
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Manuscripts Classification Using
Convolutional Deep Learning Networks

Transfer learning

Zuzana Kožnarová

Supervisors: Dipl.-Ing. Vincent Christlein,
Prof. Dr.-Ing. Andreas Maier,
doc. Ing. Daniel Novák, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Robotics
August 2017

ii

Acknowledgements

I would like to express my gratitude to
my supervisor Dipl.-Ing. Vincent Christ-
lein for relevant feedback to my research
related to my bachelor thesis. I would like
to thank people from BlindShell, specifi-
cally doc. Ing. Daniel Novák, Ph.D. and
Ing. Jan Hadáček, for their help with my
project last semester.
Many thanks to my family that helped
me every time I needed, not only during
last 3 years at the university. I want to
thank my father, who was my example for
studying at the Faculty of Electrical Engi-
neering (FEL), also to my mother, who is
embodiment of understanding and good,
and to my aunt Jarmila, who taught me
English.
Last but not least, I would like to
thank my partner Jakub Havlíček and my
friends, concretely David Sedláček, Mar-
tin Saslík, Václav Veselý, David Kopecký,
Martin Vlašimský and Michal Stračinský,
who were my comrades-in-FEL.

Declaration

I declare that the presented work was de-
veloped independently and that I have lis-
ted all sources of information used within
it in accordance with the methodical in-
structions for observing the ethical princi-
ples in the preparation of university the-
ses.

...

iii

Abstract

The thesis concentrates on improving
recognition performance for small data-
sets using convolutional neural networks
(CNN). Specifically, it is about type clas-
sification of handwritings in Latin. The
main topics are the use of pre-training and
the influence of pre-training on augmen-
ted datasets. In the thesis, the impact of
learning-rate changes and also the effect
of fixing weights in several layers of the
beginning of the network are examined.
Last but not least, there is space devo-
ted to preprocessing of the dataset using
whitening. The whitening is used in the
context of individual images.

The CNN models VGG16 [2] and Res-
net50 [1] were used, as they were applied
to Latin texts classification with one of
the highest precision (architecture VGG16
reached accuracy of 0.7649).

The goal of these and other methods is
to achieve improvement in classification
against the results of the Classification
of Medieval Handwritings in Latin 2016
Script competition [3].

Keywords: CNN, Convolutional Deep
Learning Networks, Medieval
handwritings in Latin script,
pre-training, fine-tuning, CLAMM12,
ICDAR16, supervised learning, dataset

Supervisors:
Dipl.-Ing. Vincent Christlein,
Prof. Dr.-Ing. Andreas Maier,
doc. Ing. Daniel Novák, Ph.D.

Abstrakt

Práce se zabývá možností zlepšení přes-
nosti klasifikace pro malé datové sady
za použití konvolučních neuronových sítí
(CNN). Konkrétně se jedná o klasifikaci
typu historických ručně psaných latin-
ských textů. Hlavními tématy je využití
pretrainingu a vliv pretrainingu na rozší-
řené datové sady. V práci je dále sledován
dopad změn learningratu a také účinek
zafixování vah pro prvních několik vrstev.
V neposlední řadě pak je věnován prostor
preprocesingu datové sady pomocí whi-
teningu. Whitening je použit v kontextu
jednotlivých obrázků.

Byly použity modely CNN VGG16 [1]
a Resnet50 [2], jelikož byly již v minulosti
aplikovány pro klasifikaci latinských textů
s jednou z nejvyšších přesností (architek-
tura VGG16 dosáhla přesnosti 0.7649).

Cílem těchto a dalších metod je dosáh-
nout zlepšení přesnosti klasifikace vůči
výsledkům ze soutěže Classification of Me-
dieval Handwritings in Latin 2016 Script
[3].

Klíčová slova: CNN, konvoluční
hluboké neuronové sítě, středověké ručně
psané latické texty, předtrénování,
dotrénování, CLAMM12, ICDAR16,
učení s učitelem, datová sada

Překlad názvu: Aplikace hlubokých
konvolučních neuronových sítí pro
klasifikaci rukopisů — Transfer learning

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Transfer learning 2

1.3 Data preprocessing 2

1.4 State of the art 3

1.4.1 FAU . 3

1.4.2 Previous Work: DeepScript . . 4

2 Theoretical background 5

2.1 Neuron as a linear classificator . . 5

2.2 Layers . 6

2.2.1 Input layer 7

2.2.2 Dense layer 7

2.2.3 Pooling layer 8

2.2.4 Convolutional layer 10

2.2.5 Dropout layer 12

2.2.6 Batch normalization layer . . . 12

2.3 Activation functions 13

2.3.1 Historical activation functions 13

2.3.2 Rectified Linear Unit 14

2.3.3 Softmax 15

2.4 Backpropagation 16

2.5 Optimizer 16

2.5.1 Batch gradient descent 17

2.5.2 Stochastic gradient descent . . 17

2.5.3 Mini-batch gradient descent . 17

2.5.4 Additional techniques 18

3 Model setup and training 19

3.1 Basis . 19

3.2 Important libraries 19

3.3 Supervised learning 20

3.4 Model and sequential model 20

3.5 Learning rate adjustment 23

3.6 Initialization of weights and
hyperparameters 24

v

4 Usefulness evaluation of the
pre-training 25

4.1 Introduction 26

4.2 CLaMM16 26

4.3 ICDAR17 . 29

4.3.1 ICDAR17 subdatasets 31

4.3.2 ICDAR17 results 31

4.4 Conclusion 33

5 Other methods 35

5.1 Rotation . 35

5.2 Whitening 36

6 Conclusion 39

Bibliography 41

A Acronyms 45

B Instructions for running the
scripts 47

C Project Specification 49

vi

Figures

2.1 Basic scheme of a perceptron 6

2.2 A simplified diagram of a CNN
architecture ResNet50 with the
corresponding input and output
dimensions used for the CLaMM16
dataset . 7

2.3 Sigmoid and tanh activation
functions . 14

2.4 Rectified linear unit (ReLU)
activation function 15

3.1 Observed parameters 24

4.1 Diagram for used datasets 25

4.2 Example of dataset of
handwritings (CLaMM16) image in
size of input to the CNN. 26

4.3 Validation accuracy of VGG16 . 28

4.4 Validation accuracy of ResNet50 28

4.5 Scheme for cropping document
CNTW = 2, CNTH = 4 30

4.6 Edited image from ICDAR17 for
normal dataset 31

5.1 Dataset augmentation using
rotation . 36

5.2 Whitened image from CLaMM16
dataset . 37

5.3 Validation accuracy of ResNet50
using whitening 38

vii

Tables

1.1 Results from the ICFHR2016
competition . 3

3.1 VGG16, for input size (1, 150, 150)
and 12 classification categories . . . 21

3.2 ResNet50, for input size (1, 150,
150) and 12 classification categories 22

3.3 ResNet50, convolutional block with
input size (a · s, s · (b− 1) + 1,
s · (b− 1) + 1), where s is stride
length . 22

3.4 ResNet50, identity block with
input size (a, b, b) 23

4.1 CLaMM16 accuracy 27

4.2 Accuracy for pre-training on
dataset for competition on the
classification of medieval
handwritings in Latin script
(ICDAR17) dataset 32

4.3 Accuracy for fine-tuning on
ICDAR17 dataset 33

5.1 Comparison of the accuracy with
and without whitening 38

6.1 Comparison of results of Bachelor
Thesis and of the ICFHR2016
competition . 40

viii

Chapter 1

Introduction

In recent years, deep learning techniques based on neural networks (NNs) [4]
have set new performance standards for a wide variety of machine learning
or computer vision tasks. However, one problem of these deep NNs is that
they need many training samples. Thus, for small or medium-sized datasets,
classical computer vision approaches still surpass NNs. For example for the
task of medieval script type classification [5], methods based on CNNs do
not outperform classical approaches based on “bag of visual words” [3]. The
goal of this work is to improve the performance of CNNs for script type
classification. A possible solution to achieve better results is to pre-train
CNNs for a different, yet similar task and fine-tune it later with training data
of the original task.

In detail, the thesis consists of the following parts: implementation of a
CNN system for script style classification, which is based on existing work by
Mike Kestemont [6], evaluation of usefulness of pre-training for script-style
classification using other datasets and investigation of other methods to
improve recognition performance in tasks with scarce data.

The implementation was done in Python using the deep learning frameworks
Keras [7] and Tensorflow [8].

1

1. Introduction
1.1 Motivation

Nowadays it is common for us to recognize printed texts and we also have no
problem to learn to recognize our handwriting when we write all of the letters
for machine learning training. Now we want to concentrate on historical
handwritings. Would it not be amazing if we could only take a photo of a
historical text in a museum and we would get the most important information
about the text? Would it not be helpful for historians, when they find new
handwriting, to be able to easily and quickly compare the text with all types
of historical texts that exist in the whole world and see to which category it
shall be classified and with what probability? Afterwards it will be easier for
historians to concentrate on the text, century and probably also authors. We
are deeply convinced that CNNs can help in the historical field of study.

