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Abstract
This thesis focuses on the broad area of aircraft navigation solutions and control prob-
lems. For navigation solutions estimation of position, linear velocity and attitude (PVA)
of a vehicle is of prime interest. In this work efforts are focused on developing a precise
navigation solution for aircraft by looking for best estimator and improving the estimation
performance while operating under challenging condition. In addition, the thesis addresses
the design of aircraft flight controller to improve the performance of the aircraft. First
part of the thesis explores the development of strapdown inertial navigation systems (INS)
for aircraft using cost-effective micro-electro-mechanical-systems (MEMS) inertial sensors
and aiding systems. The navigation solutions presented in the following are vehicle in-
dependent and can be used for ground, surface and air vehicles, or any moving body in
general. However, for the experimental verifications small light weight aircraft is used.
Small aircraft have fast dynamics and can be considered as worst-case scenarios. Within
this part, firstly, a “easy to do” cost effective calibration method is introduced as a data
pre-processing step for correcting sensor’s deterministic errors such as, misalignment and
scale factor. Secondly, an adaptive bandwidth filtering approach is proposed as a data pre-
processing step for filtering the low frequency vibration effects from the inertial sensor’s
data. Finally, two data fusion techniques are discussed, exploiting the extended Kalman
filter, to obtain the final navigation solution (PVA estimates). Mainly this part deals with
principles of navigation, methods of system parameters estimation, calibration techniques,
modeling, and data processing. Second part of the thesis investigates the application of
nonlinear control techniques on fixed wing aircraft to improve the flight performance. A
complete 3-DOF longitudinal flight controller for a fixed wing aircraft is discussed using
nonlinear dynamic inversion technique, or in terms of control theory partial exact feedback
linearization. Finally, an active gust load alleviation system is presented using a combined
feedback/feedforward control technique for reducing the wing loading on an aircraft. All
the navigation solution presented in this thesis are validated by extensive experimental
data sets collected with real flight tests.

Keywords:
state estimation, aerial navigation, inertial measurement unit, data fusion, Kalman

filter, flight control, dynamic inversion.
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Abstrakt
Ćılem dizertačńı práce je předložit řešeńı v oblastech leteckých navigačńıch a ř́ıd́ıćıch
systémů. V oblasti navigačńıch systémů se práce konkrétně věnuje vývoji a vytvořeńı
zp̊usobu odhadu pozice, linearizovaného vektoru rychlosti a orientace daného prostředku
(letadla). V pr̊uběhu vývoje přesného navigačńıho systému byl hledán nejlepš́ı možný es-
timátor a jeho výkonnost byla dále vylepšována pro činnost ve zhoršených podmı́nkách.
Dále se práce zabývá návrhem ř́ıd́ıćıch algoritmů vylepšuj́ıćıch letové vlastnosti letadla.
Prvńı část se věnuje vývoji a dokumentaci inerciálńıho navigačńıho systému (INS) pevně
spojeného s letadlem, tzv. strapdown, s využit́ım ńızkonákladového vibračńıho senzoru typu
MEMS a doplňuj́ıćıch navigačńıch systémů. Výsledné řešeńı je nezávislé na typu platformy
(vozidla) a může být použito pro libovolný pohyblivý prostředek, létaj́ıćı nebo pozemńı.
Verifikace a testováńı systému proběhly na malém sportovńım letadle, prostředku, který vy-
kazuje velmi rychlé dynamické chováńı a tud́ıž může být považován za extrémńı – nejhorš́ı –
testovaćı scénář. Jako prvńı je popsána jednoduchá a snadno implementovatelná kalibračńı
metoda pro korekci určovaćıch chyb senzoru INS jako nesesouhlaseńı os (nesouosost – mi-
salignment) a převodńı konstanty (scale factor). V této části práce je též představen nově
vyvinutý algoritmus pro předzpracováńı dat, založený na kmitočtovém filtru s adaptivńı
š́ı̌rkou propustného pásma. Tento filtr slouž́ı k odstraněńı vlivu mechanických vibraćı na
signály výstupu INS. Na konci prvńı části dizertačńı práce jsou diskutovány dvě metody
pro fúzi dat využ́ıvaj́ıćı rozš́ı̌reného Kalmanova filtru (Extended Kalman Filter - EKF)
jakožto prostředku k źıskáńı výsledného odhadu navigačńıho řešeńı (vlastńı pozice, rych-
losti a orientace). Tato část se převážně věnuje metodám odhadu systémových veličin,
technikám kalibrace, modelováńı a zpracováńı dat. Ve druhé části dizertace jsou prezen-
továny výsledky výzkumu a aplikace nelineárńıho ř́ıd́ıćıho algoritmu, určeného pro letoun
s pevnými nosnými plochami. Ćılem bylo pomoćı ř́ızeńı vylepšit letové charakteristiky
letounu. Je zde diskutován kompletńı ř́ıd́ıćı systém se třemi stupni volnosti využ́ıvaj́ıćı
nelineárńı techniky – nonlinear dynamic inversion technique. Využ́ıváno je zde linearizace
prostřednictv́ım zpětné vazby, tzv. partial exact feedback linearization. Výsledkem je algo-
ritmus aktivńıho systému pro tlumeńı podélných kmit̊u, který snižuje zat́ıžeńı konstrukce
kř́ıdla zp̊usobené poryvy větru. Všechna navigačńı řešeńı a algoritmy předložené v této
disertačńı práci byly podrobeny testováńı a verifikaci prostřednictv́ım rozsáhlého souboru
reálných letových dat nahraného během letových zkoušek.

Kĺıčová slova:
stavová estimace, letecká navigace, inerciálńı měř́ıćı jednotka, datová fúze, Kalman̊uv

filtr, ř́ızeńı letu, dynamická inverze.
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Chapter 1

Introduction

1.1 Motivation
Good navigation performance of an aircraft is dependant on the availability of accurate navigation
data and good control law design. For navigation, the most fundamental essential parameters in-
clude the estimation of position, velocity and attitude (PVA). MEMS (Micro-Electro-Mechanical
System) based inertial navigation system (INS) consisting of tri-axial accelerometer (ACC) and
tri-axial angular rate sensor (ARS) aided with GNSS receiver is most commonly used for a
cost-effective strapdown navigation solution. The accuracy of the navigation solution is directly
related to the choice of sensors. Therefore, it is important to have reliable and appropriate sensors
depending on the application. First section of the thesis deals with the improvement of overall
accuracy on navigation data estimation using cost-effective MEMS based INS. It includes topics
concerning the evaluation of sensor’s deterministic and stochastic parameters. The deterministic
errors are evaluated by a “easy to do” calibration technique and sensor’s stochastic parameters are
evaluated by using sensor’s data pre-processing, data validation techniques, data fusion methods
applied to navigation equations.

Accelerometer can also be used to detect vibration effects on aircraft. Vibration effects on
the wing in an aircraft can be assessed by measuring the vertical acceleration at a number of
locations on the aircraft using ACCs [2]. The acceleration of the wing tip relative to the CG of
the aircraft gives the measure of wing vibrations experienced by the aircraft. This information
later can be used to design an active feedback controller to alleviate the vibration effects on the
aircraft.

Recent development of the light weight aircraft has led to flexible aircraft with pronounced
aeroelastic effects. Flexible aircraft develops large values of elastic displacement and acceleration
in addition to those components of displacement and acceleration which arise from the rigid
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body motion of the aircraft. The problem can occur because the control system sensors are of
sufficient bandwidth to sense the structural displacements/vibrations/oscillations as well as the
rigid-body motion of the aircraft. Therefore, for detecting the wing vibration, a filtering technique
with adaptive bandwidth which can be applied on accelerometers is desirable for improving the
control performance. The second part of the thesis aims a providing a detailed analysis on the
design and development of aircraft flight controller for 3-DOF longitudinal flight controller and
active vibration alleviation system.

The navigation solutions presented in this thesis are independent of any vehicles and can
be used for ground, surface and air vehicles, or any moving body in general. However, for the
experimental verifications small aircraft is used as they have fast dynamics and can be considered
as worst-case scenarios. Verification of the flight control laws are carried out via simulation on
high-fidelity dynamical model using MATLAB/Simulink.

1.2 Scope, Objective and Contributions
The thesis covers selected topics within the field of navigation systems for aircraft and flight
control. The main objective of the research was to investigate and develop advanced algorithms
and methodologies in order to enable increased usage of cost effective inertial sensing technology
providing as accurate navigation data as possible. One of the other objective of the research
was to design automatic control laws for fixed wing aircraft for navigation and load alleviation
purposes.

1.2.1 Main Contributions
The main contributions from this doctoral thesis are summarized as:

• This thesis describes the two main areas of navigation, namely data pre-processing and state
estimation and secondly, flight control for aircraft, and proposes the motivation behind our
efforts at merging them to obtain good performance.

• Extends the recent years of development in calibration method for MEMS based IMU [46]
by developing an “easy to do” cost efficient calibration technique for cost-effective IMU [4].

• The accuracy of final attitude and heading reference system (AHRS) is often compromised
when the IMU operates under harsh environment. While operating under harsh enviro-
ment the IMU data are significantly affected by low frequency vibration reducing the final
estimation accuracy. A novel concept of using adaptive bandwidth filtering is proposed as
a pre-processing of IMU data before the final attitude estimation. This approach preserves
the dynamic information of the vehicle and increases the final estimation accuracy [3].
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• A novel estimation algorithm is developed for a cost-effective navigation solution using
commercial grade inertial sensors. Two different architectures of EKFs are proposed and
performance are studied in details for robustness analysis with respect to GNSS outage [45].

• Longitudinal flight controller for a fixed-wing aircraft using non-linear dynamic inversion
technique or, in terms of control theory, partial exact feedback linearisation is developed. A
combination of three different flight controllers provide complete 3-DOF longitudinal flight
control [1].

• A robust feedforward/feedback gust load alleviation system (GLAS) was developed to alle-
viate the gust loading on aircraft. The combined feedforward/feedback GLAS significantly
reduces the wing root root moments for shorter as well as for longer gusts giving potential
structural benefits and weight savings [4].

• A detailed comparative analysis is presented in the improvement of the final navigation
solution using the adaptive variable bandwidth as a data pre-processing step.

1.2.2 List of Author’s Publication
The results presented in this thesis are based on the following impacted journal articles and peer
reviewed conference papers:

1.2.2.1 Journal Publications Directly Presented in the Thesis

1. Rohac, J., Hansen, J., Alam, M., Sipos, M., Johansen, T., Fossen, T. “Validation of
Nonlinear Integrated Navigation Solutions.” Annual Reviews in Control, 43(1), 91–106,
2017.

2. Alam, M., Celikovsky, S. “On Internal Stability of the Nonlinear Dynamic Inver-
sion (NDI): Application to Flight Control.” IET Control Theory & Applications, 11(12),
1849–1861, 2017.

3. Alam, M., Rohac, J. “Adaptive Data Filtering of Inertial Sensors with Variable Band-
width.” Sensors-An Open Access Journal, 15(2): 3282-3298, 2015.

4. Alam, M., Hromcik, M., Hanis, T. “Active Gust Load Alleviation System for Flexi-
ble Aircraft: Mixed Feedforward/Feedback Approach.” Journal of Aerospace Science and
Technology, 42(1): 122-133, 2015.
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1.2.2.2 Conference Publications

1. Alam, M., Moreno, G., Sipos, M., Rohac, J. “INS/GNSS Localization Using 15 State Ex-
tended Kalman Filter.” International Conference in Aerospace for Young Scientists, Beijing,
China, 2016.

2. Alam, M., Sipos, M., Rohac, J., Simanek, J. “Calibration of a Multi-Sensor Inertial
Measurement Unit with Modified Sensor Frame.” International Conference on Industrial
Technology, Seville, Spain, 2015.

3. Alam, M. “Combined Feedforward/feedback Gust Load Alleviation Control for Highly
Flexible Aircraft.” PEGASUS-AIAA Student Conference, Prague, Czech Republic, 2014.

1.2.2.3 Publications Not Presented in the Thesis

1. Alam, M., Celikovsky, S., Walker, D. “Robust Hover Mode Control of a Tiltrotor Us-
ing Nonlinear Control Technique.” AIAA Guidance, Navigation, and Control Conference,
California, USA, 2016.

2. Alam, M., Narenathreyas, K.“Oblique Wing: Future Generation Transonic Aircraft.” In-
ternational Journal of Mechanical, Aerospace, Industrial, Mechatronics and Manufacturing
Engineering, 8(5): 888–891, 2014.

1.3 Structure of the Thesis
This doctoral thesis is written in the format of thesis by publication approved by the Dean of
Faculty of Electrical Engineering and by the Directive for dissertation theses defense, Article 1.

The thesis presents publications relevant to the topic of the thesis as individual chapters.
The main contributions in this thesis are divided into Chapter 3 – 8. Chapter 3 – 7 presents 5
publications with unified formatting. Each chapter begins with a short summary section, where
the main topic, conclusions, and contribution of the research work is explained.

The thesis is organized as follows: Chapter 2 presents the current state-of-the-art in both
state estimation for aircraft navigation and application of control theory on aircraft. Chapter 3
– 7 introduces author’s 5 major publications related to the topic of this doctoral thesis. Chapter 8
is an extension of Chapter 4 and Chapter 5 which provides further examination on the results of
the adaptive data processing on navigation data estimation. The doctoral thesis is summarized
and concluded in Chapter 9, which also discusses the suggestions for future work.
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Chapter 2

State of the Art

This chapter aims at providing details on the state of the art regarding the topics related to
this thesis. The thesis aimed to provide state estimation system for navigation purposes capable
of working in challenging environment in order to have good control performance for aircraft.
Therefore the first part of this chapter reviews the current state-of-the-art in state estimation
applied especially for aerial navigation. The second part of this chapter reviews the current state-
of-the-art related to the active control of aircraft for navigation and load alleviation purposes.

2.1 Navigation Data Estimation using Inertial Sen-
sors

2.1.1 Inertial navigation systems - Sensor Technology
Navigation systems providing the tracking of an object’s position, velocity and attitude (PVA)
plays a keys role in wide range of applications, such as aeronautics, robotics and automotive
industry. Inertial sensors measure angular rates and specific forces, using angular rate sensors
(ARS) and accelerometers (ACC), respectively. 3-axis ACCs and 3-axis ARSs forms the core
of the inertial measurement unit (IMU). Typically PVA are obtained via dead reckoning. One
form of dead reckoning technique is using the initial position, velocity and attitude related to
a coordinate frame of interest and consecutive update calculation based on the ACC and ARS
measurements. Appropriate class of inertial sensors are essential to be chosen based on the
economical aspect and the required navigation precision. The choice of the required precision is
directly dependant on the application. Fig 2.1 and Fig 2.2 shows the required precision depending
on the application for ARSs and ACCs.
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Figure 2.1: Bias instability of gyroscopes related to specific applications [23].

Figure 2.2: Bias instability of accelerometers related to specific applications [23].

From Fig 2.1 and Fig 2.2, it can be seen that ARS with precision better than 1◦/h and
ACC not less than 10µg are required for the usage in aircraft navigation. The higher precision,
the more expensive the device is. Inertial sensors such as fiber optic gyroscopes (FOGs), ring
laser gyroscopes (RLGs), servo ACCs can be used for high precision application however they
are expensive. In comparison, micro-electro-mechanical-systems (MEMS) sensors are compact,
lightweight and cost effective, thus offering an inexpensive solution for navigation purposes. Nev-
ertheless, at the same time, MEMS-based inertial sensors suffer from bias instability, insufficient
sensitivity, noise, etc., which presents significant challenges in data processing that have to be
dealt within the navigation processes. The dynamic bias is the in-run variation of the bias also
known as bias instability. In addition to sensor bias there are other sensor errors such as scale
factor and scale factor nonlinearity. ARS also have g-sensitivity induced errors. These sensors
may also be misaligned internally in the triad. Since the PVA estimation from inertial sensors
primarily relies on the integration, these inaccuracies cause unbounded error growth, which needs
to be corrected by data obtained from so-called aiding systems, e.g., magnetometers, GNSS,
electrolytic tilt sensors, pressure based altimeter, etc.

2.1.2 Data Processing in Navigation System
Navigation systems are primarily supposed to provide PVA estimates. The navigation data are
typically estimated by a chain of processes as schematically shown in Fig 2.3.

Signal/data preprocessing can differ according to vehicle dynamics and types of sensors uti-
lized. The sensors might have analogue as well as digital outputs. In the case of analogue outputs,
the preprocessing requires A/D conversion. The low pass (LP) filter is then used for both high-

6



Figure 2.3: Block scheme of processes required for position, velocity, and attitude estima-
tion.

frequency components reduction and as an anti-aliasing filter. When the outputs are in digital
form then a digital LP filter is utilized only. It is very important to choose the cut-off frequency
correctly and additionally observe the group delay. Usually, the sensor’s bandwidth is about 300
Hz up to 800 Hz depending on the sensor’s type. If high rate navigation solution is required,
which is generally intended for airborne applications, the frequency bandwidth can be reduced
down to 50 or 40 Hz. In some applications it can go even lower down to 20 or 10 Hz, but it
is not a common case. Deterministic error’s compensation is a further key process minimizing
effects of non-orthogonality of sensing axes, sensor scale factors, temperature dependencies as well
as misalignment of sensor frame mounted into vehicle body frame. Most of these deterministic
error corrections can be done during in-flight/motion calibration procedures; however, the most
common way is to calibrate sensor errors separately.

2.1.3 Deterministic Error Compensation
In the field of navigation the estimation of inertial sensor’s deterministic errors play a key role.
Mainly multi-axial non-orthogonalities/misalignment and scale factor errors have to be identified
and estimated within a calibration process. There are several approaches to calibrate the sensor
for compensating deterministic errors, see for e.g. [10], [25], [53] and [52]. However, their applica-
bility is strongly influenced by the time requirement and equipment required for the calibration
process. These two factors mainly affects the price. Recently, a inexpensive calibration procedure
for ACC using the knowledge of the gravity magnitude under static condition is presented in [46].

2.1.4 Estimation of Position, Velocity and Attitude
Inertial sensor’s measurements suffer from errors such as bias and noise. Hence, if the estimation
process is entirely based on dead reckoning through a kinematic model, the estimation process
suffers from unbounded error growth. Therefore, some form of aiding systems are used for PVA
estimation, most commonly position and velocity aiding using GNSS. The inaccuracies in the
MEMS based inertial navigation system (INS) presents significant challenges in data processing

7



which is essential to deal within the data fusion process. There are various methods for INS
aiding using GNSS based measurements by means of un-coupled [48], [49], loosely coupled [63],
tightly coupled [31], and ultra-tightly coupled [5] integration schemes.

There are several approaches to data fusion for attitude estimation, such as temporally-
interconnected observers (TIO) [6], complementary filters [29] or Kalman filters [13]. The most
common sensor fusion algorithms of choice are variants of the nonlinear extension of the Kalman
filter (KF), the extended Kalman filter (EKF), which has been covered in the literature for five
decades, such as work presented in Ref [15], [35], [58], [13], [17] and [19] often uses an error-state
implementation based on complementary filtering.

The work of Swirling in the field of least-squares estimation and signal processing could be
traced back as one of the first efforts to use the computational advantages of applying recursion
to least-squares problems [56]. Swirling first introduced the concept of “stagewise smoothing”
through his publications in 1958 and 1959 [57]. Later on in 1960s Rudolf Kalman presented
error propagation methods using a minimum variance estimation algorithm for linear systems,
commonly known as Kalman Filter or linear quadratic estimation (LQE) [28]. Later on with the
development of the digital systems, discrete method presented by Rudolf Kalman have received
large attention and is now a fundamental term in various fields [22].

The Kalman filter (KF) introduced a recursive algorithm for state estimation of linear systems,
which is optimal in the sense of minimum variance or least square error. The algorithm works in a
two-step process, firstly prediction step and secondly, the measurement update. In the prediction
step, the Kalman filter produces estimates of the current state variables via a kinematic model of
the process, along with their uncertainties. In the measurement update step, the outcome of the
next measurement (necessarily corrupted with some amount of error, including random noise) is
observed, these estimates are updated using a weighted average, with more weight being given to
estimates with higher certainty. The recursive nature of the algorithm makes is suitable to run
in real-time using only the present input measurements and the previously calculated state and
its uncertainty matrix; no additional past information is required. This makes the estimation
process computationally efficient.

Kalman filter is a well-established state estimation approach [9]. Kalman filter assumes that
the input to the time-varying state space model is normally-distributed defined by their mean and
covariance. A important requirement is that the measurements have to be functions of the states,
as the residual measurement (the difference between measured and estimated measurements) is
used to update the states and keep them from diverging [22]. General assumtion about the process
and measurement noise is to have Gaussian white noise. In cases where the noise of the system
is not white, the KF can be augmented, by so called “shaping filters”, with additional linear
state equations to let the coloured noise be driven by Gaussian white noise [13]. The recursive
estimation of the system’s states using the Kalman filter also propagates a covariance matrix
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which describes the uncertainties of the estimated state as well as the correlation between the
other states [19].

The kinematic equations for navigation are naturally nonlinear due to the associated trigono-
metric transformations. Therefore, nonlinear estimation techniques are essential to use for ac-
curate estimation ensuring stability of the modeled system. Originally the Kalman filter was
designed for linear systems, however it can be applied to nonlinear systems without changing the
operational principles. Nevertheless, the filter is no longer a optimal estimator due to the loss of
guaranteed minimal variance. Nonlinear estimation problems are generally dealt by the Linearised
KF (LKF), Extended KF (EKF) or sample-based methods such as unscented KF (UKF) [7], [20].
The UKF is an extension to nonlinear systems that does not involve an explicit Jacobian matrix,
see [27]. The most widely used method is the EKF, which has been laregely applied in many
applications where it achieved excellent performance [18]. The EKF uses nonlinear model in the
time propagation for the state estimation. The EKF linearises the nonlinear model around an
estimate of the current state using multivariate Taylor expansions before the time propagation
of the covariance estimated and gain computation. This linearisation makes the EKF vulnerable
to errors in the initial estimates compared to linear Kalman filter.

The KF and EKF are considered as the standard estimation theory and are therefore used
as benchmark for comparison when developing new methods. The KF and its variants have
been widely used in the navigation related literatures. Few examples can be mentioned are: An
introduction to choice of states and sensor alignment consideration can be found in [55], while
Ref [34] considers alternative attitude error representations. Extensive details on Kalman filtering
can be found in Ref [13], [15], [18] and [19]. Ref [12] presents a method for evaluating the quality
of linearisation for nonlinear systems and their usage in the Kalman filter. A study on coloured
noise in contrast to the assumption of white noise can be found in [43].

The adaptive Kalman filter might be used in applications where tuning of the Kalman filter
is uncertain at initialization, see [33], [37] and [38]. For not real-time critical application, such as
surveying, the estimate can be enhanced by use of a smoother. In Fraser and Potter [14] a forward-
smoother was proposed while in [44] a backwards smoother was introduced. Another alternative
to the EKF for nonlinear systems is the particle filter. Particle filters are independent of noise
distribution and are based on sequential Monte Carlo estimation algorithms [11] and [20]. Hence,
the main advantage of using Particle filter in nonlinear non-Gaussian systems. When compared to
Kalman filter, Particle filters are more computationally demanding; hence in current navigation
systems it is not often used.
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2.2 Control Problem in Aerospace Vehicle

2.2.1 Dynamic Control
Aircraft are highly non-linear systems, but flight control laws are traditionally designed from

a set of linearised models. Due to the application of linear control laws on a non-linear system, the
real performance ability of the aircraft is not fully utilised. In addition, in adverse situations like
near stall, the aircraft develops significant non-linearities, and linear control laws do not perform
well. The current state-of-the-art automatic flight control system (AFCS) provides efficient meth-
ods for pilots to fly the aircraft. The introduction of the fly-by-wire (FBW) system has enabled
the aircraft to be stabilised automatically without pilot’s input within the aircraft’s performance
envelope [16]. However, in the critical conditions, where the aircraft gets outside the flight enve-
lope the automatic flight control known as ‘Autopilot’ is disengaged, and the pilot is required to
take manual corrective actions. An example of critical conditions of this kind is when the aircraft
reaches critical angle of attack (or stall angle), beyond which the lift is suddenly reduced. This
phenomenon is known as stall. The standard stall recovery procedure recommended in the pilot
training is to push the control stick down, forcing a nose down motion of the aircraft. This makes
the aircraft go faster and restores the required lift [50]. Pilots tend to misread the situation and
take wrong corrective measure leading to an accident. A significant number of commercial and
military air crash accidents have occurred after loss of control due to stalling caused by pilot
error. Indonesia AirAsia Flight 8501, Air France Flight 447, Navy McDonnell-Douglas QF-4S+
Phantom II and United States Air Force Boeing C-17A Lot XII Globemaster III are some recent
air accidents caused by pilot error and stall [1].

Flight control laws below the stall angle are designed using linear control design methods
such as gain scheduling [16]. The control laws are designed at many flight-operating points [32]
and the gain scheduling is chosen as a function of mass, Mach number and altitude. This design
procedure requires a great amount of assessment to ensure the adequate stability and performance
at off design points. It is time-consuming and the performance capabilities of the aircraft are
not fully realised. As an alternative to gain scheduling robust control algorithms such as H2

and H∞ controllers are proposed [47]. However, at a large angle of attack (near the stall angle)
aircraft develop significant non-linearities [54] and the linearised control laws does not perform
well. An alternative approach is to apply non-linear design techniques, such as nonlinear dynamic
inversion (NDI), in critical flight conditions such as near stall point or high attitude angle (pitch
angle) manoeuvres where the aircraft develops nonlinearities. NDI directly make use of the
non-linear structure of the aircraft model. It uses dynamic models and state feedback to globally
linearise dynamics of selected controlled variables by cancelling the non-linearities in the dynamic
model. As a result, the NDI method is capable of handling large nonlinearities. NDI control law
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is designed to globally reduce the dynamics of selected controlled variables to integrators. A
closed loop system is then designed to make the control variables exhibit specified command
responses satisfying the flight-handling qualities and various physical limitation of the aircraft
control actuators.

Flight control design using NDI was first proposed in the late 1970s [30], [36]. Since that
time, a number of research efforts have been made to use non-linear control techniques for flight
controls, e.g. as incremental NDI [51], adaptive fuzzy sliding control [41]. Various methods for
analysing the robustness of the NDI flight controllers for a quasi-linear-parameter varying model
were presented in [42]. Stochastic robust non-linear control using control logic for a high incidence
research concept aircraft is proposed in [59].

2.2.2 Active Control for load alleviation
Aircraft wing structures are usually either manoeuvre-load or gust-load critical depending on
whether the aircraft is a high performance-high manoeuvre aircraft or a transport type of aircraft.
Although the design objectives differ for these two different types of aircraft, the underlying
principle of redistribution of airload to reduce wing structural loads and structural weights is the
same. Load alleviation systems using active control technologies had enabled weight reduction
in aircraft by mitigating the structural loads to which the airframe is subjected as a result of
manoeuvre demands or atmospheric disturbances.

The bending moment at the wing root joint of the aircraft is the principle determinator of the
structural strength requirement at the wing root joints. The structural weight of the aircraft can
be reduced if the wing root moment are reduced since less reinforcement are required to be used
at the wing root joints. Thus, the structural weight reduction is directly related to the reduction
of wing root moment. Active flight control system for load alleviation is particularly beneficial
for reducing structural weight resulting from a few critical design points in the flight envelope
where the highest wing root bending moment loads occur.

The Lockheed C-5A is one of the earliest examples of an aircraft incorporating active control
to alleviate the detrimental effects of atmospheric disturbances. The C-5A aircraft suffered from
fatigue life problems related to wing bending loads (Globalsecurity.org). Several load alleviation
systems were evaluated on the C-5A aircraft, including a maneuver load alleviation system and
a passive alleviation system that simply biased the aileron deflections upward to reduce wing
bending load [8]. The Lockheed L-1011-500 aircraft included an Active Control System (ACS)
to provide maneuver load alleviation (MLA) and gust load alleviation (GLA) without significant
structural modification [26]. Wingtip and fuselage forward and aft vertical accelerometers as
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well as fuselage pitch gyroscopes were added to the aircraft to support the ACS. The horizontal
stabilizers and ailerons were used for control effectors [26].

Recent commercial aircraft have taken advantage of earlier advancements in active control
for gust alleviation, although very little information is available in the public domain. The
Airbus A320 aircraft (introduced in 1987) (Airbus, of the European Aeronautic Defence and
Space Company EADS N.V., Netherlands) originally featured a Load Alleviation Function (LAF),
which was later removed and was not incorporated into the Airbus A321, A319 aircraft, nor
A318 aircraft. The LAF functionality has recently been reintroduced on some in-service A320
airplanes to allow a 1.3-percent increase in maximum takeoff weight [61]. The Airbus A330
aircraft (introduced in 1994) and the Airbus A340 aircraft (introduced in 1993) incorporated
maneuver load alleviation systems as well as a flying quality enhancement system known as
Comfort in Turbulence, or CIT. The objective of the CIT system was to increase the fuselage
damping response (at 2.0 to 4.0 Hz) by actively controlling the rudder and elevators [24]. The
Airbus A380 aircraft (introduced in 2007) also features a form of GLA system [39]. The Boeing
787 aircraft (introduced in 2011) is reported to use a MLA system as well as a flying quality
enhancement system [40]. The flying quality enhancement system incorporates “static air data
sensors” to detect the onset of lateral and vertical turbulence and uses ailerons, spoilers, and
elevons to counteract the turbulence [40].

Current Gust Load Alleviation systems work primarily on the error feedback principle [2].
The first peak in the wing root moments (induces maximum load in the construction) determines
the required sizing of the wing root joint reinforcement. Potential weight savings can be realized
if the reduction in wing root moments is achieved. What is of special concern is therefore the
1st peak’s reduction in the wing root moments, which is regarded as non-achievable by purely
feedback solution [60]. Therefore combined feedforward plus feedback control can significantly
minimize structural deflection due to air turbulence such as gusts [62]. If the sensors are placed
smartly they could measure the r.m.s.(root mean square) vertical acceleration (along z-axis) at
a number of locations on the aircraft. In order to precisely determine the effects of the wing
bending relative to the center of gravity (CG) of the aircraft sensors are to be placed at the CG,
wing tip right node and wingtip left node in principle. A related detailed treatment on optimal
placement of sensors for this problematic issue is outlined in [21].
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Chapter 3

Calibration of a Cost-effective
Inertial Sensor

3.1 Summary of the contributions
In this chapter a “easy to do” calibration method for a cost-effective Multi-sensor Inertial Mea-
surement Unit is presented. A calibration procedure focused on multi-sensor inertial measurement
unit utilizing a modified sensor frames was analysed and evaluated. Unlike the common IMUs
which consist of 3-axial accelerometer and gyroscope frames, the proposed concept of the multi-
sensor unit consists of ten modified accelerometer frames supplemented by an unmodified ARS
frame. The proposed IMU includes four 3-axial ACCs supplemented by six 2-axial ACCs and
three regular 3-axial ARS frame all mounted on different PCBs (Printed Circuit Boards), the
calibration procedure required to coincide all these different frames into one main IMU frame.
The proposed approach is unique in the sense of calibrating a modified sensor frame into one
main frame while evaluating scale factors, bias offsets, and misalignment angles of all ACCs. A
cost effective stand-alone solution to the calibration procedure which does not require any pre-
cise knowledge of orientation and motion solution is proposed. The approach is experimentally
verified and results confirm its effectiveness.

3.2 Publication
The work is represented by a publication with modified formatting and follows on the next page.

13



Calibration of a Multi-sensor Inertial Measurement 

Unit with Modified Sensor Frame  

Mushfiqul Alam, Martin Sipos, Jan Rohac, Jakub Simanek  

Department of Measurement 

Czech Technical University in Prague, Faculty of Electrical Engineering 

Prague, Czech Republic 

 

 
Abstract— Calibration of the inertial measurement units 

(IMU) used in navigation systems are crucial for ensuring 

accuracy of a navigation solution. It is common to discuss what 

calibration means, techniques, and algorithms can be utilized and 

implemented. For cost-effective measurement units it is desirable 

to use calibration means and approaches which are not expensive 

yet capable of providing sufficient accuracy. This paper thus 

focuses on multi-sensor inertial measurement unit which utilizes a 

modified sensor frames. Unlike the common IMUs which consist 

of 3-axial accelerometer and gyroscope frames, the proposed 

concept of the multi-sensor unit consists of ten modified 

accelerometer frames supplemented by an unmodified gyro frame. 

The modified frames of accelerometers are optimized for 

differential analogue signal processing in order to increase signal-

to-noise ratio and hence overall sensing precision. Since the 

proposed concept of the measurement unit includes higher 

number of sensing frames it is required to develop a novel “easy to 

do and implement” calibration method which is the contribution 

of this paper. The proposed calibration approach was 

experimentally verified and results confirmed its usability.      

