=1&status=enable

• PrgrammableWeb Mashups
Crawler entry point: http://www.programmableweb.com/category/
all/mashups?page=1&deadpool=1

To start data collection process, every crawler must have an entry point, a
point from where the crawler starts a crawling process.

After successful link extraction, the application executes parsing process.
The parsing process goes through each link and extracts Web APIs information
using extraction rules specifically for this data source.

Crawling and parsing processes can extract information from HTML and
JSON formats using different extraction techniques. Parsing of HTML data
is based on DOM traversal technique implemented in open-source JSOUP
library. Parsing of JSON data is based on converting JSON string into a tree
structure of Java objects implemented in open-source GSON library.

As a result of data collection process, the application gets data in JSON
format ready for further processing.

To be more clear we introduce an example of how extracting Web API
from ProgrammableWeb directory works. First, the application identify a data
source from which an extraction process will extract a data, in our case it is
ProgrammableWeb. Then, the application runs crawler process to get all pos-
sible links referenced to Web APIs. The crawler process starts crawling from
the entry point that was define for each API directory, in our case it is http:

23

http://www.programmableweb.com/category/all/apis?page=1&deadpool=1
http://www.programmableweb.com/category/all/apis?page=1&deadpool=1
http://apis.io/api/apis?limit=99999
https://api.apis.guru/v2/list.json
http://www.apiforthat.com/apis?page=1
https://app.exiconglobal.com/apis?terms=&companyId=&show=50&page=1&status=enable
https://app.exiconglobal.com/apis?terms=&companyId=&show=50&page=1&status=enable
http://www.programmableweb.com/category/all/mashups?page=1&deadpool=1
http://www.programmableweb.com/category/all/mashups?page=1&deadpool=1
http://www.programmableweb.com/category/all/apis?page=1&deadpool=1
http://www.programmableweb.com/category/all/apis?page=1&deadpool=1

2. Analysis and Design

//www.programmableweb.com/category/all/apis?page=1&deadpool=1. As
a result the application gets a list of Web API links. After that, the applic-
ation executes parsing process for each link, in our case the parsing process
parses pages using JSOUP library and saving extracted information into JSON
objects. Thus we get Web API descriptions in a JSON format, below is an
example of extracted Google Maps API description:

[{
” c reated ” : ”2005−12−05” ,
” u r l ” : ” h t t p s : //www. programmableweb . com/ api / google−maps” ,
”name” : ” Google Maps API” ,
” d e s c r i p t i o n ” : ”The Google Maps API a l low f o r the embedding o f
Google Maps onto web pages o f ou t s id e deve lopers , us ing a

s imple JavaScr ipt i n t e r f a c e or a Flash i n t e r f a c e . I t i s
des igned to work on both mobile d ev i c e s as we l l as t r a d i t i o n a l

desktop browser a p p l i c a t i o n s . The API i n c l u d e s language
l o c a l i z a t i o n f o r over 50 languages , r eg i on l o c a l i z a t i o n and
geocoding , and has mechanisms f o r e n t e r p r i s e deve l ope r s who
want to u t i l i z e the Google Maps API with in an i n t r a n e t . The
API HTTP s e r v i c e s can be acce s s ed over a s ecure (HTTPS)
connect ion by Google Maps API Premier customers . ” ,
” i sDeprecated ” : f a l s e ,
” l o g o u r l ” : ” h t t p s : //www. programmableweb . com/ s i t e s / d e f a u l t /
f i l e s / s t y l e s / a r t i c l e p r o f i l e 1 5 0 x 1 5 0 / pub l i c / ap i s / at22 . png? i t o k
\u003dAM2D9JYC” ,
” endpoint ” : ” h t t p s : //www. goog l e . com/maps/embed/v1 /” ,
”homepage” : ” h t t p s : // deve l ope r s . goog l e . com/maps/” ,
” f i r s t c a t e g o r y ” : [

”Mapping”
] ,
” s econd category ” : [

” Viewer ”
] ,
” ap i prov ider name ” : ” Google ” ,
” a p i p r o v i d e r ” : ” h t tp : //www. goog l e . com” ,
” i s s s l s u p p o r t ” : f a l s e ,
” api forum ” : ” h t tp : // groups−beta . goog l e . com/group/Google−Maps−

API? p l i \u003d1 ” ,
” t w i t t e r u r l ” : ” h t t p : // t w i t t e r . com/ googlemapsapi ” ,
” c o n s o l e u r l ” : ” h t t p : // code . goog l e . com/ ap i s / ajax / playground /” ,
” auth model ” : [

”API Key”
] ,
” t e r m s o f s e r v i c e u r l ” : ” h t t p : // code . goog l e . com/ ap i s /maps/
terms . html ” ,
” scope ” : ” S i n g l e purpose API” ,
” i s d e v i c e s p e c i f i c ” : f a l s e ,
” docs home page ” : [

” h t t p s : // deve l ope r s . goog l e . com/maps/”
] ,
” a r c h i t e c t u r a l s t y l e ” : [

”REST”
] ,

24

http://www.programmableweb.com/category/all/apis?page=1&deadpool=1
http://www.programmableweb.com/category/all/apis?page=1&deadpool=1

2.4. The architecture

” r eque s t f o rmat s ” : [
”KML” ,
”URI Query St r ing /CRUD” ,
”XML” ,
”VML” ,
” JavaScr ipt ”

] ,
” r e sponse f o rmat s ” : [

”XML” ,
”JSON” ,
”KML”

] ,
” i s u n o f f i c i a l a p i ” : f a l s e ,
” i s hype rmed ia ap i ” : true ,
” i s r e s t r i c t e d a c c e s s ” : f a l s e

}]

Listing 2.1: Extracted Google Maps API description

2.4.2 Normalization

Data normalization is a connecting element between data collection and data
transformation. Sometimes it is not possible to transform collected data into
specific format without data normalization. Data normalization is a way to
convert/normalize input data to the desired data structure. It helps to convert
data based on predefined data format requirements.

Thus the data, mapped to subject or object part of RDF triple ”subject-
predicate-object”, needs to be normalized.

To accomplish this, the normalization process can be separated into two
parts: data normalization and data structure normalization.

2.4.2.1 Data normalization

The first part helps to normalize data format, which can be used then in the
transformation process. It recursively goes through the whole JSON object
and applies normalization for those fields which were defined.

The data normalization process applies the following rules for each field:

1. Trims spaces at the beginning and end of a string.

2. Lowercase string.

3. Identify digits at the beginning of the string and adds ”the-” preposition
to the beginning of the string.

4. Replace all symbols which are not [a-b] or [0-9] symbols to ”-” symbol.

5. Trims ”-” symbol at the beginning and end of a string.

25

2. Analysis and Design

6. Replaces sequences of ”-” symbol to ”-” symbol.

As a result of data collection part, the normalization process receives a
Web API description in JSON format, and normalizes it in appropriate data
format to be ready for transformation process. More precisely, it creates a
normalized copy of certain fields and add it to JSON object.

For example, after data normalization, the following normalized data will
be added to JSON object which contains Google Maps API description:
{

” name normalized ” : ” google−maps−api ” ,
” f i r s t c a t e g o r y n o r m a l i z e d ” : [

”mapping”
] ,
” s e cond category norma l i z ed ” : [

” v iewer ”
] ,
” ap i p r ov id e r no rma l i z e d ” : ” goog l e . com” ,
” auth model normal ized ” : [

” api−key”
] ,
” a r c h i t e c t u r a l s t y l e n o r m a l i z e d ” : [

” r e s t ”
] ,
” r eque s t f o rmat s no rma l i z ed ” : [

”kml” ,
” ur i−query−s t r i ng−crud ” ,
”xml” ,
”vml” ,
” j a v a s c r i p t ”

] ,
” r e sponse f o rmat s norma l i z ed ” : [

”xml” ,
” j son ” ,
”kml”

] ,
}

Listing 2.2: Google Maps API normalized fields

2.4.2.2 Data structure normalization

The second part helps to transform inappropriate data structure to appropri-
ate.