1.2 Transfer learning

In classical supervised learning, the CNN learns weights using a dataset from
the same domain and for the same task as we want to classify afterwards. On
the contrary, in transfer learning [9] we have a source domain with a source
task and during the learning we get the knowledge. We use this knowledge
afterwards to solve another problem which is in some characteristics similar
to the learning problem. Within transfer learning, we will concentrate on
pre-training.

1.3 Data preprocessing

Mean subtraction, normalization and whitening are usually ranked among
data preprocessing methods. Empricial mean and covariance matrix are
usually computed for the training dataset and then applied on every single
dataset (training, validation and testing). Instead, we will compute covariance
from every single image and we will apply whitening over all pixels in one
image. We will show that this is an effective technique. However, we can
also preprocess the dataset in other ways. We could analyse where in the
images lies the most important information. What is our main problem
linked to a dataset during training? If it is the volume of data, which method
should we use? We have two possibilities: (1) to pre-train the CNN or (2) to

2

................................... 1.4. State of the art

widen the dataset by means of noise, rotation and translation of the images,
cropping more random images and applying some additional transformations.
Moreover, these methods make our learned model more robust. That is really
important if we want to use it in real world afterwards.

1.4 State of the art

For the current direction of research, the best way is to look at the report from
the ICFHR2016 Competition on the Classication of Medieval Handwritings
in Latin Script [3]. The data from this report are listed in table 1.1, which
shows the results in the same text type classification that we have. In the
following subsections we will concentrate in detail on the solution of FAU
and DeepScript.

Team Accuracy Method
FAU 0.8390 i-vector + SVMs
NNML 0.8380 CNN
FRDC-OCR 0.7980 CNN
DeepScript 0.7649 CNN VGG-architecture
TAU-3 0.5280 k-NN out of the training histograms
TAU-2 0.5010 k-NN out of the training histograms
TAU-1 0.4990 k-NN out of the training histograms

Table 1.1: Results from the ICFHR2016 competition

1.4.1 FAU

The FAU based the work on a strategy different from a CNN. They used i-
vectors [10] and support vector machines (SVMs). At first, they modelled each
category by the global distribution of feature vectors, which were calculated
by means of i-vector extraction. Then, they applied within class covariance
normalization (WCCN). The SVM has been used for classification. More
detailed description is available in source [3].

3

1. Introduction
1.4.2 Previous Work: DeepScript

The DeepScript implementation is important for us because the work was
based on it. It uses the VGG architecture showed in table 3.1, the model
uses a batch size of 30 images and stochastic gradient descent (SGD) with
Nerestov momentum. Learning rate starts at 0.01 and every 10 epochs it is
divided by 3. The training lasted for 30 epochs and used Keras with Theano
as a backend.

The training dataset was divided into two subsets, training and validation,
in the ratio 9 : 1 for every group. Each image was downscaled with a factor
of two and 100 random images were cut out. Then, each image was zoomed,
rotated, translated etc. and at the end it was resized to the size of 150× 150
pixels. In case of testing images, at first, they were downscaled, then 30
images of size 150 × 150 pixels were cropped from each image. And to set
the final label, the predicted labels from all crops were averaged.

4

Chapter 2

Theoretical background

Basic information about CNNs are written in this chapter; firstly about
linear classification, secondly about layers from which the neuronal network
is composed. At the end of this chapter, backpropagation and optimizers are
explained.

2.1 Neuron as a linear classificator

Before we speak about NN, we need to describe the basic parts that NN
are made of. We need to speak about neurons [11]. A Neuron, also called
perceptron, is a linear classificator. It means that the perceptron is a linear
function that divides the space of inputs in two sections. The output of the
perceptron function is computed by the following formula 2.1.

y = f

(
n∑

i=1
(ai · wi) + b

)
(2.1)

Where b determines bias and for 2D we can imagine it as shift of a straight line.
wi are the weights, the parameters to be learned, in the 2D case they would
represent the rotation. The function f represents the activation function
(for example sigmoid, for details on this topic please refer to section 2.3).
Classification output is marked in the formula with letter y. n denotes to
the length of the input vector a and weight vector w. For a better intuition
please see the figure 2.1.

5

2. Theoretical background

y

b

w1

w2

wn

z f(z)

a1

a2

an

x

x

x

Σ
.
.
.

.

.

.
.
.
.

.

.

.

Figure 2.1: Basic scheme of a perceptron

2.2 Layers

A CNN is composed of layers and the layers are composed of neurons. The
most important layers for our thesis are introduced in the following subsections.
Before we get to architectures used in this thesis we need to create a general
idea of CNNs. Figure 2.2 shows a simplified diagram of a CNN architecture
ResNet50 with the corresponding input and output dimensions used for the
CLaMM16 dataset. The input layer (marked by green colour in the diagram)
must have the same number of neurons as the number of input pixels of one
image and typically, the input layer is not counted to the number of layers
of a CNN. Then, we can see hidden layers (marked by blue colour in the
diagram) where the weights are trained. The dashed lines mark other hidden
layers and their linkages. The hidden layers have different sizes, as we can
see in the diagram, they have also different functions, which are described in
following sections. The last layer, which is called output layer (marked by
red colour in the diagram), gives us the result in which category the image
will be classified. More detailed models of the CNNs used in this work are
shown in the tables 3.1 and 3.2.

The using of layers have also the advantage, that the computations are
matrix operations, therefore the calculations can effectively run in parallel
on a graphics processing unit (GPU), where are the matrix computations
usually faster than on a central processing unit (CPU).

6

....................................... 2.2. Layers

150

150

1

1

156

156

37

37

64

394 12

Hidden layers

Input
layer

Output
layer

1

1

Figure 2.2: A simplified diagram of a CNN architecture ResNet50 with the
corresponding input and output dimensions used for the CLaMM16 dataset

2.2.1 Input layer

The input layer does no computations, it only represents values. It is the first
layer in the network and as such it is not counted to the number of CNN
layers. Input size of this network corresponds to the size of the image, in our
case it is (1, 150, 150), because we have a grayscaled images that have the
width 150 and height 150 pixels. This example of input layer was mentioned
before in the figure 2.2. If we would use RGB images then we could expect
the size (3, image rows, image columns). In practical work, we need to be
careful about compatibility of the dimension ordering of the network with
the dimension ordering of input images.

2.2.2 Dense layer

The dense layer is fully connected, which was already used in the first types
of NN. All inputs are connected with all outputs. The disadvantage is that
there are a lot of weights to learn, the number of inputs is multiplied with

7

2. Theoretical background
the number of outputs. Dense layers are often used as some of the last layers
of the CNN, where the space has a lower dimension. Especially, the dense
layer with softmax activation function is typically used as the last layer to
normalize the output. For example the dense layer used in this thesis in
ResNet50 in penultimate layer has 403,850 parameters, it comes from 1024
input parameters and 394 output parameters.

The dense layer is followed by an activation function, we used ReLU and
Softmax in our work, described in more detail in sections 2.3.2 and 2.3.3. We
can calculate the output of the dense layer according to equation 2.2.

o = fa(A ·W + b) (2.2)

Where o indicates an output of the dense layer, fa determines the activation
function, A is the input, then W represents weights and b determines bias.
We can easily imagine calculation of one value of the output, if we look back
at the figure of perceptron (2.1).

We will add here a concrete example, where we will use the ReLU activation
function.

A = 1 −1 −3 4 (2.3)

W T = 2 2 1 1
3 1 1 −1 (2.4)

b = 1 1 (2.5)

O = 2 0 (2.6)

The values (2 ,0) are not a mistake because we also need to evaluate the
influence of activation function on the result of the dot product (2 ,-4).

2.2.3 Pooling layer

Pooling layers are used to reduce the dimensions of the activation maps. The
areas are defined by the pool size and stride length [7]. The pool size defines
pooling windows of size m = (mx,my) for 2D. Stride lengths s = (sx, sy)
determine by how many pixels the window will be shifted. Eventually, a
padding p = (py, px) can be added, if it is needed. When we designate
the images as a matrix A with dimensions a = (ax, ay), we can write the
output size o = (x, y) as stated in equations 2.7 and 2.8. It will be defined
analogically for more dimensions.

8

....................................... 2.2. Layers

x = ax − (mx − sx) + 2 · px

sx
(2.7)

y = ay − (my − sy) + 2 · py

sy
(2.8)

This type of layers is used to reduce the number of parameters, the poooling
layers have no parameters and can reduce the dimension of the image. Pooling
layers also help to avoid overfitting. We will write in more detail about
the max-pooling layer and average-pooling layer. However, there are other
functions which can also be applied to the windows, almost all of them can
be easily computed. We will not spend more time with these layers because
we will not use them in architectures described in this thesis.

Max-pooling layer

The max-pooling finds out the maximum value in the window. In this case
we have the max-pooling window size m = (2, 2) and the same size of stride
lengths s = (2, 2). It means that in this case the size will be reduced to one
quarter, illustratively the input to max-pooling layer is matrix 2.9 and the
output can be seen in matrix 2.10.

