
Faculty of Information Technology

Transformation of Kinds and
Subkinds into Relational Databases:

A Running Example

Zdeněk Rybola, Robert Pergl

Technical Report TR-FIT-17-01

Czech Technical University in Prague

Technical Report TR-FIT-17-01

Transformation of Kinds and Subkinds into
Relational Databases:
A Running Example

Zdeněk Rybola, Robert Pergl

January 2017

c© Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Praha 6
Czech Republic

Contents

1 Goal and Methodology . 2
2 Running Example . 2
3 Transformation of OntoUML PIM into UML PIM 3
4 Transformation of PIM into PSM 4
5 Transformation of PSM into ISM 17

Bibliography 36

i

Transformation of Kinds and Subkinds into Relational
Databases:

A Running Example ∗

Zdeněk Rybola, Robert Pergl
Department of Software Engineering
Faculty of Information Technology

Thákurova 9
160 00 Praha 6
Czech Republic

Abstract

This technical report contains a complete running example doc-
umenting the transformation of an OntoUML Platform Indepen-
dent Model (PIM) into an SQL Implementation Specific Model
(ISM). It does not provide the theory, explanations and discussion,
the reader is advised to refer to the referenced resources.

Keywords OntoUML, UML, Model-driven Engineering, Relational Databases

∗This research was partially supported by grant by Student Grant Competition No.
SGS16/120/OHK3/1T/18.

1

1 Goal and Methodology

The goal of this document is to present a running example documenting our
approach to the transformation of a PIM in OntoUML into its realization in a
relational database. The transformation consists of three steps:

1. A transformation of an OntoUML PIM into a UML PIM: Section 3

2. A transformation of the UML PIM into an RDB PSM: Section 4

a) by a single table containing columns for all the attributes of the
superclass and all the subclasses;

b) by individual tables for each of the subclasses, containing the columns
for the attributes of the respective subclass and the superclass;

c) by a table for the superclass and individual tables for all the sub-
classes.

3. A transformation of the RDB PSM into an SQL ISM: Section 5.

It should hold that no information should be lost when transforming from
a more abstract model into a more specific one. As OntoUML applies certain
constraints based on the OntoUML type used for an entity, these constraints
should be carried over to the other models. In our approach, we use OCL to
define such constraints in the UML models that cannot be expressed directly
in the diagrams.

The SQL examples are coded using the Oracle SQL dialect used by Oracle
Database 12c [1].

We do not discuss the theory of the transformation here, nor do we discuss
the results, as this has been published in [2] and consecutive papers.

2 Running Example

Our approach to the transformation of Kinds, Subkinds and their generaliza-
tion sets from the OntoUML PIM into SQL ISM is illustrated on the running
example shown in Figure 1. The model shows an excerpt of the domain of
transportation company. The company uses various vehicles for transportation
of various types of load, ranging from persons to documents to heavy cargo.
Therefore, the main entity of such model is the type Vehicle. As it is the
type defining the identity principle for its instances, it is classified as Kind. For
each vehicle used by the company, its manufacturer, model and plate number
is needed, represented by the respective attributes of the Vehicle type.

2

«Kind»
Vehicle

- manufacturer: String
- model: String
- plate number: String

«SubKind»
Truck

- loading capacity: int

«SubKind»
Car

- seats: int

«SubKind»
Motorcycle

- engine capacity: int

{disjoint}

Figure 1: Example of an OntoUML model with Kinds and Subkinds

Furthermore, the company distinguishes three special types of vehicles –
trucks, cars and motorcycles – for which additional attributes are important.
Each of these types of vehicles is represented by its own type in the OntoUML
PIM with the appropriate attributes. As all these types represent the spe-
cialization of the general concept of a vehicle, their are classified as Subkinds
forming a generalization set specializing the type Vehicle.

Moreover, as the types of the vehicles are disjoint – clearly, one vehicle
cannot be a truck and a motorcycle at the same time – the generalization
set is defined disjoint. On the other hand, there might be other types of
vehicles, for which no special attributes need to be recorded. Therefore, the
generalization set is not defined complete, but rather left incomplete.

3 Transformation of OntoUML PIM into UML PIM

The resulting transformed PIM into UML for the vehicle domain shown in Fig-
ure 1 is shown in Figure 2. Each of the� Kind� and� Subkind� classes
has been transformed into standard UML class.

Vehicle

- manufacturer: String
- model: String
- plate number: String

Motorcycle

- engine capacity: int

Car

- seats: int

Truck

- load capacity: int

{disjoint}

Figure 2: UML PIM with the transformed Kinds and Subkinds

3

4 Transformation of PIM into PSM

4.1 Single Table
In Figure 3, the RDB PSM is shown with the table VEHICLE realizing the trans-
formed generalization set of Truck, Car and Motorcycle classes specializing
the Vehicle class shown in Figure 2.

VEHICLE

«column»
*PK VEHICLE_ID: NUMBER(8)
* DISCRIMINATOR: VARCHAR2(10)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)

LOAD_CAPACITY: NUMBER(8)
ENGINE_CAPACITY: NUMBER(8)
SEATS: NUMBER(8)

«PK»
+ PK_VEHICLE(VEHICLE_ID)

«unique»
+ UQ_PLATE_NUMBER(PLATE_NUMBER)

Figure 3: RDB PSM with the generalization set realized by a single table

In Constraint 1, the OCL constraint is defined for the table VEHICLE shown
in Figure 3, realizing the {disjoint,incomplete} generalization set of classes
Truck, Car and Motorcycle as shown in Figure 2. In the case of other values of
the meta-properties of the generalization set, the OCL constraint would be de-
fined with small differences, as shown in Constraint 2 for a {disjoint,incomplete}
generalization set, in Constraint 3 for a {overlapping,complete} generaliza-
tion set, and in Constraint 4 for a {overlapping,incomplete} generalization
set.

