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Instructions

The topic of this thesis is a "vehicle routing problem (VRP)": Given a graph G with a set of requests on
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1) search and study related papers, with both heuristic and exact approaches,
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3) try to develop new solving methods for VRPTW or adapt existing methods from other versions of VRP to
VRPTW.
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Abstrakt

Tato práce studuje Vehicle Routing Problem (VRP) a jeho varianty. Pro
verzi s časovými okénky implementujeme varianty použ́ıvaných algoritmů a
navhrneme a implementujeme modifikaci genetického algoritmu pro řešeńı
problémů lokálńıho prohledáváńı. Na dvou sadách instanćı provedeme měřeńı
a porovnáńı těchto algoritmů s nejlepš́ımi známými výsledky.

Kĺıčová slova optimalizace rozvozových tras, lokálńı prohledáváńı, optim-
alizace, VRPTW, VRP, TSP

Abstract

This thesis studies Vehicle Routing Problem (VRP) and its variants. We im-
plement local search based algorithms for time windows variant of the problem
(VRPTW) and we propose and implement a modification of genetic algorithm
for solving local search based problems. We test our implementation on two
sets of benchmarks and we compare our results to best-known solutions.

Keywords vehicle routing problem, local search, optimization, VRPTW,
VRP, TSP
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Chapter 1

Introduction

The vehicle routing problem (VRP) is a class of combinatorial optimization
and integer programming problems. It was first published by Dantzig and
Ramser [2] in 1959, and since then it was studied very extensively, because
the problem is easy to define and is very hard to solve, and it may have
huge impact on the costs of transportation, logistics and distribution. The
problem’s goal is to minimize solution cost and to serve a number of customers
by a fleet of vehicles. The cost can be traveled distance or time needed for
serving the customers. New variants of the problem can be made by adding
various constraints.

Figure 1.1: an example of VRP problem and possible solution

1.1 Vehicle routing problem definition

Let G be oriented graph.

• V = {v0, v1, . . . , vn} is a set of vertices of graph G.

• v0 is a depot.
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1. Introduction

• V1 = {v1, . . . , vn} ⊂ V is a set of vertices representing customers.

• E = {(vi, vj)|vi, vj ∈ V, i 6= j} is an arc set.

• C is a matrix of non-negative costs cij between customers vi and vj .

• m is the number of vehicles (all identical). One route is assigned to each
vehicle.

• Route Ri is a circuit which represents a route for vehicle i with the
length ri = |Ri|.

• R = R1, . . . ,Rm is a set of routes.

• Solution S is the set of routes.

Feasible solution is a solution, which has all vertices except v0 assigned
to exactly one route.

Cost P of the route r = Ri is sum of the arcs between every adjoining
vertices.

P (r) = Pr = (

|r|−1∑
k=1

c(rk)(rk+1)) + c(r|r|)(r1)

Price of the Solution S is sum of every route in S.

P (S) = PS =
m∑
i=1

P (Ri)

Goal of the problem is to find S as PS is minimal and S is feasible.

1.2 Problem variants

In this section, we will describe the best-known VRP variants. New variant is
usually created by adding some constraint, which is taken from practical ap-
plication (e. g. vehicle capacity, customers time windows or multiple depots),
or by combining existing variants.

1.2.1 Capacitated VRP

Capacitated vehicle routing problem (CVRP) is VRP extended by capacity
constraint. Every vehicle must have uniform capacity, and each customer have
assigned demand, which we need to fulfill.

Let Q = (q0, q1, . . . , qn) be a vector of the customer demand and let F be
a capacity of vehicles which are all identical.
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1.2. Problem variants

Demand D of the route r = Ri is a sum of the customers demands in
the route r.

D(r) =

|r|∑
k=1

dk

For CVRP, we need to extend definition of the feasible solution to check
capacity constraint: Feasible solution (CVRP) is a solution, which has all
vertices except v0 assigned to exactly one route and demand of all routes Di

is smaller or equal to car capacity F .

∀r ∈ S : D(r) ≤ F

1.2.2 Multiple Depot VRP

Multiple depot vehicle routing problem (MDVRP) is VRP variant with more
than one depot. Vehicles must start and end in the same depot, or they can
start in one depot and end in another one (depends on the problem variant).
This variant can be simplified to classic VRP variant by clustering customers
and then solved for each depot separately.