2 3
4 7

5 3
8 1

3 3
4 2

9 8
4 7

(2.9)

7 8
4 9 (2.10)

Average-pooling layer

The average-pooling layer computes the average of all pixels in the window. As
an example, we will calculate it for matrix A with size (5,4); other parameters
are average-pooling window m = (3, 3) and stride lengths s = (3, 2). It means
that in this case the output size will be reduced to 2× 2, illustratively, the
input to average-pooling layer, after padding p = (1, 0) was applied, is shown
in matrix 2.11 and the output can be seen in matrix 2.12. Zeropadding adds
one column with zeros to the left side and to the right side.

9

2. Theoretical background
0 1 2
0 2 7

5 3 0
8 1 0

0 3 3
0 4 2

9 8 0
4 7 0

(2.11)

2.0 3.7
2.3 4.1 (2.12)

2.2.4 Convolutional layer

Convolutional layers [11] are the basic building units of CNNs. They try to
find some specified property using the filters. When we have an input with
large dimension (for example an image) and we use fully connected layer,
then we get a lot of parameters. However, when we use convolutional layer,
then we can benefit from the parameter sharing (weight sharing) and we have
relatively few parameters in comparison with fully connected layer, which
is one of the biggest advantages of convolutional layers. Parameter sharing
represents sharing of the weights spatially across every single filter type.

Moreover, the receptive field is a local connectivity of a neuron to the input
volume. The receptive field indicates the size of the filter and is computed
over the depth of input to the convolutional layer. That is the reason, why
the filter size 1× 1 is meaningful. It is a convolution of 1× 1× depth, also
used in our work. Similar depth of input and filter has furthermore positive
influence on number of parameters.

Second and even more important property of parameter sharing is that it
prevents the overfitting, because it is more important that the shape occurs
in the input to convolutional layer than where the concrete shape or another
feature that is filtered is. The first several convolutional layers are more
general and look for basic shapes, for example edges, however the several last
convolutional layers look for more complex shapes.

As was already computed for the pooling layer, it is also easily possible to
determine an output size for a convolutional layer. The output size is defined
by a windows size m = (mx,my) for 2D. Stride lengths s = (sx, sy) define by
how many pixels the window will be shifted. Eventually, padding p = (py, px)
can be added if it is needed. When we define the image as matrix A with
dimensions a = (ax, ay) and we determine k as the number of filters, then,
we can write the equations for outputs, equation 2.13 for width, equation
2.14 for height and equation 2.15 for depth, as listed bellow.

10

....................................... 2.2. Layers

x = ax −mx + 2 · px

sx
+ 1 (2.13)

y = ay −my + 2 · py

sy
+ 1 (2.14)

d = k (2.15)

Moreover, it is needed to calculate the number of parameters. There are
two types of parameters: The learnable weight matrix W and the bias b.
Bias is sometimes subsumed to W under the label w0. Letter k stands for
the number of filters, variable d0 is input depth and variable m = (mx,my)
stands for the size of window (here also the size of filter). Then, we can
calculate the number of shared parameters as specified in equation 2.16.

NP = (mx ·my · d0) · k + k (2.16)

The third piece of information that we want to get from the convolutional
layer is the output volume o = (ox, oy). We can calculate it for d-th depth and
concrete window M filtered with filter F of size f = (fx, fy). The equation
for convolution is mentioned in equation 2.17.

ox,y,d =
(fx∑

i=1

fy∑
j=1

fj,i,d · a(j+x),(i+y),d

)
+ bd (2.17)

To easily understand convolutional network we add here an example for a
5×5 input matrix and for two stride lengths s = (2, 2) and padding p = (0, 0).
The input is seen in matrix 2.18, the filter is written in matrix 2.19, the
output is shown in matrix 2.20 and bias is b = 2.

I =

1 3
−1 2
−1 −6

1 0 −1
0 6 1
0 0 −1

4 −1
−1 2

3 2 1
0 2 −3

(2.18)

F =
−1 0 −1
−1 0 −1
−1 0 −1

(2.19)

O = 2 2
−3 2 (2.20)

We used the filter F for convolution, we show the calculation for a convolution
depicted in blue by matrix 2.18 with the filter F and the result can be found
in matrix 2.20 in the blue cell. Calculation 2.21 according to equation 2.17
follows as:

o(1, 2, 1) =
(3∑

i=1

3∑
j=1

fj,i,1·a(j+2),(i+2),1

)
+b1 = (−1+1−1+1)+2 = 2. (2.21)

11

2. Theoretical background
2.2.5 Dropout layer

The most important property of dropout is that it helps against overfitting.
With a determined probability, this layer interrupts the connection to the
next layer and gives us the possibility to learn the network in more ways,
which makes the network more general. The dropout layer is used only during
the train time and has no effect during the testing time [12], because we want
deterministic output during the testing time. Simultaneously, the neurons are
only multiplied by the dropout factor to get the same activation range for the
subsequent layers. The biggest question related to this kind of layer is which
probability to choose for dropout. Dropout probability 0.5 is commonly used
and it is also in the network architecture VGG16. The probability in dropout
layers has usually the same value over the entire network [11].

2.2.6 Batch normalization layer

At first, we will define internal covariate shift according to Sergey Ioffe and
Christian Syengedy, “We define Internal Covariate Shift as the change in the
distribution of network activations due to the change in network parameters
during training.” [14] If the internal covariance shift is small, then the
training progresses faster. The internal covariance shift can be reduced by a
normalization of the input pictures (whitening, see section 5.2) or through the
batch normalization. The batch normalization layer normalizes the activations
close to the standardized normal distribution for every batch [7]. The mean
value of activation is approximately zero and the standard deviation is almost
one. The normalization is

x̂(k) = x(k) − E[x(k)]√
Var[x(k)]

. (2.22)

Where x̂(k) is the normalized kth dimension of input, x(k) denotes the kth
dimension of the input, E[x(k)] represents the mean value of x(k) and Var
expresses the variance of x(k). Moreover, the batch normalization allows the
network to scale and shift the normalization with parameters γ and β, which
are parameters of linear function 2.23.

y(k) = γ(k) · x̂(k) + β(k) (2.23)

The batch normalization layer can be found after the fully-connected layer or
after the convolutional layer. The batch normalization is before the activation
function, because the non-linearity of the activation function would cancel
the positive influence of batch normalization on the internal covariance shift.

12

................................. 2.3. Activation functions

The batch normalization layer learns the parameters γ and β during back-
propagation and they are learned per feature map. Parameters γ and β are
different for every dimension. The mean value E and variance Var are not
calculated during the testing. However, the mean value and the variance from
the training set are used.

Moreover, this layer restricts dependency of the final results on initializati-
ons of weights. Furthermore, when we use batch normalization, then we can
set up a higher learning rate. More information about batch normalization
and how to code it is available in paper [14].

2.3 Activation functions

Activation functions [11] are important, because they add nonlinearity to
the NN. We will concentrate on ReLU and Softmax, because they are also
used in ResNet50 and VGG16. For all activation functions, xi represents one
sample from input to activation function and yi determines output from the
activation function for one sample.

2.3.1 Historical activation functions

Two main activation functions mostly used in history are sigmoid, shown
in equation 2.24, and hyberbolic tangent (tanh), shown in equation 2.25.
Output of the sigmoid function is located between zero and one. Output of
the tanh takes value in the range of (−1, 1). We can find three disadvantages
of sigmoid. Firstly, if the gradient is very small, it will be almost zero after
passing through sigmoid function. Secondly we need to choose initial values
carefully not to get into saturation. The third issue is that sigmoid outputs
are positive or zero all the time. It causes that all gradients will be positive
or all gradients will be negative during the backpropagation. It can bring
instability to the network and a consistent changing between all positive and
all negative gradients. Conversely, tanh is zero-centered, therefore, it is more
popular than the sigmoid. We can compare both functions in figure 2.3.

yi = 1
1 + exp(−xi)

(2.24)

yi = tanh(xi) (2.25)

13

2. Theoretical background

x[-]
-5 0 5

y[
-]

-1

-0.5

0

0.5

1
Historical activation functions

Sigmoid
Tanh

Figure 2.3: Sigmoid and tanh activation functions

2.3.2 Rectified Linear Unit

ReLU [11], shown in equation 2.26 and drown in figure 2.4, is currently
very popular. ReLU has two main advantages, it accelerates convergence
in comparison with other activation functions and the second advantage is
computational unpretentiousness. On the other hand, a big disadvantage is
that ReLU can cause “dying” of neurons, it means that the output value is
set to zero from a specific moment till the end of learning. It can be caused
by a big input value, when the big value goes throw a ReLU, it influences
changing of weights in such way that the neuron will never activate on any
data. This phenomenon is mostly caused by setting too high learning rate.

yi = max(xi, 0) (2.26)

14

................................. 2.3. Activation functions

x[-]
-5 0 5

y[
-]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
ReLU activation function

Figure 2.4: ReLU activation function

We can meet many types of ReLU. For example the leaky ReLU, which
solves the problem of “dying” neurons. If the input to the leaky ReLU is
less than zero, then the output value is the input value multiplied by a small
positive constant (α) instead of being zero. The output value is computed
according to equation 2.27.

yi = max(xi, α · xi) (2.27)

2.3.3 Softmax

As we can see from equation 2.28, output from softmax [15] has to be positive
numbers or zero all the time. If we divide the exponential of input to softmax
yi by the sum of all exponentials of inputs to softmax, we get the probability
for classification to class i. We find the advantage of Softmax in the possibility
of application on datasets with many categories.