Keywords—accelerometers; gyroscopes; inertial measurement 

unit; calibration 

I.  INTRODUCTION 

Inertial sensors such as accelerometers (ACCs) and 

gyroscopes (gyros) form the core of Inertial Measurement Units 

(IMUs) which are utilized in navigation systems. Such 

navigation systems can be widely used for estimating position, 

speed, and attitude in areas such as space, aerial or terrestrial 

vehicles, submarines etc. The grade of the IMU can vary based 

on the implemented sensors. In terms of stable and precise 

sensors, at least tactical grade ones are considered, they can be 

for instance ring laser gyros or fiber optic gyros, and servo or 

quartz accelerometers. These technologies are however 

expensive and thus in cost-effective applications MEMS 

(Micro-Electro-Mechanical System) technology is preferred. 

Nevertheless, this technology suffers from limited sensitivity, 

resolution, and error sources causing noisy time varying output. 

Of course, it also brings benefits for example in small size of 

sensors, low power consumption, and cost-effective 

implementation. Since the sensitivity of low-cost ACCs are 

limited by the resolution of about 0.1 up to 1 mg there was an 

effort to modify the ACC measuring or sensing frame to 

increase the accuracy of ACC based attitude estimation. This 

idea originates from our previous work published in [1]. Our 

original motivation led in the concept of a modified multi-

sensor IMU which is composed as shown in Fig. 1 and 

explained in more details in Section II.  

In any case, no matter which sensor technology is used, it is 

always crucial to perform the calibration on each IMU. The 

process of calibration can vary based on the available facilities. 

For cost-effective solutions expensive calibration means are not 

suitable as such alternative cost-effective and easy to 

implement approaches are recommended. Common approaches 

providing the calibration of conventional 3D sensing frames in 

IMUs can be found in [2], [3], [4]; however, the contribution of 

this paper lies in proposing a novel “easy to do and implement” 

calibration procedure suitable for our previously developed 

multi-sensor IMU with a modified ACC frame. Since the 

proposed IMU includes four 3-axial ACCs supplemented by six 

2-axial ACCs and three regular 3-axial gyros frame all mounted 

on different PCBs (Printed Circuit Boards), the calibration 

procedure requires to coincide all these different frames into 

one main IMU frame. The proposed approach is unique in the 

sense of calibrating a modified sensor frame into one main 

frame.  

The rest of the paper is organized as follows. Section II 

outlines the proposed concept of the multi-sensor IMU in 

details. Section III provides description of data filtering and 

processing to obtain sensor error models and the calibration 

procedures which is followed by experimental results provided 

in Section IV. The paper is concluded in Section V. 

II. IMU CONCEPT 

The modified configuration of the multi-sensor IMU consists in 

total of six 2-axial analogue ACCs ADXL203, four 3-axial 

analogue ACCs ADXL337 and thee 1-axis digital gyros 

ADIS16136. As shown in Fig. 1, on the mainboard four 

ADXL337 ACCs and two 2-axial ADXL203 ACCs are placed. 

Other four ADXL203 ACCs are placed at side boards, and three 

digital single axis gyroscopes ADIS16136 are placed in the 

regular way on each PCBs. Fig. 1 shows a concept scheme of 

the proposed IMU solution. At each side board, a gyroscope and 

two 2-axial ACC are placed. At each side board, 2-axial ACCs 

are placed in a way that its sensitive axes are pointing at 45 

degrees with respect to the main board axis Z. The resultant of 

each 2-axial ACC is computed as the difference between its 

individual axes respecting the orientation depicted in Fig. 1, see 

resultants denoted as R1-R6. This concept of modified ACC 

frame brings benefits in sensing the gravity vector by ACCs 

with low sensor resolution about 1mg under conditions when 
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the main board is close to be horizontal. The main board 

additionally includes two 2-axial ACCs for improved sensing 

of translational acceleration along the main board X and Y axes. 

This design principle was presented in the form of the patent 

[5]. 

 

 
Fig. 1. Concept scheme of proposed IMU solution. 

Each sets of two 3-axial ACCs ADXL337, denoted as ACC1 

and ACC2 frame, forms pairs of sensitive axes. They are aligned 

to the main board axes X, Y, Z in such a way that when an 

acceleration is applied, it affects both ACCs with coupled axes 

the same way for a particular main axis (X, Y or Z) but with 

opposite signs. There are two couples of ADXL337 ACCs and 

resultant accelerations are denoted as R7-R12. 

All boards include 8-channel 16-bit analogue-to-digital 

convertors AD7689 to digitalize ACC resultants R1-R6 and R7-

R12. All resultants are performed by instrumentation amplifiers 

AD8222 which provide subtraction within the particular ACC 

pairs. The data are sampled by frequency of 1 kHz and then 

processed in microcontroller STM32F405 

(STMicroclectronics). Processed data are available through 

CAN (Controller Area Network) bus for enhanced data fusion 

to obtain a navigation solution. The data from gyros are 

processed with the same sampling frequency. 

The proposed concept of this IMU is advantageous in terms 

of ACC signals handling due to increased Signal-to-Noise Ratio 

(SNR) and thus accuracy of the overall acceleration 

measurement. A hardware realization of the proposed IMU is 

shown in Fig. 2. 

 

 
Fig. 2. Hardware realization of proposed IMU. 

III. DATA PROCESSING 

A. Principles of ACC signals differential processing 

In the case of 2-axial ACCs each output pair is led into an 

instrumentation amplifier to perform subtraction 

𝑈1 − 𝑈2 = 𝑈10 ± ∆𝑈1 − 𝑈20 ∓ ∆𝑈2 

= 𝑈10 − 𝑈20 ± (∆𝑈1 + ∆𝑈2),  (1) 

where  𝑈𝑖 corresponds to outputs of an ACC pair, 

𝑈𝑖0 is a DC value when no acceleration is applied, 

∆𝑈𝑖 reflects the output change when acceleration 

applied. 

Given IMU is horizontal, when opposite directions of 

sensitive axes within an ACC pair are considered and 𝑈10 −
𝑈20 = 0 in ideal case, the Eq.1 can be rewritten into the form 

 

𝑈1 − 𝑈2 ≈ ∆𝑈1 + ∆𝑈2 = 2∆𝑈 ≈ 2𝑎𝑖,    (2) 

 

where 𝑎𝑖 is an applied acceleration in i-axis of the main board 

frame. 

When noise is considered with respect to (1-2) the resulting 

value 𝜎𝑇𝑖  can be evaluated as 

𝜎𝑇𝑖 = √𝜎1𝑖
2 + 𝜎2𝑖

2 ,                                 (3) 

where 𝜎𝑇𝑖 is a standard deviation of combined signal with 

respect to the individual signal standard deviation.  

From (2-3) there can be seen that the sensitivity was doubled 

and the noise level increased, but not two times. That improves 

the signal to noise ratio (SNR). In the case of 3-axial ACCs the 

situation is similar, but it cannot use the advantage of the 

condition 𝑈10 − 𝑈20 = 0, because a pair consists of axes from 

different sensors. 

B. Sensor Error Models 

The proposed unconventional IMU cannot be entirely 

calibrated using common calibration techniques as explained in 

[2], [3], [4], [6]. The motivation is thus to calibrate and align 10 

ACC individual frames (four 3-axis and six 2-axis) into one 

corresponding main board X, Y, Z frame and complete the 

calibration by aligning the gyros sensitive axes with the main 

frame. For calibration purposes we utilized a common sensor 

error model (SEM) for 3-axial ACCs and gyros presented in 

details in [2], [7]. The procedure includes the SEM estimation 

covering scale factors, an orthogonalizing matrix respecting 

Fig. 3, bias offsets, plus a misalignment matrix in the case of 

the gyros. For the calibration of the 2-axial ACCs we propose a 

novel SEM estimation and calibration technique.  

 
Fig. 3. Relationship between 𝑦𝑖 – non-orthogonal frame and 𝑢𝑖 – orthogonal 

frame, where i denotes the sensor triad which is being calibrated. 

1985
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The SEM for 3-axial ACCs can be defined as 

𝑢𝑎 = 𝑇𝑎𝑆𝑎(𝑦𝑎 − 𝑏𝑎) =

[

1 0 0
𝛼𝑥𝑦 1 0

𝛼𝑧𝑥 𝛼𝑧𝑦 1
] [

𝑆𝑎𝑥 0 0
0 𝑆𝑎𝑦 0

0 0 𝑆𝑎𝑧

] ([

𝑦𝑎𝑥

𝑦𝑎𝑦

𝑦𝑎𝑧

] − [

𝑏𝑎𝑥

𝑏𝑎𝑦

𝑏𝑎𝑧

]) ,  (4) 

for 2-axial ACCs as 

𝑢𝑅 = 𝑇𝑅𝑆𝑅(𝑦𝑅 − 𝑏𝑅) = 

[
1 0

𝛼𝑅 1
] [

𝑆𝑅1 0
0 𝑆𝑅2

] ([
𝑦𝑅1

𝑦𝑅2
] − [

𝑏𝑅1

𝑏𝑅2
]), 

 (5) 

and for 3-axial gyros as 
 

𝑦𝑔 − 𝑏𝑔 = 𝑆𝑔𝑇𝑔𝑀𝑔𝑢𝑔

= [

𝑆𝑔𝑥 0 0

0 𝑆𝑔𝑦 0

0 0 𝑆𝑔𝑧

] [

1 0 0
𝛼𝑥𝑦 1 0

𝛼𝑧𝑥 𝛼𝑧𝑦 1
] [

𝑐𝜃𝑐𝜓 −𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓 𝑠𝜙𝑠𝜓 + 𝑐𝜓𝑠𝜃𝑐𝜓  

𝑐𝜃𝑠𝜓 𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓

−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

]

𝑇

[

𝑢𝑔𝑥

𝑢𝑔𝑦

𝑢𝑔𝑧

] 

(6) 

where 𝑢𝑎 , 𝑢𝑅, 𝑦𝑔 are the vectors of measured accelerations and 

angular rates; 𝑆𝑎 , 𝑆𝑅 , 𝑆𝑔 are the scale factor matrices; 𝑇𝑎, 𝑇𝑅 , 𝑇𝑔 

are transformation matrices from non-orthogonal frame to 

orthogonal frame; 𝑏𝑎 . 𝑏𝑅 , 𝑏𝑔 corresponds to the offset vectors; 

𝑢𝑔 is the vectors of referential angular rates; 𝑀𝑔 denotes the 

misalignment matrices between the gyro orthogonal frame and 

the main board frame; 𝜓, 𝜃, 𝜓 are the Euler angles, and 𝑐 & 𝑠 

correspond to 𝑐𝑜𝑠𝑖𝑛𝑒 and 𝑠𝑖𝑛𝑒 functions. 

 

C. Calibration of 3-Axial Accelerometers 

The 3-axial ACC calibration is performed from data 

obtained at various orientations under the condition when the 

sensors are affected only by the gravity. The sensor values are 

obtained by rotating the sensor along each the main board axis 

(𝑋, 𝑌, 𝑍) and taking at least two readings per quadrant. Thus it 

means 24 orientations in total. According to the Thin-Shell 

method [8] and accuracy analyses presented in [2], it is 

recommended to measure the ACC outputs in more than 21 

orientations. An advantage of this approach is that no precise 

knowledge about particular orientations is required. The SEM 

in (4) can be minimized with respect to the Root Mean Square 

Error (RMSE) defined as  

𝑅𝑀𝑆𝐸 =  √
∑ (|𝑎𝑖(𝑥)| − 𝐺)2𝑛

𝑖=1

𝑛
,                         (7) 

where 𝑥 = (𝑆𝑎𝑥 , 𝑆𝑎𝑦 … . 𝑏𝑎𝑦 , 𝑏𝑎𝑧) is 𝑚- dimensional vector of 

unknown parameter, 𝑛 −number of performed orientations. 𝐺 

is the magnitude of the gravity equal to 1 g; and |𝑎𝑖(𝑥)| is the 

magnitude of the estimated acceleration vector. The 

minimization criterion can use for instance Gauss-Newton 

algorithm [9], Merayo’s algorithm [10], Quasi-Newton 

factorization algorithm [10], or Levenberg Marquardt algorithm 

[2].  

D. Calibration of 3-axial Gyroscope 

As in the case of ACC calibration a similar procedure can 

be performed for gyro calibration just with a limitation that the 

Earth rate is measurable, which is in cases of high resolution 

gyros. For MEMS gyros the resolution is not sufficient, and 

thus other approach is needed. In our case the gyros triad 

calibration relies only on three successive rotations along all 

main board axes X, Y, Z. They are performed individually and 

for each rotation angular rates from the triad are to be measured 

as well as the referential rotated angle. This angle can be 

evaluated for example with already calibrated ACCs as 

explained in section III.BC. One strict condition for this 

calibration approach is that the gyro rotation requires to be only 

along horizontally aligned axis with accuracy better than 0.5 

deg, for details see [1]. 

An implemented algorithm for gyro SEM estimation, see 

(6), utilizes the Cholesky decomposition and the LU (Lower 

Upper) factorization. When all three perpendicular rotations are 

performed and angular rates measured, the angular rates are 

compensated for the offsets which have been estimated as a 

mean value of output readings when sensors are kept under 

steady-state conditions, which gives 𝑢𝑔 and 𝑦𝑔. The calibration 

algorithm is performed in an angle domain which means 

angular rates are integrated to obtain angles. Integrating 𝑦𝑔 

gives full 3x3 𝑌𝑔 matrix of integrated angles and integrating 𝑢𝑔 

a diagonal matrix 𝑈𝑔 of referential angles.   By rearranging the 

gyro SEM model in (6) can be then evaluated as  

(𝑌𝑔𝑈𝑔
−1) = 𝑆𝑔𝑇𝑔𝑀𝑔 ,                                  (8) 

Eq(8) can be further simplified to eliminate 𝑀𝑔 as  

(𝑌𝑔𝑈𝑔
−1)(𝑌𝑔𝑈𝑔

−1)
𝑇

= (𝑆𝑔𝑇𝑔)(𝑆𝑔𝑇𝑔)
𝑇

                 (9) 

The lower triangular matrix (𝑆𝑔𝑇𝑔) can be found by Cholesky 

decomposition as in (10) followed by LU factorization to find 

𝑆𝑔 and 𝑇𝑔 matrix as (11) 

(𝑆𝑔𝑇𝑔) = 𝑐ℎ𝑜𝑙((𝑌𝑔𝑈𝑔
−1)(𝑌𝑔𝑈𝑔

−1)
𝑇

)              (10) 

[𝑆𝑔, 𝑇𝑔] = 𝐿𝑈(𝑆𝑔𝑇𝑔),                               (11) 

where 𝐿𝑈 denotes the LU factorization;The matrix   𝑀𝑔 can be 

then obtained by 

𝑀𝑔 = 𝑇𝑔
−1𝑆𝑔

−1𝑌𝑔𝑈𝑔
−1 ,                               (12) 

E. Calibration of 2-axial Accelerometer 

The calibration of 2-axial ACCs are performed by three 

successive rotation of the IMU along its main axes (𝑋, 𝑌, 𝑍). In 

theory, while rotating a pair of 2-axial ACC along the main axis 

which are placed at the same PCB; the resultant accelerations 

output will form a circle with radius equal to √2𝑔. For the 

minimization criterion a modified RMSE error formulation is 

defined as 
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𝑅𝑀𝑆𝐸 =  √
∑ (|𝑅𝑖(𝑥)| − |𝑎𝑖(𝑥)|)2𝑛

𝑖=1

𝑛
 ,                       (13) 

where 𝑅𝑖(𝑥) is the resultant acceleration from the 2-axial ACCs 

on the same PCB  and |𝑎𝑖(𝑥)| is the acceleration from the 

already calibrated ACC1 or ACC2.    

 

F. Signal filtering 

Raw digitalized ACC and gyro data in the proposed IMU 

are sampled at 1 kHz even when a final implementation of 

navigation equations is intended to operate at 100 Hz. This 

oversampling capability allows better signal processing. We 

proposed three FIR digital low-pass filters to be used in real 

time to filter the raw data with the decimation factor equal to 

10. When designing the filters, we aimed for the flat and zero-

gain pass-band, and at least 40 dB attenuation of the high-

frequency stop-band. The resulting filters are labeled as 

follows: Filter 1 (Parks-McClellan type, bellow 0.5 % pass-

band ripple), Filter 2 (equiripple type designed in MATLAB 

FDATool), and Filter 3 (Bartlett, two cascaded averaging filters 

that provide a Bartlett window FIR filter response).  

The resulting frequency and step response of these three 

filters are shown in Fig. 4 and Fig. 5. Filter parameters, such as 

cut-off frequency, stop-band frequency with attenuation at least 

40 dB, and delay in samples are listed in Table I. 

 
Fig. 4 Frequency response of FIR filters 

 
Fig. 5 Step response of the FIR filters. 

 
TABLE I. FILTER PARAMETERS FILTER 1: PARKS-MCCLELLAN, FILTER 

2: FDATOOL, FILTER 3: BARTLETT 

Parameter Filter 1 Filter 2 Filter 3 

fcut-off (-3 dB)  (Hz) 10 30 20 

fstop (-40 dB) (Hz) 31 48 56 

Delay (samples) 60.5 50 15 

 

IV. EXPERIMENTAL RESULTS 

Before the calibration took place the IMU power was 

switched on and left to warm up to stabilize its thermal 

dependency. The 3-axial ACCs’ data were recorded in 24 

orientations under steady conditions to reduce the influence of 

random noise and the average was computed. After recording 

the data, the orientation values were implemented to the 

minimization criterion (7) to estimate the SEM defined in (4). 

The calibration results of 3-axial ACC are shown in Fig. 6. It 

can be noticed that mean RMSE value for the uncalibrated 

ACC-1 is very high (0.1359g) and it is not consistent,  after  the 

calibration the mean RMSE value falls down to (0.3mg) and it 

is consistent (linear) across the different orientations. 

 

 
Fig. 6. Calibration RMSE of ACC-1 frame. 

For the calibration of 2-axial ACCs the IMU was rotated 

successively along each three single axis in one direction with 

small intervals. It was ensured that the intervals were divided in 

such a way that at least 21 or more orientations were recorded. 

Then the minimization criterion defined in (11) was performed 

to fit the unit circle produced by the already calibrated ACC-1 

frame. The calibration results are shown in Fig. 7 to Fig. 9. The 

comparison of the entire calibration process from 2-axial ACCs 

is depicted in Fig. 10, which shows deviations of subtracted 

accelerations before and after calibration. The mean RMSE 

value of the uncalibrated 2-axial ACC pair varies between 

0.4129g to 0.4206g which is significantly high. After the 

calibration, the mean RMSE value varies from 0.0016g to 

0.0041g, which is an obvious improvement to the IMU. TABLE 

II summarizes the RMSE values before and after calibration. 

The SEM values obtained via the calibration are summarized 

TABLE III. 
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Fig. 7. Acceleration of the IMU during rotation along X-axis. 

 

 
Fig. 8. Acceleration of the IMU during rotation along Y-axis. 

 

 
Fig. 9. Acceleration of the IMU during rotation along Z-axis. 

 
Fig. 10. RMSE of calibrated 2-axial frames defined by ACC pair’s individual 

subtraction. 

TABLE II. RMSE OF ACC FRAMES BEFORE AND AFTER CALIBRATION. 

Accelerometers RMSE before 

calibration (g) 

RMSE after 

calibration (g) 

ACC-1 frame 0.1359 0.0003 

ACC-2 frame 0.1172 0.0006 

2-axial frame [R1R2]  0.4206 0.0055 

2-axial frame  [R3R4]  0.4129 0.0041 

2-axial frame  [R5R6]  0.4206 0.0016 

 
TABLE III. CALIBRATION VALUES OF THE ACC FRAMES. 

 ACC-1 

Frame 

ACC-2 

Frame 

ACC203 

R1,2 
 

ACC203 

R3,4 
 

ACC203 

R5,6 
 

𝑺𝒙(−) 0.9016 0.9018 -- 0.7030 0.7070 

𝑺𝒚(−) 0.9076 0.9013 0.7030 -- 0.6990 

𝑺𝒛(−) 0.9023 0.9092 0.7040 0.7110 -- 

𝜶𝒙𝒚(−) 0.0012 0.0016 -- -- 0.0059 

𝜶𝒛𝒙(−) 0.0160 -0.0178 -- 0.0022 -- 

𝜶𝒛𝒚(−) 0.0116 -0.0113 -0.0042 -- -- 

𝒃𝒂𝒙(𝒈) 0.0897 0.0401 -- -- -0.0008 

𝒃𝒂𝒚(𝒈) -0.056 0.0303 -0.0186 -0.0050 -0.0073 

𝒃𝒂𝒛(𝒈) 0.0403 0.0324 -0.0175 0.0126 -- 

 

When all ACC frames are calibrated and align together, the 

gyro frame calibration can take place. Gyros, before they were 

calibrated, were kept in temperature balance to minimize the 

bias temperature dependency. Before the calibration the Z-axis 

of the IMU was aligned with the horizontal plane. It must be 

ensured that the plane of performed rotation is about horizontal 

within ±0.5𝑜 accuracy. The rest of rotations were performed 

along another axes aligned again horizontally with the already 

calibrated ACC frame. To estimate the gyro offsets the gyro 

outputs were measured under static conditions for 

approximately 30 seconds. Then successive rotations were 

applied and the gyro outputs were measured as well as the 

referential angle of rotation. The referential angles in the 

presented case were calculated from the already calibrated 

ACC-1 frame. These steps were repeated for each axis. The 

gyro calibration progressions are depicted in Fig. 11. 
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Fig. 11. Gyro output progressions during the calibration. 

To evaluate the efficiency of proposed filtering process 

which was supposed to minimize the effect of sensor noise we 

applied all three proposed filters on all IMU output signals and 

observed the performance. The data were obtained under steady 

conditions. In Table IV, there are listed standard deviations of 

measured and filtered data from all used sensors. The data out 

of brackets correspond to the sampling frequency of 1 kHz, and 

the data in brackets were decimated to get the update frequency 

of 100 Hz, which is the frequency used for consecutive 

navigation solutions. 
TABLE IV. FILTER PERFORMANCE FILTER 1: PARKS-MCCLELLAN,  

FILTER 2: EQUIRIPPLE, FILTER 3: BARTLETT 

Sensors 

Standard deviation 

Raw 

data 
Filter 1 Filter 2 Filter 3 

ACC-1 x (mg) 2.77 0.77 (0.76) 1.02 (0.98) 0.84 (0.82) 

ACC-1 y (mg) 2.61 0.78 (0.78) 1.05 (1.02) 0.86 (0.84) 

ACC-1 z (mg) 4.77 1.80 (1.76) 2.36 (2.24) 1.96 (1.88) 

ACC203 x (mg) 2.12 0.90 (0.88) 1.15 (1.11) 0.97 (0.93) 

ACC203 y (mg) 1.97 0.80 (0.79) 1.08 (1.05) 0.88 (0.86) 

Gyro x (°/s) 0.111 0.043 (0.042) 0.046 (0.045) 0.044 (0.042) 

Gyro y (°/s) 0.105 0.020 (0.018) 0.025 (0.024) 0.021 (0.020) 

Gyro z (°/s) 0.102 0.018 (0.017) 0.024 (0.022) 0.019 (0.018) 

 

Given the filter parameters and results in Table II and Table 

IV, respectively, Bartlett window FIR filter was selected for 

filtering of raw ACC and gyro readings sampled at 1kHz. Thus, 

the output obtained has sufficient attenuation and the lowest 

delay out of three proposed filters. 

The proposed calibration principles and methods of the 

modified multi sensor IMU is easy to carry out and does not 

require any expensive precise equipment. Hence it provides a 

quick and cheap calibration procedure for the proposed IMU 

which offers potential cost saving. In addition the performance 

of the IMU is significantly improved with respect to the RMSE 

error reduction.    

V. CONCLUSION 

This paper proposes a novel approach to calibration when a 

multi-sensor inertial measurement unit with modified sensor 

frame is utilized. The proposed unit consists of ten 

accelerometers (ACCs) with individually modified frames and 

one unmodified gyro frame. The ACC frames are optimized in 

order to perform differential signal processing which increases 

signal-to-noise ratio and thus improves overall precision of 

acceleration sensing when low-cost ACCs are used. Therefore, 

the proposed calibration approach required aligning all 

individual frames into one main axes and evaluate scale factors, 

bias offsets, and misalignment angles of all ACCs used plus 

coincide the ACC frame and gyro frame with the main body 

frame. The paper deals with cost-effective solution to  the 

calibration solution which does not use any expensive means, 

but a stand-alone solution independent on any precise 

knowledge of orientation and motion which can be provided by 

only expensive calibration means. The approach was 

experimentally verified and results confirm its effectiveness. 

With respect to presented results the reached effectiveness is 

better than 99.5 % when uncalibrated and calibrated data are 

considered.     

ACKNOWLEDGMENT  

This research has been partially supported by the research 

program TA CR Alfa No. TA02011092 “Research and 

development of technologies for radiolocation mapping and 

navigation systems”, and partially by Grant Agency of the Czech 

Technical University in Prague grant No. 

SGS13/144/OHK3/2T/13. 

REFERENCES 

[1]  J. Rohac, "Accelerometers and an Aircraft Attitude Evaluation," in In 

IEEE Sensors 2005 - The 4-th IEEE Conference on Sensors [CD-ROM]. 
CA: IEEE Sensors, Irvine, 2005.  

[2]  P. Paces, M. Sipos and J. Rohac, "Analyses of Triaxial Accelerometer 

Calibration Algorithms," IEEE Sensors Journal, vol. 12, no. 5, pp. 1157-
1165, 2012.  

[3]  Z. Syed, P. Aggarwal, C. Goodall, X. Niu and N. El-Sheimy, "A new 

multi-position calibration method for MEMS inertial navigation 
systems," Measurement Science & Technology, vol. 8, no. 7, pp. 1897-

1907, 2007.  

[4]  A. Kim and F. Golnaraghi, "Initial Calibration of an Inertial 
Measurement Unit Using Optical Position Tracking System," in PLANS 

2004: Position Location and Navigation Symposium, 2007.  

[5]  J. Rohac, "Measurement Unit of an Artificial Horizon". Czech Republic 
Patent PUV 2011-24979, 16 01 2012. 

[6]  S. Won and F. Golnaraghi, "A Triaxial Accelerometer Calibration 

Method Using a Mathematical Model," IEEE Transactions on 
Instrumentation and Measurement, vol. 8, no. 9, pp. 2144-2153, 2010.  

[7]  D. Jurman, R. Jankovec, R. Kamnik and M. Topic, "Calibration and data 

fusion solution for the miniature attitude and heading reference system," 

Sensors and Actuators A : Physical, vol. 138, no. 2, pp. 411-420, 2007.  

[8]  M. Sipos, J. Rohac and P. Novacek, "Improvement of Electronic 

Compass Accuracy Based on Magne-tometer and Accelerometer 
Calibration," Acta Physica Polonica A, vol. 121, no. 4, pp. 945-949, 

2012.  

[9]  I. Skog and P. Handel, "Calibration of a MEMS Inertial Measurement 
Unit," in XVII IMEKO World Congress, Rio de Janeiro, Brazil, 2006.  

[10]  S. Bonnet, C. Bassompierre, C. Godin, S. Lesceq and A. Barraud, 

"Calibration Methods for Inertial and Magnetic Sensors," Sensors and 
Actuators A : Physical, vol. 156, no. 2, pp. 302-311, 2009.  

[11]  K. E. Donald, Optimal Control Theory: An Introduction, California: 

Dover Publications, 2004.  

 

1989

Powered by TCPDF (www.tcpdf.org)

19



Chapter 4

Adaptive Pre-processing of Inertial
Sensor’s Data using Variable
Bandwidth

4.1 Summary of the contributions
This chapter outlines on the adaptive data pre-precessing of the inertial sensors. A novel concept
in adaptive data pre-processing for attitude and heading reference system (AHRS) which is pri-
marily estimated using only inertial sensors (ACCs and ARSs) is proposed. The novelty lies in
proposing an adaptive data pre-processing by using a variable bandwidth filtering when sensor’s
data are affected by significantly strong vibration while operating under harsh environments.
This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the
accelerometer’s data in order to reduce the effects of vibration and sensor noise before attitude
estimation is processed. Low frequency vibration generally limits the conditions under which the
ACCs can be used to aid the attitude estimation process, which is primarily based on ARS data
and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables
using ACCs as an aiding source by effective data smoothing, even when they are affected by low
frequency vibration. The proposed concept is verified via simulation and real-flight test.

4.2 Publication
The work is represented by a publication with modified formatting and follows on the next page.
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Abstract: MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., 

accelerometers and angular rate sensors, are commonly used as a cost-effective solution for 

the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. 

These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit 

of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight 

and power consumption, they suffer from bias instability, noisy output and insufficient 

resolution. Furthermore, the sensor’s behavior can be significantly affected by strong 

vibration when it operates in harsh environments. All of these constitute conditions require 

treatment through data processing. As long as the navigation solution is primarily based on 

using only inertial data, this paper proposes a novel concept in adaptive data pre-processing 

by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to 

continuously adapt the filtering bandwidth of the accelerometer’s data in order to reduce the 

effects of vibration and sensor noise before attitude estimation is processed. Low frequency 

vibration generally limits the conditions under which the accelerometers can be used to aid 

the attitude estimation process, which is primarily based on angular rate data and, thus, 

decreases its accuracy. In contrast, the proposed pre-processing technique enables using 

accelerometers as an aiding source by effective data smoothing, even when they are affected 

by low frequency vibration. Verification of the proposed concept is performed on simulation 

and real-flight data obtained on an ultra-light aircraft. The results of both types of 

experiments confirm the suitability of the concept for inertial data pre-processing.  
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1. Introduction 

Recently, there has been a growing trend toward using cost-effective MEMS (micro-electro-mechanical 

system) technology-based sensors for navigation purposes in aerospace systems, such as on light 

aircrafts and unmanned aerial vehicles (UAVs). A strapdown inertial system consisting of tri-axial 

accelerometers (ACCs) and tri-axial angular rate sensors (ARSs) is commonly used for attitude 

estimation (roll, pitch, yaw angle), as well as for velocity and position evaluations. On large aircraft, ring 

laser gyros and servo ACCs are used on board for precise measurements, which is expensive.  

In comparison, MEMS sensors are compact, lightweight and cost effective, thus offering an inexpensive 

solution for navigation purposes. However, at the same time, MEMS-based inertial sensors suffer from 

bias instability, insufficient sensitivity, noise, etc., which present significant challenges in data 

processing that have to be dealt with in navigation processes. Originally, the attitude was supposed to be 

evaluated by integrating angular rates; nevertheless, as mentioned before, the measurements suffer from 

several inaccuracy impacts. In the case of the ARS-based attitude evaluation process, this inaccuracy 

causes unbound error growth, which needs to be corrected by data obtained from so-called aiding 

systems, e.g., magnetometers, cameras and even ACCs. These aiding systems provide information about 

attitude only under certain conditions, limiting their usability. This paper focuses on data pre-processing 

for navigation solutions based on inertial sensors only (ARSs and ACCs). Therefore, the ARS-based 

attitude evaluation process is primarily aided by ACC-based attitude evaluation [1]. This aiding can be 

applied under conditions when only gravity affects ACC measurements and no other acceleration is 

present [2–4]. This principle is common in cost-effective solutions of attitude and heading reference 

systems (AHRSs); however, these ideal aiding conditions are hardly achievable in harsh environments, 

due to strong vibrations present on light or small aircrafts. This complicates the situation, as the 

frequency of those vibrations cannot be simply isolated from the aircraft dynamics. The ARSs are 

primarily used for attitude evaluation, unlike the ACCs, which are utilized in AHRS just for  

attitude compensation.  

To learn the characteristics of real flight conditions, several flight experiments were performed using  

IMU ADIS16350 (Analog Devices, Norwood, MA, USA), which was utilized in the EFIS INTEGRA 

TL-6524 (Electronic Flight Instrumentation System) ,flight monitoring system manufactured by 

TL-Elektronic, Inc. (Hradec Králové, Czech Republic) The system was mounted to the instrument panel 

of the ATEC321 aircraft (ATEC321 is a Czech ultra-light aircraft, designed and produced by ATEC 

v.o.s, Libice nad Cidlinou, Czech Republic). The instrument panel was equipped neither with active nor 

passive vibration dampers. As a result, the sensors were directly affected by strong structural vibrations. 

Measurements were made for different flight phases, such as parking, taxing on the runway, taking off, 

during the flight and landing. The data were recorded at a sampling frequency of 43 Hz. The worst 

situation corresponds to the case when the vibration impact cannot be distinguished and isolated from 

the aircraft dynamics. Such a situation is depicted in Figures 1 and 2, which show the flight data from 
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ACC and ARS measured during the engine revolution per minute (RPM) suppression and their 

frequency spectrum.  

