
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Supporting Exploratory Testing by Automated

Navigation Using the Model of System Under Test

By

KAREL FRAJTÁK

A summary of the dissertation thesis submitted to

the Faculty of Electrical Engineering, Czech Technical

University in Prague,

in partial fulfillment of the requirements for the degree of Doctor.

PhD Programme: Electrical Engineering and Information Technology

Branch of Study: Information Science and Computer Engineering

August 2017

Supervisor: doc. Ing. Ivan Jelínek, CSc.

Supervison specialist: Ing. Miroslav Bureš, PhD.

1

1. Introduction

As a stage where the defects present in the system should be discovered and

fixed, software testing represents an important part the software development

lifecycle (Kaner et al., 2008). The current software testing is also considered

to be a costly process. Eldh et al. (2006) estimated its costs to be even between

40% and 80% of the total costs of the development. As the First Boehm's law,

based on empirical evidence from an extensive number of software

development projects says, the price of defect detection and removal grows

with the stage of the software project. Correcting a wrong requirement in a

requirement catalogue can be a matter of a half-hour discussion with the

investor. Correcting a defect caused by this wrong requirement in production

stage can impose extensive costs: It is not only expensive because the

application must be reworked and released again, but it can annoy users to the

point when they stop using the tested system, which can result in loss of

potential income acquired by the tested system.

To ensure efficient testing of software projects, various strategies can be taken.

On one side of the spectre, we can position the Model-Based Testing, where

high coverage test cases are generated from a suitable model of the System

Under Test (SUT). On the other side of the spectrum, Exploratory Testing (ET)

can be positioned. Here, test case scenarios are not prepared in advance and

are defined during the testing process. Thus, Exploratory Testing is suitable

for projects, where test basis is not present, or at least not complete and

consistent to the extent allowing the creation of efficient test cases. In this

Dissertation Thesis, we focus on a fusion of these two approaches, despite the

fact, that such a combination may seem unusual.

The Exploratory Testing is software testing technique, which applies to

software development projects, in which test basis (design documentation) is

not available, or at least not complete and consistent enough to allow the

creation of efficient test cases. In ET, we explore the SUT by testing its

functionalities and together with that we document the explored parts of the

SUT and exercised test cases.

The documentation part is essential for the efficiency of ET technique.

Documentation of the explored paths in the SUT also allows more accurate

2

reports of found defects, together with the possibility of the more systematic

creation of the test cases during the exploratory testing process, preventing

possible duplicities in executed tests. Created test cases can be used later in the

next testing phases (retesting of fixed defects or regression testing, for

instance).

Currently, a large ratio of web applications is usually developed without any

or sufficient underlying models. In most of the cases, this is a consequence of

required low development costs and usually short delivery time in the

competitive software development environment. Nevertheless, the model is

still implicitly present in the SUT code and with proper techniques, it is

possible to reconstruct it from the SUT. In this thesis, we explore one of the

prospective possibilities how to provide an automated testing support for such

a situation.

2. Goals of the Thesis

The goals of this Dissertation Thesis are the following:

1. Explore the possibility how to aid an Exploratory Testing process by a

suitable automated support, which will (1) take over part of

administrative overhead related to operational management of testing

team, (2) will lead to more efficient exploration of SUT functions, (3)

enables the testing team to detect more defects in the SUT and (4) will

prevent duplication of executed tests by individual testing team

members. By operational management in this context, we mean the

assignment of particular testing tasks to individual testers and

documentation of already explored SUT functions and exercised test

data combinations.

2. Design a model of SUT, which will serve as a basis for this automated

support. Explore already existing screen-flow based models and either

adapt and adjust an existing model or to design an own model, if the

situation requires.

3. Use the defined SUT model for a real-time generation of navigational

test cases, which will help the exploratory tester to explore SUT

3

efficiently. Formalize a mechanism of generation of these test cases.

Include also test data suggestions to this process.

4. Implement a framework, which will guide the exploratory testers in the

SUT and support them by the navigational test cases in accord with the

defined model and principles of generation of these test cases. The

framework will consist of three principal parts: (1) browser extension,

which will analyse the SUT front-end pages, (2) back-end system, which

will maintain the SUT model, generate the navigational test cases and

present them to the testers in a separate guidance web application, (3)

administration part, which will allow to browse, edit and visualize the

SUT model, as well as manage the testing team using the framework.