The normalization process receives as input a list of fields that should be
added to a data structure. The list contains strings which are consist of paths
and fields. The method recursively goes to a particular path in JSON object
and adds a field with the empty value.

As a result, the method will recursively bypass JSON object and add all
required fields in appropriate places defined by paths.

26

2.4. The architecture

As a result of data structure normalization, the application gets structured
data in JSON format ready for further transformation.

2.4.3 Data transformation

Data transformation is the second most important part of the application.
The application executes the transformation process as soon as it gets an
extracted, normalized information from a parser. The application then trans-
forms processed data into RDF format using predefined RML rules. Each
data source has its own, specific RML rules, which help to map data from
JSON format to RDF.

Below is an fragment of RML rules for ProgrammableWeb API directory
for transforming data from JSON to RDF format:
@pref ix r r : <h t t p : //www. w3 . org /ns/ r2rml#>.
@pre f ix rml : <h t t p : //semweb . mmlab . be/ns/rml#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms/> .
@pre f ix semapi : <h t t p : // l inked−web−ap i s . f i t . cvut . cz /ns/ core#> .
@pre f ix pw : <h t t p : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /pw/> .
@pre f ix prov : <h t t p : //www. w3 . org /ns/prov#> .
@pre f ix l s o : <h t t p : // l inked−web−ap i s . f i t . cvut . cz /ns/ core#> .

<#PWebMapping>

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$” ;

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /pw/{

name normalized} a p i ” ;
r r : c l a s s semapi:WebAPI ;
r r : c l a s s prov :Ent i ty ;

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e dc t e rms : c r ea t ed ;
r r : objectMap
[

rml : r e f e r e n c e ” c rea ted ” ;
r r : datatype xsd :date

]
] ;

Listing 2.3: Fragment of ProgrammableWeb RML rules

When transformation process is finished, the application receives trans-
formed data in RDF format:
pw: google−maps−a p i a p i a prov :Ent i ty , lso:WebAPI ;

27

2. Analysis and Design

dcterms : c r ea ted ”2005−12−05”ˆˆ xsd :date ;

Listing 2.4: ProgrammableWeb RDF

The full text of ProgrammableWeb RML rules can be found in the ap-
pendix section .

As a result of transformation, data becomes available on the web through
an endpoint using SPARQL query language. The data then can be used by
developers, end-users or consumed by third-party applications.

2.5 Domain model

The domain model is a model describing Web API area for particular data
source. Each data source provider has its domain model, representing different
data structures.

As shown in the image 2.2, the application gets Web API descriptions
as HTML23 and JSON documents, normalizes and transforms it into JSON
representation.

After that, the JSON representation is transformed into a unified data
model.

2.5.1 Unified data model

Unified data model is a data model which unifies data properties from different
data models into one data model.

The unified data model is produced based on transformation process of
datasets into RDF. As a result, the unified data model is represented in RDF
format.

The data model is shown on figure 2.3 is a minimal model that covers the
most valuable and frequency used Web APIs information. It does not cover
all aspects of Web APIs description.

The unified data model is an ontology called Linked Web APIs provided
by the supervisor [27]. Linked Web APIs data model was created based on
information extracted from ProgrammableWeb data source. Considering that
current application extracts data from several data sources, the Linked Web
APIs data model has been modified and extended.

The Linked Web APIs ontology has three main classes: WebAPI class,
Provider class, and Mashup class.

WebAPI class represents Web APIs, Mashup class describes mashup ser-
vices which are constructed using Web APIs, Provider class describes WebAPI’s
and Mashup’s providers.

The data model is shown on figure 2.3 is based on Dublin Core, XSD,
FOAF, RDFS, VCARD, PROV and WSMO-Lite ontologies. Prefixes of on-
tologies are shown on figure 2.3 as well.

23Hypertext Markup Language

28

2.5. Domain model

Figure 2.2: Domain model process

29

2. Analysis and Design

Figure 2.3: Extended Linked Web APIs data model

30

Chapter 3
Implementation

This chapter describes the implementation approaches and concepts and used
technologies as well. Used technologies section answers the questions why
particular technology is used and makes a short overview of it.

The concept section describes application’s architecture, application’s com-
ponents, and implementation approaches.

3.1 Used technologies

The application is written in Java programming language. The reasons it is
chosen are cross-platform, availability of required libraries and the fact that
it is one of the most mature languages.

As were mentioned before, data sources are divided into two types: HTML
and JSON. ProgrammableWeb, Api-for-that, and ProgrammableWeb mashups
are data sources representing data in HTML documents; Apis.guru, Apis.io
and Exicon are data sources representing data in JSON.

Thus JSOUP libraries are chosen as a parsing library for HTML docu-
ments, and Google’s GSON library is chosen for storing extracted information
in JSON format.

The whole project is controlled by Apache Maven, which is a build manager
for Java projects.

Based on the supervisor recommendation, RML mapping library is chosen
as a transformation library, which provides a mapping from JSON format to
RDF format.

As a storage for RDF triples, OpenLink Virtuoso database engine is selec-
ted with the ability to provide an SPARQL endpoint.

More precisely, each technology is described below.

31

3. Implementation

3.1.1 Java

Java is a programming language, which is an object-oriented and has de-
veloped much of its syntax from C. It was first developed by James Gosling
at Sun Microsystems.

Java applications are usually compiled to bytecode (class file) that can
run on any Java Virtual Machine (JVM). Thus it can run on many different
operating systems, and this makes Java platform-independent. It is possible
because Java compiler turns code into Java bytecode instead of machine code.
When Java application is executed, the JVM interprets the bytecode into
machine code.

One of the major pros of Java is simplicity, object-oriented, distributed,
mature and easy to learn.

Java language has been chosen as a programming language for this project
based on its cross-platform, availability of required libraries, object-oriented
approach, and maturity.

3.1.2 Apache Maven

Apache Maven is a software project management and comprehension tool.
Based on the concept of a project object model (POM), Maven can man-
age a project’s build, reporting, and documentation from a central piece of
information.[30]

It addresses two aspects of building software: first, it describes how soft-
ware is built, and second, it describes its dependencies.

The information about the project is stored in POM file, which is executed
by Maven program with all operations specified. Apache Maven advantages
list:

1. Plugins
A huge selection of plugins is available in Maven repository.

2. Automation
The software development process becomes less time consuming and
more convenient.

3. Testing
The ability to run tests as a part of your project lifecycle.

4. Dependency management
Maven will resolve and manage project dependencies for you.

5. Version managing
Maven helps you to manage dependency version.

6. Standardization
Maven is a good way to standardize a project.

32

3.1. Used technologies

3.1.3 GSON

GSON is an open source Java library that can be used to convert Java Objects
into their JSON representation. It can also be used to convert a JSON string
to an equivalent Java object. The advantages of using Gson library:

1. Widely used
GSON is widely used by Google itself, and it is now used by a number
of public companies. It is the most famous library for its purposes.

2. Performance
GSON library has great performance. It can serialize a collection of 1.4
million objects and has deserialization limit for byte arrays and collection
to over 11MB.

3. Supported by Maven
GSON library can be found in Maven Central repository, which simplifies
the process of installing the library.

