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Abstract: This thesis contains basic information about mass flow 

leakage through labyrinth seal. Two different approaches of 

predicting mass flow rates were compared. The first 

approach of mass flow rate prediction is using existing 

leakage models which are empirical formulas based on 

experimental data. The second approach is to build CFD 

modelling in numerical simulation software which have 

been specified as ANSYS FLUENT 16.0 and decide 

what is the sufficient mesh quality and find the most 

suitable turbulent model, in order to correctly compute 

mass flow rates. The result of this paper is to verify the 

accuracy of the empirical relationships using CFD 

calculations.  
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 NOMENCLATURE 

a0   Initial cell length [mm] 

Cc  Carryover coefficient by Eungier [-] 

CR  Contraction ratio by Eungier [-] 

Ct  Throttling coefficient by Eungier [-] 

D  Distance of each meshed area [mm] 

h  Height of teeth [mm] 

i  Specific enthalpy [J∙kg
-1

]  

J  Mass flux [kg∙m-2]  

ku  Carryover coefficient [-] 

l  Pitch [mm]  

      ṁ  Mass flow rate through labyrinth seal [kg∙s-1] 

      ṁCR Critical mass flow rate through labyrinth seal [kg∙s-1] 

n   Number of seal blades (teeth) [-] 

p1   Seal inlet pressure [Pa] 

p2   Seal outlet pressure [Pa] 

q  Scale factor [-] 

R  Rotor radius [mm] 

Rg  Gas constant [J∙mol
-1

∙K
-1

]  

Ri  Tip radius of tooth [mm] 

Rm  Mean radius of clearance between tooth and stator wall [mm] 

Ro  Stator radius [mm] 

S  Average flow through [m2] 

T1  Inlet temperature of steam [K] 

T2  Outlet temperature of steam [K] 

t, Δ  Span of the teeth [mm] 

u  Fluid velocity [𝒎∙𝒔-1] 

δ  Radial clearance [mm] 

v1  Specific volume of steam at the inlet [𝒎𝟑∙𝒌𝒈-1] 

ε  Pressure ratio [-] 

εcr  Critical pressure ratio [-] 

ρ1  Inlet density of steam [𝒌𝒈∙𝒎-3] 

μ  Dynamic viscosity [𝒎𝟐∙𝒔-1] 

μc   Seal contraction ratio [-] 

κ  Poisson’s constant [-] 
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 INTRODUCTION 
 

In response to increasing demand for higher levels of productivity, turbo 

machines are designed to operate at high pressure, speeds, temperature fluid flow 

and operate more efficiently. Consequently sealing of High Speed Turbo- machines 

to decrease the flow losses has been a major engineering challenge since the 

inception of steam turbines. Due to various designs and used materials at this time 

we have many different seals such as lip seals, alternative elastomer and plastic 

seals, mechanical seals, clearance seals, magnetic fluid seals etc. 

 

Seals are used to introduce the friction in the fluid flow path to reduce the flow 

leakage and are subdivided into contact and non contact seals. Although contact 

seals have many advantages from engineering point of view as they fully constrict 

losses between two or more parts and thus increase the efficiency of the machine 

effectively as desired. However these seals are not applicable for higher speeds, 

where friction forces degrade the rubbing parts but also possess excessive heat 

generation problem. In that case the best option to choose are annular  

non-contacting seals, which help to create a resistence to fluid flow by extensive 

generation through tortuous flow paths. To meet the condition of high level 

of production it resulted in a need to reach optimum balance between 

turbomachine’s leakage characteristics and its rotodynamic performance, while 

tightening rotor and stator clearances. These seal has proven invaluable influence 

to their leakage prevention characteristics and their non-contacting nature allowing 

rotor speeds to be increased. Today we have various annular gas seals as labyrinth 

seals, pocket dumper seals, hole-pattern and honeycomb seals. The most widely 

used and simplest are labyrinth seals, that are taken into account in this research. 

[1], [2] 
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 LABYRINTH SEALS 
 

In its simplest form labyrinth seal consist of a series of fins (teeth) and 

corresponding chambers forming a restriction to the flow and a volume for 

expansion, as illustrated in Figure 2-1. The clearance between tooth and the  stator 

or rotor wall helps to increase the kinetic energy of the fluid flow by throttling and 

converting static pressure difference energy to kinetic energy. After each throttle 

some of the kinetic  energy associated with the flow is dissipated by turbulence 

induced by the intense shear stress and eddy motion in the next chamber, as 

illustrated in Figure 2-2. The use of a tortuous path between different static pressure 

regions, incorporating a series of non-contacting restrictions and cavities in the form 

of labyrinth seal, was implemented by Parson for his steam turbine concept in 1982. 

Labyrinth seal have proven reliability in wide range of application.  

[1], [2], [3] 

 

 

 

Figure 2-1 Principal labyrinth seal Geometric parameters. [3]  
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Figure 2-2 Characteristic flow through a labyrinth seal [3] 

 

The principal geometric parameters of typical labyrinth seals can be 

categorized in axial rotating flow, where the axis of the teeth are coincident with the 

axis of the shaft, or in radial sealing applications, where the teeth are perpendicular 

to the shaft axis. The labyrinth seal we can subdivide into straight through, stepped 

and staggered (see Figure 2-3). The straight through seals we can categorize as 

teeth on rotor (TOR) or teeth on stator (TOS) in dependence if teeth can rotate or 

be stationary. In general to improve stability of the system and heat pickup, it is 

desirable to have teeth on the inner member in the case of axial application. The 

design of straight through labyrinth seal in practical applications typically involves a 

compromise between the number of teeth and a pitch that is large enough to provide 

that the kinetic energy of fluid flow is completely dissipated in the cavity. In terms of 

modelling various factors (geometry, flow and operating conditions) which constitute 

the boundary conditions do not operate independently, therefore it needs to be 

studied to determine the effect of each on the fluid flow leakage. The geometry of 

the labyrinth seal flow being one of those prominent parameters. Other parameters 

that affects labyrinth seal performance (leakage) are the fluid flow boundary 

conditions and the relative movement of the shaft (rpm).  

[1], [2], [3] 
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Figure 2-3 Schematic diagrams illustrating a selection of labyrinth seals. [3] 

Axial applications: (a) Straight through, (b) stepped and (c) staggered.  

Radial applications: (d) Straight through, (e) stepped and (f) staggered. 

 

The increasing demand for energy has fostered the development of more 

efficient turbo-machinery as turbines are. It resulted in ever-tightening tooth 

clearances in labyrinth seals. The labyrinths currently in use have the ratio of the 

order of 1:100. Their undesirable rotor-dynamic characteristics have raised 

concerns about rotor-dynamic stability of the rotating machinery. The improvement 

in determining fluid forces damping coefficients for rotor-dynamic calculation of a 

turbine corresponds with better prediction of fluid leakage, therefore leakage in 

labyrinth seals has to be determined more accurately. Generally neglected inertia 

of the fluid in low speed rotor-dynamic calculations can no longer be used due to 

the inertia of the fluid flow at high RMPs of the shaft. „This further emphasizes the 

need of accurate empirical formula for labyrinth seals leakage so as to improve bulk 

flow models used to better estimate the fluid damping coefficients in the study of 

rotor dynamics. [1] 
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 REVIEW OF EXISTING LEAKAGE MODELS 
 

One of the first pioneering papers was made by Martin in 1908, in which the 

first use of „labyrinth packing“  was attributed to Charles A. Parson, who used these 

seals to reduce leakage of the flow in his steam turbine. Martin considered labyrinth 

seals as a series of throttling process similar to the flow through a series of orifices.  

The first equation presented by Martin assumed a linearly varying pressure drop 

across the seal and isothermal flow. He assumed that the kinetic energy of the fluid 

entering the cavity was completely dissipated through turbulence and additionally 

the pressure across each constriction to be very small or treated that the flow always 

was in subcritical state through the labyrinth seal. He also neglected the effect of 

kinetic energy carry over and assumed that carry over coefficient is equal to 1. This 

approach was purely analytical with various false assumptions and he didn’t 

compare his evaluated calculation against any experimental data. This simple 

equation models the leakage flow rate based on the work done to achieve the 

required pressure drop have contributed to the fact it that all other authors  tried to 

address the wrong assumptions made by Martin and improved his formula. 