5. Conduct case studies, which will verify the functionality of the

implemented framework and compare its efficiency with Exploratory

Testing performed manually. Test the applicability of the proposed

system on at least three different system under tests. As one of these

systems, select an SUT, which HTML front-end structure will be

dynamically generated, which could cause the problems with analysing

of the front-end pages. Assess applicability of the proposed framework

also for this type of SUT.

In this Dissertation Thesis, we limit the scope of the systems under tests to

web-based applications and information systems, providing an HTML-based

user interface.

3. Background and State-of-the-Art

As the topic solved in this Dissertation Thesis is practically a combination of

Exploratory Testing, Model Reverse Engineering and Model-Based Testing in

its specific variant, in this section, we provide a brief overview of the state-of-

the-art in these disciplines.

In the Model-Based Testing (Utting and Legeard, 2007; Lochau et al., 2017;

Jorgensen, 2017; Dias et al., 2007; Sharma et al., 2014) the standard approach

is the test case generation from the formal model of the system requirements

and behaviour. The model is usually an abstract partial presentation of the

desired behaviour of the system and is created manually. Test cases generated

4

from such a model are functional tests on the same level of abstraction as the

model forming an abstract test suite. This suite cannot be executed directly

against SUT because there are physical details of the test missing. An

executable test suite is derived from an abstract test suite using a model

transformation. In some model-based testing environments, the models do

contain enough information to generate executable test suites directly. A

mapping must exist between the elements of the abstract test suite and

executable code in the software to create a test suite.

There are many general-purpose modelling languages available for describing

the system high-level model used in the industry. The most widespread and

used is Unified Modelling Language (UML). The UML diagrams (sequence

diagrams (Bandyopadhyay and Ghosh, 2009; Kumar and Singh, 2015), state

chart diagrams (Bubna and Chakrabarti, 2016), activity diagrams (Kansomkeat

et al., 2010; Jena et al., 2014), or state machine diagrams (Yue et al., 2011) are

transformed into more suitable application model, from which the test case

scenarios are generated. Nevertheless, an accurate, consistent and detailed

model is often very costly to create, and the maintenance and synchronisation

of such model with the rapid development of the project are difficult.

The standard set of UML 2.0 diagrams does not directly focus on the user front-

end interaction. Though UML notation was used to model the user interface it

does not have the capabilities to model all the nuances of the UI. Although UI

diagram was introduced with a user interface specialisation in (Ferri, 2008),

there are more suitable modelling languages available to model UI of an

application.

The first example of these web modelling languages is the Web Modelling

Language (WebML) (Brambilla and Fraternali, 2014), which was created

introducing visual notations and a methodology for designing complex data-

intensive Web applications. Later on, this language then evolved into IFML

(Brambilla et al., 2014) to cover a wider spectrum of the front-end interfaces

and the data flow between the application front-end components. IFML was

standardised in 2013. Its notation is easily extensible - new containers,

components, events can be added, or custom UML stereotypes applied

(Brambilla et al., 2014). Also, new components and events (swipe, camera

event, location sensor event for mobile UI modelling) were added to define

mobile-specific interfaces and interaction. IFML represents a prospective

5

modelling tool to describe application front-end and a flexible and easily

extensible notation.

The Model-Based Testing represents very prospective concept to create

efficient test cases in an automated way. However, its limitation is the presence

of the consistent and up-to-date model of the system under test. Here, the

question arises: Are we able to use this powerful concept, when the model is

partial only, or when this model is generated by reverse engineering technique?

