
CZECH TECHNICAL UNIVERSITY IN PRAGUE

DOCTORAL THESIS

Multi-Agent Planning
by Plan Set Intersection

Author:
RNDr. Jan TOŽIČKA

Supervisor:
prof. Michal PĚCHOUČEK

Supervisor Specialist:
Dr. Antonı́n KOMENDA

AI Center
Department or Computer Science
Faculty of Electrical Engineering

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of Study: Information Science and Computer Engineering

Prague, January 2017

http://www.cvut.cz
http://cs.fel.cvut.cz/en/people/tozicjan
http://cs.fel.cvut.cz/en/people/pechouce
http://cs.fel.cvut.cz/en/people/komenant
http://aic.fel.cvut.cz
http://cs.fel.cvut.cz
http://fel.cvut.cz

iii

Declaration of Authorship
I declare that this thesis was composed by me, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except as
specified.

RNDr. Jan TOŽIČKA

v

“We are the recorders and reporters of facts – not the judges of the behaviors we describe.”

Alfred Charles Kinsey

vii

Czech Technical University in Prague

Abstract
Faculty of Electrical Engineering
Department or Computer Science

Doctor of Philosophy

Multi-Agent Planning
by Plan Set Intersection

by RNDr. Jan TOŽIČKA

Coordination of a team of cooperative agents and their activities towards fulfill-
ment of goals is described by multi-agent planning. For deterministic environments,
where agents are not willing to share all their knowledge, the MA-STRIPS model
provides minimal extension from classical planning. MA-STRIPS exactly prescribes
what information can be freely communicated between the agents and what infor-
mation has to be kept private such that the shared or individual goals can be still
achieved.

This thesis proposes a novel multi-agent planning approach which distributively
intersects local plans of the agents towards a global solution of the multi-agent plan-
ning problem. This core principle builds on local compilation to a classical planning
problem and compact representation of the local plans in the form of Finite State Ma-
chines. The efficiency of the resulting planner is further boosted up by distributed
delete-relaxation heuristic, an approximative local plan analysis, and reduction of
agents’ internal problems.

The planning approach is analysed theoretically, in particular we prove its com-
pleteness and soundness. Experimental evaluation shows its applicability in a full
privacy setting where only public information can be communicated and in less re-
stricted privacy settings. At a recent international competition of distributed multi-
agent planners, the proposed planner showed top performance when compared
with other existing state-of-the-art multi-agent planners.

http://www.cvut.cz
http://fel.cvut.cz
http://cs.fel.cvut.cz

ix

Acknowledgements
This work would not be possible without the support of my supervisor prof.

Michal Pěchouček and my supervisor specialist Dr. Antonı́n Komenda. They both
guided me consistently and openly during the research and coauthored most of the
works which this thesis stands on. My gratitude also goes to Dr. Jan Jakubův who
was my closest coworker without whom the latest research results could not be of
the quality they are now. This thesis is written in first-person plural form to pay
tribute to the teamwork and to this fruitful collaboration.

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Problem Statement . 3

1.1.1 Thesis Objectives . 4
1.2 Contributions and Accomplishments . 6
1.3 Organization . 8

2 Related Work 9
2.1 Multi-Agent Planning . 11

2.1.1 Multi-Agent Planning Domain Description Languages 12
2.1.2 Multi-Agent Planners . 14

3 Formal Foundations of Multi-Agent Planning 17
3.1 Multi-Agent Planning Problem . 17
3.2 Privacy Classification of Facts and Actions 19
3.3 Local Planning Problems . 21

4 Planning by Plan Set Intersection 25
4.1 Planning with External Actions . 25
4.2 Generic Planner . 29
4.3 Planning State Machines (PSM) . 31

4.3.1 Basics of Planning State Machines 31
4.3.2 Extending a PSM with Solutions 33
4.3.3 Public Planning State Machines 33
4.3.4 Intersection of Public PSMs . 39

4.4 Multi-agent Planning with Complete PSMs 41

5 PSM Planner 45
5.1 Internal Dependencies of Actions . 47

5.1.1 Dependency Graphs . 48
5.1.2 Publicly Equivalent Problems . 51
5.1.3 Simple Action Dependencies . 52
5.1.4 Dependency Graph Reductions 53

xii

5.1.5 Planning with Dependency Graphs 58
5.1.6 Privacy Leakage Analysis . 60

5.2 Initial Relaxed Plan Landmark . 63
5.3 Generating New Plans . 64
5.4 Guiding Plan Search Using Public PSMs 65

5.4.1 Plan Verification and Analysis 67
5.5 Practical STRIPS Extensions . 70

5.5.1 From STRIPS to PDDL, and Back Again 70
5.5.2 Internal Goals . 71

6 Experiments 73
6.1 PSM-R and PSM-V Experimental Results 73

6.1.1 Benchmark Domains . 74
6.1.2 Overall Benchmark Results . 76
6.1.3 Communication Overhead Evaluation 79

6.2 PSM-VR Privacy Experiments . 80
6.2.1 Privacy Classifications . 80
6.2.2 Privacy in Benchmark Domains 80
6.2.3 Privacy Benchmarks . 84

6.3 PSM-D Experimental Results . 86
6.3.1 Domain Analysis . 87
6.3.2 Experimental Results . 88

7 Conclusions 95
7.1 Thesis Achievements . 96
7.2 Selected Related Publications . 98

Bibliography 101

List of Figures

3.1 MA-STRIPS privacy classification of facts and actions. 19

4.1 A motivation example for computing PSM public projection. 35
4.2 Example of computing PSM public projection. 37
4.3 The complete PSM of agent Truck (Example 9). 42
4.4 Public projections of complete PSMs of agents from Example 9. 43
4.5 Intersection of public PSMs from Figure 4.4 representing all possible

public solutions. 43

5.1 Graphical illustration of reduction operations (R1)–(R4). 54
5.2 Example of dependency graph containing all knowledge which can

leak during logistics planning. 62

6.1 Left: Sequential and parallel times needed to solve task as a function
of problem size. Right: Portion of time an agent spends on verification
of other agents’ plans. 78

6.2 Number of iterations and amount of communication of PSM variants. . 79
6.3 Performance of PSM-VR with different privacy classifications mea-

sured by the number of iterations and amount of communication. . . . 85
6.4 Comparison of planning times of PSM-VR algorithm without and with

internal problem reduction. 88

List of Tables

2.1 Categorization of multi-agent planning by the number and the role of
agents. 10

6.1 Number of problems solved by the compared planners. Privacy clas-
sification follows FMAP and thus the results are not directly compara-
ble with MA-STRIPS planners. 77

6.2 Comparison of run times on selected problems solved by all the plan-
ners. Times are in seconds, PSM variants have number of iterations in
parenthesis. 78

6.3 Percentage of internal facts (left) and actions (right) in benchmark do-
mains with respect to different privacy classifications. Values are av-
erages over problems in each domain. 84