[1], [2], [4]  

 

 �̇� =
𝑆 ∙ 𝑝1

√𝑅 ∙ 𝑇1

∙ √
1 − (

𝑝2

𝑝1
)
2

1 − 𝑙𝑛 (
𝑝2

𝑝1
)
 (3-1) 

 

In his 1927 book on steam and gas turbines, Stodola considered flow leakage 

through staggered and radial seals with clearances that can be made as small as 

0,2 mm. He analysed compressible flow and provided two separate equations to 

calculate flow leakage one for subsonic flow and one for chocked flow. He 

mentioned that for a large number of teeth the mass flow rate is inversely 

proportional to the square root of the number of teeth. Stodola presented the 

experimental results on interlocking seals with axial clearances varying from 0,14 

mm to 0,38 mm and for pressure ranging from 0,9 bar to 9,8 bar. Stodola assumed 

that shaft rotation would have little effect on the axial flow rate and thus he performed 

the tests with non-rotating shaft and completely neglected the effects of shaft 

rotation on fluid flow leakage. Like Martin, he also assumed that the kinetic energy 
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gets completely dissipated in the cavity and neglected the effect of kinetic energy 

carry over. Using Stodola’s equations for his test case the values of leakage flow 

matched the experimental data results with an error of less than 10%.   

[1], [2], [4]  

 

Stodola’s equation in case that critical speed of flow will not occur in any labyrinth: 

 

 �̇� = 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

2 − 𝑝2
2

𝑝1 ∙ 𝑣1 ∙ 𝑛
        [𝑘𝑔/𝑠] (3-2) 

 

Stodola’s equation in case that the critical speed of flow will occur in last labyrinth: 

 

 �̇� = 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

𝑣1 ∙ 𝑛
        [𝑘𝑔/𝑠] (3-3) 

 

Seal clearance area: 

 

 𝑆 = 2 ∙ 𝜋 ∙ 𝑟𝑠𝑒𝑎𝑙 ∙ 𝛿 (3-4) 

 

He additionally developed a graphical method for analysing seals with varying 

areas  and shapes, as illustrated in Figure 3-1, where the shapes are substantially 

enlarged to increase resolution of the shapes of flow around edges. To predict the 

tooth shape change we can consider mean value equal to 0,75 ( however for this 

case μ=0,71). The tooth thickness is often around 0,5 mm.   

[5] 
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Figure 3-1 The seal contraction ratio [5] 

 

Egli made another major paper on the leakage of steam through labyrinth 

seals in 1935, where he examined both staggered and see-through configuration of 

labyrinth seals analytically and experimentally. In his experiments Egli studied the 

clearances varying from 0,381 mm to 1,016 mm and pressure ratios. These 

parameters were out of the range in axial turbine applications of the time, but those 

of interest in modern compressor applications. Egli used Martin’s formula, but he 

took into consideration the fact that the fluid jet undergone a contraction as it goes 

through tooth clearance. He also took into account the carry over coefficient, which 

represents the portion of kinetic energy carried over from one cavity to the next. 

Based on the experimental results and analytical study, he noticed that the 

percentage of kinetic energy carry over coefficient decreases with increasing 

spacing between the teeth or with decreasing tooth clearance. Egli through 

experimental results showed that the carryover effect depends on non-dimensional 
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clearance to pitch ratio. However he also pointed out that seals with tighter radial 

clearances ranging from 0,152 mm to 0,254 mm did not have strong dependence 

on tooth pitch. 

[1], [2]  

 

Mass flow seal leakage by Egli: 

 

 �̇� = 2 ∙ 𝜋 ∙ 𝑟𝑠𝑒𝑎𝑙 ∙ 𝛿 ∙ 𝐶𝑡 ∙ 𝐶𝐶 ∙ 𝐶𝑅 ∙ 𝜌1 ∙ √𝑅 ∙ 𝑇1 (3-5) 

or 

 �̇� = 2 ∙ 𝜋 ∙ 𝑟𝑠𝑒𝑎𝑙 ∙ 𝛿 ∙ 𝐶𝑡 ∙ 𝐶𝐶 ∙ 𝐶𝑅 ∙ √
𝑝1

𝑣1
 (3-6) 

 

Aungier computed the mass flow leakage through labyrinth seal by the 

method of Egli in Eq. (3-5) and in Eq. (3-6), in which he provides general empirical 

equations to approximate coefficients in Egli’s equation. The first approximation is 

the contraction ratio Cr (see Eq. (3-7)) and it depends on clearance to tooth thickness 

ratio graphically showed in Figure 3-2. 

 

 

𝐶𝑟 = 1 −
1

3 + (
54,3

1 + 100 ∙
𝛿
𝑡

)

3,45 

(3-7) 

 

Egli shows a direct dependence of contraction ratio on tooth thickness as well  

as on clearance to tooth thickness ratio. „It seems highly questionable that a 

dimensional parameter can be used to compute a dimensionless parameter. Indeed, 

other sources available to this writer suggest that the lower of Egli’s two curves 

should be used for all values of tooth thickness, which is the basis for Eq. (3-7).“ 

 [6] 
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The throttling coefficient , Ct, is a function of the number of teeth, N, and lower 

pressure to higher pressure ratio, PR=p2/p1, across the labyrinth seal.  

Figure 3-3 shows the throttling coefficient approximated by : 

[6] 

 𝐶𝑡 =
2,143[𝑙𝑛(𝑁) − 1,464]

𝑁 − 4,322
∙ (1 −

𝑝2

𝑝1
)
(0,375∙

𝑝2
𝑝1

)

 (3-8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 The seal throttling coefficient [6] 

Figure 3-3 The throttling coefficient [6] 
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The carryover coefficient ,Cc, is a function of the labyrinth seal clearance to 

the seal pitch ratio. Figure 3-4 shows the carryover coefficient as approximated by:  

 

 𝐶𝑐 = 1 +
𝑋1 ∙ [

𝛿
𝑝 − 𝑋2 ∙ 𝑙𝑛 (1 +

𝛿
𝑝)]

1 − 𝑋2
 

(3-9) 

 If N ≤ 12, 

 𝑋1 = 15,1 − 0,05255 ∙ 𝑒[0,507∙(12−𝑁)] (3-10) 

 

 𝑋2 = 1,058 + 0,0218 ∙ 𝑁 (3-11) 

If N >12,  

 𝑋1 = 13,15 + 0,1625 ∙ 𝑁 (3-12) 

 

 𝑋2 = 1,32 (3-13) 

 

Eq. (3-9) yields a maximum when clearance to pitch ratio is equal to X2-1, 

therefore it is wise to  require 𝛿 𝑝⁄ ≤ 𝑋2 − 1 to avoid poor labyrinth seal design. In 

the case of stepped teeth arrangement the seal radius varies for successive seal 

teeth and there is no carryover influence, so Cc=1 should be used. [6] 

 

 

Figure 3-4 The seal carryover coefficient [6] 
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Professor MEI G.S. Samojlovič derived Eq. (3-14) and Eq. (3-16) to compute 

the mass flow rate through labyrinth seal.   

 

 𝑞 =
�̇�

𝑚𝐶𝑅̇
= √

1 − 휀𝑧
2

(1 − 휀𝐶𝑅) ∙ 𝑛
−

휀𝐶𝑅 ∙ (1 − 휀𝑧)2

(1 − 휀𝐶𝑅)2 ∙ 𝑛2
  (3-14) 

 

Similar notation of Eq.(3-14) 

 𝑞 =
�̇�

𝑚𝐶𝑅̇
= √

1 − (
𝑝2

𝑝1
)
2

[1 − (
𝑝2

𝑝1
)
𝐶𝑅

] ∙ 𝑛
−

(
𝑝2

𝑝1
)
𝐶𝑅

∙ [1 − (
𝑝2

𝑝1
)]

2

[1 − (
𝑝2

𝑝1
)
𝐶𝑅

]
2

∙ 𝑛2

 (3-15) 

 

 Eq. (3-14) enables to evaluate mass flow ratio through labyrinth seal, q, which 

is increasing with decreasing pressure ratio, ε. To the maximum value of mass flow 

ratio, qmax, is matching the critical mass flow through last constriction referred to 

critical pressure ratio, (εcr)n. We set the first derivative of q as a function of ε is equal 

to zero: 

 

 (휀𝐶𝑅)𝑛 =
휀𝐶𝑅

𝑛 ∙ (1 − 휀𝐶𝑅) + 휀𝐶𝑅
 (3-16) 

 

If the real pressure ratio is lower than the critical pressure ratio, then critical 

pressure ratio is used to computes mass flow through labyrinth seal. The labyrinth 

seal shape is not assumed to by sharp, due to abrasive effect during operation and 

thus the mass flow through constriction increases.  