In the case when the SUT model is not available, a Reverse Engineering

Technique (RET) is a suitable approach to recreate it from the actual state of

the SUT. The model of the application can be recreated using RET by

analysing the static content of the HTML pages - namely the HTML elements

- and to build a directed graph with web pages as nodes and transitions/links

as edges. Not every web applications have static pages only; some content is

dynamic, and the content has to be treated differently in this case. Analysing

of the content requires the execution of the code, and it can depend on the value

of input variable(s). Prospectively, not only all the possible flows of screens

and actions in the SUT but also flows representing business processes could

be re-engineered. In this process, proper manual input to mark which sequence

parts belong to the particular workflow is needed. Morgado and Paiva (2015)

have created a tool called iMPAcT for mobile pattern testing. They are

focusing on an automated testing of recurring behaviour, i.e. UI patterns. For

a UI pattern to be matched, the current state of the application is analysed when

an event is fired. The pattern preconditions must be verified, and all checks

met. Each UI pattern has a test pattern associated with testing. A catalogue of

UI patterns was created for the mobile application, which can be prospectively

also used in reverse engineering of the SUT model.

The Exploratory Testing technique itself is a subject of current software

testing research. As explained in the introduction, this technique gives software

testers certain level of freedom to design and execute the tests while exploring

the product (Hendrickson, 2014; Itkonen and Rautiainen, 2005; Itkonen, 2011;

Pfahl et al. 2014). The tester uses the data gathered from the execution of the

first set of tests to conduct the next round of tests. ET can find critical defects

in a shorter time. Unlike documented test cases, exploratory testing does not

follow any testing rules. Testers with strong knowledge of the business and

technical domain explore the application. By browsing through and using the

6

application like a real user, testers are more likely to find issues that customers

might face.

An industrial case study to evaluate the impact of education level and

experience level on the effectiveness of ET was conducted by (Gebizli and

Sözer, 2017). In this study, 19 practitioners, who have different education and

expertise levels, were involved in applying ET for testing a Digital TV system.

The results show that efficiency regarding the number detected failures per unit

of time is significantly affected by both the educational background and

experience. Experience also has a significant impact on the number of detected

critical failures, whereas education has not. Though the formal education,

formal training or test certification is not required and regular end-users

regularly find and report bugs in systems even though they are not trained as

testing professionals, the testing process encompasses a broad range of skills

(planning, design, automation, exploratory testing). A certain level of formal

proficiency in these areas is required (Micallef et al., 2016).

Also, a limited related work exists in combinations of Model-based Testing

and Exploratory Testing. DoNascimento and Machado (2017) proposed

using ET approach to acquire knowledge for a model-based testing. The main

target area of Exploratory Testing is GUI testing where the tester tries to find

defects and break the application by exploring the possible actions in the SUT

using his intuition. Testers can start testing new feature immediately since the

planning of the testing process is not necessary. In contrary to these

advantages, certain disadvantages shall also be mentioned (Shah et al., 2014).

It is difficult to assess whether a feature was tested, the process is not

monitored and tracked, the quality of testing is unclear and depends on the

experience and skills of the tester. The problem is also to re-evaluate the test

later.

Kim et al. (Kim and Lee, 2014) focused on generating formal specifications

from manually written test cases - a possible synergy between Exploratory

Testing and model-based testing. The SUT model is re-engineered to get a

better insight into the legacy code.

7

4. Proposed Solution

The Test Analysis SUT Process Information Reengineering (Tapir)

Framework is to automate the following activities in the Exploratory Testing

process:

1. automated recording of the tests performed by the testers, including used

testing data,

2. automated guidance through the system under test (testers are being

instructed which pages and functions of the system shall be explored),

and,

3. support of teamwork of the exploratory testers, to prevent duplicities in

performed tests and test data, for instance.

The framework records the data about all pages visited by the tester and the

actions triggered by the tester (button clicked, link clicked, a form submitted)

and the data used (applies for forms only). The recorded data is persisted in the

database and used later for the tester navigation through the SUT. From the

data, the SUT model is being built incrementally.

During the testing process, the navigational test cases are created dynamically

from the SUT model. In the test cases, the tester is offered the best screen

element to test in the next step, the suggested page to go on and the

recommended test data to enter. We have developed several navigational

strategies that select the best candidates for selection of these elements - the

criteria being for example the complexity of the link target page (testing the

more complex pages first), the type of the element (testing that submitting a

form does not result in an error first), the priority of the element (testing the

elements more important from the business point of view first), number of

previous visits of an element (to achieve higher coverage of original pages and

elements of the SUT).

The model of the SUT and the framework directly supports and encourages the

teamwork in the exploratory testing process. Defined navigational strategies

have also their team versions; in this variant, the navigational test cases guide

the testers to the parts of SUT which have not been explored by anyone in the

team previously. This also applies to the suggested testing data.