6.4 Number of MA-STRIPS problems solved by the compared planners:
RDFF, GPPP, and PSM-VR. 85

6.5 Problem coverage of PSM-VR on benchmark domains with different
privacy classifications. Number of problems in each domain is in
parenthesis. 86

6.6 Results of the analysis of internal dependencies of public actions in
benchmark domains. 87

6.7 PSM-VR and PSM-VRD: Overall coverage solved problem instances at
CoDMAP competition. 89

6.8 PSM-VR and PSM-VRD: IPC score over the plan quality at CoDMAP
competition. 90

6.9 PSM-VR and PSM-VRD: IPC Agile score over the planning time at
CoDMAP competition. 91

6.10 PSM-VR and PSM-VRD: Sum of times (in seconds) needed to solve
selected problems at CoDMAP competition. 92

List of Abbreviations

BRP Best Response Planning
CoDMAP Competition of Distributed and Multi-Agent Planners
CSP Constraint Satisfaction Problem
CSTRIPS Concurrent STRIPS

DFS Deterministic Finite State Machine
DPGM Distributed Planning through Graph Merging
FMAP Forward Multi-Agent Planning
FSM Finite State Machine
GPS General Problem Solver
IPC International Planning Competition
MAD-A* Multi-Agent Distributed A*
MAP Multi-Agent Planning
MA-PDDL Multi-Agent PDDL
MAPL Multi-Agent Planning Language
MA-STRIPS Multi-Agent STRIPS

NADL Non-deterministic Agent Domain Language
NFS Non-deterministic Finite State Machine
PDDL Planning Domain Definition Language
PSM Planning State Machine
SAT Boolean Satisfiability Problem
STRIPS Stanford Research Institute Problem Solver

xix

Dedicated to my future (A)I.

Chapter 1

Introduction

“As long as water flows, or grass grows upon the earth,
or the sun rises to show your pathway, . . . ”

James Monroe

Planning is the process of reasoning about a current situation and then organizing
one’s own activities in order to achieve a desired goal. Automated planning tries
to reproduce the same behavior algorithmically. Similarly to planning being an es-
sential part of human everyday life, automated planning is an important part of
artificial intelligence. Research began in the 1950s and GENERAL PROBLEM SOLVER

(GPS), the first implemented solver, was created in 1959 (Newell, Shaw, and Simon,
1959).

We will focus on a restricted part of automated planning called classical planning
and its extension to multi-agent planning. It has been shown, that classical planning
belongs among the hardest problems in AI (Bylander, 1994; Mundhenk et al., 2000).

Planning can be targeted to solve many different problems, e.g. robot motion
planning, manipulation planning, communication planning, etc. The obvious ap-
proach would appear be to create a domain-specific planner for each of these problems
and to create and optimize techniques to solve it as efficiently as possible. In this the-
sis, we chose a different path. We focus on domain-independent planning which allows
to specify any such a domain in a more or less general language. Only the gener-
ality of used language limits to which problems a domain-independent planner can
be applied. This approach has several advantages. Obviously, the application of a
domain-independent planner to a specific problem is less costly than a development
of a new domain-specific planner. Also, studying the domain-independent planning
allows us to better understand the planning process itself and thus to design more

2 Chapter 1. Introduction

general algorithms which actually form the next step towards fully-fledged artificial
intelligence.

Classical planning can be naturally extended towards multiple planning entities
that act in a shared environment and coordinate their activities in order to achieve
common goals. Multi-agent planning with a deterministic model describes such
problems and proposes techniques to solve them. The agents are obliged to keep
information about their individual abilities private, they are not allowed to commu-
nicate it with other agents. Consider an application domain in which several logistic
companies have to cooperate to fulfill complex transportation tasks, which cannot
be managed by any of the companies individually. Although the companies have to
cooperate, they still need to keep their know-how secret, for example their modes
of transportation or local routes. In such a situation, the companies represented by
planning agents would not benefit from any competitive behavior as the objective is
common for all the companies, but they still have to keep parts of their knowledge
private because of their local competition.

1.1. Problem Statement 3

1.1 Problem Statement

The previous section introduced the problem of multi-agent planning where agents
are defined by actions they can perform. Each action can change owner’s internal
state, or state of the environment, or both. This simple observation allows to nat-
urally define which actions are considered private, and thus not shared with other
agents, and which actions need to be public to allow inter-agent cooperation. MA-
STRIPS (Brafman and Domshlak, 2008) defines actions private if they perceive and
affect internal state only. The remaining actions are defined to be public. Under these
settings, agents are willing to communicate their public actions with each other, al-
though without details how these actions affect their internal states. Hence, we can
suppose that every agent advertises its public actions before any calculation is per-
formed.

Similarly, in the presented logistics scenario, each company advertises informa-
tion about cities from which and to which it can transport the goods, but it avoids to
share the details about the means of transport, detailed price calculations, etc. In the
case, one trusted entity has all this private information, the problem of transport-
ing a package that requires cooperation of multiple logistic companies can be easily
described as classical planning problem. For classical centralized solution of this
problem we could implement well-known A* (Hart, Nilsson, and Raphael, 1968) al-
gorithm with appropriate heuristics and easily solve the problem. Nevertheless, the
assumption of trusted entity, with whom all agents are willing to share their private
knowledge, is not realistic.

In more realistic case, where no trusted entity is present, the agents need to find
a solution without sharing their private knowledge. Natural approach to solve such
a problem would be to take a solution of a previous problem, i.e. A*, and adapt it
to new settings. Similar algorithms exist (Nissim and Brafman, 2012a; Jezequel and
Fabre, 2012), and their execution directly corresponds to the execution of A* algo-
rithm on the whole problem. In this case, the multi-agent nature of the problem just
forms an obstruction that can be overcome using different techniques of distributed
systems and cryptography.

Our approach to multi-agent planning is different. We see the natural distribu-
tion of the problem between participating agents as an opportunity to create new
type of planner. Such a planner could profit from inherent multi-agent properties of
distributed parallel execution and natural problem fragmentation with explicit def-
inition of which information can be shared between the agents. This lead us to the
main question of this thesis:

Is there more natural approach to multi-agent planning than distribution of

existing centralized planning algorithms?

4 Chapter 1. Introduction

In the real world, a company from described logistic scenario would create its
plan while considering what other companies can achieve. Once a plan is created, it
needs to be confirmed by all participating companies, which check whether they can
perform their part of the plan. If all companies agree, they can sign the contract and
start with the execution of the plan. If any company cannot perform required task,
different plan has to be created, while a lesson from this failed attempt should be
learned. This principle, where one planning entity proposes plans containing other
agents’ actions while having the right amount of knowledge about these actions,
seems to be a promising idea for creation of a new multi-agent planner. The problem,
this thesis solves, is to design and implement a competitive distributed multi-agent
planner following this elementary idea. We summarize the objectives of this thesis
in the following subsection.

1.1.1 Thesis Objectives

Following the main question introduced in the introduction of this section we can
describe four main objectives of this thesis and one bonus, nice but hard to achieve,
objective as follows:

(1) Analysis of multi-agent coordination.
Unlike in classical planning, no agent is aware of the whole problem. There-
fore, agents need to coordinate their actions possibly affecting other agents.
This needs to be formally described and analyzed from the perspective of how
this coordination problem can be used for multi-agent planning.