 

 𝑚𝐶𝑅̇ = 𝜒 ∙ 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

𝑣1
 (3-17) 

  

Where χ depends on isoentropic exponent, κ, which is for superheated steam 

1,3 and thus χ=0,667 (see Eq. (3-18)). 
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 χ = √𝜅 ∙ (
2

𝜅 + 1
)

𝜅+1
𝜅−1

 
(3-18) 

 

Mass flow calculations mentioned above assumed complete kinetic energy 

dissipation in each cavity. The carryover coefficient is equal to one. This would be 

reasonable in case of stepped design, where the steam expands after constriction 

and also incurvates the steam jet trajectory. The real mass flow through seal 

includes carryover coefficient (see Figure 3-5  ) and can be computed by Eq.(3-19) 

and it is a combination of Eq. (3-15) and Eq. (3-17). The stepped labyrinth teeth  is 

recommended to placed near the axial bearings to avoid the collision between the 

teeth and the wall, due to shaft movement during heating. 

[7], [8] 

 

 �̇� = 𝑘𝑢 ∙ χ ∙ 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

𝑣1
∙ √

1 − (
𝑝2

𝑝1
)
2

[1 − (
𝑝2

𝑝1
)
𝐶𝑅

] ∙ 𝑛
−

(
𝑝2

𝑝1
)
𝐶𝑅

∙ [1 − (
𝑝2

𝑝1
)]

2

[1 − (
𝑝2

𝑝1
)
𝐶𝑅

]
2

∙ 𝑛2

 (3-19) 

 

                        

Figure 3-5 Carryover coefficient  
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Kearton and Keh determined the effects of pressure ratios and different width 

to clearance ratios on discharge coefficient on a single orifice with zero initial 

velocity. They implement the correction for the compressibility of the fluid to the 

Martin’s  leakage flow model, but they neglected rotation effect of the shaft on the 

fluid flow leakage, as well as the kinetic energy carryover coefficients. Kearton and 

Keh compared their analytical formulae with the experimental tests on a 14 throttle 

staggered labyrinth seals and met the results with fair accuracy. 

[1], [4] 

 

 �̇� = 𝑘𝑢 ∙ 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

𝑣1
∙ √

∑ 휀𝑖
𝑛
𝑖=1

𝑛
∙ [

1 − (
𝑝2

𝑝1
)
2

𝑛
] (3-20) 
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 RESEARCH OBJECTIVES 
 

Two main objectives of the project had been set up. 

The first objective is to build CFD modelling in numerical simulation software 

which have been specified as ANSYS FLUENT 16.0 and decide what is the 

sufficient mesh quality of given stepped labyrinth seal geometry (see Figure 4-1), 

when different boundary conditions and turbulent models are applied, in order to get 

steady results of mass flow leakage. This objective has been accomplished by 

applying Finite Volume CFD technique for compressible flow, where three different 

turbulent models (Standard k-ε model, SST k-ω model  and Reynolds stress model) 

were used for specified boundary conditions of high pressure steam turbine 

parameters at inlet and outlet of given labyrinth seal. 

The second objective is to evaluate mass flow leakage by applying existing 

leakage models and find the relation with numerical results from ANSYS FLUENT 

16.0. Then decide what simulation results correlate with analytical data the most 

and run the simulations for wide range of pressure ratios.   

The result of this paper is to verify the accuracy of the empirical relationships 

using CFD calculations, as well as it should provide suggestions to the designers  in 

terms of sufficient mesh quality and  what turbulent model is better to use for CFD 

simulations in similar applications (boundary conditions and geometries of labyrinth 

seals). [9] 

 

Figure 4-1 Design of labyrinth seal 
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 CALCULATION OF EXISTING LEAKAGE MODELS 
 

In the research were used four different existing models (Stodola, Aungier, 

Samoylovich, Kearton)  to evaluate mass flow leakage through given geometry of 

labyrinth seals with the tooth mounted on the rotor (see Figure 4-1, see Table 5-1). 

To all of the models can be applied that carryover coefficient, ku, is equal to 1 due 

to stepped design of labyrinth seal. Mean value, μ, is 0,71 in order to include shape 

of the teeth and dimensions of clearance between teeth and stator are taken into 

account.  

 

Table 5-1 Given dimensions of labyrinth seal 

SEAL GEOMETRY 

DIMENSION 
TOOTH 

UNITS 
1 2 3 

Ro 190 188 190 mm 

Ri 189,5 187,5 189,5 mm 

Rm 189,75 187,75 189,75 mm 

t = Δ 0,3 mm 

l 7,4 mm 

δ  0,5 mm 

h 4 2 4 mm 

 

Average clearance radius between tooth and the stator wall: 

  
 𝑅𝑚 =

𝑅𝑚1 + 𝑅𝑚2 + 𝑅𝑚3

3
=

189,75 + 187,75 + 189,75

3
 

 𝑅𝑚 = 189,083 𝑚𝑚  

(5-1) 

 

Average clearance Area between tooth and the stator wall: 

  
 𝑆 = 2 ∙ 𝜋 ∙ 𝑅𝑚 ∙ 𝛿 = 2 ∙ 𝜋 ∙ 189,083 ∙ 0,5 

 𝑆 = 594,023 𝑚𝑚2  
(5-2) 

 

Clearance to tooth thickness ratio: 

 
𝛿

∆
=

0,5

0,3
= 1,667 [−] (5-3) 
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Parameters of high pressure steam: 

Inlet pressure:   p1= 17800000,00 Pa 

Outlet pressure:  p2= 16715384,62 Pa 

Inlet temperature:   t1= 847,1 K 

Outlet temperature:  t2= 835,2 K 

Specific volume at inlet: ν= 0,019788093 m3∙kg-1 

Isoentropic coefficient: κ= 1,3 [-] 

Number of teeth:   n= 3 

 

5.1 Samoylovich equation 

 

Mass flow leakage: 

 

�̇� = 𝑘𝑢 ∙ χ ∙ 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

𝑣1
∙ √

1 − (
𝑝2

𝑝1
)
2

[1 − (
𝑝2

𝑝1
)
𝐶𝑅

] ∙ 𝑛
−

(
𝑝2

𝑝1
)
𝐶𝑅

∙ [1 − (
𝑝2

𝑝1
)]

2

[1 − (
𝑝2

𝑝1
)
𝐶𝑅

]
2

∙ 𝑛2

= 

= 1 ∙ 0,667 ∙ 0,71 ∙ 594,023 ∙ 10−6 ∙ √
17,8 ∙ 106

0,019788093

∙
√1 − (

16715384,62
17,8 ∙ 106 )

2

[1 − 0,546] ∙ 3
−

0,546 ∙ [1 − (
16715384,62

17,8 ∙ 106 )]
2

[1 − 0,546]2 ∙ 32
 

 

�̇� = 2,470 𝑘𝑔 ∙ 𝑠−1 

 

(5-4) 

Where χ is: 

 χ = √𝜅 ∙ (
2

𝜅 + 1
)

𝜅+1
𝜅−1

= √1,3 ∙ (
2

1,3 + 1
)

1,3+1
1,3−1

= 0,667 (5-5) 

 

Critical pressure ratio: 

 휀𝑐𝑟 = (
𝑝2

𝑝1
)
𝑐𝑟

= (
2

𝜅 + 1
)

𝜅
𝜅−1

= (
2

1,3 + 1
)

1,3
1,3−1

= 0,546 (5-6) 
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Critical mass flow leakage ratio 

 

𝑞 =
�̇�

𝑚𝐶𝑅̇
= √

1 − (
𝑝2

𝑝1
)
2

[1 − (
𝑝2

𝑝1
)
𝐶𝑅

] ∙ 𝑛
−

(
𝑝2

𝑝1
)
𝐶𝑅

∙ [1 − (
𝑝2

𝑝1
)]

2

[1 − (
𝑝2

𝑝1
)
𝐶𝑅

]
2

∙ 𝑛2

 

𝑞 =
�̇�

𝑚𝐶𝑅̇
=

√1 − (
16715384,62

17,8 ∙ 106 )
2

[1 − 0,546] ∙ 3
−

0,546 ∙ [1 − (
16715384,62

17,8 ∙ 106 )]
2

[1 − 0,546]2 ∙ 32
 

 

𝑞 =
�̇�

𝑚𝐶𝑅̇
= 0,293 𝑘𝑔 ∙ 𝑠−1 

(5-7) 

 

5.2 Stodola equation 
 

Mass flow leakage: 

 

�̇� = 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

2 − 𝑝2
2

𝑝1 ∙ 𝑣1 ∙ 𝑛
 

�̇� = 0,71 ∙ 594,023 ∙ 10−6 ∙ √
(17,8 ∙ 106)2 − (16715384,62)2

17,8 ∙ 106 ∙ 0,019788093 ∙ 3
 

�̇� =  2,510 𝑘𝑔 ∙ 𝑠−1 

(5-8) 