4. Completeness
GSON library is one of the most complete JSON library for Java.

3.1.4 JSOUP

JSOUP is an open source Java library for working with real-world HTML.[31]
It consists of methods designed to extract and manipulate data, using Docu-
ment Object Model (DOM), CSS, and jquery-like methods. Jsoup capabilities:

1. Parse HTML from URL, file, or string.

2. Find and extract data from HTML using CSS selectors and DOM tra-
versal

3. Manipulate the HTML elements, attributes and text.

4. Implements the latest HTML5 specification.

5. XML support

JSOUP is the most popular and most widely used Java library for HTML
parsing and extraction. It provides a convenient way to extract information
from HTML documents.

Thus it is the most suitable library for information extraction from HTML
documents.

33

3. Implementation

Figure 3.1: RML processing diagram [5]

3.1.5 RML

RML (RDF Mapping Language) is a mapping language defined to express cus-
tomized mapping rules from heterogeneous data structures and serializations
to the RDF data model.[5] It is based on and extending R2ML.

R2ML24 is the W3C standard to express customized mappings from re-
lational databases to RDF, so it helps to transform non-RDF data to raw
RDF.

Thus RML is defined as a superset of the W3C-standardized mapping lan-
guage, having the same syntax, aiming to extend its applicability and broaden
its scope, adding support for data in other structured formats.

It is possible to transform data from several heterogeneous data structures
(DB, CSV, TSV, XML, JSON) to RDF data model using RML mapping
language, see figure 3.1.

The application uses RML library to transform data from JSON format
into RDF data model using predefined rules written in R2ML language.

3.1.6 OpenLink Virtuoso

OpenLink Virtuoso is a middleware and database engine hybrid that com-
bines the functionality of a traditional relational database management sys-
tem, object-relational database (ORDBMS), RDF, XML, free-text, web ap-
plication server and file server functionality in a single system.[22]

The database advantages:
24REWERSE Rule Markup Language

34

3.2. Application architecture

1. Widely used
OpenLink Virtuoso is the most popular and widely used RDF triple-
store database.

2. Multi-model
Virtuoso is a multi-model hybrid-RDBMS that supports management of
data represented as relational tables and/or property graphs.

3. Supported languages
Virtuoso is supported by multiple programming languages, such as .NET,
C, C#, C++, Java, Javascript, Perl, PHP, Python, Ruby, Visual Basic.

4. Wide range of access methods
The database has a wide range of access methods, such as: HTTP API,
OLE DB, WebDAV, ADO.NET, JDBC, ODBC.

5. Format support
Support of different formats such as HTML, TEXT, TURTLE, RD-
F/XML, JSON, JSON-LD, XML.

Thus Openlink Virtuoso database has been chosen as a data storage based
on above advantages.

3.2 Application architecture

The application architecture can be separated into four parts: collecting and
extracting, normalizing, transforming and storing. The implementation of col-
lecting part and extracting part is realized in parser component, the normal-
ization part is implemented in normalization component, the transformation
part is implemented in mapping (TriplesEngine) component, and data storing
part is realized in StorageEngine component.

The components dependencies are shown on figure 3.2.
As we can see on figures 3.2 and 3.3, the application is controlled by central

class, called controller. The controller component advocates as orchestration
element. It controls the whole application process.

The execution of parsers is handled by controller’s runParser method. The
method receives parser object as a parameter and executes a crawling method
and a parsing method consequentially. It was decided not to separate crawler
and parser as independent components, because of simplicity of crawling part.

A crawl is a method in parser component which crawls data source doc-
uments using predefined link extraction rules. As a result (after crawling
execution), the controller receives a queue of extracted links.

A parse is a method of parser component which extracts information from
document referenced by specific URL. As were mentioned above, the controller

35

3. Implementation

Figure 3.2: Components dependency diagram

component orchestrates the whole process. When it receives a list of extracted
links from the crawler method, it runs the parse method for each link in a loop.

The parse method extracts information from documents pointed by URLs
using predefined extraction rules and saves in JSON object. Then the parser,
to get a normalized data, normalizes extracted data using normalization com-
ponent.

The normalization component executes normalization process using rules
that were defined in parser component. Thus every parser has its own nor-
malization rules for particular data source. As a result of normalization, the
controller receives JSON object with normalized data. After that, the con-
troller saves it in an array of JSON objects.

The figure 3.3 shows an interaction process of application components.
After that, the application saves normalized JSON data in a file for further

transformation. The transformation process is based on applying predefined
RML rules.

Finally, the application runs RML rules on saved JSON file and generates
RDF triples. As a result, the controller receives generated RDF triples as an
RMLDataset object and saves it permanency using StorageEngine.

Each component will be discussed more precisely in next subsections:

• Controller 3.2.1

• Parser 3.2.2

• Normalization 3.2.3

• Mapping 3.2.4

• Storage 3.2.5

36

3.2. Application architecture

Figure 3.3: Components interaction diagram

37

3. Implementation

3.2.1 Controller

As were mentioned above, the controller is a component which helps to or-
chestrate the application. The controller controls workflow of parser, mapping
and integration components.

The controller’s sequence of actions:

1. Parser creating
The controller creates parser and passes to the runParser method for
execution.

2. Crawling
The runParser method executes crawling process and collects links from
a data source.

3. Parsing
After successful links collecting, the controller executes parsing method
for Web API description extraction.

4. Saving
Extracted Web API descriptions need to be saved for further processing.

5. Mapping
The controller executes mapping process based on RML mapping lan-
guage. The RML transforms extracted data using predefined RML rules
from JSON format to RDF format.

6. Storing
Finally, the controller saves RML mapping results to the appropriate
data format.

3.2.2 Parser

The parser is a component responsible for collecting and extracting informa-
tion from data sources.

The current application contains six parsers. Each parser is responsible
for collecting and retrieving information from the following data sources: Pro-
grammableWeb APIs, ProgrammableWeb mashups, Apis.guru, Apis.io, Api-
for-that and Exicon.

As you can see on the figure 3.4, PWEB Mashup-Parser, PWEB Parser,
APIFOR THAT Parser are inherited from HtmlParser and APIS Parser, EX-
ICON Parser, APIS Parser are inherited from JsonParser.

HtmlParser and JsonParser are differ only by methods which are respons-
ible for document extracting. HtmlParser extracts HTML documents, Json-
Parser extracts JSON documents from web.

HtmlParser and JsonParser have a common parent class called Parser.
Parser is an abstract class, which defines parser’s structure. Abstract Parser

38

3.2. Application architecture

Figure 3.4: Parser’s UML diagram

class contains two normalization methods. The first normalization method
creation() is responsible for structure normalization and the second normaliz-
ation method normalization() is responsible for data normalization.

Normalization methods define elements that should be normalized, i.e., all
normalization logic is implemented in Normalization component.

Thus parsers are differ by crawl(), parse() and two normalization methods.
If there is a need for implementing a parser for an additional data source, it
can be easily added to the application.

3.2.3 Normalization

As were mentioned above in section 2.4.2 normalization process is a process
which helps to normalize extracted data, i.e transform data to appropriate
data format and data structure.

To accomplish this, the normalization component was created. The com-
ponent has two methods. The first method normalizes data format, the second
method normalizes data structure. More precisely, the approaches of those
methods were discussed in section 2.4.2.

When extracted data is received from a parser, the application consequen-
tially executes data format and data structure normalization methods. As a
result, the component returns normalized data in JSON object.

3.2.4 Mapping

When normalization process is finished, the normalized data will be passed to
mapping component. The component transforms normalized data into RDF
format using RML library that was discussed before.

39

3. Implementation

The transformation can be applied to different data source formats: XML,
JSON, CSV, TSV. In our case, the transformation is applied for JSON data
format.

The mapping component has the method called applyMapping, which ex-
ecutes the transformation process from JSON format to RDF format. The
method applies mapping rules which were defined in an external file written
in RML mapping language.