4

Constraint 1 OCL invariant for the {disjoint,incomplete} generalization
set realized by a single table

context v :VEHICLE inv GS Vehicle Types :
de f V e h i c l e I n s t a n c e : Boolean =

v .DISCRIMINATOR = ’ Veh ic l e ’
AND v .LOAD CAPACITY = OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Truck Instance : Boolean =
v .DISCRIMINATOR = ’ Truck ’

AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Car Instance : Boolean =
v .DISCRIMINATOR = ’ Veh ic l e ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Motorcyc l e Ins tance : Boolean =
v .DISCRIMINATOR = ’ Motorcycle ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY <> OclVoid

V e h i c l e I n s t a n c e
OR Truck Instance
OR Car Instance
OR Motorcyc l e Ins tance

5

Constraint 2 Example of the OCL invariant for a {disjoint,complete}
generalization set realized by a single table

context v :VEHICLE inv GS Vehicle Types :
de f Truck Instance : Boolean =

v .DISCRIMINATOR = ’ Truck ’
AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Car Instance : Boolean =
v .DISCRIMINATOR = ’ Veh ic l e ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Motorcyc l e Ins tance : Boolean =
v .DISCRIMINATOR = ’ Motorcycle ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY <> OclVoid

Truck Instance
OR Car Instance
OR Motorcyc l e Ins tance

6

Constraint 3 Example of the OCL invariant for a {overlapping,complete}
generalization set realized by a single table

context v :VEHICLE inv GS Vehicle Types :
de f Truck Instance : Boolean =

v .DISCRIMINATOR = ’ Truck ’
AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Car Instance : Boolean =
v .DISCRIMINATOR = ’ Veh ic l e ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Motorcyc l e Ins tance : Boolean =
v .DISCRIMINATOR = ’ Motorcycle ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY <> OclVoid

de f Truck Car Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Car ’

AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Truck Motorcyc le Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Motorcycle ’

AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY <> OclVoid

de f Car Motorcyc l e Ins tance : Boolean =
v .DISCRIMINATOR = ’ Car Motorcycle ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY <> OclVoid

de f Truck Car Motorcyc le Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Car Motorcycle ’

AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY <> OclVoid

Truck Instance
OR Car Instance
OR Motorcyc l e Ins tance
OR Truck Car Instance
OR Truck Motorcyc le Instance
OR Car Motorcyc l e Ins tance
OR Truck Car Motorcyc le Instance

7

Constraint 4 Example of the OCL invariant for a
{overlapping,incomplete} generalization set realized by a single table

context v :VEHICLE inv GS Vehicle Types :
de f V e h i c l e I n s t a n c e : Boolean =

v .DISCRIMINATOR = ’ Veh ic l e ’
AND v .LOAD CAPACITY = OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Truck Instance : Boolean =
v .DISCRIMINATOR = ’ Truck ’

AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Car Instance : Boolean =
v .DISCRIMINATOR = ’ Veh ic l e ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Motorcyc l e Ins tance : Boolean =
v .DISCRIMINATOR = ’ Motorcycle ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY <> OclVoid

de f Truck Car Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Car ’

AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY = OclVoid

de f Truck Motorcyc le Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Motorcycle ’

AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS = OclVoid
AND v .ENGINE CAPACITY <> OclVoid

de f Car Motorcyc l e Ins tance : Boolean =
v .DISCRIMINATOR = ’ Car Motorcycle ’

AND v .LOAD CAPACITY = OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY <> OclVoid

de f Truck Car Motorcyc le Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Car Motorcycle ’

AND v .LOAD CAPACITY <> OclVoid
AND v .SEATS <> OclVoid
AND v .ENGINE CAPACITY <> OclVoid

V e h i c l e I n s t a n c e
OR Truck Instance
OR Car Instance
OR Motorcyc l e Ins tance
OR Truck Car Instance
OR Truck Motorcyc le Instance
OR Car Motorcyc l e Ins tance
OR Truck Car Motorcyc le Instance

8

In case that values of some of the attributes of the superclass or some of the
subclasses should be unique, the realization of such constraint in the RDB PSM
is simple. As all data are stored in the same table, the column representing
the particular attribute can be simply restricted by the UNIQUE constraint,
as shown in Figure 3 where the uniqueness is defined by the UQ PLATE NUMBER
constraint.

4.2 Individual Tables
In Figure 4, the RDB PSM is shown with the transformed generalization set
shown in Figure 2. The individual subclasses Truck, Car and Motorcycle
are transformed into the individual tables TRUCK, CAR and MOTORCYCLE. The
attributes of the class specialized by their generalization set are transformed
into columns in each of these tables.

MOTORCYCLE

«column»
*PK MOTORCYCLE_ID: NUMBER(8)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)
* ENGINE_CAPACITY: NUMBER(8)

«PK»
+ PK_MOTORCYCLE(MOTORCYCLE_ID)

«unique»
+ UQ_MOTORCYCLE_PLATE_NUMBER(PLATE_NUMBER)

TRUCK

«column»
*PK TRUCK_ID: NUMBER(8)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)
* LOAD_CAPACITY: NUMBER(8)

«PK»
+ PK_TRUCK(TRUCK_ID)

«unique»
+ UQ_TRUCK_PLATE_NUMBER(PLATE_NUMBER)

CAR

«column»
*PK CAR_ID: NUMBER(8)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)
* SEATS: NUMBER(8)

«PK»
+ PK_CAR(CAR_ID)

«unique»
+ UQ_CAR_PLATE_NUMBER(PLATE_NUMBER)

VEHICLE

«column»
*PK VEHICLE_ID: NUMBER(8)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)

«PK»
+ PK_VEHICLE(VEHICLE_ID)

«unique»
+ UQ_PLATE_NUMBER(PLATE_NUMBER)

Figure 4: RDB PSM with the {disjoint,incomplete} generalization set re-
alized by individual tables

As the generalization set shown in Figure 2 is {disjoint,incomplete},
the table for the instances of the superclass VEHICLE is also generated to store
instances of just the superclass.