(2) Design novel coordination-centric multi-agent planner.
After the analysis of the coordination problem, we aim to design a multi-
agent planner that exploits properties of the coordination problem. Human
approach to solve this coordination problem, where one person tries to plan
actions for the others, should be integrated in the designed planner. The sepa-
ration of coordination problem and agents’ local problems should be the main
idea of the designed planner.

(3) Planner implementation.
The designed planner will be implemented. We prefer to build our new multi-
agent planner on top of an existing classical planner. This approach would
take profit of the steady progress in classical planning.

(4) Planner evaluation.
Implemented planner will be experimentally compared with state-of-the-art
multi-agent planners using a common set of benchmark problems. Such a
benchmark set needs to be created and it should be based on existing IPC
benchmarks for classical planning.

1.1. Problem Statement 5

(Bonus) Learned lesson for classical planning?
During the steps described above, is there anything what can contribute to the
research in classical planning? Possibly the distribution of the problem, or the
approach separating local problems from the coordination problem?

6 Chapter 1. Introduction

1.2 Contributions and Accomplishments

This thesis is a compilation of author’s several previous publications coauthored by
Jan Jakubův and Antonı́n Komenda.

In this thesis, we present an extensibility-based multi-agent planning algorithm
which utilizes Finite State Machines to compactly represent sets of plans. We call
this representation Planning State Machines (PSM). PSMs not only allow us to com-
pactly represent (even infinite) sets of plans by a finite structure but mainly allow us
to effectively implement operations crucial for our planning algorithms. The main
idea of PSM-based planner was briefly sketched in (Tožička, Jakubův, and Komenda,
2014) and the formal development including proofs of soundness and completeness
was published in (Tožička et al., 2016). This basic planner is extended by an ex-
tensibility approximation using a type system checker for process calculi (Jakubův,
Tožička, and Komenda, 2015), by a method of a distributed relaxed heuristic used
for example in MADLA planner (Štolba and Komenda, 2014), and by a possibility to
share some information about private knowledge (Tožička, Jakubův, and Komenda,
2015a). This gives rise to a multi-agent planner outperforming the state-of-the-art
planners.

We use classical multi-agent benchmark domains found in the literature to evalu-
ate our planner. We provide a comprehensive domains description and we compare
experimental results with other state-of-the-art planners. Finally, we analyze the
benchmark domains from the point of view of different privacy classifications. Dif-
ferent privacy classifications differ in facts explicitly revealed to other agents. While
other planners are usually designed with a fixed privacy classification in mind, we
show that our planner can be easily adjusted to work with various privacy classifi-
cations. Hence we provide the user the freedom to choose what is public, and we
can directly compare our planner with other planners. Furthermore, we show that a
restricted public knowledge can even improve planner performance.

The main contribution of this thesis is the design of a novel PSM planner accom-
panied with formal proofs and several heuristics, that improve planner efficiency.
Presented experiments show, that the PSM planner outperforms the best state-of-
the-art planners. This result has been independently confirmed by the Competition
of Distributed and Multi-Agent Planners collocated with ICAPS 2015 where the PSM

planner won at Coverage and Quality scores of distributed track (Štolba, Komenda,
and Kovács, 2016).

A paper describing the PSM planner with novel reductions of private knowl-
edge (Tožička, Jakubův, and Komenda, 2016) has been awarded the Best Student
Paper Award at ICAART 20161. We have also extended these reductions to classical
planning and demonstrated their impact on existing state-of-the-art planners. Paper

1http://www.icaart.org/PreviousAwards.aspx

1.2. Contributions and Accomplishments 7

describing this research has been accepted as a full paper to the main track of the
most prestigious planning conference ICAPS 2016 (Tožička et al., 2016).

8 Chapter 1. Introduction

1.3 Organization

This thesis is composed of three main parts. In the first part, we introduce the state
of the art in multi-agent planning in Chapter 2 and we describe formal model of the
multi-agent planning in Chapter 3.

The second part of the thesis presents the proposed multi-agent planner. Chap-
ter 4 describes a general scheme of the planner and introduces planning state machines
which allow its effective implementation. Chapter 5 extends the planner scheme by
several heuristics and provides details of its implementation.

The last part of the thesis is devoted to experimental evaluation of the proposed
planner (Chapter 6) and conclusions (Chapter 7).

Chapter 2

Related Work

“Seek wisdom, not knowledge. Knowledge is of the past, wisdom is of the future.”

Lumbee Proverb

After a brief overview of classical planning methods, this chapter summarizes pub-
lished research on multi-agent planning in Section 2.1. Then, we look on formalisms
extending single agent PDDL to multi-agent planning problems focusing mainly on
definition of privacy of agent knowledge in Section 2.1.1. Finally, Section 2.1.2 pro-
vides an overview of different approaches to the solution of multi-agent planning
problem.

In classical planning, the plan synthesis process is typically a systematic search in
either space of states, plans, or a combination of both (Ghallab, Nau, and Traverso,
2004).

State-space planners explore search space directly corresponding to the transition
system of the planning problem. Nodes are thus states and arcs correspond to ac-
tions. Solution of the planning problem is then any path between the initial state
and any goal state. Most common approaches to implement a state-space planner
are based either on forward search, or backward search, or some combination of both ap-
proaches. Different approach offers hierarchical planning where the plan is searched
in hierarchy of abstractions rather than original states (Sacerdott, 1973).

Plan-space search space contains nodes representing sequences of actions. Arcs
then correspond to elementary refinements of the plan (e.g., adding, or removing
some action in order to fulfill another goal fact, or to fix some of plans inconsisten-
cies). Search starts with a state representing an empty plan, and it ends as soon as a
state representing a valid solution is found. An obvious disadvantage of plan space
is that it is infinite unlike the corresponding state space. However, a popular prin-
ciple of least commitment planning allowed to create effective planners (Tate, 1976).

10 Chapter 2. Related Work

aaaaaaaaaa
By

For
single agent mutliple agents

single agent classical,
single agent planning

centralized
multi-agent planning

mutliple agents distributed / factored
planning

distributed
multi-agent planning

TABLE 2.1: Categorization of multi-agent planning by the number
and the role of agents.

Plan-space planning also seems to be well suitable for multi-agent planning (Ghal-
lab, Nau, and Traverso, 2004) and we build a multi-agent planner inspired by plan-
space planning later in this thesis.

A different approach to planning represents Graphplan (Blum and Furst, 1995)
that creates an effective structure called planning graph which contains states that
could possibly be reachable from the initial state and once a goal state is reached it
searches for a valid plan within this structure. SATPLAN (Kautz, Mcallester, and
Selman, 1996) translates the constraints represented by the planning graph into a
set of clauses and uses general SAT solver to find a solution. The solution of SAT
problem is then translated back to the solution of the original planning problem.
Improved version of SATPLAN (Kautz, Selman, and Hoffmann, 2006) won 1st prize
among optimal planners at the deterministic track of IPC 2006 competition.