As a result, the mapping component returns RMLDataset object which
contains generated RDF data.

3.2.5 Storage

The application consists of the storage component called TriplesEngine. The
component is used for saving extracted information into JSON file. The JSON
file is used then by RML library directly in predefined mapping rules.

The TriplesEngine component is also used for saving transformed RDF
data into files in RDF format. Files can be imported into OpenLink Virtuoso
database engine.

As a result, the transformed data becomes available as a file in RDF
format.

3.2.6 Server configuration

3.2.6.1 Configuration

As were mentioned before the application is written in Java language and
is platform independent. It can be run on Linux operations system as well
as Windows operation system. The system must have pre-installed Maven
automation tool to build the application.

To interpret and run the application, the system must have pre-installed
Java JDK library and has at least 1GB of RAM to run the application properly.
It is also recommended to have a Git control system installation for easier
application deployment. Thus here are the system requirements:

1. Java JDK 1.4 and above.

2. Maven build automation tool.

3. Git control system.

4. Minimum of 1GB RAM.

The application is a console type application and can be run in command
line. For installation and running instructions see Appendix section D.

The current application is run on Linux VPS machine on DigitalOcean
hosting provider.

40

3.2. Application architecture

3.2.6.2 Application dependencies

Before deployment, the application must be built using Maven tool with the
dependencies listed in pom.xml file. The POM file contains necessary inform-
ation about the project, as well as dependencies used in the project.
<dependenc ies>

< !−− https : // mvnrepository . com/ a r t i f a c t / org . j soup / jsoup −−>
<dependency>

<groupId>org . j soup</ groupId>
<a r t i f a c t I d>j soup</ a r t i f a c t I d>
<ve r s i on>1 . 1 0 . 2</ ve r s i on>

</dependency>

< !−− https : // mvnrepository . com/ a r t i f a c t /com . goog l e . code . gson /
gson −−>
<dependency>

<groupId>com . goog l e . code . gson</ groupId>
<a r t i f a c t I d>gson</ a r t i f a c t I d>
<ve r s i on>2 . 8 . 0</ ve r s i on>

</dependency>

< !−− Se l f−added RML. i o l i b r a r y −−>
<dependency>

<groupId>rml</ groupId>
<a r t i f a c t I d>rml</ a r t i f a c t I d>
<ve r s i on>0 .3</ ve r s i on>

</dependency>

< !−− Apache language l i b r a r y −−>
<dependency>

<groupId>org . apache . commons</ groupId>
<a r t i f a c t I d>commons−lang3</ a r t i f a c t I d>
<ve r s i on>3 .5</ ve r s i on>

</dependency>

</ dependenc ies>

Listing 3.1: Project dependencies

As mentioned on listing above, the project needs to have JSOUP, GSON,
RML and Apache Language dependencies to be built properly.

3.2.7 Initialization

The first step of application running is initialization. Initialization is the
assignment of initial values of application, which are contained in configuration
file env.xml.
<?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8”?>
<c o n f i g u r a t i o n>

<rd f f o rmat>Turt le</ rd f f o rmat>
<t imeout>10000</ timeout>

41

3. Implementation

<r d f p r i n t>1</ r d f p r i n t>
<qty>0</ qty>
<i sProxy> f a l s e</ isProxy>
<proxy>data /proxy . txt</proxy>
<delay>4000</ de lay>
<requestNumber>10</requestNumber>

</ c o n f i g u r a t i o n>

Listing 3.2: Configuration file env.xml

The configuration listed above initializes and configures the application.
Rdf format attribute sets up an output format of RDF triples. The at-

tribute takes the following values: Turtle, NTriples, Binary, JSONLD, N3,
NQUADS, RDFA, RDFJSON, RDFXML, TRIG, TRIX.

Timeout attribute sets up an HTTP request/response timeout interval in
milliseconds. If the application does not receive any response on page request
from a server within an interval timeout, it discards the request and continues
to work with the next page in the queue.

Rdf print attribute can accept two value, 1 or 0. The attribute indicates
the RDF output to console.

Qty is an attribute which is usually used for testing. The value of at-
tribute means the number of pages to process. Value 0 means unlimited, the
application will process all available pages.

Delay attribute indicates the delay between HTTP requests.
IsProxy attribute can accept two values, true or false. The attribute in-

dicates whether proxy servers should be used for avoiding blocking problems.
The path to the proxy list file can be found in the proxy attribute.

RequestNumber attribute indicates the amount of requests per proxy.

3.3 Deployment

The application is written in Java language using Maven build automation
tool. The project uses several technologies such as GSON library, JSOUP
library, RML mapping library and OpenLink Virtuoso. The whole deployment
process can be separated into three steps:

• Installing the application environment
At first, the application environment should be installed to build and
run the application. The following technologies should be installed:

1. Java JDK

2. Maven build automation tool

• Downloading the application
The application can be downloaded using git version control system

42

3.4. Implementation issues

• Adding RML dependency
RML library does not exist in Maven central repository. Therefore the
library cannot be automatically downloaded and built using Maven. To
add the RML library, it needs to be downloaded from the repository
using git and manually added to Maven’s pom.xml file.

• Application building
Finally, the application needs to be built using Maven building tool.
Maven automatically downloads all necessary libraries and builds the
application.

The full deployment instructions can be found in appendix section D.

3.4 Implementation issues

This chapter describes several problems which were encountered during the
application development.

3.4.1 HTML Parsing

The application works with five Web API directories and one mashup direct-
ory. Three of them represent data in HTML format. The application extracts
data from HTML structures using DOM traversal.

When the structure of HTML documents is changed, the extraction process
is violated and data cannot be extracted or extracted with a data integrity
error.

To avoid this problem, HTML parsers need to be updated every time the
DOM structure of API directories is changed.

Much better to implement a mechanism that will check DOM structure
on each extraction. If the mechanism identifies a DOM structure changes, it
notifies a user/developer. The user/developer can modify the application to
avoid violations.

3.4.2 Blocking problems

The ProgrammableWeb data source is the most largest Web API directory.
The directory has more than 20 thousands of APIs and mashups. The applic-
ation needs to parse a huge amount of pages to get all data. Thus a number
of HTTP requests are almost the same as a number of pages.

The ProgrammableWeb website has a preventing mechanism against fre-
quent requests. When amount of requests from client’s side reach some point,
the site blocks further communication. To bypass the blocking, the application
has two solutions, delay injection and proxy injection.

43

3. Implementation

3.4.2.1 Delay injection solution

The blocking can be bypassed simply adding a delay between HTTP requests.
The most suitable delay is 4000 milliseconds. The application will consider
normal behavior and will not raise red flags.

3.4.2.2 Proxy injection solution

The second solution is a proxy injection. As we know, the website sets block
after a certain number of requests for each client. The block is bounded to a
client’s IP address.

Despite this, the blocking can be bypassed by changing the client’s IP
address. It can be achieved by using third-party proxy servers. Thus, the
ProgrammableWeb will see requests from different IP addresses and will not
block any requests.

3.4.3 Transformation problems

One of the main transformation problems is an inappropriate data format.
Extracted data is usually not in an appropriate data format.

The second problem is an inappropriate data structure. As were men-
tioned in previous chapters, the application stores all extracted data in JSON
objects. Each object has its structure based on document’s structure that
was extracted. For example, one document has a particular set of attributes,
another document has almost the same set of attributes, but without several
attributes, thus data structures of extracted documents are different.

Without solving these problems, data cannot be transformed into semantic
representation.

The solution to above problems is normalization. The normalization of
data format should be handled by RML mapping library. But the library is
still new and has no ability to do a data normalization.