8

As the SUT model, we have adopted a model of the web application proposed

by Deutsch et al. (2007). The model has been modified and has been extended

to meet our requirements. The main definition of the SUT model is the

following. The SUT is a tuple (W, w0, we, S, I, A, L, M) where the

 W is a set of all web pages of the SUT containing homepage w0 and error

page we; web page contains input, action and link elements (subsets of

set defined further in the text), reference to its master page and set of

transition rules that indicate which page is loaded when a link or a button

(action element) is clicked.

 S is a set of all state values.

 I is a set of input elements in the SUT (input fields on web pages), a range

of input values allowed from the business point of view can be defined

for input elements.

 A is a set of action elements in the SUT (buttons on web pages).

 L is a set of link elements in the SUT.

 M is a set of hierarchical master pages in the SUT (master page represents

part of the HTML pages that is shared across the SUT: page header,

application menu or similar fragments).

The formal definition of the SUT and Exploratory Testing problem contains

more concepts which are presented in the Dissertation Thesis. The Tapir

framework allows the team lead (or a user with appropriate access level) to

apply meta-data to desired elements. One example of the meta-data was

already mentioned - the allowed data range. Another type of the meta-data is

the business type of the values that can be filled into an input field (telephone

number, email address, …); or the priority of the page or of an element. The

priority is reflected in the automated navigation of the tester in the SUT, which

is provided by the framework.

The defined SUT model is incrementally built during the testing process. The

system starts with an empty model of the SUT and then, during the initial stage,

the model is dynamically created and authored by the test lead. The Tapir

browser extension analyses every page of the SUT the user visits and retrieves

information about the page and every input, action and link element on that

page. Extracted data is sent to the server, analysed and used to create (or

update) the persisted model of the SUT. The test lead can manually modify the

model by applying meta-data to selected elements.

9

The Tapir Framework composes of three main modules, which cooperate

closely (the overall architecture is depicted in Figure 1).

Tapir Browser Extension records activities of the exploratory testers.

Individual captured events are sent to the TapirHQ server. In the browser, the

extension also highlights the elements of the SUT user interface. Elements

suggested to explore are highlighted to the tester; elements, which have been

analysed before and are part of the SUT model can be highlighted. Currently,

The extension is available for the Chrome browser. In the project roadmap,

development of a Firefox browser extension is planned for 2018. TapirHQ

module gets the captured events from the Browser Extension and constructs

the SUT model based on this information. From the model, this component

prepares the navigational test cases and presents them to the testers. TapirHQ

interacts with the testers via special test management application (TapirHQ

Front-end). In this application, navigational test cases and information about

explored SUT parts are displayed, test lead or administrator can edit the SUT

model or priorities can be set to individual model parts. Tapir Analytics

module visualises the recorded SUT model. Using this visualisation, the testing

team gets an overview, which parts of the SUT have been explored so far

during the exploratory testing process.

Figure 1: The high-level architecture of the Tapir framework

10

5. Experiments and Summary of the Results

To analyse the practical applicability of the proposed Tapir Framework and its

efficiency when used to support Exploratory Testing process, we conducted

four case studies, which we describe in the Thesis.

The aim of Case Studies 1 and 2 was to compare the efficiency of the Tapir

Framework with Exploratory Testing process performed manually. In these

case studies, we split the testers to two principal groups. The first group was

using the support of the Tapir Framework. The second group was only

monitored using the Browser Tracking extension. During this process, the SUT

model was constructed, but no navigational support was provided to the testers

of this group. In both case studies, we compared data collected from

constructed models. In the Case Study 1, we also collected testers reports on

time spent on individual tasks in the testing process. In the Case Study 2, we

relied more on time measurement connected to model construction. The Case

Study 2 was performed using a more recent prototype of the Tapir Framework.

The aim of Case Study 3 was to assess proposed navigational strategies and

suggest the best option to be evolved further on. We compared team and

individual navigational strategies proposed in the Dissertation Thesis, as well

as alternative ranking functions, which are used by these navigational

strategies.