 

Critical mass flow leakage ratio  

 

𝑚

�̇�𝑐𝑟

̇
= 𝜇𝑐 ∙

√
1 −

𝑝2
2

𝑝1
2

𝜅 ∙ 𝑧
∙ (

2

κ + 1
)

κ+1
1−κ

 

𝑚

�̇�𝑐𝑟

̇
= 0,71 ∙

√
1 −

16715384,622

(17,8 ∙ 106)2

1,3 ∙ 3
∙ (

2

1,3 + 1
)

1,3+1
1−1,3

 

𝑚

�̇�𝑐𝑟

̇
=  0,211 𝑘𝑔 ∙ 𝑠−1  

(5-9) 

 

 



21 
 

5.3 Aungier equation 
 

Mass flow leakage: 

 

�̇� = 2 ∙ 𝜋 ∙ 𝑟𝑠𝑒𝑎𝑙 ∙ 𝛿 ∙ 𝐶𝑡 ∙ 𝐶𝐶 ∙ 𝐶𝑅 ∙ √
𝑝1

𝑣1
 

�̇� = 594,023 ∙ 10−6 ∙ 0,221 ∙ 0,669 ∙ √
17,8 ∙ 106

0,019788093
= 2,635 𝑘𝑔 ∙ 𝑠−1 

(5-10) 

 

Where The throttling coefficient , Ct, is: 

 
𝐶𝑡 =

2,143[𝑙𝑛(3) − 1,464]

3 − 4,322
∙ (1 −

16715384,62

17,8 ∙ 106
)
(0,375∙

16715384,62
17,8∙106 )

 

𝐶𝑡 = 0,221 [−] 

(5-9) 

 

The contraction ratio Cr is:  

 

𝐶𝑟 = 1 −
1

3 + (
54,3

1 + 100 ∙
𝛿
𝑡

)

3,45 = 1 −
1

3 + (
54,3

1 + 100 ∙
0,5
0,3

)

3,45 

𝐶𝑟 = 0,669 [−] 

(5-10) 

 

Critical mass flow leakage ratio  

 

𝑚

�̇�𝑐𝑟

̇
=

2 ∙ 𝜋 ∙ 𝑟𝑠𝑒𝑎𝑙 ∙ 𝛿 ∙ 𝐶𝑡 ∙ 𝐶𝐶 ∙ 𝐶𝑅 ∙ √
𝑝1

𝑣1

√𝜅 ∙ (
2

𝜅 + 1)

𝜅+1
𝜅−1

∙ 𝑆 ∙ √
𝑝1

𝑣1

 

𝑚

�̇�𝑐𝑟

̇
=

𝐶𝑡 ∙ 𝐶𝐶 ∙ 𝐶𝑅

√𝜅 ∙ (
2

𝜅 + 1)

𝜅+1
𝜅−1

 

𝑚

�̇�𝑐𝑟

̇
=

1 ∙ 0,221 ∙ 0,669

√1,3 ∙ (
2

1,3 + 1)

1,3+1
1,3−1

=  0,222 𝑘𝑔 ∙ 𝑠−1 

(5-11) 
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5.4 Kearton equation 
 

Mass flow leakage: 

 

�̇� = 𝑘𝑢 ∙ 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

𝑣1
∙ √

∑ 휀𝑖
𝑛
𝑖=1

𝑛
∙ [

1 − (
𝑝2

𝑝1
)
2

𝑛
] 

�̇� = 1 ∙ 0,71 ∙ 594,023 ∙ 10−6 ∙ √
17,8∙106

0,019788093
∙ √

2,938

3
∙ [

1−(
16715384,62

17,8∙106 )
2

3
]  

�̇� = 2,484 𝑘𝑔 ∙ 𝑠−1 

(5-12) 

 

Pressure after each tooth: 

 

𝑝𝑡𝑖 = √𝑝1
2 −

𝑖

𝑛
∙ (𝑝1

2 − 𝑝2
2) 

𝑝𝑡1 = √17,8 ∙ 1062
−

1

3
∙ (17,8 ∙ 1062

− 16715384,622) 

𝑝𝑡1 = 17445955,43 𝑃𝑎  

𝑝𝑡2 =

√17,8 ∙ 1062
−

2

3
∙ (17,8 ∙ 1062

− 16715384,622)=17084575,56 𝑃𝑎 

(5-13) 

 

Pressure ratio on each tooth: 

 

휀𝑖 =
𝑝𝑖

𝑝𝑖−1
 

휀1 =
𝑝𝑡1

𝑝1
=

17445955,43

17800000
= 0,980 [−] 

휀2 =
𝑝𝑡2

𝑝𝑡1
=

17084575,56

17445955,43
= 0,979 [−] 

휀3 =
𝑝2

𝑝𝑡2
=

16715384,62

17084575,56
= 0,978 [−] 

∑휀𝑖

𝑛

𝑖=1

= 휀1 + 휀2 + 휀3 = 0,980 + 0,979 + 0,978 = 2,938 

(5-14) 
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Critical mass flow leakage ratio  

 

𝑚

�̇�𝑐𝑟

̇
=

𝑘𝑢 ∙ 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

𝑣1
∙ √

∑ 휀𝑖
𝑛
𝑖=1
𝑛 ∙ [

1 − (
𝑝2

𝑝1
)
2

𝑛 ]

√𝜅 ∙ (
2

𝜅 + 1)

𝜅+1
𝜅−1

∙ 𝑆 ∙ √
𝑝1

𝑣1

 

𝑚

�̇�𝑐𝑟

̇
=

𝑘𝑢 ∙ 𝜇𝑐 ∙ 𝑆 ∙ √
𝑝1

𝑣1
∙ √

∑ 휀𝑖
𝑛
𝑖=1
𝑛 ∙ [

1 − (
𝑝2

𝑝1
)
2

𝑛 ]

√𝜅 ∙ (
2

𝜅 + 1)

𝜅+1
𝜅−1

∙ 𝑆 ∙ √
𝑝1

𝑣1

 

𝑚

�̇�𝑐𝑟

̇
=

𝑘𝑢 ∙ 𝜇𝑐 ∙ √
∑ 휀𝑖

𝑛
𝑖=1
𝑛 ∙ [

1 − (
𝑝2

𝑝1
)
2

𝑛 ]

√𝜅 ∙ (
2

𝜅 + 1)

𝜅+1
𝜅−1

 

𝑚

�̇�𝑐𝑟

̇
=

1 ∙ 0,71 ∙ √
2,938

3 ∙ [
1 − (

16715384,62
17,8 ∙ 106 )

2

3 ]

√1,3 ∙ (
2

1,3 + 1)

1,3+1
1,3−1

 

𝑚

�̇�𝑐𝑟

̇
=  0,209 𝑘𝑔 ∙ 𝑠−1  

(5-15) 
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5.5 Zalf equation 
 

Mass flow leakage: 

 

�̇� = 1,5 ∙ χ ∙ 𝑆 ∙ √
𝑝1

𝑣1
∙ √

1 − (
𝑝2

𝑝1
)
2

𝑛 − ln (
𝑝2

𝑝1
)
 

�̇� = 1,5 ∙ 0,667 ∙ 594,023 ∙ 10−6 ∙ √
17,8∙106

0,019788093
∙ √

1−(
16715384,62

17,8∙106 )
2

3−ln(
16715384,62

17,8∙106 )
  

�̇� = 3,502 𝑘𝑔 ∙ 𝑠−1 

(5-16) 

 

 

 

Table 5-2 Summary of existing leakage model results 

SUMMARY OF EXISTING LEAKAGE MODELS CALCULATION 

CALCULATION 
Mass flow leakage 

[kg/s] 

SAMOYLOVICH 2,469573 

STODOLA 2,510343 

AUNGIER 2,635235 

KEARTON 2,484177 

ZALF 3,502346 
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 NUMERICAL CALCULATION 
 

6.1 Introduction 

 

The current research is mostly based upon CFD simulations of steam flow 

through labyrinth seals, performed using the commercial CFD code FLUENT 16.0. 

The variation of  the seal shape on the flow pattern  through labyrinth seal is not 

accommodated to this research based on fixed dimensions. An extensive study, 

which is not only time consuming, but also expensive if done experimentally, can be 

performed using numerical method of fluid flow behaviour. There are few 

assumptions made to reduce the computational time in current research. These 

assumptions are: 

 

A. The flow and geometry are assumed to be axisymmetric and hence a two 

dimensional instead of three dimensional simulation is utilized. 

