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Abstrakt

Tato práce popisuje vylepšeńı přidaná k již existuj́ıćımu emulátoru čipových
karet v FPGA. Byla přidána možnost rekonfigurace emulátoru za běhu a
také podpora pro proprietárńı protokoly podle normy ISO/IEC 14443-4. Pro
splněńı požadavk̊u této normy byl zvolen hybridńı př́ıstup se dvěma kompon-
entami - FPGA a mikrokontroler. Komponenty jsou propojeny pomoćı SPI.

Kĺıčová slova FPGA,mikrokontrolér,ISO/IEC 14443-4,čipové karty,emulace

Abstract

This thesis describes improvements to existing FPGA smart-card emulator.
Run-time configuration was implemented and foundation for ISO/IEC 14443-
4 based proprietary protocols support was laid out. To comply with these
protocols requirements, hybrid approach with two components – FPGA and
MCU – was used. Components are connected by SPI.

Keywords FPGA,Microcontroller,ISO/IEC 14443-4,Smart card,Emulation
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Introduction

The emulator [1], this work is based on was implemented entirely on Xil-
inx Spartan 6 FPGA. This decision have lead to significant performance ad-
vantage over ”typical” microcontroller based implementations. The emulator
could provide reply in 40 ns since complete command arrival, while standard
requires this period to be less than 67 000 ns. At the same time, the emulator
have used relatively small amount of resources (about 14% of Xilinx Nexys 3
board).

However, it could only emulate cards with very basic functionality, imple-
menting only card selection protocol, defined in ISO/IEC 14443-3 [2]. While
perfectly sufficient to emulate some types of smart cards (for example, Mi-
fare Classic, which was used in demonstration of original emulator capabilit-
ies).

Moreover, it was not configurable, as all parameters were hard-coded as
vhdl constants. Even though user could code up to 4 different configurations
to select from, anything extra have required editing of emulator source and
flashing the board with the updated firmware. Taken together with synthesis
constant delays in work, caused by waiting for synthesis to finish, this proced-
ure can become very cumbersome.

Goal of the work

In this work we aimed to, at least partially, rectify these two factors.
Implementation of ISO/IEC 14443-4 standard seems to be a good start-

ing point for providing various proprietary protocols support. For example,
MIFARE DESFire and MIFARE Plus cards’ protocols are of such nature [3].
However, its resource (and, especially, memory) requirements are much higher,
than ISO/IEC 14443-3 has. While low-level block of the third part don’t size
of 5 bytes (plus, 2-byte CRC, which doesn’t need to be stored), the 14443-4
standard frames can be up to 256 bytes long.
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Introduction

While limiting set of available for emulation cards by frame size is an
option, it is not the best solution. Moreover, this situation would lead to
large increase in FPGA space usage, which also goes against this emulator
principles.

As result, we have settled for the alternative solution: turning FPGA
emulator into a hybrid system, where large high-level data blocks are processed
by microcontroller unit (MCU). In this work we implement data forwarding
between those units, preparing them for future implementation of proprietary
protocols.

The configurability issue should be addressed by addition of external inter-
face, over which user can change various emulator parameters in the runtime.

2



Chapter 1
Analysis

About previous work

Even though FPGA implementation had given emulator a significant speed
advantage over microcontroller based implementations, it have also had lead
to several drawbacks. This work targets two of them: limited spectrum of
potentially emulated cards and lack of runtime reconfiguration.

Lack of support for higher-level operations (including ones, defined in the
fourth part of the standard [4]) have significantly limited set of smart cards
that could be emulated.

The emulator flexibility was also limited by lack of configurability. The
user could choose from 4 hard-coded configurations by changing position of
switches on used dev. board. Any change to these configurations is only
possible after editing vhdl source code, resynthesizing it and reprogramming
the FPGA. This process is rather inconvenient and can take a significant
amount of time.
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1. Analysis
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Figure 1.1: Block diagram of the old emulator
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Introduction to ISO/IEC 14443-4

The fourth part of ISO/IEC 14443 standard defines half-duplex block trans-
mission protocol, where card reader, further denoted as PCD, serves as an
active part. This protocol follows OSI reference model, combining properties
of data link and session levels for minimal overhead. It is used over phys-
ical level protocol defined in the third part [2]. The Fig. 1 shows how these
protocols are connected.

Following PICC activation sequence from ISO/IEC 14443-3 [2], PCD can
find out whether card, also denoted as PICC, supports more high-level oper-
ations, or not by analysing contents of SAK byte. Even though the standard
leaves ground for any proprietary protocols, we would only consider cards,
that are ISO/IEC 14443-4 [4] compliant.

If PCD determines that card implements ISO/IEC 14443-4, it can proceed
with protocol initialization by sending RATS block. Apart from signalizing
start of higher-level interaction, the RATS block also transmits two important
parameters: FSDI and CID.

The FSDI is an encoded maximal length of block, that card reader can
accept. You can find encoding details in Tab. 1

CID is only used in cases, when there are several active cards on one reader.
It is a temporary ”card address”, valid as long as this card is activated. Each
card in the field should have an unique CID. The CID = 15 is a reserved
combination (RFU).

PICC should reply with ATS block. The ATS consists of length byte (TL),
optional format byte (T0), interface bytes (TA(1), TB(1), TC(1)) and also
historical bytes (T1 to Tk). The frame is finished by 2-byte CRC.

The TL contains length of all the whole block, except from CRC. Length of
ATS shouldn’t exceed FSD, so maximal value of TL is FSD - 2. If TL = X"01",
then all the option bytes are absent and PCD should assume default parameters.