The aim of Case Study 4 was to assess the applicability of the Tapir Framework

to different types of SUTs and to assess its applicability when used on an SUT

with dynamically generated front-end HTML pages, including the structure of

the pages and URL format.

The first two Case Studies were performed to compare the efficiency of

exploratory testing supported by the proposed framework with exploratory

testing performed manually without such support. The results of these Case

Studies are promising: In the Case Study 1, significant effort was saved for the

part of subtasks of the ET process when performed with the aid of an

automated support. The savings were achieved mostly in the subtasks related

to the documentation of the test case (steps which have to be taken) and overall

documentation of the explored parts of the SUT. Overall time savings in the

case study were 23.5% when the proposed solution was used. In the subtasks

11

which were not directly supported by the used version of Tapir Framework

(e.g. specification of the test expected result, or defect report), no significant

improvement was achieved. Further on, there was a slight increase in an

average number of detected defects for the aided exploratory testing in

comparison to the manually performed ET process by 6%.

In the Case Study 2, the results also show that the exploratory testers supported

by the Tapir framework have explored the larger original extent of the SUT

pages and functions than the testers performing the exploratory testing process

without such support. For instance, an average number of SUT pages explored

per time unit was better by 7%, when the testers were guided by the Tapir

Framework. When we consider unique explored pages only, this improvement

was even more significant, 39%. With the support of the Tapir framework, the

testers could activate more artificial defects than in the Case Study 1. The

improvement was 31% in this case.

The goal of the Case Study 3 was to select the best navigational strategy and

related ranking function to construct the navigational test cases. Several

conclusions have been made from these experiments. Guidance of the

exploratory testers based on the analysis of the complexity of the target pages

provided the best results from explored possible strategies. Also, the

navigational strategy based on the teamwork principle was more efficient

regarding the time spent on the testing activities. This strategy was also

performing better when we analysed the extent of original SUT pages and

elements, which have been explored during the testing.

Finally, the Case Study 4 explored applicability of the Tapir Framework to

different styles of SUT front-end coding. In the case of OFBiz and Moodle

systems, customization of Browser Extension was entirely feasible, and the

Tapir Framework was working without technical limitations. Our concern was

an application with dynamically generated front-end pages, where only a little

stable elements and element IDs are present. As an example of this application,

we selected JTrac. As the customisation of browser tracking extension has

shown, dynamically generated URL of the front-end pages represented a

problem to reconstruct the SUT model; framework was running partially, but

the model reconstruction was inaccurate. This represents an application limit

of the proposed framework. It is worth to mention that for an automated testing

based on the front-end such dynamic generation of HTML content also

represents the significant obstacle.

12

6. Conclusion

The main application area of the Exploratory Testing technique is the software

development projects, in which the design documentation (which serves as a

basis to create the test cases) is missing, obsolete or inconsistent. Several issues

can influence the efficiency of this technique. When testers’ actions in the SUT

are not systematically documented during the testing process, it usually leads

to repetitive test cases, including repetitive data combinations.

In such situations, it is difficult to assess, whether particular SUT feature has

been tested already. This makes decisions what to test in the next steps

difficult, especially, for more junior members of the testing team. Also, this

situation usually requires a strong managerial presence of a Test Lead, who

must organize the testing efficiently. Furthermore, problems when reporting

defects can be experienced, as testers often do not remember the explored path

exactly. This impacts the quality of defect reports, which adds additional

overhead to the development and testing part of the project (more information

is required by the development team to reproduce these defects). Besides the

extra costs, this effect also prolongs the defect fixing by the developers.

Consequently, the quality of testing strongly depends on the experience and

skills of the testers.

With the aim to minimise these problems, we designed and experimentally

implemented a framework for automated support of the Exploratory Testing

process. This framework is designed for the systems under tests to web-based

applications and information systems, providing an HTML-based user

interface. Browser tracking extension records actions in the SUT front-end

performed by the testers and based on this information, the SUT model is

created and dynamically updated during testers' exploration of the SUT.

During this exploration, navigational test cases are automatically created and

presented to the testers by guideline application running side-by-side with the

SUT.

The SUT model includes pages of the SUT front-end, input, link and action

elements of these pages, as well as structures for management of test data used

in the exploratory testing process. History of SUT exploration by individual

testers is also recorded in the model.