Thus the normalization component was created for solving these problems.
It was discussed in previous section 3.2.3.

3.4.4 Extraction errors

When the application processes a huge amount of pages, sometimes extraction
problems occur. There are two reasons why it happens: bad client’s internet
connection and malfunctioning of a website (Web API directory).

To decrease the number of extraction errors, double extraction mechanism
can be applied. The double extraction mechanism sends the additional request
every time the application catches an exception on request.

By that, the double check mechanism can significantly decrease an amount
of errors and increase the success rate of the extraction process, see the next
chapter 4.

44

3.4. Implementation issues

3.4.5 Identical APIs

One of the most difficult problems of API extraction for different data sources
is identical APIs. Different data sources may have the same APIs in their
databases. To make data more consistency and structured this problem needs
to be avoided. However, this problem is not a trivial and required many
efforts.

The current work does not solve this kind of problem. It is a topic for
further exploring and research. But the problem can be solved if identifying
mechanism will be invented and injected.

When the application extracts new API, the mechanism compares extrac-
ted API with APIs that already extracted. The mechanism calculates the
similarity index between two APIs. If the similarity index is more than a
predefined constant index, then very likely two APIs are similar and can be
merged.

The predefined constant index is calculated experimentally based on a lot
of processed data.

It is hard to say how the identification process should work in details
because it is a topic for another work. But definitely, it is possible. Sim-
ilar mechanisms are already applied in aggregation portals shopstyle.com 25,
lyst.com26 and many others.

25http://shopstyle.com
26http://lyst.com

45

http://shopstyle.com
http://lyst.com

Chapter 4
Validation and experiments

4.1 Coverage

Based on information provided by API directories we get the official inform-
ation about amount of APIs each API directory provides. The information is
provided in the table 4.1.

Thus API directories contain 21,736 APIs descriptions and 7,881 mashup
descriptions and totally 29,617 APIs descriptions and mashups.

As were mentioned above the application extracts information from several
data sources such as ProgrammableWeb, Apis.io, Apis.guru, Api-for-that and
Exicon and transforms to Web API dataset. The amount of extracted API
and mashup descriptions is represented in the table 4.1.

Thus the application has extracted 21,211 APIs descriptions and 7,852
mashup descriptions and 29,063 API and mashup descriptions.

Table 4.1: Provided and extracted APIs

Directories Provided by direct-
ories

Extracted by the ap-
plication

ProgrammableWeb 17,632 APIs 17,161 APIs

ProgrammableWeb
Mashup 7,881 mashups 7,852 mashups

Apis.io 1,102 APIs 1,088 APIs

Apis.guru 482 APIs 460 APIs

Api-for-that 599 APIs 581 APIs

Exicon 1,921 APIs 1,921 APIs

47

4. Validation and experiments

Table 4.2: Extraction results

Percent of extracted
APIs

Percent of missed
APIs

APIs 97.58% 2.42%

Mashups 99.63% 0.37%

Total 98.12% 1.87%

Based on the information provided in the table 4.1, we have calculated
the percentage of extracted APIs and mashups information, as well as the
percentage of missed APIs and mashups information. Calculated results are
represented in the table 4.2.

It is worth noting that API information was obtained from API directories
by the date of June 2017. As well as, the extraction process of Web APIs
descriptions was carried out by the date of June 2017.

Based on results above, the success rate of extraction is between 97% and
100%. The success rate mostly depends on several factors: client’s internet
connection and proper functionality of a remote website.

Appearing of errors is a normal, it always happens on extraction process
due to connection problems and errors on a server side. However, the success
rate can be significantly increased.

More precisely this problem is discussed in section 3.4.4.

4.2 Quality

According to the 5-star classification system defined by Tim Berners-Lee, data-
sets can be classified using the following classification system:

1. Make your data available on the web under an open license.

2. Data in machine-readable structured format (e.g., Excel instead of image
scan of a table).

3. Make it available in a non-proprietary open format, such as CSV, JSON,
XML, etc.

4. Use URIs for identification.

5. Link your data to other LOD27 datasets.

27Linked Open Data

48

4.2. Quality

The Linked Web APIs dataset credits four out of five stars: data provided
by Linked Web APIs is open (first star), data is in machine-readable structured
format (second star), it is available in non-proprietary RDF format (third
star), dataset uses URIs for identification (fourth star).

4.2.1 Dataset Quality

The quality of dataset mainly depends on extraction process and quality of
extracted information.

The extraction process has a straight impact on a quality of extracted
data. To evaluate a quality of data, we have randomly created 100 RDF
triples for each data source and make a data validation using Raptor RDF
Syntax Library.

Raptor library goes through all RDF data in automatic mode and checks
the syntax of each RDF triple.

As a result of Raptor execution were discovered a problem in an inappro-
priate data format in subject and object component of triples. Data format
has the following inconsistencies:

1. Data format contains prohibited symbols such as ”;”, ”—”, ”&” and a
couple more.

2. Some of the data were written using not Latin symbols.

3. Some of the extracted data contain digits at the beginning of the subject,
which is not allowed.

To eliminate the 1st and the 2nd problem, the normalization component
was modified. Before these problems identification, the data normalization
method solves normalization problems by replacing a set of prohibited sym-
bols.

But this solution as we can see is not efficient because the set of prohibited
symbols is not complete enough. To solve this problem, the normalization
function was rewritten in opposite way: the function, instead of prohibited
symbols, has a set of allowed symbols and generate normalized strings based
on allowed symbols (strings contain only allowed symbols). Allowed symbols
are a-z, A-Z and 0-9.

To fix the 3rd problem, an indication statement was added to normaliz-
ation function. As a result, if the normalization function detects a string of
digits at the beginning of the string, it prepends the preposition ”the-”.

Also, it is worth noting that data from API data sources in rare cases is
not consistency. It has errors. This kind of problem cannot be solved; the
data can be avoided and left as is.

49

4. Validation and experiments

4.2.2 Known Shortcomings

The extraction process of Web APIs is not always flawless because of depend-
ency on HTML structure. The HTML structure in the course of time can be
modified which breaks the process of extraction.

More precisely this problem is discussed in section 3.4.1.

50

Conclusion

The growing number of Web APIs has a great impact on the current internet
and web development. The amount of Web APIs is significantly grown in last
decades. At the moment there are several Web API directories which contain
APIs descriptions. But there is still no common data model which unifies Web
APIs data models.

Therefore the current work has been discovered and implemented. We
have implemented the system for acquisition of data for Web APIs; the system
transforms descriptions of Web APIs from several data models into the unified
data model. The Linked Web APIs model was taken as the basis for unified
data model and furthermore was extended.

As a result, we have accomplished:

• Analyzation of existing data models for its structure and data format.
We have studied each data model structure and based on this informa-
tion we have created automated collection of Web APIs descriptions.

• We have implemented transformation rules based on RML. Thus we
have established mappings between data models (ProgrammableWeb,
Apis.io, Apis.guru, Api-for-that, Exicon) and unified data model.

• Finally, based on collected Web APIs data and established mappings,
we have transformed and integrated Web APIs data into Linked Web
APIs data model.

As a result, Linked Web APIs data becomes available as Open Data.
The Open Data can be used then in several cases:

1. It can be consumed by end-user.

2. API providers have abilities to increase the visibility of their APIs.

3. The data can be used for further usage by developers or applications.

51

Conclusion

The application can be found on the Bitbucket repository on the following
link: https://bitbucket.org/m1ci/semantic-web-apis-hub

Future work

The current thesis has a lot of work that can be implemented in future.
First of all extracted and transformed data is not interlinked with external

semantic databases such as DBPedia and Freebase. When this task is accom-
plished, data becomes available as Linked Open Data. Thus, Data becomes
linked, more valuable and efficient.