1.2.3 Split Delivery VRP

Split delivery vehicle routing problem (SDVRP) is CVRP variant with relaxed
delivery constraint – customers can be served by more than one vehicle (but
still must be served completely). This variant can be useful when customers
have large demands which are close to or over the vehicle capacity.

1.2.4 VRP with pick-up and delivering

Vehicle routing problem with pick-up and delivery (VRPPD) is CVRP variant
in which customers may also return some commodities, not only accept them.
Any picked-up commodities are returned to the depot, this variant does not
permit deliveries between customers. In this variant it is necessary to take into
account, that customers demands have to fit into free capacity of the vehicle.

1.2.5 VRP with time windows

Vehicle routing problem with windows (VRPTW) is CVRP variant extended
by time constraints. The depot and each customer have assigned interval [a,
b] that we call a time window and service time. There are two subvariants
of the VRPTW – variant with soft time windows and variant with hard time
windows. In the variant with hard time windows, vehicles must depart from
the depot after the opening time, they must service customers in their time
windows (the vehicle can arrive earlier and then wait for opening time, but
the customer must be served before its closing time) and return to the depot

3



1. Introduction

before the depot’s closing time. In the variant with soft time windows, the
vehicles are permitted to arrive slightly later, but for penalty. In this thesis,
we will focus on VRPTW with hard time windows.

1.3 Vehicle routing problem with time windows
definition

Our formulation is based, as Kang[3] definition is, upon the model defined by
Solomon[4]. Every customer i ∈ {1, 2, . . . , N} has assigned demand qi and a
service interval [ei, li] – vehicle must arrive before li and if the vehicle arrives
before ei, it must wait for wi.

min
N∑
i=0

N∑
j=0

m∑
k=1

cijχijk (1)

m∑
j=1

χijk =

N∑
j=1

χjik = 1 i = 0, k ∈ {1, 2, . . . ,m} (2)

m∑
k=1

N∑
j=0

χijk = 1 i ∈ {1, . . . , N} (3)

N∑
i=0

qi

N∑
j=0

χijk ≤ F k ∈ {1, 2, . . . ,m} (4)

m∑
k=1

N∑
i=0

χijk(bi + si + tij + wj) = bj , j ∈ {1, 2, . . . , N} (5)

ei ≤ (ai + wi) ≤ li i ∈ N (6)

Where cij is a travelled distance between nodes i and j, tij is a travel time
between nodes i and j, ai is arrival time to node i, bi is time to begin serving
customer i and si is time needed to serve customer i. If vehicle k travels
directly from node i to node j, χijk = 1. Otherwise χijk = 0.

Our goal is to find a solution S as PS is minimal (1) and S is feasible.
Each route must start and end at the depot (2) and vehicle capacity cannot
be exceeded by sum of the route demands (4). Each customer must be served
once and only once (3) within its service interval (5) (6).
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Chapter 2

State-of-the-art

2.1 Solving methods

There are several approaches how vehicle routing problems can be solved.

2.1.1 Exact methods

Exact algorithms explore a whole state space and try to find the best solution.
If the number of customers is smaller, i. e. dozens, exact methods can be used
to optimally solve the problem, but because the problem complexity is very
high for bigger instances, exact approach can not solve them. Due to this fact,
we only describe representative of the category, but we will not implement it.

2.1.1.1 Branch and bound

Branch and bound algorithm is similar to brute force algorithm, but unlike
brute force algorithm, which is designed to explore each solution, branch and
bound algorithm explores only subset of solutions. Let the set of solutions
form a tree. The algorithm explores every path from the root to leaf, but
whenever the algorithm should branch, estimated lower and upper bounds are
checked and if current solution does not fit, the solution is discarded and the
algorithm explores next path.

2.1.2 Heuristics

Heuristics are problem-dependent techniques. They are usually adapted for
the problem and they often take advantage of problem specifics, but as they
are often too greedy, they usually get trapped in local optimum. Heuristics
usually do not find optimal solution, but are faster than exact methods and
found solution has usually moderate quality. We can categorize heuristics into
two groups - constructive methods and improvement methods.