Figure 1. Accelerometer (ACC) measured during engine suppression and the frequency spectrum. 

 

Figure 2. Angular rate sensor (ARS) measured during engine suppression and the frequency spectrum. 

In cases of engine RPM suppression during the flight, vibration frequencies go down all the way to 

0.5 Hz. ACCs are generally affected by the combination of translation, centrifugal and gravitational 

accelerations along with the vibrations arising from the propeller and the aircraft structure. The vibration 

effect often dominates the ACC measurements. In contrast, vibrations have slight impacts on ARS 

readings depending on g and g2sensitive parameters; contrariwise, their readings are affected by bias 

instability and noise. These different characteristics of ARS and ACC enable their data fusion to 

improve the final accuracy of the whole attitude estimation process. Generally, ARS data are always 

used to estimate attitude, even under dynamic conditions, when the aircraft is maneuvering or under 

steady flight conditions. Unlike ACC, data are directly utilized for the attitude compensation under only 

steady-state conditions when the gravity distribution in the sensor’s framework can be estimated. This 

corresponds to situations in which the aircraft performs a direct and unaccelerated flight. In the cases 

where the aircraft undergoes a banked turn or a circular flight, a long-term additional acceleration is 

present due to the centripetal force created by traveling along a curved path. In such conditions, it is 

possible to estimate the centripetal acceleration and to subtract it out by providing the known velocity or 

airspeed to the data fusion process [5]. There exist several approaches to data fusion for attitude 
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estimation, such as temporally-interconnected observers (TIO) [6], complementary filters [7] or Kalman 

filters [8,9]. However, the accuracy of the estimation is always reduced, while the ACC data are affected 

by periodic vibration. This complicates the situation, due to a harsh environment causing structural 

vibrations, which are directly picked up by the ACCs. Therefore, for precise attitude estimation 

regardless of the aircraft flight condition, it is essential to provide acceleration data that are as smooth as 

possible with a reduced vibration effect; thus, ACC data require pre-processing. The light aircrafts are 

classified as Level I Class I, Category B Flight Phase (cruise, climb, descent, loiter) by the Federal 

Aviation Administration (FAA). The maximum time to achieve a change in the bank and pitch angle is 

1.7 s, and the minimum time is 0.2 s [10,11]. This means that the aircraft’s operational frequency lies in 

the range of 0.6 up to 5 Hz. In this instance, the ideal choice would be to apply a band-pass (BP) filter; 

nevertheless, such a narrow bandwidth would require a very high order filter, which is not desirable for 

navigation purposes, because of the long delays. 

As mentioned, the aircraft dynamics lies in the range of 0.6 up to 5 Hz, and the vibration frequency 

might go all the way down to 0.5 Hz. Therefore, using a constant 5 Hz bandwidth low-pass (LP) filter 

would mean that the 0.5 Hz frequency vibrations will not be filtered. On the other hand, using a constant 

0.6-Hz bandwidth LP filter would lead to a situation in which the aircraft’s motion information in the 

bandwidth up to 5 Hz would be lost. Therefore, our contribution is a novel concept of pre-processing 

ACC data using adaptive bandwidth filtering, which is modified based on sinusoidal data estimation. 

The proposed filtering algorithm is adaptive in the sense that the filtering bandwidth is modified based 

on the signal history. This enables the usage of ACC-based attitude compensation, even under variable 

low-frequency vibration impacts, while common commercial AHRS systems fail to have the correct 

compensation capability. This proposed approach brings several advantages against the ones commonly 

used, such as a smaller and acceptable delay, even when the narrowest bandwidth of 0.5 Hz is applied on 

the ACC data. On the other hand, ARS data are filtered with a constant bandwidth, and thus, when no  

low-frequency vibrations arise, all data are filtered with the same bandwidth of 5 Hz, which provides the 

same delay of data pre-processing for the majority of the flight. This approach hence brings an added 

advantage to inertial data pre-processing and enhances the ACC-based attitude compensation possibilities.  

The rest of the paper is organized as follows: Section 2 outlines the methodology of the proposed 

concept in detail. A detailed description of the principle of estimating the sensor’s signal via a sinusoidal 

estimation filtering algorithm is also presented in this section. Section 3 provides the results of the 

proposed algorithm applied on simulated data and real flight data and confirms the suitability of the 

approach. Section 4 concludes the paper with final remarks.  

2. Methodology 

This paper proposes an adaptive variable bandwidth filtering via sinusoidal data estimation to  

pre-process the data of ACCs and ARSs by as narrow a bandwidth LP filter as possible, while preserving 

the dynamics information included in the data. In the past, several attempts were made to use variable 

bandwidth filtering in communications systems [12,13], but the use was limited to a fixed length of finite 

impulse response (FIR) filters. However, the length of the filter is always proportional to its delay, which 

restricts the usability for navigation purposes. In the proposed concept, two key assumptions are made: 

1. The vibration content in the inertial data has an approximately periodic and sinusoidal characteristic. 
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2. The frequency of the signal content varies gradually, and the changes are smooth. 

A schematic block diagram of the proposed signal filtering method using variable bandwidth filters is 

depicted in Figure 3. 

 

Figure 3. Complete filtering block diagram.  

In general, the overall filtering process can be broken down into three main stages: (1) estimation of 

the sinusoid’s parameter; (2) sum squared error calculation; and (3) applying filtering on the signal. The 

overall filtering task is carried out with a 1 s window of the signal history. This particular length of the 

history is chosen to have the capability to detect vibration content down to 0.5 Hz, since at least a half 

cycle of the approximate sinusoidal signal is necessary for the estimation process. The estimation of the 

sinusoid’s frequency is based on preset frequencies, which are chosen according to the required filtering 

pass bands and bandwidths associated with the flight operational conditions. When raw signals enter the 

first block, they are fitted with sinusoids of all preset frequencies to get their approximations. The raw 

signals and their sinusoidal approximations are then led to the second block to calculate the sum squared 

error (SSE) of the fitting. The sinusoidal approximation with the preset frequency for which the SSE is 

the lowest marks the best fit and, thus, indicates the operating frequency of the vibration’s strongest 

content. Finally, based on the operating frequency, a variable bandwidth in the filtering algorithm is 

adapted and applied on the signal. The process in the first and second block can be easily performed by 

fast Fourier transformation (FFT) while post-processing; however, it is computationally expensive for 

real-time applications. Thus, applying the proposed sinusoidal approximation technique brings an 

advantage in terms of lower computational demands, making the filtering suitable for real-time 

applications. Details about the chain of signal processing described above are presented in the  

following subsections.  

2.1. Principles of Sinusoidal Signal Estimation 

As mentioned earlier in Section 1, the vibration impact on the sensor’s signal is often periodic, 

sinusoidal in nature and with one strongest frequency content. Therefore, it is often a reasonable 

approximation to address the problem of determining/estimating the frequency content in the raw signal 

via sinusoidal fitting algorithms.  

Assume that the signal history 	is obtained at time instances  where N is the total number of 

samples in the sequence. N is chosen to preserve a 1 s window.  and  correspond to the latest 

sample, and ( − 1) down to 1 represent samples in the signal history.  = [ 	 … ] ; = [ … ] (1)

For a small signal history window, the history sequence  can be assumed as periodic with a 

frequency 	and angular frequency	 = 	2 . The orthogonality relationships of the sine and cosine 

functions can be used to break down an arbitrary periodic function into a set of simple terms that can be 

summed, solved individually and then recombined to obtain the solution to the original signal sequence 
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 or to its approximation. Using the method for a generalized Fourier series, the signal history 

sequence  can be represented or modeled as a summation of the cosine and sine, as follows: ( ) = ( × ) + ( × ) +  (2)

where  is the approximation of 	; , , ,  and  are unknown constants, and 	defines the 

set of these four unknown parameters ( , ,  and ). The sine wave fitting problem in (1) and (2) can 

be then solved by minimizing of the sum squared error [14,15], which is given by:  ( ) = 1 ( − ( ) )  (3)

Consider the particular parameter vector	 ; where = [ 	 	 ] and 	can be written as: = [ ]   

Let 	( ) be the 	 × 	3 matrix defined as: 

	( ) = 	 ( × ) ( × ) 1⋮ ⋮ ⋮( × ) ( × ) 1  (4)

The sum squared error in (4) can be written as:  ( ) = ( , ) = 1 [ − ( ) ] [( − ( ) )] 	 (5)

When the frequency  of the signal history is known (in other words, angular frequency 	is 

known), Equation (5) can be minimized in the least squares sense by solving the set of linear equations  ( ) =  [16]. If ( ) has the full rank, the solution of the estimated  is given by:  =	 = ( ) ( ) ( )  (6)

It can be noted that for large , the columns in ( ) become orthogonal. Thus, ( ) 	 ( ) 
becomes a diagonal matrix with elements	[ 2	 2 	 ]. Thus, it makes the calculation of the inverse of ( ( ) ( )) to estimate  computationally inexpensive.  

2.2. Sum Squared Error Calculation to Estimate the Filtering Bandwidth  

The principles described in Section 2.1 are used to estimate the frequency content in the signal 

considering the 1 s window of the signal history. The mentioned Equations (5) and (6) can be solved 

easily when the frequency 	is known. Therefore, the proposed approach uses preset frequencies 	. 
These frequencies specify the filtering bandwidth, which can be then applied in the third block in  

Figure 3. Each  is used to estimate ( ) defined in Equation (4) and  in Equation (6). The 
sinusoidal signal  is then constructed for each  and the corresponding 	using: =	 (2 × ) + (2 × ) +  (7)
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This step gives the advantage of using as many estimates as needed for the specific application and 

required filtering bandwidths. To get the best sinusoidal approximation with respect to the original raw 

signal , the  is calculated using:  

= −  (8)

The preset frequency	 , which gives the lowest value of the SSE, provides the best fit for the 

measured signal and, thus, indicates the operating frequency based on which the filtering bandwidth of 

the third stage is adapted and applied. Since the estimation process uses the 1 s window, the proposed 

approach has a corresponding learning time of 1 s. This means that the proposed approach will take 1 s to 

detect a complete change/transition in the frequency and to adapt the filtering bandwidth.  

2.3. Filtering Algorithm 

A conventional finite impulse response (FIR) filtering (such as generalized equiripple, quadratically 

weighted moving average, etc.) alone cannot be used for such a low filtering bandwidth (≈0.5 Hz) while 

providing smooth data. In addition, reaching such a narrow bandwidth would lead to higher order 

filters, which is not desirable, since they produce a long delay in the signal processing. Therefore, a 

novel multistage adaptive filtering approach is developed, as demonstrated in the block scheme in Figure 4. 

The proposed filtering process is adaptive in the sense that the bandwidth of the overall filtering process 

can vary with respect to the frequency content in the signal. The filtering process can be broken down 

into two main stages. The first stage is the filtering of the signal using a variable bandwidth Kaiser 

windowed filter with coefficients	[ 	 … . . 	 ], while the second stage utilizes an LP wavelet 

filter with a variable level of decomposition.  

 

Figure 4. Schematic diagram of the new filtering algorithm. 

For the first stage, a Kaiser windowed LP filter is chosen, since it allows to control the transition 

band, pass band and stop band ripples through a proper choice of the filter order and has further a unique 

 function shape, which provides low bandwidth and low side lobes at an equivalent filter length 
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compared to other types of conventional filters. The coefficients of the Kaiser windowed LP filter can be 

calculated as: 

( ) = (2 ( − 1)( )  (9)

where 	is an arbitrary, non-negative real number that determines the shape of the window,  is the 

zeroth order modified Bessel function and  is the order of the filter.  

The second stage is formed by a wavelet filter, which brings further advantages in terms of a further 

attenuation of high frequency noise, while preserving an acceptable delay. Different levels of wavelet 

decomposition can be reached by taking an LP mother wavelet filter, upsampled by a factor of 2 and 

convolving it with the same LP mother wavelet filter. This process can be repeated to achieve different 

levels of decomposition and, thus, different filtering bandwidths. In our case, the sym4 mother LP 

wavelet was considered. The details of the choice of mother wavelet filter and for obtaining different 

levels of decomposition are outlined in [17–20]. 

The filtering bandwidth of wavelet filtering cannot be explicitly chosen or controlled; however, 

wavelet filters are capable of providing smooth data for signal reconstruction. Whereas the filtering 

bandwidth for the Kaiser window can be chosen based on Equation (9), the two characteristics of the two 

filters can be combined together to provide one overall filter that is efficient in low frequency 

attenuation, while keeping the filter order minimal; in other words, keeping the delay minimal. 

In the filtering process, the raw signal is passed through the Kaiser windowed LP filter and then 

filtered by the wavelet filter to further suppress the high frequency noise and to smooth the filtered 

signal. Note that the overall filtering bandwidth can be modified by varying the length of the Kaiser 

windowed LP filter and by modifying the level of the wavelet filter decomposition. Simulation results 

are discussed in detail in Section 3.2, and the experimental verification is in Section 3.4.  

3. Performance Evaluation and Discussion 

The performance of the proposed filtering approach is evaluated based on simulated data, as well as 

on real flight data. The algorithm was implemented using MATLAB. The results are presented in detail 

in the following subsections. 

3.1. Performance of the Filtering Algorithm with Different Bandwidths 

As mentioned above, a main objective of the proposed filtering algorithm is to achieve efficient 

filtering performance in terms of low frequency vibration attenuation in the signal while preserving an 

acceptable delay. For this reason, we have split the frequency range of interest, 0.5 to 5.5 Hz, into  

11 bandwidths with a step size of 0.5 Hz. Based on the required bandwidth values, we have optimized 

the coefficients of the Kaiser windowed LP filter using Equation (9) and chose the levels of wavelet 

filter decomposition.  

To observe the efficiency of the overall filtering, we simulated a sinusoidal signal with frequencies in 

the range of 0.5 to 14 Hz and let it pass through both stages of the proposed filtering algorithm. The 

sampling frequency of the simulated signals was chosen to be 43 Hz to be consistent with the sampling 

frequency of the real flight experiment. The performance of the filtering for two signal frequencies  
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(0.5 Hz and 1 Hz) when the bandwidth was set to 0.5 Hz is depicted in Figure 5. For all combinations of 

the bandwidths and the signal frequencies, see Table 1, which summarizes the filtering performance. 

Particular delays corresponding to the filtering performances are denoted in Table 2. It can be seen that 

the maximum delay in the signal is about 0.39 s, which is an acceptable delay for ACC signal processing 

and attitude compensation.  

 

Figure 5. Filtering the simulated signal using only the 0.5 Hz bandwidth filter. 

The attenuation level in the filtered signal is calculated using: = 20 log ( ⁄ ) (10)

where  is the amplitude of the original signal and  is the amplitude of the filtered signal. 

The selection of the filtering bandwidth that is applied in the third block in Figure 4 is dependent on  

Tables 1 and 2. In Table 1, the minimum required level of attenuation corresponds to −15 dB; 

nevertheless, if further attenuation is needed, it is always a possibility to use a narrower bandwidth up to 

0.5 Hz. Attenuation of −15 dB corresponds to approximately 1/5th of the original amplitude. The 

particular choice of filtering bandwidth based on the signal operating frequency is highlighted in dark 

grey in Table 1. For example, if the operating signal frequency is 10 Hz or higher, the filtering 

bandwidth is 5.5 Hz. If it is from 8 to 10 Hz, the filtering bandwidth is going to be 5 Hz. 
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Table 1. Filtering efficiency at different filtering bandwidths for various signal frequencies.  

  Signal Frequency (Hz)   
  14 12 10 8.0 6.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.6 0.5  

Fi
lte

ri
ng

 B
an

dw
id

th
 (H

z)
 

5.5 (M = 24, L = 1) −34.5 −31.5 −22.3 −9.0 −6.0 −0.5 0.1 0.3 0.0 −0.1 −0.3 −0.2 −0.1 −0.1 0.1 0.1 

A
ttenuation (dB

) 

5.0 (M = 28, L = 1) −45.7 −35.2 −29.9 −24.1 −8.9 −3.7 −0.5 0.5 0.4 0.0 −0.1 −0.2 0.0 −0.1 0.0 0.0 

4.5 (M = 30, L = 1) −42.7 −38.3 −32.6 −31.0 −28.7 −6.2 −2.5 −0.6 0.0 0.1 0.0 −0.4 −0.4 −0.3 0.0 0.0 

4.0 (M = 26, L2) −42.6 −38.6 −33.7 −28.8 −24.1 −16.1 −7.4 −3.4 −0.6 0.0 0.1 0.0 −0.3 −0.4 −0.1 0.0 

3.5 (M = 29, L2) −36.7 −35.0 −32.8 −30.1 −23.4 −22.5 −15.4 −7.7 −3.7 −0.9 0.5 0.5 0.5 0.5 0.1 0.1 

3.0 (M = 32, L = 1) −53.7 −40.8 −40.8 −36.5 −29.1 −26.1 −24.9 −26.6 −9.4 −3.7 −0.3 0.5 0.3 0.1 −0.1 0.0 

2.5 (M = 28, L = 2) −45.6 −44.7 −42.3 −37.5 −29.8 −31.1 −22.8 −23.0 −21.2 −12.8 −6.0 −1.2 −0.1 0.7 0.4 0.0 

2.0 (M = 32, L2) −41.5 −38.3 −43.0 −33.8 −37.3 −29.2 −36.3 −25.9 −28.0 −19.3 −9.4 −3.6 −0.6 0.0 0.1 0.1 

1.5 (M = 7, L = 3) −40.7 −40.1 −45.6 −29.9 −41.4 −37.5 −35.5 −34.5 −21.4 −12.7 −17.1 −4.2 −2.5 −0.9 0.0 0.0 

1.0 (M = 38, L = 1) −62.7 −62.5 −61.6 −59.4 −57.5 −56.4 −58.2 −56.4 −59.4 −43.3 −26.2 −15.3 −8.2 −3.6 −0.5 0.0 

0.5 (M = 33, L = 3) −39.2 −40.1 −38.8 −38.5 −40.0 −40.1 −29.4 −37.8 −27.3 −37.6 −24.1 −35.3 −20.5 −9.8 −4.5 −3.9 

Note: M corresponds to the Kaiser windowed filter order, and L corresponds to the level of wavelet decomposition (LoD).  

Table 2. Time delays for the chosen filtering bandwidths.  

Filtering Bandwidth (Hz) Time Delay (s) 
5.5 0.23 
5.0 0.24 
4.5 0.26 
4.0 0.33 
3.5 0.35 
3.0 0.36 
2.5 0.37 
2.0 0.38 
1.5 0.38 
1.0 0.39 
0.5 0.39 
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3.2. Demonstration of Data Smoothing  

As mentioned in Section 2.3, the wavelet filters are used to smooth the signal, as well as to further 

attenuate its unwanted high frequency content. To confirm these characteristics, a white noise was 

generated with variance set to unity. Two LP Kaiser filters were designed for the bandwidth of 2 Hz with 

different filter orders (M = 25 and M = 32) using Equation (10) and applied to the white noise. 

Afterwards, the signal filtered with the Kaiser filter of M = 25 was further passed through the wavelet 

filter with level of decomposition (LoD) = 1. The filtering results are shown in Figure 6. The results are 

further demonstrated in the frequency domain in Figure 7. 

 

Figure 6. Comparison between filtering using only the Kaiser windowed low-pass (LP) 

filter and the proposed filtering multistage algorithm with the wavelet filter implemented in 

the time domain. 

 

Figure 7. Comparison between filtering using only the Kaiser windowed LP filter  

and the proposed filtering multistage algorithm with the wavelet filter implemented in the 

frequency domain. 
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In Figure 7, it can be seen that both LP Kaiser filters with a cut-off frequency of 2 Hz have slightly 

different attenuation at higher frequencies; however, their delays are different, i.e., 0.28 s and 0.36 s. 

Nevertheless, when the LP Kaiser filter of M = 25 (blue line) is combined with the wavelet filter with the 

first level of decomposition (LoD = 1) (black line), which has M = 7, the combined filter performance 

(red line) changes for the higher frequencies, while preserving the attenuation at low frequencies. The 

overall filtering has the order M = 32, and its filtering efficiency increases when attenuating higher 

frequencies. Thus, it reaches better performance than using only the LP Kaiser filter of M = 32 with a 

comparable time delay. This means that the proposed filtering approach provides a more enhanced 

filtering capability compared to conventional filters, while keeping the filter order at a minimum.  

This can be explained by the wavelet filters being advantageous despite having an irregular shape to 

their frequency characteristics. They are able to perfectly reconstruct functions with linear and higher 

order polynomial shapes, such as rectangular, triangular, second order polynomials and windowed  

filters [21]. Note that Fourier series fail to do so while designing regular filters, such as Kaiser, and 

various other conventional filters mentioned earlier [22]. As a result, wavelets are able to denoise the 

particular signals better than conventional filters that are based on the Fourier transform design and that 

do not follow the algebraic rules obeyed by the wavelets. 

3.3. Application of the Multistage Filtering Algorithm on Simulated Data 

For testing the adaptability of the proposed filtering approach, a sinusoidal signal was simulated with 

two frequencies (2 Hz and 3 Hz) with additive white Gaussian noise of unity variance and a sampling 

frequency of 43 Hz. It was observed how the filter behaves with respect to a change of frequency. The 

resulting performance is shown in Figure 8. 

 

Figure 8. Filtering result on the simulated signal. 

The first part of Figure 8 contains the signal with 2 Hz, while 3 Hz is used in the second part. From the 

filtered data, it can be seen that the filtering method has a 1 s learning time to observe the complete 

transition between one operating frequency to another. The figure also illustrates that for a low 

32



Sensors 2015, 15 3294 
 

 

frequency (2 Hz), a lower filtering bandwidth is used than in the case of a frequency of 3 Hz. The zoomed 

part of the time range of 4.4 to 5.4 s shows the filter behavior when the filtering bandwidth is changed.  

3.4. Application of the Algorithm on Real Flight Data 

As mentioned in Section 1, a narrow bandwidth filtering is required due to the potential presence of 

low frequency vibrations affecting inertial sensors. Aircraft can fly under direct and un-accelerated 

conditions or under dynamic motion conditions. For cost-effective attitude estimation systems, it is 

necessary to consider that the signals from the ARSs require preserving the dynamics information, and 

in contrast, the ACCs’ signals are used as an aiding source to compensate for the attitude estimation, 

only under steady flight conditions. Mentioned in Section 1, the motion dynamics of light aircraft lies 

within the 5 Hz bandwidth; hence, a constant bandwidth of 5.5 Hz is used for the ARSs’ signal filtering. 

This choice provides unmodified dynamics in the range of 5 Hz, as required. In the case of ACC signals, 

an adaptive bandwidth filtering is applied to reduce the vibration effects in the signals. In other words, 

the same bandwidth of 5.5 Hz is chosen for both ARSs and ACCs when the flight conditions lead to 

noise and vibrations with frequencies higher than 10 Hz. This ensures the same delay for both ARSs and 

ACCs for the majority of the flight, which is advantageous. When conditions change and the vibration 

frequency goes down, the ACCs’ signal filtering bandwidth is adapted accordingly, potentially down to 

0.5 Hz, while the filtering bandwidth for the ARSs’ signals does not change. This approach provides 

both observable dynamics from ARSs and a compensation capability for attitude estimation with the 

help of the ACCs, even under steady flight conditions when the ACCs are affected by low frequency 

vibrations. Generally, due to the low frequency vibrations’ influence, the operation of the majority of the 

commercially used cost-effective AHRSs is limited. In contrast, the proposed filtering approach is more 

robust while operating under a low frequency vibrating environment compared to the commonly  

used approaches.  

Figure 9. Angular rates measured during the flight, the filtered signals and the zoomed tracks.  
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Real flight data for ACCs and ARSs are obtained from flight experiments using the ultra-light 

aircraft, ATEC 321. The flight data were sampled at a frequency of 43 Hz. As proposed, for the filtering  

purposes, 11 different bandwidths were chosen at equal intervals from 0.5 Hz to 5.5 Hz. The filtering of 

the ARS data using a constant 5.5-Hz bandwidth LP filter is shown in Figure 9. It can be seen that the 

potential high frequency noise is attenuated and filtered in the ARS measurements, while preserving the 

delay up to 0.23 s. 

Figure 10 shows the ACC signal from the same flight as shown in Figure 9.  

Figure 10. Acceleration measured during engine suppression, the filtered signal and the 

zoomed tracks. 

It can be seen in Figure 10 that the low frequency vibrations affecting the signal during the engine 

suppression between 220–235 s are significantly attenuated in the case of  (zoomed tracks). This 

measured signal suffered from a vibration frequency of about 0.5 Hz, and thus, at this point, the filtering 

was performed at the lowest bandwidth corresponding to the highest filtering order. On the other hand, 
the  track in the range of 105–130 s suffered from high frequency vibrations; hence, the filtering 

was performed with a wider bandwidth; so, the filtering order was lower and the delay was shorter.  

To confirm the adaptability of the filtering bandwidth, the  signal is shown in Figure 11 with 

zoomed parts. It demonstrates the variable bandwidth filtering capability and corresponding delays.  

In the left inset, the signal frequency was approximately 1.25 Hz and the filtering bandwidth was set to 

0.5 Hz, which corresponds to the narrowest filtering bandwidth and which operates at the highest level 

of wavelet decomposition, i.e., LoD = 3. At this instance, the order of the filter is maximal and the time 

delay corresponds to 0.39 s. In comparison, in the right inset, it can be seen that the signal frequency 

content is approximately 4 Hz and the filtering bandwidth corresponds to 3 Hz. In this instance, the time 

delay is 0.36 s, because the order of the filter is lower. In addition, it can be seen that a better attenuation 

is achieved, while the signal frequency is higher. 
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Figure 11. Variable bandwidth filtering of ACC in the x-axis. 

Nevertheless, the variable filtering of ACC signals is applied only when the character of the signal 

content is periodic; otherwise, a constant 5.5-Hz bandwidth filter is applied the same way as used in the 

ARS’s signals. This approach provides the same delay on both ARS and ACC data during the majority 

of the flight, and when low frequency vibration content occurs in ACC data, which is generally under 

special and rare conditions, such as the engine RPM suppression, the bandwidth of ACC data filtering is 

modified. This case leads to different delays for the ARS and ACC data; however, as long as they are 

used only for attitude compensation under steady-state conditions, these differences can be simply 

managed by taking different delays in data fusion into account. 

4. Conclusions 

This paper proposed a novel concept of filtering inertial data with an enhanced capability of 

providing smooth data under harsh environments, eliminating low frequency vibration influences. 

Cost-effective attitude and heading reference systems (AHRSs) generally fuse data from angular rate 

sensors (ARSs) and accelerometers (ACCs) to provide stable attitude estimation. Commonly, it is 

advantageous to fuse data in such a way that very low-frequency content corresponding to the 

steady-state flight conditions is taken from the ACC’s measurements and higher-frequency content 

corresponding to changes of flight conditions is obtained from the ARS’s measurements. Nevertheless, a 

problem arises when ACC readings are affected by low-frequency vibrations, and thus, the 

compensation ability in the attitude estimation process becomes vibration dependent. This is often the 

case when the correct filtering is not applied on the ACC’s signals. The contribution of this paper thus 

lies in proposing the filtering of the ACC’s with an adaptive bandwidth capability, providing the same 

delay in inertial data processing, when vibration frequencies are above 10 Hz. When the vibration 

frequency in the ACC’s data is below 10 Hz, the data are filtered with a modified bandwidth to reduce 

the vibration effects. The modification of the filtering bandwidth relies on continuous estimation of the 

frequency of the strongest vibration content based on the particular bandwidth filtering applied. This 

filtering approach was confirmed based on simulated and real-flight data, and in all cases, the proposed 

approach reached better efficiency for vibration impact reduction, while preserving shorter processing 

delays compared with the commonly used approaches used in the commercially available AHRS 
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systems. This paper presents the data pre-processing in terms of data filtering and not data fusion. 

Nevertheless, based on the effectiveness of vibration impact reduction, the proposed approach improves 

the ACC-based attitude compensation capability even under strong vibration, which brings a significant 

advantage compared with the commercially available systems.  
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Chapter 5

Navigation Data Estimation using
Nonlinear Estimation Algorithms

5.1 Summary of the contributions
This chapter outlines on the navigation data estimation technique using INS aided by GNSS mea-
surement. Various techniques for fusing the INS and GNSS data to get as accurate estimation as
possible is discussed in details. The main contribution of this chapter lies in providing a detailed
performance analysis of loosely coupled navigation solutions, where a nonlinear observer and two
EKF solutions with different architectures/models incorporated are in focus. Two different archi-
tecture of EKFs are discussed, one with a 21-state single-stage and the other with a multi-stage
configuration. For both the EKF architectures, loosely couples GNSS integration schemes are
used. The single-stage EKF provides the strongest connection between the final attitude estima-
tion and GNSS based position and velocity measurements. The estimation process in multi-stage
EKF architecture is divided into two main parts; an Attitude estimator and a Position/Velocity
estimator. By using cascaded Kalman filtering, this method avoids the need to propagate addi-
tional states, resulting in the covariance propagation to become more computationally efficient.
The estimation results are verified on real flight data tested on Slingsby T67C aircraft. The
accuracy of the estimation techniques were thoroughly studied during GNSS outages.

5.2 Publication
The work is represented by a publication with modified formatting and follows on the next page.
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a b s t r a c t 

There exist numerous navigation solutions already implemented into various navigation systems. Depend- 

ing on the vehicle in which the navigation system is used, it can be distinguished in most cases among; 

navigation, tactical, and commercial grade categories of such systems. The core of these systems is formed 

by inertial sensors, i.e. accelerometers and angular rate sensors/gyros. Navigation and tactical grade sys- 

tems commonly rely on fiber optic/ring laser gyros and servo/quartz accelerometers with high resolution, 

sensitivity, and stability. In the case of cost-effective navigation systems, for example piloted light and ul- 

tralight aircraft, usually use commercial grade sensors, where the situation differs. The sensor outputs are 

less stable and sensitive, and suffer from manufacturing limits leading to temperature dependency, bias 

instability, and misalignment which introduces non-negligible disturbances. These conditions commonly 

limit the applicability of the navigation solution since its stand-alone operation using free integration of 

accelerations and angular rates is not stable. This paper addresses a cost-effective solution with com- 

mercial grade inertial sensors, and studies the performance of different approaches to obtain navigation 

solution with robustness to GNSS outages. A main goal of this paper is thus comparison of a nonlinear 

observer and two extended Kalman filter solutions with respect to the accuracy of estimated quantities 

and their sensitivity to GNSS outages. The performance analyses are carried out on real flight data and 

evaluated during phases of the flight when the solutions are challenged by different environmental dis- 

turbances. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cost-effective MEMS (Micro-Electro-Mechanical System) based 

inertial measurement units (IMU) aided with GNSS (Global Navi- 

gation Satellite System) based positioning have become common 

for applications in broad areas of interest, such as piloted light and 

ultralight aircraft, unmanned aerial, terrestrial, and water vehicles. 

For a strapdown navigation solution an inertial navigation system 

(INS) consisting of tri-axial accelerometer (ACC) and tri-axial angu- 

lar rate sensor (ARS) aided with GNSS receiver is used for position, 

velocity and attitude (PVA) estimation. There are various meth- 

ods for INS aiding with using GNSS based measurements based 

on un-coupled ( Savage, 1998a,b ), loosely coupled ( Wolf, Eissfeller, 

& Hein, 1997 ), tightly coupled ( Li, Wang, Rizos, Mumford, & Ding, 

2006 ), and ultra-tightly coupled ( Babu & Wang, 2009 ) integration 

schemes. A variety of the mentioned integration schemes inte- 

grates IMU measurements with GNSS based ones in order to pro- 

vide a stable and robust navigation solution regardless of the con- 

∗ Corresponding author. 

E-mail addresses: jan.rohac@fel.cvut.cz , xrohac@fel.cvut.cz (J. Rohac). 

dition of operation. MEMS based IMUs are compact, lightweight, 

and cost-effective thus offering a cheap solution. However, at the 

same time they suffer from bias instability, insufficient sensitivity, 

noise etc. That presents significant challenges in data processing 

which has to be dealt with in the data fusion process. Moreover, 

the vibration imposed by vehicle or engine motions often dom- 

inates and corrupts ACC measurements ( Alam & Rohac, 2015 ) as 

well as ARS readings depending on g- and g 2 -sensitivity parame- 

ters. On the other hand, accuracy of the single point GNSS based 

measurements can degrade due to ionospheric or tropospheric re- 

fraction, multipath, and/or weak/blocked GNSS signal. However, by 

fusing available data these disadvantages of both individual sys- 

tems can be reduced, and thereby the resultant system can pro- 

vide a robust navigation solution under all environmental condi- 

tions even when GNSS signal is temporally unavailable or it suf- 

fers from increased level of error. The accuracy of the GNSS based 

measurements can be further improved with satellite-based aug- 

mentation system (SBAS) corrections and/or Real-Time-Kinematic 

(RTK) solutions down to the order of cm-level precision. 