FSDI or FSCI Length in bytes (FSD or FSC)
0 16
1 24
2 32
3 40
4 48
5 64
6 96
7 128
8 256

9 - F Reserved

Table 1.1: Coding of FSCI and FSDI
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1. Analysis

PCB CID NAD Data 1 . Data N CRC1 CRC2

Table 1.2: General structure of ISO/IEC 14443-4 protocol block

This emulator doesn’t support these options, but we still should mention
one of them: FSCI. It is a complete analogue of FSDI, except for that it codes
maximal block length acceptable by card. The default value of FSCI is 2,
which corresponds to 32 bytes.

The CRC algorithm used is the same, as in data transmission protocol
that we’ll describe later. It is defined in the third part of standard, under the
name of CRC A [2].

An optional exchange of PPS request (from PCD) and PPS reply (from
PICC) blocks can happen at that moment, changing several configuration para-
meters. We wouldn’t describe these blocks in detail, as these parameters are
not supported as a part of this work.

After that the protocol initialization is considered to be complete and
both parts can exchange data blocks, structure of which is covered in the next
subsection. The protocol operation scenarios are demonstrated in the end of
this section.

PCD can terminate communication at any moment by sending DESELECT
block. The card should reply with DESELECT. After DESELECT PICC should
move into HALT state.

Block types and their structure

Each block consists of prologue field, informational field and epilogue field.
Prologue and epilogue are mandatory, information is optional. This structure
is demonstrated in Tab. 1.2

The prologue can have up to 3 bytes: Protocol Control Byte (mandatory),
Card Identifier (optional) and Node Address (optional).

PCB codes block type, block number and presence/absence of other pro-
logue bytes. There are 3 fundamental block types: I-blocks, used to transmit
application data, R-blocks, used for positive and negative acknowledgements,
and S-blocks, used for DESELECT and WTX (wait time extension) commands.

The next prologue field - CID - is used for PICC identification for envir-
onments with multiple active cards. In that case, each PICC replies either to
blocks with their own CID, or to blocks, where CID is not present. Each PICC’s
CID is set by the PCD during card activation.

NAD field is used for addressing multiple logical links under one physical
connection. The structure of NAD byte and usage of such links are described
in ISO 7816-3 standard [5].

I-blocks are the only blocks, which can have a NAD header. Several I-blocks
can be ”chained” for transmitting application level data, bigger than maximal

6
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Figure 1.2: States of ISO/IEC 14443
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1. Analysis

allowed block size. The chaining is enabled by setting special bit of PCB to ’1’
for all chained blocks, apart from the last.

The standard defines two possible R-blocks: ACK and NAK. R-blocks cannot
contain information field. ACK frames are used to acknowledge receiving part
of a chained frame (except from the last part, which is acknowledged by proper
answer: I-block). NAK frames are only used by PCD for notifying PICC about
communication errors. The detailed rules are described in the fourth part of
original standard [4].

Two S-block types are defined in standard: DESELECT and WTX. DESELECT
blocks are used for communication termination and are initially issued by PCD.
On the other hand, WTX (Wait Time Extension) blocks are initially sent by
PICC. Their purpose is to tell PCD that answer calculation is not finished yet.

S-blocks should always be issued in pairs: request and identical reply. If
one of these blocks doesn’t arrive, error handling rules of the standard are
employed [4].

Both WTX and DESELECT blocks should contain 1-byte information field
(WTXM), which codes requested amount of time to wait. The standard de-
scribes this field coding in more detailed manner.

The epilogue consists of 2-byte control sum, algorithm of which is defined
in ISO 14443-3 under the name of CRC A [2]

Examples of protocol operation

PCD Dir PICC Step Description
I(0,0) → PCD starts transmission,

BNO=0, no chaining
← I(0,0) PICC answers with data

I(1,0) → BNO changes after each
block

← S(WTX) Request PICC cannot reply in time,
requesting WTX

S(WTX) Response → Request approved
← I(1,0)

I(0,1) → Chained block
← R(ACK)(0) PICC confirms received

block
I(1,0) → Last block in chain

← I(0,0) Each party has its own BNO
S(DESELECT) → PCD requests termination

← S(DESELECT) PICC agrees, connection is
closed

Table 1.3: Normal operation of ISO block transmission protocol
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Configuring the emulator

PCD Dir PICC Step Description
I(0) No data received

As result, reply time-out
I(0) 6→ PCD retransmits data, but with errors

← R(NAK)(0) PICC asks for another try
I(0) → The data have finally arrived

Table 1.4: Error handling in ISO-14443-4

Configuring the emulator

One of this thesis tasks is to improve emulator flexibility, by introducing
runtime configuration. There are several parameters, which identify either
type of emulated card (e.g. SAKC byte), or its instance (for example, UID).
Previously they have been saved in a set of vhdl constants, making it neces-
sary to edit source code and reprogram FPGA in case of any changes. These
constants have been replaced with a register file, contents of which can be
altered via dedicated RS232 interface. A very simple protocol is used for
parameters encoding. Its frames’ structure is shown at Fig. 1

The header consists of 2 parts: ConfKey and ValueLen. The former codes
key of parameter to be retrieved or changed. The later part, ValueLen, serves
two purposes: if it has value of 0x0, then the current configuration of emulator
is not changed and current value of parameter is sent back. In other case,
emulator expects to receive ValueLen bytes of new value. After that it updates
respective parameter and replies with the new value.

The reply frame always has ConfKey of requested or updated parameter
and its actual value.