 

B. Fluid surface interaction (FSI) has not been taken in to account the surface 

roughness of the seal geometry. 

 

C. The shapes variations of the geometry due to thermal stress defining the fluid 

flow path are negligible. 

 

  

In this work commercial solver FLUENT 16.0 has been employed to solve the 

fundamental governing equations of thermo-fluid sciences. It uses the finite volume 

method for discretization. Simulations are performed with ideal gas. The standard 

k-ε, Reynolds stress and SST k-ω turbulent models were used to simulate the ideal 

gas flow. Mathematical details on turbulent models mentioned above are described 

in following subsection. [1],[4] 
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6.2 Governing equations 

 

The Navier - Stokes equations are equations can be used to determine the 

velocity vector field that applies to a fluid, given some initial conditions. The Navier-

Stokes equations, developed by Claude-Louis Navier and George Gabriel Stokes in 

1822, arise from the basic principle of conservation of momentum (Eq.6-8),  

mass (Eq.6-7) and energy (Eq.6-9). In order to derive the equations of fluid motion, 

we must first derive the continuity equation (see Eq.6-6). It dictates condition under 

which things are conserved. Then apply the equation to conservation of mass and 

momentum and combine them with a physical understanding of what a fluid is. 

For almost all real situations, they result in a system of nonlinear partial 

differential equations of second order, however in case of one dimensional motion 

can be reduced to linear differential equations. Usually, however, they remain 

nonlinear and even for their formal simplicity, it makes them difficult to solve. Untill 

today it has not been proven the existence of their analytical solution. For the 

compressible Newtonian fluid Navier – Stokes equation yields to: 

 ρ ∙ (
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗) = −∇𝑝 + ∇ ∙ {𝜇[∇𝐯 + (∇𝐯)𝑻] −

2

3
𝜇 ∙ (∇𝒗) ∙ 𝑰} + 𝐹 (6-1) 

 

Single parts of equation has a following meaning: 

Inertial forces: ρ ∙ (
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗) (6-2) 

Pressure forces: −∇𝑝 (6-3) 

Viscous forces: ∇ ∙ {𝜇[∇𝐯 + (∇𝐯)𝑻] −
2

3
𝜇 ∙ (∇𝒗) ∙ 𝑰} (6-4) 

External forces applied to the fluid: 𝐹= 𝝆 ∙ 𝑔 (6-5) 

 

 
𝜕𝝆

𝜕𝑡
+ ∇ ∙ (𝝆 ∙ 𝒗) = 0 (6-6) 

 

Where ρ is the fluid density, v is the fluid velocity, p is the fluid pressure and 

μ is the dynamic viscosity of the fluid. [13],[14],[15] 
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Mass 

conservation 

equation- 2D: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑣𝑥) +

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝜌𝑣𝑟

𝑟
= 𝑆𝑚 (6-7) 

Momentum 

conservation 

equation for 

swirl velocity: 

𝜕

𝜕𝑡
(𝜌𝑤) +

1

𝑟

𝜕

𝜕𝑥
(𝑟𝜌𝑢𝑤) +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑣𝑤) =

1

𝑟

𝜕

𝜕𝑥
[𝑟𝜇

𝜕𝑤

𝜕𝑥
] 

+
1

𝑟2

𝜕

𝜕𝑟
[𝑟3𝜇

𝜕

𝜕𝑟
(
𝑤

𝑟
)] − 𝜌

𝑣𝑤

𝑟
 

(6-8) 

Energy 

conservation  

𝜕

𝜕𝑡
∙ (𝝆 ∙ 𝑬) + ∇ ∙ (�⃗⃗� ∙ (𝜌 ∙ 𝐸 + 𝑝)) = −∇ ∙ (∑ℎ𝑗 ∙ 𝐽𝑗

𝑗

) + 𝑺𝒉 (6-9) 

 
Where Sm is mass added to the continuous phase from the dispersed 

second phase,x is the axial coordinate,r is the radial coordinate,u is the axial 

velocity,v is the radial velocity and w is the swirl velocity. [15] 

 

6.2.1 Turbulent models 

 

Mathemtical modeling of turbulent flows aim to realisticly simulate flows and 

predict their motion, which will often be turbulent. Due to the random structure of 

turbulence we cannot perfectly represent the effects of turbulence in CFD even after 

a century of research in this field, there are no successful universal turbulence 

model available. Therefore the choice of turbulence model plays an important role 

on the accuracy of CFD predictions. Turbulent models used in this paper are 

described below. [17] 

 

6.2.1.1 Standard k-ε model 

 

Standard k-ε model has become widely used model for engineering 

applications, due to his simplicity and sufficient accuracy. This model is based on 

the equations for the turbulence kinetic energy, k, and its dissipation rate, ε. The  

k-ε model is the most appropriate viscous model for numerical simulation of high 

Reynolds number (fully developed turbulent flow), however accuracy of the results 

decrease with increasing pressure gradients.  
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Equation of k-ε model: 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌휀 − 𝑌𝑀 + 𝑆𝑘  (6-10) 

And 

𝜕

𝜕𝑡
(𝜌휀) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀

𝜀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌

𝜀2

𝑘
+ 𝑆𝜀  (6-11) 

 

In these equations term, Gk, represents the generation of turbulence kinetic 

energy due to the mean velocity gradients and it is defined as: 

 𝐺𝑘 = −𝜌 ∙ 𝑢𝑖 ∙ 𝑢𝑗̅̅ ̅̅ ̅̅ ̅
𝜕𝑢𝑗

𝜕𝑥𝑖
 (6-12) 

 

The term, Gb, is the production of turbulence kinetic energy due to buoyancy, 

calculated as described: 

 𝐺𝑏 = 𝛽 ∙ 𝑔𝑖 ∙
𝜇𝑡 ∙ 𝜕𝑇

𝑃𝑟𝑡 ∙ 𝜕𝑥𝑖
 (6-13) 

 

YM is the contribution of the fluctuating dilatation in compressible turbulence 

to the overall dissipation rate, ε, calculated as shown below: 
>? 

 𝑌𝑀 = 2 ∙ 𝜌 ∙ 휀 ∙ 𝑀𝑡
2 = 2 ∙ 𝜌 ∙ 휀 ∙

𝑘

𝑎2
=̃ 2 ∙ 𝜌 ∙ 휀 ∙

𝑘

𝛾 ∙ 𝑅𝑔 ∙ 𝑇
 (6-14) 

@BA 

 

C1ε, C2ε and C3ε, are constants with default values C1ε =1,44 and C2ε =1,92. 

σk, and σε, are the turbulent Prandtl numbers for the turbulence kinetic energy(σk=1) 

and its dissipation rate(σε=1,3). Sk and Sε are defined source terms by user. The 

values mentioned above were used as default setting in this research for Standard 

k-ε model. [1] ,[15] 
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6.2.1.2 Shear-Stress Transport (SST) k-ω Model 

 

The SST k-ω model was developed in 1993 by Menter to effectively combine 

the robust and accurate formulation of the k-ω model in the near wall region with the 

free stream independence of the k-ε model in the far field and thereby avoids the 

common k-ω model problem, which is high sensitivity to the inlet free stream 

turbulence properties. To achieve this, the k-ε model is converted into k-ω model 

formulation, where the transported variable, k, is kinetic energy and it determines 

the energy in the turbulence. To determine the scale of the turbulence the variable 

of the specific dissipation, ω, is used. The SST k-ω model includes following 

refinements in comparison with Standard k-ω model: 

 

A. „The standard k-ω model and the transformed k-ε model are both multiplied 

by a blending function and both models are added together. The blending 

function is designed to be one in the near-wall region, which activates the 

standard k-ω model, and zero away from the surface witch activates the 

transformed  k-ε model.” [15] 

 

B. The damped cross diffusion derivative term in the ω equation is incorporated 

to the SST model. 

 

C. Different modelling constants. 

 

D. The turbulent viscosity definition is modified to account for the transport of 

the turbulent shear stress. 

 

These features makes the SST model more accurate and reliable for a wider 

class of flows than the Standard model. The SST k-ω model  is beneficial to use for 

adverse high pressure gradients and separating flow. 