Since the computational complexity of classical planning is intractable in the
worst case, the use of heuristics is inevitable to achieve acceptable planner efficiency.
Among the published heuristics, merge-and-shrink heuristic (M&S) (Helmert et al.,
2007) is the most interesting one for our work. M&S firstly creates atomic projections
of the problem. Then, it subsequently merges these projections and shrinks them to fit
in the memory. The resulting abstraction is used to estimate the price of the solution
of the original problem. We use similar approach to the merging step of the algorithm
when combining local solutions of multiple agents (see Chapter 4 for details).

Another heuristics we use in our planner is delete relaxation heuristic (Bonet and
Geffner, 2001). This heuristic creates a relaxed problem where it just ignores all
delete effects of actions. The cost of a solution of this relaxed problem is then used
as an estimate of the cost of the solution of the original problem. In our planner, we
use the solution of the relaxed problem as a first approximate solution of the whole
problem. This approach helps agents to direct their local searches to a common
global solution (Section 5.2).

2.1. Multi-Agent Planning 11

2.1 Multi-Agent Planning

The problem of multi-agent planning is understood in several different ways by AI
researchers. Following (de Weerdt and Clement, 2009), we can generally define it
as a group of planning agents which create a plan for a group of executing agents.
Planning and executing agents can be the same entities, or either of these groups can
be represented by a single agent. Table 2.1 summarizes four different cases. Classi-
cal planning belongs to the case when a single agent plans for a single agent. When
we distribute this process among multiple agents, we move towards planning by
multiple agents for a single executing agent, which is known as distributed or fac-
tored planning. Many domains of classical planning contain multiple entities whose
actions are planned; logistics, for example, contains multiple vehicles transporting
packages. When the actions for these entities are created centrally, i.e., by a single
entity, we talk about centralized multi-agent planning. Once we distribute these ac-
tions between the executing agents, which coordinate their actions, but each of them
plans actions for itself to achieve its own goals, we get to distributed multi-agent plan-
ning. In the following text, multi-agent planning (MAP) describes the distributed
multi-agent planning where agents collaborate on a common goal, unless it is stated
otherwise.

MAP problems can be classified by the level of cooperation between the agents.
Brafman et al. in (Brafman and Domshlak, 2008) defines the coupling of an problem
as a tree-width of the agent interaction graph. More abstractly, we say that a problem
is loosely coupled when there is low level of inter-agent interaction, whereas tightly
coupled problems contain agents with rich interaction graphs.

The most used multi-agent planning model MA-STRIPS (Brafman and Domsh-
lak, 2008) prescribes a privacy scheme defining which information has to stay public.
Although the original motivation was to analyze the computational complexity of
the multi-agent planning problem, most of the planners in the literature stick to this
particular definition. The most notable exception is the FMAP planner (Torreño, On-
aindia, and Sapena, 2014) which allows to mark public information in the planning
problem description. Other formalisms describing various multi-agent extensions
of PDDL are described in Section 2.1.1. The planner proposed in this thesis does not
require any specific privacy definition and thus can be compared with both types of
privacy definitions as shown in Chapter 6.

The concept of private knowledge is the most important aspect of multi-agent
planning. It can factor a planning problem and thus positively affect the complexity
of the planning process (Brafman and Domshlak, 2008). Nevertheless, multi-agent
planners usually do not target this particular facet of the problem. Distributed MA-
STRIPS multi-agent planners in literature can be roughly separated to three groups

12 Chapter 2. Related Work

by privacy preservation. Most of the planners follows concept of privacy by in-
formation obfuscation (Nissim and Brafman, 2012b; Borrajo, 2013) or information ag-
gregation (Štolba and Komenda, 2014; Torreño, Onaindia, and Sapena, 2014). With
information obfuscation, agents are allowed to communicate private information
with other agents as far as the information is obfuscated such that only the owning
agent can understand it (for example, the name of an action is replaced by a hash
code). With information aggregation, the information is aggregated such that only
the owning agent knows all details (for example, a summed up cost of private ac-
tions can be send to other agents). An exception is the GPPP planner (Maliah, Shani,
and Stern, 2014) providing full privacy by communicating only public information.
Our approach also provides full privacy. Especially in the contrast to the obfuscation
principle, we can reduce the size of plan space because privacy preservation acts as
natural abstraction of the problem from perspective of particular agents. Communi-
cation of abstracted plans thus also decreases the amount of communicated data.

2.1.1 Multi-Agent Planning Domain Description Languages

STRIPS and PDDL are two standard languages to describe deterministic single-agent
planning problems. Nevertheless, there is no similar standard in the multi-agent
planning. There are several attempts to create such a standard. Following para-
graphs provide a closer look on these standards in chronological order.

NON-DETERMINISTIC AGENT DOMAIN LANGUAGE (NADL) (Jensen and Veloso,
2000) allows to describe multi-agent non-deterministic domains. It distinguishes
two types of agents. System agents are controllable entities for which the planner
creates a plan. The plans are executed synchronously and it is assumed that each
action has unit duration. On the contrary, environment agents cannot be controlled by
the planner and thus they represent non-deterministic changes in the environment
which cannot be controlled by system agents. Description of each agent contains a
list of actions it can execute.

Boutilier et al. (Boutilier and Brafman, 2001) extended STRIPS by description of
concurrent interacting actions to allow to plan for multi-agent teams with possibly col-
liding actions. Description of each action is extended to contain a concurrent action
list specifying which actions must be, and which cannot be, executed concurrently.
Together with conditional effects, the actions can result in different effects depending
on which actions are executed concurrently by other agents. This allows to naturally
describe joint actions, i.e. actions that require synchronized cooperation of several
agents to achieve a goal which cannot be achieved by actions of single agents.

MULTI-AGENT PLANNING LANGUAGE (MAPL) (Brenner, 2003) extends PDDL
to allow the description of RoboCup Rescue search and rescue scenarios (Kitano
et al., 1999). In these scenarios, agent cannot perceive the complete state of the

2.1. Multi-Agent Planning 13

world. In MAPL, this is simulated by a special value unknown which can be as-
signed as a variable value. Colliding actions, that cannot be executed synchronously,
are described by read-write locks on state variables. Non-deterministic, or a priori un-
known, duration of an action is described as an interval in the action specification.
MAPL then introduces special actions for inter-agent communication. Therefore,
communication acts can be incorporated directly into agents’ plans to allow explicit
plan synchronization. Communicative actions explicitly describe what is being com-
municated between the agents and thus this approach allows to control the level of
private knowledge leakage.

CONCURRENT STRIPS (CSTRIPS) (Oglietti and Cesta, 2004) extends STRIPS to
deal with concurrent actions. Each agent is described as a collection of concurrent
threads for modeling possible concurrent activities. Each concurrent thread is repre-
sented by its own set of actions and thus the usage of an action inherently describes
which agent operates it without the necessity to explicitly specify it as it is usual in
other domain descriptions. However, this CSTRIPS is defined on the model level
only and has never been used by any planner.