The OCL constraint for the unique values of the PLATE NUMBER column
distributed across the tables shown in Figure 4 is shown in Constraint 5. Each
of the invariants defines that only such value, which is not existing in the
tables representing the other subclasses, is a valid value for the column in that
particular table.

9

Constraint 5 OCL invariants for the distributed unique column PLATE NUMBER

context v :VEHICLE inv UQ VEHICLE PLATE NUMBER:
NOT(TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .PLATE NUMBER = c .PLATE NUMBER))
AND

NOT(CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c .PLATE NUMBER = t .PLATE NUMBER))

AND
NOT(MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.PLATE NUMBER = t .PLATE NUMBER))

context t :TRUCK inv UQ TRUCK PLATE NUMBER:
NOT(VEHICLE. a l l I n s t a n c e s ()−> e x i s t s

(v | v .PLATE NUMBER = c .PLATE NUMBER))
AND

NOT(CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c .PLATE NUMBER = t .PLATE NUMBER))

AND
NOT(MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.PLATE NUMBER = t .PLATE NUMBER))

context c :CAR inv UQ CAR PLATE NUMBER:
NOT(VEHICLE. a l l I n s t a n c e s ()−> e x i s t s

(v | v .PLATE NUMBER = c .PLATE NUMBER))
AND

NOT(TRUCK. a l l I n s t a n c e s ()−> e x i s t s
(t | t .PLATE NUMBER = c .PLATE NUMBER))

AND
NOT(MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.PLATE NUMBER = c .PLATE NUMBER))

context m:MOTORCYCLE
inv UQ MOTORCYCLE PLATE NUMBER:

NOT(VEHICLE. a l l I n s t a n c e s ()−> e x i s t s
(v | v .PLATE NUMBER = c .PLATE NUMBER))

AND
NOT(TRUCK. a l l I n s t a n c e s ()−> e x i s t s
(t | t .PLATE NUMBER = m.PLATE NUMBER))

AND
NOT(CAR. a l l I n s t a n c e s ()−> e x i s t s

(c | c .PLATE NUMBER = m.PLATE NUMBER))

4.3 Related Tables
An example of this realization of the generalization in the RDB PSM for the
generalization set shown in Figure 2 is shown in Figure 5. Each of the classes
is transformed into a separate table, containing only the columns for the at-
tributes of the respective class and the ID column for the unique instance

10

identifier. The generalization relations are realized by the references from the
tables of the subclasses to the table of the superclass. These references are
realized by the FOREIGN KEY constraints defined on the ID columns with
the PRIMARY KEY constraints.

VEHICLE

«column»
*PK VEHICLE_ID: NUMBER(8)
* DISCRIMINATOR: VARCHAR2(10)
* MANUFACTURER: VARCHAR2(100)
* MODEL: VARCHAR2(100)
* PLATE_NUMBER: VARCHAR2(10)

«PK»
+ PK_VEHICLE(VEHICLE_ID)

«unique»
+ UQ_PLATE_NUMBER(PLATE_NUMBER)

TRUCK

«column»
*pfKTRUCK_ID: NUMBER(8)
* LOAD_CAPACITY: NUMBER(8)

«FK»
+ FK_TRUCK_VEHICLE(TRUCK_ID)

«PK»
+ PK_TRUCK(TRUCK_ID)

CAR

«column»
*pfKCAR_ID: NUMBER(8)
* SEATS: NUMBER(8)

«FK»
+ FK_CAR_VEHICLE(CAR_ID)

«PK»
+ PK_CAR(CAR_ID)

MOTORCYCLE

«column»
*pfKMOTORCYCLE_ID: NUMBER(8)
* ENGINE_CAPACITY: NUMBER(8)

«FK»
+ FK_MOTORCYCLE_VEHICLE(MOTORCYCLE_ID)

«PK»
+ PK_MOTORCYCLE(MOTORCYCLE_ID)

0..1

(TRUCK_ID = VEHICLE_ID)

«FK»

1

0..1

(MOTORCYCLE_ID = VEHICLE_ID)

«FK»

1

0..1

(CAR_ID = VEHICLE_ID)

«FK»

1

Figure 5: RDB PSM with the generalization set realized by related tables

In Constraint 6, the definition of the OCL constraint
for the {disjoint,incomplete} generalization set of the running example
shown in Figure 2 is shown. In the cases of other values of the general-
ization set meta-properties, these constraints differ only slightly, as shown
in Constraint 7 for a {disjoint,complete} generalization set, in Constraint
8 for a {overlapping,complete} generalization set and in Constraint 9 for a
{overlapping,incomplete} generalization set.