Moreover, if additional Web API data sources appear, the application can
be easily extended by adding new parsers. The structure of the application is
already developed, so the process of adding new parsers is easy enough.

To make the application more accurate and efficient, the problem with
identical APIs should be solved. When the problem is solved, data generated
by the application becomes more valuable and completeness.

As were mentioned above Semantic Web Services is very interesting and
perspective area of web development. The primary goals of Semantic Web Ser-
vices are automatic discovery, invocation, composition and monitoring Web
Services. The current work can efficiency aid the process of API discovery.
Using Linked Web APIs dataset, APIs become more understandable for ma-
chines and can be efficiently discovered and consumed.

Also, data provided by the application can be imported into Virtuoso data-
base engine to be available through SPARQL endpoint. Then, the application
can be integrated with SPARQL service description ontology, which provides
a mechanism by which a client can discover information about SPARQL end-
point.

52

https://bitbucket.org/m1ci/semantic-web-apis-hub

Bibliography

[1] Kearn, M. Introduction to REST and .net Web API. 2015. Available
from: https://blogs.msdn.microsoft.com/martinkearn/2015/01/05/
introduction-to-rest-and-net-web-api/

[2] GlobusSoft. An Introduction to Web Scraping. 2014. Available from:
http://globussoft.com/an-introduction-to-web-scraping/

[3] Microsoft. Understanding WSDL. Available from: https:
//msdn.microsoft.com/en-us/library/ms996486.aspx

[4] Fensel, D.; Kopecky, J. Semantic Web Services. 2008. Available from:
http://teaching-wiki.sti2.at/uploads/b/bf/SWS-10-SAWSDL.pdf

[5] Ghent University. RDF Mapping Language (RML). Available from: http:
//rml.io/spec.html

[6] Wikipedia. Application programming interface. Available from: https:
//en.wikipedia.org/wiki/Application_programming_interface

[7] Wikipedia. Web API. Available from: https://en.wikipedia.org/wiki/
Web_API

[8] Mashup (web application hybrid). Available from: https:
//en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

[9] Information extraction. 2017. Available from: https://
en.wikipedia.org/wiki/Information_extraction

[10] Olston, C.; Najork, M. Web Crawling. Stanford University, 2010.

[11] Wikipedia. Web scraping. Available from: https://en.wikipedia.org/
wiki/Web_scraping

53

https://blogs.msdn.microsoft.com/martinkearn/2015/01/05/introduction-to-rest-and-net-web-api/
https://blogs.msdn.microsoft.com/martinkearn/2015/01/05/introduction-to-rest-and-net-web-api/
http://globussoft.com/an-introduction-to-web-scraping/
https://msdn.microsoft.com/en-us/library/ms996486.aspx
https://msdn.microsoft.com/en-us/library/ms996486.aspx
http://teaching-wiki.sti2.at/uploads/b/bf/SWS-10-SAWSDL.pdf
http://rml.io/spec.html
http://rml.io/spec.html
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Web_API
https://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
https://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
https://en.wikipedia.org/wiki/Information_extraction
https://en.wikipedia.org/wiki/Information_extraction
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping

Bibliography

[12] Consortium, W. Semantic Web. W3 Consortium, ht-
tps://www.w3.org/standards/semanticweb/.

[13] Klimek, J. Introduction to Linked Data. FIT, CVUT.

[14] Tim Berners-Lee. 5-star deployment scheme for Open Data. 2010. Avail-
able from: http://5stardata.info/en/

[15] W3C. RDF. February 2014. Available from: https://www.w3.org/RDF/

[16] W3C. SPARQL Query Language for RDF. January 2008. Available from:
https://www.w3.org/TR/rdf-sparql-query/

[17] Wikipedia. Semantic Web service. Available from: https:
//en.wikipedia.org/wiki/Semantic_Web_service

[18] Alesso, H. P. Preparing for Semantic Web Services. 2004.

[19] W3C. Web Services Description Language (WSDL) 1.1. Available from:
https://www.w3.org/TR/wsdl

[20] W3C. Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language. 2007. Available from: https://www.w3.org/TR/wsdl20/

[21] W3C. Semantic Annotations for WSDL and XML Schema. Available
from: https://www.w3.org/TR/sawsdl/

[22] Wikipedia. Virtuoso Universal Server. Available from: https://
en.wikipedia.org/wiki/Virtuoso_Universal_Server

[23] Kopecky, J.; Vitvar, T.; et al. MicroWSMO and hRESTS. 2009. Available
from: http://sweet.kmi.open.ac.uk/pub/microWSMO.pdf

[24] W3C. Web Service Modeling Ontology (WSMO). 2005. Available from:
https://www.w3.org/Submission/WSMO/

[25] Swagger. Swagger. Available from: http://swagger.io/

[26] Apis.json. Available from: http://apisjson.org/

[27] Dojchinovski, M.; Vitvar, T. Linked Web APIs Dataset. 2015.

[28] ProgrammableWeb. About ProgrammableWeb. Available from: https://
www.programmableweb.com/about

[29] Wikipedia. XML Schema (W3C). Available from: https:
//en.wikipedia.org/wiki/XML_Schema_(W3C)

[30] Apache. Apache Maven Project. Available from: https:
//maven.apache.org/

54

http://5stardata.info/en/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://en.wikipedia.org/wiki/Semantic_Web_service
https://en.wikipedia.org/wiki/Semantic_Web_service
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl20/
https://www.w3.org/TR/sawsdl/
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
http://sweet.kmi.open.ac.uk/pub/microWSMO.pdf
https://www.w3.org/Submission/WSMO/
http://swagger.io/
http://apisjson.org/
https://www.programmableweb.com/about
https://www.programmableweb.com/about
https://en.wikipedia.org/wiki/XML_Schema_(W3C)
https://en.wikipedia.org/wiki/XML_Schema_(W3C)
https://maven.apache.org/
https://maven.apache.org/

Bibliography

[31] Jsoup. Jsoup: Java HTML Parser. Available from: https://jsoup.org/

[32] W3C. Linked Data. July 2006. Available from: https://www.w3.org/
DesignIssues/LinkedData.html

[33] APIs.io. About APIs.io. Available from: http://apis.io/about

[34] APIS.guru. About APIS.guru. Available from: https://apis.guru/
openapi-directory/

[35] Wikipedia. RDF Schema. Available from: https://en.wikipedia.org/
wiki/RDF_Schema

[36] W3C. Vocabularies. Available from: https://www.w3.org/standards/
semanticweb/ontology

[37] OpenLink. Virtuoso. Available from: https://
virtuoso.openlinksw.com/

[38] IBM. Describe REST Web services with WSDL 2.0. May 2008. Available
from: https://www.ibm.com/developerworks/webservices/library/
ws-restwsdl/

[39] The Dublin Core Metadata Initiative. Dublin Core. Available from: http:
//dublincore.org/documents/dces/

[40] W3C. An Overview of the PROV Family of Documents. Available from:
https://www.w3.org/TR/prov-overview/

[41] Google. GSON. Available from: https://github.com/google/gson

[42] Kopecky, J.; Gomadam, K.; et al. hRESTS: an HTML Microformat for
Describing RESTfulWeb Services. Innsbruck, 2008.

[43] Kopecky, J. Evaluating WSMO-Lite. STI Innsbruck.

[44] Vitvar, T.; Kopecky, J.; et al. WSMO-Lite Annotations for Web Services.
2008.

[45] Vitvar, T.; Kopecky, J.; et al. WSMO-Lite and hRESTS: Lightweight
Semantic Annotations for Web Services and RESTful APIs.

[46] Serugendo, G. D. M. Mashups. University of Geneva.

