
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague March 1, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Implementation of client and server for control and interpretation of robot Karel

 Student: Stefan Ćirić

 Supervisor: Ing. Jan Trávníček

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2018/19

Instructions

Study the Karel programming language.
Design a client -- server communication over HTTP supporting sending complete Karel programs and
individual Karel commands.
Design a Karel server and implement it on the ESP8266 SOC computer.
Test the implementation of the Karel server.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Implementation of client and server for

control and interpretation of robot Karel

Stefan Ćirić

Supervisor: Ing. Jan Trávńıček

16th May 2017

Acknowledgements

I would like to thank my mentor Ing. Jan Trávńıček, for helping me in finding
an appropriate topic for my bachelor’s thesis, his continued support during the
work of the thesis and my studies at the Czech Technical University. Secondly,
I would like express my honest gratitude towards my teachers, who work with
such passion, have the most patience and understanding, and from who I have
learned so much. Last but not least, I am grateful to my family and loved ones
for their constant encouragement and support throughout the entire period of
my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 16th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Stefan Ćirić. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Ćirić, Stefan. Implementation of client and server for control and interpreta-
tion of robot Karel. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2017.

Abstrakt

Obsahem této práce je implementace systému klient-server pro robota Karla.
Systém bude implementován na čipu Arduino ESP8266 WiFi, na který se
uživatelé připoj́ı pomoćı WiFi a budou tak schopni komunikovat s robotem
prostřednictv́ım poskytované webové stránky. Práce podrobně popisuje čip
Arduino ESP8266 WiFi, na kterém je systém vyv́ıjen, zároveň plně vysvětluje
pojmy programovaćı jazyk Karel, robot Karel a ukazuje, co je robotovým
úkolem a čeho může dosáhnout. Druhá část se zaměřuje na návrh a imple-
mentačńı techniky vybrané pro splněńı práce a předvád́ı vnitřńı strukturu a
architekturu projektu.

Kĺıčová slova implementace, uživatel, server, karel programováńı, c++
programováńı, arduino IDE, HTTP, HTML, ESP8266 WiFi čip

Abstract

The content of this thesis is the implementation of client and server system for
Karel robot. The system will be implemented on an Arduino ESP8266 WiFi
chip, through which users will connnect over a WiFi connection and be able to
interact with the robot through the web page provided. It describes in detail
the WiFi chip on which the system is developed, as well as fully explaining

ix

the concepts of the Karel language, Karel robot, showing what the robot’s
task is, and what it can accomplish. The second part focuses on the design
and implementation techniques chosen to accomplish the task, going over the
internal structure and architecture of the project.

Keywords implementation, client, server, karel programming, c++ pro-
gramming, arduino IDE, HTTP, HTML, ESP8266 WiFi chip

x

Contents

Introduction 1

Motivation . 1

Description . 2

1 Aim of the thesis 3

2 Arduino ESP8266 5

2.1 Technical Overview . 6

2.2 Hardware Overview . 6

2.3 Firmware Overview . 7

2.4 Communication . 7

2.5 File system . 8

2.6 ESP8266WiFi library . 9

2.7 ESP8266WebServer library . 9

3 Karel 11

3.1 History of robot languages . 11

3.2 Karel the Robot . 12

3.3 Karel’s world . 12

3.4 Karel language . 13

3.5 Karel abilities . 14

3.6 Karel’s task . 15

4 Design and implementation 17

4.1 Application requirements . 17

4.2 Architecture . 19

4.3 Classes . 19

4.4 Use cases . 25

5 Tests 27

xi

5.1 Simple commands . 27
5.2 Complex commands . 29

Conclusion 31
Results . 31
Recommendations . 31

Bibliography 33

A Acronyms 35

B Contents of enclosed CD 37

xii

List of Figures

2.1 The ESP8266 chip design . 5
2.2 Naming and ordering of pins on the ESP8266 8

3.1 Depiction of Karel World with compass. 13
3.2 Examples of Karel wall creation. 14

4.1 Application requirements . 17
4.2 Project architecture . 19
4.3 Representation of management classes 24
4.4 Representation of functional classes 25
4.5 Model of use cases . 26
4.6 Sequence model of sending command ”STEP” 26

5.1 Submitting of new command RIGHT 28
5.2 Output of RIGHT . 28
5.3 Submitting of new command RIGHT 2 29
5.4 Output of RIGHT 2 . 29
5.5 Execution of complex command getFlag 30
5.6 Output of getFlag . 30

xiii

Introduction

The concept of mazes and maze-solving is familiar to everyone. Since our
early days, we are offered by our elders all sorts of tasks, such as puzzles and
riddles which we give our best to solve. Solving mazes can be a very exciting
experience. We are set with a problem which has a clear goal, and if we manage
to accomplish it we are rewarded for our efforts. Mazes can be implemented in
all sorts and forms. A good example of using mazes in educational purposes,
especially in programming, is done by the robot Karel. Karel is a programming
language created with the purpose of displaying programming concepts to
interested minds through a simple game. Karel is a robot that exists in a
two dimensional world where he is tasked with finding a path from point A
to point B. To achieve this, he must bypass all of the obstacles in his path,
before he can finally reach his destination. With the help of the Arduino
ESP8266 WiFi chip, I have created a maze-solving puzzle with the concepts
of Karel in mind. The ESP8266 WiFi chip is one of the many offered by the
Arduino company, and it provides an open-source platform for many kinds
of hardware and software. This allows for a wide range of software tools and
documentation for any independent project. There is a world-wide community
that works with Arduino, constantly evolving and upgrading the libraries and
tools available, while also sharing their work and experience. In my case it
was the development of a Karel robot that exists on a WiFi server through
which clients can connect and interact with Karel.