To simplify this protocol, no error detection/correction techniques have
been employed. However, user can verify correctness of change by the emulator
reply.

Value[N]Value[0] ...

DataHeader

ValueLenConfKey

Figure 1.3: Structure of configuration frame
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1. Analysis

Parameter Key Coding
ATQA 0x1 2 bytes of binary data
FSCI 0x2 1 byte unsigned integer, encoding FSC value by

ISO standard
FSDI 0x3 1 byte unsigned integer, encoding FSD value by

ISO standard
SAKC 0x4 1 byte of binary data
UID 0x5 4, 7 or 10 bytes of binary data
MCUTimeout 0x6 1 byte unsigned integer

Table 1.5: List of parameters and their keys

MCUProto data forwarding protocol

In this section a protocol for communication between FPGA and MCU parts
of the emulator is described. This protocol – MCUProto – is a byte-oriented
protocol with half-duplex architecture, where active part is played by FPGA.

The protocol life cycle corresponds to the one of ”Half-duplex block trans-
mission protocol”, defined in the fourth part of ISO standard [4]. For disambig-
uation purposes, ISO protocol messages are further denoted as ”ISO blocks”
or just ”blocks”, while MCUProto messages are denoted as ”MCUProto frames”,
or just ”frames”.

Frame structure

Each frame consists of 2-byte header, up to 15 bytes of data and 2 bytes of CRC.
Header contains BNO of corresponding ISO block, number of this frame (FNO),
frame OpCode and length of transmitted data (header and CRC not included).
Data area contains forwarded ISO data. For the simplicity purposes, CRC uses
the same algorithm, as ISO protocol - CRC A, defined in ISO 14443-3 [2].

MCU CONF, MCU IDENY, ISO ACK and ISO NAK frames don’t have data area,
their DataLens should be equal to 0x0. ISO SELECT, ISO DESELECT, ISO WTX,
MCU CONF and MCU IDENY frames’ BNO bits are not used, since their ISO coun-
terparts either don’t have BNO (as, for example, DESELECT), or they do not
correspond to any ISO blocks at all (as MCU CONF). For these frames, the BNO
bit should always have ’0’ value.

Length and contents of frames data areas are described in Tab. 1.

Sum2Sum1Data N...Data1Header 2Header 1

Figure 1.4: Structure of MCUProto frame
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MCUProto data forwarding protocol

DataLenN/UN/U
FNO

Header 2Header 1

OpCodeBNO

Figure 1.5: Detailed structure of MCUProto header

Name Code Description
ISO SELECT 0x1 Start transmission
ISO DESELECT 0x2 Stop transmission
ISO WTX 0x3 Ask for reply time extension
ISO ACK 0x4 Forward ISO acknowledge
ISO NAK 0x5 Forward negative ISO acknowledge
ISO I CONT 0x6 Forward part of I-block
ISO I END 0x7 Forward last part of I-block
ISO ICHAIN CONT 0x8 Forward part of chained I-block
ISO ICHAIN END 0x9 Forward last part of chained I-block
MCU CONF 0xA Confirm received MCUProto frame
MCU IDENY 0xB Drop current I-block, as invalid

Table 1.6: List of MCUProto operations

Name Len Content
ISO SELECT 1 byte FSDI of card reader
ISO DESELECT 1 byte WTXM of respective DESELECT
ISO WTX 1 byte WTXM of respective WTX
ISO I CONT Variable Part of respective I-block data
ISO I END Variable Part of respective I-block data
ISO ICHAIN CONT Variable Part of respective I-block data
ISO ICHAIN END Variable Part of respective I-block data

Table 1.7: Format of data area in MCUProto frames
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1. Analysis

Protocol operation

The communication starts with FPGA issuing ISO SELECT frame, having
FNO = 0. It happens when RATS block is received from PCD. MCU answers
to ISO SELECT with MCU CONF, with the same FNO. After that, MCU is ready
to receive forwarded data.

FNO (frame number) is inverted after each confirmed frame exchange. Pass-
ive actor (MCU) should reply with received FNO. As result, ISO CONT and
ISO CHAIN CONT frames, sent from MCU are confirmed by MCU CONFs with
inverse FNO, while FPGA → MCU transmissions are confirmed by equal FNO.

Communication is terminated by ISO DESELECT frame (which, in turn, is
sent after receiving DESELECT from PCD). The MCU can optionally reply with
ISO DESELECT frame. Whether to reply, or not is decided by emulator user,
basing on the model of emulated card.

ISO R-blocks (ACK and NAK) are forwarded to MCU as they are. Their
handling is dependent on context and complains with ISO-14443-4 protocol [4].

ISO I-blocks are forwarded using cut-through switching technique. Only
data part is forwarded – headers and control sums are handled on FPGA.
All data chunks, except for the last are wrapped into ISO I CONT frames.
ISO I CONT frames should be confirmed by MCU CONF. The last chunk in block
is wrapped into ISO I END instead. It doesn’t require confirmation, instead
expecting actual calculated answer.

The negative confirmation is coded by MCU CONF frame with non-matching
FNO (i.e. received FNO 6= sent FNO for FPGA → MCU transmissions and
received FNO = sent FNO for opposite direction). If FPGA doesn’t receive
confirmation until time-out (from 4 up to 64 protocol cycles, settable by user),
the last frame should be resent. As MCU is a passive part, it doesn’t keep
track of time-outs. Should one occur, the FPGA will send MCU CONF with
non-matching FNO instead.