Equation of SST k-ω model: 

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖

(𝜌𝑘𝑢𝑖) =
𝜕

𝜕𝑥𝑗
[𝛤𝑘

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 (6-15) 
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And 
 

 
𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑖

(𝜌𝜔𝑢𝑖) =
𝜕

𝜕𝑥𝑗
[𝛤𝜔

𝜕𝜔

𝜕𝑥𝑗
] + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝑆𝜔 (6-16) 

 

 

The term, Gk, represents the production of turbulence kinetic energy.  Gω, 

represents the generation of specific dissipation, ω, as it is shown below: 

 𝐺𝜔 = 𝛼 ∙
𝜔

𝑘
∙ 𝐺𝑘 (6-17) 

  

The effective diffusity of k and ω are represented by Γk and Γω, as 

calculated below: 

 𝛤𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
 (6-18) 

 𝛤𝜔 = 𝜇 +
𝜇𝑡

𝜎𝜔
 (6-19) 

 

The terms Yk  and Yω describes the dissipation of k and ω due to turbulence 

and it is calculated as described in to the overall dissipation rate, ε, calculated as 

shown below: 
>? 

 𝑌𝑘 = 𝜌 ∙ 𝛽∗ ∙ 𝑓𝛽∗ ∙ 𝑘 ∙ 𝜔 (6-20) 

 𝑌𝜔 = 𝜌 ∙ 𝛽 ∙ 𝑓𝛽 ∙ 𝜔2 (6-21) 

 

The cross diffusion term Dω: 

 𝐷𝜔 = 2 ∙ (1 − 𝐹1) ∙ 𝜌 ∙
1

𝜔 ∙ 𝜎𝜔,2
∙
𝜕𝑘

𝜕𝑥𝑗
∙
𝜕𝜔

𝜕𝑥𝑗
 (6-22) 

 

Sk and Sε are defined source terms by user. [15] 
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6.2.1.3 Reynolds Stress Model (RSM) 

 

The RSM is the most elaborated RANS turbulent model that abandons the 

isotropic eddy-viscosity hypothesis and closes the Reynolds averaged Navier-

Stokes equations by solving transport equations for the Reynolds stresses, together 

with an equation for the dissipation rate. This means that seven additional transport 

equations are required in 3D. Since the RSM accounts for the effects of streamline 

curvature, rotation, swirl and rapid changes in strain rate in a more rigorous mannes 

than models using one or two equations. Even it has greater potenial to accuratly 

predict complex flows, the fidelity of the RSM  is still limited by tle closure 

assumptions employed to model various terms in the exact transport equations. The 

modeling of the dissipation rate and pressure strain terms is challenging task and it 

is often considered to be responsible for compromising the accuracy of Reynold 

Stress Model predictions. RSM also relies on scale equations ε and ω. 

  

The Reynolds Stress Model equation: 

 

𝜕

𝜕𝑡
(𝜌𝑢𝑖

,𝑢𝑗
,̅̅ ̅̅ ̅) +

𝜕

𝜕𝑥𝑘
(𝜌𝑢𝑘𝑢𝑖

,𝑢𝑗
,̅̅ ̅̅ ̅) = −

𝜕

𝜕𝑥𝑘
[𝜌𝑢𝑖

,𝑢𝑗
,𝑢𝑘

,̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑝(𝛿𝑘𝑗𝑢𝑖
, + 𝛿𝑖𝑘𝑢𝑗

,)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] +

𝜕

𝜕𝑥𝑘
[𝜇

𝜕

𝜕𝑥𝑘
(𝑢𝑖𝑖

, 𝑢𝑗
,̅̅ ̅̅ ̅̅ )] − 𝜌 (𝑢𝑖

,𝑢𝑘
,̅̅ ̅̅ ̅̅

𝜕𝑢𝑗

𝜕𝑥𝑘
+ 𝑢𝑗

,𝑢𝑘
,̅̅ ̅̅ ̅̅

𝜕𝑢𝑖

𝜕𝑥𝑘
) − 𝛽𝜌(𝑔𝑖𝑢𝑗

,𝜃̅̅ ̅̅ + 𝑔𝑗𝑢𝑖
,𝜃̅̅ ̅̅ ) +

𝑝, (
𝜕𝑢𝑖

,

𝜕𝑥𝑗
+

𝜕𝑢𝑗
,

𝜕𝑥𝑖
) − 2𝜇

𝜕𝑢𝑖
,

𝜕𝑥𝑘

𝜕𝑢𝑗
,

𝜕𝑥𝑘

̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅
− 2𝜌𝛺𝑘(𝑢𝑗

,𝑢𝑚
,̅̅ ̅̅ ̅̅ ̅휀𝑖𝑘𝑚 + 𝑢𝑖

,𝑢𝑚
,̅̅ ̅̅ ̅̅ ̅휀𝑗𝑘𝑚) + 𝑆𝑢𝑠𝑒𝑟  

(6-23) 

 

Single parts of equation has a following meaning: 

Local time derivative: 
𝜕

𝜕𝑡
(𝜌𝑢𝑖

,𝑢𝑗
,̅̅ ̅̅ ̅) (6-24) 

Convection: 
𝜕

𝜕𝑥𝑘
(𝜌𝑢𝑘𝑢𝑖

,𝑢𝑗
,̅̅ ̅̅ ̅) (6-25) 

Turbulent diffusion : −
𝜕

𝜕𝑥𝑘
[𝜌𝑢𝑖

,𝑢𝑗
,𝑢𝑘

,̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑝(𝛿𝑘𝑗𝑢𝑖
, + 𝛿𝑖𝑘𝑢𝑗

,)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] (6-26) 

Molecular diffusion: 
𝜕

𝜕𝑥𝑘
[𝜇

𝜕

𝜕𝑥𝑘
(𝑢𝑖𝑖

, 𝑢𝑗
,̅̅ ̅̅ ̅̅ )] (6-27) 

Stress production : −𝜌(𝑢𝑖
,𝑢𝑘

,̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑘
+ 𝑢𝑗

,𝑢𝑘
,̅̅ ̅̅ ̅̅
𝜕𝑢𝑖

𝜕𝑥𝑘
) (6-28) 

Buoyancy production: −𝛽𝜌(𝑔𝑖𝑢𝑗
,𝜃̅̅ ̅̅ + 𝑔𝑗𝑢𝑖

,𝜃̅̅ ̅̅ ) (6-29) 
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Pressure strain : 𝑝, (
𝜕𝑢𝑖

,

𝜕𝑥𝑗
+

𝜕𝑢𝑗
,

𝜕𝑥𝑖
) (6-30) 

Dissipation: −2𝜇
𝜕𝑢𝑖

,

𝜕𝑥𝑘

𝜕𝑢𝑗
,

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (6-31) 

Production by system rotation: −2𝜌𝛺𝑘(𝑢𝑗
,𝑢𝑚

,̅̅ ̅̅ ̅̅ ̅휀𝑖𝑘𝑚 + 𝑢𝑖
,𝑢𝑚

,̅̅ ̅̅ ̅̅ ̅휀𝑗𝑘𝑚) (6-32) 

User defined source term: 𝑆𝑢𝑠𝑒𝑟 (6-33) 

 

 In these equations the terms Cij, DL, ij, Pij and Fij do not require any 

modelling. However DT, ij, Gij, Φ ij, and ε ij need to be modelled to close equation, 

calculated as described below: 

 

 𝐷𝑇,𝑖𝑗 =
𝜕

𝜕𝑥𝑘
∙ (

𝜇𝑡

𝜎𝑘

𝜕𝑢𝑖
,𝑢𝑗

,̅̅ ̅̅ ̅

𝜕𝑥𝑙
) (6-34) 

 

 

∅𝑖𝑗 = ∅𝑖𝑗,1 + ∅𝑖𝑗,2 + ∅𝑖𝑗,𝑤 = −𝐶1𝜌
𝜀

𝑘
(𝑢𝑖

,𝑢𝑗
,̅̅ ̅̅ ̅ −

2

3
𝛿𝑖𝑗𝑘) − 𝐶2 [(𝑃𝑖𝑗 + 𝐹𝑖𝑗 +

5

6
𝐺𝑖𝑗 − 𝐶𝑖𝑗) −

2

3
𝛿𝑖𝑗 (

1

2
𝑃𝑘𝑘 +

5

12
𝐺𝑘𝑘 −

1

2
𝐶𝑘𝑘)] + 𝐶1

, 𝜀

𝑘
(𝑢𝑘

, 𝑢𝑚
,̅̅ ̅̅ ̅̅ ̅𝑛𝑘𝑛𝑚𝛿𝑖𝑗 −

3

2
𝑢𝑖

,𝑢𝑘
,̅̅ ̅̅ ̅̅ 𝑛𝑗𝑛𝑘 −

3

2
𝑢𝑗

,𝑢𝑘
,̅̅ ̅̅ ̅̅ 𝑛𝑖𝑛𝑘)

𝐶𝑙𝑘
3
2

𝜀𝑑
+ 𝐶2

, (∅𝑘𝑚,2𝑛𝑘𝑛𝑚𝛿𝑖𝑗 −
3

2
∅𝑖𝑘,2𝑛𝑗𝑛𝑘 −

3

2
∅𝑗𝑘,2𝑛𝑖𝑛𝑘)