P (yi|xi;W) = eyi∑
j e

yj
(2.28)

Function P (2.28) is the probability assigned to the label yi for image xi where
W represents parametrization [11]. Softmax activation function is often used
in the last layer to normalize the values so that the final sum of output values
equals one.

15

2. Theoretical background
2.4 Backpropagation

Before we get to the backpropgation, we will outline what is the forward
pass. The forward pass is a computation of all classes scores with respect
to weights and then we compute the cost function. This cost function will
be then minimized during the backpropagation. The backpropagation [11]
is a process to calculate the gradient of the specified function on the input
vectors. To simplify and accelerate the computation, it is needed to use the
chain rule, described by equation 2.29, for computing the influence of the
input on the loss (output).

∂o

∂x
= ∂o

∂z
· ∂z
∂x

(2.29)

Where o represents the output function, x is the variable for which we want to
calculate the weights and z determines a subfunction from function o. Inputs
and outputs are defined from the perspective of forward propagation.

The elementary functions in CNNs can be imagined as gates. For exam-
ple, addition distributes current gradient. Maximum function chooses the
maximum from all inputs and writes the gradient to selected input, it writes
zero to the other inputs because they have no effect on the output. When
we speak about a multiplying gate, it multiplies all of the inputs, except the
one which it is counted for, with the gradient. When we have one input and
multiple outputs, then the gradients from different branches are summed
during the backpropagation.

It is needed to remember the weights from the forward pass for computations
in the backward pass. The local gradients are usually expressed in Jacobian of
input vectors. More informations about the parameters updates are available
in following section 2.5.

2.5 Optimizer

The optimizer, also called optimization algorithm, is an algorithm to minimize
the loss function. In general it is the way of learning the parameters of the
network θ, for example weights, biases and parameters for batch normalization
layers (shift and scale). A really important hyperparameter for the optimizer
is the learning rate, which indicates the degree of change and which also
influences the learning speed.

16

...................................... 2.5. Optimizer

We will focus on gradient descent in this section. We have three basic
possibilities how to calculate the gradient descent: batch gradient descent,
stochastic gradient descent and mini-batch gradient descent. At the end of this
section we will write about additional features for quicker optimization. An
important source for this and next four sections is the overview by Sebastian
Ruder [17], where more informations about the subject can be found.

2.5.1 Batch gradient descent

Batch gradient descent (BGD) computes the gradient for the whole dataset
and updates the parameters at once. BGD has two disadvantages. Firstly,
the computation of a big gradient takes a lot of time and we get no output
during the computation and secondly, we need to have enough memory space
to load the whole dataset into it. Conversely BGD will converge to a global
minimum, if it is a convex function, otherwise it will end in a local minimum.
How the model parameters θt are updated is written in equation 2.30.

θt = θt−1 − η · ∇θt−1 · J (θt−1) (2.30)

Where θt−1 represents the parameters before the updating, J (θt−1) determi-
nes an objective function (loss function) and the letter η indicates the above
mentioned learning rate.

2.5.2 Stochastic gradient descent

SGD computes the gradient gradually for each image (sample from the
training dataset). How the model parameters θt are updated is written in
equation 2.31.

θt = θt−1 − η · ∇θt−1 · J
(
θt−1, x

i, yi
)

(2.31)

Where θt−1 represents the parameters before the updating, J
(
θt−1, x

i, yi
)

determines an objective function (loss function) for one sample xi with label
yi. The letter η indicates the learning rate.

2.5.3 Mini-batch gradient descent

The last but not least variant is using mini-batch gradient descent (MBGD).
The MBGD was also used to optimize the models ResNet50 and VGG16. This

17

2. Theoretical background
type of optimizer is more fluent during optimization than SGD because MBGD
iterates over the batches. The batch size is 30 images in our case. Moreover,
it is also quicker in comparison with BGD. How the model parameters θt are
updated is written in equation 2.32.

θt = θt−1 − η · ∇θt−1 · J
(
θt−1, x

(i,i+n), y(i,i+n)
)

(2.32)

Where θt−1 represents the parameters before the updating, J
(
θt−1, x

(i,i+n), y(i,i+n)
)

determines an objective function (loss function) for mini-batch of samples
x(i,i+n) with labels y(i,i+n). The number of samples in one batch is labelled
by the letter n. The symbol η indicates the learning rate.

2.5.4 Additional techniques

We will write about two techniques: Firstly, about momentum that helps to
get to the minimum and prevents oscillation. Secondly, we will describe how
Nesterov accelerated gradient (NAG) works, it helps not to overshoot. Both
of these additional features were also used for optimization in this work.

At first, we will write about momentum. The usual value of momentum
is 0.9, which is also used in our case. If we add influence of last added
parameters (θt−1), then we make changing the direction harder. This also
speeds up the optimization. The equations for computation of the actual
parameters using momentum are:

vt = (γ · vt−1 + η · ∇θt−1 · J(θt−1)), (2.33)

θt = θt−1 − vt. (2.34)
Where θt−1 represents the parameters before the updating, J(θt−1) determi-
nes an objective function (loss function). The letter η indicates the learning
rate, vt−1 is the last vector update and γ determines momentum term.

Secondly, we will describe NAG. The NAG first does a big step in the
direction of the last step, after that it computes the actual gradient and
then it compares them and corrects them by adding a correction vector. The
formulas for computation of the actual parameters using momentum are:

vt = γ · vt−1 + η · ∇θt−1 · J(θt−1 − γ · vt−1), (2.35)

θt = θt−1 − vt. (2.36)
Where θt−1 represents the parameters before the updating, J(θt−1) determi-
nes an objective function (loss function). The letter η indicates the learning
rate. The vt−1 is the last vector update, vt represents the actual vector
update and γ refers to the momentum term.

18

Chapter 3

Model setup and training

In this chapter we will describe the solution using a CNN system for script
style classification. We will outline the basis of our implementation and which
main libraries we used. Then, we will write about supervised learning and
used models.

3.1 Basis

We have decided to base the Bachelor’s thesis on existing libraries and scripts.
We based the implementation on the code from Mike Kestemont which he
used for the ICFHR2016 competition [6]. We have used Keras and Python
since Mike Kestemont’s code is based on that.

3.2 Important libraries

We have used Keras using Tensorflow [8] as backend. Tensorflow is an open-
source library for numerical computation. We selected the GPU version, which
is based on CUDA1 allowing a much faster computation than employing the
CPU.

1 https://medium.com/@acrosson/installing-nvidia-cuda-cudnn-tensorflow-and-keras-69bbf33dce8a

19

https://medium.com/@acrosson/installing-nvidia-cuda-cudnn-tensorflow-and-keras-69bbf33dce8a

3. Model setup and training
3.3 Supervised learning

In computer vision we have four basic machine learning specializations: su-
pervised learning, transfer learning, unsupervised learning and reinforcement
learning. Most known types of supervised learning are SVM, k nearest neig-
hbors (kNN), decision trees and NN. According to Bishop, supervised learning
is defined as an“application in which the training data comprises examples of
the input vectors along with their corresponding target vectors are known as
supervised learning problems.” [16]

We train the network on a training dataset and then we test it on a testing
dataset. As we want to simulate real contest conditions, we do not want to get
access to the testing dataset until we finish training, but on the other hand
we need to avoid overfitting. Therefore we split the train dataset into the
training dataset and the validation dataset. The validation dataset ensures
that we have a dataset independent of the training dataset, on which we can
test accuracy during the training. We save the model with weights only if
the validation accuracy improves against the last saved model.

We get the dataset for the competition already split into training and
testing parts in the ratio 2:1. Because of that we need to split only the
training dataset into validation and training datasets. For example we split
CLaMM16 in the ratio 9:1 (training:validation). A small part of the training
dataset is usually separated for the validation dataset, especially, if the dataset
is relatively small, as in our case. We can read more about used datasets in
sections 4.2 and 4.3.

3.4 Model and sequential model

The sequential model [7] is based on the list of layers that we add to the model.
This means that we have to choose the whole NN architecture when we are
preparing the model. The most important layers are convolutional, activation,
max-pooling, dropout and batch normalization layers, more information about
layers are available in chapter Theoretical background in section 2.2.

However, at first, it is better to use an established architecture such as
VGG16 [1] or ResNet50 [2]. We can see an example of the VGG16 architecture
in table 3.1. This architecture is used in this work for CLaMM16 and has

20

.............................. 3.4. Model and sequential model

87,879,500 trainable parameters.

The ResNet50 architecture is shown in table 3.2 and the repetitive parts of
the architecture are shown in the convolutional block table 3.3 and identity
block table 3.4. The model ResNet50 uses an input size (1, 150, 150) and 12
output classes. In total it has 6,351,628 parameters, where 6,327,180 of them
are trainable and 24,448 of them are non-trainable.