If received I-block is chained, then ISO ICHAIN CONT and ISO ICHAIN END
are used instead of ISO I CONT and ISO I END respectively. Also, unlike their
simple counterparts, ISO ICHAIN END frames should be confirmed by ISO ACK
frames with correct FNO (”correctness” is checked in the same way, as in case
of MCU CONF frames) and BNO (as ISO standard defines).

12
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FPGA MCU Description
ISO SELECT(0) Connection initialization

MCU CONF(0) Connection confirmation
ISO I END(1) Forwarding short data

block
ISO I CONT(1) Replying with longer block

MCU CONF(0) When going from FPGA to
MCU, FNO checks are re-
versed

ISO I END(0) Finishing reply
ISO ICHAIN CONT(1) Forwarding chained ISO

block
MCU CONF(1)

ISO ICHAIN END(0)
ISO ACK(0) End of chained frame is ac-

knowledged by ISO stand-
ard

ISO I END(1) End of blocks chain
ISO I END(1) And MCU replies

ISO DESELECT(0) PCD decided to finish com-
munication

ISO DESELECT(0) Confirming termination

Table 1.8: Example of MCUProto operation.
Notation: OPERATION CODE(FNO)

Design considerations

The main restriction, which have influenced architecture and design the most,
is lack of space for processed frame storage. According to standard, ISO
protocol blocks can reach up to 256 bytes of size. This is clearly too much
for register-based storage. At the same time, usage of RAM would make this
emulator more platform dependent.

Even though limiting set of emulated cards by their maximal supported
block sizes is an option, we have decided against it for two reasons: First,
it decreases emulator flexibility, not only by limiting system capabilities, but
also by increasing space requirements and, thus, limiting set of potentially
supported FPGAs. And, second, supporting larger block sizes would increase
space consumption rapidly, decreasing emulator users’ abilities to implement
application logic for proprietary protocol of their choice.

As result, we have decided to turn emulator into a hybrid system, consist-
ing of both FPGA and microcontroller (MCU) units.

In this system, FPGA deals with ”routine work” – encoding and decoding

13



1. Analysis

of data, CRC verification and basic operation processing (e.g card selection).
At the same time, all high-level frames are forwarded to MCU.

The space restrictions have naturally led us to use a cut-through switch-
ing technique, where data is forwarded before full retrieval. The detailed
description of used forwarding method and reasoning behind taken decisions
are presented in subsection ”MCUProto frames” 1.

Some discussion on configuration protocol is presented in the ”Emulator
configuration” subsection 1. Finally, in the ”MCU communication interface” 1
subsection reasoning behind interface choice is demonstrated.

MCUProto frames

Even though we implement our cut-through forwarding, we do not send data
as soon, as it arrives, because doing so would increase either chance of partial
data loss (if we will not use error detection), or utility overhead (if we would).
However, at the same time we can’t afford to store big blocks of data, as
it would greatly increase surface area requirements of emulator. Moreover,
storage of large data blocks would increase emulator response time because
we have to wait until the whole block would arrive.

In attempt to balance these factors, we have chosen each frame to carry
up to 15 bytes of data – size of ISO block with minimal FSC (taken without
header, which is processed on FPGA). This data chunk is also accompanied by
2-byte header, which caries information about block type, BNO and length of
attached data. 2-byte CRCs are not stored, but rather calculated on-demand.

To simplify protocol understanding most of commands just mirror ISO
operations. However, some modifications had to be made. As a single I-block
can contain data for several MCUProto frames, we needed to introduce our own
frame chaining, which works not unlike ISO blocks level one. To handle this,
I-blocks were mapped onto ISO I CONT and ISO I END frames, and MCU CONF
was introduced as analogue for MCU ACK frame. Note that instead of creating
analogue to ISO NAK as well, we just use ”incorrect” MCU CONF frames.

MCUProto chaining works in an analogous way to its ISO analogue: a single
data block is separated into a set of frames, where each of them, but last have
OpCode of ISO I CONT, while the last has ISO I END instead. Each frame is
confirmed by an MCU CONF. Repetitions are tracked with the help of frame
numbering by an FNO bit.

For processing of chained ISO blocks we have introduced matching pair
of OpCodes instead: ISO I CONT and ISO I END, as it uses header space more
effectively, than a distinguished chaining bit would.

The alternative solution – to reassemble chained frames on FPGA – have
proven to be impossible to implement: Let’s imagine a following setup: emu-
lator replies to PCD with chain of I-blocks. If one block in the chain would
arrive with error, then, according to the standard, PCD would ask us to re-
transmit it as it have required to store the whole chained frame. However,
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Design considerations

start of the current block could have been rather long ago, so we wouldn’t
have this data available on FPGA any more. The MCU, on the other hand,
wouldn’t have any information about block borders. As result, it would be-
come impossible to recover from such situation.

Another consequence of our cut-through processing led to appearance of
MCU IDENY frame. As we receive ISO block, byte by byte, we don’t know if
there have been any transmission errors. This can be checked only after CRC
verification, which is possible only after receiving the whole block. At that
time we would already have one or several MCUProto frames sent to MCU, so
in case of CRC mismatch we need a way to indicate that data, we sent, was
incorrect. The MCU IDENY serves for this task.

Emulator configuration

This protocol was designed to be as minimal, and as simple as possible, aiming
for use via simple client applications, or even general telnet client. The only
step away from this principle is binary nature of the protocol, which is a
necessary performance trade-off. For example, ConfKey is placed into the
higher half-byte to make mental calculation of header easier – you just need
to arithmetically add length to the character value of ConfKey.