𝐶𝑙𝑘
3
2

𝜀𝑑
  

(6-35) 

  
Where C1= 1,8, C1

´=0,5 and C2
´=0,3. nk  is the component of the unit normal to the 

wall, d is the normal distance to the wall. __and is  

 

 𝐺𝑖𝑗 = −
𝜇𝑡

𝜌𝑃𝑟𝑡
∙ (𝑔𝑖

𝜕𝜌

𝜕𝑥𝑗
+ 𝑔𝑗

𝜕𝜌

𝜕𝑥𝑖
) (6-36) 

 

 휀𝑖𝑗 =
2

3
𝛿𝑖𝑗 ∙ (𝜌휀 + 𝑌𝑀) (6-37) 

[15] 
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6.3 Meshing 
 

The ANSYS Meshing utility (ANSYS Workbench 16.0) has been used to create 

the grid of labyrinth seal. The two dimensional simulation is utilized by assuming the 

geometry and fluid flow to be axisymmetric. The detailed dimensions are shown in 

Figure 6-1. Due to the division of seal in to specific areas and using geometric series 

distribution of quadrilateral cells (see Eq.6-38), the mesh become more dense in the 

clearance and wall regions (Figure 6-2). The resolution of grid was controled by 

changing initial cell length, a0, from 10-1 to 10-4 mm and growth rate, q, equals to 

1,2. Additionaly was run simulation with scale factor 1,1 and a0, eqeualed to 10-4 

mm, in order to resolve eddies in the low middle dense cell areas and monitor the 

effect on mass flow leakage.  

 

 
𝑛 =

2 ∙ 𝑙𝑛 [
𝐷
2 ∙

(𝑞 − 1)
𝑎0

+ 1]

𝑙𝑛(𝑞)
 

(6-38) 

  

Where, n, is number of divisions of specified area. The term D is distance of 

each area. The growth rate q and initial cell length a0. The grid specification 

calculated from Eq. 6-35 are described in Appendix A. 

 

Figure 6-1 Labyrinth seal dimensions 

 

Figure 6-2 Mesh density 
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The Ansys Workbench 16.0 provides other mathematical tools to check and 

classify quality of created mesh. One of them is skewness value, which describes 

the difference between shape of the cell and shape of an equilateral cell of 

equivalent volume. According to Ansys fluent user guide different cell quality can be 

indexed by different range of skewness value (see Table 6-1). 

 

Table 6-1 Skewness range 

Skewness Cell quality 

1 degenerate 

0,9 - <1 bad 

0,75 - 0,9 poor 

0,5 - 0,75 fair 

0,25 - 0,5 good 

>0 - 0,25 excellent 

0 equilateral 

 

The ratio between length of the longest edge and the length of the shortest 

edge is called Aspect ratio and it is another value how to index mesh quality. The 

mesh quality is considered to be good if value of single precision Aspect ratio is less 

than one hundred or less than ten thousand  for double precision Aspect ratio . The 

last mentioned control index of mesh quality is called Minimum orthogonal quality 

and it is in the range from 0 to 1, where 0 is the worst and 1 is the best value. It can 

be computed using the face normal vector , the vector from the cell centroid to each 

faces and vector from the cell centroid of each to the adjacent cells. As you can see 

in Table 6-2, the mesh quality based on these three parameters is very good. 

The results of any discretized solution is dependent on the quality and length 

scale of the constituent elements. CFD analysis are particularly prone to numerical 

discretization error, therefore it is important that the grid independence be 

considered before critical review of CFD results. Grid independence was the main 

objective of this project and it was performed by running several solutions with grids 

of increasing quality, when different turbulent models were applied. The results of 

mass flow rates predicted for various pressure ratios are compared and grid 

independence is achieved when the solution does not change appreciably as a grid 
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quality is changed. However the highest resolution of the grid was set to a0=10-4 

mm, in order to decrease the solving time. [4],[9],[16] 

 

Table 6-2 Mesh quality parameters 

Mesh 
no. 

q a0 Nodes 
Maximum 

Orthogonal 
Skewness 

Minimum 
Orthogonal 

Quality 

Maximum 
Aspect Ratio 

[-] [mm] [-] [-] [-] [-] 

1 1,2 10-1 3 556 1,20575∙10-8 1 4,78862 

2 1,2 5∙10-2 7 382 4,50648∙10-8 1 8,12178 

3 1,2 10-2 25 552 1,00349∙10-6 0,999999 26,3631 

4 1,2 5∙10-3 37 965 3,27050∙10-6 0,999997 41,7642 

5 1,2 10-3 79 149 2,87492∙10-5 0,999971 78,4186 

6 1,2 5∙10-4 99 521 1,12885∙10-5 0,999989 83,8170 

7 1,2 10-4 165 526 9,25412∙10-5 0,999907 75,9438 

8 1,1 10-4 496 571 2,05018∙10-5 0,999979 39,2395 
 

6.4 Fluent solver settings 
 

CFD solutions were generated using ANSYS Fluent 16.0. Table 6-3 provides 

details regarding the Fluent solver settings and modelling options employed. 

 

Table 6-3 Summary of Fluent solver setting 

FLUENT CFD settings Value 

Solver type Pressure based 

Velocity formulation Absolute 

Turbulence Model 

Standard k-ε model 

k-ω SST 

Reynolds stress 

Wall function Scalable 

Material Ideal gas 

Solution scheme Simple 

Spatial discretization - Gradient Least squares cell based 

Spatial discretization - Pressure Second order 

Spatial discretization – Density, Momentum, 
Sqirl velocity, Energy 

Second order upwind 

Spatial discretization – Turbulent kinetic energy, 
turbulent dissipation rate 

Second order upwind 

Number of iteration Up to 100 000 
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6.5 Mesh and turbulent model selection 
 

A 2D axisymmetric model was used to investigate the leakage rates in steam 

turbine. As iterations are performed, monitor physical quantities of interest are 

tracked for steady results of  fluid flow rates. Table 6-4 provide result summaries of 

CFD simulations for different turbulent models with high pressure boundary 

condition which are graphically illustrated in Chart 6-1. Sufficient grid quality was 

evaluated  based on percentage deviation of following mass flow leakage results 

using increasing grid quality.  

 

Table 6-4 Results of mass flow leakage for High pressure boundary conditions 

Mesh  Mass flow rate [kg/s] 

Mesh Type 
No. 

Number of 
nodes 

Standard k-ε SST k-ω Reynolds stress 

1 3 556 2,1326 1,9794 2,1663 

2 7 382 2,1326 1,7901 1,9660 

3 25 552 2,1174 1,7870 1,8436 

4 37 965 2,0686 1,7747 1,8166 

5 79 149 2,0302 1,7170 1,7877 

6 99 521 2,0279 1,7158 1,7810 

7 165 526 2,0234 1,7154 1,7800 

8 496 571 2,0256 1,7247 1,7850 

 

 

Figure 6-3 Grid independence analysis of mass flow leakage for high pressure boundary conditions 
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The Figures 6-3 to 6-5 shows the contours of velocity magnitude and static 

pressure (see Appendix B) across the whole labyrinth seal and describes the 

increase of kinetic energy of fluid flow through teeth and stator clearance by 

throttling and converting pressure difference energy to kinetic energy. 

 

Figure 6-4 Velocity magnitude of fluid using k-ε model  

 

Figure 6-5 Velocity magnitude of fluid using Reynolds stress model 

 

Figure 6-6 Velocity magnitude of fluid using SST k-ω model 
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The stream function plots (see Figures 6-6 to 6-8)  show several areas of 

recirculating flow. The flow recirculation patterns are consistent applying different 

turbulent models, however resulting in various ranges. The areas with higher 

recirculating vortices exist upstream before fluid is entering second and third tooth- 

stator clearance of labyrinth seal, where most of the kinetic energy associated with 

the flow is dissipated. The low recirculating stream locations, are as was expected 

after the throttling of fluid in the cavity, where the fluid is accelerated by converting 

static pressure. After each throttle some of the kinetic  energy associated with the 

flow is dissipated by turbulence induced by the intense shear stress and eddy 

motion in the next chamber. As we can see from the mass flow rates  

results (Table 6-4) and (Figures 6-6 to 6-8), when more mass flow is concentrated 

in high recirculating vortices, more kinetic energy is dissipated in the cavity and 

therefore less of the mass flow leaks through the labyrinth seal.  