11

Constraint 6 OCL invariant for the {disjoint,incomplete} generalization
set realized by related tables

context v :VEHICLE inv GS Vehicle Types :
de f V e h i c l e I n s t a n c e : Boolean =

v .DISCRIMINATOR = ’ Veh ic l e ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Truck Instance : Boolean =

v .DISCRIMINATOR = ’ Truck ’
AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID)
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Car Instance : Boolean =

v .DISCRIMINATOR = ’ Car ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID)

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Motorcyc l e Ins tance : Boolean =

v .DISCRIMINATOR = ’ Motorcycle ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID)

V e h i c l e I n s t a n c e
OR Truck Instance
OR Car Instance
OR Motorcyc l e Ins tance

12

Constraint 7 Example of the OCL invariant for a {disjoint,complete}
generalization set realized by related tables

context v :VEHICLE inv GS Vehicle Types :
de f Truck Instance : Boolean =

v .DISCRIMINATOR = ’ Truck ’
AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID)
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Car Instance : Boolean =

v .DISCRIMINATOR = ’ Car ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID)

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Motorcyc l e Ins tance : Boolean =

v .DISCRIMINATOR = ’ Motorcycle ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID)

Truck Instance
OR Car Instance
OR Motorcyc l e Ins tance

13

Constraint 8 Example of the OCL invariant for a {overlapping,complete}
generalization set realized by related tables

context v :VEHICLE inv GS Vehicle Types :
de f Truck Instance : Boolean =

v .DISCRIMINATOR = ’ Truck ’
AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID)
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Car Instance : Boolean =

v .DISCRIMINATOR = ’ Car ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID)

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Motorcyc l e Ins tance : Boolean =

v .DISCRIMINATOR = ’ Motorcycle ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID)
de f Truck Car Instance : Boolean =

v .DISCRIMINATOR = ’ Truck Car ’
AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID)
AND

CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID)

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Truck Motorcyc le Instance : Boolean =

v .DISCRIMINATOR = ’ Truck Motorcycle ’
AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID)
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID)

14

de f Car Motorcyc l e Ins tance : Boolean =
v .DISCRIMINATOR = ’ Car Motorcycle ’

AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s
(t | t .TRUCK ID = v . VEHICLE ID))

AND
CAR. a l l I n s t a n c e s ()−> e x i s t s

(c | c . CAR ID = v . VEHICLE ID)
AND

MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s
(m|m.MOTORCYCLE ID = v . VEHICLE ID)

de f Truck Car Motorcyc le Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Car Motorcycle ’

AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s
(t | t .TRUCK ID = v . VEHICLE ID)

AND
CAR. a l l I n s t a n c e s ()−> e x i s t s

(c | c . CAR ID = v . VEHICLE ID)
AND

MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s
(m|m.MOTORCYCLE ID = v . VEHICLE ID)

Truck Instance
OR Car Instance
OR Motorcyc l e Ins tance
OR Truck Car Instance
OR Truck Motorcyc le Instance
OR Car Motorcyc l e Ins tance
OR Truck Car Motorcyc le Instance

15

Constraint 9 Example of the OCL invariant for a
{incomplete,overlapping} generalization set realized by related tables

context v :VEHICLE inv GS Vehicle Types :
de f V e h i c l e I n s t a n c e : Boolean =

v .DISCRIMINATOR = ’ Veh ic l e ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Truck Instance : Boolean =

v .DISCRIMINATOR = ’ Truck ’
AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID)
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Car Instance : Boolean =

v .DISCRIMINATOR = ’ Car ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID)

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))
de f Motorcyc l e Ins tance : Boolean =

v .DISCRIMINATOR = ’ Motorcycle ’
AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID))
AND

NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID))

AND
MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID)
de f Truck Car Instance : Boolean =

v .DISCRIMINATOR = ’ Truck Car ’
AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s

(t | t .TRUCK ID = v . VEHICLE ID)
AND

CAR. a l l I n s t a n c e s ()−> e x i s t s
(c | c . CAR ID = v . VEHICLE ID)

AND
NOT (MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s

(m|m.MOTORCYCLE ID = v . VEHICLE ID))

16

de f Truck Motorcyc le Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Motorcycle ’

AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s
(t | t .TRUCK ID = v . VEHICLE ID)

AND
NOT (CAR. a l l I n s t a n c e s ()−> e x i s t s

(c | c . CAR ID = v . VEHICLE ID))
AND

MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s
(m|m.MOTORCYCLE ID = v . VEHICLE ID)

de f Car Motorcyc l e Ins tance : Boolean =
v .DISCRIMINATOR = ’ Car Motorcycle ’

AND NOT (TRUCK. a l l I n s t a n c e s ()−> e x i s t s
(t | t .TRUCK ID = v . VEHICLE ID))

AND
CAR. a l l I n s t a n c e s ()−> e x i s t s

(c | c . CAR ID = v . VEHICLE ID)
AND

MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s
(m|m.MOTORCYCLE ID = v . VEHICLE ID)

de f Truck Car Motorcyc le Instance : Boolean =
v .DISCRIMINATOR = ’ Truck Car Motorcycle ’

AND TRUCK. a l l I n s t a n c e s ()−> e x i s t s
(t | t .TRUCK ID = v . VEHICLE ID)

AND
CAR. a l l I n s t a n c e s ()−> e x i s t s

(c | c . CAR ID = v . VEHICLE ID)
AND

MOTORCYCLE. a l l I n s t a n c e s ()−> e x i s t s
(m|m.MOTORCYCLE ID = v . VEHICLE ID)

Veh ic l e
OR Truck Instance
OR Car Instance
OR Motorcyc l e Ins tance
OR Truck Car Instance
OR Truck Motorcyc le Instance
OR Car Motorcyc l e Ins tance
OR Truck Car Motorcyc le Instance

5 Transformation of PSM into ISM

In the following sections, the transformation of the resulting PSMs from Sec-
tion 4 is shown. Only the OCL constraints defined in the RDB PSM for
the {disjoint,incomplete} generalization set shown in Figure 2 are dis-
cussed, as the other variants with the other meta-properties would be realized
similarly.