For the same reasons, this protocol doesn’t have any error detection tech-
niques and the only way to validate configuration correctness is by comparison
of expected value and reply.

MCU communication interface

Even though UART protocol seemed to be a natural solution for connecting
emulator to MCU, it has proved to be too slow for this purpose. If we would
use interface with baudrate of 115200 in 8-N-1 mode, the resulting data speed
would be 92160 useful bits per second. At the same time, the standard [4]
defines default waiting time between frames as approximately 4.8 ms and
default frame size as 32 bytes. We need to transmit at least 64 bytes (incoming
to MCU, and answer to emulator) but UART will be able to handle only
55 bytes in that period.

Even separation of answer into smaller portions to start transmission be-
fore receiving complete result would not help: the standard [2] defines length
of 1 bit (etu) as 128*fc, which is approximately equal to 9.3 microseconds.
At the same time, transmission of single bit of data over UART would ap-
proximately take 10.85 microseconds, leaving us unable to ”catch up”.

This problem can be overcome by using faster communication interface.
The SPI was chosen for its simplicity of implementation and operation. Due to
having more strict time requirements and in connection to its role in MCUProto,
FPGA emulator was chosen as an interface master. The working frequency
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1. Analysis

was selected to exceed 2*(128*fc) (to be able to potentially process data ”in
real time”) and equals to 250 kHz.

At this frequency, transmission of 1 bit would take 4 microseconds, en-
abling us to exchange up to 150 bytes during the standard FWT. It gives us
more than enough time to transmit standard 32-byte data blocks, encoded in
MCUProto frames, together with necessary utility frames.
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Chapter 2
Implementation

General structure

As you could see in Fig. 1, the main data path of the old emulator version went
through the following chain: sequenceDecoder – commandIn – controller –
sequenceEncoder.

To implement high-level operations forwarding, we have implemented an
alternative data path, which starts from sequenceDecoder and ends at
sequenceEncoder. Which of these paths are used at the moment is determ-
ined by the byteMode signal, which is issued by the controller.

Paths are switched, when controller receives RATS command from the
commandIn module. After that input commands are handled by MCUDataIn
module instead. The controller does not participate in data handling.
The only exception is DESELECT block handling, where controller should reset
byteMode. Thus,MCUDataIn just sets a dummy input command (NONE) most
of the time, making the only exception for DESELECT, by issuing command
with the same name.

However, the main MCUDataIn task is preparation of arrived data for trans-
mission to the MCU, while MCUDataOut converts MCUProto replies back to
ISO blocks.

Error handling for MCUProto is implemented in the following modules:
MCUDataSend, FrameValidator and MCUDataRecv. In particular, frame num-
bering is handled by the FrameValidator module, which provides this inform-
ation to both MCUDataSend and MCUDataReply.

The emulator configuration is stored in ConfStorage module. Other Conf*
modules are necessary for changing configuration over UART interface.

The Fig. 2 demonstrates this setup.
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2. Implementation

sequenceDecoder

Command
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Controller

sequenceEncoder

Command
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UART

ConfPort

ConfRecv ConfSend

ConfRxQ ConfTxQ

ConfIn ConfOutsendATQA,sendFSCI,...

ATQA,FSCI,...

newATQA,newFSCI,...

updATQA,updFSCI...

SPI

MCUChannel

MCUDataSend MCUDataRecv

MCUDataRxQ MCUDataTxQ

MCUDataIn
MCUDataOut

commOutSwitchbyteMode

ContrCommIn
byteMode

FrameValidator

Figure 2.1: General block diagram of updated emulator
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Configuration management

Configuration management

The emulator configuration is saved in a register file, organized in ConfStorage
unit. To simplify emulator usage, default configuration have been hard-coded
inside. It is selected after reset.

Currently, all configuration parameters (except for FSDI) are updated via
UART. The exception was made because FSDI depends on a card reader and
is set during ISO protocol initialization.

The ConfOut module handles configuration updates. This process is separ-
ated into two phases: first, newPARAM and changePARAM signals are set, where
PARAM is name of a parameter, causing ConfStorage to replace saved value.
After that the sendPARAM signal is set, telling ConfIn to generate reply frame
with newly set value.

Configuration frames are parsed in ConfRecv and constructed in ConfSend
modules. After reading frame length from the lower half-byte of the header,
they wait for (or, in case of ConfSend, repeatedly send) respective amount of
bytes and store the next frame to (or take from) respective queue.

ConfPort module is just an RS232 implementation. It was not written as
a part of this work, but rather copied from this web page [6].

Data path modifications

The addition of an alternative data path required couple of adjustments to its
surrounding units (sequenceDecoder, controller and sequenceEncoder).
The biggest of them were made to the controller and are connected to data
path selection.

The byteMode output was added. After reset, is is set to ’0’ and the
emulator uses old data path, till the controller arrives to either ACTIVE or
ACTIVEStar state. At this point the emulator can receive RATS block, which
signifies start of high-level data exchange mode. After initialization procedure,
controller enters the SELECTED state, where byteMode value is changed to
’1’, activating high-level operations processing data path.

The byteMode signal not only manages ContrCommIn and commOutSwith
multiplexors, altering data inputs. It also activates input parsing in MCUDataIn
and alters behaviour of sequenceDecoder (instead of attempting to recieve
and verify the whole ISO block, it just forwards decoded bytes to MCUDataIn).