Function Output shape Parameters
ZeroPadding2D (1, 152, 152) 0
Convolution2D (64, 150, 150) 640
ZeroPadding2D (64, 152, 152) 0
Convolution2D (64, 150, 150) 36,928
MaxPooling2D (64, 75, 75) 0
ZeroPadding2D (64, 77, 77) 0
Convolution2D (128, 75, 75) 73,856
ZeroPadding2D (128, 77, 77) 0
Convolution2D (128, 75, 75) 147,584
ZeroPadding2D (128, 77, 77) 0
Convolution2D (128, 75, 75) 147,584
MaxPooling2D (128, 37, 37) 0
ZeroPadding2D (128, 39, 39) 0
Convolution2D (256, 37, 37) 295,168
ZeroPadding2D (256, 39, 39) 0
Convolution2D (256, 37, 37) 590,080
ZeroPadding2D (256, 39, 39) 0
Convolution2D (256, 37, 37) 590,080
MaxPooling2D (256, 18, 18) 0
Flatten (82944) 0
Dense (1024) 84,935,680
Dropout (1024) 0
Dense (1024) 1,049,600
Dropout (1024) 0
Dense (12) 12,300

Table 3.1: VGG16, for input size (1, 150, 150) and 12 classification categories

21

3. Model setup and training
Function Output shape Parameters
InputLayer (1, 150, 150) 0
ZeroPadding2D (1, 156, 156) 0
Convolution2D (64, 75, 75) 3200
BatchNormalization (64, 75, 75) 0
Activation (64, 75, 75) 0
MaxPooling2D (64, 37, 37) 0
convolutional block (256, 37, 37) 39,744
identity block (256, 37, 37) 71,552
identity block (256, 37, 37) 71,552
convolutional block (512, 19, 19) 383,232
identity block (512, 19, 19) 282,368
identity block (512, 19, 19) 282,368
identity block (512, 19, 19) 282,368
convolutional block (1024, 10, 10) 1,520,128
identity block (1024, 10, 10) 1,121,792
identity block (1024, 10, 10) 1,121,792
identity block (1024, 10, 10) 1,121,792
AveragePooling2D (1024, 1, 1) 0
Flatten (1024) 0
Dense (12) 12,300

Table 3.2: ResNet50, for input size (1, 150, 150) and 12 classification categories

Function Output shape Parameters
Convolution2D (a, b, b) a · a+ a

BatchNormalization (a, b, b) 4 · a
Activation (a, b, b) 0
Convolution2D (a, b, b) 3 · 3 · a · a+ a

BatchNormalization (a, b, b) 4 · a
Activation (a, b, b) 0
Convolution2D (4 · a, b, b) 4 · a · a+ a

Convolution2D (4 · a, b, b) 4 · a · a · s+ a

BatchNormalization (4 · a, b, b) 4 · 4 · a
BatchNormalization (4 · a, b, b) 4 · 4 · a
Merge (4 · a, b, b) 0
Activation (4 · a, b, b) 0

Table 3.3: ResNet50, convolutional block with input size (a · s, s · (b− 1) + 1,
s · (b− 1) + 1), where s is stride length

22

............................... 3.5. Learning rate adjustment

Function Output shape Parameters
Convolution2D (a/4, b, b) a · a/4 + a/4
BatchNormalization (a/4, b, b) 4 · a/4
Activation (a/4, b, b) 0
Convolution2D (a/4, b, b) 3 · 3 · a/4 · a/4 + a/4
BatchNormalization (a/4, b, b) 4 · a/4
Activation (a/4, b, b) 0
Convolution2D (a, b, b) a · a/4 + a

BatchNormalization (a, b, b) 4 · a
Merge (a, b, b) 0
Activation (a, b, b) 0

Table 3.4: ResNet50, identity block with input size (a, b, b)

Firstly, it is needed to build the architectures. Secondly, we need to compile
the models in Keras. The used error metric is customarily accuracy. Then,
we start to train. Here, it is important to consider how long we want to train
and if we want to do episodic saving. The advantage of episodic saving is
the ability to resume training of a specific model instant, for example, on
another dataset. This is also described in this thesis in section 4.3.2 and it is
implemented in the attached script. At the end, we test the learned model.
If you want to try the learning and testing of the CNN on your own, then
please follow the steps in Appendix B.

3.5 Learning rate adjustment

During the training it is important to observe tendencies of learning because
we do not want to let an unsuitable script run for a long time We want to
stop the learning early enough before it starts to overfit. For example, we can
observe a trend of changing the loss function, the training and the validation
accuracy. We can also observe the concrete numbers, or for easier monitoring,
we can draw a graph of accuracy or loss. An example of a validation accuracy
graph for our data is in figure 5.3. More theoretically, the shapes of these
graphs can be various but in a simplified example, we can imagine tendencies
as drown in figures 3.1a and 3.1b.

23

3. Model setup and training

(a) : Learning rates [18] (b) : Accuracies [19]

Figure 3.1: Observed parameters

Another possibility is to calculate the ratio of updated weights or gradient
distribution per layer. The last but not least is the possibility to visualize the
first convolutional layer. If it is smooth and consists of diverse features, then
the learning is likely proceeding correctly [11]. The last three possibilities
have not been used in our work.

3.6 Initialization of weights and hyperparameters

At first, we will discuss the weights. It might seem as a good idea to initialize
all the weights to zero. However, it is not because then all neurons in the
same layer will have the same output. That also means the same weight
update. Biases are normally initialized to zero. In our case, we will use two
different initializations. We will initialize the weights to small positive and
negative random numbers and also to pre-trained weights [11].

For CNNs it is really important to initialize the learning rate to an appro-
priate number. Because if we choose a too big learning rate, then we risk that
we will miss the minimum. If we choose a too low learning rate, then it will
take a very long time to get to the minimum and it is more probable that it
will end in a local minimum that is much bigger then the other local minima.
In our case, the best results for the CLaMM16 dataset without whitening
were brought by the learning rate of 0.01. After that we tried to change this
hyperparameter also during fine-tuning, we can read the results in section
4.3.2.

24

Chapter 4

Usefulness evaluation of the pre-training

In this chapter we will concentrate on the evaluation of pre-training for
script type classification using other datasets. Figure 4.1 shows a diagram
illustrating the datasets and preprocessing techniques we have used.

Figure 4.1: Diagram for used datasets

25

4. Usefulness evaluation of the pre-training
4.1 Introduction

One of the most effective techniques to improve the testing error, when we
have a small training dataset, is the use of another dataset for pre-training.
At first, we learn a CNN on the pre-training data. Alternatively, we can
also use an already pre-trained network, which we can find in the library
Caffe (Model ZOO1). However, we have not chosen this option but we have
pre-trained the network on our own. Afterwards, we removed the last fully
connected (FC) layer, we added another FC which has the correct number of
output classes (in our case 12) and we fine-tuned it on other data. During the
training, we visualized the validation error (see for example Figure 4.4). It is
also recommended to visualize the convolutional (CONV)/FC filters (matrix
W). We have decided to use the ICDAR17 dataset for pre-training.

4.2 CLaMM16

CLaMM16 is the dataset used for the competition “ICFHR2016 [5] Compe-
tition on the Classification of Medieval Handwritings in Latin Script”. The
dataset consists of images from 12 categories: caroline, cursiva, half-uncial,
humanistic, humanistic-cursive, hybrida, praegothica, semihybrida, semitex-
tualis, southern-textualis, textualis and uncial. The testing dataset includes
1000 images and the training dataset contains 2000 images. We decided to
split the training dataset into a training set and a validation set using the ratio
of 9:1, it means for the dataset CLaMM16, there are 1800 training images
and 200 validation images. The validation set is used to counter overfitting.
Overfitting means that the learning adapts too much to the training data
and does not generalize on unseen test data. The size of input images for the
CNN was chosen to be 150x150 pixels, where whole words can be seen, we
can find an example in figure 4.2.

Figure 4.2: Example of CLaMM16 image in size of input to the CNN

1https://github.com/BVLC/caffe/wiki/Model-Zoo

26

https://github.com/BVLC/caffe/wiki/Model-Zoo

......................................4.2. CLaMM16

Preprocessing test data is available in a file structure on CD2. For the
validation of our work, we use the test dataset.

We let the training run for 25 epochs, but we plot only the first 10 epochs
because we achieved the best accuracy of the validation dataset for ResNet50
4.4 in the 7th epoch and for VGG16 4.3 in the 4th epoch. The training runs
with SGD optimizer and with learning rate 0.01, which changes every 10
epochs to half, but it has no influence, because we achieved the best accuracy
in the first 10 epochs in both cases. Our augmented dataset for training
has 180,000 samples and we used the batch size of 30 samples, which is
6000 parameters updates each epoch. Our augmented dataset for testing has
30,000 samples, from which the classification for 1000 images was predicted,
which is 30 samples to predict one image. You can compare concrete numbers
of validation accuracy and testing accuracy3 in table 4.1.