17

5.1 Single table
When the generalization set is transformed into a single database table, then
a special OCL constraint is defined to ensure the meta-properties of the gen-
eralization set, as shown in SQL 1.

5.1.1 Database view

The transformed OCL constraint realized by the database view is shown in SQL
1.

SQL 1 Database view to query valid data from the combined Vehicle table

CREATE VIEW GS VEHICLE TYPES VIEW AS
SELECT ∗ FROM VEHICLE v WHERE

(v .DISCRIMINATOR = ’ Veh ic l e ’
AND v .LOAD CAPACITY IS NULL
AND v .SEATS IS NULL
AND v .CONTENT IS NULL)

OR
(v .DISCRIMINATOR = ’ Truck ’

AND v .LOAD CAPACITY IS NOT NULL
AND v .SEATS IS NULL
AND v .CONTENT IS NULL)

OR
(v .DISCRIMINATOR = ’ Car ’

AND v .LOAD CAPACITY IS NULL
AND v .SEATS IS NOT NULL
AND v .CONTENT IS NULL)

OR
(v .DISCRIMINATOR = ’ Motorcycle ’

AND v .LOAD CAPACITY IS NULL
AND v .SEATS IS NULL
AND v .CONTENT IS NOT NULL)

WITH CHECK OPTION;

5.1.2 CHECK constraint

The variant using a CHECK constraint checked after each operation on the
table is shown in SQL 2.

18

SQL 2 CHECK constraint for the combined Vehicle table

ALTER TABLE VEHICLE ADD CONSTRAINT GS VEHICLE TYPES CHECK CHECK (
(DISCRIMINATOR = ’ Veh ic l e ’

AND LOAD CAPACITY IS NULL
AND SEATS IS NULL
AND CONTENT IS NULL)

OR
(DISCRIMINATOR = ’ Truck ’

AND LOAD CAPACITY IS NOT NULL
AND SEATS IS NULL
AND CONTENT IS NULL)

OR
(DISCRIMINATOR = ’ Car ’

AND LOAD CAPACITY IS NULL
AND SEATS IS NOT NULL
AND CONTENT IS NULL)

OR
(DISCRIMINATOR = ’ Motorcycle ’

AND LOAD CAPACITY IS NULL
AND SEATS IS NULL
AND CONTENT IS NOT NULL)

) ;

5.1.3 Trigger

The trigger checking the OCL constraint defined in SQL 1 is shown in SQL 3.

19

SQL 3 Trigger for the combined Vehicle table

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES TRIGGER
AFTER INSERT OR UPDATE ON VEHICLE
FOR EACH ROW
DECLARE

l v a l i d BOOLEAN;
BEGIN

l v a l i d :=
(: new .DISCRIMINATOR = ’ Veh ic l e ’

AND : new .LOAD CAPACITY IS NULL
AND : new .SEATS IS NULL
AND : new .CONTENT IS NULL)

OR
(: new .DISCRIMINATOR = ’ Truck ’

AND : new .LOAD CAPACITY IS NOT NULL
AND : new .SEATS IS NULL
AND : new .CONTENT IS NULL)

OR
(: new .DISCRIMINATOR = ’ Car ’

AND : new .LOAD CAPACITY IS NULL
AND : new .SEATS IS NOT NULL
AND : new .CONTENT IS NULL)

OR
(: new .DISCRIMINATOR = ’ Motorcycle ’

AND : new .LOAD CAPACITY IS NULL
AND : new .SEATS IS NULL
AND : new .CONTENT IS NOT NULL) ;

IF NOT l v a l i d THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END

5.2 Individual tables
When the generalization set is transformed using the individual tables ap-
proach, a special OCL constraint as shown in SQL 5 is needed for unique
attributes of the superclass.

5.2.1 Database views

The OCL constraints shown in SQL 5 transformed into database views are
presented in SQL 4.

20

SQL 4 Database views to query valid data from the individual tables

CREATE VIEW UQ VEHICLE PLATE NUMBER VIEW AS
SELECT ∗ FROM VEHICLE v WHERE (

NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .PLATE NUMBER = v .PLATE NUMBER)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c .PLATE NUMBER = v .PLATE NUMBER)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.PLATE NUMBER = v .PLATE NUMBER)

)
WITH CHECK OPTION;

CREATE VIEW UQ TRUCK PLATE NUMBER VIEW AS
SELECT ∗ FROM TRUCK t WHERE (

NOT EXISTS (SELECT 1 FROM VEHICLE v
WHERE v .PLATE NUMBER = t .PLATE NUMBER)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c .PLATE NUMBER = t .PLATE NUMBER)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.PLATE NUMBER = t .PLATE NUMBER)

)
WITH CHECK OPTION;

CREATE VIEW UQ CAR PLATE NUMBER VIEW AS
SELECT ∗ FROM CAR c WHERE (

NOT EXISTS (SELECT 1 FROM VEHICLE v
WHERE v .PLATE NUMBER = c .PLATE NUMBER)

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .PLATE NUMBER = c .PLATE NUMBER)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.PLATE NUMBER = c .PLATE NUMBER)

)
WITH CHECK OPTION;

CREATE VIEW UQ MOTORCYCLE PLATE NUMBER VIEW AS
SELECT ∗ FROM MOTORCYCLE m WHERE (

NOT EXISTS (SELECT 1 FROM VEHICLE v
WHERE v .PLATE NUMBER = m.PLATE NUMBER)

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .PLATE NUMBER = m.PLATE NUMBER)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c .PLATE NUMBER = m.PLATE NUMBER)

)
WITH CHECK OPTION;

21

5.2.2 CHECK constraints

In SQL 5, the CHECK constraints realizing the transformed OCL constraints
shown in SQL 5 are shown. However, although valid according to the SQL:1999
specification [3], the CHECK constraints are not applicable in the current com-
mon database engines (including Oracle Database 12c), as they do not support
subqueries in the CHECK constraint statements.