MCU protocol implementation

MCUDataIn parses incoming ISO protocol blocks and turns them into one or
more MCUProto frames. In case of ”short” blocks, the procedure is quite
straightforward – create MCUProto header, copy data and verify received block
CRC. If the block is correct, post created frame to tx queue.
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2. Implementation

However, handling of I-blocks brings some complications. First, we cannot
store the whole block on FPGA, as, according to the standard [4], it can be
up to 256 bytes long. Second, we cannot know in advance when the frame
would end.

As was already mentioned, the first issue is solved by implementation of
so-called ”cut-through” forwarding: as soon as byte buffer is filled, module
goes from S ACCUM to S CONT state and posts frame with this buffer contents
to the queue, returning for the next data chunk to S ACCUM afterwards.

The second factor – inability to predict end of I-block in advance – becomes
an issue because it can lead to accidental inclusion of CRC bytes into computed
sum, as it is calculated in parallel to data receiving. The solution to this is
introduction of LSR module – shift register, which allows us to delay input
data processing by 2 bytes (CRC length), synchronizing commEnd signal with
end of application data, just before CRC.

The MCUDataOut module transforms received MCUProto frames back into
ISO protocol blocks. After taking a new frame from queue it generates
ISO block header first, basing on frame’s OpCode (and, in case of I and S-
blocks, frame’s BNO) and sends it to sequenceEncoder module. After that
it proceeds with frame data, simultaneously calculating CRC of a new block,
which is sent immediately after data end.

As sequenceEncoder doesn’t provide any indication on its readiness to
send another byte, we had to create new process in main module, which ana-
lyses sequenceEncoder output and sets availability signal, if this output takes
”neutral” value. This flag is saved into 1-bit latch, to avoid excessive critical
paths lengthening and make device significantly faster. Without the latch,
design have synthesized for a maximal clock rate of approximately 37 MHz,
while after latch addition it started to synthesize on approximately 79 MHz.

MCUQueue is a simple byte-oriented queue, used to store both configuration
and MCUProto frames. It is implemented over ring buffer. Both queue length
and size of one element can be changed with generic parameter.

The MCURecv module assembles MCUProto frames from bytes received on
MCUChannel rx interface, validates received frames and if necessary requests
their confirmation.

The module receives first 2 header bytes, then extracts length of frame data
from respective header field and saves it to a buffer. After that, it expects 2-
byte CRC, which it compares with actual sum, calculated in parallel to frame
reception. If received frame is invalid, the unit discards it and enters standby
state. Otherwise the frame is saved into rx queue.

For the purpose of protocol state control, it also sets several frame in-
dication signals. These signals are: rxReady (fires for 1 tick, when the
frame finishes processing), rxSumOk (’1’ if recieved CRC have matched calcu-
lated sum), rxFNO (Number of frame, we’ve just received) and confRequired
(’1’ if frame require immediate confirmation – i.e. if it is ISO I CONT or
ISO ICHAIN CONT).
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MCU protocol implementation

S_DONE
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S_CRC1

S_ACCUM

S_CONT

S_WTXM
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index = len ACK or NAK

I-block
index <= 2
len <= frame(1)(3 downto 0) + 2

DESELECT
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WTX

index < len
index <= index + 1

FrameAvail=1

Figure 2.2: MCUDataIn state diagram
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S_POST

S_CRC2

S_DATA

S_CRC1S_GET_LEN

S_WAIT

S_RESET
queue avail

inpValid = 1

inpValid = 1

inpValid = 1

index < len
index <= index + 1

inpValid = 1
len <= inpData(3 downto 0) + 2
index <= 2

inpValid = 1

Figure 2.3: MCURecv state diagram

FrameValidator module handles transmission errors. Not only it checks
for validity of received frame’s FNO, but it also manages frame confirmations,
scheduling their sending by MCUSend. Moreover, it finds out whether or not
the last sent frame was confirmed and gives this information to MCUSend.

The MCUSend sends MCUProto frames to MCUChannel tx interface.
Frames to send are either taken from tx queue, or generated at place. The

latter happens when either sendMCUConf or sendMCUNConf input signals fire.
In this case MCU CONF frame with either correct FNO (in case of sendMCUConf),
or frame with inverted FNO (for sendMCUNConf) is generated. Afterwards trans-
mission process is identical to the one, applied to frames, taken from tx queue.

The unit sends 2-byte header first, then DataLen bytes of frame data and
finishes transmission by 2-byte CRC, which is calculated during transmission
of the previous bytes.

When frame is sent, the module checks its OpCode and, if the frame requires
immediate confirmation as ISO I CONT or ISO ICHAIN CONT, the module enters
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S_WAIT_ACK

S_CRC2

S_CRC1

S_STANDBY

S_DATA

(dataRCVD = 1
and dataInvalid = 0)

(dataRCVD = 1
and dataInvalid = 1)
or timeout
index <= 0

txReady = 1

index < frame size
and txReady = 1

index = frame size

dataEmpty = 0

txReady = 1

Figure 2.4: MCUSend state diagram

S WAIT CONF state. In this state timeout counter is started, ticking with each
SPI SCLK pulse. The timeout length can be set by changing MCUTimeout con-
figuration parameter. If a correct confirmation (indicated by frameConfirmed
signal) is received before the timeout is up, the module enters standby state.
Otherwise, the last frame is resent.

MCUChannel is an SPI master implementation. It was not created as a
part of this work, but rather copied from the web. You can find original page
at [7].