There are several approaches for fusing INS/GNSS in order 

to obtain PVA estimates, such as temporally interconnected ob- 

http://dx.doi.org/10.1016/j.arcontrol.2017.03.006 

1367-5788/© 2017 Elsevier Ltd. All rights reserved. 
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Nomenclature 

EKF Extended Kalman Filter 

NO Nonlinear Observer 

GNSS Global Navigation Satellite System 

ACC Accelerometer 

GYR Gyroscope/angular rate sensor 

BF Body frame ( b – frame) 

NED North-East-Down referential coordinate frame 

( n – frame) 

ECEF Earth-Centered-Earth-Fixed coordinate frame 

( e – frame) 

ECI Earth-Centered-Inertial coordinate frame ( i –

frame) 

PVA Position, Velocity, and Attitude 

LP filter Low-Pass filter 

RMSE Root Mean Square Error 

TMO Translational Motion Observer 

C n 
b 

Transformation matrix from the BF to NED 

f b Vector of specific force expressed in the BF 

ω 

b 
ib 

Vector of angular rate between the BF and ECI 

expressed in the BF 

a 

b , v b Vectors of acceleration and velocity expressed 

in BF, 

g n Vector of gravitational acceleration expressed 

in NED, 

ACF Vector of anti-centrifugal force, 

� Vector of Euler angles - ( φ, θ , ψ), 

p 

n 
GNSS 

, v n 
GNSS 

Vectors of position and velocity from GNSS ex- 

pressed in NED, 

b g , b a GYR and ACC bias vectors in BF, 

ˆ x k State vector estimate at a time instance k , 

z, ˆ z k Measurement vector, expected measurement 

vector formed based on ˆ x k , 

T Sampling period, 

‖ · ‖ 2 Euclidean norm of the vector, 

( · × ) Skew-symmetric matrix of the vector. 

servers ( Bristeau & Petit, 2011 ), complementary filters ( Reinstein 

& Kubelka, 2012 ) or Kalman filters (KF) with various architectures 

( Alam, Moreno, Sipos, & Rohac, 2016; Farrell, 2008; Rezaeian et 

al., 2013; Simanek, Reinstein, & Kubelka, 2014; Simon, 2010; Ziha- 

jehzadeh, Loh, Lee, Hoskinson, & Park, 2015 ), eXogenous Kalman 

Filters, nonlinear observers ( Johansen & Fossen, 2016 ), unscented 

Kalman filters (UKF) ( Gustafsson et al., 2002; Ristic, Arulampalam, 

& Gordon, 2004 ) and particle filters (PF) ( Sotak, Sopata, & Kmec, 

2006 ). Due to the dynamic motion of the majority of the vehicles 

being highly nonlinear, the most commonly used approaches uti- 

lize nonlinear observers and extended Kalman filter (EKF). Much 

attention is also paid to UKF and PF, but their applicability is lim- 

ited by high computational loads. In the following sections only 

EKFs and nonlinear observers are studied for the estimation algo- 

rithm and compared, where each approach has its own advantages. 

The KFs generally provide estimates as well as the estimated 

uncertainty of the state vector based on a recursive algorithm ( Bar- 

Shalom, Li, & Kirubarajan, 2004 ). It is a well-established state esti- 

mation approach for a linear or nonlinear state space model which 

works on the assumption that the inputs are normally-distributed 

and characterized by their mean and covariance values. The weak- 

est point of the KF (and EKF) is calculation of the inverse co- 

variance matrix of the measurement vector due to round-off er- 

rors when implemented into microcontrollers and its high com- 

putational cost. There are several methods to solve this problem 

for instance Modified Cholesky factorization (UD decomposition) 

Fig. 1. Block scheme of processes required for position, velocity, and attitude esti- 

mation. 

or sequential approaches, for more details see ( Grewal & Andrews, 

2001 ). Nonlinear observers are based on a deterministic approach, 

contrary to the stochastic approach of the KF, motivated by the 

higher computational load of KFs when applied to nonlinear sys- 

tems. When designing nonlinear observers, the stability proper- 

ties should be determined explicitly, whereas the optimality of 

the KF ensures stability in linear systems, while having no sta- 

bility guarantee for nonlinear systems. In recent years, nonlinear 

observers have been proposed in various fields, where attitude es- 

timation has had extensive research; for instance, see ( Batista, Sil- 

vestre, & Oliveira, 2011a; Batista, Silvestre, & Oliveira, 2011b; Cras- 

sidis, Markley, & Cheng, 2007; Grip, Fossen, Johansen, & Saberi, 

2012; Hamel & Mahony, 2006; Mahony, Hamel, Trumpf, & Lage- 

man, 2009; Salcudean, 1991; Thienel & Sanner, 2003; Vik & Fossen, 

2001 ). A common approach to determine attitude is to compare 

corresponding vectors in two coordinate frames, e.g. ( Salcudean, 

1991 ). These vectors can be based on e.g. gyroscopic data, ( Vik & 

Fossen, 2001 ), magnetometer or velocity measurements, ( Hamel & 

Mahony, 2006 ). A modular observer structure consisting of an at- 

titude observer and translational motion observer was proposed in 

Grip, Fossen, Johansen, and Saberi (2013 ). Here the advantage is 

that the observer gains can be fixed or slowly time-varying lead- 

ing to a decrease in computational load, compared to the KF gain 

estimation which is carried out at every iteration. 

A main contribution of this paper lies in a providing a de- 

tailed performance analysis of loosely coupled navigation solutions, 

where a nonlinear observer and two EKF solutions with different 

architectures/models incorporated are in focus. For the EKFs two 

different architectures are presented, one with a 21-state single- 

stage and the other with a multi-stage configuration. The estima- 

tion algorithms are verified on real flight data from a Slingsby T67C 

aircraft, detailed in Section 4 . This paper thoroughly investigates 

the robustness of the individual estimation approaches with re- 

spect to GNSS outages. 

The paper is organized as follows: Section 2 outlines the 

estimation approaches used in the paper to estimate PVA. 

Section 3 presents a complete description of a sensor assembly and 

related description for flight experiments. Section 4 presents ex- 

perimental verification, robust performance analysis and compar- 

ison of each estimation techniques with respect to GNSS outages 

when compared to the referential positioning system using RTK 

based GNSS positioning. Section 5 concludes the paper with final 

remarks. 

2. Principles and models used 

Navigation systems are primarily supposed to provide PVA es- 

timates. The navigation data are typically estimated by a chain of 

processes schematically shown in Fig. 1 . 

Signal/data preprocessing can differ according to vehicle dy- 

namics and types of sensors utilized. The sensors might have ana- 

log as well as digital outputs. In the case of analog outputs, the 

preprocessing requires A/D conversion. The LP filter is then used 

for both high-frequency components reduction and as an anti- 

aliasing filter. When the outputs are in digital form then a digital 

LP filter is utilized only. It is very important to choose the cut- 
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off frequency correctly and additionally observe the group delay. 

Usually, the sensor’s bandwidth is about 300 Hz up to 800 Hz de- 

pending on the sensor’s type. If high rate navigation solution is 

required, which is generally intended for airborne applications, the 

frequency bandwidth can be reduced down to 50 or 40 Hz. In some 

applications it can go even lower down to 20 or 10 Hz, but it is 

not a common case. Deterministic error’s compensation is a fur- 

ther key process minimizing effects of non-orthogonality of sens- 

ing axes, sensor scale factors, temperature dependencies as well as 

misalignment of sensor frame mounted into vehicle body frame. 

Most of these deterministic error corrections can be done during 

in-flight/motion calibration procedures; however, the most com- 

mon way is to calibrate sensor errors separately, see ( Alam, Sipos, 

Rohac, & Simanek, 2015; Rohac, Sipos, & Simanek, 2015 ). 

Navigation data generally consists of position, velocity, and atti- 

tude. These quantities are evaluated via dead-reckoning principles 

according to ( 1 )–( 4 ). The process is well known as mechanization 

of strapdown navigation equations. More details can be found in 

( Salychev, 2004; Savage, 1998a,b; Titterton & Weston, 2004 ). 

˙ v n = C n b f 
b + g n −

(
2 ω 

n 
ie + ω 

n 
en 

)
× v n , (1) 

˙ C e n = C e n ( ω 

n 
en ×) , (2) 

˙ p n U p = −v n Down , (3) 

˙ C n b = C n b 

(
ω 

b 
ib ×

)
−

(
ω 

n 
in ×

)
C n b , (4) 

where low-letter indices indicate the quantity frame or frames 

relation ( en – NED with respect to ECEF, ie - ECEF with re- 

spect to ICI, ib – BF with respect to ECI), or the axis within the 

frame, upper indices define in which frame the vector is expressed, 

ω 

n 
in 

= ω 

n 
ie 

+ ω 

n 
en . 

In the case of cost-effective solutions ( 1 )–( 4 ) can be reduced 

due to limited sensor’s sensitivity into form 

˙ v n = C n b f 
b + g n , (5) 

˙ p n U p = −v n Down , (6) 

˙ C n b = C n b 

(
ω 

b 
ib ×

)
. (7) 

This INS mechanization has been known for a long time and 

has been verified in many applications ( Simon, 2010 ). However, 

it still works with just raw inertial data passed through a LP fil- 

ter and extracted from deterministic sensor’s errors. To further im- 

prove the performance, accuracy, and robustness of the navigation 

solution data fusion is commonly used to combine inertial data 

with aiding systems. These aiding systems can vary based on a 

particular application having a different form and the integration 

can use different schemes. In this paper two different approaches 

are discussed and compared, i.e. extended Kalman filter in its sin- 

gle and dual structure and nonlinear observer. Data fusion helps 

estimate sensor’s bias which is crucial in phases when aiding sys- 

tems cannot be used. In addition to dealing with sensor errors and 

bias, applied navigation solutions need to take vehicle vibrations 

into consideration as they affect inertial measurements in terms of 

angular rates and specific forces read out. 

The contribution of this paper is in designing different navi- 

gation solutions, tuning their parameters and in comparing their 

performances and analyzing their robustness to GNSS outages and 

vehicle harsh environment with high vibration impacts. 

2.1. Extended Kalman filtering 

Extended Kalman filters (EKFs) are used as nonlinear estima- 

tors for navigation solutions. More details about the EKF algorithm 

can be found in ( Grewal & Andrews, 2001 ). A basic example of an 

INS/GNSS integration scheme using a 12-dimensional state vector 

( 8 ) containing position, velocity, attitude, and gyro bias, all driven 

by a control vector u consisting of measured angular rates and 

specific forces, is shown in Fig. 2 . The measurement vector ( 9 ) is 

3-dimmensional and includes only GNSS based position converted 

to the local navigation coordinate frame ( Nemra & Aouf, 2010 ). 

The process with a transition function ( 10 ) is capable of filtering 

GNSS based position and use it for attitude corrections and gyro 

bias estimation. The performance of this kind of estimation can be 

found in ( Hansen, Rohac, Sipos, Johansen, & Fossen, 2016 ). This ap- 

proach is not robust to GNSS outages since it does not allow for 

estimation of ACC bias. Therefore, several enhanced models were 

designed and studied and can be found in following sections. 

ˆ x = [ ̂  p 

n ˆ v b ˆ � ˆ b g ] 
T ; u = 

[
ω 

b 
ib f b 

]T 
(8) 

z = [ p 

n 
GNSS ] ; ˆ z k = 

[
ˆ p 

n 
]

(9) 

x k+1 = x k + T ·

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C n 
b 
v b 

f b + v b ×
(
ω 

b 
ib 

− b g 

)
− C b n g 

n [ 

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ sec θ cos φ sec θ

] (
ω 

b 
ib 

− b g 

)
b g 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(10) 

2.1.1. Single structure EKF based estimator 

Even if we are using a loosely coupled integration scheme in 

both approaches, a single structure EKF, shown in Fig. 3 , provides 

in one block both position/velocity estimation as well as attitude 

estimation. That provides the strongest connection between GNSS 

based position and velocity measurements and the attitude estima- 

tion, and furthermore, ensures all inputs with their noise satisfy a 

condition of white noise character. The white noise character en- 

sures according to the KF theory the best and stable KF/EKF per- 

formance. The state vector ( 11 ) against the 12-state EKF based es- 

timator described by ( 8 )–( 10 ) includes even accelerations and an- 

gular rates modeled as a random constant and bias of all ACCs and 

gyros. Acceleration and angular rate states are generally modeled 

as an exponentially correlated process; however, large correlation 

time needs to be considered and thus it all comes close to a ran- 

dom constant model with a white noise as a driving source. The 

bias is also modeled as a random constant which corresponds to 

the initial offset estimation. It is supported by added driven noise 

which makes bias time varying as it is supposed to; nevertheless, 

a standard deviation of the driven noise differs. A time update of 

the state vector respects a transition function in ( 12 ) with a zero 

control vector. All measurements get into the model via a measure- 

ment vector ( 13 ). A very important part of the measurement vec- 

tor is a specific force compilation with a compensated centripetal 

force applied when the vehicle is moving and turning simultane- 

ously, i.e. experiencing dynamic motion. 

ˆ x = [ ̂  p 

n ˆ v b ˆ a 

b ˆ � ˆ ω 

b 
ib 

ˆ b a 
ˆ b g ] 

T , u = 0 (11) 

x k+1 = x k + 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C n 
b 

· T ·
(

v b + 

1 

2 

T · a 

b 

)
T · a 

b 

0 3 x 3 

T ·
[ 

1 sinϕ cosθ cosϕ cosθ
0 cosϕ −sinϕ 

0 sinϕ secθ cosϕ secθ

] 

· ω 

b 
ib 

0 3 x 3 

0 3 x 3 

0 3 x 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(12) 
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Fig. 2. Single structure 12-state EKF based estimator. 

Fig. 3. Single structure EKF based estimator of position, velocity, and attitude. 

z = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

p 

n 
GNSS 

v n GNSS 

f b∗

ω 

b∗
ib 

⎤ 

⎥ ⎥ ⎥ ⎦ 

; ˆ z k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ p 

n 

ˆ C n 
b 

ˆ v b 

ˆ a 

b − ˆ C b n 

[
0 0 1 

]T + ˆ ω 

b 
ib 

× ˆ v b + ̂

 b a 

ˆ ω 

b 
ib 

+ ̂

 b g 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(13) 

where 

C n b = 

[ 

c θ c ψ 

−c φs ψ 

+ s φs θ c ψ 

s φs ψ 

+ c φs θ c ψ 

c θ s ψ 

c φc ψ 

+ s φs θ s ψ 

−s φc ψ 

+ c φs θ s ψ 

−s θ s φc θ c φc θ

] 

(14) 

where c φ = cos φ, s φ = sin φ, etc. 

The model described by ( 11 )– ( 14 ) assumes a vehicle with some 

slower dynamic, i.e. longer correlation times, and thus it allows 

to use random constant models for angular rates and accelera- 

tion modeling with sufficiently high driving noise. For more details 

about concrete values please see Appendix A . 

2.1.2. Dual structure EKF based estimator 

This section describes the details of the dual structure EKF for 

the PVA estimation. The overall estimation process is divided into 

two main sections; an Attitude estimator and a Position/Velocity 

estimator. By using cascaded Kalman filtering, this method avoids 

the need to propagate additional states, resulting in the covariance 

propagation to become more computationally efficient. The novelty 

in the proposed algorithms lies in the imposed state constraints 

in the attitude estimation for evaluating the external forces on the 

ACCs. The overall estimation process is shown in a block scheme in 

Fig. 4 . In the following sections, each part of the estimator struc- 

ture will be introduced in detail. 

2.1.2.1. Attitude EKF based estimator. The vehicle attitude is repre- 

sented in this case by Euler angles since we assume singularity 

free calculations. This assumption comes from the operation condi- 

tions and limits of any aircraft. The state vector ( 15 ) is updated via 

a transition function ( 16 ) when angular rates form a control vec- 

tor. Expected measurements ( 17 ) are related to ACC readings when 

only gravity affects the sensor, which means non dynamic motion. 

ˆ x = 

[
ˆ � ˆ b g 

]T 
, u = ω 

b 
ib = 

[
ω b x , ω b y , ω b z 

]T 
(15) 

x k+1 = x k + 

+ T ·

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

[ 

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ sec θ cos φ sec θ

] ( [ 

ω b x 

ω b y 

ω b z 

] 

−
[ 

b g x 
b g y 
b g z 

] ) 

0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(16) 

z = 

⎡ 

⎢ ⎣ 

f x 
f y 
f z 

ψ GNSS 

⎤ 

⎥ ⎦ 

, ˆ z k = 

⎡ 

⎢ ⎣ 

−sinθ
sinφcosθ
cosφcosθ

ψ 

⎤ 

⎥ ⎦ 

(17) 

The heading ( ψ) is evaluated based on the GNSS velocities as 

ψ GNSS = atan 2 

(
V GNSS East 

, V GNSS North 

)
, (18) 

and is used for aiding when following condition is fulfilled. 

nor m Ve l GNSS 
= 

√ 

V GNSS 
2 
North + V GNSS 

2 
East > 3 m/s (19) 

We note that usage of GNSS velocities provides the course an- 

gle, which is equal to the heading angle only when the crab angle 

is zero. This assumption leads to a reasonable approximation when 

winds and curves are not too large. If the nor m Ve l GNSS 
is less than 

3 m/s, then the heading estimation based on GNSS velocity is noisy. 

If the ACC and gyro readings are affected by vibration arising from 
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Fig. 4. Enhanced IMU/GNSS loosely-coupled integration scheme using a dual structure EKF estimator. 

the vehicle’s structures, an adaptive pre-processing can be applied 

before the data are used inside EKF, for details on adaptive filtering 

for reducing vibration impact please see ( Alam & Rohac, 2015 ). 

As shown in the block diagram in Fig. 4 , the gyro bias is fed 

back to the gyro input. One of the crucial part in the attitude es- 

timator is the dynamic detection. The ACC data are only used as 

measurement whenever there is no significant dynamics detected 

in the vehicle’s motion. 

2.1.2.2. Dynamic detection. For the ACC based aiding in an attitude 

estimator it is crucial to recognize conditions under which ACC 

readings are affected by only gravity, which means no dynamic 

change in the motion. For this purpose, we have designed dynam- 

ics detector formed by 3 parameters which are monitored simul- 

taneously for particular data history. In our case it was set to a 

history window of 0.5 s. These monitoring parameters are: 

1. The norm of the ACC readings 

AC C norm 

= 

√ 

f 2 x + f 2 y + f 2 z (20) 

2. The norm of the gyro data 

GY R norm 

= 

√ (
ω b x − b g x 

)2 + 

(
ω b y − b g y 

)2 + 

(
ω b z − b g z 

)2 
(21) 

3. The rate of heading change 

˙ ψ = 

( (
ω b y − b g y 

)
sinφ

cosθ
+ 

(
ω b z − b g z 

)
cosφ

cosθ

) 

(22) 

In an ideal case only ACC norm 

can be monitored for detect- 

ing dynamics; and when it equals to 1g, no dynamic conditions 

could be considered. However, under real operating conditions un- 

der harsh environment bounds/thresholds should be set to allow 

possibility for variation along with monitoring the parameters from 

( 20 ) to ( 22 ). We have thus considered following conditions and no 

dynamic motion is assumed to be present when all three condi- 

tions are met simultaneously. 

Condition 1: | AC C norm 

− 1 g | < threshol d ACC . 

Condition 2: | GYR norm 

| < threshold GYR . 

Condition 3: | ˙ ψ | < threshol d ARS . 

The threshold values are chosen depending on a vehicle type 

and/or adaptively modified according to operational conditions. 

The three parameters from ( 20 ) to ( 22 ) are monitored for 0.5 s 

from the history of the estimation, when all Conditions 1-3 are met 

throughout this window of 0.5 s, it is considered that ACC output 

is affected just by gravity and thus ACC based attitude estimation 

are used for compensating the attitude obtained primarily by free 

integration of GYR data. 

2.1.2.3. Position/velocity EKF based estimator. The estimator esti- 

mates position in NED frame, velocity in the body-frame and ACC 

bias of the vehicles while using GNSS position and velocity as aid- 

ing measurements. The state vector ( 23 ) is updated via the tran- 

sition function ( 24 ) where the control vector u ( 23 ) contains ACC 

measurements in terms of a specific force, Euler angles and anti- 

centrifugal force. The measurement vector ( 25 ) contains position 

estimates from GNSS and downward velocity in body axis. The es- 

timation equations are given as: 

ˆ x = 

[ 
ˆ p 

n ˆ v b ˆ b a 

] T 
, u = 

[
f b , �, ACF 

]T 
, (23) 

x k+1 = x k + T ×

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C n 
b 
v b ( [ 

f x 
f y 
f z 

] 

−
[ 

b ax 

b ay 

b az 

] ) 

+ C n 
b 

T 

[ 

0 

0 

1 

] 

− ACF 

0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (24) 

z = 

[
p 

n 
GNSS 

v b GNS S Down 

]
, ˆ z k = 

[
ˆ p 

n 

ˆ v b Down 

]
. (25) 

The ACF is the vector of anti-centrifugal force experienced by 

the vehicle and is calculated as: 

ACF = −

⎛ 

⎜ ⎝ 

v 
(
ω b z − b g z 

)
− w 

(
ω b y − b g y 

)
−u 

(
ω b z − b g z 

)
+ w 

(
ω b x − b g x 

)
u 

(
ω b y − b g y 

)
− v 

(
ω b x − b g x 

)
⎞ 

⎟ ⎠ 

. (26) 

As shown in the estimation block diagram in Fig. 4 , it is im- 

portant to validate GNSS data before they are processed. Any bad 
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sample from the GNSS data may cause an inaccurate estimation of 

the state vector. The GNSS data validation is further explained in 

the next section. 

2.1.2.4. GNSS data validation. Position estimated from the GNSS 

data is validated using quadratic polynomial fitting. The valida- 

tion is carried out as follows. At first a GNSS position is predicted 

based on the 2 s data history of GNSS positions using quadratic 

polynomial fitting RMSE minimization. Then the deviation between 

the latest GNSS position and the predicted GNSS position is deter- 

mined as: 

d e v GNSS pos = lastes t GNS S pos 
− pred icte d GNS S pos 

. (27) 

If the magnitude of the deviation is greater than a threshold 

value, then the latest GNSS data are discarded. 

i f 
∣∣de v GNSS pos 

∣∣ > thershol d GNSS 

⇒ discard the latest GNSS position (28) 

The advantage of having velocity in the BF as a state in the Posi- 

tion/Velocity estimator is that, when the vehicle doesn’t experience 

side-slips or vertical decent, the concept of “Perfect Measurement”

can be used. That means during the outage of GNSS signal, we can 

provide/assume velocity in Y- and Z-axis in the BF is zero. This as- 

sumption helps stabilizing the ACC bias estimate in case of GNSS 

signal outages. 

2.2. Nonlinear observer 

The kinematic equations describing position, p 

e , linear velocity, 

v e , attitude in the quaternion, q e 
b 
, and GYR or ACC bias b b are given 

as: 

˙ p 

e = v e , (29) 

˙ v e = −2 

(
ω 

e 
ie ×

)
v e + f e + g e 

(
p 

e 
)
, (30) 

˙ q 

e 
b = 

1 

2 

q 

e 
b � ω̄ 

b 
ib −

1 

2 

ω̄ 

e 
ie � q 

e 
b , (31) 

˙ b 

b 
g = 0 , ˙ b 

b 
a = 0 . (32) 

The position and velocity are given in the ECEF, while the gyro 

and ACC bias is in the BF, and the attitude is expressed as a unit 

quaternion describing the rotation between BF and ECEF. The grav- 

ity vector, g e ( · ), is assumed known for a given position, while 

a vector x ∈ R 

3 can be represented as a quaternion with zero real 

part and vector part x , i.e. x̄ = [ 0 ; x ] . The Earth rotation, ω 

e 
ie 

, is con- 

stant and known, and the product of two quaternions, q 1 and q 2 , is 

given as q 1 �q 2 . The gyro bias, b b g , and ACC bias, b b a , are considered 

to be slowly time-varying. 

2.2.1. Nonlinear GNSS/INS integration 

The nonlinear observer structure consists of two parts; an at- 

titude estimator and a translational motion observer, ( Grip et al., 

2013 ). The attitude estimator determines the vehicle attitude from 

inertial measurements, whereas the translational motion observer 

utilizes global measurements provided by a GNSS receiver as well 

as specific force measurements. 

An estimate of the specific force in the ECEF is fed back from 

the TMO to the attitude estimator, making the structure a feed- 

back interconnection of two subsystems. The observer structure 

was shown to be semi-globally stable in ( Grip et al., 2013 ). The 

observer structure can be seen in Fig. 5 . In the following sections, 

each part of the observer structure will be introduced in detail. 

Fig. 5. Nonlinear observer structure consisting of attitude and translational motion. 

2.2.2. Attitude estimation 

The vehicle attitude is represented by a unit quaternion, ˆ q e 
b 
, de- 

scribing the rotation from BF to ECEF. Furthermore, the attitude es- 

timator also determines a gyro bias estimate, ˆ b b , to compensate for 

sensor drift. The attitude estimation is given by, ( Grip et al., 2012; 

Mahony et al., 2009 ): 

˙ ˆ q 

e 

b = 

1 

2 

ˆ q 

e 
b �

(
ω̄ 

b 
ib,IMU − ˆ b 

b 
g + ˆ σ

)
− 1 

2 

ω̄ 

e 
ie � ˆ q 

e 
b , (33) 

˙ ˆ b 

b 

g = Proj 

(
−k I ̂  σ, 

∥∥∥ˆ b 

b 
g 

∥∥∥
2 

≤ M ˆ b 

)
. (34) 

Here the projection function, Proj( ·, ·), limits the gyro bias es- 

timate to be within a sphere of radius M ˆ b 
, where k I is a constant 

gain and ˆ σ is an injection term. The injection term is based on the 

comparison of two vectors in the BF, v b 
1 

and v b 
2 
, with two corre- 

sponding vectors in the ECEF, v e 
1 

and v e 
2 
: 

ˆ σ = k 1 v b 1 × R 

(
ˆ q 

e 
b 

)T v e 1 + k 2 v b 2 × R 

(
ˆ q 

e 
b 

)T v e 2 . 

The gains, k 1 and k 2 , are positive and sufficiently large tun- 

ing constants. The vectors can be chosen in various ways utilizing 

e.g. magnetometer or pressure measurements. Here the vectors are 

chosen, based on specific force and heading from the GNSS veloc- 

ity, as: 

v b 1 = 

f b IMU ∥∥ f b 
IMU 

∥∥
2 

, v e 1 = 

ˆ f e ∥∥∥ ˆ f e 
∥∥∥

2 

, v b 2 = 

[ 

cos ( ψ ) 
− sin ( ψ ) 

0 

] 

, v e 2 = R 

e 
n 

[ 

1 

0 

0 

] 

, 

where the specific force estimate, ˆ f e , is determined by the transla- 

tional motion observer. The reference vector v e 
2 

denotes the direc- 

tion North decomposed in the ECEF, while the corresponding body 

vector, v b 
2 
, utilizes the heading angle ψ . The heading angle can be 

obtained from a compass or in this case from GNSS velocity mea- 

surements in NED: 

ψ = tan 

−1 
( v e 

v n 

)
, 

where v n and v e signifies the velocity in North and East direction. 

2.2.2.1. Accelerometer bias estimation. The bias of the accelerom- 

eter measurements can be considered a slowly time-varying 

value added to the true measurements; f b 
IMU 

= f b + b b a . Consid- 

ering a combination of parameters θ = [ ‖ ̂ b b a ‖ 2 , ( ̂ b b a ) 
T 

] T and φ = 

[ 1 , −2 ( f b 
IMU 

) 
T 

] T the measurement for the injection term can be 

expressed; y f = ‖ ̂ b b a ‖ 2 − 2 ( f b 
IMU 

) T ˆ b b a , as presented in Grip et al. 

(2012, 2016) . The combination vector propagation is then ex- 

pressed as, ( Grip et al., 2012 ): 

˙ ˆ θ = �φ
(

y f − φT ˆ θ
)
, 

where � is a positive-definite symmetric gain matrix. The ACC bias 

is carried out under the assumption that there is sufficient excita- 

tion of the vehicle for the ACC to experience versatile acceleration. 
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Formally this requirement is expressed as an assumption that: 

t+ T 
∫ 
t 

φ( τ ) φT ( τ ) dτ ≥ εI, 

where ε > 0 and T > 0 such that for each t ≥ 0 the condition is 

satisfied and the persistently excitation assumption is valid. 

The ACC bias estimation can be implemented similarly to the 

gyro bias estimation, ( Grip, Fossen, Johansen, & Saberi, 2016 ): 

˙ ˆ θ = Proj 

(
�φ

(
ˆ y f − φT ˆ θ

)
, 

∥∥∥ ˆ θ
∥∥∥

2 
≤ M ˆ w 

)
, 

where M ˆ w 

is a bound on the length of the bias vector. 

2.2.3. Translational motion observer 

The translational motion observer estimates position, linear ve- 

locity and specific force of the vehicle by using injection terms 

based on the difference in measured and estimated global posi- 

tion. A GNSS receiver provides the global position measurements. 

The TMO is given as: 

˙ ˆ p 

e = 

ˆ v e + θK pp 

(
p 

e 
GNSS − ˆ p 

e 
)

+ K pv 
(
v e GNSS − C v ̂  v e 

)
, (35) 

˙ ˆ v 
e = −2 

(
ω 

e 
ie ×

)
ˆ v e + 

ˆ f e + g e 
(

ˆ p 

e 
)

+ θ2 K v p 
(

p 

e 
GNSS − ˆ p 

e 
)

+ θK vv 
(
v e GNSS − C v ̂  v e 

)
(36) 

˙ ξ = −R 

(
ˆ q 

e 
b 

)(
ˆ σ×

)
f b IMU + θ3 K ξ p 

(
p 

e 
GNSS − ˆ p 

e 
)

+ θ2 K ξv 
(
v e GNSS − C v ̂  v e 

)
, 

(37) 

ˆ f e = R 

(
ˆ q 

e 
b 

)
( f b IMU − b 

b 
a ) + ξ. (38) 

Here an auxiliary state, ξ, has been introduced for estimation 

of the specific force. The tuning parameter θ is typically chosen 

to be equal to 1. The additional injection term based on linear ve- 

locity measurements and estimates was shown in Grip, Fossen, Jo- 

hansen, and Saberi (2012a ) not to be essential to the observer sta- 

bility, however, it does increase performance. Hence the matrix C v 
can be chosen to be zero. 

Introducing the error variables; ˜ p = p 

e − ˆ p 

e , ˜ v = v e − ˆ v e , and 

˜ f = f e − ˆ f e , the state vector of the error dynamics can be stated 

as ˜ x = [ ̃  p ; ˜ v ; ˜ f ] . The gains of the translational motion observer can 

then be chosen to satisfy ( A − KC ) being stable where: 

A = 

[ 

0 3x3 I 3x3 0 3x3 

0 3x3 0 3x3 I 3x3 

0 3x3 0 3x3 0 3x3 

] 

, C = 

[
I 3x3 0 3x3 0 3x3 

0 3x3 I 3x3 0 3x3 

]
, 

K = 

[ 

K pp K p v 
K v p K v v 
K ξp K ξv 

] 

. (39) 

The gains can be chosen to be constant without issue to the 

stability of the observer. However, in Bryne, Fossen, and Johansen 

(2014 ) it was shown that time-varying gains give faster conver- 

gence and aid in sensor noise suppression. Since the translational 

motion observer is similar in structure to the EKF the gain matrix 

K can be determined similarly by solving a Riccati equation. Fur- 

thermore, it is possible to update the time-varying gain matrix on 

a slower time scale, leading to a smaller computational footprint. 