MA-STRIPS (Brafman and Domshlak, 2008) is a natural extension of STRIPS ex-
tending the main idea of CSTRIPS to partition the actions between the agents. In
MA-STRIPS, the STRIPS set of actions is replaced by a set of disjoint sets of actions,
where each set of actions represents the abilities of a single agent. MA-STRIPS also
distinguishes between public information, which can be freely communicated be-
tween the agents, and private information, which describes agent’s internal func-
tioning and which should not be communicated in scenarios with privacy protec-
tion requirements. Public facts are defined as facts appearing in actions of multiple
agents and these actions are then defined as public. The complement forms pri-
vate facts, and actions, respectively. We use MA-STRIPS privacy definitions (see
Chapter 3 for details) through this thesis and we provide a detailed analysis of its
consequences for multi-agent planning domains in Section 6.2.2.

MA-PDDL (Kovács, 2012) is an extension of PDDL 3.1 which allows to specify
the owner of each action using field agent in the definition of the action. MA-PDDL
allows to define different goals for different agents and positive and negative inter-
ferences between their concurrent actions. Nevertheless, MA-PDDL does not allow
to manually specify what facts are public/private, and thus it is not suitable for de-
scription of domains with privacy preservation.

FMAP (Torreño, Onaindia, and Sapena, 2014) uses separate domain and problem
PDDL files for each agent. This approach allows easy and natural distribution of
planning process. PDDL language is extended with shared-data field which allows
to specify which predicates are shared with which agents. However, this approach
does not always allow to define fact privacy classification as defined by MA-STRIPS.
FMAP also refers to a state-of-the-art planner which uses this domain description.
We compare our designed planner with FMAP in Chapter 6.

14 Chapter 2. Related Work

None of the existing PDDL extensions allows to express both FMAP (public facts
specified by a list of public predicate names) and MA-STRIPS (see Chapter 3) privacy
definitions. Nevertheless, our proposed planner allows to finely tune the amount of
knowledge shared among the agents up to the level of single facts and thus it can
work with any definition. Section 6.2.2 describes in details the differences in these
privacy specifications for different multi-agent domains.

2.1.2 Multi-Agent Planners

The first multi-agent planner for MA-STRIPS called PLANNING FIRST (Nissim, Braf-
man, and Domshlak, 2010) transforms the inter-agent coordination problem into a
CSP problem in combination with local planning. In generated CSP problem, each
agent is represented by a single variable whose values represent all possible se-
quences of its public actions bounded by the maximal length. CSP constraints then
specify which sequences can be combined into a valid global solution and which
sequences are also locally valid. Following the principle of iterative deepening, the
maximal length of sequences is iteratively increased until a solution is found. How-
ever, this does not guarantee the optimality of the solution, but minimizes the max-
imal number of one agent’s public actions. PLANNING FIRST planner shows very
good performance for loosely coupled problems.

MAD-A* (Nissim and Brafman, 2012a; Nissim and Brafman, 2012b) is a dis-
tributed multi-agent adaptation of well-known A* algorithm. Each agent maintains
its own search space and explores it using its own actions. Expanded states are
broadcasted to all other agents which then use their actions to expand it too creating
possible distinct children states. The messages communicated between the agents
contain full description of a state, i.e., it includes public part of the state and also all
private parts of all the agent. Since the actions of an agent need to access only the
public part of a state and its own private part, the private parts of other agents can
be encrypted to hide the private information. Unlike A*, the fact, that a goal state
has been selected for the expansion, does not guarantee that optimal solution has
been found. Therefore, once an agent expands a goal state, a verification procedure
that checks the optimality of the solution is performed.

SELFISH-MAD-A* (Nissim and Brafman, 2013) extends MAD-A* algorithm to
self-interested agents. In such a scenario, each agent tries to maximize its reward
while cooperating on planning task with other agents. Selfish-MAD-A* uses a dis-
tributed implementation of Vickery-Clarke-Groves approach (Vickrey, 1961; Clarke,
1971; Groves, 1973) to mechanism design. Centralized trusted bank assures the dis-
tribution of payments after receiving partial costs after removing an agent from the
plan from all the agents. Although agents share some information derived from

2.1. Multi-Agent Planning 15

their private knowledge with the centralized bank, the algorithm preserves similar
level of privacy as the original MAD-A*.

DPGM (Pellier, 2010) is a multi-agent extension of Graphplan (Blum and Furst,
1995). Each agent creates its own planning graph and extracts local threats and pro-
motions, i.e. negative and positive interactions between agents, and exchanges them
with other agents. Received knowledge is merged into local planning graphs and ev-
ery agent extracts local solutions. The coordination problem of these local solutions
is described using CSP constraints and solved as a CSP problem. If the coordination
of local solutions fails, different local solution are extracted and coordinated. If no
other local solutions are available, the local planning graphs are extended by a new
layer implementing iterative deepening search, which assures the completeness of
the algorithm. DPGM implementation (Durkota and Komenda, 2013) shows good
performance for loosely coupled problems while it is outperformed by MAD-A* on
tightly coupled problems.

FMAP (Torreño, Onaindia, and Sapena, 2014) is a representative of a multi-agent
partial ordered planner. It applies multi-agent A* heuristic search to explore the
space of partial plans. Selected partial plan is refined using embedded forward-
chaining partial order planner. FMAP shows state-of-the-art performance in prob-
lems of all levels of coupling, and thus we compare our proposed planner with FMAP

in experimental evaluation (see Chapter 6 for detailed results).
BRP (Jonsson and Rovatsos, 2011) represents a best-response planning method

for improving an existing plan created by different planning method. Computing
the best response is formulated as a modified local planning problem and thus can be
solved by any classical planner. The authors also define congestion planning problems
which correspond to congestion games (Rosenthal, 1973) and they show that BRP is
guaranteed to result in a Nash equilibrium for this type of planning problems.

µ-SATPLAN (Dimopoulos, Hashmi, and Moraitis, 2010) is a multi-agent exten-
sion of classical SATPLAN where agents compute their plans sequentially. First
agent creates a solution to his local problem and sends it to next agent. After a plan
solving the problem from the perspective of several agents is received, an agent cre-
ates a new solution for his local problem which does not collide with the received
plan and sends it to the next agent. SATPLAN (Kautz, Selman, and Hoffmann,
2006), which uses planning graphs for the translation of the planning problem into
SAT problem, is used as underlying local planning system. The presented experi-
ments show that the algorithm works well for two agents. Nevertheless, given the
nature of the algorithm, it does not scale well for larger number of agents.