C library for MCU protocol support

This library – libmcusupport – provides high level interface, which bears
some similarity to POSIX sockets networking API. For the sake of simplicity,
library provides only blocking calls. It was written to be usable even in bare-
metal firmware, so it depends only on a limited subset of C standard library,
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2. Implementation

Function Description
void mcu init(mcu ctx t*) Initialize context
void mcu connect(mcu ctx t*) Wait for card selection
int mcu isr rx(mcu ctx t*, uint8 t*) Receive next byte from SPI

ISR
int mcu isr tx(mcu ctx t*, uint8 t*) Send next byte to SPI ISR
int mcu recv(mcu ctx t*, uint8 t*, size t) Receive data to buffer
int mcu send(mcu ctx t*, uint8 t*, size t) Send data from buffer
int mcu wtx(mcu ctx t*, uint8 t) Ask for wait time extension

Table 2.1: List of libmcusupport functions

and doesn’t rely on any system services (such as dynamic memory allocation).
Small library size and very wide spectre of target environments make distri-
bution in source code the most viable solution. As it consists of only one
header and one source file, it can be included directly into a project. The
library requires C99 compiler, as it actively uses fixed-size integer types from
stdint.h. The library uses reference implementation of CRC A algorithm,
taken from standard [2] with minor modifications (data types replacement and
removal of CRC B generation).

As the library doesn’t use dynamic memory allocation, all data buffers
have fixed size. While small buffers would severely limit maximal size of
data, that can be processed, excessively large buffers would waste memory,
which can be a very limited resource, especially in embedded environment.
To mitigate this problem, buffers’ sizes were parametrized by CFG MAX FRAMES
configuration constant, which is located in a library header and can be edited
by user.

The library has 2-level architecture: mcu recv, mcu wtx and mcu send
functions make so-called ”user” level, permitting him to exchange data with
FPGA and, as result, PCD. All protocol operation rules and error checking
procedures are implemented here. The other, ”transfer”, level consists of 2
functions: mcu isr rx and mcu isr tx. These functions manage actual data
reception and transmission of data bytes. As their names imply, they should
be called from, respectively, receive and transmit ISRs of SPI interface.

The mcu ctx t is a connection state variable. All current state variables,
as well as large data buffers (for example, currently received data) are stored
here. There are two reasons for this: reentrability and stack size limitations.
Storage of all state variables, which can be used between several function calls,
in a structure allows us to avoid usage of global variables, thus making library
reentrable.

The second reason – stack size limitations – is more important for storage
of data buffers. Many microcontrollers have very small stacks. For example,
ATMega 328p stack size is less than 1 kB. By placing byte buffers into struc-
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TXS_FINISHTXS_CONF

TXS_SEND_ACKTXS_ACK

TXS_STANDBY

If FNO !=  recv FNO,
then increment index

and update FNO.
Otherwise -- resend.

If BNO != recv BNO
then increment index,
update BNO and FNO.
Otherwise -- resend

ISO_NAK
 BNO = recv BNO

received

ISO_I_END sent

 ISO_ICHAIN_END sent

ISO_ICHAIN_CONT
or ISO_I_CONT sent

Figure 2.5: Simplified state diagram of mcu send()

Name Value Description
INF DESELECT -1 Card was deselected by reader
ERR OP UNKN -2 Unknown protocol operation
ERR NO CTX -3 ctx is NULL
ERR FAIL -4 Internal failure

Table 2.2: List of libmcusupport error codes

ture, allocated by user, we allow him to choose data location. For example,
structure can be declared as a static variable, or allocated on heap.

The connection is established by mcu connect() function. It properly ini-
tializes passed mcu ctx t structure and waits for ISO SELECT frame to arrive.
After reading FSDI from incoming frame, this function sends reply (MCU CONF)
and exits.

From this moment on, the user can call mcu recv() to get ISO I-block
contents. This function would wait for incoming data, assemble data from
received sequence of MCUProto frames and return length of received data. In
case of errors, one of error codes is returned. Error codes are encoded as
negative integers.

If incoming I-blocks are chained, mcu recv() will handle the whole chain
and assemble data, received from all its blocks into one continuous buffer.

To send reply, user should call mcu send() function. It would separate
data into a set of MCUProto frames and keep track of transaction correctness.
If user will provide more data, than one I-block can carry, it would be sent as
stream of MCUProto frames, that will generate sequence of chained I-blocks.

To simplify this function design, so-called ”data map” is constructed before
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ISO_ICHAIN_CONT
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ISO_DESELECT receivedISO_SELECT received

Figure 2.6: Simplified state diagram of mcu recv()

sending data. The data map sets separation of data block into MCUProto frames.
It is an array of structs, where each element corresponds to one frame, con-
taining its type (CONT/END and CHAINED/usual) and length of chunk to be sent
with it. Basing on this information, mcu send() can easily determine borders
of data chunk, currently transmitted.

Both ISO and MCUProto protocol operation rules are implemented in these
two functions, enabling them to deal with necessary confirmations and error
handling in a transparent way.

Instead of replying with data, the user can ask PCD for time extension, by
calling mcu wtx(). The function second parameter is ISO protocol wtxm byte,
coding of which is described in the fourth part of standard [4]. This function
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C library for MCU protocol support

sends ISO WTX frame and waits till ISO WTX reply. If any other frame arrives,
the function returns with error code of -1.

Finaly, mcu isr rx() and mcu isr tx functions are meant to be called
inside of ISR. These functions store or, respectively, take data byte from the
frame currently received or sent. By this they serve as a bridge between
platform-specific SPI handling and generalised library.
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Chapter 3
Testing

It would be nice to have full integration tests, but due to the lack of time the
testing procedure have been shortened. Running full integration test would
require quite a complex setup, including usage of programmable card reader.
”In-circuit” input generation, where ”fake” input signals would be generated
on board button press, haven’t been implemented as well: high degree of
integration haven’t allowed us to implement that system in time. As result,
all testing efforts were done on a level of separate units.