[47] Labsky, M. Information Extraction. University of Economics, Prague.

[48] Arroyo, S.; Lara, R.; et al. Semantic Aspects of Web Services. 2003.

[49] Wikipedia. Web Services Description Language. Available from: https:
//en.wikipedia.org/wiki/Web_Services_Description_Language

55

https://jsoup.org/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://apis.io/about
https://apis.guru/openapi-directory/
https://apis.guru/openapi-directory/
https://en.wikipedia.org/wiki/RDF_Schema
https://en.wikipedia.org/wiki/RDF_Schema
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology
https://virtuoso.openlinksw.com/
https://virtuoso.openlinksw.com/
https://www.ibm.com/developerworks/webservices/library/ws-restwsdl/
https://www.ibm.com/developerworks/webservices/library/ws-restwsdl/
http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces/
https://www.w3.org/TR/prov-overview/
https://github.com/google/gson
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language

Appendix A
Acronyms

WWW World Wide Web

RDF Resource Description Framework

HTML HyperText Markup Language

XML Extensible Markup Language

API Application programming interface

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

WSMO Web Services Modeling Ontology

URL Uniform Resource Identifier

SQL Structured Query Language

DBMS Database Management System

CSV Comma-separated values

hRESTS HTML for RESTful Services

WSDL Web Services Description Language

SAWSDL Semantic Annotation for Web Services Description Language

XSD XML Schema Definition

OWL Web Ontology Language

LWAPIS Linked Web APIs

57

A. Acronyms

RML RDF Mapping Language

58

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
.gitignore...............file which tells git which files it should ignore
README.md description of the project for git repository
pom.xmlMaven XML file that contains information about the project and
configuration details used by Maven to build the project
data.................... the directory with RML rules and RDF output
src.......................................the directory of source codes

semapi base application classes
parsers..........application’s parser classes (abstract and concrete)

apiParsers..................application’s concrete parser classes
thesis.................the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

59

Appendix C
RML rules

Below is a full text of ProgrammableWeb RML rules, which apply to transform
data from JSON to RDF format.

@pref ix r r : <h t t p : //www. w3 . org /ns/ r2rml#>.
@pre f ix rml : <h t t p : //semweb . mmlab . be/ns/rml#> .
@pre f ix q l : <h t t p : //semweb . mmlab . be/ns/ q l#> .
@pre f ix r d f s : <h t t p : //www. w3 . org /2000/01/ rdf−schema#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms/> .
@pre f ix f o a f : <h t t p : //xmlns . com/ f o a f /0.1/> .
@pre f ix vcard : <h t t p : //www. w3 . org /2006/ vcard /ns#> .
@pre f ix doap : <h t t p : // u s e f u l i n c . com/ns/doap#> .
@pre f ix semapi : <h t t p : // l inked−web−ap i s . f i t . cvut . cz /ns/ core#> .
@pre f ix pw : <h t t p : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /pw/> .
@pre f ix prov : <h t t p : //www. w3 . org /ns/prov#> .

#API
<#PWebMapping>

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$” ;

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /pw/{

name normalized} a p i ” ;
r r : c l a s s semapi:WebAPI ;
r r : c l a s s prov :Ent i ty ;

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e dc t e rms : c r ea t ed ;
r r : objectMap
[

rml : r e f e r e n c e ” c rea ted ” ;
r r : datatype xsd :date

61

C. RML rules

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e foaf :homepage ;
r r : objectMap
[

rml : r e f e r e n c e ” u r l ” ;
r r : termType r r : I R I

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : t i t l e ;
r r : objectMap
[

rml : r e f e r e n c e ”name”
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e r d f s : l a b e l ;
r r : objectMap
[

rml : r e f e r e n c e ”name”
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : d e s c r i p t i o n ;
r r : objectMap
[

rml : r e f e r e n c e ” d e s c r i p t i o n ” ;
r r : language ”en−us ”

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi :endpoint ;
r r : objectMap
[

rml : r e f e r e n c e ” endpoint ” ;
r r : termType r r : I R I

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e foa f : i sPr imaryTop i cOf ;

r r : objectMap [
rml : r e f e r e n c e ”homepage ” ;

r r : termType r r : I R I
]

] ;

62

r r : predicateObjectMap [
r r : p r e d i c a t e vcard:Emai l ;
r r : objectMap
[

rml : r e f e r e n c e ” ema i l addre s s ” ;
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi :docsUr l ;
r r : objectMap
[

rml : r e f e r e n c e ” docs home page ” ;
r r : termType r r : I R I

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi : t e rmsOfServ iceUr l ;
r r : objectMap
[

rml : r e f e r e n c e ” t e r m s o f s e r v i c e u r l ” ;
r r : termType r r : I R I

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi : forumUrl ;
r r : objectMap
[

rml : r e f e r e n c e ” api forum ” ;
r r : termType r r : I R I

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi : supportUr l ;
r r : objectMap
[

rml : r e f e r e n c e ” s u p p o r t u r l ” ;
r r : termType r r : I R I

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e s emap i : s s lSuppor t ;
r r : objectMap
[

rml : r e f e r e n c e ” i s s s l s u p p o r t ” ;
r r : datatype xsd :boo l ean

]
] ;

r r : predicateObjectMap [

63

C. RML rules

r r : p r e d i c a t e s e m a p i : d e v i c e S p e c i f i c ;
r r : objectMap
[

rml : r e f e r e n c e ” i s d e v i c e s p e c i f i c ” ;
r r : datatype xsd :boo l ean

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e s e m a p i : u n o f f i c i a l A p i ;
r r : objectMap
[

rml : r e f e r e n c e ” i s u n o f f i c i a l a p i ” ;
r r : datatype xsd :boo l ean

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi:hypermediaApi ;
r r : objectMap
[

rml : r e f e r e n c e ” i s hype rmed ia ap i ” ;
r r : datatype xsd :boo l ean

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e s e m a p i : r e s t r i c t e d A c c e s s ;
r r : objectMap
[

rml : r e f e r e n c e ” i s r e s t r i c t e d a c c e s s ” ;
r r : datatype xsd :boo l ean

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e s emap i : conso l eUr l ;
r r : objectMap
[

rml : r e f e r e n c e ” c o n s o l e u r l ” ;
r r : termType r r : I R I

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi :as s ignedCategory ;
r r : objectMap
[

r r : parentTriplesMap <#FirstCategoryMapping>
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi :as s ignedCategory ;

64

r r : objectMap
[

r r : parentTriplesMap <#SecondCategoryMapping>
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi :requestFormat ;
r r : objectMap
[

r r : parentTriplesMap <#RequestFormatMapping>
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi :responseFormat ;
r r : objectMap
[

r r : parentTriplesMap <#ResponseFormatMapping>
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e semapi:authModel ;
r r : objectMap
[

r r : parentTriplesMap <#AuthModelMapping>
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e s e m a p i : a r c h i t e c t u r a l S t y l e ;
r r : objectMap
[

r r : parentTriplesMap <#Architectura lSty leMapping >
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e dc t e rms : c r ea to r ;
r r : objectMap
[

r r : parentTriplesMap <#ApiProviderMapping>
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e dc t e rms :pub l i sh e r ;
r r : objectMap
[

r r : parentTriplesMap <#ApiProviderMapping>
]

] ;

65

C. RML rules

r r : predicateObjectMap [
r r : p r e d i c a t e semapi : i sDeprecated ;
r r : objectMap
[

rml : r e f e r e n c e ” i sDeprecated ” ;
r r : datatype xsd :boo l ean

]
] .