5



2. State-of-the-art

2.1.2.1 Savings algorithm

The savings algorithm is constructive method and was introduced in 1964[5]
by Clarke and Wright and it is one of the best-known heuristics for solving
VRP. Algorithm was built on assumption, that customers who are nearby is
advantageous to handle by one vehicle. Firstly, the algorithm calculates sav-
ings between customers and assigns each customer to his own route. Then
customers are chosen by the biggest savings and if it is possible, they are as-
signed to one common route. The algorithm has low computation complexity
O(n2) and is usually used to construct an initial solution, which is improved
by other techniques, such as hill climbing. We describe the savings algorithm
in detail in Chapter 3.

Figure 2.1: Before and after the savings merge

2.1.2.2 Route first, cluster second

Route first, cluster second algorithm is constructive method and is made of
two phases. In the first phase all customers are on one route, which creates
big travelling salesman problem (TSP) instance. After solving TSP, there is
the second phase, where the route is split and customers are clustered into
feasible routes.

6



2.1. Solving methods

Figure 2.2: Route construction and clusterization

2.1.3 Metaheuristics

Metaheuristics, unlike heuristics, are problem independent. They do not take
advantage of problem specifics and therefore they are more versatile and can
be used as black-boxes. As they are not so greedy (they do not always take
the best solution, they can even take worse solution than found optimum),
they can get out of local optimum and find a better solution.

To properly understand how metaheuristics can work, we need to define
exploration and exploitation and difference between them.

2.1.3.1 Exploitation and Exploration

Exploitation is exploring a limited region of the search space. We hope in
improvement of a promising solution S (in metaheuristics we call it candidate
solution, because it is candidating for the best solution) that we already have.
In exploitation, our primary focus is searching in the vicinity of the candidate
solution S.

The opposite of exploitation is exploration. Exploration is exploring a
much larger portion of the search space. We hope in finding another promising
solution S that we can try to improve.

When solving an optimization problem with metaheuristics methods, we
are trying to find optimal ratio between exploitation and exploration. If we
had large exploitation and small exploration, our algorithm would probably
get stuck in local optimum. In other hand if we would have large exploration
and small exploitation, our algorithm will probably never reach neither local
nor global optimum, because it will be still exploring the whole state space.
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2. State-of-the-art

2.1.3.2 Hill climbing

Hill climbing is the simplest metaheuristic method for local search. It begins
with (usually randomly generated) initial solution S0. The method explores
a neighbourhood of the solution and picks the best found solution as the
next point to explore. Advantage of this method is its simplicity, but hill
climbing often gets stuck in a local optimum which can be far away from
global optimum. There are several techniques how to deal with getting stuck
in local optimum, for example random restart whenever the method gets stuck,
or use of the advanced methods (some of them are listed below).

Algorithm 1 Hill climbing algorithm pseudocode

1: create an initial solution bestSolution (usually random)
2: while termination condition not met do
3: temporarySolution := getFeasibleNeighbour(bestSolution)
4: if getPrice(temporarySolution) ≤ getPrice(bestSolution) then
5: bestSolution := temporarySolution

6: return bestSolution

2.1.3.3 Late acceptance hill climbing

Late acceptance hill climbing (LAHC) is relatively new improvement of hill
climbing method. It was invented and presented by Yuri Bykov in 2008[6].
LAHC is an iterative search algorithm, which can accept worse candidate solu-
tion when found candidate solution is equal or better than candidate solution
found N iterations before, where N is an input parameter for the algorithm
and can be based on problem specifications. One of the major advantages
of LAHC approach is the absence of a cooling schedule. This makes it sig-
nificantly more robust than cooling-schedule based techniques (see Simulated
annealing for more details). Also, LAHC is easy to implement and yet it is an
effective searching algorithm. We will take a deeper look at it in Chapter 3).
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2.1. Solving methods

Algorithm 2 Late acceptance hill climbing algorithm pseudocode

1: create a candidate solution bestSolution (usually random)
2: lastCosts[] = getPrice( bestSolution )
3: i := 0
4: while termination condition not met do
5: tempSolution := getFeasibleNeighbour(bestSolution)
6: if getPrice(tempSolution) ≤ lastCosts[i mod pL] ∨

getPrice(tempSolution) ≤ getPrice(bestSolution) then
7: bestSolution := tempSolution