3. Experimental setup 

The flight experiment was conducted using a Slingsby T67C air- 

craft (General Aviation category) shown in Fig. 6 (left). To obtain 

GNSS data and inertial data, we have used a DMU-10 ( Silicon & 

Sensing, 2016 ) IMU which was connected with a MAX8W (μBlox) 

GNSS receiver. The DMU-10 is of commercial grade with 6 de- 

gree of freedom MEMS based IMU consisting of 3 gyros, 3 ACCs 

and a temperature sensor. The data from the GNSS receiver and 

DMU-10 were pooled by a microcontroller STM32F746ZGT6 (STMi- 

croeletcronics) and saved as raw data to a SD logger through CAN 

bus with CANAerospace protocol incorporated. The data from the 

IMU and GNSS receiver were sampled at 200 Hz and 5 Hz respec- 

tively. The data from an X91 + GNSS receiver were sampled at 5 Hz 

and were related to measurements obtained from GNSS stationary 

reference station placed in Pribram city, which is a part of Czech 

Reference GNSS Station Network (CZEPOS). The GNSS data were 

processed in the open source RTKlib to give an accurate RTK-GNSS 

based position used in our paper as a reference for comparing re- 

sults of proposed approaches. The navigation unit was mounted 

in a sensory compartment inside a Pelicase 1450 as depicted in 

Fig. 6 (right) and placed onboard the aircraft as shown in Fig. 7 

(left). The GNSS antennae were mounted on the cabin cover as 

shown in Fig. 7 (right). More details about the parameters of DMU- 

10 unit can be found at Fig. 8 . 

3.1. Allan variance analysis 

The Allan Variance (AVAR) analysis is a frequently used tool 

to identify stochastic parameters of inertial sensors. It is a time- 

domain approach to analyze time series of data in terms of the 

noise characteristics. D. W. Allan introduced the AVAR in 1966 

( Allan, 1966 ). Originally, it was oriented at the study of oscilla- 

tor stability; however, after its first publication this kind of anal- 

ysis was adopted for general noisy data characterization. Because 

of the close analogies to inertial sensors, the AVAR has also been 

included in the IEEE Standards, (e.g. IEEE Std. 1293; IEEE Std. 528; 

IEEE Std. 647 ). We thus carried out AVAR analysis on the DMU-10 

unit used in the performed experiments, and further on fiber op- 

tic gyro DSP-3100 (KVH manufacturer) and a quartz accelerometer 

INN-204 (Innalabs manufacturer) to compare noise characteristics 

of DMU-10 with tactical grade inertial sensors. The results are de- 

picted in Fig. 9 and summarized in Table 1 . The results fit with 

datasheet values presented at Fig. 8 . 

The robustness of the navigation solution is always related to 

estimate bias of inertial sensors as accurately as possible via means 

of aiding systems when they are available. In the case of the stud- 

ied DMU-10 IMU the bias instability according to Fig. 9 causes a 

standard deviation of 0.0014 °/s in angular rates and 26 μg in mea- 

sured specific force. To design such a FIR filter capable to get a bias 

instability out of an original signal it was required first to decimate 

output data sampling frequency, in our case it was to 1 Hz, and 

then to design FIR filter with an equiripple window with parame- 

ters as shown in Fig. 10 . The cut-off frequency was set to 0.001 Hz, 

which means 0.002 π rad/sample as a normalized frequency. The 

result of a zero-phase filtering (MATLAB function “filtfilt”) is de- 

picted in Fig. 11 . A standard deviation reached in the case of angu- 

lar rate was 0.0034 °/s and 58 μg in the case of ACC data. Even the 

resultant standard deviations did not reach the values evaluated by 

AVAR, they can still show an estimated bias progression which is 

a key element of robustness analysis given in Section 4 . Obtained 

values can thus serve as a qualificator when a complete navigation 

is analyzed and inertial sensor’s bias estimated. 

4. Experimental verification 

4.1. Description of the experiment 

The flight included various flight patterns including slow turns 

and rapid altitude changes, see Fig. 12 (left). The flight included 

rapid altitude change from 450 m up to 1040 m and vice-versa. The 

flight took about 33 min including rolling, take-off, climb, cruise, 

descent, and landing as marked in Fig. 12 (right). Since different 

stages during the flight had different conditions for the navigation 
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Fig. 6. Slingsby T67C aircraft (left), the sensory compartment inside Pelicase 1450 (right). (For interpretation of figures in color, the reader is referred to the web version of 

this article.) 

Fig. 7. Measurement assembly onboard aircraft Slingsby T67C in a sensory compartment with a referential GNSS system on the top (left) and GNSS antennae mounted on 

the cabin cover (right). 

Table 1 

Summarized key stochastic parameters from the AVAR analysis. 

Parameter DMU10 Fs = 200 Hz DSP-3100 Fs = 1kHz INN-204 Fs = 1kHz 

GYR ARW ( °/ �h ) 0.35 0.03 X 

BIN ( °/ h ) 7.53 0.60 X 

ACC VRW ( m / s / �h ) 0.05 X 0.01 

BIN (mg) 0.04 x 0.01 

Fig. 8. Measurement unit DMU-10 (left) with its datasheet values (right) ( Silicon, & 

Sensing, 2016 ). 

unit to operate, we divided the obtained data according to particu- 

lar flight stages and analyzed the navigation solution performance 

separately in each of them. During the flight, there were conditions 

with high dynamics reaching angular rates up to ±50 °/s and values 

of specific force of −5.2 g and + 2.3 g. 

Moreover, data suffered from strong influence of vibrations with 

a frequency spectrum varying according to the propeller RPM. 

Figs. 13 and 14 thus indicate vibration differences related to spe- 

cific force progressions at particular stages, i.e. rolling and taking- 

off, in terms of time and frequency domain. It can be seen that the 

effects of propeller rotation is strongly influenced at 20 Hz. 

Due to having access to compare our final estimation with a 

reference our experimental setup included a dual-frequency GNSS 

receiver X91 + (CHC) with output processed by RTKlib ( www.rtklib. 

com ). The static accuracy of the reference position was about 1 cm 

(1 σ ), when the RTK based solution reached the fix status and 5 cm 

(1 σ ) when the solution corresponded to the float status. During 

the flight presented in this paper the fix status occurred in 92.8%, 

in 7.2% there was a float status (see Fig. 12 (left)). Nevertheless, at 

closer look after the evaluation of single point GNSS and RTK-GNSS 

based solutions it was possible to see the difference in position 

estimate. Observed deviations are shown in Fig. 15 , where as it can 

be seen the differences between these estimates vary depending 

on dynamic changes during maneuvering. 

4.2. Performance analysis under GNSS ON conditions 

The estimation was carried out using three different approaches 

as described in Section 2 . The 9 fundamental parameters for nav- 
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Fig. 9. Allan deviation plot of a tactical grade gyro DSP-3100 and gyro of DMU10 unit (left), a tactical grade accelerometer INN-204 and accelerometer of DMU10 unit (right). 

Fig. 10. FIR filter magnitude response with its parameters. 

Fig. 11. Progression of a raw angular rate (left) and specific force (right) – DMU10 IMU – with its filtered variant (top), detailed progression (bottom). 

Fig. 12. 2D trajectory of the flight performed – referential data obtained with RTKlib 2.4.2 with an indicated status of the GNSS receiver (blue – fix, red - float) (left); an 

altitude profile of the flight with emphasized stages (right). (For interpretation of figures in color, the reader is referred to the web version of this article.) 
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Fig. 13. Specific force progressions measured in a body frame of the aircraft during a rolling stage (left) and take-off (right). 

Fig. 14. An amplitude spectrum of the measured specific forces along longitudinal (x), lateral (y), vertical-down (z) axes during a rolling stage (left) and take-off (right). 

Fig. 15. Deviation between position in NED frame between single point GNSS and 

RTK-GNSS based evaluation. 

igation, i.e. PVA, were estimated in addition to ACC and GYR bias. 

Before studying the robustness of the proposed navigation solution 

with respect to GNSS outages it is important to show how these 

solutions work under ideal conditions, i.e. when GNSS based posi- 

tion is available all the time with a specified update rate, here it 

is 5 Hz. Fig. 16 depicts progressions of the position (left) and ve- 

locity (right) obtained from all available sources supplemented by 

the three studied approaches. As depicted all progressions are very 

close to each other, the plots do not show any meaningful devi- 

ation via a low resolution, thus a corresponding deviation plot is 

shown in ( Fig. 17 ). In Fig. 18 there are shown progressions of es- 

timated attitude for the entire flight and additionally for periods 

of interest presenting zoomed-in views to see differences in more 

details. The zoomed view of Fig. 18 (right) shows the advantage of 

usage ACC based compensation to decrease the effect of free inte- 

gration of angular rates in the φ progression. This time slot of in- 

terest corresponds to the situation when the aircraft was descend- 

ing and landing. Nevertheless, in θ channel this kind of compen- 

sation would make a big error in pitch angle during the take-off

phase as indicated. Clearly, studied navigation solutions according 

to mentioned phenomena are fusing ACC based attitude with a cal- 

culated one from angular rates by free integration correctly since 

they are insensitive to potential errors during take-off but still tak- 

ing ACC based attitude into account which is confirmed by a cor- 

rect behavior in φ channel when the aircraft is steady after landing. 

From the ψ channel it can be seen how initial information about 

the heading is treated. It is important to mention that the head- 

ing estimation increases its accuracy with the velocity and thus 

the presented approaches take heading evaluated from GNSS ve- 

locity into account only when the horizontal GNSS based velocity 

overcomes 3 m/s. Cyan doted “rain” indicates when the velocity is 

under 3 m/s and is not sufficiently accurate for heading evaluation, 

since it is not reliable as shown in Fig. 18 . 

ACC and gyro bias progressions are shown in Fig. 19 . In these 

cases, there is no reference value so it is hard to say which pro- 

gression is correct. Nevertheless, the fluctuation of the bias esti- 

mates is a matter of driving noise values set in the matrix Q in 

the case of EKF and in the case of NLO it is a matter of tuning 

parameters such as � and k I in addition to the Q matrix values. 

The final position estimation was compared with the RTK-GNSS 

and the root mean square error (RMSE) is summarized in Table 2 . 

The difference among the three presented methods is seen to be 

small, based on the summarized performance presented in Table 2 . 

48



J. Rohac et al. / Annual Reviews in Control 43 (2017) 91–106 101 

Fig. 16. The whole flight progressions of position (left) and velocity (right) estimation. 

Fig. 17. Deviation plot of estimated and GNNS based position (left) and velocity (right). 

Fig. 18. Attitude estimation – the whole flight progressions (left), zoomed-in parts of interest (right). 

Table 2 

Resultant RMSE values for NED position estimates with respect to RTK-GNSS estimates (S-EKF – Single Structure EKF; D-EKF 

– Dual Structure EKF; NLO – Nonlinear Observer) green and red indicate the best and worst results. 
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Fig. 19. Accelerometer bias (left) and gyro bias (right) in all 3 body axes. 

Fig. 20. Position progressions with GNSS outages marked by red circles. (For in- 

terpretation of figures in color, the reader is referred to the web version of this 

article.) 

4.3. Sensitivity analysis under GNSS outage conditions 

For the sensitivity analysis of the studied estimation approaches 

when GNSS data are unavailable via GNSS signal outage we have 

used artificially induced outages by switching the GNSS data off. 

In those instances, here calling slots, the GNSS data are used as 

reference for comparison. The GNSS data were artificially turned 

off for 30 s in each 5 min interval; except the first one which was 

left for initialization of estimating process. To ascertain the effect 

of outages for all flight conditions presented by the experimental 

data, the slots with outages were shifted about 30 s through the 

entire 5 min intervals. This leads to 10 series of intervals (INT) for 

analyzing. For example, the NED position progression for the whole 

flight data for one outage case (1 INT) is depicted in Fig. 20 where 

GNSS off slots are indicated by a red circle. 

In order to quantify the results of the estimation during the 

GNSS outages, RMSE was calculated with respect to the absolute 

GPS position and velocity. Resultant RSME values in position are 

summarized in Table 3 and velocity in Table 4 . The performance 

of the three proposed methods is seen to be similar, where one 

method might prevail during one outage interval it might suffer 

more in another interval, that fact leaves the overall performances 

similar. The difference among which intervals are handled best for 

a given method seems to rely more on tuning than on the funda- 

mental algorithms of the proposed methods. 

To see individual progressions in few chosen slots, please see 

Fig. 21 for heading, Fig. 22 for position, and Fig. 23 for velocity pro- 

gressions. The other flight progressions were very similar to those 

already shown in Fig. 16 (right) to Fig. 18 . The ACC and GYR bias 

in all studied approaches is frozen during GNSS outage, so the pro- 

gressions shown in Fig. 19 suffered from a constant value during 

the outage. 

Accuracy in heading estimation is generally crucial in naviga- 

tion systems since it consequently determines the accuracy in hor- 

izontal plane position by resolving North and East component of 

the position/velocity evaluated in the body frame. According to 

Figs. 18 and 21 it can be seen that the estimated heading by the 

presented navigation solutions differs relating to the heading eval- 

uated from GNSS velocities, see ( 18 ). First of all it needs to be 

mentioned that GNSS based heading is insensitive to a real head- 

ing fluctuation in the magnitude of up to about 1 °. This fluctua- 

tion can be observed when GNSS based heading compensation is 

not strong and thus allows long-term error compensation, how- 

ever does not affect dynamic changes in heading from gyro out- 

puts. Other impact on differences in heading can be caused by 

the wind effect producing a side-slip angle. This effect complies 

Fig. 21. Zoomed-in heading progressions during GNSS outages. 
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Table 3 

Resultant RMSE values for NED position estimates during GNSS outages (S-EKF – Single Structure EKF; D-EKF – Dual Structure EKF; 

NLO – Nonlinear Observer) green and red indicate the best and worst results. 

Table 4 

Resultant RMSE values for NED velocity estimates during GNSS outages (S-EKF – Single Structure EKF; D-EKF – Dual Structure EKF; NLO 

– Nonlinear Observer) green and red indicate the best and worst result. 

Fig. 22. Zoomed-in position progressions during GNSS outages. 

with the difference between heading and the azimuth, where the 

azimuth is evaluated based on GNSS velocities. The heading and 

azimuth are equal only when side-slip angle is zero. Deviations 

seen in Figs. 22 and 23 can have many reasons, e.g. badly esti- 

mated heading, badly estimated bias in ACC and/or GYR or side- 

slip effect making the difference from heading vs azimuth perspec- 

tives. When the bias estimates analyzed from progressions shown 

in Fig. 19 it can be seen they also differ as denoted in Table 5 . 

Since there is no reference, only by position and velocity accu- 

racy reached it can be guessed which progression is more realistic. 

Moreover, bias instability evaluated by AVAR in Section 3.1 corre- 

sponded to a standard deviation of 0.0014 °/s for GYR and to 26 μg 

for ACC. Thus when comparing all these numbers it can be con- 

clude that from the GYR prospective both EKFs seems to be closer 
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Fig. 23. Zoomed-in velocity progressions during GNSS outages. 

Fig. 24. Summarized deviation plots for the position estimation during the GNSS outage; all 10 series of INT put together. 

Table 5 

Standard deviation values of estimated bias from Fig. 19 . 

Approaches ACC Bias (μg) GYR Bias ( deg / s ) 

b a x b a y b a z b g x b g y b g z 

S-EKF 66.5 146 237 0.0041 0.0018 0.0014 

D-EKF 9.23 5.22 3.23 0.0015 0.0011 0.0 0 08 

NLO 16.8 94.3 39.2 0.0 0 05 0.0 0 04 0.0 0 06 

to reality; however, in the case of ACC bias the NLO seems to per- 

form better. Nevertheless, as it was mentioned earlier, this kind of 

behavior is a matter of tuning and adaptation of fusion parame- 

ters during an operation. For more details about parameters used, 

please see Appendix A . 

Zoomed-in progressions of position estimated by the three pre- 

sented navigation solutions shown in Fig. 22 corresponding to dif- 

ferent slots could be also put all together. The result is depicted 

in Fig. 24 . It demonstrates the deviations within all slots. So even 

RMSE values denoted in Table 3 provides general understanding 

about averaged deviation, in Fig. 24 it can be seen that maximal 

values of the deviation are larger reaching the magnitude of about 

250 m in the North, 370 m in the East, and 450 m in the Vertical- 

Down direction. Nevertheless, the maximal speed within the flight 

was about 65 m/s, which leads to 1950 m travelled within 30 s time 

slot of GNSS outage and that makes the maximal error in a hori- 

zontal plane about 13% in the North and 19% in the East direction. 

However, there is a need to consider the fact and the comparison 

is done with respect to GNSS single point position where the wind 

can cause the side-slip effect leading to differences between the 
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heading and azimuth and thus enlarging the gap between GNSS 

based position and position estimated by the three presented so- 

lutions. 

5. Conclusions 

This paper addresses a cost-effective navigation solution using 

commercial grade inertial sensors and studies the performance of 

three approaches to obtain position, velocity, and attitude esti- 

mates. The proposed approaches are validated on real flight data 

under various operational conditions which differ based on flight 

stage and on availability of aiding measurements, i.e. from a GNSS 

receiver providing position and velocity. The resultant performance 

is compared to the reference position obtained by a dual-frequency 

X91 + GNSS receiver and consecutive RTK based processing. The 

paper compares two extended Kalman filters in a single and dual 

structure configuration and a nonlinear observer. Parameters of in- 

dividual approaches are set according to results of Allan variance 

analysis performed on inertial sensors’ data. Furthermore, the abil- 

ity of the presented approaches to estimate bias of inertial sensors 

is studied. Since no referential data is available for bias estimation 

we artificially switch off GNSS data and observe the solution be- 

havior relying only on a free integration of inertial data excluded 

by estimated bias. Via this approach we validate bias estimates 

which are crucial for robust navigation solutions. Even the stud- 

ied approaches have roughly the same accuracy during GNSS on 

conditions, i.e. cm-level RMSE, the situation slightly changes dur- 

ing GNSS outage conditions where deviations reach several meters 

in evaluated RMSE. 
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Appendix A 

This chapter provides the tuning parameters used in the esti- 

mation algorithms. 

A.1. Single structure extended Kalman filter 

R = diag ([ 0 . 8 

2 , 0 . 8 

2 , 0 . 8 

2 , 0 . 05 

2 , 0 . 05 

2 , 5 . 00 

2 , 

( 1 · 10 

−4 ) 2 , ( 1 · 10 

−4 ) 2 , ( 1 · 10 

−4 ) 2 , . . . 

d eg2 rad 
(
5 · 10 

−3 
)2 

, d eg2 rad 
(
5 · 10 

−3 
)2 

, d eg2 rad 
(
5 · 10 

−3 
)2 

] . 

Q = diag ([ 0 . 1 

2 , 0 . 1 

2 , 0 . 1 

2 , . . . 

0 . 3 

2 , 0 . 3 

2 , 0 . 15 

2 , . . . (
50 · 10 

−3 
)2 

, 
(
50 · 10 

−3 
)2 

, 
(
50 · 10 

−3 
)2 

, . . . 

d eg2 rad ( 0 . 05 ) 
2 
, d eg2 rad ( 0 . 05 ) 

2 
, d eg2 rad ( 0 . 05 ) 

2 
, . . . 

d eg2 rad ( 0 . 5 ) 
2 
, d eg2 rad ( 0 . 5 ) 

2 m d eg2 rad ( 0 . 5 ) 
2 
, . . . 

d eg2 rad 
(
1 . 4 · 10 

−3 
)2 

, d eg2 rad ( 1 . 4 · 10 

−3 ) 2 , 

d eg2 rad ( 1 . 4 · 10 

−3 ) 2 ]) 

A.2. Dual structure extended Kalman filter 

Attitude Estimator 

Measurement Noise Covariance: 

When compensating using accelerometer only:- R = diag 

[ 50 mg , 50 mg , 50 mg ] ;
When compensating using accelerometer and heading from 

GNSS velocity: 

R = diag [ 50 mg , 50 mg , 50 mg , 10 

◦ ] ;
Process Noise Covariance: Q = diag [0 . 1 ◦, 0 . 1 ◦, 0 . 1 ◦, 

1 · 10 −6 ◦
/ s , 1 · 10 −6 ◦

/ s , 1 · 10 −6 ◦/ s] 

Position Estimator 

Process Noise Covariance: 

Q = diag [1 m , 1 m , 1 m , 5 m / s , 5 m / s , 5 m / s , 

50 · 10 

−6 g , 50 · 10 

−6 g , 50 · 10 

−6 g] 

A.3. Nonlinear observer 

M b = 0 . 0087 ra d 

2 / s 2 , M w 

= 0 . 1 m 

2 / s 4 

M f = 0 . 001 , � = diag ( [ 1 , 1 , 10 , 0 . 1 ] ) · 10 

−6 
, 

k 1 = 0 . 2 , k 2 = 0 . 002 , k I = 0 . 001 

R = diag ( [ 0 . 08 

2 I 3 , 0 . 2 

2 
, 0 . 08 

2 
, 0 . 4 

2 ] ) 

Q = diag ( [ 0 . 3 

2 I 3 , 0 . 5 

2 I 3 , 
(
50 · 10 

−3 
)2 · 9 . 818 I 3 ] ) 

References 

Alam, M. , & Rohac, J. (2015). Adaptive data filtering of inertial sensors with variable 

bandwidth. Sensors, 15 (2), 3282–3298 . 
Alam, M. , Moreno, G. , Sipos, M. , & Rohac, J. (2016). INS/GNSS localization using 15 

state extended kalman filter. In International conference in aerospace for young 
scientists (pp. 425–435). Beijing: Beijing University of Aeronautics and Astronau- 

tics . 

Alam, M. , Sipos, M. , Rohac, J. , & Simanek, J. (2015). Calibration of a multi-sensor in- 
ertial measurement unit with modified sensor frame. In IEEE international con- 

ference on industrial technology (ICIT) (pp. 1984–1989). Sevilla, Spain: IEEE . 
Allan, D. (1966). Statistics of atomic frequency standards. Proceedings of the IEEE, 

2 (54), 221–230 . 
Babu, R. , & Wang, J. (2009). Ultra-tight GPS/INS/PL integration: A system concept 

and performance analysis. GPS Solutions, 13 (1), 75–82 . 

Bar-Shalom, Y. , Li, X. , & Kirubarajan, T. (2004). Estimation with applications to track- 
ing and navigation . John Wiley & Sons . 

Batista, P. , Silvestre, C. , & Oliveira, P. (2011a). GES attitude observers – Part I: Multiple 
general vector observations . IFAC World Congress . 

Batista, P. , Silvestre, C. , & Oliveira, P. (2011b). GES attitude observers – Part II: Single 
vector observations . IFAC World Congress . 

Bristeau, P.-J. , & Petit, N. (2011). Navigation system for ground vehicles using tempo- 

rally interconnected observers. American control conference . O’Farrell Street, San 
Francisco, CA, USA . 

Bryne, T. H. , Fossen, T. I. , & Johansen, T. A. (2014). Nonlinear observer with time–
varying gains for inertial navigation aided by satellite reference systems in dy- 

namic positioning. Mediterranean Conference on Control and Automation , (June), 
1353–1360 . 

Crassidis, J. L. , Markley, F. L. , & Cheng, Y. (2007). Survey of nonlinear attitude esti- 

mation methods. Journal of Guidance, Control, and Dynamics, 30 (1), 12–28 . 
Farrell, J. (2008). Aided navigation: GPS with high rate sensors . New York: McGraw 

Hill Education . 
Grewal, M. , & Andrews, A. (2001). Kalman filtering: Theory and practice using MAT- 

LAB . John Wiley&Sons, Inc . 
Grip, H. F. , Fossen, T. I. , Johansen, T. A. , & Saberi, A. (2012a). A nonlinear observer 

for integration of GNSS and IMU measurements with gyro bias estimation. In 

American control conference, June (pp. 4607–4612) . 
Grip, H. F. , Fossen, T. I. , Johansen, T. A. , & Saberi, A. (2012). Attitude estimation using 

biased gyro and vector measurements with time-varying reference vectors. IEEE 
Transactions on Automatic Control, 57 (5), 1332–1338 . 

Grip, H. F. , Fossen, T. I. , Johansen, T. A. , & Saberi, A. (2013). Nonlinear observer 
for GNSS-aided inertial navigation with quaternion-based attitude estimation. 

American control conference . 
Grip, H. F. , Fossen, T. I. , Johansen, T. A. , & Saberi, A. (2016). Nonlinear observer 

for attitude, position and velocity: Theory and experiments. In H. Fourati, & 

D. C. Belkhia (Eds.), Multisensor attitude estimation (pp. 291–314). crc press (tay- 
lor & francis group) . 

Gustafsson, F. , Gunnarsson, F. , Bergman, N. , Forssell, U. , Jansson, J. , Karlsson, R. , 
et al. (2002). Particle filters for positioning, navigation and tracking. IEEE Trans- 

action on Signal Processing, 50 , 425–437 . 

53



106 J. Rohac et al. / Annual Reviews in Control 43 (2017) 91–106 

Hamel, T. , & Mahony, R. (2006). Attitude estimation on SO(3) based on direct in- 
ertial measuremetns. In Proceedings of IEEE international conference on robotics 

automation . 
Hansen, J. M., Rohac, J., Sipos, M., Johansen, T. A., & Fossen, T. I. (2016). Validation 

and experimental testing of observers for robust GNSS-aided inertial navigation. 
In G. Wang (Ed.), Recent advances in robotic systems . Vienna: InTech Open Access 

http://intechweb.org/ . 
IEEE Std. 1293. IEEE Standard Specification Format Guide and Test Procedure for Lin- 

ear, Single-axis, Nongyroscopic Accelerometers. (n.d.). Technical report, Institute 

of Electrical and Electronics Engineers . 
IEEE Std. 528. IEEE Standard for Inertial Sensor Terminology. (n.d.). Technical report, 

Institute of Electrical and Electronics Engineers . 
IEEE Std. 647. IEEE Standard Specification Format Guide and Test Procedure for Sin- 

gleAxis Laser Gyros. (n.d.). Technical report, Institute of Electrical and Electronics 
Engineers . 

Johansen, T. A. , & Fossen, T. I. (2016). The eXogenous Kalman Filter (XKF). Interna- 

tional Journal of Control , 1–7 . 
Li, Y. , Wang, J. , Rizos, C. , Mumford, P. , & Ding, W. (2006). Low-cost tightly coupled 

GPS/INS integration based on a nonlinear Kalman filtering design. In Proceedings 
of ION national technical meeting (pp. 18–20) . 

Mahony, R. , Hamel, T. , Trumpf, J. , & Lageman, C. (2009). Nonlinear attitude ob- 
server on SO(3) for complementary and compatible measurements: A theoreti- 

cal study. IEEE conference on decision and control . 

Nemra, A. , & Aouf, N. (2010). Robust INS/GPS sensor fusion for UAV localization us- 
ing SDRE nonlinear filtering. IEEE Sensors Journal, 10 (4), 789–798 . 

Reinstein, M. , & Kubelka, V. (2012). Complementary filtering approach to orientation 
estimation using inertial sensors only. IEEE international conference on robotics 

and automation (ICRA), Prague, Czech Republic . 
Rezaeian, A. , Zarringhalam, R. , Fallah, S. , Melek, W. , Khajepour, A. , Chen, S.-K. , 

et al. (2013). Cascaded dual extended Kalman filter for combined vehicle state esti- 

mation and parameter identification Tech. rep., SAE Technical Paper . 
Ristic, B. , Arulampalam, S. , & Gordon, N. (2004). Beyond the Kalman filter, pertical 

filters for tracking applications . Artech House . 
Rohac, J. , Sipos, M. , & Simanek, J. (2015). Calibration of low-cost triaxial inertial sen- 

sors. IEEE Instrumentation & Measurement Magazine, 18 (6), 32–38 . 

Salcudean, S. (1991). A globally convergent angular velocity observer for rigid body 
motion. IEEE Transactions on Automatic Control, 36 (12), 1493–1497 . 

Salychev, O. (2004). Applied inertial navigation: problems and solutions . Moscow, Rus- 
sia: BMSTU Press . 

Savage, P. G. (1998a). Strapdown inertial navigation integration algorithm design 
part 1: Attitude algorithms. Journal of Guidance, Control, and Dynamics, 21 (1), 

19–28 . 
Savage, P. G. (1998b). Strapdown inertial navigation integration algorithm design 

part 2: Velocity and position algorithms. Journal of Guidance, Control, and Dy- 

namics, 21 (2), 208–221 . 
Silicon Sensing. DMU10 Technical Datasheet . Retrieved from Silicon Sensing: 

February 10 http://www.siliconsensing.com/media/30805/dmu10- 00- 0100- 
132- rev- 6.pdf . 

Simanek, J. , Reinstein, M. , & Kubelka, V. (2014). Evaluation of the EKF-based estima- 
tion architectures for data fusion in mobile robots , 20 (2), 985–990 . 

Simon, D. (2010). Kalman filtering with state constraints: A survey of linear and 

nonlinear algorithms. IET Control Theory & Applications, 4 (8), 1303–1318 . 
Sotak, M. , Sopata, M. , & Kmec, F. (2006). Navigation systems using Monte Carlo 

method. Guidance, Navigation and Control Systems . 
Thienel, J. , & Sanner, R. M. (2003). A coupled nonlinear space attitude controller and 

observer with an unknown constant gyro bias and gyro noise. IEEE Transactions 
on Automatic Control, 48 (11), 2011–2015 . 

Titterton, D. , & Weston, J. (2004). Strapdown inertial navigation technology . Steve- 

nage, UK: Institution of Engineering and Technology . 
Vik, B. , & Fossen, T. I. (2001). A nonlinear observer for GPS and INS integration. In 

Proc. conference on decision and control . 
Wolf, R. , Eissfeller, B. , & Hein, G. (1997). A Kalman filter for the integration of a low 

cost INS and an attitude GPS. In Proceedings of the international symposium on 
kinematic systems in geodesy, geomatics and navigation (pp. 143–150) . 

Zihajehzadeh, S. , Loh, D. , Lee, T. J. , Hoskinson, R. , & Park, E. J. (2015). A cascaded 

Kalman filter-based GPS/MEMS-IMU integration for sports applications. Mea- 
surement, 73 , 200–210 . 

54



Chapter 6

Nonlinear Aircraft Control

6.1 Summary of the contributions
This chapter details about the designing of longitudinal flight controller for a fixed wing aircraft
using nonlinear control techniques. Flight control laws are traditionally designed from a set of
linearised models, however aircraft are highly nonlinear system. Due to the application of linear
control laws on a non-linear system, the real performance ability of the aircraft is not fully utilised.
Therefore, this chapter aims at discussing the design of a longitudinal flight controller for a fixed-
wing aircraft using non-linear dynamic inversion technique or, in terms of control theory, partial
exact feedback linearisation. The novelty in the contribution is in the proposed combination
of three different automatic flight controllers that provide complete 3-DOF longitudinal control.
The simulation results carried out on a nonlinear aircraft model verified the proposed theoretical
results confirming the suitability of the controllers.

6.2 Publication
The work is represented by a publication with modified formatting and follows on the next page.
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Abstract: Aircraft are highly non-linear systems, but flight control laws are traditionally designed from a set of linearised models.
Due to the application of linear control laws on a non-linear system, the real performance ability of the aircraft is not fully utilised.
In addition, in adverse situations like near stall, the aircraft develops significant non-linearities, and linear control laws do not
perform well. This study therefore considers the design of a longitudinal flight controller for a fixed-wing aircraft using non-linear
dynamic inversion technique or, in terms of control theory, partial exact feedback linearisation. A novel contribution of this study
is the proposed combination of three different automatic flight controllers that provide complete 3-DOF longitudinal control. A
detailed analysis of the internal dynamics for each controller is also presented. It has been shown that for each controller the
internal dynamics are stable. This makes the controller suitable for various flight conditions. The aims of these flight controllers
are threefold. First, to provide control of the flight path angle by tracking the pitch angle and the angle of attack. Second, to
provide high attitude (pitch up or down) manoeuvrability. Finally, to provide automatic adverse attitude recovery of the aircraft in
situations like stall, the switching strategy between the controllers are also discussed. A simulation carried out on a non-linear
model of a multi-role fighter aircraft verified the proposed theoretical results confirming the suitability of the controllers.

1 Introduction
The current state-of-the-art automatic flight control system (AFCS)
provides efficient methods for pilots to fly the aircraft. The
introduction of the fly-by-wire (FBW) system has enabled the
aircraft to be stabilised automatically, preventing unsafe operation
outside the performance envelope without input from the pilot [1].
However, in the critical conditions, where the aircraft gets outside
the flight envelope the automatic flight control known as
‘Autopilot’ is disengaged, and the pilot is required to take manual
corrective actions. An example of critical conditions of this kind is
when the aircraft reaches critical angle of attack (or stall angle),
beyond which the lift is suddenly reduced. This phenomenon is
known as stall [2]. The standard stall recovery procedure (shown in
Fig. 1) recommended in the pilot training is to push the control
stick down, forcing a nose down motion of the aircraft. This makes
the aircraft go faster and restores the required lift [3]. Pilots tend to
misread the situation and take wrong corrective measure leading to
an accident. A significant number of commercial and military air
crash accidents have occurred after loss of control due to stalling
caused by pilot error. Indonesia AirAsia Flight 8501, Air France
Flight 447, Navy McDonnell-Douglas QF-4S+ Phantom II and
United States Air Force Boeing C-17A Lot XII Globemaster III are
some recent air accidents caused by pilot error and stall [4–7]. To
address this problem, we propose three new different automatic
flight controllers that can be used in different phases of flight based
on the well-known partial exact feedback linearisation approach

within the realm of the non-linear dynamic inversion (NDI)
technique. 