Multi-agent planning can also be seen as a specific form of factored planning (Amir
and Engelhardt, 2003). Factored planning tries to decompose a planning problem
into possibly independent subproblems. Solving these subproblems scales linearly
with the size of the domain and in the worst case exponentially with the size only of
the largest subproblem and interactions among subproblems. Obviously, the catch

16 Chapter 2. Related Work

is that not all planning problems can be factored enough to benefit from such effi-
ciency gain. In (Brafman and Domshlak, 2006), causal graphs (Bacchus and Yang,
1994) of the planning domains are used to identify when factorization is compu-
tationally beneficial. A practical algorithm based on this result and on principle of
decomposition trees (Darwiche and Hopkins, 2001) was proposed in (Kelareva et al.,
2007). This principle can be also seen as a variation on localized planning (Lansky
and Getoor, 1995). The difference between multi-agent planning and factored plan-
ning is that in multi-agent planning the factorization is fixed and given by agent
abilities.

DISTOPLAN (Fabre et al., 2010) pioneered the idea of planning by means of Fi-
nite State Machines (FSM) containing local solutions. DISTOPLAN aims at (optimal)
factored planning where all the information can be shared between the agents, i.e.,
no privacy is achieved. Although the results show good performance only for few
problems which factor well, we have extended the idea of using FSM to represent
a set of local solutions into planning state machine (PSM; see Section 4.3 for details).
Additionally, we use a principle of intersection of the PSMs to effectively filter out
unfeasible combination of plans of different agents. This approach proved to be effi-
cient even for problems that cannot be easily factored and it also provides high level
privacy preservation.

Besides representation of local plans as totally or partially ordered sequences of
actions, a compact representation of set of local plans utilizing various types of Finite
State Machines was proposed in aforementioned (Fabre et al., 2010) and our recent
work (Tožička, Jakubův, and Komenda, 2014). In (Tožička et al., 2014), we have pro-
posed notions of external actions and public plan extensibility. When planning with
external actions, agents are informed about public actions of other agents. Hence
they are able to plan actions for other agents. However, external actions are striped
of private information and thus it can happen that an agent plans an external action
inappropriately. The notion of extensibility allows to recognize plans where external
actions are used correctly. In (Tožička, Jakubův, and Komenda, 2014), we have used
extensibility with PSMs to outline a generic scheme of multi-agent planners further
elaborated in Chapter 5.

Chapter 3

Formal Foundations of

Multi-Agent Planning

“Be still and the Earth will speak to you.”

Navajo Proverb

Similarly as in classical planning, we assume a planning model based on extension
of STRIPS (Fikes and Nilsson, 1971) compactly representing a deterministic transi-
tion system. The multi-agent extension, described in Section 3.1, follows the princi-
ples proposed in MA-STRIPS by Brafman and Domshlak in (Brafman and Domshlak,
2008). Agent capabilities are described as a finite repertoire of agent’s STRIPS actions.
MA-STRIPS defines privacy classification of facts and action, which we describe in
details in Section 3.2. The agent actions possibly affect only parts of the environment
thus inducing local planning problems of the particular agent. Local planning prob-
lems are described in Section 3.3. Therefore, this (partial) “separation of concerns”
of the agents keeps the private information local. It also helps to increase efficiency
of the planning process by hiding parts irrelevant for other agents.

In this thesis, the agents are cooperative and coordinated and they concurrently
plan and execute their local plans in order to achieve a joint goal. The environment
wherein the agents act is classical with deterministic actions.

3.1 Multi-Agent Planning Problem

An MA-STRIPS planning problem Π is a quadruple Π = 〈P, {αi}ni=1, I, G〉, where P is
a set of facts, αi is the set of actions of i-th agent, I ⊆ P is an initial state, and G ⊆ P
is a set of goal facts. Selector functions facts(Π), agents(Π), init(Π), and goal(Π) are
defined so that Π = 〈facts(Π),agents(Π), init(Π),goal(Π)〉 holds for any problem Π.

18 Chapter 3. Formal Foundations of Multi-Agent Planning

An action an agent can perform is a quadruple containing unique action id and
three subsets of facts(Π) which in turn denote the set of preconditions, the set of add ef-
fects, and the set of delete effects. Action ids are arbitrary atomic objects and we always
consider ids to be unique within a given problem. Selector functions id(a),pre(a),
add(a), and del(a) are defined so that a = 〈id(a),pre(a),add(a),del(a)〉 holds for any
action a. Moreover let eff(a) = add(a) ∪ del(a).

An agent is identified with its capabilities, in other words, the i-th agent αi =

{a1, . . . , am} is determined by a finite set of actions it can preform in the environ-
ment. We use metavariable α to range over agents from Π. A planning state s
is a finite set of facts and we say that fact p holds in s, or that p is valid in s, iff
p ∈ s. When pre(a) ⊆ s then state progression function γ is defined classically as
γ(s, a) = (s \ del(a)) ∪ add(a).

Example 1 Throughout the paper, we shall use the following running example concerning

a small logistic company. The company owns two transport vehicles (plane and truck)

and operates three locations (prague, brno, and ostrava). A plane can travel from

prague to brno and back, while a truck provides connection between locations brno

and ostrava. The company receives a delivery job to transport the crown from prague

to ostrava. The company manager needs to plan tasks for the vehicle operators so that the

delivery job is done.

This delivery problem can be expressed using MA-STRIPS model as follows. Actions

fly(loc1,loc2) and drive(loc1,loc2) describe movement of plane and truck re-

spectively. Actions load(veh,loc) and unload(veh,loc) describe loading and un-

loading of crown by a given vehicle at a given location.

We define two agents Plane and Truck. The agents are defined by sets of executable

actions as follows.

Plane = { load(plane,prague),load(plane,brno),

unload(plane,prague),unload(plane,brno)

fly(brno,prague),fly(prague,brno), }

Truck = { load(truck,brno),load(truck,ostrava),

unload(truck,brno),unload(truck,ostrava)

drive(ostrava,brno),drive(brno,ostrava), }

Aforementioned actions are defined using facts at(veh,loc) to describe possible vehicle

locations, and facts in(crown,loc) and in(crown,veh) to describe positions of crown.

3.2. Privacy Classification of Facts and Actions 19

facts(a) = pre(a) ∪ add(a) ∪ del(a) facts of action a
facts(α) =

⋃
a∈α facts(a) facts of agent α

pub-facts(Π) =
⋃
α 6=β(facts(α) ∩ facts(β)) public facts of Π

(α, β ∈ agents(Π))

int-facts(α) = facts(α) \ pub-facts(Π) facts internal for agent α
rel-facts(α) = facts(α) ∪ pub-facts(Π) facts relevant for agent α

pub-actions(α) = {a ∈ α : eff(a) ∩ pub-facts(Π) 6= ∅} public actions of agent α
int-actions(α) = α \ pub-actions(α) internal actions of agent α

FIGURE 3.1: MA-STRIPS privacy classification of facts and actions.

We omit action ids in examples when no confusion can arise. For example, we have the

following.

fly(loc1,loc2)= 〈{at(plane,loc1)},

{at(plane,loc2)},

{at(plane,loc1)}〉

load(veh,loc)= 〈{at(veh,loc),in(crown,loc)},

{in(crown,veh)},

{in(crown,loc)}〉

The initial state and the goal are given as follows.

I = {at(plane,prague),at(truck,brno),in(crown,prague)}

G = {in(crown,ostrava)}

�

The goal reflects the delivery requirement.