Behavioural simulation of VHDL entities

All modules, introduced by this work have been tested by a behavioural mod-
elling, using the ISim simulator of version P.20131013, which is distributed
together with Xilinx ISE 14.7.

We have used so-called ”grey box” testing method, where tests implement-
ation is dependent on knowledge of module’s internal structure. For example,
minimal delays between input updates take internal state changes of the tested

Figure 3.1: Simulation of MCUDataIn module
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3. Testing

unit into an account. Please note, that in reality input change frequencies are
less frequent than design clock by two orders of magnitude (for example, SPI
clock frequency is 250 kHz, while system clock works at 50 MHz). Accurate
modelling of this difference would only increase simulation time, without any
practical gains.

Due to input variety, exhaustive testing seems to be impractical. As result,
several test vectors were chosen for each unit. Representation of major paths
in each module was the main selection criteria.

Testing the protocol support library

Due to the relatively small size of the library, it can be sufficiently tested, using
only unit tests. Usage of the protocol state structure have allowed us to eas-
ily replace either mcu isr tx()/mcu isr rx() level, or mcu send()/mcu recv
level, respectively.

However, protocol state structure contains only last received (or sent) data
frame. When ”user” level function, such as mcu recv(), consumes current
data block, it relies on controller interrupts to pause this function execution
and to update received data. To emulate this situation on desktop pc, where
the testing is conducted, some tests were implemented in two threads, where
one thread was executing the tested function, while another was updating this
function inputs. We will present test suite report here:

Initializing test environment
Component testing:
Test 1 (Connection): Ok
Test 2 (recv interrupt): Ok
Test 3 (send interrupt): Ok
Test 4 (Receive 1 frame I-block: Ok
Test 5 (Send 1 frame I-block: Ok
Test 6 (Receive multiframe I-block: Ok
Test 7 (Send multiframe I-block: Ok
Test 8 (Deselect): Ok
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Chapter 4
Future work

The system can use more deep and complex testing. Only typical scenarios
have been checked at this moment. Examination of corner cases and load
testing can improve system stability and robustness by a large margin. Not
only the implementation should be verified, but the MCUProto itself can be
validated to be able to handle all possible problems scenarios.

Another area of improvement lies in ISO protocol feature support. The
optional PPS request/reply part of protocol initialization is not supported at
the moment. According to the standard, it is used to set several transmission-
related options, such as default FWT or CID header support. Support of
operation in environment, where multiple cards are selected at the same mo-
ment should also increase usability of the emulator.

The microcontroller part can also be worked on. Attempt to implement an
actual proprietary high-level protocol can verify suitability of both mcusupport
library and MCUProto forwarding protocol for this purpose, leading to possible
optimizations or interface changes.
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Chapter 5
Conclusion

Support of forwarding high-level ISO protocol blocks was added to FPGA.
For this purpose, a special protocol (MCUProto) was designed. Even though
some of ISO/IEC 14443-4 features are not supported (for example, PPS re-
quest/reply procedure), core of the standard – support of half-duplex data
exchange protocol – was implemented.

For the microcontroller side a C protocol support library (libmcusupport)
was implemented. Depending only on a small subset of C standard library,
libmcusupport can be used on both bare-metal and RTOS-based firmwares.

SPI was chosen as a physical interface between FPGA and MCU boards
for its speed and simplicity.

It would be good to test both FPGA and library more rigorously, but
due to the lack of time we had to skip some tests, as they required complex
environment or heavy code modification.

The Emulator configuration have been made available on RS232 interface,
where user can query or change separate parameters, using a simple protocol.

Even though there is a lot to improve: reliability of implementation, data
forwarding protocol robustness and degree of standard support; this seems to
be a good starting point for further experiments in different proprietary smart
card protocols emulation.
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Appendix A
Acronyms

ACK ACKnowledge

ATQA Answer To reQuest, Type A

ATS Answer To Select

BNO Block Number

CID Card IDentifier

ConfKey Configuration Key

ConfProto Emulator Configuration Protocol

CRC Cyclic Redundancy Check

DataLen Data Length

etu Elementary Transmission Unit

fc Carrier frequency

FNO Frame Number

FPGA Field-Programmable Gates Array

FWT Frame Waiting Time

FSC Frame Size for proximity Card

FSCI Frame Size for proximity Card Integer

FSD Frame Size for proximity coupling Device

FSDI Frame Size for proximity coupling Device Integer

ISO International Standardization Organisation

37



A. Acronyms

ISR Interrupt Service Routine

MCU Microcontroller Computing Unit

MCUProto ISO data forwarding protocol

NAD Node ADdress

NAK Negative AcKnowledge

OpCode Operation Code

OSI Open Systems Interconnection basic reference model

PCD Proximity Card Device

PICC Proximity Identification Card

PPS Protocol and Parameter Selection

RAM Random Access Memory

RATS Request to Answer To Select

RFU Reserved for Future Use

RS232 Recommended Standard 232

SAK Select AcKnowledge

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver-Transmitter

ValueLen Value Length

WTX Wait Time eXtension

WTXM Wait Time eXtension Multiplier
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Appendix B
Contents of enclosed CD

readme.txt....................................CD contents description
sources...............................Thesis implementation directory

impl......................... Implementation of emulator for FPGA
mcusupport........................C library for MCUProto support
tex..................Directory with LATEX source codes of the thesis

thesis.pdf.................................Thesis text in PDF format
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