Motivation

Ever since I was a young boy I have had a deep interest in solving puzzles,
finding hidden meaning and context, and creating things. Whether it be pa-
per wallets that my childhood friend and I have made by dozens, a castle
made out of LEGO’s, a medieval shield and sword from pieces of wood from
the backyard, a tree house in our local park - I have constantly been creating
something. This has probably led me to choosing the field of programming

1

Introduction

as my future career. Once I have heard of the Arduino company and projects
I was interested in doing one myself. With my aforementioned interest in
puzzles, the Karel Robot project seemed like an excellent fit. As mentioned,
the Karel itself was created with an educational purpose in mind to teach
those interested in programming, and Arduino being a platform that allows
experimentation and development of interesting projects for students, hobby-
ists and professionals, I wanted to use this opportunity to create something
new, while also testing my abilities to work with new technologies, concepts
and environments.

Description

This thesis can be split in 5 main parts, excluding the introduction. Each
of the parts covers a different topic of the project, and they are information
about the Arduino WiFi chip, the Karel programming language, my design
and implementation, testing of the application and my thoughts and conclu-
sions. The first part is very technical, and features a hardware overview for
the chip. As all chips are different, and there are many groups and families
of chips, it goes into detail about the ESP8266, its capabilities, functions, ele-
ments, available libraries and file system. The second part covers the Karel
robot and Karel programming language. It briefly mentions the history of
Karel, its origins and touches the topic of robot languages as well. It then
goes into more detail regarding the main objective of Karel, what it’s sup-
posed to achieve and how. It also describes the idea of the robot and the
world it lives in. The third part consists of my chosen projects’ architecture
and my way of solving the task. It goes over the developed architecture on
the chip into detail, mentioning the classes involved, and later it dissects each
class separately, explaining its purpose and goal in the scope of the project,
with some examples. The fourth part regarding testing shows how the applic-
ation performs. The last part, being the conclusion, goes over my experience
working on the project, an overview of the process, results and expectations.

2

Chapter 1

Aim of the thesis

The aim of the thesis is to develop and to implement the client and server for
the Karel robot with the help of the Arduino ESP8266 WiFi chip. The thesis
will serve as documentation for my project, for myself or anyone else that
would wish to expand in the future. It records all of the steps that were taken
to complete it, along with the proper description of components used to create
it. It also shows my ability to work on a larger scale project by incorporating
multiple technologies together to achieve an end result. The other goal was to
gain experience and get used to embarking upon a new project and trying my
best to adapt to different circumstances, eventually conquering them. Finally
it is to show my ability to successfully create something that I can proudly
claim to to have accomplished on my own.

3

Chapter 2

Arduino ESP8266

The ESP8266 WiFi Module (Figure:2.1) is a self contained SOC with integ-
rated TCP/IP protocol stack, allowing any micro controller access to a WiFi
network[1]. Each individual chip comes with a pre-programmed set of AT
commands, which allows for easy usage right out of the box. It can set up
HTTP, mDNS, SSDP and DNS servers, do OTA updates, as well as use a file
system in its flash memory and work with SD cards.

Figure 2.1: The ESP8266 chip design

5

2. Arduino ESP8266

It has a very low power consumption of 3.3V and a small processor on
board, allowing the chip to work completely autonomously. Along with its
low price of approximately 200 Czech crowns makes it one of the more desir-
able chips for home projects. Compared to the alternative which is a regular
Arduino chip and WiFi module that cost a lot more. Although the ESP8266
has only 2MiB of flash memory, as do most of the chips in their category, and
the number of GPI0 pins are limited to 8, it still provides plenty of function-
ality.

2.1 Technical Overview

The ESP8266 contains complete WiFi networking solution, meaning it can
be used to either host or offload WiFi networking functions from any other
processor. In the case of hosting an application, it boots up directly from
an external flash, while the integrated cache improves the performance of the
system[2]. Alternatively, we can use it as a WiFi adapter. It is one of the most
integrated WiFi chip’s in the industry. Besides it’s integrated antenna switch,
RF balun, power amplifier and the likes, it also integrates an enhanced version
of Tensilica’s L106 Diamond series 32-bit processor, with on-chip SRAM. It is
also often used with other applications through external sensors through it’s
GPIO pins.

The chip has been designed for mobile use, while aiming for the lowest
power consumption possible, with a combination of several techniques[3]. It’s
power saving architecture operates in 3 modes: active mode, sleep mode and
deep sleep mode. It consumes about 60 nanoA in deep sleep mode, and less
than 1.0 mA or less than 0.5mA to stay connected to the access point. It
can be programmed to wake up at any required interval, or when a specific
condition is met. This feature allows to remain in low-power standby mode
until WiFi is needed.

2.2 Hardware Overview

ESP8266 is embedded with Tensilica L106 32-bit micro controller[2]. It fea-
tures extra low power consumption and a 16-bit RSIC. The CPU clock speed
is 80MHz, with its maximum value of 160MHz. It allows for 80% for user
application programming and development. There are 3 interfaces available
to connect to the embedded MCU. All of them can be visited by request, while
the memory arbiter will decide running the sequence according to the time
when they are received by the processor. The interfaces are:

1. Programmable RAM/ROM interface (iBus) which can be connected
with a memory controller

2. Data RAM interface (dBus)

6

2.3. Firmware Overview

3. AHB interface, to visit the register

As mentioned, it supports OTA which is a process of uploading firmware
to the chip using a WiFi connection instead of a serial port[1]. To perform this
the Arduino IDE is most oftenly used in the process of development, while a
Web Browser or HTTP Server are better options after deployment. The basic
requirements for the OTA is that the flash chip size should be able to support
both the old and new program at the same time. its external SPI flash can
theoretically support up to 16 Mbyte of memory. Also, the minimum flash
memory requirement is dependent on whether OTA is disabled or enabled. If
disabled the minimum is 512 kByte, or 1 Mbyte alternatively.