Flight control laws below the stall angle are designed using
linear control design methods such as gain scheduling [1]. The
control laws are designed at many flight-operating points [8] and
the gain scheduling is chosen as a function of mass, Mach number
and altitude. This design procedure requires a great amount of
assessment to ensure the adequate stability and performance at off-
design points. It is time-consuming and the performance
capabilities of the aircraft are not fully realised. As an alternative to
gain scheduling robust control algorithms such as ℋ2 and ℋ∞
controllers are proposed [9]. However, at a large angle of attack
(near the stall angle) aircraft develop significant non-linearities
[10] and for this reason the linearised control laws do no longer
hold. An alternative approach is to apply non-linear design
techniques in critical flight conditions such as near stall point or
high attitude angle (pitch angle) manoeuvres where the aircraft
develops non-linearities. NDI directly make use of the non-linear
structure of the aircraft model. It uses dynamic models and state
feedback to globally linearise dynamics of selected controlled
variables by cancelling the non-linearities in the dynamic model.
As a result, the NDI method is capable of handling large non-
linearities. NDI control law is designed to globally reduce the
dynamics of selected controlled variables to integrators. A closed
loop system is then designed to make the control variables exhibit
specified command responses satisfying the flight-handling
qualities and various physical limitation of the aircraft control
actuators. Flight control design using NDI was first proposed in the

Fig. 1  Stall recovery procedure
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late 1970s [11, 12]. Since that time, a number of research efforts
have been made to use non-linear control techniques for flight
controls, e.g. as incremental NDI [13, 14], adaptive fuzzy sliding
control [15, 16]. Various methods for analysing the robustness of
the NDI flight controllers for a quasi-linear-parameter varying
model were presented in [17, 18]. Stochastic robust non-linear
control using control logic for a high incidence research concept
aircraft is proposed in [19]. However, this work did not take the
internal dynamics into account, and stability was limited to manual
pilot inputs.

NDI is widely used for under-actuated mechanical systems [20].
Since the longitudinal dynamics of the aircraft is under-actuated, it
is not possible to control all the states using a single controller. The
novel approach presented here is a proposal for three different
controllers corresponding to the output sets, which are angle of
attack and pitch angle; velocity and pitch angle; finally, velocity
and angle of attack. The first controller can be used for high pitch
angle control for conditions like take-off while retaining control
over the angle of attack. The second controller can be used as the
pitch autopilot with control over the velocity. Finally, the third
controller can be used for stall recovery of the aircraft at the same
time preventing dangerous speed. A complete analysis of the
internal dynamics for each controller is provided. The switching
strategies between these three controllers are discussed. This
approach with the use of NDI takes into account all significant
non-linearities in the system utilising full performance capability of
the aircraft. An original feature in this paper is the designing of the
three flight controllers with a detailed outline of the stability of the
internal dynamics.

This paper is organised as follows: Section 2 presents the
dynamic model of the aircraft. Main results are given in Sections 3
and 4. Namely, Section 3 presents the detailed design of the control
laws. Section 4 provides a detailed analysis of the simulation
results. Section 5 contains the final concluding remarks.

2 Dynamic modeling
The aircraft configuration is illustrated in Fig. 2. For a
conventional fixed-wing aircraft, the aerodynamic control surfaces
that produce the moments are the horizontal tail (elevator), the
ailerons and the vertical tail (rudder). Only two orientation angles
relative to the wind, known as aerodynamic angles are needed to
specify the aerodynamic forces and moments (angle of attack (α)
and the side-slip angle (β)) acting on the aircraft [10]. 

2.1 Longitudinal aerodynamics

The aerodynamic forces (drag and lift) and the moment (pitching
moment) acting on the aircraft are defined in terms of the non-
dimensional aerodynamic coefficients (CLTotal

, CDTotal
, CmTotal

) are
calculated as follows:

XB = 1
2 ρV2SCDTotal

M = 1
2 ρV2ScMACCmTotal

ZB = 1
2 ρV2SCLTotal

(1)

Here ρ denotes the air density, S denotes the aircraft's effective
wing surface area, and cMAC denotes the mean aerodynamic chord.
The aerodynamic coefficients are specified as functions of
aerodynamic angles, control surface deflections and the
aerodynamic derivatives. Each component of the aerodynamic and
moment coefficients is represented by a ‘look up’ table.

CLTotal
= CLo

+ CLα
α + CLq

q
cMAC
2V + CLδe

δe

= CL + CLq
q

cMAC
2V + CLδe

δe .
(2)

CDTotal
= CD0

+ CDα
α2 + CDδe

δe

= CD + CDδe
δe; CD ≃ CD0

+ |CDα
α2 | .

(3)

CmTotal
= Cm0

+ Cmα
α + Cmq

q
cMAC
2V + Cmδe

δe

= Cm + Cmq
q

cMAC
2V + Cmδe

δe .
(4)

Here, subscripts stand for the aerodynamic derivative of the
respective variables. The aerodynamic coefficients CL, CD and Cm
are related to the lift, drag, and pitching moments produced by the
main wing and are functions of angle of attack (α).

2.2 Rigid body equation of motion for the aircraft

The aerodynamic force and the moment models are combined with
the vector equations of motion to obtain the aircraft dynamic
motion model. The stability and the wind axes are treated as being
fixed to frames that are rotating relative to the vehicle-body frame
[10]. Combined with wind and body axes the total 3-DOF
longitudinal dynamic motion of the aircraft is written as follows:

Force equations:

V̇ = −
XB
m +

FT
m cos αcos β

+g cos ϕcos θsin αcos β + sin ϕcos θsin β − sin θcos αcos β .
(5)

α̇ = −
ZB

mVcos β + q − tan β pcos α + rsin α

−
FTsin α
mVcos β + g

Vcos β cos ϕcos θcos α + sin θsin α .
(6)

Fig. 2  Description of the aircraft system: V, flight path velocity; α, angle of attack; β, side-slip angle; ϕ, θ, ψ , Euler's angles; δe, δa, δr, control surface
deflections; FT, engine thrust; p, q, r, angular rates; Ixx, Iyy, Izz,Ixz, moments of inertia; L, M, N, aerodynamic moments; XB, YB, ZB, body forces
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Moment equation:

q̇ =
Izz − Ixx

Iyy
pr −

Ixz
Iyy

p2 − r2 + M
Iyy

. (7)

Kinematic equation:

θ̇ = qcos ϕ − rsin ϕ . (8)

Assuming that the lateral-directional motion of the aircraft is
independently and separately controlled bringing the aircraft to a
wing-level flight condition the 3-DOF longitudinal model of the
aircraft motion can be further simplified. The side-slip and roll
angles are associated with the lateral dynamics, so it can be
assumed that the roll angle (ϕ) and the side-slip angle (β) is zero.
The 3-DOF longitudinal dynamics equation (5)–(8) get:

V̇ = − 1
2

ρS
m (CD0

+ CDα
α)V2

− 1
2

ρS
m CDδe

α V2δe +
FTcos α

m + gsin α − θ .
(9)

α̇ = − 1
2

ρS
m (CLo

+ CLα
α)V − 1

2
ρS
m cMACCLq

q − 1
2

ρS
m CLδe

Vδe

−
sin α FT

mV + q + gcos α − θ
V .

(10)

q̇ = 1
2

ρS
Iyy

cMAC(Cm0
+ Cmα

α)V2 + 1
4

ρS
Iyy

cMAC
2 Cmq

Vq

+ 1
2

ρS
Iyy

cMACV2Cmδe
δe .

(11)

θ̇ = q . (12)

3 Control law design
As has already been noted, we will study the case of simplified
non-linear dynamics, namely the longitudinal model (9)–(12). This
model has four state variables and two control inputs. First, let's
put the equations into the standard state-space model form known
in non-linear control theory [20]. Now, if we define the state
variables as x1, x2, x3, x4

T = V, α, q, θ T, and the control inputs as
u1, u2

T = δe, FT
T, then the system in (9–12) can be written in the

following form: (see (13)) 
Here, x ∈ ℝ4, u ∈ ℝ2, f (x) = ( f i(x)) ∈ ℝ4, and

g(x) = (gi j x ) ∈ ℝ4 × 2, where i = 1, 2, 3, 4 and j = 1, 2.

Furthermore, lets denote g j = g1 j, g2 j, g3 j, g4 j
T, j = 1, 2, and

b1 = − ρS
2m ; b2 = b1CDδe

; b5 = CL0
; b6 = b1cMACCLq

; b7 = b1CLδe
;

b8 = ρS
2Iyy

cMAC; b9 = b8cMACCmq; b10 = b8Cmδe
; b3 = 1

m ; b4 = g;
b11 = CD0

; b12 = CDα
; b13 = CLα

; b14 = Cm0
; b15 = Cmα

. Moreover,
CLδe

, CLq
, CLα

, CD0
> 0 and Cmq

, Cmδe
, Cmα

< 0. Thus the variables
b1, b2, b6, b7, b9, b10 < 0 and b3, b4, b5, b8, b11, b13 > 0.

To compute partial exact feedback linearisation of (13), the
notion of the so-called auxiliary/virtual output is used. Namely, by
defining a suitable output functions h x = h1 x , h2 x T, x ∈ ℝ4

we can compute the input–output linearisation transforming certain
sub-systems to linear form. To proceed with, h x  is said to have

vector relative degree r = r1, r2  around some equilibrium working
point xo ∈ ℝ4 if r1, r2 is the integers such that there exists
neighbourhood of xo denoted as Nx0

, it holds:

ℒ
g jℒ f

l hk x ≡ 0, x ∈ Nxo
, k, j = 1, 2, l = 0, …, rk − 2 (14)

rank ℒ
g jℒ f

rk − 1
hk xo = 2, k, j = 1, 2. (15)

Here, ℒ f
m, m = 0, 1, …, stands for the so-called Lie derivatives

and their iterations [20]. More precisely:

ℒ fh = ∇h f , ∇h = ∂h
∂x ,

ℒ f
oh = h, ℒ f

mh = ℒ f ℒ f
m − 1h = ∇ ℒ f

m − 1h f , m = 1,
2, 3, … .

It is well-known [20] that the n-dimensional system with vector
relative degree r = (r1, r2) ≥ 1 has (r1 + r2)-dimensional exact
feedback linearisable part has n − (r1 + r2) residual non-linear part.
The residual part of the system dynamics is called ‘internal
dynamics’. It is important to ensure that the internal dynamics of
the residual part or state that is left uncontrolled is stable. The
autonomous part which keeps the selected output zero is referred to
as the zero-dynamics. In the following sections, we will present
three different selections of pairs of outputs giving three different
partial linearisations (three different controllers) and their internal
dynamics analysis.

3.1 Flight controller for angle of attack and pitch angle (flight
controller no. 1)

This flight controller is to be used for situations like take-off where
the primary focus is on lifting the aircraft with a desired pitch angle
(θ = x4) at a certain take-off speed and to have a control over the
angle of attack (α = x2), so that the aircraft has enough lift to get
off the ground without stalling. Following (13) the relation
between the pitch rate (q = x3) and the pitch angle (θ = x4) is a
single integrator, so x4 can be tracked jointly with x3.

3.1.1 Control design.: The control objective for this controller is
to design a tracking controller for x2 and x4 while stabilising the x3.
Thus the auxiliary outputs chosen to get the partial exact feedback
linearisation for Flight Controller No. 1, denoted as h1(x) are as
follows:

h1 x =
x2

x4
.

Let the virtual inputs to stabilise ẋ3 be v1 and to control ẋ2 be v2. Lie
derivative computation of h1(x) following (14) and (15) show that it
has relative degrees r = (1, 2). This allows us to obtain the
feedback linearised form of the system (13) as

x2
˙ = v2,
x3
˙ = v1,
x4
˙ = x3 .

x1
˙

x2
˙

x3
˙

x4
˙

ẋ

=

b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4

b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4

b8b14x1
2 + b8b15x2x1

2 + b9x1x3

x3

f (x)

+

b2x1
2 b3cos x2

b7x1 −b3x1
−1sin x2

b10x1
2 0

0 0

g(x)

u1

u2

u

. (13)
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Now the virtual inputs v1 and v2 are defined as follows:

v1

v2
=

f 3

f 2
+

g31 0
g21 g22

u1

u2
. (16)

The conditions for the existence of the relative degree as
mentioned in (14) and (15) hold if and only if x1 ≠ 0 and x2 ≠ lπ, l
is an integer. This does not limit the applicability of the designed
controller as x1 is the velocity and x2 is the angle of attack while
lifting the aircraft which always occurs with non-zero angle of
attack. Following (16) the input equations for u1 and u2 can be
rewritten as follows:

u1

u2
=

g31 0
g21 g22

−1
−

f 3

f 2
+

v1

v2
,

u1 = −(b8b14x1
2 + b8b15x2x1

2 + b9x1x3) + v1

b10x1
2 . (17)

u2 = − b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos(x2 − x4) b10x1

2

(b10x1
2) −b3x1

−1sin x2
+

+ b8b14x1
2 + b8b15x2x1

2 + b9x1x3 b7x1

(b10x1
2) −b3x1

−1sin x2
+ −b7x1v1 + b10x1

2v2

(b10x1
2) −b3x1

−1sin x2
.

(18)

Further, consider the subsystem involving x3, x4 and the virtual
input v1. This is a system with a double integrator relationship. To
track some reference x3

ref(t), x4
ref t , have in mind that it should hold

x3
ref = x4

˙ ref. Now to track the references, let us define the tracking
error as follows:

e3 = x3 − x4
˙ ref, e3̇ = x3

˙ − x4
¨ ref, (19)

e4 = x4 − x4
ref, e4̇ = x4

˙ − x4
˙ ref = e3 . (20)

The feedback tracking controller equation for x3 can be written
as

x3
˙ = v1 = x4

¨ ref + k3 x3 − x4
˙ ref + k4 x4 − x4

ref . (21)

Here k3 and k4 are the feedback control gains. Using (19)–(21)
we get:

e3̇ = k3e3 + k4e4; e4̇ = e3 . (22)

Therefore, choosing k3 < 0 and k4 < 0, we gets e3 → 0 and
e4 → 0 exponentially, which means that exponential tracking is
achievable.

Consider the subsystem involving x2 and the virtual input v2.
This system is directly related as a single integrator. We assume
x2

ref t  is to be tracked and we define tracking error e2 as

e2 = x2 − x2
ref, e2̇ = x2

˙ − x2
˙ ref . (23)

The feedback tracking controller for x2 can be written in the
form:

x2
˙ = v2 = x2

˙ ref + k2 x2 − x2
ref . (24)

Here k2 is the feedback tracking control gain. Now, combining
(23) and (24) gives

e2̇ = k2e2 .

By choosing k2 < 0, e2 → 0, hence exponential tracking is
possible for the reference angle of attack x2

ref. Substituting (21) and
(24) into (17) and (18) gives the complete closed form expression
for u1 and u2 as (see (25)) 

(see (26)) 
Combining the two controllers enables us to control both the

pitch angle x4 and the angle of attack x2, provided that the
corresponding internal non-linear residual dynamics of the velocity
x1 has favourable properties.

3.1.2 Internal dynamics of the velocity (x1).: During the design
of the controller the velocity x1 is left uncontrolled. This
corresponds to the hidden uncontrolled internal dynamics. It is
essential to check and ensure that the internal dynamics of the
velocity is stable. To check the stability of the internal dynamics,
substitute the expression of control input u1 and u2 (25) and (26)
into the equation of x1

˙  in (13). For simplicity zero-dynamics are
studied, hence for reference tracking x2

ref t , x4
ref t , x3

ref t  the
virtual inputs v1 = v2 = 0. For the purposes of the analysis constant
reference tracking is considered. This means x2

ref ≡ x2
e, x4

ref ≡ x4
e,

x3
˙ ref ≡ 0, here x2

e and x4
e are constant and therefore we have to

analyze stability of the equilibrium of the one dimensional velocity
internal dynamics given by

x1
˙ = f 1

¯ (x1),

Here f 1
¯ (x1) is given by (51) derived in Appendix 1. To analyse

the stability, we have to first compute the equilibrium velocity by
solving (52) and then to analyse the Jacobian of f 1

¯ (x1) at x1
e, i.e.

(∂ f 1
¯ /∂x1)(x1

e). We will show that (∂ f 1
¯ /∂x1)(x1

e) < 0 and therefore by
the first method of Lyapunov x1

e is the locally exponentially stable
equilibrium of (51). To be more specific, rewrite (52) as follows:

0 = (x1
e)2 cot(x2

e) b1b5 − b7b8b14

b10

+x2
ecot(x2

e) b1b13 − b7b8b15

b10
+ b1b11 + b1b12x2

e

+ b4cot(x2
e)cos(x2

e − x4
e) − b2

b10
b2b14 + b8b15x2

e + b4sin(x2
e − x4

e) ,
(27)

here x2
e, x4

e are given required reference angle of attack and pitch
angle and x1

e is the velocity to be determined. Equation (27) is
obviously a simple quadratic equation of the form A(x1

e)2 + B = 0.

u1 = −(b8b14x1
2 + b8b15x2x1

2 + b9x1x3) + x4
¨ ref + k3 x3 − x4

˙ ref + k4 x4 − x4
ref

b10x1
2 . (25)

u2 = − b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos(x2 − x4) b10x1

2 + b8b14x1
2 + b8b15x2x1

2 + b9x1x3 b7x1

(b10x1
2) −b3x1

−1sin x2

+ x2
˙ ref + k2 x2 − x2

ref b10x1
2 − b7x1 x4

¨ ref + k3 x3 − x4
˙ ref + k4 x4 − x4

ref

(b10x1
2) −b3x1

−1sin x2
.

(26)
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The coefficient of (x1
e)2 is A = cot(x2

e)[(b1b5 − (b7b8b14/b10)) +
x2

e(b1b13 − (b7b8b15/b10))] + b1b11 + b1b12x2
e, and

B = [b4cot(x2
e)cos(x2

e − x4
e) − (b2/b10)(b2b14 + b8b15x2

e) +
b4sin(x2

e − x4
e)].

Consider the term A, here cot(x2
e)[(b1b5 − (b7b8b14/b10)) +

x2
e(b1b13 − (b7b8b15/b10))] is associated with the lift. Here by

definition, for x2
e > 0, the lift produced is considered to be negative

(by convention), hence (b1b5 − (b7b8b14/b10)) +
x2

e(b1b13 − (b7b8b15/b10)) < 0. In addition when x2
e > 0, cot(x2

e) > 0
and x2

e < 0, cot(x2
e) < 0. Also the term b1b11 + b1b12x2

e  is associated
with drag and by definition it is always negative. This implies that
the coefficient of (x1

e)2 is always negative.
Now consider the term B. Here the term (b2/b10) b2b14 + b8b15x2

e

is associated with the coefficient of pitching moment. Hence for
x2

e > 0, (b2/b10) b2b14 + b8b15x2
e > 0 and x2

e < 0,
(b2/b10) b2b14 + b8b15x2

e < 0. Therefore for B to be positive, it is
necessary to satisfy that

cos(x2
e − x4

e) + sin(x2
e − x4

e) > 0. (28)

From (28), it can be said that for every combination of x2
e and x4

e

B is positive. Hence, it can be concluded that for every selection of
x2

e, x4
e (27) can be solved to find a unique equilibrium velocity x1

e.
To study the local stability of (27) its linear approximation

around the selected equilibrium points x = (x1
e, x2

e, 0, x4
e) is

considered. Thus the partial derivative of (27) (Jacobian) becomes:

x1
˙ = [2x1

ecot(x2
e) b1b5 + b1b13x2

e − 2b2x1
e

b10
b8b14 + b8b15x2

e +

− b7cot(x2
e)x1

e

b10
b8b14 + b8b15x2

e ] x1 − x1
e + 𝒪 x1 − x1

e .
(29)

The simplified Jacobian (Jx1) from (29) can be written as

Jx1 = x1
e 2cot(x2

e) b1b5 + b1b13x2
e + 2 b1b11 + b1b12x2

e

+ − 2b2

b10
− b7cot(x2

e)
b10

b8b14 + b8b15x2
e .

(30)

Following (30), it can be seen that for x2
e > 0 or x2

e < 0 the terms
2cot(x2

e) b1b5 + b1b13x2
e < 0 and 2 b1b11 + b1b12x2

e < 0. For x2
e > 0

the term − 2b2
b10

− b7cot(x2
e)

b10
b8b14 + b8b15x2

e > 0 and for x2
e < 0,

− 2b2
b10

− b7cot(x2
e)

b10
b8b14 + b8b15x2

e < 0. Also

2cot(x2
e) b1b5 + b1b13x2

e + 2 b1b11 + b1b12x2
e

≫ − 2b2

b10
− b7cot(x2

e)
b10

b8b14 + b8b15x2
e .

Thus it holds that the term Jx1 in (30) is always negative.
Therefore linear approximation in (29) takes the form:

x1
˙ = τx1

e(x1 − x1
e) .

Here,

τ = 2cot(x2
e) b1b5 + b1b13x2

e + 2 b1b11 + b1b12x2
e

+ − 2b2

b10
− b7cot(x2

e)
b10

b8b14 + b8b15x2
e < 0.

This confirms that any positive equilibrium velocity x1
e is

exponentially stable, i.e. the zero-dynamics of the controller is
exponentially stable. It should be noted that the value of τ is small.
Therefore, during tracking the target values of pitch angle and
angle of attack, the change in the velocity will not be very fast or
rapid. It can be noted that flight path angle γ = x4 − x2, so by
choosing appropriate angle of the attack and pitch angle, flight
patch angle can controlled.

3.2 Flight controller for pitch angle and velocity (Flight
Controller No. 2)

This flight controller can be used for pitch angle (x4) control while
maintaining or tracking a certain desired velocity (x1), when, e.g.
during the cruising or steady climb. In this controller, x4 is
controlled using the elevator deflection (u1) and x1 is controlled by
the engine throttle (u2).

3.2.1 Control design.: The control objective for this controller is
to design a tracking controller for x1 and x4. Thus the auxiliary
outputs chosen to get the partial exact feedback linearisation for
Flight Controller No. 2, denoted as h2(x) are as follows:

h2 x =
x1

x4
.

Let the virtual inputs to stabilise ẋ3 be v1 and to control ẋ1 be v2.
Lie derivative computation of h2(x) following (14) and (15) shows
that the relative degrees r = (1, 2). This allows us to obtain the
feedback linearised form of the system (13) as

x1
˙ = v2,
x3
˙ = v1,
x4
˙ = x3 .

The virtual inputs v1 and v2 are defined as follows:

v1

v2
=

f 3

f 1
+

g31 0
g11 g12

u1

u2
. (31)

The conditions for the existence of the relative degree as
mentioned in (14 and 15) hold if and only if x1 ≠ 0 and x2 ≠ (l/2)π,
l is an integer. Therefore, in the control design we consider the
aircraft is in some state where x1 ≠ 0, x2 ≠ (l/2)π. These conditions
are satisfied in all real flight conditions because the aircraft
velocity can never be zero and the angle of attack cannot be (l/2)π.
Following (31) the input equations for u1 and u2 can be rewritten as
follows:

u1

u2
=

g31 0
g11 g12

−1
−

f 3

f 1
+

v1

v2
.

u1 = −(b8b14x1
2 + b8b15x2x1

2 + b9x1x3) + v1

b10x1
2 . (32)

(see (33)) 
The complete closed form expression for u2 is given as (see

(34)) k3, k4, x3
ref, x4

ref are the same as in Section 3.1.1. Here x1
ref  is

the desired reference velocity, k1 is the feedback tracking control
gain and has the value k1 < 0. Combining these two controllers
enables us to control pitch angle x4 and velocity x1 at the same
time, provided that the corresponding hidden internal dynamics of
the angle of attack x2 has favourable properties.

3.2.2 Internal dynamics of the angle of attack (x2).: During the
design of the controller, the angle of attack x2 is left uncontrolled.
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This corresponds to the hidden uncontrolled internal dynamics. It is
essential to check and ensure that this internal dynamics of the
angle of attack is stable. Now, to check the stability of the internal
dynamics, substitute the expression of control input u1 (25) and u2
(33) into the equation of x2

˙  in (13). For simplicity, zero-dynamics
are studied. Hence for reference tracking x1

ref t , x4
ref t , x3

ref t  the
virtual inputs v1 = v2 = 0. For purposes of the analysis, constant
reference tracking are considered. This means x1

ref ≡ x1
e, x4

ref ≡ x4
e,

x3
˙ ref ≡ 0 and therefore we have to analyse stability of the
equilibrium of the angle of attack's internal dynamics given by

x2
˙ = f 2

¯ (x2),

Here f 2
¯ (x2) is given by (55) derived in Appendix 2. To analyse

the stability, we have to first compute the equilibrium of the one-
dimensional angle of attack by solving (56) and than to analyse the
Jacobian of f 2

¯ (x2) at x1
e, i.e. (∂ f 2

¯ /∂x2)(x2
e). We will show that

(∂ f 2
¯ /∂x2)(x2

e) < 0 and therefore by the first method of Lyapunov x2
e

is the locally exponentially stable equilibrium of (55). To be more
specific, rewrite (56) as follows:

b1b5x1
e(x1

e) + b1b13x1
ex2

ex1
e + b4cos(x2

e − x4
e)

+ b8x1
etan(x2

e)x1
e b14 + b15x2

e +
− b10

−1 b7 + b2x1
etan(x2

e) b4sin(x2
e − x4

e)
− b10

−1 b1b11x1
e2 + b1b12x1

e2x2
e = 0.

(35)

The above equation can be solved numerically for the
equilibrium x2

e. However, the crucial aspect here is to check that for
every selection of x1

e and x4
e, the equilibrium solution for x2

e is
within the stall angle range. As a matter of fact, when choosing x1

e

and x4
e it is important to solve (35) for x2

e and to ensure that x2
e is

less than stall angle.
To study the local stability of (35) around the equilibrium point

x1
e, x2

e, 0, x4
e , its linear approximation is considered. The partial

derivative of (35) (Jacobian), Jx2 becomes

x1
˙ = Jx2 x2 − x2

e + 𝒪 x2 − x2
e . (36)

Jx2 = b1b13x1
e + b8b15x1

etan(x2
e)

+ b2sec2(x2
e) b4sin(x4

e − x2
e) + b1b11x1

e2 + b1b12x1
e2x2

e

b10

+ b4sin(x4
e − x2

e)
x1

e + b8x1
esec2(x2

e) b14 + b15x2
e

− b7 + b2x1
etan(x2

e) b1b12x1
e2 + b4cos(x4

e − x2
e)

b10x1
e

(37)

The term

b2sec2(x2
e) b4sin(x4

e − x2
e) + b1b11x1

e2 + b1b12x1
e2x2

e

b10

is related to the drag and engine thrust, hence it is always zero or
negative (in practice aircraft cannot fly backward) for any values of
x2

e. The term b1b13x1
e + b8b15x1

etan(x2
e) < 0 in (37) for any values of

x2
e. The term b8x1

esec2(x2
e) b14 + b15x2

e  is related to the pitching
moment, therefore for x2

e > 0, the term
b8x1

esec2(x2
e) b14 + b15x2

e > 0 and for x2
e < 0,

b8x1
esec2(x2

e) b14 + b15x2
e < 0. The term

b7 + b2x1
etan(x2

e) b1b12x1
e2 + b4cos(x4

e − x2
e)

b10x1
e < 0

is related to the drag, lift, pitching moment produced by the
elevator deflection (δe). Hence term

b7 + b2x1
etan(x2

e) b1b12x1
e2 + b4cos(x4

e − x2
e)

b10x1
e > 0

for or any values of x2
e. The condition for Jx1 to be negative is (see

(38)) 
The condition in (38) is easily satisfied because the terms on the

right hand side are much smaller than the terms on the left hand
side. Hence, (36) can be written as

x2
˙ = λ(x2 − x2

e) .

Here λ = Jx2 < 0. This confirms that the state x2
e is

exponentially stable, i.e. the zero-dynamics of the controller is
exponentially stable. It has been shown that for any combination of
velocity x1

e and pitch angle x4
e the zero-dynamics of the angle of

u2 = − b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4 b10x1
2 + b8b14x1

2 + b8b15x2x1
2 + b9x1x3 b2x1

2

b3cos x2 (b10x1
2)

+ −b2x1
2v1 + b10x1

2v2

b3cos x2 (b10x1
2) .

(33)

u2 = − b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4 b10x1
2 + b8b14x1

2 + b8b15x2x1
2 + b9x1x3 b2x1

2

b3cos x2 (b10x1
2)

−b2x1
2 x4

¨ ref + k3 x3 − x4
˙ ref + k4 x4 − x4

ref + b2x1
2 x1

˙ ref + k1 x1 − x1
ref

b3cos x2 (b10x1
2) .

(34)

b7 + b2x1
etan(x2

e) b1b12x1
e2 + b4cos(x4

e − x2
e)

b10x1
e ∣ + ∣ b1b13x1

e + b8b15x1
etan(x2

e)

b2sec2(x2
e) b4sin(x4

e − x2
e) + b1b11x1

e2 + b1b12x1
e2x2

e

b10

>∣ b8x1
esec2(x2

e) b14 + b15x2
e + b4sin(x4

e − x2
e) ∣ .

(38)
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attack x2
e is exponentially stable. However, it is crucial to calculate

the equilibrium angle of attack x2
e and to check that if it lies within

the operational range to avoid stall.

3.3 Flight controller for angle of attack and velocity (Flight
Controller No. 3)

This controller can be used in critical conditions where the aircraft
is about to exceeded the stall angle and/or exceeded the maximum
construction velocity. A quick automatic recovery controller is
needed to bring the angle of attack (x2) back to a reasonable value.
Two crucial tasks in aircraft stall recovery are to get the angle of
attack (x2) within the normal operation range and to control the
velocity (x1) of the aircraft so that it does not fly too fast or too
slow. Here the velocity (x1) is controlled by the engine throttle (u2),
and the angle of attack (x2) by the elevator deflection (u1).

3.3.1 Control design.: The control objective for this controller is
to design a tracking controller for x2 and x1. Thus the auxiliary
outputs chosen to get the partial exact feedback linearisation for
Flight Controller No. 3, denoted as h3(x) are as follows:

h3 x =
x1

x2
.

Let the virtual inputs to control ẋ2 and ẋ1 be v1 and v2. Lie
derivative computation of h3(x) following (14) and (15) shows that
it has the relative degrees r = (1, 1). This gives a two-dimensional
internal dynamics. Hence, the feedback linearised form of the
system (13) is obtained as follows:

x1
˙ = v2,
x2
˙ = v1,

The virtual inputs v1 and v2 are defined as follows:

v1

v2
=

f 2

f 1
+

g21 g22

g11 g12

u1

u2
. (39)

The conditions for the existence of the relative degree as
mentioned in (14) and (15) hold if and only if, x1 ≠ 0, i.e. for any
non-zero velocity of the aircraft. Following (39) the input
equations for u1 and u2 can be rewritten as follows:

u1

u2
=

g21 g22

g11 g12

−1
−

f 2

f 1
+

v1

v2
.

u1 = b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4 −b3x1
−1sin x2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2

+ b3cos x2 v1 − −b3x1
−1sin x2 v2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2

− b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4 b3cos x2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2
.

(40)

u2 = − b1b11x1
2 + b1b12x2x1

2 + b4sin x2 − x4 b7x1

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2

+ − b2x1
2 v1 + b7x1 v2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2

+ b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4 b2x1

2

b3cos x2 b7x1 − b2x1
2 −b3x1

−1sin x2
.

(41)

Combining the two controllers enables us to control the angle of
attack (x2) and the velocity (x1), provided that the two-dimensional
internal dynamics are stable and have favourable properties.

3.3.2 Internal dynamics of pitch rate (x3) and pitch angle
(x4).: During design of the controller, the pitch rate x3 and the pitch
angle x4 are left uncontrolled. This corresponds to the hidden
uncontrolled internal dynamics. In this controller, the internal
dynamics is two dimensional. Now, to checking the internal
dynamics, substitute the expression of control input u1 and u2 (40)
and (41) into the equation of x3

˙  and x4
˙  in (13). For simplicity, zero-

dynamics are studied. Hence, for reference tracking x1
ref t , x2

ref t ,
the virtual inputs are set to v1 = v2 = 0. For the purposes of the
analysis, constant reference tracking is considered. This means
x1

ref ≡ x1
e, x2

ref ≡ x2
e. Thus, the equilibrium equation for x3 and x4 gets

x3
˙

x4
˙ =

f 3 + b10x1
2 u1

f 4
= 0

0 .