3.2 Privacy Classification of Facts and Actions

In MA-STRIPS multi-agent planning, each fact is classified either as public or as inter-

nal out of computational or privacy concerns. MA-STRIPS specifies this classification

as follows. A fact is public when it is mentioned by actions of at least two different

agents. A fact is internal for agent α when it is not public but mentioned by some

action of α. A fact is relevant for α when it is either public or internal for α. Relevant

facts contain all the facts which agent α needs to understand, because other facts are

20 Chapter 3. Formal Foundations of Multi-Agent Planning

internal for other agents and thus not directly concerns α. Formal definitions and

notations used throughout the thesis are presented in the upper parts of Figure 3.1.

It is possible to extend the set of public facts to contain additionally some facts

that would be internal by the above definition. This is important for the experimen-

tal evaluation because some multi-agent planners use different facts classification. It

is an advantage of our planner that it can be used with different facts classification

because (1) we provide a user the freedom to choose what is public, and (2) we can

directly compare our planner with planners that use different classifications. The

only requirement for our planner is that every fact shared by at least two agents

is public. Furthermore, it is common in literature (Nissim and Brafman, 2012b) to

require that all the goals are public. An MA-STRIPS problem with internal goals

can be easily transformed to an equivalent problem without internal goals (see Sec-

tion 5.5.2) and thus we omit internal goals in formal presentation. Then pub-facts(Π)

is defined as the minimal superset of the intersection from the definition that satis-

fies G ⊆ pub-facts(Π). In this thesis we suppose G ⊆ pub-facts(Π) and also another

simplification common in literature (Brafman and Domshlak, 2008) which says that

αi are pairwise disjoint1.

Example 2 In our running example, in(crown,brno) is the only fact shared by the two

agents. As we require G ⊆ pub-facts(Π) we have the following facts classification.

pub-facts(Π) = {in(crown,brno),in(crown,ostrava)}

int-facts(Plane) = {at(plane,prague),at(plane,brno),

in(crown,prague),in(crown,plane)}

�

MA-STRIPS further extends this classification of facts to actions as follows. An

action is public when it has a public effect, otherwise it is internal. Strictly speaking,

MA-STRIPS defines an action as public whenever it mentions a public fact even in a

precondition (that is, when facts(a) ∩ pub-facts(Π) 6= ∅). However, our method of

multi-agent planning does not rely on synchronization of public preconditions, and

hence we can allow actions with only public preconditions to be internal. For our

1 This rules out joint actions. Any MA-STRIPS problem with joint actions can be translated to an
equivalent problem without joint actions. However, a solution that would take advantage of joint
actions is left for future research.

3.3. Local Planning Problems 21

planner it is enough to know that internal actions do not modify public state. Formal

definitions and notations are presented in the lower part of Figure 3.1.

3.3 Local Planning Problems

In MA-STRIPS problems, agent actions are supposed to manipulate a shared global

state when executed. In multi-agent planning with external actions, a local planning

problem is constructed for every agent α. Each local planning problem of α is a clas-

sical STRIPS problem containing α’s own actions together with information about

public actions of other agents. These local planning problems allow us to divide an

MA-STRIPS problem to several STRIPS problems which can be solved separately by

a classical planner. This thesis describes a way how to find a solution of an MA-

STRIPS problem but it does not address the question of execution of a plan in some

real-world environment.

The projection F .α of set of facts F to agent α is the restriction of F to the facts

relevant for α. Hence projection removes from F facts not relevant for α and thus

it represents F as understood by agent α. The projection a .α of action a to agent

α removes from a facts not relevant for α, again representing a as seen by α. The

projections are formally defined as follows.

Definition 1 Given Π, let F be an arbitrary set F ⊆ facts(Π) of facts and let a be an action

from Π. The projection F .α of F to α ∈ agents(Π), and the projection a .α of action

a to α are defined as follows.

F .α = F ∩ rel-facts(α)

a .α = 〈id(a),pre(a) .α, add(a) .α, del(a) .α〉

The action projection is extended to sets of actions element-wise. �

Note that a .α = a when a ∈ α. Hence projection to α alters only actions of agents

other than α. Also note that action ids are preserved under projection.

Example 3 In our example we have the following.

22 Chapter 3. Formal Foundations of Multi-Agent Planning

fly(prague,brno) .Plane = fly(prague,brno)

fly(prague,brno) .Truck = 〈∅, ∅, ∅〉

load(truck,brno) .Plane = 〈{in(crown,brno)}, ∅,

{in(crown,brno)}〉

unload(truck,ostrava) .Plane = 〈∅, {in(crown,ostrava)}, ∅〉

�

In multi-agent planning with external actions, every agent α is from the beginning

equipped with projections of public actions of other agents. These projections, which

we call external actions, describe how agent α sees effects of public actions of other

agents. In a local planning problem, an agent needs external actions so that he can

create a plan which contains also public actions of other agents. The set of actions

in a local planning problem of agent α simply contains actions of agent α together

with external actions of α. Now it is easy to define a local planning problem Π .α of

agent α also called projection of Π to α as a classical STRIPS problem. The set of facts

P and the initial state I are restricted to those facts relevant for α. There is no need

to restrict the goal G because all the goal facts are public and thus relevant for all the

agents. A formal definition follows.

Definition 2 Given an MA-STRIPS problem Π, the local planning problem Π .α of

agent α is defined for every α ∈ agents(Π) as the classical STRIPS problem

Π .α = 〈facts(Π) .α, α ∪ ext-actions(α), init(Π) .α, G〉

where the set ext-actions(α) of external actions of agent α is defined as follows.

ext-actions(α) =
⋃
β 6=α

(pub-actions(β) .α) (for all β ∈ agents(Π))

�

Example 4 In our example, all the actions arranging vehicle movements are internal. Public

actions are only the actions providing package manipulation at public locations brno and

ostrava. Hence the set pub-actions(Plane) contains actions load(plane,brno) and

3.3. Local Planning Problems 23

unload(plane,brno) while pub-actions(Truck) is as follows:

{ load(truck,brno),unload(truck,brno),

load(truck,ostrava),unload(truck,ostrava) }

Hence ext-actions(Truck) has 2 actions and ext-actions(Plane) has 4 actions. This

yields the local problem Π .Plane with 10 actions and the problem Π .Truck with 8

actions. �

Chapter 4

Planning by Plan Set Intersection

“One finger cannot lift a pebble.”

Hopi Proverb

In this chapter, we show how local planning problems defined in Section 3.3 can be

used to solve multi-agent planning problems. Section 4.1 introduces important prop-

erties of solutions of local planning problems and their relation to the solution of the

whole problem. Section 4.2 proposes a general multi-agent planner scheme that is

built on these properties. Then, we describe data structure that allows to effectively

represent the generated plans, called planning state machines (PSMs), and thus effec-

tive implementation of the general planner scheme in Section 4.3. Finally, we present

an algorithm allowing to compute all solutions of given multi-agent planning prob-

lem in Section 4.4.