8: lastCosts[i mod pL] := getPrice( tempSolution )
9: i := i+ 1

10: return bestSolution

2.1.3.4 Step Counting Hill Climbing

Step Counting Hill Climbing (SCHC) is a new local search heuristic, invented
and presented by Y. Bykov and S. Petrovic in 2013[7]. It is similar to LAHC
– it is also improvement of Hill climbing method with ability to escape a local
optimum. The cost of the current solution sets an upper acceptance bound
for next pL steps, where pL is a single input parameter which is set by user,
or it can be determined from the problem instance. There are also many
ways how to count the steps which can lead into many variant of this method.
Advantages of this method are that SCHC is even simpler than LAHC and
yet may be even more effective.

Algorithm 3 Step Counting hill climbing algorithm pseudocode

1: create a candidate solution bestSolution (usually random)
2: lastCost = getPrice( bestSolution )
3: i := 0
4: while termination condition not met do
5: tempSolution := getFeasibleNeighbour(bestSolution)
6: if getPrice(tempSolution) ≤ getPrice(bestSolution) ∨

getPrice(tempSolution) ≤ lastCost then
7: bestSolution := tempSolution
8: i := i+ 1

9: if i ≥ pL then
10: lastCost := getPrice(bestSolution)
11: i := 0
12: return bestSolution

2.1.3.5 Tabu search

Tabu search is another meta heuristic for solving optimization problems. It
was introduced by Fred Glover in 1986[8] and it is superimprosed on another
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2. State-of-the-art

heuristic (we will show this method on Hill climbing). Tabu search deals
with getting stuck at local optimum by introducing a forbidding strategy. We
can divide the forbidding strategies into three main categories – short term,
intermediate term and long term[9].

Short term forbidding strategy is usually a memory (also called tabu-list),
where we store recent operations, which can not be used until their expiration
period passes. For example, when we swap nodes i and j in one route, we add
record to tabu-list and it prevents the algorithm from using i and j in any other
operation for a certain time. Intermediate term forbidding strategy is a set
of rules which bias the search towards promising areas. Long term forbidding
strategy is a set of rules which provide diversity in search, for example random
restarts when the algorithm gets stuck.

Algorithm 4 Tabu search algorithm pseudocode

1: tabuList := initTabuList()
2: create an initial solution bestSolution (usually random)
3: while termination condition not met do
4: temporarySolution := getFeasibleNeighbour(bestSolution)
5: if getPrice(temporarySolution) ≤ getPrice(bestSolution) ∧

!in(tabuList, temporarySolution) then
6: bestSolution := temporarySolution

7: addToTabuList(tabuList, temporarySolution)
8: deleteExpired(tabuList)

9: return bestSolution

2.1.3.6 Simulated annealing

Simulated annealing is inspired by physical annealing process in metals. The
principle of annealing process is heating metal to high temperature and then
slowly cooling the metal according to predefined schedule. At the high tem-
perature, atoms in the metal leave crystalline lattice and they are randomly
distributed over the metal and within the cooling process the atoms place
themselves in a pattern that corresponds to the global energy minimum of a
perfect crystal.

Similar principle is used in simulated annealing method. It was invented
and presented in 1983[10] by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. At
the beginning, the method starts with high temperature (large exploration)
to find the most promising solution in the whole state space and as time
goes, temperature slowly goes lower and lower (large exploitation) to locally
improve solution that was found. The way how temperature gets cooler is
called cooling schedule or strategy. Choosing a cooling schedule is a hard
part of the algorithm because there is no universal schedule that performs
well on all problems. Disadvantage of the simulated annealing (and cooling

10



2.1. Solving methods

Figure 2.3: Example of cooling schedules [1]. Ti is the temperature for cycle
i, where i increases from 1 to N . The initial and final temperatures, T0 and
TN respectively, are determined by the user, as is N .

schedules in general) is that we need to set the initial parameters for proper
temperature calculating - initial temperature, final temperature and estimate
of total iterations, which we usually do not know. Example of some cooling
schedules is on Figure 2.3.