 

 

 

Figure 6-7 Stream function [kg/s] of fluid using k-ε model 

 

 

Figure 6-8 Stream function [kg/s] of fluid using Reynolds stress model 
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Figure 6-9 Stream function [kg/s] of fluid using SST k-ω model 

 

The numerical data (see Table 6-4 and Chart 6-1) proves that mass flow rate 

results of all three turbulent models are steady using mesh type number 5, 6, 7 and 

8, when the maximum deviation between mass flow leakage rates is 0,54%. 

Therefore as a sufficient mesh type number 6 (see Table 6-2; a0=5∙10-4 mm and 

q=1,2)  is chosen and applied for following simulations using wide range of pressure 

ratios. The comparison of analytical data and computed results indicates that the 

most suitable turbulent model possible to use out of three tested is Standard k-ε 

turbulent model. However even the results using Standard k-ε turbulent model 

match the analytical data with minimal deviation of -21,8 % (see Table 6-7). The 

Samoylovich’s and Kearton’s leakage models correlate with the numerical data the 

most, on the other hand Zalf formula rapidly overestimates the mass flow prediction. 

 

Table 6-5 Numerical and analytical data of mass flow leakage for high pressure boundary condition 

ANALYTICAL RESULTS  ANALYTICAL RESULTS 

Parameters 
Mass flow rate  

[kg/s] 
 Turbulent models 

Mass flow rate  
[kg/s] 

Samoylovich 2,469573  STANDARD k-ε 2,027874 

Stodola 2,510343  SST k-ω 1,715820 

Aungier 2,635235  Reynolds stress 1,780955 

Kearton 2,484177    

Zalf 3,502346    
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Table 6-6 Deviation between numerical and analytical data for high pressure boundary condition 

Parameters 
Deviation between numerical and analytical data [%] 

Samoylovich Stodola Aungier Kearton Zalf 

STANDARD k-ε -21,8 -23,8 -30,0 -22,5 -72,7 

SST k-ω -43,9 -46,3 -53,6 -44,8 -104,1 

Reynolds stress -38,7 -41,0 -48,0 -39,5 -96,7 

 

The most steady results of mass flow rates (see Chart 6-1, Table 6-4) 

predicted applying increasing grid resolution was achieved by Standard k-ε turbulent 

model, where last four predictions of mass flow rates using mesh types 5,6,7 and 8 

(see Table 6-2 and Appendix A) were in range varying by maximum 0,22 %. It needs 

to be said that using k-ε turbulent model results in higher mass flow rate than using 

SST k-ω model or Reynolds stress model. Morrison and Al-Ghasem [11] showed to 

accurately resolve viscous sub layer without additional effort in terms of more refined 

mesh Standard k-ε model with enhanced wall function in the near wall region can 

be applied, placing nodes closest to the walls, in order to get values Y+ less than 10. 

In this project even the highest resolution of the grid using  a0=10-4 mm was not able 

to provide Y+ less than 10 across the whole labyrinth seal. Therefore the scalable 

wall function was accomodated to the CFD simulations. However it confirms that the 

most suitable turbulent model for predicting mass flow leakage out of three tested is 

Standard k-ε model.  [4],[16]  
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 RESULTS AND DISCUSSION 
 

The stepped, labyrinth seal with 0,5 mm radial clearance is used for 

numerical and analytical evaluation. The primary concern of this study is to 

determine the leakage rate through the seal and how it varies with operating 

conditions, such as  different pressure ratios and inlet boundary conditions 

mentioned in Table 7-1. The settings of CFD simulation with shaft rotation  

at 3000 rpm and Standard k-ε model which was selected as a turbulent model 

predicting the mass flow leakage in comparison with analytical data the most are 

described in previous sections. The default constant values for the model inside 

FLUENT  were used.   

 

Table 7-1 Inlet boundary conditions 

Boundary conditions 
Pressure Temperature 

[MPa] [K] 

High pressure `17,80 847,10 

Intermedial pressure 3,40 853,15 

Low pressure 0,35 556,15 

 

Figures 7-1, 7-2 ,7-3 and data in Appendix C compares the leakage mass 

flow rates for different boundary conditions obtained from both analytical and 

numerical simulations. The charts and results of mass flow rates calculated by 

empirical formulas, we can notice the shape of each graph is exactly the same for 

all three inlet boundary conditions. After numerical check it has been proven that the 

deviation between all formulas at the same pressure ratio is constant. Therefore the 

inlet boundary conditions do not affect the slope of each graph, but they definitely 

affect the resulting value of mass flow leakage through the seal. The graphs of mass 

flow rate show similar trends: first a significant growth at high pressure ratios, then 

it slows down and in three cases (Kearton, Samoylovich and Zalf) it is even levelling 

out with eventual decline at low pressure ratio.  
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The inlet boundary conditions in this work are used in real installation of HP, 

IP and LP steam turbines at the inlet to the first stage. The pressure ratios (0,94 ;0,9 

;0,8)  labelled by red colour in tables of Appendix C were found at the instruction 

book for each turbine and thus we will take a closer look on prediction of mass flow 

leakage at pressure ratios from 0,7 to 0,94, where even small change of pressure 

difference has high impact on the mass flow rate. At high pressure ratio the lowest 

mas flow rate prediction out of five tested leakage models gives the Samoylovich 

formula. However the Kearton equation results in even smaller values than 

Samoylovich at pressure ratios below 0,85. The same characteristic is when Stodola 

and Eungier empirical formula is used, but it results in higher mass flow rates. The 

results by Stodola equation is closer to the Samoylovich and Kearton at higher 

pressure ratios and it grows with increasing  pressure difference. The opposite effect 

has the Eungier equation. The maximum deviation of four mentioned leakage 

models is 6,71 % at same operating conditions. The accuracy between Samoylovich 

and Kearton mass flow prediction are in the range from 0,59 % to -1,25 %. The Zalf 

formula seems to be too conservative since it has on average 41% higher results 

than Samoylovich and Kearton equation.  

 

The CFD prediction of mass flow rate is strongly dependent on parameters 

of the steam at the inlet. It is obvious from the graphs that for high inlet pressure the 

resulting value is below the analytical calculations. However when the inlet pressure 

decreases the CFD prediction grows in comparison with existing leakage models. 

When high and intermedial pressure boundary conditions are applied, the numerical 

results match the analytical data calculated by Samoylovich and Kearton the most. 

Although overall results by Kearton equation are more accurate in comparison with 

numerical data than others, the approach by Samoylovich is preferable to use at 

high pressure ratios, where the labyrinth seal are usually designed to operate. The 

mass flow prediction by Stodola empirical formula was the most suitable for low 

pressure boundary conditions. 
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Figure 7-1 Mass flow rates at high pressure boundary conditions 

 

Figure 7-2 Mass flow rates at intermedial pressure boundary conditions 

 

Figure 7-3 Mass flow rates at low pressure boundary conditions 
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 CONCLUSION 
 

The primary concern of this study is to determine the leakage rate through 

the seal and how it varies with operating conditions. Stepped, labyrinth seal with 

three teeth and  0,5 mm radial clearance is used for both, numerical and analytical 

evaluation. The results are compared in order to find suitable turbulent model for 

CFD simulation. The Standard k-ε, SST k-ω and  Reynolds stress turbulent model 

were implemented to the study.  A 2D axisymmetric model using scalable wall 

function with values Y+ less than 30 computed steady results, when all three 

turbulent models were applied. Comparison of the empirical and numerical results 

confirmed that the most suitable turbulent model is Standard k-ε, which has been 

proven by Morrison and Al-Ghasem [11].  

The analytical prediction of mass flow rates are always in order, when 

different boundary conditions are applied. The empirical formula by Kearton, 

Samoylovich, Eungier, Stodola and Zalf are sorted from lowest to highest results. 

However the Kearton equation gives higher mass flow rates than Samoylovich at 

pressure ratios over 0,85. At high pressure boundary conditions the analytical 

approach overestimates the results comparing to CFD simulations using Standard 

k-ε model. On the other hand when the inlet pressure decreases the values of  

numerical results rises above all analytical predictions except Zalf formula. 

Therefore we can say that the state of the art (Zalf) is too conservatice for predicting 

mass flow leakage through the stepped labyrinth seal.  

For high and intermedial pressure boundary conditions (Table 7-1) 

the data in Appendix C shows the best relation with numerical results given by the 

Kearton’s formula. However most of the labyrinth seals operates at high pressure 

ratios, where the Samoylovich equation meets the CFD results with higher accuracy 

than Kearton. The Stodola equation matched the data with average percentage 

deviation of 3,2 %, when low pressure boundary conditions were applied. Therefore 

is the best for predicting mass flow leakage using inlet pressures below 0,35 MPa. 
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