This can be expanded to give (see Appendix 3 for details of the
derivation):

x3
˙

x4
˙ = Φ3

Φ4
= 0

(see (42)) 
Here Φ is the internal dynamics function. For every selection of

x1
e and x2

e, there are unique equilibrium x3
e and x4

e such that (42) is
zero. For analysing the local stability, we need to analyse the
Jacobian of (42). The Jacobian of (42) will be a 2 × 2 square matrix
due to two-dimensional internal dynamics. For the stability proof,
we will show that real parts of the eigenvalues of the Jacobian of
(42) are negative at the equilibrium.

To study the local stability of (42), its linear approximation
around the selected equilibrium points x = (x1

e, x2
e, x3

e, x4
e) is

considered. Here, x3
e = 0 because at the equilibrium pitch angle x4

e,
the pitch rate x3

e must be zero. The partial derivative of (42)
(Jacobian) becomes:

x3
˙

x4
˙ =

∂Φ3

∂x3

∂Φ3

∂x4

∂Φ4

∂x3

∂Φ4

∂x4

(x3 − x3
e)

(x4 − x4
e)

.

Thus the Jacobian for x3
˙  and x4

˙  becomes:

∂Φ3

∂x3
= b9x1 − b3b10x1

2cos(x2)(b6 + 1)
b3b7x1cos(x2) + b2b3x1sin(x2)

, (43)

(see (44)) 

Φ3
Φ4

=
f 3 + b10x1

− b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4 + −b3x1

−1sin x2 u2 + x2̇
ref + k2 x2 − x2

ref

b7

x3

. (42)
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∂Φ4

∂x3
= 1, ∂Φ4

∂x4
= 0. (45)

For the stability of the internal dynamics, the roots of the
characteristic equation should be negative real roots. The roots of
the characteristic equations can be calculated as follows:

sI −

∂Φ3

∂x3

∂Φ3

∂x4

∂Φ4

∂x3

∂Φ4

∂x4

= 0.

s1, 2 = (∂Φ3/∂x3) ± ∂Φ3/∂x3
2 + 4(∂Φ3/∂x4)

2 .

Here s is the complex frequency in the Laplace transform. The
condition for stability is that the real part of the roots should be
negative, i.e.

1. ∂Φ3/∂x3 < 0 and ∂Φ3/∂x4 < 0.

Consider ∂Φ3/∂x3 (43). It can be simplified to:

∂Φ3

∂x3
= b8x1 cmacCmq

−
Cmδe

cos(x2) CL0
+ 1

b1 CLδe
cos(x2) + CDδe

sin(x2)
. (46)

The term is always b8x1 > 0, by definition from (15). The terms
Cmq

, Cmδe
< 0, CLδe

, CDδe
> 0 and CL0

≥ 0 by definition.
Substituting all these inequalities in (46) gives that (∂Φ3/∂x3) < 0.

Now consider the term, (∂Φ3/∂x4) in (44), it can be simplified to
give:

∂Φ3

∂x4
= b10b4 b3b4cos(x2 − x4)sin(x2) − b3b4sin(x2 − x4)cos(x2)

b3b7cos(x2) + b2b3sin(x2)

= b4b10 sin(x4)
b7cos(x2) + b2sin(x2)

.
(47)

∂Φ3

∂x4
=

gb8Cmδe
sin(x4)

b1CLδe
cos(x2) + b1CDδe

sin(x2)
. (48)

To recover from a stall, the aircraft has to go into a nose dive
motion, as such x4 < 0. This implies that the numerator of (48) is
always positive due to the term sin(x4) being multiplied by
Cmδe

< 0. The denominator of (48) is also always negative because
it is multiplied by the term b1 which by definition in (15) is
negative. It can be therefore be concluded that for this controller
∂Φ3/∂x3 < 0 and ∂Φ3/∂x4 < 0. It can be said that the two-
dimensional internal dynamics of the proposed controller is stable.

3.4 Controllers gain selection and robustness

It has been shown in Sections 3.1–3.3 that the relation between the
virtual inputs and the selected the auxiliary outputs are integral
(integrator). Each feedback gains (k1, k2, k3 and k4) can be computed
by specifying the time constant of the closed loop. For
implementation, flight-handling quality requirements should be
taken into account. The flight control system should provide
responses satisfying the existing specifications (MIL-STD-1797A
and MIL-F-9490D) [21]. Methods for choosing the flight controller
gains considering the actuator lag are presented in [22]. While
choosing the gain, it is important to make a trade-off between the

response of the controlled variable and the physical actuator's limit,
so as not to saturate the control inputs.

The robustness properties of the dynamic inversion have
received too little attention in the literature. Some robustness
analysis of the NDI controllers is presented in [23, 24]. In [23],
authors proposed a sum-of-squared method to analyse the
robustness properties of non-linear controller for longitudinal
aircraft dynamics. In [24], authors proposed a robust NDI in
combination with sliding mode control. Individual studies of each
methods are out of scope in this paper. However, to study the basic
parametric uncertainties, we have added ±10% uncertainties as an
upper bound and lower bound to the nominal values of the
controller gains during the simulations (see Section 4).

3.5 Switching of the flight controllers

Flight Controller No.1 can be used for situations like take-off,
steady climb of the aircraft when the angle of attack is non-zero.
This will allow controlling the aircraft's both angle of attack (α)
and pitch angle (θ). For the steady but steep climbing, angle of
attack should stay high and singularity at α = 0 is not crucial.
While using this controller, the velocity of the aircraft will be left
uncontrolled. For each combination of angle of attack and pitch
angle, there is a stable equilibrium velocity. Difference between the
pitch angle and angle of attack is the flight path angle. Hence, this
controller can be used for controlling the flight path angle by
independently choosing desired angle of attack and pitch angle. For
example, for horizontal cruising same tracking values of angle of
attack and pitch angle resulting in zero flight path angle.

Using Flight Controller No. 2 velocity and pitch are controlled,
while angle of attack is left uncontrolled. This controller can be
used for situations where rapid change in pitch up or pitch down
manoeuver is required while having control over the aircraft
velocity. Alternatively, this flight controller can be used for faster
cruise conditions. For example, assume the aircraft is flying with
some reasonable angle of attack using the Flight controller No. 1.
Then, for faster cruising, we can set θ = x4 = 0 and velocity (x1) to
some desired cruising fast velocity to achieve it. In conditions
where the angle of attack is critically big (close to stall angle) and
the velocity is too slow, Flight Controller No. 3 should be used to
get angle of attack within some acceptable range.

Flight Controller No. 3 can be primarily used to recover the
aircraft from critical conditions like stall while controlling the
velocity while preventing the aircraft from exceeding the
maximum construction velocity. The linearising feedback
influences of elevator input (u1) and engine thrust (u2) on both
velocity and angle of attack. Mainly the engine thrust is responsible
for controlling the velocity and elevator for controlling the angle of
attack. Coupling terms in this controller are smaller, and are rather
treated as undesired coupling, which is actually compensated by
the linearising feedback. Using this controller, both the angle of
attack and the velocity are controlled while leaving pitch angle
uncontrolled, which is not very crucial. Indeed, in situations like
stall, the ‘dangerous’ variables are the angle of attack and the
velocity. As soon as the aircraft is brought within some acceptable
limits of α and velocity the controller can be switched to Flight
controller No. 1 or 2.

4 Simulation results and discussion
Simulations are performed with MATLAB/Simulink to verify the
proposed controllers on the aircraft model (13). The non-linear
aircraft model used for the control design and validation is based
on the aerodynamic and flight dynamic data of the F-16 multi-role
fighter aircraft (Fig. 3). F-16 is a single-engine supersonic fighter
developed by Lockheed Martin for United States Air Force. The
physical parameters for the aircraft that are used are as follows
[25]: m = 636.94 slug, Iyy = 55814 slugft2, S = 300 ft2,

∂Φ3

∂x4
= b10x1

2 (b3b4cos(x2 − x4)sin(x2)/x1) − (b3b4sin(x2 − x4)cos(x2)/x1)
b3b7x1cos(x2) + b2b3x1sin(x2)

, (44)
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cMAC = 11.32 ft, b = 30 ft. The airfoil used by the F-16 aircraft is
NACA 64A-204 and has ∼ 15∘ stall angle [10]. The maximum
thrust of the engine (FT) is 19, 000 lbs at the rate limited by
±10, 000 lbs/s. The maximum and minimum elevator deflection
(δe) is ±25∘ limited by 60∘/s. The opensource MATLAB/Simulink
model used for the demonstration of controller performance
verification is found in [26] (https://www.aem.umn.edu/people/
faculty/balas/darpa_sec/SEC.Software.html). During the
simulation, changes in parameters such as ρ (air density) and
ambient air temperature with respect to the altitude were
considered to follow International Standard Atmospheric (ISA)
condition model. The controller performances are tested using
specific manoeuvres. To carry out the robustness analysis, we have
considered adding ±10% uncertainty to the nominal values of the
controller gains k1, k2, k3 and k4. For example, if the nominal
controller gain value, ko = 100, then the upper bound of the
controller gain, kupper = 110 and the lower bound of the controller
gain, klower = 90. 

4.1 Flight Controller No. 1

Flight path angle can be controlled by tracking pitch angle (x4 or θ)
and angle of attack (x2 or α). To demonstrate the controller
performance, the trimmed flight condition were chosen to be at
velocity, V = 550 ft/s, and altitude 10, 000 ft. For demonstrating
the controller performance two different manoeuvres were chosen.
For the first manoeuvre, pitch angle tracking (x4) was set to 4∘ and
the angle of attack (x2) tracking was set to 3∘. For the second
manoeuvre, x4 and x2 tracking were set to −1∘ and 1∘. Both the
manoeuvres were set to start from the initial trimmed condition
with x4 = x3 = 2.5∘. Following (22) and (24) controller parameters
are listed as follows: k2 = − 60 s−1, k3 = − 20 rad s−1, and
k4 = − 40 rad s−2. For each manoeuvre the influence of the
controller uncertainties are demonstrated. Fig. 4 illustrates the
simulation results. 

It can be seen that the pitch angle and the angle of attack are
exponentially tracked by the controller. In the first manoeuvre, for
positive flight path the velocity reduces by exponentially decaying
towards 500 ft/s for going against the gravity. However, for
controlling the angle of attack with engine thrust, it is essential to
provide more thrust to achieve exponential tracking of the angle of
attack. In general providing more thrust should increase the
velocity, but in the presented case it does not happen because the
rate of reduction of velocity (due to pitch of motion) is much larger
than the thrust used to control the angle of attack. Hence,
irrespective of increasing the thrust to control increase the angle of
attack, the decay of velocity decays, but rather slowly.

In the second manoeuvre, a negative flight path angle is
demonstrated. It can be seen the that the velocity of the aircraft
increases and stabilises at around 670 ft/s. At the beginning, higher
thrust is required due to large difference between the reference
angle of attack and actual angle of attack. However, gradually the
thrust requirement settles down.

Fig. 3  F-16 Fighter Aircraft [26]
 

Fig. 4  Angle of attack and pitch angle controller. Blue, red, and green show the controller performance with nominal gains, upper bound gains, and lower
bound gains
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To demonstrate the robustness of the control gains, we carried
out the simulation of each manoeuvres separately with nominal
(blue), upper bound (red), and lower bound (green). For all the
cases, the controller exponentially tracked the pitch angle and
angle of attack. It is important to notice that for all the cases the
uncontrolled velocity stabilises.

4.2 Flight Controller No. 2

To demonstrate the tracking of pitch angle (x4 or θ) and the velocity
(x1 or V) control, the chosen initial flight condition was cruising
velocity of 500 ft/s at an altitude of 10, 000 ft. Two different
manoeuvres were chosen to show the performance of the
controller. Firstly, a nose up motion while tracking the x4 and x1 at
10∘ and 550 ft/s. The second manoeuvre was chosen to be a nose
dive motion while tracking the x4 and x1 at 1∘ and 600 ft/s,
respectively. Both the manoeuvre initialised from the trimmed
condition with x4 = 3.4∘. Following (33) and (34), the controller
parameters are listed as follows: k1 = − 100 s−1, k3 = − 20 rad s−1,
and k4 = − 40 rad s−2. For each manoeuvre, the influence of the
controller uncertainties are demonstrated in terms of nominal,
upper bound, and lower bound of the controller gains. Fig. 5
illustrates the simulation results. 

It can be seen that the velocity V and the pitch angle θ are
exponentially tracked. It is noticeable for the pitch down motion
(manoeuvre 2), the angle of attack (α) exponentially stabilises at
the equilibrium value of 2∘. However, for the pitch up motion
(manoeuvre 1), the angle of attack stabilised as well but a slower
rate. This is because the tracking of velocity while making a pitch
up motion is slower. However, it is important to notice the tracking
error in pitch angle converges to the zero, and the tracking error for
the velocity converges to a small value near zero. The slow
convergence of the velocity tracking is due to the chosen controller
gains so as not to saturate the engine thrust. To demonstrate the

robustness of the control gains, we carried out the simulation of
each manoeuvres separately with nominal (blue), upper bound
(red), and lower bound (green). In all the cases, the desired pitch
angle and velocity were exponentially tracked.

4.3 Flight Controller No. 3

The performance of the Flight Controller No.3 has been verified
assuming the worst case scenario, where the aircraft has reached
the stall angle x2 or α = 14.87∘ and stall velocity x1 or V = 375 ft/s
at an altitude of 30, 000 ft. The two important objectives of the
controller are: firstly, to bring back the angle of attack of the
aircraft within the operating range and secondly, to ensure that the
aircraft is not flying too slowly or too fast. Hence, for α and V
tracking reference is set to 8∘ and 550 ft/s. The primary focus of the
controller is to get the aircraft out of stall as quick as possible,
resulting in vigorous control actions. Following (40) and (41), the
controller parameters are listed as follows: k2 = − 60 s−1 and
k1 = − 86 rads−1. For the manoeuvre, the influence of the controller
uncertainties are demonstrated in terms of nominal, upper bound,
and lower bound of the controller gains. Fig. 6 illustrates the
simulation performance of the controller. 

It can be seen the that angle of attack and the velocity converges
to the reference value. It is important to notice that at the start of
the manoeuvre the control actions are vigorous and operates at the
maximum limits. This is because the high gain values chosen for
the tracking controllers of x1 and x2 for faster recovery from stall
causing maximum control efforts from the actuators (elevator
deflection (δe) and thrust (FT)). It can also be noticed that the pitch
rate (q) is exponentially stable and slowly converges to zero. It is
important to note that pitch angle (θ) is directly related to pitch rate
(q). This residual pitch rate causes a change in the pitch angle (θ)
over a long period of time. Here, the controller is only for use in
adverse situations, such as stalling. This controller is always in use

Fig. 5  Pitch angle and velocity controller. Blue, red, and green show the controller performance with nominal gains, upper bound gains, and lower bound
gains

 

10 IET Control Theory Appl.
© The Institution of Engineering and Technology 2017

65



for a short duration. Exponential stability of q is not therefore a
problem for this controller.

5 Conclusions
In this paper, automatic longitudinal flight controller is presented
for conventional fixed-wing aircraft using non-linear dynamic
inversion (NDI) technique or, in control theoretic terms, the partial
exact feedback linearisation. Main theoretical results include
designing of three different tracking flight controllers which
provides full control of longitudinal states (velocity, angle of attack
and pitch angle) of the aircraft. A detailed study on the stability of
the internal dynamics for each controller are carried out and has
been showed to be stable. Combination of these three flight
controllers depending on the flight condition provided full 3-DOF
longitudinal control authority of a fixed-wing aircraft. Simulation
results demonstrate that with the proposed controllers, longitudinal
motion of a conventional multi-role combat aircraft can be
controlled with small tracking error.
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8 Appendix
 
8.1 Appendix 1: derivation of Flight Controller No. 1

Deriving the equation of the control inputs u1 and u2 in the form of
f (x) and g(x), we get

u1 = − f 3 + v1

g31
. (49)

u2 = ( f 3 − v1)g21

g22g31
− f 2 − v2

g22
. (50)

Substituting v1 = v2 = 0, in (49) and (50) we get,

u1 = − f 3

g31
, u2 = ( f 3)g21

g22g31
− f 2

g22
.

Now substitute the expression of control input u1 and u2 above
into the equation of x1

˙  in (13), we get

x1
˙ = f 1 + g11u1 + g12u2 .

x1
˙ = f 1 + g11

− f 3

g31
+ g12

( f 3)g21

g22g31
− f 2g12

g22

= f 1 + g12g21

g22g31
− g11

g31
f 3 − f 2g12

g22
.

g12g21

g22g31
− g11

g31
= −b7cot(x2

e) − b2

b10
, g12

g22
= − x1

ecot(x2
e) .

g12g21

g22g31
− g11

g31
= −b7cot(x2) − b2

b10
, g12

g22
= − x1cot(x2) .

Now substitute x3
e = 0 in the equation of x1

˙  above, we get the
internal dynamics as follows:

x1
˙ = f 1

¯ (x1),

Here, (see (51)) 

The equilibrium point of this zero-dynamics (or also
equilibrium velocity) x1

e can be computed solving the following
algebraic equation:

f 1
¯ (x1

e) = 0. (52)

8.2 Appendix 2: derivation of Flight Controller No. 2

Deriving the equation of the control inputs u1 and u2 in the form of
f (x) and g(x), we get

u1 = − f 3 + v1

g31
. (53)

u2 = ( f 3 − v1)g11

g12g31
− f 1 − v2

g12
. (54)

Substituting v1 = v2 = 0, in (53) and (54) we get,

u1 = − f 3

g31
, u2 = ( f 3)g11

g12g31
− f 1

g12
.

Now substitute the expression of control input u1 and u2 above
into the equation of x2

˙  in (13), we get:

x2
˙ = f 2 + g21u1 + g22u2

x2
˙ = f 2 + g21

− f 3

g31
+ g22

( f 3)g11

g12g31
− f 1g22

g12

= f 2 + g22g11

g12g31
− g21

g31
f 3 − g22

g12
f 1

(see equation below)

g22

g12
= −b3x1

e − 1sin(x2
e)

b3cos(x2
e)

= −tan(x2
e)

x1
e .

Now substitute x3
e = 0 in the equation of x2

˙  above, we get the
internal dynamics as follows:

x2
˙ = f 2

¯ (x2),

here,

f 2
¯ (x2) = b1b5x1

e + b1b13x1
ex2 + b4cos(x2 − x4

e)
x1

e

+ b8x1
etan(x2) (b14 + b15x2)

− b7 + b2x1
etan(x2) b4sin(x2 − x4

e)
b10x1

e

− b1b11x1
e2 + b1b12x1

e2x2

b10x1
e .

(55)

f 1
¯ = (x1

e)2 cot(x2
e) b1b5 − b7b8b14

b10

+x2
ecot(x2

e) b1b13 − b7b8b15

b10
+ b1b11 + b1b12x2

e

+ b4cot(x2
e)cos(x2

e − x4
e) − b2

b10
b2b14 + b8b15x2

e + b4sin(x2
e − x4

e)

(51)

g22g11

g12g31
− g21

g31
= b2x1

e2( − b3x1
e − 1sin(x2

e))
b3cos(x2

e)b10x1
e − b7x1

e

b10x1
e2 = −b3x1

etan(x2
e) − b7

b10x1
e .
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Simplifying the equation above, the equilibrium point of this
zero-dynamics (or also equilibrium angle of attack x2

e can be
computed solving the following algebraic equation:

f 2
¯ (x2

e) = b1b5x1
e(x1

e) + b1b13x1
ex2

ex1
e + b4cos(x2

e − x4
e)

+ b8x1
etan(x2

e)x1
e (b14 + b15x2

e)
− b10

−1 b7 + b2x1
etan(x2

e) b4sin(x2
e − x4

e)
− b10

−1 b1b11x1
e2 + b1b12x1

e2x2
e = 0.

(56)

8.3 Appendix 3: derivation of Flight Controller No. 3

Deriving the equation of the control inputs u1 and u2 in the form of
f (x) and g(x), we get

u1 = − f 2

g21
− g22

g21
u2 + v1

g21
, u2 = − f 1

g12
− g11

g12
u2 + v2

g12
. (57)

u1 = g12 f 2 − v1

g11g22 − g12g21
− g22 f 1 − v2

g11g22 − g12g21
. (58)

u2 = g21 f 1 − v2

g11g22 − g12g21
− g11 f 2 − v1

g11g22 − g12g21
. (59)

Substituting v1 = v2 = 0, in (57) and replacing them into the
equation of x3

˙  and x4
˙  in (13), we get

x3
˙

x4
˙ =

f 3 + g31u1

f 4
=

f 3 + g31
− f 2 − g22u2

g21

f 4

. (60)

Now substituting expression for f (x) and g(x) in (60) gives the
two-dimensional zero-dynamics:

x3
˙

x4
˙ = Φ3

Φ4

(see equation below)

Φ3
Φ4

=
f 3 + b10x1

− b1b5x1 + b1b13x2x1 + b6x3 + x3 + b4x1
−1cos x2 − x4 + −b3x1

−1sin x2 u2 + x2̇
ref + k2 x2 − x2

ref

b7

x3

.

IET Control Theory Appl.
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Chapter 7

Load Alleviation System for Aircraft

7.1 Summary of the contributions
This chapter covers mainly the contribution of active control technique for reducing the gust
loading on a flexible aircraft. Light weight aircraft suffers from reduced stiffness for disturbance
loads such as gusts. A robust feedforward gust load alleviation system (GLAS) is developed to
alleviate the gust loading. The research is focused on designing a combined feedforward/feedback
controller to improve performance in reducing the peaks in wing root moments at very short
gust lengths. The complex 2 DoF structural load alleviation system has been developed for a
flexible aircraft. The detectable wind gust signal was considered as driving excitation factor of
the aircraft structure for this study. The feedback part of the load alleviation system has been
developed using a robust and optimal control system design techniques in order to augment feed-
forward part and its robust properties, respectively. While designing the controller via the root
locus method, frequency domain requirements were taken into account so that the low frequency
dynamics of the aircraft was not affected. The robust performance of designed structural load
alleviation system was assessed and results show significant reduction of the wing root bending
moments. Reduction of aircraft structural load might offer potential possibility aircraft structural
weight savings or increase predicted life time of structure.

7.2 Publication
The work is represented by a publication with modified formatting and follows on the next page.
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Lightweight flexible blended-wing-body (BWB) aircraft concept seems as a highly promising configuration 
for future high capacity airliners which suffers from reduced stiffness for disturbance loads such as gusts. 
A robust feedforward gust load alleviation system (GLAS) was developed to alleviate the gust loading. 
This paper focuses on designing a feedback controller which would improve the robust performance 
of the feedforward controller in reducing the peaks in wing root moments at very short gust lengths. 
The simulation results show that when the new feedback compensator is engaged with the feedforward 
controller, the performance of the GLAS system is improved significantly in terms of reduction in wing 
root moments for shorter as well as for longer gusts. This reduction in the wing root moment’s peak 
provides potential structural benefits and weight savings.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Current state-of-the-art aircraft such as Airbus A380 and Boeing 
787 Dreamliner have pushed the limits of efficient conventional 
tube-wing configuration. As a result the aircraft designers inves-
tigate now alternative aircraft configurations such as the Blended 
Wing Body (BWB) concept. Several projects were undertaken in 
the European research programmes content such as ACFA (Active 
Control for Flexible Aircraft) 2020, NACRE (New Aircraft Concepts 
Research), VELA (Very Efficient Light Aircraft) and ROSAS (Research 
on Silent Aircraft Concepts) [2,18,15,7].

The transport aircraft BWB research and design efforts can be 
traced back to the 1980s. A comprehensive documentation of the 
US research efforts on the design of BWB subsonic transport air-
craft, corresponding design issues and constraints, advantages and 
drawbacks existing with such configurations, as well as results 
from wind tunnel tests are presented in [17]. The research progress 
is demonstrated starting from a preliminary design study in 1988 
for novel configurations up to the highly efficient Boeing BWB-450 
baseline aircraft. Basically, three generations of BWB configurations 
are documented which were successively improved.

The European VELA project aimed at the development of skills, 
capabilities and methodologies required for the design and opti-

* Corresponding author.
E-mail address: mushfala@fel.cvut.cz (M. Alam).
URL: http://measure.feld.cvut.cz/en/malam (M. Alam).

mization of civil flying wing aircraft. Within VELA two baseline 
flying wing BWB configurations were developed [24]. The project 
was focused on development of aerodynamic and control deriva-
tives and their impact on flight stability. In addition low speed 
tunnel tests were performed while comparing the results from the 
experiment with the predictions made using CAD and CFD soft-
ware tools. Special setup of dynamic tests was dedicated to the 
validation of the effects of deflecting control surfaces and other 
dynamic characteristics of flying wing configurations. Optimization
techniques were then applied to maximize the efficiency of these 
configurations, varying parameters such as chord length, twist an-
gle and airfoil section shape [8].

Later on NACRE project was undertaken to drive the devel-
opment of the key capabilities required for the improvement of 
the novel aircraft concepts from the experience gained in VELA. 
The NACRE project was broken down to mainly four work pack-
ages; first, novel aircraft concept; second, novel lifting surfaces; 
third, novel power plant installation and fourth, novel fuselage. 
The key technical achievements can be classified in two key areas: 
(1) Multidisciplinary Design and Analysis Capabilities for Compo-
nents, which includes, (a) Open Rotor propulsion integration for 
noise shielding; (b) Powered Tail innovative integrated design & 
analysis; (c) Natural Laminar Flow wing design and transition pre-
diction and (d) Flying wing configuration design and multidis-
ciplinary assessment [14]. (2) Experimental Validation & Testing 
Techniques, which includes, (a) Rear engine integration (Aerody-
namics & Noise improvement); (b) High-Energy absorption; (c) Fly-

http://dx.doi.org/10.1016/j.ast.2014.12.020
1270-9638/© 2015 Elsevier Masson SAS. All rights reserved.
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Fig. 1. Visualization of two selected BWB concepts ACFA2020 (left) [2] and NACRE (right) [3].

ing Wing cabin evacuation; (d) Innovative evaluation platform de-
velopment [3,10,1].

Finally, within the ACFA2020 the predesign of a 450 passen-
ger BWB aircraft is finalized achieving the major aircraft effi-
ciency objectives regarding reduced fuel consumption and external 
noise. The project further studied robust as well as adaptive multi-
channel control architectures for loads alleviation and improve-
ment of ride comfort and handling qualities of BWB type aircraft. 
One of the main goals of the project, however, was to investigate 
the system’s aeroelastic properties with respect to modern con-
trol design methodologies. Thereby, the potential in structural load 
reduction, improving of ride comfort and attainable handling qual-
ities were main drivers [9].

The dynamical models of the finalized BWB aircraft were de-
veloped for carrying out the controller design. The models were 
generated based on a refined Finite Element Model (FEM) and 
aerodynamic data [2]. Fig. 1 shows the two above mentioned fi-
nalized BWB concepts within the European projects.

For future high capacity airliners, the BWB concept appears to 
be highly promising. The aircraft configuration presents a compact 
lifting body with significantly increased lift-to-drag ratio with ob-
vious environmental (lower noise level and CO2 emissions) and 
economic (lower fuel consumption, reduced operational expenses) 
consequences [17,20,23,21]. The lightweight BWB structure suffers 
however from reduced stiffness compared to the classical tube-
wing configuration.

This aspect of reduced stiffness is further emphasized if thin 
lifting surfaces and the use of composite materials for aircraft 
structures are considered, leading to light weight flexible struc-
tures. When this type of aircraft passes through the turbulent 
atmosphere, it develops significant structural vibrations. Aircraft 
motion of this kind results in reduction of structural lifetime due 
to large dynamic loads and the consequent level of stresses. The 
amplitude of the aircraft’s structural response, caused by gust ex-
citation depends upon two factors. First, the amount of energy 
transferred from the gust disturbance to the structural modes; and 
second, the dissipation of any energy absorbed from gust by ac-
tive structural damping. In addition, when the amplitude of the 
response of the elastic motions is comparable to that of the rigid 
body motion, an interaction or coupling of the rigid body energy 
and the elastic energy can appear leading to detriment of the fly-
ing qualities of the aircraft [19,22].

Current Gust Load Alleviation systems work primarily on the 
error feedback principle [5,30,33]. The first peak in the wing root 
moments (induces maximum load in the construction) determines
the required sizing of the wing root joint reinforcement. Poten-
tial weight savings can be realized if the reduction in wing root 
moments is achieved. What is of special concern is therefore the 
1st peak’s reduction in the wing root moments, which is regarded 
as non-achievable by purely feedback solution [27]. Therefore com-

Fig. 2. Normalized feedforward control inputs [29].

bined feedforward plus feedback control can significantly minimize 
structural deflection due to air turbulence such as gusts [31,28]. 
If the sensors are placed smartly they could measure the r.m.s.
(root mean square) vertical acceleration (along z-axis) at a number 
of locations on the aircraft. In order to precisely determine the ef-
fects of the wing bending relative to the center of gravity (CG) of 
the aircraft sensors are to be placed at the CG, wingtip right node 
and wingtip left node in principle. A related detailed treatment on 
optimal placement of sensors for this problematic issue is outlined 
in [12,16,25]. The acceleration of the wing relative to the CG is de-
fined as ηz law (see Section 3.1) which actually gives the measure 
of wing bending, induced by a gust for instance.

To alleviate this gust loading, a triggered feedforward (FF) con-
trol strategy, see Fig. 2, was elaborated at EADS Innovation Works, 
Munich. Fig. 2 shows the normalized control signal with respect 
to the maximum elevator deflection. A pre-computed control se-
quence for ailerons and spoilers is triggered once the aircraft 
hits a gust, which is detected by an alpha-probe (angle-of-attack 
probe) placed at the node of the aircraft [29]. The pre-defined 
FF control sequence was designed to be robust with respect to 
different aircraft mass cases, altitudes, Mach numbers and gust 
lengths.

This FF control approach appears very efficient, according to 
high-fidelity simulations [29] for alleviation of the wing root bend-
ing and torsional moments for long gusts especially, which are the 
“sizing gusts” in fact – they produce largest impacts on the con-
struction. However, a price paid for this are slightly increased wing 
root moments for shorter gusts, compared to the non-controlled 
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Fig. 3. Pole-zero plots of the original BWB aircraft with the stabilizing H∞ feedback controller [33].

case (bear in mind that the control sequence is pre-calculated and 
fixed for any gust length). These short gust cases are not the sizing 
ones, and the overall first-peak value throughout the gust length 
cases is significantly reduced, still this effect can be regarded as 
undesirable and disturbing.

Earlier attempts were made in [4] to improve the performance 
of the GLAS using linear quadratic regulators (LQR). The controller 
design and simulation showed promising improvement by reduc-
ing the wing root moments. However this type of controller was 
constrained by the difficulties of state estimation. Generally BWB 
aircraft are large systems with significantly high number of un-
measurable flexible states and, as a result it is difficult to imple-
ment full-order optimal controllers in this case.

Therefore a different concept is proposed in this paper. It is sug-
gested to use additional simple feedback loops that would work 
along with the triggered FF GLAS system which would improve 
the FF control sequence performance over shorter gust lengths and 
further improve the performance for “sizing gusts”. The classical 
SISO control design methods were investigated.

The paper is organized in the following order. Section 2
presents a discussion on the development and generation of the 
aircraft’s dynamic model. Section 3 describes the detailed design 
of the control law. Section 4 provides a detailed comparative anal-
ysis on the improved results. Section 5 contains final concluding 
remarks.

2. Dynamic modeling

2.1. Aircraft model

The aircraft model used for loads analysis and design and vali-
dation of the GLAS is based on aerodynamic and structural data of 
the BWB configuration NACRE developed in the European project 
NACRE and modified in ACFA2020 [33]. The aircraft model was 
not originally developed for dynamic analysis. Necessary modifi-
cations were made so that the dynamic analysis could be per-
formed. Components such as cockpit, elevator and wing’s leading 
edge, engine pylons and structures were added as concentrated

Table 1
Mass variation cases.

No. of cases Fuel (as a fraction of full load)

1 1/16th
2 1/8th
3 1/4th
4 1/2nd
5 3/4th
6 1

point masses [33]. Non-structural masses of systems and equip-
ment as well as operational masses were integrated into the struc-
tural model. Finally, various passenger/payload and fuel configura-
tions were modeled with concentrated masses and also integrated 
into the structural model of the NACRE configuration. Aerodynamic 
polars, damping derivatives, and control surface derivatives were 
provided by the NACRE project for various mass cases and cruise 
speeds. For the gust load analysis six different varying fuel mass 
cases were considered as shown in Table 1.