2.1.3.7 Genetic algorithm

Genetic algorithm (GA) is a population based meta-heuristic approach for
solving problems that do not have usable exact algorithm. Genetic algorithm
was introduced by J. H. Holland in 1975[11] and is inspired, as name suggests,
by genetic evolution. The algorithm keeps a set of solutions which is called
population. Solution from the population is called candidate, as it is trying
to be the best solution. In order to use genetic algorithm, we need function
which returns information about solution quality. In GA terminology, the
function is called a fitness function and e. g. for vehicle routing problems, it
can be total travel distance. The algorithm was designed to solve problems
where solution can be encoded as binary vector, thus we need to adapt it for
vehicle routing problem (details can be found in Section 3.4.1).

General GA has four phases - initialization, selection, crossover and muta-
tion, but there are also variants of GA where either mutation or selection is

11



2. State-of-the-art

missing. Ilustration of how the algorithm works can be found in Figure 2.5.

Initialization is process, where starting population is created from can-
didates. The candidates can be generated randomly or with some heuristic.

Selection is process, where candidates are selected from current popu-
lation for next operations. Selected candidates are usually chosen by their
fitness function, in order to keep population strong. Example of the selec-
tion is tournament selection - it randomly selects x candidates and from the
selected candidates chooses the best one.

Crossover is process, where candidates are combined to generate another
candidate. This process usually helps to keep well solved parts of a solution in
the population. Example of the crossover is one-point crossover - it takes two
candidates a, b ∈ {0, 1} (binary vectors), splits them by randomly generated
point i into four binary vectors (a1, a2, . . . , ai−1), (ai, ai+1, . . . , an), (b1, b2, . . . , bi−1)
and (bi, bi+1, . . . , bn) and then combines splitted parts together into solutions
(a1, a2, . . . , ai−1, bi, bi+1, . . . , bn), (b1, b2, . . . , bi−1, ai, ai+1, . . . , an).

0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1

0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0

0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0

0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1

Figure 2.4: Example of crossover operation

Mutation is process, where one candidate is, usually slightly, modified.
Example of the mutation can be a bit-flip - it takes one candidate a ∈ {0, 1}
(binary vector). For each bit in a, it chooses randomly (with probability p)
whether the bit should be negated or not.
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2.2. Benchmarks

Algorithm 5 Bit-flip operation for binary vector

1: function bitFlip(solution, p)
2: a := Copy(solution)
3: for all i in a do
4: if Random(p) then
5: Flip(a[i])

6: return a

2.2 Benchmarks

We will test our algorithms on two groups of benchmarks. The first group of
benchmarks is Solomon’s benchmark[12], which is focused on various VRPTW
subproblems. There are randomly generated samples (R1, R2), samples where
customers are clustered (C1, C2) and combination of randomly generated
and clustered (RC1, RC2) instances. We have chosen Solomon’s benchmark,
because it is well studied and optimal solutions are known, moreover the
instances of the benchmark vary a lot (there are instances with very tight
time windows, but also with time windows which are hardly constrainting).
For the second group of benchmarks we have chosen Gehring and Homber-
ger benchmark[13], which have instances with 200, 400, 600, 800 and 1000
customers. As Solomon’s benchmark, Gehring and Homberger benchmark is
well studied and are known best results (but not the optimal ones). We have
chosen it for its size, we will benchmark 1000 customers variant for testing
computational performance of our implementation.
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2. State-of-the-art

Figure 2.5: Genetic algorithm diagram
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Chapter 3

Our approach

In this chapter we describe our approach, mainly we focus on state space
search and neighbour generation. We also describe our proposal of Genetic
Algorithm for VRPTW and our modification of Savings algorithm. But firstly,
we describe our observation about problem solvability.

We have observed that every solvable instance of the VRPTW problem can
be solved by assigning each customer into his own route (we are not limited by
the number of vehicles). We can say that infeasible solution must break either
capacity constraint or time window constraint. In case we have a solution
where each customer is served by his own vehicle and the solution is infeasible
then problem is insolvable, because either we can not serve a customer due to
his high demand excessing a vehicle capacity, or we can not serve customer
and then return back to depot in a given time windows. We can utilize this
observation also for correcting infeasible solution. We can convert infeasible
solution of solvable instance to feasible one by splitting route which breaks
the constraints. If demand of the route exceeds vehicle capacity, we split the
route into smaller routes which can fit the vehicle capacity. Similarly we can
split routes for fulfilling time windows.