When performing the OTA the module has to be exposed wirelessly so
it can be uploaded with a new sketch. This means that there is a chance of
it being hacked or violently loaded with a different program. To prevent the
likelihood of being hacked it is good practice protecting your uploads with a
password and selecting a certain OTA port.

Some protection functionalities are built in and do not require any addi-
tional coding by the developers. It uses the Digest-MD5 to authenticate the
uploads. It is verified on the ESP side using an MD5 check sum.

2.3 Firmware Overview

The chips’ ROM and SRAM load instructions during wake-up through an
SDIO interface from the external flash, which is where the application and
firmware is executed. It implements the full 802.11 b/g/n/e/i WLAN MAC
protocol and WiFi Direct specification[1]. Not only does it support basic
service set, but also P2P group operation compliant with the latest WiFi P2P
protocol. Protocols which are handled automatically by the ESP8266 are:

1. RTS/CTS

2. acknowledgment

3. fragmentation and defragmentation

4. aggregation

5. frame encapsulation

6. P2P WiFi direct

2.4 Communication

Although the many benefits of the ESP8266 chip, being the smallest mod-
ule it has the most limited I/O pins. At first, all of the pins are used for
programming, leaving us with very little.

7

2. Arduino ESP8266

Figure 2.2: Naming and ordering of pins on the ESP8266

The pins it has are numbered from 1 to 8 and are TX, CHPD, RST, VCC,
GND, GIO2, GPIO0 and RX Figure:2.2. Of these, VCC, GND, RST and
CHPD are not I/O pins, but are necessary for the operation of the module.
This leaves us with GPIO0, GPIO2, TX and RX as I/O pins. However, even
these have predefined functions. The GPIO pins determining what mode the
module starts up, while the TX/RX are used to program the module and for
Serial I/O, most notably used for debugging[4].

As mentioned another way of interacting with the chip is directly through
the Serial port. The Arduino IDE supports this feature and allows to set the
baud rate among other things. The form of communication is done through
the AT instruction set [5]. Often the chip has predefined commands, however
user-defined commands are supported. Commands are sent by typing the
AT prefix plus the command, like: AT+[command name] Most often used
commands are AT and AT+RST to see if the board is working and to restart
it.

2.5 File system

The file system as well along with the program are stored on the same chip,
however, programming a new project will not change the contents of the file
system. This means that we can use the file system to store program data,
configuration files or content for a Web server. However, this imposes some
limitations[2].

The design used to accommodate the implementations and constraints on
the chip is SPIFFS, because it was designed for small system, although at the
cost of some simplifications.

SPIFFS does not support directories, it just stores files. The good thing

8

2.6. ESP8266WiFi library

is that since it is not a traditional file system it allows for the ’/’ character
to be used in names, thus allowing the usage of directory listing when using
the functions. Another possible problem is that is only supports 32 character
for file names, with one being reserved for the terminating character. It is
suggested to not nest files too much and keep naming conventions short, as
problems can arise if the limit is reached.

2.6 ESP8266WiFi library

The ESP8266 WiFi library was developed based on the ESP8266 SDK, using
all of the naming conventions[1]. However, over time the features developed
outgrew the Arduino WiFi library. The chip can work in different modes,
namely it can work as a station, that is a device that connects to a WiFi
network that is provided through an access point. The access point is then
usually integrated with a router to provide access from a WiFi network to the
internet. Each such access point is recognized by its SSID.

Alternatively, it can perform the functionality of a soft access point, to
establish its own WiFi network and have others connect to it. In fact, it can
simultaneously perform both roles, which provides the ability to build mesh
networks. The library provides a wide variety of C++ methods and properties
to configure these modes.

In the mode of a soft access point the ESP8266 can provide a WiFi network
for others, except for the fact that it has no interface to a wired network.
This is the reason we distinguish between access point and soft access point.
The main purpose of this mode is to be used as an intermediate step before
connecting the ESP to a WiFi in station mode. Most notably when the SSID
and password are not known to the chip upfront, it boots soft access point
mode, which allows us to connect to it through mobile and then provide it
with the data to a network. Of course, it can support its own server and offer
its connections and features. This is the mode that is going to be used in
this project for the implementation of the server for the Karel robot. To just
quickly note its other modes of operations they are: Station, Scan, Client,
Client Secure, and Server.

The main functionality of this class is setting up a WiFi network for users
to connect through an SSID and password. Managing connections and/or
shutting them down.

2.7 ESP8266WebServer library

The ESP8266 WebServer library offers functionality of having a server on the
chip[1]. It holds its IP address, header values and argument values sent to
it. This allows the chip to process GET and POST HTTP requests. Since
it does not offer an interface, we must use the IP address to connect. Once

9

2. Arduino ESP8266

the connection is established it serves us the page. It holds the HTML page
as a String in a variable which is then sent through a HTTP request back to
the client. This is done by the ”send” command. It requires the code, type
of content we are sending and the HTML page in String form. To respond to
the client is done by the ”on” command which allows to act accordingly based
on the requested page. To process the command we can retrieve it in String
form from the arg variable.

For ease of use, it has an extensive ”handleClient” method which deals
with clients. It periodically checks for connections. Upon an establishment
of a connection it waits for data from the client to be available, and then
processes it. There is a limit, i.e. a timeout for which it waits for the request
to be processed. If the timeout is reached it closes the connection and tries
again. If the connection is successful, it retrieves the data and closes the active
connection, after which the process is repeated.

10

Chapter 3

Karel

Karel programming language was invented by Richard E. Pattis. It was first
introduced in his book ”Karel the Robot: A Gentle Introduction to the Art
of Programming. The prefix Karel comes from a Czech writer, Karel Capek
who introduced the word robot.

Richard E. Pattis was a senior lecturer of computer science at Stanford
University in California[6], and he created the Karel language with the sole
purpose of showing the concepts of programming to people who wanted to
learn, as well as expand on already existing concepts.