#API prov ide r
<#ApiProviderMapping>

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$”

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /{$.
ap i p r ov id e r no rma l i z e d } p r o v i d e r ” ;

r r : c l a s s f o a f : O r g a n i z a t i o n ;
r r : c l a s s f oa f :Agent ;
r r : c l a s s semapi :Prov ider

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e foa f :name ;
r r : objectMap [

rml : r e f e r e n c e ”$. ap i p r ov id e r no rma l i z ed ”
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : t i t l e ;
r r : objectMap [

rml : r e f e r e n c e ”$. ap i p r ov id e r no rma l i z ed ”
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e r d f s : l a b e l ;
r r : objectMap [

rml : r e f e r e n c e ”$. ap i p r ov id e r no rma l i z e d ”
]

] .

#F i r s t Category
<#FirstCategoryMapping>

66

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$. f i r s t c a t e g o r y n o r m a l i z e d ”

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /{$}
ca t ego ry ” ;

r r : c l a s s semapi :pr imaryCategory
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : t i t l e ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e r d f s : l a b e l ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] .

#Second Category
<#SecondCategoryMapping>

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$. s e cond category norma l i z ed ”

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /{$}
ca t ego ry ” ;

r r : c l a s s semapi : secondaryCategory
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : t i t l e ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e r d f s : l a b e l ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

67

C. RML rules

] .

#Request Format
<#RequestFormatMapping>

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$. r eque s t f o rmat s no rma l i z ed ”

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /{$}
format ” ;

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : t i t l e ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e r d f s : l a b e l ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] .

#Response Format
<#ResponseFormatMapping>

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$. r e sponse f o rmat s norma l i z ed ”

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /{$}
format ” ;

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : t i t l e ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] ;

r r : predicateObjectMap [

68

r r : p r e d i c a t e r d f s : l a b e l ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] .

#A r c h i t e c t u r a l S ty l e
<#Archi tectura lSty leMapping>

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$. a r c h i t e c t u r a l s t y l e n o r m a l i z e d ”

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /{$}
a r c h i t e c t u r a l S t y l e ” ;

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : t i t l e ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e r d f s : l a b e l ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] .

#Auth model
<#AuthModelMapping>

rml : l o g i c a l S o u r c e [
rml : source ” data /programmableweb/pweb . j son ” ;
rml : r e f e r enceFormulat i on ql:JSONPath ;
rml : i t e r a t o r ”$. auth model normal ized ”

] ;

r r : subjectMap [
r r : template ” h t tp : // l inked−web−ap i s . f i t . cvut . cz / r e sou r c e /{$}
authModel ” ;

] ;

r r : predicateObjectMap [
r r : p r e d i c a t e d c t e r m s : t i t l e ;
r r : objectMap [

rml : r e f e r e n c e ”$”

69

C. RML rules

]
] ;

r r : predicateObjectMap [
r r : p r e d i c a t e r d f s : l a b e l ;
r r : objectMap [

rml : r e f e r e n c e ”$”
]

] .

Listing C.1: ProgrammableWeb RML rules

70

Appendix D
Deployment instructions

This appendix describes the instructions for proper application deployment.
The instructions are written for Ubuntu operation system. Commands may
differ for other types of Linux OS.

D.1 Requirements

For proper application use and running the following requirements needed:

1. Pre-installed Java JDK version 1.4 or above

2. Pre-installed Maven build automation tool

3. Minimum 1GB of RAM

D.2 Instructions

As were mention above pre-installed Java JDK required as well as Maven
building tool.

D.2.1 Installing Java JDK

Run the following command in console to download JDK:
sudo apt−get i n s t a l l de fau l t−jdk

D.2.2 Installing Maven

Run the following command in console to download Maven build automation
tool:
sudo apt−get i n s t a l l maven

71

D. Deployment instructions

When all requirements are fulfilled the application can be automatically
or manually deployed.

D.2.3 Automatic deployment

For automatically application building the bash script was created. The script
is given below:
echo ”Downloading Semantic−Web−API−Hub”
g i t c l one −−r e c u r s i v e https : // b i tbucket . org /m1ci/ semantic−web−apis
−hub/

echo ”Downloading RML l i b r a r y ”
g i t c l one −−r e c u r s i v e https : // github . com/RMLio/RML−Mapper . g i t
cd RML−Mapper
g i t submodule update −− i n i t −−r e c u r s i v e

echo ” Bui ld ing RML l i b r a r y ”
mvn c l ean i n s t a l l −DskipTests

echo ”Adding RML l i b r a r y to Semantic−Web−API−Hub p r o j e c t ”
mvn i n s t a l l : i n s t a l l − f i l e −D f i l e=RML−Proces sor / t a r g e t /RML−Processor

−0.3 . j a r −DgroupId=rml −D a r t i f a c t I d=rml −Dversion =0.3 −
Dpackaging=j a r

cd . .

echo ” Bui ld ing Semantic−Web−API−Hub”
cd semantic−web−apis−hub
mvn c l ean i n s t a l l

echo ” Fin i sh ”

Listing D.1: The application bash building script

D.2.4 Manual deployment

The application can be builded using the following set of instructions.

D.2.4.1 Download a repository

The application can be downloaded from Bitbucket repository using the fol-
lowing command:
g i t c l one −−r e c u r s i v e https : // b i tbucket . org /m1ci/ semantic−web−apis
−hub/

D.2.4.2 Download and build RML library

The RML library can be downloaded from Github repository using following
commands:

72

D.3. Application commands

g i t c l one −−r e c u r s i v e https : // github . com/RMLio/RML−Mapper . g i t
g i t submodule update −− i n i t −−r e c u r s i v e

When RML library is downloaded, it should be built using following com-
mands:
mvn c l ean i n s t a l l −DskipTests

In RML-Processor/target/ folder get RML library file RML-Processor-0.3.jar
and copy into the root of the semantic-web-apis-hub folder for further adding
to Maven build manager.

D.2.4.3 Adding RML dependency

RML library can be added to Maven using the following command:
mvn i n s t a l l : i n s t a l l − f i l e −D f i l e=RML−Processor −0.3 . j a r −DgroupId=

rml −D a r t i f a c t I d=rml −Dversion =0.3 −Dpackaging=j a r

D.2.4.4 Project build

The project must be built using Maven build manager:
mvn c l ean i n s t a l l

Maven build manager will download and install all required dependencies.
Finally the application will be built and ready for execution.

D.3 Application commands

The application can be run using certain command set.
Extract specific API directory:

java −j a r Sem−API−Maven−1. j a r e x t r a c t {pw, pw−mashup , apis−io ,
apis−guru , exicon , api−fo r−that }

Extract all API directories:
java −j a r Sem−API−Maven−1. j a r extract−a l l

Transform extracted specific API data into RDF format:
java −j a r Sem−API−Maven−1. j a r trans form {pw, pw−mashup , apis−io ,

apis−guru , exicon , api−fo r−that }

Transform all extracted API data into RDF format:
java −j a r Sem−API−Maven−1. j a r transform−a l l

73

D. Deployment instructions

D.4 Application source

The application can be found and downloaded from the Bitbucket Git revi-
sion control system from the following link: https://bitbucket.org/m1ci/
semantic-web-apis-hub

74

https://bitbucket.org/m1ci/semantic-web-apis-hub
https://bitbucket.org/m1ci/semantic-web-apis-hub

	Introduction
	Motivation
	The goal
	Thesis structure

	Background and related work
	Background
	Web Services description models
	Web API data sources

	Analysis and Design
	Requirements
	Vocabularies
	Use cases
	The architecture
	Domain model

	Implementation
	Used technologies
	Application architecture
	Deployment
	Implementation issues

	Validation and experiments
	Coverage
	Quality

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD
	RML rules
	Deployment instructions
	Requirements
	Instructions
	Application commands
	Application source