3.1 State space

We have chosen to move accross the feasible solutions only and that is achieved
by a repairing function. The repairing function is based on the observartion,
that every infeasible solution of the solvable instance of VRPTW can be con-
verted to a feasible solution by splitting the routes into the multiple ones.
Disadvantage of this aproach is an amount of routes created by repairing
function, thus we need some mechanism to reduce the amount of routes. We
have done this within neighbour generation.
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3. Our approach

Algorithm 6 Pseudocode of the repairing function

1: function repairSolution(solution)
2: feasibleRoutes = []
3: for all route in solution do
4: if not RouteFeasible(route) then
5: continue
6: feasibleRoutes = merge(splitRouteToFeasible(route),
feasibleRoutes)

return createSolutionFromRoutes(feasibleRoutes)

3.2 Creating initial solution

We have implemented three algorithms for creating initial solution. The first
one is randomly generated without any heuristic, the second one is savings
algorithm as described in the Section 2.1.2.1, which is deterministic and uses
heuristic. As the last algorithm we use randomized savings algorithm, which
is the savings algorithm extended by randomness.

3.2.1 Random feasible solution

Our implementation of random initialization is similar to route first, cluster
second algorithm. Firstly, we assign all customers into one route, then the
customers are shuffled and route is split into many feasible routes by repair
function (clusterization). This initialization method produces a candidate
solution with higher cost, but with high portion of randomness, which other
methods can utilize.

Algorithm 7 Creating random feasible solution

1: solution := createSolution()
2: route := createRoute()
3: route := assignCustomersToRoute(route)
4: route := shuffleRoute(route)
5: addRoutesToSolution(splitRouteToFeasible(route))
6: return solution

3.2.2 Savings algorithm

Another initialization method we use is a savings algorithm. We have chosen
this algorithm because it is a deterministic and it produces a moderate starting
solution (compared to random initialization). Also, computational complex-
ity is relatively low – O(N2) is needed for calculating saves and O(N logN)
is needed for sorting (it depends on used sorting algorithm, O(N logN) is
computational complexity of average quick sort run), which give us O(N2) in
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3.2. Creating initial solution

total. Disadvantage of this algorithm as initialization method may be lack of
randomness, which is important for exploring large portion of the state space,
especially in a population based methods as Genetic algorithm is. We try to
deal with this disadvantage in a randomized savings algorithm.

Algorithm 8 Savings algorithm

1: Initialize each customer in his own route
2: for all i in customers do
3: for all j in customers do
4: s[ij].save := ci0 + c0j − cij
5: s[ij].from := i
6: s[ij].to := j

7: Sort s in descending order
8: for all x in s do
9: if x.from.next = depot & x.to.prev = depot then

10: connectRoutes(x.from, x.to)

11: return distinctRoutes(x)

3.2.3 Randomized savings algorithm

We have developed a randomized savings algorithm in faith that we could
combine advantages of both random initialization and savings algorithm. We
have added a variance parameter, which we use to add randomness to saving
calculation.

Algorithm 9 Randomized savings algorithm

1: function RandomizedSavings(variance)
2: Initialize each customer in his own route
3: for all i in customers do
4: for all j in customers do
5: s[ij].save := (ci0 + c0j− cij) * (1 + Rand(−variance, variance)
6: s[ij].from := i
7: s[ij].to := j

8: Sort s in descending order
9: for all x in s do

10: if x.from.next = depot & x.to.prev = depot then
11: connectRoutes(x.from, x.to)

12: return distinctRoutes(x)
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3. Our approach

3.3 Neighbours generation

In order to do a state space search, we need to be able to generate neighbour of
the candidate solution. There are many ways how we can generate a neighbour
from the candidate solution, all of them are based on moving one or more
customers from one route to another one. We describe some of them below,
but before we can describe operations used for neighbour generation, we need
to define a predecessor and a successor of a customer.

Predecessor ip is a customer from route r which is served right before
the customer i is served and before applying a neighbour operation. Similarly,
successor is is a customer from route r which is server right after the customer
i is served and before applying a neighbour operation.

We have used three methods for neighbour generation – two of them,
relocate and exchange, are primarily used to exploit the state space because
they can only move one or two customers at once. The last method, 2-opt-
swap, can move many customers at once, thus we use it to explore the state
space.