The phugoid mode of the aircraft is not considered, the analy-
sis is focused on short period model only. The considered aircraft, 
NACRE aircraft, was statically unstable in large regions of mass 
and flight envelope. Therefore, the flight control system required 
artificial pitch stabilization. The original aircraft model was stabi-
lized by a robust (with respect to fuel/mass cases, altitude, and 
velocity) feedback H∞ controller [13,26,32]. Artificial pitch stiff-
ness is achieved by feedback of the vertical CG load factor ηz to 
the elevator. In order to achieve neutral pitch stability this feed-
back is done via a PI controller [19,6]. An additional pitch damper 
(i.e. feedback from pitch rate q to the elevators) allows placement 
of the poles of the short period mode [33]. The original NACRE 
short period model has 20 states which include the rigid body 
short period mode and a number of flexible modes. By adding 
the stabilizing H∞ controller, the overall state count increased 
to sixty. The pole-zero map of the stabilized aircraft is shown 
in Fig. 3.
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Fig. 4. Gust distribution of various gust lengths.

2.2. Gust modeling

Vertical wind gusts are traditionally modeled as a function of 
(1 − cosβ) defined by the equation

xg(t) = a

T

(
1 − cos(2π/T )t

)
(1)

where “T ” is the duration of the gust, which is defined by

T = k/Uo (2)

“k” is the gust length and Uo is the aircraft cruise speed. 10 differ-
ent gust lengths were chosen for the simulation as shown in Fig. 4.

3. Control law design

3.1. ηz law

The wing bending of the flexible aircraft was assessed by at-
taching sensors that measure the r.m.s. values of vertical accelera-
tion at a number of locations on the aircraft. For precise determi-
nation of the effects of wing bending, the sensors should be placed 
at the (CG), wingtip node right and wingtip node left. Details de-
scription for the placement of the sensors can be found in [12]. 
The acceleration of the wing relative to the CG is defined as ηz

law, and it is calculated by:

ηzlaw =

left node︷ ︸︸ ︷
1

2
ηzwingtip +

right node︷ ︸︸ ︷
1

2
ηzwingtip −ηzC G (3)

3.2. Control design

Fig. 5 shows the primary control surfaces of the NACRE aircraft. 
The non-linear models of the actuators were approximated by 2nd 
order linear model. The sensor delays were estimated by 2nd order 
Pade approximations. The FF control sequence works simultane-
ously with Spoiler 1 and 2 and Elevator 1 and 2.

In case of a gust disturbance, the proposed concept was to feed-
back the ηz law to the Flap 1 (inner aileron) and Flap 2 (center 
aileron), which would work together with the FF controller. Fig. 6
shows the control block diagram for the new control strategy.

In such a way, a two-stage feedback control law is devised; 
a separate control augmentation system (CAS) taking care of the 
flight dynamics primarily and the feedback active damping sys-
tem (the newly designed SISO controllers) taking care — jointly 
with the triggered FF GLAS system — of the gust performance im-
provement. Such control structure has obvious advantages. First 
regarding tuning the controllers (both parts can be designed/tuned 
independently). Second, in the flight testing the newly designed 
controller can be turned on/off while keeping the aircraft under 
full control. Third, the point of flight safety is important, loss of 
such an add-on simple feedback controller is not a critical failure 
and would not take the aircraft out of control.

Flap 1 controller design
The first wind bending mode from ηzlaw to Flap 1 (inner aileron) 

lies between 2–3 Hz. ηzlaw controller was designed using the root 
locus method in MATLAB [11]. Eq. (4) shows the Flap 1 controller 
transfer function. In frequency domain the channel from Flap 1 to 
ηzlaw was already damped by 5–7 dB by the stabilizing H∞ con-
troller [26]. While designing the controller using root locus method 
it was ensured that the lower frequency of the aircraft is not af-
fected.

ηzlaw to Flap 1 = 6

s2 + 12s + 20
(4)

The designed controller is a lowpass filter with approximately 1 Hz 
bandwidth (Fig. 7).

Flap 2 controller design
The first wind bending mode from ηzlaw to Flap 2 (center

aileron) lies between 6–10 Hz. ηzlaw controller was designed us-
ing the root locus method. Eq. (5) shows the transfer function of 
the designed ηzlaw controller.
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Fig. 5. Control surfaces of NACRE aircraft.

Fig. 6. New SISO control strategy by feeding back ηz law to Flap 1 and Flap 2.

ηzlaw to Flap 2 = 0.1s + 1

s + 1
(5)

A design requirement again is that the low frequency region is left 
untouched. Fig. 8 shows the frequency response of the ηzlaw con-
troller over different mass cases. The designed controller is a first 
order filter with one zero and one pole.

4. Simulation results

Different mass cases (6 mass cases) were considered along with 
the gust lengths (10 gust lengths). The rate limiters and the satura-
tion point of Flap 1 and 2 were also taken into account during the 
simulation. Flap 1 and Flap 2 were constrained by rate limiter at 
±40 deg/s and saturation point at ±25◦ . The gust was used as an 
exogenous disturbance input signal to the flight dynamics model 
(to the angle of attack channel, more precisely).

Mx is defined as the wing root bending moment and M y is de-
fined as the wing root torsional moment. Fig. 9 to Fig. 11 show the 
response of the wing root moments Mx and M y for the gust cases 
k = 1, 5 and 10 (other gust cases are shown in Appendix A). Sim-
ulations were done using SIMULINK [11]. All other gust cases had 
similar responses. The wing root moment values were normalized 
with respect to the maximum value of Mx & M y which occurs at 
the longest gust case (k = 10). The cyan line corresponds to the 
original aircraft with only stabilizing H∞ controller engaged; blue 
line corresponds to aircraft with stabilizing H∞ controller engaged 
with only FF control action; finally the red line corresponds to the 
aircraft with stabilizing H∞ controller engaged with FF control ac-
tion and newly designed ηzlaw controller to Flap 1 and 2 with H∞
controller engaged.

Observing Fig. 9, comparing the cyan and blue lines, the trig-
gered FF action at short gust lengths (k = 1) artificially gives rise 
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Fig. 7. Frequency response for different mass cases for (1 to 6) using ηzlaw to Flap 1. Cyan shows the response of original aircraft with stabilizing H∞ controller engaged. Red 
shows the response with new Flap 1 controller engaged. Green shows the controller frequency response. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 8. Frequency response for different mass cases for (1 to 6) using ηzlaw to Flap 2. Cyan shows the response of original aircraft with stabilizing H∞ controller engaged. Red 
shows the response with new Flap 2 controller engaged. Green shows the controller frequency response. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

to first peak in wing bending and torsional moments compared 
to free, uncontrolled aircraft (FF control action disengaged). This 
is the undesired effect of the FF control sequence at short gusts. 
Fig. 10 and Fig. 11 show that the triggered FF action at longer 
gust lengths k ≥ 5, for the “sizing gusts”, significantly reduces the 

first peak in wing bending and torsional moments, compared to 
the original aircraft. It is the key feature of the triggered FF GLAS 
system to reduce the 1st peak in the wing root moments.

The reduced performance of the FF control at shorter gust 
lengths can be attributed to the spoiler deflections. Now being 
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Fig. 9. Normalized wing root moment, Mx and M y at gust length 9 m (k = 1) for different mass cases using SISO controller. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Normalized wing root moment, Mx and M y at gust length 60.96 m (k = 5) for different mass cases using SISO controller. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Normalized wing root moment, Mx and M y at gust length 152.4 m (k = 10) for different mass cases using SISO controller. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Flap 1 control action at gust length k = 1.

Fig. 13. Flap 2 control action at gust length k = 1.

Flap 1 and Flap 2 positioned right below Spoiler 1 and 2, it 
makes these control surfaces most effective to improve the per-
formance. If Fig. 2 is considered for FF control deflection, it can 
be seen that Spoilers 1 and 2 deflect with a negative angle (which 
means the spoilers deflect upward) this produces a downward for 
force on the wing. This downward force on the wing gave rise 
to wing root bending moment, Mx , and wing root torsional mo-
ment, M y .

Of course the deflection of the spoilers and elevators and flaps 
during the flight is aerodynamically inefficient due to increased 
drag. However the deflections are made for a very short period of 

time therefore the trade-off between drag and reduction of wing 
root moment is always beneficial.

When the newly designed feedback controller is engaged jointly 
with the FF triggered GLAS compensator, the simulation results 
show significant improvements in reducing the first peak in wing 
root bending moment and wing root torsional moments. From 
Fig. 9 to Fig. 11 (blue and red line), it can be appreciated that 
the new controller improves the FF control performance by reduc-
ing the 1st peak at low gust lengths k = 1 which was the primary 
design goal. In Fig. 10 and Fig. 11 it can be observed however that 
even for longer gust lengths k ≥ 5 the newly designed controller 

77



130 M. Alam et al. / Aerospace Science and Technology 41 (2015) 122–133

enhances the FF controller’s performance by further reducing the 
wing root moments. Tables B.1 and B.2 (in Appendix B) provide 
detailed values regarding this improvement in the performance.

Fig. 12 and Fig. 13 show the resulting control deflection of Flap 
1 and Flap 2. It can be seen that both the flap deflections start 
with a negative deflection and slowly move to higher positive val-
ues (which means the flaps deflect down), this produces a counter 
upward force on the wing which eventually reduces the wing root 
bending moment Mx and wing root torsional moment, M y . The 
figures show the situation for the shortest gust load, the control 
action for other gust cases are similar.

One other important fact to consider is that the performance 
of the controller gets better from mass case 6 to 1. This means 
the performance of the newly designed controller gets better from 
high-mass case to low-mass case. This is practically beneficial due 
to the fact that during the flight the aircraft gradually loses weight 
due to the fuel burn.

The simulation results from Fig. 9 to Fig. 11 show therefore 
that by adding a feedback controller to the feedforward GLAS sys-
tem, significantly improved performance is achieved in terms of 
reduction in wing root moments at shorter gust lengths as well 
as longer gust lengths. The feedforward controller gives a signif-
icant reduction in the wing root moments for gusts longer than 
60.9 m (the sizing ones), while the additional feedback controller 
with Flap 1 and Flap 2 targets primarily the shorter gusts and has 
marginal positive effect on long gusts as well. On an average by 
adding the newly designed feedback controller the performance of 
the FF GLAS was improved by 39% in case of wing root bending 
moment Mx and 36% in case of wing root torsional moment M y .

The 1st peak of wing root moments indicates the maximum 
load in the wing root constructions which provides the required 
sizing of the reinforcement needed at the wing root joints. There-
fore the proposed improved GLAS system indicates a potential pos-
sibility in structural weight savings, in other words cost reduction 
and economic benefits.

5. Conclusions

The newly proposed control method improves the robustness 
performance of a previously developed feedforward gust load alle-
viation system. The proposed SISO controller provides a significant 
performance improvement to the feedforward controller at short 
gust lengths especially. While designing the controller via the root 

locus method, frequency domain requirements were taken into ac-
count so that the low frequency dynamics of the aircraft was not 
affected. The first peak in the wing root moments was attenuated 
significantly which provides a potential possibility for structural 
weight savings for wing root joint reinforcement or increase in 
predicted life time of structure. In this research work only wing 
root moments were analyzed. The future works should carefully in-
vestigate and verify the moment distribution along the wing span.
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Appendix A

Fig. A.1 and Fig. A.2 show the aircraft’s wing root moment at 
gust cases k = 2, 9.

Appendix B

The reductions in the peaks of the system are summarized in 
Tables B.1 and B.2. The 1st column of the first peak represents 
the percentage improvement in the performance using feedforward
controller compared to the original aircraft response without the 
FF controller engaged. And it is calculated by

% Improvement using FF controller

= peak of original aircraft − peak i using FF

peak of original aircraft
∗ 100 (B.1)

Fig. A.1. Normalized wing root moment, Mx and M y at gust length 18 m (k = 2) for different mass cases using SISO controller.
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Fig. A.2. Normalized wing root moment, Mx and M y at gust length 121.92 m (k = 9) for different mass cases using SISO controller.

Table B.1
Comparison of peak reduction in wing root moment Mx between original aircraft, using feedforward action and feedforward action with SISO controllers.

Mass case K = 1 K = 2 K = 3

1st peak 2nd peak 1st peak 2nd peak 1st peak 2nd peak

FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%)

1 32.49 2.82 −434.51 21.54 25.40 16.82 −268.15 24.90 25.63 15.29 −178.64 31.13
2 43.91 6.42 −700.65 21.06 29.73 27.15 −397.74 27.90 31.68 14.43 −240.02 34.45
3 2.22 27.90 −678.94 17.14 20.81 10.23 −418.63 23.01 17.84 10.28 −254.08 28.32
4 18.56 −0.15 −779.63 13.79 6.46 32.98 −428.14 18.71 27.29 15.20 −262.97 23.65
5 −1.49 0.45 −680.15 12.86 6.22 10.89 −411.20 18.39 19.32 13.11 −228.26 23.36
6 2.64 2.93 −669.94 14.79 12.88 17.88 −375.07 20.50 21.70 10.49 −222.89 25.72

Mass case K = 4 K = 5 K = 6

1st peak 2nd peak 1st peak 2nd peak 1st peak 2nd peak

FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%)

1 26.10 22.86 −120.12 34.58 27.55 23.61 −87.39 49.82 28.97 30.25 −63.79 59.96
2 33.42 27.88 −146.97 39.79 36.99 24.33 −95.27 47.38 37.53 31.10 −58.83 55.29
3 22.65 25.57 −154.54 37.18 28.33 25.59 −99.58 43.80 32.71 29.16 −60.75 51.17
4 34.56 27.29 −154.87 29.78 42.53 36.44 −94.74 36.31 50.82 44.01 −51.84 155.56
S 27.21 21.02 −131.44 30.07 35.65 30.71 −76.40 36.92 44.17 37.22 −36.57 46.15
6 27.66 17.63 −122.55 32.09 34.83 184.85 −66.02 155.54 42.43 22.88 −25.18 50.68

Mass case K = 7 K = 8 K = 9

1st peak 2nd peak 1st peak 2nd peak 1st peak 2nd peak

FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%)

1 32.26 34.23 −43.24 67.45 37.14 35.24 −5.76 68.46 37.14 35.17 −5.76 68.35
2 42.62 34.53 −28.63 62.31 52.28 34.55 23.91 56.37 52.26 40.28 23.91 57.05
3 39.70 32.36 −28.43 59.65 52.99 32.68 31.09 60.06 52.99 41.31 31.09 61.79
4 58.68 52.57 −16.25 55.90 70.82 50.71 47.68 51.68 70.82 52.13 47.68 51.25
5 52.46 158.03 −3.67 55.66 64.48 92.93 54.83 71.53 64.48 31.73 54.83 78.73
6 49.31 22.09 8.61 69.25 57.05 20.23 68.50 33.28 57.05 21.13 68.50 30.49

Mass case K = 10

1st peak 2nd peak

FF (%) SISO (%) FF (%) SISO (%)

1 39.86 31.09 25.14 36.03
2 56.83 28.45 57.12 2.32
3 61.96 20.30 78.70 −70.30
4 63.32 −8.59 70.71 −1.06
5 57.58 −3.26 81.34 7.51
6 46.24 6.58 82.91 134.08
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Table B.2
Comparison of peak reduction in wing root moment Mx between original aircraft, using feedforward action and feedforward action with SISO controllers.

Mass case K = 1 K = 2 K = 3

1st peak 2nd peak 1st peak 2nd peak 1st peak 2nd peak

FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%)

1 13.69 15.87 −393.75 336.02 15.18 30.58 −223.19 24.37 18.08 27.41 −153.37 28.80
2 0.09 31.30 −644.70 22.19 19.13 36.59 −373.68 28.65 25.57 26.79 −238.35 33.95
3 0.00 29.67 17.10 18.11 2.07 28.03 −587.31 43.72 11.81 22.94 464.24 29.53
4 0.00 0.00 −764.34 15.31 −1.32 9.61 −415.59 21.67 14.40 21.22 −176.90 26.75
5 0.00 0.00 −704.76 15.30 2.84 12.63 −378.85 19.88 8.79 17.98 −177.39 25.07
6 0.00 0.00 −787.75 14.06 13.30 15.28 −397.06 20.37 13.22 6.84 −242.87 23.50

Mass case K = 4 K = 5 K = 6

1st peak 2nd peak 1st peak 2nd peak 1st peak 2nd peak

FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%)

1 22.19 39.80 −100.89 32.94 28.09 0.00 −72.52 0.00 28.45 46.98 −52.32 60.36
2 31.15 43.19 −35.41 39.29 37.41 46.19 −95.13 47.76 44.36 46.34 −57.45 56.56
3 20.55 36.55 −161.62 37.65 28.99 41.60 −104.24 44.23 38.98 35.75 −63.17 51.92
4 26.31 36.08 −153.61 33.74 36.96 44.09 −93.76 40.68 48.99 52.83 −50.67 48.78
5 22.39 35.09 −132.24 32.28 34.17 43.66 −76.76 39.08 47.24 50.02 −36.74 47.67
6 27.72 34.52 −134.62 29.59 40.13 46.15 −73.24 35.93 53.29 47.91 −29.28 44.78

Mass case K = 7 K = 8 K = 9

1st peak 2nd peak 1st peak 2nd peak 1st peak 2nd peak

FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%) FF (%) SISO (%)

1 35.03 48.71 −34.40 71.70 43.06 47.24 1.34 63.19 43.06 48.10 1.34 59.10
2 47.33 50.27 −25.55 65.23 59.25 50.20 30.12 47.06 59.23 55.36 30.12 44.58
3 41.81 46.50 −28.53 60.86 60.22 46.96 33.59 59.69 60.22 59.72 33.59 54.64
4 56.99 62.62 −14.79 59.76 71.82 51.11 47.48 53.43 71.82 51.95 47.48 48.05
5 57.20 45.05 −3.55 59.41 70.61 29.05 52.48 63.61 70.61 29.64 52.48 57.31
6 64.93 36.55 6.29 59.12 70.89 30.45 62.01 29.21 70.89 31.06 62.01 7.14

Mass case K = 10

1st peak 2nd peak

FF (%) SISO (%) FF (%) SISO (%)

1 46.55 29.16 31.09 20.46
2 61.31 11.01 60.16 −21.74
3 68.47 −7.24 75.63 −65.87
4 65.02 −18.48 67.78 13.44
5 61.70 −13.84 69.73 −13.87
6 50.74 1.09 54.51 40.49

Performance improvement using the SISO controller is presented 
in the 2nd column and it is calculated by

% Improvement using SISO controller

= peak using FF − peak i using SISO

peak using FF
∗ 100 (B.2)

The negative values in the tables mean that there is a rise in the 
peak than expected, meaning deterioration in the performance. 
And the positive value tells the percentage improvement in the 
performance.

Appendix C. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.ast.2014.12.020.
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Chapter 8

Adaptive Bandwidth Filtering in
Attitude and Heading Reference
System

8.1 Summary of Contribution
This chapter presents an extension of the work explained in Chapter 4 and 5. Here the adaptive
data filtering as a data pre-processing step is combined with the final attitude estimation problem
while eliminating the low frequency vibration impacts. First, the adaptive bandwidth filtering is
applied as a pre-processing step to the ACC data for attenuating the vibration effects, afterwards
the data is used to fuse with the ARS data to obtain the final attitude estimation based on the
dual stage EKF fusion algorithm presented in Chapter 5. A method is presented for treating the
ACC data with variable delay due to the usage of variable bandwidth filter. Finally, a comparative
analysis has been presented on the improvement of the final attitude estimation by using and not
using the proposed adaptive bandwidth filtering.

8.2 Introduction
In the cost effective navigation solution attitude evaluation using inertial sensors are primarily
based on ARS data integration aided by ACC based attitude evaluation. The aiding from the
ACC measurement can only be applied under strict steady state conditions when only gravity
affects the ACC measurement and no external acceleration is present [52], [48] and [49]. However,
these ideal aiding conditions are hardly achievable in harsh environments due to the presence of
strong vibrations on light or small aircraft. The situation gets complicated as the frequency of
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those vibrations cannot be simply isolated from the aircraft dynamics.
The vibration effect often dominates the ACC measurements. In addition, the vibration effects

on the ACC measurements are generally periodic and sinusoidal in nature around a mean-value
with a low frequency. Finite impulse response (FIR) filters are used for inertial data pre-processing
to guarantee the stability. Depending on the class of aircraft, the ideal choice for pre-processing
the ACC data is to apply a band-pass (BP) filter [3]; nevertheless, a narrow bandwidth BP
filter would require a very high order filter, which is not desirable for navigation purposes due
to the long delays. While applying a low pass (LP) filter with constant low bandwidth would
loose the aircraft’s motion information from the ACC measurement. Hence the concept of using
variable bandwidth filter adapted based on the sinusoidal data estimation from the signal history
is proposed.

The ACC measurements will experience variable time-delays due to the use of variable band-
width filtering. The filter bandwidth is adapted by changing the order of the filter (as described in
Chapter 4). Hence, the ACC data have variable time delays depending on the bandwidth chosen
to filter the data. Therefore, delayed ACC data cannot be fused together with the non-delayed
ARS data. In addition, for vehicles with fast dynamics, such as small aircraft it is not desirable
to fuse the delayed ACC data with the non-delayed ARS data to obtain the final attitude.

Thus a two-step procedure is proposed to fuse the delayed ACC data with ARS to obtain the
final attitude estimation. In the first step, the ARS bias is estimated as a delayed state by using
the delayed ACC data and artificially delayed ARS data. In the second step, the estimated ARS
bias as a delayed state is fedforward to the attitude estimator for calculating the final attitude.
The next section describe in details the procedure to treat the delayed ACC data.

8.3 Treatment of Delayed ACC Data
The proposed adaptive pre-processing of ACC measurements for vibration suppression is based
on the FIR filters, hence, the time-delays of the filter is precisely known depending on the chosen
bandwidth. Therefore, the ARS data can be delayed to coincide the ACC data delay across a
certain time window. An extra time-delayed estimator is proposed in addition to the presented
scheme in the dual stage EKF in Chapter 5 (Section 2.1.2). The proposed time-delayed estimator
structure consists of an attitude estimator which are time delayed. Then the time delayed attitude
and the ARS bias is fedforward to a real-time attitude estimator. Afterwards a PVA estimator
is used to obtain the final position, velocity estimates in real-time, see Fig 8.1.
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Figure 8.1: Block scheme of treating delayed ACC data for the final PVA estimation.

The time-delay τ of filtered ACC data is variable depending on the bandwidth used for filter-
ing. Therefore, the time-delayed attitude estimator from t to t−τ is adapted to accommodate the
delayed ACC data by delaying ARS measurement at the input of the delayed attitude estimator.
When there is no dynamics present in the ACC data, the ARS is continuously adapted to coincide
the ACC delay. The modified kinematic model of the estimation of delayed attitude and ARS
bias is written as:

ωbib (t− τ ) = ωbib(t)e−τs

x=
[
φ, θ, ψ, bgx, bgy , bgz

]T
,u=

[
ωbx , ωby , ωbz

]T
(8.1)

ẋ(t − τ)=


[

1 sinφ(t − τ)tanθ(t − τ) cosφ(t − τ)tanθ(t − τ)
0 cosφ(t − τ) −sinφ(t − τ)
0 sinφ(t − τ)secθ(t − τ) cosφ(t − τ)secθ(t − τ)

]([
ωbx (t − τ)
ωby (t − τ)
ωbz (t − τ)

]
−

[
bgx (t − τ)
bgy (t − τ)
bgz (t − τ)

])
0
0
0

 (8.2)
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z=


ax

ay

az

 , z=


sinθ

−cosθsinφ
−cosφsinθ

 (8.3)

It must be noted that using the equation (8.1) to (8.3) the output of the time-delayed attitude
estimator are delayed attitude and ARS bias . In order to get the current attitude, the delayed
states are fedforward to the real-time attitude estimator. The input of the real-time attitude
estimator is the bias compensated ARS measurements.

8.4 Experimental Evaluation
In this section, the goal is to present the assessment and related discussions on the application of
variable bandwidth filtering on the final attitude estimation. The experimental evaluations are
carried out on the same flight data set as presented in Chapter 5. The following results are a
continuation of the work presented in Chapter 4 and 5.

Fig 8.2 shows the ACC measurement during the whole flight and the filtered data using
constant bandwidth filter and the newly proposed adaptive bandwidth filtering. Time instances
where the ACC measurements are affected by low frequency vibration are zoomed and shown
in Fig 8.3a and 8.3b. For the constant LP bandwidth filter a cut off frequency of 10 Hz was
chosen. For the variable bandwidth filter, the filtering bandwidth was chosen all the way from
1 Hz to 10 Hz at regular intervals of 1 Hz. If the estimated/predicted frequency of the ACC
measurement based on the signal history was bigger than 10 Hz, a simple LP filter (similar to
constant bandwidth filter) with cut-off 10 Hz frequency is used.
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Figure 8.2: Measured ACC during the whole flight and the filtered signal.

(a) Zoomed ACC data from 282-290 seconds. (b) Zoomed ACC data from 1830-1840 seconds.

Figure 8.3: Zoomed ACC data from the flight where the ACC are affected by low frequency
vibration.

From Fig 8.3, it can be seen the ACC data are significantly affected by low frequency vibration
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all the way down to 3.5 Hz (Fig 8.3a). Hence using a constant bandwidth filter will not attenuate
these low frequency vibration. The data in Fig 8.3a represents the condition when the aircraft was
waiting at the runway for taking off. These vibration effects on ACC are due to the structural
vibrations translated from the aircraft’s engine rotation. From Fig (8.3b) it can be seen that
during the flight aircraft experiences vibration at high frequency. It can be seen while using
adaptive bandwidth filtering these vibration effects are better attenuated to the mean-value than
constant bandwidth filtering.

Fig 8.4 and 8.5 shows the attitude (pitch and roll angle) obtained from the ACC measurement
only. It is important to note that attitude aiding from the ACC can not be used during the
whole flight. Attitude aiding from the ACC measurement can only be applied when the ACC
measurement are not affected by the dynamic motion of the aircraft and meets the steady state
conditions. Using the dynamic detection algorithm presented in Chapter 5 (section 2.1.2), the
steady state conditions are not met during the whole flight. For demonstration two instances are
shown where the ACC measurement experiences vibration effects.

Figure 8.4: Pitch and Roll angles obtained from only ACC measurements during the whole
flight.

It can be noticed from the zoomed plots in Fig 8.5b that using the adaptive bandwidth filter
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(a) Zoomed attitude obtained from ACC measure-
ment 282-290 seconds.

(b) Zoomed attitude obtained from ACC measure-
ment 1830-1840 seconds.

Figure 8.5: Zoomed Pitch and Roll angles from the flight where the ACC are affected by
low frequency vibration.

the vibrations effects are well attenuated to the mean-value compared to the constant bandwidth.
This reduction in the oscillatory nature in the pitch and roll angles obtained from the ACC
measurement should increase the accuracy of the final attitude estimation. In order to analyse
the improvement of the final attitude estimation using the adaptive bandwidth filter we compare
our attitude estimation with results presented in Section 5 published in Ref [45].

Fig 8.6 shows the results of the final attitude estimation using the adaptive bandwidth filtering
compared with the estimation results presented in Chapter 5. Fig 8.7 shows the zoomed time
instances where the ACC suffered from vibration effects and when the attitude aiding from the
ACC measurement were used. For the azimuth (ψ) estimation heading information from the
GNSS velocity measurements were used. The zoomed plots in Fig 8.7 shows instances ACC
measurement were affected by low frequency vibration and the pitch and roll angle aiding from
ACC measurement are used. It can be seen that the elimination of low frequency vibration
improves the estimation results.
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Figure 8.6: Comparison of final attitude estimation for the whole flight with and without
using adaptive bandwidth filtering.

(a) Zoomed attitude estimation from 860-890 sec-
onds.

(b) Zoomed attitude estimation from 1225-1240 sec-
onds.

Figure 8.7: Zoomed final attitude estimation from the flight where the ACC are affected
by low frequency vibration.
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In Fig. 8.7 it can be noticed that the ACC data are affected by vibrations. Hence the attitude
estimates from the ACC data are oscillatory. While fusing the ARS data with the ACC data
filtered using constant bandwidth give higher values of final attitude estimates. In comparison,
the final attitude estimation using adaptive bandwidth filter has lower value than final attitude
estimated using constant bandwidth filer. It is because that ACC measurement is filtered to
mean-value using the adaptive bandwidth filter. Hence using the adaptive bandwidth filtering
improves the accuracy of the final attitude estimation.
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Chapter 9

Conclusions

9.1 Summary of the thesis and contributions
This thesis has presented new theoretical results and applications related to strapdown inertial
navigation for aircraft which can significantly improve the navigation performance. In addition,
theoretical development has been made towards the control problem of fixed wing aircraft.

In the first part of the thesis a “easy to do”, cost effective method for calibration of MEMS
based inertial measurement unit is presented in contrast to using expensive calibration procedures.
The presented method uses the information from gravity measurements under static conditions
when the ACC triad is required to be calibrated. The calibration algorithm estimates the ACC
and ARS error models, which includes deterministic errors such as scale factor errors, axes mis-
alignment, and offsets. ACCs and ARSs often operates under harsh environment experiencing
low frequency vibrations limiting the usability to aid the attitude estimation. A novel concept
of filtering inertial data with an enhanced capability of providing smooth data under harsh en-
vironments, eliminating low frequency vibration influences is proposed. An adaptive bandwidth
filtering method is presented as a pre-processing step to the ACC data. The modification of the
filtering bandwidth relies on continuous estimation of the frequency of the strongest vibration
content; based on that particular bandwidth filtering is applied on the ACC data. This filtering
approach was confirmed based on simulated and real-flight data, and in all cases, the proposed
approach reached better efficiency for vibration impact reduction, while preserving shorter pro-
cessing delays compared with the commonly used approaches. Based on the effectiveness of
vibration impact reduction, the proposed approach improves the ACC-based attitude compensa-
tion capability even under strong vibration, which brings a significant advantage compared with
the commercially available AHRS systems. Afterwards a complete navigation solution is pre-
sented estimating the Position, Velocity and Attitude (PVA) using a strapdown inertial sensor
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consisting of 3 tri-axial ACC and 3 tri-axial ARS applying GNSS position and velocity measure-
ment as aiding source. Two different architectures of extended Kalman filter (EKF) are presented
and discussed in details. The proposed approaches are validated on real flight data under various
operational conditions which differ based on flight stage and on availability of aiding measure-
ments, i.e. from a GNSS receiver providing position and velocity. The resultant performance
is compared with other fusion techniques such as Nonlinear Observer with respect to the true
reference position obtained by a dual-frequency X91+ GNSS receiver via Real Time Kinematics
(RTK) based processing. Afterwards, a technique on how to fuse the delayed ACC measurement
due to adaptive bandwidth filtering is outlined in details. The results are then compared and
shows substantial improvement in final attitude estimation.

In the second part of the thesis, an automatic longitudinal flight controller is presented for
conventional fixed-wing aircraft using non-linear dynamic inversion (NDI) technique or, in control
theoretic terms, the partial exact feedback linearisation. Main theoretical results include designing
of three different tracking flight controllers which provides full control of longitudinal states
(velocity, angle of attack and pitch angle) of the aircraft. A detailed study on the stability
of the internal dynamics for each controller are carried out and has been showed to be stable.
Combination of these three flight controllers depending on the flight condition provided full 3-
DOF longitudinal control authority of a fixed-wing aircraft. Simulation results demonstrate that
with the proposed controllers, longitudinal motion of a conventional multi-role combat aircraft
can be controlled with small tracking error. Finally, a load alleviation system was proposed for
an aircraft. A combined mixed feedforward/feedback control approach is proposed for reducing
the vibration impacts on wings due to external disturbances such as vertical wing gusts.

9.2 Future Work
In this section several suggestions for the future research extending the work presented in this
doctoral thesis are proposed.

• The platform of interest in this thesis is presented by small aircraft. It would be interesting
to investigate how the presented navigation solution performs on other type of vehicles such
as marine vessels, car, train, small robots and UAVs. A keen point of research in this area
would be to investigate how the presented navigation solutions in this doctoral thesis can
be modified to have an unified frame work which can be applied for all types of vehicles.

• It would be interesting for future research to compare the estimated attitude with respect
to true reference attitude obtained via more precise sensor’s such as fibre optic gyro’s or
by using differential GPS receivers which are capable of providing attitude estimations.
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• The data fusion results obtained by using the extended Kalman filter can be adapted to
the eXogenous Kalman filter (XKF) structure.

• The attitude can be represented by quaternions instead of Euler’s angle. This will widen the
scope of the usage of the navigation solution with respect to highly manoeuvrable vehicles
avoiding the singularity issues.

• The nonlinear control technique using partial feedback linearization can be extended to full
lateral-directional control of the fixed wing aircraft. This will provide a complete 6-DOF
flight control of the aircraft.

• A detailed analysis on the distribution of the wing loading across the entire aircraft’s wing
is essential for the validation of the proposed load alleviation system.
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