Karel Capek among being a writer had multiple roles such as being a
publisher, literary reviewer, photographer and art critic[7]. However, one of
his best known works is his novel and play ”War with the Newts” and R.U.R.
(Rossum’s Universal Robots)[8]. In this play he introduced the word robot
for the first time, and it has been accepted world wide ever since.

3.1 History of robot languages

While the history of robot programming languages is very complicated. Some
would say that it essentially began with the introduction of automata[9].
Automata were not very flexible, as they were purely mechanical and most
often than not had only one program. To re-program it, you would need to
redesign the whole machine. Non the less they are grandparents of modern
technology and worth mentioning. Now it is generally assumed that program-
ming languages are sorted into three main categories, being:

1. Programming by teaching

2. Robot-oriented programming

3. World modeling and task level programming

11

3. Karel

The first generation of languages operated at a very primitive level, mostly
suited for highly repeated tasks. They were based on already existing lan-
guages that had been developed in the 1950’s. The second generation ex-
perienced a boom in robot languages, as the interest and need grew rap-
idly. Among the second generation is the Karel programming language. They
offered more control and flexibility, to some extent even limited artificial in-
telligence. The third generation no longer cares about the specific language
you are using, yet more about the programming ideas and methods at hand.
We could say that it is an ever-evolving field, with many features still at
the research stage. Aspiring to self-learning robots, where they could teach
themselves, essentially what we know today as artificial intelligence.

3.2 Karel the Robot

Karel is a robot who lives in a two-dimensional world made up of horizontal
and vertical streets which he can explore[10]. Although this world may not
be interesting by today’s standards, as there are no museums, universities
and theatres, it is still sufficient for him to perform basic commands, such as
walking, turning and picking up items.

Essentially Karel came with a set of a few basic commands, such as MOVE,
LEFT, PICK UP and TURN OFF in the depiction of Richard E. Pattis.
Although over the years the Karel robot has expanded and can offer more
functionality, even learn new custom commands, this is the crux of the robot.
Some models of the robot affect his world, introducing new elements with
which he can interact. The reason for these extensions was the desire to
include Karel in object-oriented design, and allow for object-oriented concepts
to be explained.

3.3 Karel’s world

Informally put, the robot world is a grid of streets that the robot can traverse[11].
Figure:3.1 illustrates the structure of the world with standard North, South,
East and West compass points. While this is the basic depiction of Karel’s
world, there are versions in which he can go through the walls. This moves
the beginning of the world into a negative number, which is not very suit-
able for this implementation. Since we are using two-dimensional arrays to
represent Karel’s world it marks the beginning or origin of the world at (0,0)
coordinates.

Both streets and avenues are numbered from 0 to N. The default size
supports Karel’s world of 35x35, which places the centre at the position on
coordinates (17,17) where the flag is located, meaning that is the block he
must reach. All positions can assume relative and absolute paths. By giving a
concrete position such as (1,1) or (3,5) or saying simply something is 3 blocks

12

3.4. Karel language

Figure 3.1: Depiction of Karel World with compass.

west and 2 blocks south. Since all blocks are of the same size it would indicate
that something is 3 steps left and 2 steps down. We assume streets are vertical
and avenues are horizontal. The robot moves according to its direction, so this
is where the compass comes in play. Since robot can only move in the direction
it is facing, is it important to keep track of it.

While there are main 4 walls at the end of each room, many versions of the
Karel make the robot go through a maze. This is done by occupying blocks on
grid by walls. By connecting multiple blocks of walls together we can create
a maze for the Karel as can be seen of Figure:3.2. Like on the edges of the
world he cannot pass through these walls, so he must bypass them.

3.4 Karel language

The Karel syntax was created for educational purposes. Each Karel robot has
specified default commands which it understands[10]. However, since this is
often not enough the language allows for creativity and expansion. The basic
syntax of a procedure has the following form:

new_command_name

BEGIN

list_of:

CUSTOM_INSTRUCTION

or

BUILT_IN_INSTRUCTION

or

KEYWORDS

END

The syntactical elements are:

13

3. Karel

Figure 3.2: Examples of Karel wall creation.

• Statements: BEGIN, END, ITERATE, IF

• Keywords: STEP, LEFT, PICK UP

• Numbers: 1,2,3 ... N

3.5 Karel abilities

Karel is a small robot which lives in the world we create. He is a nice compan-
ion and he always listens to his owner. He can turn left in his block, make a
step forward, or use his arm to pick up a flag from the block he is standing and
read it to his owner. His eyes are special cameras with which he can observe
his surrounding and check if there are things around him. This is essential
when moving around to avoid hitting a wall.

At first Karel might not be the most impressive robot, but he always
wants to improve, and for this he needs help. His owner can teach Karel new
commands by adding onto what Karel already knows. By using the Karel

14

3.6. Karel’s task

language the owner creates a special keyword and a list of commands for
Karel. Karel carefully reads the new task and remembers it. From then on, if
the user tries to ask the Karel to perform the new task, he would do it in the
way it was defined by the user.

3.6 Karel’s task

There have been many variations and problems defined for Karel over the
years. In essence, despite the additions on his path, Karel has always had a
role of a finder, that is he’s main problem was finding a path to his desired
item. This version tasks Karel with finding a flag in his world, which will
always be in the center of the map, picking it up and reading the hidden
message to his owner.

When Karel wakes up, he forgot where he fell asleep. The only thing he
knows is that he needs to find the map, whose location is familiar to him,
and that he can do this only with the owners help. On his path, there could
be obstacles which he needs to avoid, so the owner needs to pay attention as
well. Karel will not walk through an obstacle, yet he will merely remain in the
same block. To find the direction he is facing, by turning left in his block we
can deduce the new direction he is facing and proceed to find the best path to
our flag. Since he is a robot he will not get tired if we don’t find the shortest
path.