22

SQL 5 CHECK constraints for the individual tables

ALTER TABLE VEHICLE
ADD CONSTRAINT UQ VEHICLE PLATE NUMBER CHECK

CHECK (
NOT EXISTS (SELECT 1 FROM TRUCK t

WHERE t .PLATE NUMBER = PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM CAR c

WHERE c .PLATE NUMBER = PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m

WHERE m.PLATE NUMBER = PLATE NUMBER)
) ;

ALTER TABLE TRUCK
ADD CONSTRAINT UQ TRUCK PLATE NUMBER CHECK

CHECK (
NOT EXISTS (SELECT 1 FROM VEHICLE v

WHERE v .PLATE NUMBER = PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM CAR c

WHERE c .PLATE NUMBER = PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m

WHERE m.PLATE NUMBER = PLATE NUMBER)
) ;

ALTER TABLE CAR
ADD CONSTRAINT UQ CAR PLATE NUMBER CHECK

CHECK (
NOT EXISTS (SELECT 1 FROM VEHICLE v

WHERE v .PLATE NUMBER = PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM TRUCK t

WHERE t .PLATE NUMBER = PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m

WHERE m.PLATE NUMBER = PLATE NUMBER)
) ;

ALTER TABLE MOTORCYCLE
ADD CONSTRAINT UQ MOTORCYCLE PLATE NUMBER CHECK

CHECK (
NOT EXISTS (SELECT 1 FROM VEHICLE v

WHERE v .PLATE NUMBER = PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM TRUCK t

WHERE t .PLATE NUMBER = PLATE NUMBER)
AND NOT EXISTS (SELECT 1 FROM CAR c

WHERE c .PLATE NUMBER = PLATE NUMBER)
) ;

23

5.2.3 Triggers

In SQL 6, the trigger defined on the VEHICLE table is shown. The triggers for
the other tables are defined in the similar way, as shown in SQL 7 for the TRUCK
table, in SQL 8 for the CAR table and in SQL 9 for the MOTORCYCLE table.

SQL 6 Trigger for the VEHICLE table for the individual tables realization

CREATE OR REPLACE TRIGGER UQ VEHICLE PLATE NUMBER TRIGGER
AFTER INSERT OR UPDATE ON VEHICLE
FOR EACH ROW
DECLARE

l c o u n t NUMBER := 0 ;
BEGIN

SELECT count (1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM TRUCK t

WHERE t .PLATE NUMBER = : new .PLATE NUMBER)
OR
EXISTS (SELECT 1 FROM CAR c

WHERE c .PLATE NUMBER = : new .PLATE NUMBER)
OR
EXISTS (SELECT 1 FROM MOTORCYCLE m

WHERE m.PLATE NUMBER = : new .PLATE NUMBER)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r (−20101 , ’OCL c o n s t r a i n t

UQ Vehicle Plate number v i o l a t e d ! ’) ;
END IF ;

END;

24

SQL 7 Trigger for the TRUCK table for the individual tables realization

CREATE OR REPLACE TRIGGER UQ TRUCK PLATE NUMBER TRIGGER
AFTER INSERT OR UPDATE ON TRUCK
FOR EACH ROW
DECLARE

l c o u n t NUMBER := 0 ;
BEGIN

SELECT count (1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v .PLATE NUMBER = : new .PLATE NUMBER)
OR
EXISTS (SELECT 1 FROM CAR c

WHERE c .PLATE NUMBER = : new .PLATE NUMBER)
OR
EXISTS (SELECT 1 FROM MOTORCYCLE m

WHERE m.PLATE NUMBER = : new .PLATE NUMBER)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r (−20101 , ’OCL c o n s t r a i n t

UQ Truck Plate number v i o l a t e d ! ’) ;
END IF ;

END;

25

SQL 8 Trigger for the CAR table for the individual tables realization

CREATE OR REPLACE TRIGGER UQ CAR PLATE NUMBER TRIGGER
AFTER INSERT OR UPDATE ON CAR
FOR EACH ROW
DECLARE

l c o u n t NUMBER := 0 ;
BEGIN

SELECT count (1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v .PLATE NUMBER = : new .PLATE NUMBER)
OR
EXISTS (SELECT 1 FROM TRUCK t

WHERE t .PLATE NUMBER = : new .PLATE NUMBER)
OR
EXISTS (SELECT 1 FROM MOTORCYCLE m

WHERE m.PLATE NUMBER = : new .PLATE NUMBER)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r (−20101 , ’OCL c o n s t r a i n t

UQ Car Plate number v i o l a t e d ! ’) ;
END IF ;

END;

26

SQL 9 Trigger for the MOTORCYCLE table for the individual tables realization

CREATE OR REPLACE TRIGGER UQ MOTORCYCLE PLATE NUMBER TRIGGER
AFTER INSERT OR UPDATE ON MOTORCYCLE
FOR EACH ROW
DECLARE

l c o u n t NUMBER := 0 ;
BEGIN

SELECT count (1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v .PLATE NUMBER = : new .PLATE NUMBER)
OR
EXISTS (SELECT 1 FROM TRUCK t

WHERE t .PLATE NUMBER = : new .PLATE NUMBER)
OR
EXISTS (SELECT 1 FROM CAR c

WHERE c .PLATE NUMBER = : new .PLATE NUMBER)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r (−20101 , ’OCL c o n s t r a i n t

UQ Motorcycle Plate number v i o l a t e d ! ’) ;
END IF ;

END;

5.3 Related tables
When the generalization set is transformed using the approach of related tables,
it is necessary to define the OCL constraint shown in SQL 6 to check that
records in the valid combination of tables are stored according to the meta-
properties of the generalization set – {disjoint,incomplete} in this case.