Model Validation accuracy Test accuracy
VGG16 0.895 0.764
ResNet50 0.905 0.799

Table 4.1: CLaMM16 accuracy

2\program\DeepScript-master\data\all\CLaMM16\test\
3There is more to see in directory \program\DeepScript-master\models\, then choose

directory CLAMM12BasicResnet50 or CLAMM12BasicVgg16 and then look in files test.out
and train.out.

27

\program\DeepScript-master\data\all\CLaMM16\test\
\program\DeepScript-master\models\

4. Usefulness evaluation of the pre-training

0 2 4 6 8 10
Epoch [-]

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
 [-

]

VGG16 accuracy for 10 epochs

Figure 4.3: Validation accuracy of VGG16

0 2 4 6 8 10
Epoch [-]

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 [-
]

ResNet50 accuracy for 10 epochs

Figure 4.4: Validation accuracy of ResNet50

28

...................................... 4.3. ICDAR17

We suppose that ResNet50 has better accuracy because it is deeper and
it can cover more details. Resnet50 also contains batchnormalization layers,
which has a similar function as whitening (5.2) which yields good results.
Batchnormalization layers help to solve the problem of different distributions
of features across the batches. The issue is internal co-variate shift, which
represents that even small changes of weights in the first several layers of
large networks can have a big influence on weights of subsequent layers. That
could destroy the already learned features, which is not desirable.

Batch normalization also helps with outliers at the start of the learning
[14]. More about batchnormalization and explanation of how it works can be
found in section 2.2.6. Because we have got better accuracy for the ResNet50
model during the training on CLaMM16, we have decided to concentrate on
ResNet50 for pre-training.

4.3 ICDAR17

Each category in the dataset comes from a different writer. The task is a
writer classification. All of the handwritings come from the 13th to 20th
centuries. In most cases the texts are written in Latin, German and French.
The type of handwritings is letters [20], which differs from the CLaMM16,
where there are mostly parts of books. The images in ICDAR17 are sized
and scaled differently. Moreover, the text on images is scattered differently,
which is a disadvantage for NN learning when we use random cropping of the
image.

Firstly, we split up the dataset into two different files, secondly we cropped
eight areas of 224x224 pixels from the specific area of the input image, because
we need to learn from text areas and not blank edges, because the text area
contains most of the information about the writer. This area and also the
cut-outs are specified by equations 4.1 and 4.2. In the end, we need to
augment the dataset.

l = round

(
w0 − CNTW · w1

kl

)
+ x · w1 (4.1)

Where l represents the x coordinate of the top left corner of the cropped
image, w0 is the width of original image, w1 determines the width of cut-out,
x expresses the cut-out index in x direction, CNTW stands for the total
number of cut-outs in axis x, round is rounding to whole numbers and kl

indicates a ratio of left and right edges.

t = round

(
h0 − CNTH · h1

kt

)
+ y · h1 (4.2)

29

4. Usefulness evaluation of the pre-training
Where t represents the y coordinate of the top left corner of the cropped
image, h0 is the height of original image, h1 determines the height of cut-out,
y expresses the cut-out index in y direction, CNTH stands for the total
number of cut-outs in axis y, round is rounding to whole numbers and kt

indicates a ratio of top and bottom edges.

In our case, the constant kl = 1.5 indicates a ratio of left and right edges
2:3 and the constant kt = 5 indicates a ratio of top and bottom edges 1:5.
We use this ratio instead of fixed position because the images have different
size and scale. This type of cropping is more reusable. Another possibility
is to rescale or to resize all images before cropping but this brings a loss in
image quality, which can worsen the CNN learning.

Moreover, it was needed to treat the condition for cropping only inside the
image because the function pillow adds pixels outside the image with black
colour. In the end, the images were changed from the color model (RGB) to
grayscale to be more similar to the CLaMM16 dataset.

In the figure 4.5, we can see parts that were cropped from the image
delimited by the black contours.

Figure 4.5: Scheme for cropping document CNTW = 2, CNTH = 4

After that we modified images in the same way as done in the CLaMM16
dataset. In this case, we only need to split the images in training and
validation datasets and grayscale them. An example of a image edited in this

30

...................................... 4.3. ICDAR17

way can be seen in the following figure 4.6.

Figure 4.6: Edited image from ICDAR17 for normal dataset

We used the file format tiff, in uncompressed version, as it is the same that
is used by CLaMM16.

4.3.1 ICDAR17 subdatasets

We choose the best achieved accuracy for every dataset from all achieved
accuracies using different learning rates. The training dataset contains 1182
images. In every of the 394 classes there are 3 specimens. For training on a
normal dataset with learning rate 0.01, we achieved accuracy 0.56 after the
38th epoch and for training on a cropped dataset with learning rate 0.1, we
achieved accuracy 0.56 after the 56th epoch.

The testing dataset contains 3600 images. In every of the 720 classes there
are 5 specimens. For training on a normal dataset with learning rate 0.01,
we achieved accuracy 0.39 after the 26th epoch.

The dataset both contains images from the training and the testing
ICDAR17 datasets. For training on both datasets together with learning rate
0.0001, we achieved accuracy 0.227 after the 36th epoch.

4.3.2 ICDAR17 results

At first, we will discus the pre-training results. The dataset ICDAR17 without
our cropping method has the batch size of 30 samples and for training it
has the patch size 100 and for testing it has the patch size 30. The dataset
ICDAR17 with our cropping method has the batch size of 30 samples and for

31

4. Usefulness evaluation of the pre-training
training it has the patch size 3 and for testing it has the patch size 30. We are
learning with learning rate 0.1, 0.01 and 0.0001 and the concrete accuracies
can be read in table 4.2. At first glance, the concrete numbers can appear to
be really bad but we need to realize that we have a lot of classes and only
few training images.

Afterwards, we decided to use pre-trained weights from the experiments
using the training dataset. It is a smaller dataset, as mentioned before in
section 4.3.1, but the accuracy is much better in comparison to the other
experiments. Then, we also try to pre-train the model on cropped images
from ICDAR17 in the way as was described in the second paragraph of section
4.3. We achieved better accuracy of more than 29 percent. The improvement
can be caused by two things, firstly the cropped images are in most cases full
of text and secondly we used smaller patches to pre-train the network faster.
Normally, there are 100 images randomly cut out of the source image, but we
randomly cut out only 3 images because cropping 100 images of size 150×150
from image 224 × 224 does not seem to be beneficial. After applying the
cutting method from part 4.3, we get up to eight images from every image,
sometimes less, when the input image is too small.

Model Pre-trained on Validation accuracy
ResNet50 ICDAR17 training cropped 0.851
ResNet50 ICDAR17 training 0.560
ResNet50 ICDAR17 testing 0.390
ResNet50 ICDAR17 both 0.227

Table 4.2: Accuracy for pre-training on ICDAR17 dataset

After that we started to fine-tune. We tried to change the learning rate and
fix weights of layers from the beginning of the network. However, we did not
achieved better results than without pre-training. Usually a small learning
rate with the value circa 10−5 is used for fine-tuning but when we use this
value we get worse results than with a higher value of learning rate. This can
be explained by the fact that the ICDAR17 data are too different from the
CLaMM16 data.

32

..................................... 4.4. Conclusion

Model Pre-trained on Learning rate Fixed layers V. accuracy Test accuracy
ResNet50 ICDAR17 testing 0.1 0 0.880 0.738
ResNet50 ICDAR17 training 0.1 0 0.910 0.786
ResNet50 ICDAR17 both 0.01 0 0.920 0.776
ResNet50 ICDAR17 training 0.01 0 0.890 0.774
ResNet50 ICDAR17 training 0.0001 0 0.700 0.597
ResNet50 ICDAR17 training 0.01 25 0.860 0.729
ResNet50 ICDAR17 training 0.01 10 0.905 0.772
ResNet50 ICDAR17 training cropped 0.1 10 0.915 0.761

Table 4.3: Accuracy for fine-tuning on ICDAR17 dataset

When we fixed some layers the learning takes much less time than before.
That is one of the pre-training advantages. But in our case the disadvantage
is that we get smaller accuracy as it can be seen in table 4.3 above.

4.4 Conclusion

In our case, pre-training is not really beneficial because the dataset was
already augmented by using random perturbations affecting the zoom level,
rotation angle, shear range, translation in both dimensions and eventually
yielding. Also the random cropping helps to generalize and augment the
dataset.

During the pre-training, we try to apply another way of pre-processing the
data. We identified the main issue of the ICDAR17 dataset and we improved
the validation error on the ICDAR17 training dataset from accuracy 0.56 to
0.851 by applying a new cropping method. In this section we got the best
result using ResNet50 with learning rate 0.01 without pre-training, concretely
the achieved test accuracy was 0.799.

33

34

Chapter 5

Other methods

In this chapter, we investigate other methods to improve recognition perfor-
mance of tasks with scarce data. We will speak about two possibilities of
adapting the dataset to achieve better accuracy. The first possibility will
be an augmentation technique and the second will be a data preprocessing
technique.