15

Chapter 4

Design and implementation

In this chapter I will go over the design, design choices and implementation
of the project. The technologies used are the Arduinos framework suited for
C++ development, such as the Wifi and Server libraries that extend on its
ability to create a server and further manage it. Due to the limited memory
capacity there is a custom-made template by me for vectors. The transfer of
data between the server and the client is done by HTTP GET method, passed
as a string.

4.1 Application requirements

The project has a set of requirements it needs to fulfill to operate properly.
They can be divided into two groups: functional and non-functional require-
ments (Figure:4.1)

Figure 4.1: Application requirements

17

4. Design and implementation

4.1.1 Functional requirements

• F1: keep record of commands - The application needs to have all
of the available commands stored, making them available when used by
the user.

• F2: add new commands - The user can create his custom command in
the Karel language. The system needs to be able to store the command
among the default ones, making it available for later use.

• F3: interpret new instructions - The system needs to be able to
interpret the custom created commands, performing them according to
the defined syntax of Karel.

• F4: display Karel state - The system needs to be able to represent
the internal changes from Karel and his world visually to the user on the
web page, in the form of sentences. Showing Karel current coordinates,
and the direction he is facing.

• F5: interact with Karel - The system needs to allow the user to
submit commands to the Karel robot through the server, allowing the
user to move the robot around the world.

• F6: manage client connections - The system needs to be able to
allows users to connect to the server, manage the connection while by
processing requests,

• F7: check instructions - When the user inputs a new command, the
system needs to check the correctness of it, and only accept it if it follows
the proper syntax.

4.1.2 Non-functional requirements

• NF1: browser application - The application is developed for use
through a web browser on a computer or phone.

• NF2: availability of WiFi connection - To access the web page the
user needs to have a device that is able of establishing a WiFi connection
in order to connect to the Arduino ESP8266.

• NF3: stable power supply - The Arduino ESP8266 WiFi chip re-
quires a stable power supply of 3.3V to function properly.

• NF4: board manager - In the case a user has an Arduino board
manager at hand, he is able to connect the ESP8266 WiFi chip to the
board manager and provide the power supply through a USB port.

18

4.2. Architecture

4.2 Architecture

I have decided for a two-layered architecture (Figure:4.2) for this project,
composing of the business and presentation layer only, excluding the data
layer. There will be no option of saving any custom made commands after the
termination of the application, thus the data later is not necessary. The lowest

Figure 4.2: Project architecture

layer, in this case the business layer, is tasked with accepting and processing
data sent from the server, as well as performing the tasks that are passed
on by the server through the presentation layer. It offers an interface to the
server through which they interact. There is no direct contact between the
members of the KarelRobot and KarelHandbook class. This is done with the
encapsulation principle in mind, to limit the influence of the outside users
to what the interface offers. The presentation layer deals with the clients
through the browser, by looking for new connections, managing existing ones
and closing them. It keeps the barrier between the front-end and back-end of
the application. It is mainly tasked with transferring data between the client
and Karel robot. It also allows the client to see all of the information changes
as displayed on the web page.

4.3 Classes

The project essentially consists of 14 classes in total, them being: KarelRo-
bot, KarelHandbook, Vector, Server, WiFi, IPAddress, Statement, Step, Left,
PickUp, StatmList, Iterate, If and While respectively. They are split into two

19

4. Design and implementation

main groups: management and functional classes. The management classes
(Figure:4.3) can be separated once more, between the built-in Arduino classes,
Server, WiFi, IPAddress, and the classes I have developed being KarelRobot,
KarelHandbook, Vector, Server and WiFi. They have more functionality and
responsibility than the functional classes. They take care of all of the organ-
ization and processing inside the application.

The functional classes (Figure:4.4) are all subclasses from an abstract class
Statement. They are used to express the functionality of the Robot’s default
commands, along with the new commands it will eventually learn. They are
essentially very simple, and don’t perform more than 3 or 5 tasks each. I will
now go into details regarding each class.

4.3.1 Arduino classes

Arduino offers a lot of libraries for its projects. As mentioned before, for
my task I am using the WebServer and Wifi library which have the Server,
WiFi and IPAddress class. The WiFi class is used to create a wireless soft
access point through which clients can connect to the Arduino ESP8266. It
requires two string parameters, an SSID and password for the hot-spot. After
initialization, it starts broadcasting its connection around and waits. It has a
static IP address through which users can connect through the browser once
they are on the network. The IP addresses are actually objects of the class
IPAddress, so to retrieve it from the WiFi access point we need to store it into
an object of class IPAddress. The Server class is used as the base class for all
Ethernet server based calls. It is not called directly, but invoked whenever you
use a function that relies on it. Once the server is activated, and the users are
connected and try to access the IP address the Server class invokes the ”on()”
method which serves the user with a web page. The web page is saved in
String format, which allows for easy manipulation from the programmers side
when in need of presenting internal values and variables to the user, just by
adding the variables to the String. On each user request the ”on()” method is
used to process the request. Each request has a function assigned to it, which
deals with the request, or a single function perfroms a specific task based
on the request. Once the functions is finished, the server uses the ”send()”
method to serve the user with the new page and changes. It sends the HTTP
code and new page as a String. To deal with clients the server has a extensive
”handleClient()” function, which is part of the internal library for the server.
It starts off by waiting for connections. When a connection is found, it checks
it before proceeding. On each user request it is invoked again. Upon finishing
it closes the connection, and goes back to its original state of waiting for new
connections.