To enable the implementation of the constraints, the FOREIGN KEY con-
straints must be defined as DEFERRABLE, as shown in SQL 10.

27

SQL 10 Deferrable FOREIGN KEY constraints for the subclass tables

ALTER TABLE ”TRUCK” ADD CONSTRAINT ”FK TRUCK VEHICLE”
FOREIGN KEY (”TRUCK ID”)

REFERENCES ”VEHICLE” (”VEHICLE ID”)
DEFERRABLE INITIALLY DEFERRED;

ALTER TABLE ”CAR” ADD CONSTRAINT ”FK CAR VEHICLE”
FOREIGN KEY (”CAR ID”)

REFERENCES ”VEHICLE” (”VEHICLE ID”)
DEFERRABLE INITIALLY DEFERRED;

ALTER TABLE ”MOTORCYCLE” ADD CONSTRAINT ”FK MOTORCYCLE VEHICLE”
FOREIGN KEY (”MOTORCYCLE ID”)

REFERENCES ”VEHICLE” (”VEHICLE ID”)
DEFERRABLE INITIALLY DEFERRED;

5.3.1 Database view

The database view realizing the OCL constraint in SQL 6 is shown in SQL 11.

28

SQL 11 Database view to query only valid data from the superclass of the
related tables

CREATE OR REPLACE VIEW GS VEHICLE TYPES VIEW AS
SELECT ∗ FROM VEHICLE v WHERE

(v .DISCRIMINATOR = ’ Veh ic l e ’
AND NOT EXISTS (SELECT 1 FROM TRUCK t

WHERE t .TRUCK ID = v . VEHICLE ID)
AND NOT EXISTS (SELECT 1 FROM CAR c

WHERE c . CAR ID = v . VEHICLE ID)
AND NOT EXISTS

(SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = v . VEHICLE ID))

OR
(v .DISCRIMINATOR = ’ Truck ’

AND EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = v . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = v . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = v . VEHICLE ID))

OR
(v .DISCRIMINATOR = ’ Car ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = v . VEHICLE ID)

AND EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = v . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = v . VEHICLE ID))

OR
(v .DISCRIMINATOR = ’ Motorcycle ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = v . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = v . VEHICLE ID)

AND EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = v . VEHICLE ID))

WITH CHECK OPTION;

5.3.2 CHECK constraints

In SQL 12, the CHECK constraint realizing the transformed OCL constraints
shown in SQL 6 is shown.

However, although valid according to the SQL:1999 specification [3], the
CHECK constraints are not applicable in the current common database engines
(including Oracle Database 12c), as they do not support subqueries in the
CHECK constraint statements.

29

SQL 12 CHECK constraint for the VEHICLE table for the related tables real-
ization

ALTER TABLE VEHICLE ADD CONSTRAINT GS VEHICLE TYPES CHECK CHECK (
(DISCRIMINATOR = ’ Veh ic l e ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = VEHICLE ID))

OR
(DISCRIMINATOR = ’ Truck ’

AND EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = VEHICLE ID))

OR
(DISCRIMINATOR = ’ Car ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = VEHICLE ID)

AND EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = VEHICLE ID))

OR
(DISCRIMINATOR = ’ Motorcycle ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = VEHICLE ID)

AND EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = VEHICLE ID))) ;

5.3.3 Triggers

For the OCL constraint shown in SQL 6, the trigger for the INSERT and
UPDATE operations on the superclass table VEHICLE is shown in SQL 13. The
trigger for the INSERT operation on the subclass table TRUCK is shown in SQL
14, the trigger for the UPDATE operation in SQL 15 and the trigger for the
DELETE operation in SQL 16. Similarly, the triggers shown in SQL 17, SQL
18, SQL 19, SQL 20, SQL 21 and SQL 22 are defined to check the INSERT,
UPDATE and DELETE operations on the other subclass tables.

30

SQL 13 Trigger for the INSERT and UPDATE operation on the VEHICLE table
of the related tables realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES VEHICLE TRG
BEFORE INSERT OR UPDATE ON VEHICLE
FOR EACH ROW
DECLARE

l c o u n t NUMBER(1) ;
BEGIN

SELECT COUNT(∗) INTO l c o u n t FROM DUAL WHERE (
(: new .DISCRIMINATOR = ’ Veh ic l e ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = : new . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = : new . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = : new . VEHICLE ID))

OR
(: new .DISCRIMINATOR = ’ Truck ’

AND EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = : new . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = : new . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = : new . VEHICLE ID))

OR
(: new .DISCRIMINATOR = ’ Car ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = : new . VEHICLE ID)

AND EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = : new . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = : new . VEHICLE ID))

OR
(: new .DISCRIMINATOR = ’ Motorcycle ’

AND NOT EXISTS (SELECT 1 FROM TRUCK t
WHERE t .TRUCK ID = : new . VEHICLE ID)