Augmentation techniques changing zoom level, rotation, shear range and
translation in both dimensions have been implemented by Mike Kestemont.
We chose rotation to describe in more detail. Changing zoom level was in
the range [0.75, 1.25], shear range had values in the interval [−15◦, 15◦] and
translation was in the range [−12, 12] pixels. Work on a similar basis is
explained in [21]. All of the augmentation techniques can be implemented
through a transformation and applied at the same time. Moreover, we added
the zero-phase components analysis (ZCA) whitening, which is presented in
more detail in section 5.2.

5.1 Rotation

The random generated angles were in the range (−10◦, 10◦). The rotation
can be expressed in a transformation matrix R:

R =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (5.1)

35

5. Other methods
Where θ determines rotation angle in axis z. After the rotation, we cropped
the image into size 150× 150. On the left side, we can see cropped source
image 5.1a and on the right side we can see rotated cropped image 5.1b.

(a) : Source image (b) : Rotated image by 10◦

Figure 5.1: Dataset augmentation using rotation

5.2 Whitening

Whitening decorrelates the image, i.e. redundant pixel information is reduced.
There are two basic whitening [22] methods, the first one is principal compo-
nent analysis (PCA) whitening and the second one is ZCA whitening. We
decided to use ZCA whitening method. The calculation of ZCA whitening
can be algebraically described by equation 5.2.

WZCA = Σ−1/2 (5.2)

Where WZCA determines the whitening matrix and Σ represents the cova-
riance matrix of one image from the dataset. An important parameter for
whitening is small flowting point constant (EPS), which prevents dividing by
zero. But when we use a too big EPS then we loose the details of the images
and the content can be lost completely.

In the figure 5.2 we can see a concrete example of a whitened image from
the CLaMM16 dataset.

36

......................................5.2. Whitening

Figure 5.2: Whitened image from CLaMM16 dataset

Moreover, we will describe the concrete way of computing the whitening
effectively. At first, we calculate the covariance matrix from the cut-out.
Then, we compute eigenvectors (U) and eigenvalues (λ). Afterwards, we
write the inverted value of square root of eigenvalues on diagonal of a matrix.
We can label this matrix D. To prevent dividing by zero, it is needed to add
to eigenvalues a small constant, in our case it is 10−8. To get the whitened
image, we need to multiple matrixD by eigenvectors from both sides. We can
express the calculation as is written in equation 5.3, where EPS represents
the vector of EPS. Application of whitening matrix on the source image (A)
is mentioned in equation 5.4, where B determines the whitened image.

WZCA = U · diag
(1√

λ+EPS

)
·UT (5.3)

B = WZCA ·A (5.4)

When we look at validation accuracy graph with whitening, figure 5.3. It
looks similar to the graph without whitening (4.4), but we achieved slightly
better results in this case.

37

5. Other methods

0 5 10 15 20 25
Epoch [-]

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
 [-

]

ResNet50 accuracy for 25 epochs with whitening

Figure 5.3: Validation accuracy of ResNet50 using whitening

The comparison of other best developed accuracies with the results of
whitening method is available in table 5.1. Notice the testing accuracy, which
is better for ResNet50 with whitening by 6.4% in comparison with ResNet50
without whitening.

Model Validation accuracy Testing accuracy
ResNet50 with whitening 0.920 0.863

ResNet50 without whitening 0.905 0.799

Table 5.1: Comparison of the accuracy with and without whitening

At first, we did not expect from this method much better results than from
training without whitening because a kind of normalization is already applied
in batchnormalization layers, however, it is applied to whole batches there.
In contrast to that, whitening brings normalization to each single image and
lets excel the specifics of the image. For training on whitened CLaMM16
dataset with learning rate 0.1 we got after 23rd epoch validation accuracy
0.92 and test accuracy 0.863.

38

Chapter 6

Conclusion

At first, we have adjusted the CNN system for script style classification by
Mike Kestemont [6] for the Friedrich-Alexander Universität (FAU) cluster
and current libraries. Afterwards, we adapted the script to use pre-training.
We pre-trained the script on the ICDAR17 dataset, however, we got worse
results than without pre-training, see tables 4.1 and 4.3.

We also investigated the method of fixing layers of the beginning of the
network, but we got even worse results. We can explain this deterioration
by the dissimilarity of the pre-training and the fine-tuning datasets. Both
of them date to different centuries. Translations and rotations to augment
the dataset by Mike Kestemont can help to broaden the dataset enough
to train ResNet50, which means that the pre-training was useless and even
confused the CNN. We have also tried to change the learning rate. Others
have typically got the best testing accuracy for a small learning dataset for
fine-tune for the learning rate in order of 10−5. However, we have got the
best accuracies for fine-tuning with learning rate 0.1, what we can classify
like completely new training with atypical initialization.

We got low validation accuracy for pre-training that is why we used the
new method to crop the subimages from the whole image (section 4.3) to
improve the validation accuracy of pre-training the ICDAR17 training
dataset from 0.56 to 0.851.

During investigation of other methods we got the best results when we
whitened every single image crop (section 5.2), then the test accuracy
for the CLaMM16 dataset achieved a value of 0.863. That is by 9.81%

39

6. Conclusion......................................
better than Mike Kestemont’s results from the ICFHR2016 competition [3]
and in comparison with the best accuracy in the ICFHR2016 competition,
DeepScript-whitening better by 2.4%. For all results of competition and our
best result please refer to table 6.1.

Team Testing accuracy Method
DeepScript-whitening 0.8630 CNN ResNet50 whitening
FAU 0.8390 i-vector + SVMs
NNML 0.8380 CNN
FRDC-OCR 0.7980 CNN
DeepScript 0.7649 CNN VGG-architecture
TAU-3 0.5280 k-NN out of the training histograms
TAU-2 0.5010 k-NN out of the training histograms
TAU-1 0.4990 k-NN out of the training histograms

Table 6.1: Comparison of results of Bachelor Thesis and of the ICFHR2016
competition

In the future, whitening in the CLaMM16 dataset with the calculation of
one covariance matrix over all the pictures from the training dataset together
can be investigated or layer-specific adaptive learning rates can be also tried.
We can also classify other aspects of Latin Handwritings, e.g. the dating of
historical documents.

If you want to verify the results yourself, if you want your CNN to learn,
then follow the steps in appendix B.

40

Bibliography

[1] SIMONYAN, Karen; ZISSERMAN, Andrew. Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[2] HE, Kaiming, Xiangyu ZHANG, Shaoqing REN and Jian SUN. Deep
Residual Learning for Image Recognition. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, , 770-
778. DOI: 10.1109/CVPR.2016.90. ISBN 978-1-4673-8851-1.

[3] CLOPPET, Florence, Véronique EGLIN, Van KIEU, Dominique STUTZ-
MANN and Nicole VINCENT. ICFHR2016 Competition on the Classifi-
cation of Medieval Handwritings in Latin Script. Shenzhen, China, 2016,
2016(Oct.).

[4] GOODFELLOW, Ian, Yoshua BENGIO and Aaron COURVILLE. Deep
Learning. Massachusetts: MIT Press, 2016.

[5] STUTZMANN, Dominique. ICFHR2016 competition on the classification
of medieval handwritings in latin script [online]. 2016 [cit. 2017-07-07].
Available from: https://oriflamms.hypotheses.org/1388

[6] KESTEMONT, Mike DeepScript[online]. Brusels, 2016 [cit. 2017-06-14].
Available from: https://github.com/mikekestemont/DeepScript

[7] CHOLLET, François. Keras: The Python Deep Learning library [online].
[cit. 2017-07-07]. Available from: https://keras.io/

[8] TensorFlow: An open-source software library for Machine Intelligence
[online]. [cit. 2017-07-07]. Dostupné z: https://www.tensorflow.org/

41

Bibliography
[9] RUDER, Sebastian. AYLIEN. Transfer Learning: Machine Lear-

ning’s Next Frontier [online]. 2017 [cit. 2017-07-04]. Available from:
http://sebastianruder.com/transfer-learning/

[10] DEHAK, Najim, Pedro A.TORRES-CARRASQUILLO, Douglas REY-
NOLDS and Reda DEHAK. Language Recognition via Ivectors and Di-
mensionality Reduction. INTERSPEECH. 2011.

[11] KARPATHY, Andrej. STANFORD UNIVERSITY. CS231n: Convolu-
tional Neural Networks for Visual Recognition [online]. [cit. 2017-07-03].
Available from: http://cs231n.github.io/

[12] DESHPANDE, Adit. A Beginner’s Guide To Understanding Convo-
lutional Neural Networks Part 2 [online]. 2016 [cit. 2017-07-07]. Avai-
lable from: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-
Understanding-Convolutional-Neural-Networks-Part-2/

[13] TAPIA, Guido. Review of Keras (Deep Learning) Core
Layers [online]. 2016 [cit. 2017-07-07]. Available from:
http://www.picnet.com.au/blogs/guido/post/2016/05/16/review-
of-keras-deep-learning-core-layers/

[14] IOFFE, Sergey and Christian SZEGEDY. Batch Normalization: Accele-
rating Deep Network Training by Reducing Internal Covariate Shift. 2014,
3-5.