20

4.3. Classes

4.3.2 KarelRobot

KarelRobot is one of the two main classes of the program. It represents the
basic robot and its functionality. It holds information of the essential robot
commands, his coordinates in the world, as well as the position of the obstacles
that he faces. The robot starts at a random free location in the world, turned
to the North. It knows how to move, turn left, check his surroundings and pick
up a flag from the ground. To get around the world he knows how to check his
surroundings by checking each vertically and horizontally adjacent block next
to him for an obstacle. This is done by taking into account the direction the
robot is facing and then accordingly checking the block in the world to see if it
is occupied or not. If there is no obstacle the methods return true, otherwise
false. When trying to move, the robot depending on his direction tries to
move exactly one block forward. To do this he firstly tests the block, and only
after confirming the space is not occupied will he change his position. In the
case of an obstacle, he remains in the same spot, waiting for a new command.
The turn left method allows the robot to move one direction to the left, while
remaining in the same spot. If he was facing North before the left method
was executed, it would without checking change his direction from North to
West and finish. The pickup command instructs the robot to try and get the
flag from the ground, without moving him. In case the robot is not in the
centre of the world, the method would simply return to the user that there
was nothing there. However, in the case the robot reaches the centre and then
executes the pick up command he would successfully return the secret text
written on the flag.

4.3.3 KarelHandbook

While the KarelRobot offers the basic and essential functionality of Karel,
KarelHandbook can be thought of as an extension class of Karel. Wherever
Karel goes he carries along with him a book in which he writes down things
he learns on his journey. However, every time he falls asleep, the writings
are mysteriously gone. The KarelHandbook class stores information of all the
commands Karel knows so far, including the basic commands as well as the
new custom ones. It holds all of the keywords Karel can recognize and inter-
pret, and it has variables which hold temporary information such as the new
desired command to be learned and some counters for easier handling. The
main functionality is in the analyzing and interpreting a string sent as a new
list of statements that Karel should learn as a new command. It uses a couple
of methods to achieve this. First of all, when Karel is supposed to learn a new
command from the user the ”getUserInput()” method is called which just cop-
ies the string into the Handbook as a string of regular words. The process
of analyzing and interpreting begins with the ”createCommand()” function
which recursively constructs the new command. For easier parsing the method

21

4. Design and implementation

”readNextWord()” will read the next available word from the user input and
retrieve it. Then the word is checked whether it is a keyword, default com-
mand or custom command. Depending on the word processed an appropriate
method (eg. createIterate()) is called and a new object is constructed which
is then added to the list of statements from which the new command is sup-
posed to consist of. If somewhere along the way the process is disrupted, eg.
by not following the correct template for new commands, it is simply dumped
and deleted. It returns a String informing the user that the process was not
successful and finishes. The methods createIterate(),createStatmList() etc.
deal with the required syntax of each of the keywords. If we were trying to
create a new Iterate object we would need to provide it first with the ”ITER-
ATE” keyword, our desired number of repetitions and a command we would
like repeated. So something that would be accepted by the parser and would
create a new command looks something like this:

RIGHT

BEGIN

ITERATE 3 LEFT

END

This small procedure follows the syntax of the ”createIterate()” method
and it would successfully create and add the command ”RIGHT” to Karel’s
arsenal. This is done similarly for all other such methods. If the syntax is not
met, the method stops, deletes and returns a NULL pointer.

4.3.4 Statement

The Statement class is the parent class of all functionality classes, and it
provides the necessary interface for them. It allows for polymorphism later
down the line. It offers an interface for the ”execute()” command, which
depending on its subclasses performs the tasks associated with the semantics
of the invoked class.

4.3.5 Step, Left and PickUp

The Step,Left and PickUp classes are the most plain and simple classes derived
from Statement. They work as wrapper classes for Karels’ default commands.
Since all new commands are developed as ”StatmList”s (statement lists)
which hold an array of commands to be executed as Statement pointers, they
are essential for proper functionality.

4.3.6 Iterate

The Iterate class handles the creation of all new iteration objects. its member
variables are a Statement pointer which will hold the new command it will

22

4.3. Classes

iterate, and an integer representing the number of iterations. Since it holds a
” Statement* ” it can accept any of its brother and sister classes. This allows
for iterations of simple procedures such as just turning left, or more compound
procedures which are done by the StatmList class. The required syntax for
Iterate is:

ITERATE number_of_times STATEMENT

4.3.7 StatmList

The StatmList class represents compound commands learned by the Karel.
Essentially each user request for a new command is a StatmList. It holds a
vector of Statement pointers which are executed one by one. It starts off with
5 reserved spaces for each command, which can be extended if necessary. It
is created by the ”createStatmList()” method of KarelHandbook which deals
with the parsing of the syntax for StatmList. StatmList uses the keywords
BEGIN and END instead of brackets ([]) for an indication of a block or group
of commands that should be executed independently. Nesting of StatmList’s
is possible due to the polymorphism allowed from the deriving from the State-
ment class. If there is an error in following the syntax for StatmList creation in
the ”createStatmList()” method, the process is interrupted, and a null pointer
is returned. The template for creating a StatmList object is:

BEGIN

KEYWORDS

or

COMMANDS

END

4.3.8 While

The While class is used to deal with an execution of some desired commands
while a certain condition holds. As mentioned in the If class description, the
conditions are defined by the KarelRobot class. The While class deals with
a repetitive execution of commands while a certain condition is met. It is
somewhat similar to the Iterate class in the sense of repeating a single or list of
commands, however while the Iterate class will perform the repetitions exactly
equal to the given number, the While class will do so until the condition returns
false. The While class is very important for the development of Karel, as it
allows the user to create AI-like procedures for Karel in which he try and reach
the centre of the world and ultimately read the flag. The expected statement
can be a StatmList, meaning it can do more than just simple commands. The
required syntax for the While class is:

WHILE condition STATEMENT

23

4. Design and implementation

Figure 4.3: Representation of management classes

4.3.9 If

The If class is used to represent branching or decision making in the the
program based on a certain condition. The conditions are defined from the
KarelRobot class as checkFront(), checkBack(), checkLeft() and checkRight().
The If class requires a condition and one or two statements. If two statements
are given to the If class when creating an instance, upon checking the validity
of the condition it would execute one of the two statements. If it is true
the first statement would be executed, otherwise the second one. However,
if there is only one statement passed as an argument, it would only perform
that statement if the condition is met, otherwise after checking the condition
it would just stop. The syntax for the If class is:

IF condition STATEMENT_1

or

IF condition STATEMENT_1 STATEMENT_2

24

4.4. Use cases

Figure 4.4: Representation of functional classes

4.4 Use cases

The main actors of the application will be the client and server. All commu-
nication and actions are invoked by the client through the server. The client
performs two main actions. He either sends a command to the robot, or cre-
ates a new command for him that he can later choose to use. He sends his
request to the server, which invokes the classes KarelRobot or KarelHandbook
depending on the given task.

4.4.1 Communication Model

When the client sends the command through the form on the web page. The
server sends the request to the handleMsg() function (Figure:4.6). The mes-
sage converts the request to a String, and checks if the String is a known
command in Karel’s or KarelHandbook’s arsenal. When it finds a match, in
this case for command ”STEP” it would be a default command from KarelRo-
bot, it calls the instance in the code of KarelRobot to execute the appropriate
method for the command. KarelRobot calls ”command step()” which inside
performs the check if the block in front of Karel is empty. Once it confirms,
it updates the coordinates of Karel on the board state. Once KarelRobot is
finished, ”handleMsg” constructs the updated web page according to the com-
mands passed by KarelRobot. Once it is done, the server calls the ”send()”
command which takes the updated web page as a String and displays it to the
user as a web page.

25

4. Design and implementation

Figure 4.5: Model of use cases

Figure 4.6: Sequence model of sending command ”STEP”

26

Chapter 5

Tests

To check the execution of the application, I tested it on predefined settings
to see how it operates, and recorded my results. To confirm the process of
the system being able to receive and understand new commands, I have tried
two tests. A rather simple test checking whether a simple command can be
understood, and a more advance test using multiple custom commands.

5.1 Simple commands

By the default setting of the application, if we would want to turn the robot to
the right from the direction he is facing, we would need to send the ”LEFT”
command three times. Since this can be tedious, we can create a custom
command of our own called ”RIGHT”, which would automatically turn the
robot to the right when called by calling the ”LEFT” command three times.
There are two ways to do this.

We could create the ”RIGHT” command as a compound command of
simply executing ”LEFT” three times. This would be a compound command
of default commands being executed sequentially to get our desired results.
The syntax for such a command would look something like this:

RIGHT

BEGIN

LEFT

LEFT

LEFT

END

To submit it to the Karel we click the ”Custom” button and wait for our
command to be processed (Figure:5.1).

27

5. Tests

Figure 5.1: Submitting of new command RIGHT

Figure 5.2: Output of RIGHT

To send it, we type in our new command ”RIGHT” and click ”Submit”.
The Karel learned our new command, and the new direction the robot is facing
is now East, since he was facing North at the beginning (Figure:5.2).

We could also take a different approach, by using the ”ITERATE” com-
mand from the Karel syntax. This would allow us to give a number of repe-
titions we would want, and the command which we want to repeat. In this
case ”RIGHT”. To accomplish this the command would look like this:

RIGHT_2

BEGIN

LEFT

LEFT

LEFT

END

The same way like before, we input the command to the Karel (Figure:5.3.
After creating the command, we submit it to the Karel to execute it. The
Karel correctly understands the command (Figure:5.4, and now changes his
direction to South, since he was facing East previously. The Karel is able to
understand and execute simple commands that abide by the syntax.

28

5.2. Complex commands

Figure 5.3: Submitting of new command RIGHT 2

Figure 5.4: Output of RIGHT 2

5.2 Complex commands

To show that Karel can understand even more complex commands, and com-
bine them together we will try to create a command that will resemble a
program in which Karel will have to walk to the flag, which will be placed in
a predefined location, and pick it up to read the text. The predefined condi-
tions are: The size of the world will be 3x3 ranging from 0 to 3. The flag will
be placed on the position of (2,2). Karel start from the position (0,0) facing
North. A command that could lead us to the flag could look like this:

getFlag

BEGIN

WHILE CHECK_FRONT STEP

RIGHT

WHILE CHECK_FRONT STEP

IF CHECK_FLAG PICK_UP

END

This command instructs the robot to move North until he reaches a wall
by using the ”WHILE” command to execute the command ”STEP” while
there is an empty block in front of him. Once he reaches it, we will use the

29

5. Tests

Figure 5.5: Execution of complex command getFlag

Figure 5.6: Output of getFlag

previously defined command ”RIGHT” to turn him facing the flag. Again,
we will make him walk until he reaches the wall. Once there, he will check if
he is on the position of the flag, and try to pick it up. If he is successful, the
server will display the secret message for us. We submit our newly defined
command and wait for the output (Figure:5.5).

The robot has successfully interpreted our command getFlag, and has
moved as expected, picking up the flag in the end. He reads the secret text
on the flag which is displayed on the web page (Figure:5.6).

30

Conclusion

In summation, the goal of the thesis was to implement and develop a Karel
robot that exists on a server provided by the ESP8266 WiFi chip, with whom
clients can interact. The clients communicate with the robot by giving it com-
mands which the Karel executes. Along with the default commands, clients
can create custom ones in the form of specified Karel language. The written
part of the thesis shows the capabilities of the chip, Karel’s language and the
design of the application.