AND NOT EXISTS (SELECT 1 FROM CAR c
WHERE c . CAR ID = : new . VEHICLE ID)

AND EXISTS (SELECT 1 FROM MOTORCYCLE m
WHERE m.MOTORCYCLE ID = : new . VEHICLE ID))) ;

IF l c o u n t = 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

31

SQL 14 Trigger for the INSERT operation on TRUCK table of the related tables
realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES TRUCK TRG INSERT
BEFORE INSERT ON TRUCK
FOR EACH ROW
DECLARE

l c o u n t NUMBER(1) := 0 ;
BEGIN

SELECT COUNT(1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : new .TRUCK ID)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

SQL 15 Trigger for the UPDATE operation on TRUCK table of the related
tables realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES TRUCK TRG UPDATE
BEFORE UPDATE ON TRUCK
FOR EACH ROW
DECLARE

l c o u n t o l d NUMBER(1) := 0 ;
l count new NUMBER(1) := 0 ;

BEGIN
IF : o ld .TRUCK ID <> : new .TRUCK ID THEN

SELECT COUNT(1) INTO l c o u n t o l d FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : o ld .TRUCK ID)
) ;

SELECT COUNT(1) INTO l count new FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : new .TRUCK ID)
) ;

END IF ;

IF l c o u n t o l d > 0 OR l count new > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

32

SQL 16 Trigger for the DELETE operation on the TRUCK table of the related
tables realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES TRUCK TRG DELETE
BEFORE DELETE ON TRUCK
FOR EACH ROW
DECLARE

l c o u n t NUMBER(1) ;
BEGIN

SELECT COUNT(1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : o ld .TRUCK ID)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

SQL 17 Trigger for the INSERT operation on CAR table of the related tables
realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES CAR TRG INSERT
BEFORE INSERT ON CAR
FOR EACH ROW
DECLARE

l c o u n t NUMBER(1) := 0 ;
BEGIN

SELECT COUNT(1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : new . CAR ID)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

33

SQL 18 Trigger for the UPDATE operation on CAR table of the related tables
realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES CAR TRG UPDATE
BEFORE UPDATE ON CAR
FOR EACH ROW
DECLARE

l c o u n t o l d NUMBER(1) := 0 ;
l count new NUMBER(1) := 0 ;

BEGIN
IF : o ld . CAR ID <> : new . CAR ID THEN

SELECT COUNT(1) INTO l c o u n t o l d FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : o ld . CAR ID)
) ;

SELECT COUNT(1) INTO l count new FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : new . CAR ID)
) ;

END IF ;

IF l c o u n t o l d > 0 OR l count new > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

SQL 19 Trigger for the DELETE operation on the CAR table of the related
tables realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES CAR TRG DELETE
BEFORE DELETE ON CAR
FOR EACH ROW
DECLARE

l c o u n t NUMBER(1) ;
BEGIN

SELECT COUNT(1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : o ld . CAR ID)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

34

SQL 20 Trigger for the INSERT operation on MOTORCYCLE table of the related
tables realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES MOTORCYCLE TRG INSERT
BEFORE INSERT ON MOTORCYCLE
FOR EACH ROW
DECLARE

l c o u n t NUMBER(1) := 0 ;
BEGIN

SELECT COUNT(1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : new .MOTORCYCLE ID)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

SQL 21 Trigger for the UPDATE operation on MOTORCYCLE table of the related
tables realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES MOTORCYCLE TRG UPDATE
BEFORE UPDATE ON MOTORCYCLE
FOR EACH ROW
DECLARE

l c o u n t o l d NUMBER(1) := 0 ;
l count new NUMBER(1) := 0 ;

BEGIN
IF : o ld .MOTORCYCLE ID <> : new .MOTORCYCLE ID THEN

SELECT COUNT(1) INTO l c o u n t o l d FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : o ld .MOTORCYCLE ID)
) ;

SELECT COUNT(1) INTO l count new FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : new .MOTORCYCLE ID)
) ;

END IF ;

IF l c o u n t o l d > 0 OR l count new > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

35

SQL 22 Trigger for the DELETE operation on the MOTORCYCLE table of the
related tables realization

CREATE OR REPLACE TRIGGER GS VEHICLE TYPES MOTORCYCLE TRG DELETE
BEFORE DELETE ON MOTORCYCLE
FOR EACH ROW
DECLARE

l c o u n t NUMBER(1) ;
BEGIN

SELECT COUNT(1) INTO l c o u n t FROM DUAL WHERE (
EXISTS (SELECT 1 FROM VEHICLE v

WHERE v . VEHICLE ID = : o ld .MOTORCYCLE ID)
) ;

IF l c o u n t > 0 THEN
r a i s e a p p l i c a t i o n e r r o r

(−20101 , ’OCL c o n s t r a i n t GS Vehicle Types v i o l a t e d ! ’) ;
END IF ;

END;

Bibliography

[1] Oracle. Oracle Database 12c. Available from: \url{http://www.oracle.
com/us/corporate/features/database-12c/index.html}

[2] Rybola, Z.; Pergl, R. Towards OntoUML for Software Engineering: Trans-
formation of Rigid Sortal Types into Relational Databases. In Proceedings
of the 2016 Federated Conference on Computer Science and Information
Systems, edited by M. P. M. Ganzha, L. Maciaszek, number 8 in AC-
SIS, Gdansk, Poland, 2016, ISBN 978-83-60810-90-3, ISSN 2300-5963, p.
1581–1591, doi:10.15439/2016F250, doi: 10.15439/2016F250.

[3] Melton, J. Advanced SQL:1999. Morgan Kaufmann Publishers, 2003.

36