[15] YANG, Ji. ReLU and Softmax Activation Functions [online]. 2017 [cit.
2017-07-07]. Available from: https://github.com/Kulbear/deep-learning-
nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions

[16] BISHOP, Christopher M. Pattern recognition and machine learning.
New York: Springer, c2006. Information science and statistics. ISBN
03-873-1073-8.

[17] RUDER, Sebastian. An overview of gradient descent optimization algo-
rithms. 2017, 1-5.

[18] KARPATHY, Andrej. Learning rates. In: CS231n: Con-
volutional Neural Networks for Visual Recognition [on-
line]. Stanford university [cit. 2017-07-06]. Available from:
http://cs231n.github.io/assets/nn3/learningrates.jpeg

[19] KARPATHY, Andrej. Accuracies. In: CS231n: Convolutional Neural
Networks for Visual Recognition [online]. Stanford university [cit. 2017-07-
06]. Available from: http://cs231n.github.io/assets/nn3/accuracies.jpeg

[20] CHRISTLEIN, Vincent, Martin GROPP, Andreas MAIER and Stefan
FIEL. Unsupervised Feature Learning for Writer Identification and Writer
Retrieval. 2017.

42

.......................................Bibliography

[21] KLEP, Denise. Data augmentation of a handwritten character dataset
for a Convolutional Neural Network and integration into a Bayesian
Linear Framework. Nijmegen, 2016. Bachelor Thesis. Radboud University.
Supevised by Sanne Schoenmakers Marcel van Gerven.

[22] KESSY, Agnan, Alex LEWIN and Korbinian STRIMMER. Optimal
Whitening and Decorrelation. The American Statistician. 2017, 2017(1),
0-0. DOI: 10.1080/00031305.2016.1277159. ISSN 0003-1305.

43

44

Appendix A

Acronyms

BGD Batch gradient descent. 17, 18

CLaMM16 dataset of handwritings. vii, viii, 20, 26, 27, 29–32, 36–40, 48

CNN convolutional neural networks. iv, vii, 1–3, 5–8, 10, 16, 19, 23, 24, 26,
30, 39, 40, 47

CONV convolutional. 26

CPU central processing unit. 6, 19

EPS small flowting point constant. 36, 37

FAU Friedrich-Alexander Universität. 39

FC fully connected. 26

FEL Faculty of Electrical Engineering. iii

GPU graphics processing unit. 6, 19

ICDAR17 dataset for competition on the classification of medieval hand-
writings in Latin script. viii, 26, 29, 31–33, 39

kNN k nearest neighbors. 20

MBGD mini-batch gradient descent. 17, 18

NAG Nesterov accelerated gradient. 18

45

A. Acronyms
NN neural network. 1, 5, 7, 13, 20

PCA principal component analysis. 36

ReLU Rectified linear unit. vii, 8, 13–15

RGB color model. 30

SGD stochastic gradient descent. 4, 17, 18

SVM support vector machine. 3, 20

tanh hyberbolic tangent. 13

WCCN within class covariance normalization. 3

ZCA zero-phase components analysis. 35, 36

46

Appendix B

Instructions for running the scripts

The files on CD were developed with Python programming language, version
3.5.2, with additional libraries Keras, version 1.2.2., that run on Tensorflow
backend. Use of Keras in version 1.2.2 is obligatory, there is currently a
bug in later version that brings many difficulties with dimensions ordering
in image during the learning. The last version does not react to settings of
image_dim_ordering in keras.json file.
Secondly it is needed to have the right configuration written in the configura-
tion file for Keras. The file called keras.json must look as shown in following
listing.

{
" image_dim_ordering " : " th " ,
" e p s i l o n " : 1e−07,
" f l o a t x " : " f l o a t 3 2 " ,
" backend " : " t en so r f l ow "

}

You can find file keras.json in hidden directory home/.keras/. For learning
weights of a CNN, it is recommended to run the file trainGeneral.py with
three arguments: name of the directory in directory model, type of architecture
(for VGG16 write vgg16 and for ResNet50 write resnet50) and path to learning
data. For example to train by uncropped testing part of the ICDAR17 dataset
use the command shown in following listing.

python3 t ra inGenera l . py Resnet50−ICDAR17−Normal−t e s t
↪→ r e sne t50 /data/ a l l /ICDAR17/normal/ t e s t

47

B. Instructions for running the scripts
Files weights.hdf5, with learned weights, architecture.json, where we
can clearly see used architecture of our network (in our example resnet50),
and labelencoder.p, which is needed for library sklearn, because LabelEn-
coder() only takes a 1-d array as an argument can be found in directory
model/Resnet50-ICDAR17-Normal-test.

If you want to fine-tune the dataset use also the script trainGeneral.py but
with five arguments. First three arguments have the same meaning as for
training. The forth argument is True, if we want to use fine-tuning and False,
if we do not want to fine-tune. The fifth argument says in which directory
of the directory model we find the pre-train architecture and pre-trained
weights. The example in following listing fine-tunes the pre-trained model
from the directory resnet-ICDAR17-normal-train on dataset /data/splits/ for
type model resnet50 and saved weights, architecture and label encoder in
directory resnet-ICDAR17-normal-train-finaltuneLR0-0001.

python3 t ra inGenera l . py resnet−ICDAR17−normal−t ra in−
↪→ f inaltuneLR0 −0001 re sne t50 /data/ a l l /CLaMM16/
↪→ True resnet−ICDAR17−normal−t r a i n

In order to test run the file testGeneral.py with 2 arguments, first is model
(same as directory in directory model in attached source code) that you want
to test and second is the dataset on which you want to test. For example, to
test the model final on CLaMM16 dataset run command shown in following
listing.

python3 te s tGenera l . py f i n a l /data/ a l l /CLaMM16/ t e s t

If we want to run testing and training for whitened data, we need to run
both scripts trainGeneral.py and testGeneral.py in special way. In both cases
we add an argument True, in case of training as 4th argument and in case of
testing as 3rd argument. Meanings of the rest of the arguments are explained
above. We can read an example for whitening in following two listings.

python3 t ra inGenera l . py resnet−patch−Whitening re sne t50
↪→ /data/ a l l /CLaMM16/ True

python3 te s tGenera l . py resnet−patch−Whitening /data/ a l l
↪→ /CLaMM16/ t e s t True

Final note: all paths are written relatively to the location of the script that
you run.

48

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Zuzana K o ž n a r o v á

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Manuscripts Classification Using Convolutional Deep Learning
 Networks

Guidelines:
In recent years, deep learning techniques based on neural networks (NN) have set new
performance standards for a wide variety of machine learning or computer vision tasks.
However, one problem of these deep NNs are there need of many training samples. Thus,
for small or medium-sized datasets, classical computer vision approaches still surpass NNs.
For example for the task of medieval script type classification, methods based on convolutional
neural networks (CNN) do not outperform classical approaches based on 'bag of visual words'.
The goal of this work is to improve the performance of CNNs for script type classification.
A possible solution to achieve better results is to pretrain CNNs for a different, yet similar task,
and fine-tune it later with the training data of the original task. Possible related tasks could be
the dating of historical documents, or writer identification. For both related tasks, datasets will
be provided. In detail, the thesis consists of the following parts:
- the implementation of a CNN system for script style classification (it can be based on existing
 work, e.g.),
- evaluate the usefulness of pre-training for script-style classification using other datasets,
- investigate other methods to improve recognition performance of tasks with scarce data.

The implementation should be in Python using the deep learning frameworks Keras (and / or
Tensorflow).

Bibliography/Sources:
[1] Goodfellow, Ian et al.: "Deep Learning", MIT Press 2016, online available http://www.deeplearningbook.org
[2] Szeliski, Richard: "Computer Vision. Algorithms and Applications", Springer, 2011, ISBN: 978-1-84882-934-3,
 online available at http://szeliski.org/Book/
[3] Duda, Richard O.; Hart, Peter E.; Stork, David G.: "Pattern classification". John Wiley & Sons, 2012.
[4] Bishop, Christopher M.: "Pattern recognition." Machine Learning 128 (2006).

Bachelor Project Supervisor: Dipl.-Inf. Vincent Christlein

Valid until: the end of the summer semester of academic year 2017/2018

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 14, 2017

	Introduction
	Motivation
	Transfer learning
	Data preprocessing
	State of the art
	FAU
	Previous Work: DeepScript

	Theoretical background
	Neuron as a linear classificator
	Layers
	Input layer
	Dense layer
	Pooling layer
	Convolutional layer
	Dropout layer
	Batch normalization layer

	Activation functions
	Historical activation functions
	Rectified Linear Unit
	Softmax

	Backpropagation
	Optimizer
	Batch gradient descent
	Stochastic gradient descent
	Mini-batch gradient descent
	Additional techniques

	Model setup and training
	Basis
	Important libraries
	Supervised learning
	Model and sequential model
	Learning rate adjustment
	Initialization of weights and hyperparameters

	Usefulness evaluation of the pre-training
	Introduction
	CLaMM16
	ICDAR17
	ICDAR17 subdatasets
	ICDAR17 results

	Conclusion

	Other methods
	Rotation
	Whitening

	Conclusion
	Bibliography
	Acronyms
	Instructions for running the scripts
	Project Specification