Results

Working with the Arduino ESP8266 WiFi chip and the libraries provided, I
have to acknowledge that the tools offered at the developers disposal are easy
to use and understand if their is some prior knowledge regarding the basic con-
cepts of programming exists. They enable the development of a wide variety
of projects, and leave a lot of space for experimentation. However, since the
libraries are open source, a lot of the documentation is not properly described,
making it sometimes hard to understand. Working with the chip itself can be
difficult, luckily there are a lot of guides provided by community members,
showing how the connections on the chip should be made, with the procedures
explained step by step. The application on the chip works consistently. How-
ever, there is an issue regarding computers with a strong anti-virus connecting
to the chip, because the defence system sometimes disables it. Phones on the
other hand have no problems establishing and keeping the connection.

Recommendations

I would definitely recommend the Arduino chips and boards provided to any-
one interested in developing their own project. There is a vast number of
options, and the ESP8266 is not necessarily perfect fit for just any project,

31

Conclusion

so carefully going through all the options would be a good idea. Despite its
drawbacks, it served the purpose of this project really well. I am looking
forward to exploring more about the Arduino universe, perhaps developing a
new project on a different chip. The examples provided by the Arduino IDE
are a solid starting point even for those not familiar with programming, as
they slowly reveal the possibilities of what the chips can do. Another great
place to visit would be the Arduino forums where anyone can get involved in
the community and ask for help or contribute.

32

Bibliography

[1] Arduino ESP8266 documentation. Available from: https:

//github.com/esp8266/Arduino

[2] Team, E. S. I. ESP8266EX Datasheet. 2015. Available from:
http://download.arduino.org/products/UNOWIFI/0A-ESP8266-
Datasheet-EN-v4.3.pdf

[3] ESP8266 overview. Available from: https://espressif.com/en/
products/hardware/esp8266ex/overview

[4] 14core Editor. FLASHING UPGRADE EPS8266 V1 WITH ESPRES-
SIF FLASH TOOL. Available from: http://www.14core.com/flashing-
upgrade-eps8266-v1-firmware-with-espressif-flash-tool/

[5] AT instruction set. Available from: https://www.espressif.com/
sites/default/files/documentation/4a-esp8266_at_instruction_

set_en.pdf

[6] Richard E Pattis biography. Available from: https://www.ics.uci.edu/

~pattis/

[7] Karel Capek biography. Available from: https://www.britannica.com/
biography/Karel-Capek

[8] CAPEK, K. Rossum’s Universal Robots. Createspace Independent Pub-
lishing Platform, ISBN 9781542552073.

[9] Owen-Hill, A. A History of Robot Programming Languages. May 2016].
Available from: http://blog.robotiq.com/the-history-of-robot-
programming-languages

[10] Karel programming language documentation. Available from: http://

mormegil.wz.cz/prog/karel/prog_doc.htm

33

https://www.britannica.com/biography/Karel-Capek
http://mormegil.wz.cz/prog/karel/prog_doc.htm
http://www.14core.com/flashing-upgrade-eps8266-v1-firmware-with-espressif-flash-tool/
https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf
http://mormegil.wz.cz/prog/karel/prog_doc.htm
http://download.arduino.org/products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf
https://github.com/esp8266/Arduino
http://download.arduino.org/products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf
https://espressif.com/en/products/hardware/esp8266ex/overview
https://www.britannica.com/biography/Karel-Capek
https://www.ics.uci.edu/~pattis/
http://blog.robotiq.com/the-history-of-robot-programming-languages
https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf
https://www.ics.uci.edu/~pattis/
https://github.com/esp8266/Arduino
http://www.14core.com/flashing-upgrade-eps8266-v1-firmware-with-espressif-flash-tool/
https://espressif.com/en/products/hardware/esp8266ex/overview
http://blog.robotiq.com/the-history-of-robot-programming-languages
https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf

Bibliography

[11] Joseph Bergin, J. R., Mark Stehlik; Pattis, R. A Gentle Introduction to
the Art of Object-Oriented Programming in Java. In Karel J Robot, 2013.

34

Appendix A

Acronyms

WiFi Wireless Local Area Networking

SOC System on chip

TCP/IP Transmission Control Protocol/Internet Protocol

HTTP Hypertext Transfer Protocol

mDNS multicast Domain Name System

SSDP Simple Service Discovery Protocol

DNS Domain Name System

OTA Over The Air

SD Standard Definition

RF Radio Frequency

SRAM Static Random Access Memory

GPIO General Purpose Input/Output

MCU Micro Controller Unit

RSIC Resilient Sound Isolation Chip

CPU Central Processing Unit

AHB Advanced High-performance Bus

IDE Integrated Development Environment

SPI Stateful Packet Inspection

MD5 Message Digest 5

35

A. Acronyms

SDIO Secure Digital Input/Output

802.11 b/y/n/e/i WLAN MAC Wireless standard defined by IEEE

P2P Peer to Peer

RTS/CTS Request to Send / Clear to Send

VCC Power Supply Pin

RST Reset pin

GND Ground pin

CHPD Chip Select pin

TX Transmitter

RX Receiver

SPIFFS File System Object

STA Station

AP Access Point

SSID Service Set Identifier

USB Universal Serial Bus

HTML Hypertext Mark-up Language

36

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

karel implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
BP Stefan Ćirić 2017.pdf............the thesis text in PDF format
BP Stefan Ćirić 2017.ps...............the thesis text in PS format

37

	Introduction
	Motivation
	Description

	Aim of the thesis
	Arduino ESP8266
	Technical Overview
	Hardware Overview
	Firmware Overview
	Communication
	File system
	ESP8266WiFi library
	ESP8266WebServer library

	Karel
	History of robot languages
	Karel the Robot
	Karel's world
	Karel language
	Karel abilities
	Karel's task

	Design and implementation
	Application requirements
	Architecture
	Classes
	Use cases

	Tests
	Simple commands
	Complex commands

	Conclusion
	Results
	Recommendations

	Bibliography
	Acronyms
	Contents of enclosed CD