3.3.1 Relocate

Relocate procedure takes two different customers a, b ∈ {1, ..., N} and moves
the first customer after the second customer as is listed on the Figures 3.1
and 3.2. Having a sub-route (ap, a, as) and a sub-route (bp, b, bs), after the
procedure relocate we will get sub-routes (ap, as) and (bp, b, a, bs). We have
implemented this procedure in both intra-route and inter-route variant.

Figure 3.1: Before and after the procedure relocate (relocated the customer 2
after the customer 1).
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3.3. Neighbours generation

Figure 3.2: Before and after the procedure relocate (relocated the customer 8
after the customer 7).

3.3.2 Exchange

Exchange procedure takes two different customers a, b ∈ {1, ..., N} and ex-
changes them as listed on Figures 3.3 as 3.4. Having a sub-routes (ap, a, as)
and (bp, b, bs), after the procedure relocate we will get subroutes (ap, b, as)
and (bp, a, bs). We have implemented this procedure in both intra-route and
inter-route variant.

Figure 3.3: Before and after the procedure exchange (exchanged the customer
2 with the customer 5).
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3. Our approach

Figure 3.4: Before and after the procedure exchange (exchanged the customer
2 with the customer 8).

3.3.3 2-opt swap

Unlike previous two methods, which takes only 2 customers, 2-opt-swap can
affect much more customers at once. Also, implementation of inter-route
variant differs from implementation of intra-route variant.

Inter-route variant takes a subroute (a1, a2, · · · , ak) from a route
(· · · , a1p , a1, · · · , ak, aks , · · · ) and moves it to another route as listed on the
Figure 3.5.

Intra-route variant takes a subroute (a1, a2, · · · , ak) from route
(· · · , a1p , a1, · · · , ak, aks , · · · ) and reverts it into a route (· · · , a1p , ak, · · · , a1, aks , · · · )
as listed on the Figure 3.6. Although we have implemented this procedure,
we do not use it on small instances (instances with 100 and less customers),
because we have got better results without using it.
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3.4. Our approach

Figure 3.5: Before and after the inter-route variant of the procedure 2-opt
swap, moved subroute (8, 9, 10) into route (6, 7, 8, 9, 10).

Figure 3.6: Before and after the intra-route variant of the procedure 2-opt
swap, reverted subroute (4, 3, 2).

3.4 Our approach

We have implemented five algorithms from the Chapter 2 – Savings, Hill
Climbing, Step Counting Hill Climbing, Late Acceptance Hill Climbing and
Genetic Algorithm.

3.4.1 Genetic algorithm

As we have mentioned in the Section 2.1.3.7, the Genetic algorithm was de-
signed for solving problems where a solution can be encoded as a binary vector,
but VRP solution cannot be effectively encoded as a binary vector because we
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3. Our approach

need to preserve order in our routes. We propose a modification of Genetic
algorithm that can solve every local search based problems. In our modific-
ation, we do not use crossover operation. We have also replaced mutation
operation with neighbour generation, which is a very similar process.

Algorithm 10 Genetic algorithm

1: function geneticAlgorithm(problem, populationSize)
2: population := initPopulation(populationSize)
3: while terminationConditionNotMet() do
4: newPopulation := createEmptyPopulation(populationSize)
5: bestCandidate := getBestCandidate(population)
6: AddToPopulation(newPopulation, bestCandidate)
7:

8: for i ∈ {2, . . . , populationSize} do
9: tmpSolution := Selection(population)

10: tmpSolution := getFeasibleNeighbour(tmpSolution)
11: AddToPopulation(newPopulation, tmpSolution)

12: population := newPopulation

13:

14: return getBestCandidate(population)
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Chapter 4

Results

Algorithms implemented by us were tested on chosen instances from both
above-mentioned benchmarks. Tests ran on a computer with Linux powered
by Intel(R) Core(TM) i5-4590 (4 cores, 3.3 GHz) and 16 GB of RAM. From
Solomon benchmark collection we chose instances R103, R211, C105, C205,
CR105 and RC205 where every instance has 100 customers. Every instance
was tested nine times for the period of ten seconds. LAHC and SCHC and
their variants were tested progressively with 1, 10, 100, 400, 3000, 10000 and
100000 parameters. Genetic algorithm was tested for population sizes of 100,
400, 3000, 10000 and 100000 candidates. For each population size, we tested
1, 5, 10 and 50 rounds in the tournament selection.