13

To evaluate the efficiency and applicability of the proposed solution, we

conducted four Case Studies, which we presented in this Dissertation Thesis.

These Case Studies documented effort savings in part of subtasks of the ET

process with the support of the Tapir framework. This automated support also

ensured exploration of more considerable extent of new SUT parts during the

tests and capacity of the proposed framework to support detection of more

defects in the system under test.

The contributions of this Dissertation Thesis can be summarised as the

following:

 Design of the framework, which contributes to conduction of

Exploratory Testing process in the more efficient way regarding spent

resources, the extent of explored SUT and found defects.

 Combination of Reverse-Engineering, Model-Based Testing and

Exploratory Testing, which we consider innovative (during extensive

literature study on the related topic, we have not identified a research or

software industrial project, which addressed the problem in the way

similar to our approach).

 A formal model of the underlying system under test, which can be (apart

from being used as a basis for the Tapir Framework processes) further

used for modelling of Exploratory Testing process or measurement of

the efficiency of software testing process in general.

 Design of the initial navigational strategies, ranking functions, and test

data strategies, which can be further explored and more efficient variants

can be found. This includes the focus on the teamwork and efficient

usage of the individual tester's resources.

 The practical applicability of the proposed framework to industrial

software development and testing projects.

 Possible alternative usages of the Tapir Framework, as a measurement

tool for the testing process efficiency or assessment of the efficiency of

a particular set of test cases.

14

References

Bandyopadhyay, A. and Ghosh, S. Test input generation using UML sequence

and state machines models. In Software Testing Verification and Validation,

2009. ICST '09. International Conference on, pages 121-130, April 2009.

Brambilla, M. and Fraternali, P. Large-scale model-driven engineering of web

user interaction: The WebML and WebRatio experience. Science of Computer

Programming, 89:71-87, 2014.

Brambilla, M. and Fraternali, P., et al. The interaction flow modeling language

(IFML). Technical report, version 1.0. Technical report, Object Management

Group (OMG), http://www.ifml.org, 2014.

Brambilla, M., Mauri, A. and Umuhoza, E. Extending the interaction flow

modeling language (IFML) for model driven development of mobile

applications front end. In Mobile Web Information Systems, volume 8640 of

Lecture Notes in Computer Science, pages 176-191. Springer International

Publishing, 2014.

Bubna, K. and Chakrabarti, S. K. Act (abstract to concrete tests)-a tool for

generating concrete test cases from formal specification of web applications.

In ModSym+ SAAAS@ ISEC, pages 16-22, 2016.

Deutsch, A., Sui, L. and Vianu, V. Specification and verification of data-driven

web applications. Journal of Computer and System Sciences, 73(3):442-474,

2007.

Dias Neto, A.C., Subramanyan, R., Vieira, M., and Travassos, G. H. A survey

on model-based testing approaches: a systematic review. In Proceedings of the

1st ACM international workshop on Empirical assessment of software

engineering languages and technologies: held in conjunction with the 22nd

IEEE/ACM International Conference on Automated Software Engineering

(ASE) 2007, pages 31-36. ACM, 2007.

do Nascimento, L. H. and Machado, P. D. An experimental evaluation of

approaches to feature testing in the mobile phone applications domain. In

Workshop on Domain specific approaches to software test automation: in

conjunction with the 6th ESEC/FSE joint meeting, pages 27-33. ACM, 2007.

15

Eldh, S., Hansson, H., Punnekkat, S., Pettersson, A. and Sundmark, D. A

framework for comparing efficiency, effectiveness and applicability of

software testing techniques. In Testing: Academic and Industrial Conference -

Practice and Research Techniques, 2006. TAIC PART 2006. Proceedings,

pages 159-170, Aug 2006.

Ferri, F. Visual Languages for Interactive Computing: Definitions and

Formalizations. Premier reference source. Information Science Reference,

2008.

Gebizli, C. S. and Sözer, H. Impact of education and experience level on the

effectiveness of exploratory testing: An industrial case study. In 2017 IEEE

International Conference on Software Testing, Verification and Validation

Workshops (ICSTW), pages 23-28, March 2017.

Hendrickson, E. Explore it!: reduce risk and increase confidence with

exploratory testing. The Pragmatic Programmers, 2014.

Itkonen, I. and Rautiainen, K. Exploratory testing: a multiple case study. In

Empirical Software Engineering, 2005. 2005 International Symposium on,

pages 10-pp. IEEE, 2005.

Itkonen, J. et al. Empirical studies on exploratory software testing. 2011.

Jena, A. K., Swain, S. K., and Mohapatra, D. P. A novel approach for test case

generation from uml activity diagram. In 2014 International Conference on

Issues and Challenges in Intelligent Computing Techniques (ICICT), pages

621-629, Feb 2014.

Jorgensen, P. C. The Craft of Model-Based Testing. CRC Press, 2017.

Kaner, C., Bach, J. and Pettichord, B. Lessons learned in software testing. John

Wiley & Sons, 2008.

Kansomkeat, S., Thiket, P., and Offutt, J. Generating test cases from uml

activity diagrams using the condition-classification tree method. In Software

Technology and Engineering (ICSTE), 2010 2nd International Conference on,

volume 1, pages 62-66, Oct 2010.

16

Kim, D.K., and Lee, L.S. Reverse engineering from exploratory testing to

specification-based testing. International Journal of Software Engineering and

Its Applications, 8(11):197-208, 2014.

Kumar, B. and Singh, K. Testing UML designs using class, sequence and

activity diagrams. International Journal for Innovative Research in Science and

Technology, 2(3):71-81, 2015.

Lochau, M., Peldszus, S., Kowal, M., and Schaefer, I. Model-based testing. In

Advanced Lectures of the 14th International School on Formal Methods for

Executable Software Models - Volume 8483, pages 310-342, New York, NY,

USA, 2014. Springer-Verlag New York, Inc. ISBN 978-3-319-07316-3.

Micallef, M., Porter, C. and Borg, A. Do exploratory testers need formal

training? An investigation using HCI techniques. In 2016 IEEE Ninth

International Conference on Software Testing, Verification and Validation

Workshops (ICSTW), pages 305-314, April 2016.

Morgado, I. C., and Paiva, A. C. R. Testing approach for mobile applications

through reverse engineering of UI patterns. In 2015 30th IEEE/ACM

International Conference on Automated Software Engineering Workshop

(ASEW), pages 42-49, Nov 2015.

Pfahl, D., Yin, H., Mäntylä, M. V., and Münch, J. How is exploratory testing

used? a state-of-the-practice survey. In Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software Engineering and

Measurement, page 5. ACM, 2014.

Shah, S. M. A., Gencel, C., Alvi, U. S., and Petersen, K. Towards a hybrid

testing process unifying exploratory testing and scripted testing. Journal of

Software: Evolution and Process, 26(2):220-250, 2014.

Sharma, H. K., Singh, S. K. and Ahlawat, P. Model-Based Testing: The New

Revolution in Software Testing. Database Systems Journal, 5(1):26-31, May

2014.

Utting, M. and Legeard, B. Practical Model-Based Testing: A Tools Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. ISBN

0123725011, 9780080466484.

17

Yue, T., Ali, S., and Briand, L. Automated transition from use cases to UML

state machines to support state-based testing. In Modelling Foundations and

Applications, pages 115-131. Springer, 2011.

List of Author’s Publications

Articles in impacted journals

Frajták, K., M. Bureš, and I. Jelínek. Exploratory testing supported by

automated reengineering of model of the system under test. Cluster

Computing, 20(1):855{865, 2017. ISSN 1386-7857. [33%]

Bureš, M., T. Černý, K. Frajták, and B. Ahmed. Testing the consistency of

business data objects using extended static testing of crud matrices. Cluster

Computing, Aug 2017. ISSN 1573-7543. [25%]

Conference papers indexed in ISI Web of Science

Frajták, K., M. Bureš, and I. Jelínek. Model-based testing and exploratory

testing: Is synergy possible? In Proceedings of the 6th International

Conference on IT Convergence and Security (ICITCS 2016), pages 329-334,

Red Hook, US, 2016. ISBN 978-1-5090-3765-0. [33%]