From the second group of benchmarks, we chose C1, C2, R1, R2, RC1 a
RC2 instances, where each has 1000 customers. Every instance was tested
three times for one minute. LAHC and SCHC were with these benchmarks
tested with the same parameters as in Solomon’s benchmarks.

Results of tests were plotted into a bar chart, where each bar represents
a ratio between our average result and the best-known result. For example,
if our result is 20 % worse than the best-known result, the chart will show +
20 % and vice versa, if our result is 20 % better, the chart will show - 20 %.
Algorithms with no prefix (LAHC, SCHC, hill-climbing, genetic-algorithm)
are initialized randomly. Algorithms with the prefix s- are initialized with
Savings algorithm and algorithms with the prefix rs- are initialized by Ran-
domized savings algorithm.

4.1 Cost over time depending on parameters

In this section, we take a look on how algorithms behave with different para-
meters. We have chosen the RC211 instance of Solomon benchmark as the
reference because we have the best results on it. As we can see below on the
Figures 4.2 and 4.1, for the LAHC and SCHC the parameter affects conver-
gence speed – the lower the parameter is, the faster the algorithm converges.
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4. Results

On the other hand, the algorithm can explore wider portion of state space
with higher parameter value.

Unlike SCHC and LAHC, parameters in Genetic algorithm are more dif-
ficult to set as you can see on the Figure 4.3. Number of rounds in the tour-
nament also affects convergence speed, but unlike LAHC and SCHC, higher
value can lead to getting stuck at local optimum (as is shown on the Figure
4.3 for the parameter value 50).

24



4.1. Cost over time depending on parameters
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Figure 4.1: SCHC results over time depending on parameter
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Figure 4.2: LAHC results over time depending on parameter
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Figure 4.3: Genetic algorithm results over time depending on rounds in the
tournament selection

4.2 Computional results

4.2.1 Solomon’s benchmarks

On Solomon’s benchmarks our algorithms brought satisfying results. LAHC,
SCHC and Genetic algorithm had usually the same or better results than the
best-known results on chosen instances. You can see result at Figures 4.4, 4.5,
4.6, 4.7, 4.8 and 4.9.
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Figure 4.4: Results for instance C105
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Figure 4.5: Results for instance C205

27



4. Results
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Figure 4.6: Results for instance R103
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Figure 4.7: Results for instance R211
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Figure 4.8: Results for instance RC105
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Figure 4.9: Results for instance RC205
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4. Results

4.2.2 Homberger’s benchmarks

Our algorithms did not do so well on Homberger’s benchmarks. It is obvious
from the charts, that our modification of algorihms with initialization using
Savings and Randomized Saving algorithm were in most cases better than
their competitors that were using random initialization. You can see result at
Figures 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15.
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Figure 4.10: Results for instance C1 10 1
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Figure 4.11: Results for instance C2 10 1
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Figure 4.12: Results for instance R1 10 1
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Figure 4.13: Results for instance R2 10 1
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Figure 4.14: Results for instance RC1 10 1
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Figure 4.15: Results for instance RC2 10 1
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4.3 Conclusion

We have tested SCHC, LAHC, Hill climbing ang Genetic algorithms on two
sets of benchmarks. We have shown that SCHC and LAHC (which until now
were never tested on vehicle routing problem with time windows) are prom-
ising methods for solving VRPTW problems. When combined with more
advanced initialization technique (in our case we used Savings and Random-
ized Savings), we can reach far better results. Results of our modification of
the Genetic algorithm are slightly worse than results of SCHC and LAHC.
Our variant could be an alternative to already known algorithms, possibly it
might serve as a reference for further research of local-search based problems.
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Appendix A

Acronyms

TSP Traveling salesman problem

VRP Vehicle routing problem

VRPTW Vehicle routing problem with time windows

LAHC Late Acceptance Hill Climbing

SCHC Step Counting Hill Climbing

GA Genetic algorithm
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Appendix B

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
benchmarks ......................... the directory of benchmark results
src.......................................the directory of source codes

app.........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
BP Macho Martin 2017.pdf............the thesis text in PDF format
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