Frajták, K., M. Bureš, and I. Jelínek. Formal specification to support advanced

model based testing. In Federated Conference on Computer Science and

Information Systems (FedCSIS 2012), pages 1311-1314, New York, US,

2012. ISBN 978-1-4673-0708-6. [33%]

Conference papers indexed in Elsevier Scopus

Frajták, K., M. Bureš, and I. Jelínek. Manual testing of web software systems

supported by direct guidance of the tester based on design model. World

Academy of Science, engineering and Technology, 80(0):243-246, August

2011. ISSN 2010-376X. [33%]

Frajták, K., M. Bureš, and I. Jelínek. Pex extension for generating user input

validation code for web applications. In Proceedings of the 9th International

18

Conference on Software Engineering and Applications, pages 315-320,

Setúbal, PT, 2014. ISBN 978-989-758-036-9. [33%]

Frajták, K., M. Bureš, and I. Jelínek. Reducing user input validation code in

web applications using Pex extension. In ACM International Conference

Proceeding Series, Volume 883, ACM International Conference Proceeding

Series, pages 302-308, Rousse, BG, 2014. ISBN 978-1-4503-2753-4. [33%]

Frajták, K., M. Bureš, and I. Jelínek. Using the interaction flow modelling

language for generation of automated frontend tests. In Position Papers of the

2015 Federated Conference on Computer Science and Information Systems,

Annals of Computer Science and Information Systems, pages 117-122,

Warsaw, PL, 2015. ISBN 978-83-60810-77-4. [33%]

Frajták, K., M. Bureš and I. Jelínek. Transformation of IFML schemas to

automated tests. In Proceeding of the 2015 Research in Adaptive and

Convergent Systems (RACS 2015), pages 509{511, New York, US, 2015.

ISBN 978-1-4503-3738-0. [33%]

Other publications

Frajták, K., M. Bureš, and I. Jelínek. Web software systems testing supported

by model-based direct guidance of the tester. Proceedings of International

Conference on Information Technologies, 2012(26):45-52, 2012. ISSN 1314-

1023. [33%]

19

Anotace

Metoda průzkumného testovaní (angl. Exploratory Testing) je metoda

testování softwarových projektů vhodná v situacích, ve kterých není k

dispozici žádná návrhová dokumentace nebo je neúplná či nekonzistentní a

není možné ji využít pro tvorbu testovacích scénářů. Principem je souběžné

prozkoumávání testovaného systému, tvorba testovacích scénářů a testování

tohoto systému. Pro zajištění efektivity této techniky je klíčová dokumentace

prozkoumaných částí systému i vykonaných testovacích scénářů.

Rekonstrukci modelu testovaného systému, společně se sledováním aktivit

testera v testovaném systému a připojenými metadaty, lze využít pro

automatickou navigaci testera. Tím se dají snížit náklady nutné na pořizování

dokumentace v průběhu testování, čímž se zvyšuje transparentnost a efektivita

průzkumného testování. V této práci představujeme model a framework, který

tuto podporu poskytuje.

Rozšiřující modul webového prohlížeče automaticky nahrává akce prováděné

testerem v systému. Tato data slouží k průběžnému vytváření modelu systému

a k jeho aktualizaci. Framework dynamicky vytváří navigační testovací

scénáře na základě dostupného modelu a aktuální pozice testera v systému a

tím zajišťuje vyšší efektivitu průzkumného testování.

V průběhu dynamického generování navigačních testovacích scénářů může být

použito několik navigačních strategií, které jsou popsány v textu práce. Tyto

strategie využívají řadu vstupů, jako je informace o předchozích návštěvách

dané stránky konkrétním testerem nebo jeho kolegy z daného týmu, priorita

stránek nebo komplexnost stránek z hlediska počtu a druhu sledovaných prvků.

Provedené experimenty ověřily, že metoda průzkumného testovaní

prováděného s automatickou podporou navrženého frameworku, ve srovnání

s průzkumným testováním prováděným pouze manuálně, zvyšuje efektivitu

této techniky v několika oblastech. Navržená automatická podpora snižuje čas

potřebný na jednotlivé úkoly a vede testery k otestování větší části systému.

Pokusy se zanesenými umělými defekty v testovaném systému ukázaly, že

navržený framework pomohl testerům odhalit větší množství těchto defektů

oproti skupině testerů pracujících bez jeho podpory.