4.1 Planning with External Actions

We would like to solve agent local problems separately and compose local solutions

to a global solution of Π. However, not all local solutions can be easily composed to

a solution of Π. Concepts of public plans and their extensibility help us to recognize

local solutions which are suitable to this aim.

A plan π is a sequence of actions 〈a1, . . . , ak〉. A plan π defines an order in which

the actions are executed by their unique owner agents. It is supposed that indepen-

dent actions can be executed in parallel. A solution of Π is a plan π whose execution

26 Chapter 4. Planning by Plan Set Intersection

transforms the initial state I to the state s such that G ⊆ s. A local solution of agent α

is a solution of the local planning problem Π .α. Let sols(Π) and sols(Π .α) denote

the sets of all the solutions of MA-STRIPS problem Π and all the local solutions of α

respectively.

Example 5 Let us consider the following plans.

π0 = 〈 load(plane,prague), fly(prague,brno),

unload(plane,brno), load(truck,brno),

drive(brno,ostrava), unload(truck,ostrava) 〉

π1 = 〈 unload(truck,ostrava) .Plane 〉

π2 = 〈 unload(plane,brno) .Truck, load(truck,brno),

drive(brno,ostrava), unload(truck,ostrava) 〉

It is easy to check that π0 is a solution of our example MA-STRIPS problem Π. Plan π1 is a so-

lution of Π .Plane because projection unload(truck,ostrava) .Plane of Truck’s

public action simply produces the goal state out of the blue. Finally, π2 ∈ sols(Π .Truck).

�

A public plan σ is a plan that contains only public actions. A public plan can be

seen as a solution outline that captures execution order of public actions while ig-

noring agents internal actions. A public plan can be safely sent to any agent because

it contains only public information. In order to avoid confusions between public and

external versions of the same action, we formally define public plans to contain only

public action ids. For a plan π of Π (or a plan of Π .α) we define the public projection

π . ? of π as the sequence of all public action ids from π preserving their order. Pub-

lic projection of a plan thus removes any internal actions from π. Formal definition

follows.

Definition 3 A public plan σ is a sequence of public action ids. Given a plan π of Π (or

of Π .α), the public projection π . ? of π is defined to be the public plan π . ? = 〈id(a) : a ∈

π and a ∈ pub-actions(Π)〉. Public projection is extended to sets of plans element-wise. �

4.1. Planning with External Actions 27

Example 6 In our example we know that π0 ∈ sols(Π) and π1 ∈ sols(Π .Plane) and

π2 ∈ sols(Π .Truck). Thus we can construct the following public solutions.

π0 . ? = 〈id(unload(plane,brno)), id(load(truck,brno)),

id(unload(truck,ostrava))〉

π1 . ? = 〈id(unload(truck,ostrava))〉

π2 . ? = 〈id(unload(plane,brno)), id(load(truck,brno)),

id(unload(truck,ostrava))〉

Note that π0 . ? = π2 . ? and also note that we have omitted the projection operator (.)

because ids are preserved under projection. �

From every solution π of Π (or of Π .α) we can construct a uniquely determined

public plan σ = π . ?. On the other hand, for a single public plan σ there might be

more than one, or none, solutions with public projection σ. A public plan σ is called

extensible when there is a solution of Π with public projection σ. Similarly, when

there is a solution of Π .α with public projection σ, then σ is called α-extensible.

Extensible public plans give us an order of public actions which is acceptable for all

the agents. Thus extensible public plans are very close to solutions of Π and it is

relatively easy to construct a solution of Π once we have an extensible public plan.

Hence our algorithms will aim at finding extensible public plans. The following

formally defines public plan extensibility.

Definition 4 Let σ be a public plan of Π.

σ is extensible iff ∃π ∈ sols(Π) : π . ? = σ

σ is α-extensible iff ∃π ∈ sols(Π .α) : π . ? = σ

�

Example 7 In our example we can see that π0 . ? is extensible because it was constructed

from the solution of Π. For the same reason we see that π1 . ? is Plane-extensible and

π2 . ? is Truck-extensible. It is easy to see that π2 . ? is also Plane-extensible. However,

π1 . ? is not Truck-extensible because Truck needs to execute other public actions prior to

unload(truck,ostrava). �

The following proposition states the correctness of the multi-agent planning with

external actions. It establishes the relationship between extensible and α-extensible

28 Chapter 4. Planning by Plan Set Intersection

plans. Its direct consequence is that to find a solution of Π it is enough to find a

local solution πα ∈ sols(Π .α) which is β-extensible for every other agent β. A

constructive proof follows.

Theorem 1 ((Tožička et al., 2014)) Public plan σ of Π is extensible if and only if σ is α-

extensible for every agent α ∈ agents(Π).

Proof. (⇒). When σ is extensible then there is π ∈ sols(Π) such that π . ? = σ. Let

α be arbitrary but fixed. Let us construct plan πα of Π .α from π by removing internal

actions of agents other than α, and by applying projection to the remaining actions obtaining

πα = 〈a .α : a ∈ π and a ∈ pub-actions(Π)∪ int-actions(α)〉. Clearly πα . ? = σ because

πα preserves the order of public actions. To prove πα ∈ sols(Π .α) we first observe that no

action b internal for β 6= α can change state s of Π in a way observable by α, that is,

γ(s, b) .α = s .α. Hence the sequence of states (of Π) which proves π ∈ sols(Π) can be

easily transformed to a sequence of states of (Π .α) which proves πα ∈ sols(Π .α). Thus σ

is α-extensible.

(⇐) For every agent αi, σ is αi-extensible and thus there is some local solution πi such

that πi ∈ sols(Π .αi) and πi . ? = σ. When more than one local solutions exist, we can

choose an arbitrary from them. Now we construct a solution π of Π from local solutions πi’s

as follows. We split each πi at the positions of public actions from σ and we join the corre-

sponding internal parts of different plans together. Internal actions of different agents cannot

interact through a shared fact (otherwise this fact would be public and these actions would

be public too) and thus we can join different internal parts in any order, preserving only the

order of actions of individual agents. Then we construct π of Π from σ by translating ids

from σ to corresponding actions of Π and by adding the joined parts between corresponding

public actions in σ. Clearly π . ? = σ and π ∈ sols(Π). Hence σ is extensible. �

Example 8 We have seen previously that π2 . ? is Truck-extensible and also Plane-

extensible. Hence we know that there is some solution of Π even without knowing π0.

Furthermore the proof of Theorem 1 shows how to reconstruct the solution. On the other

hand, we know that π1 . ? is not Truck-extensible and thus π1 . ? is not extensible. �

4.2. Generic Planner 29

4.2 Generic Planner

Theoretic foundations described in previous section directly provide the main idea

of our new planner. We can reformulate Theorem 1 to a functional description of the

planner, as stated by Corollary 2.

Corollary 2 Given Π, it holds that

sols(Π) . ? =
⋂

α∈agents(Π)

(sols(Π .α) . ?)

Obviously, the generation of the whole set sols(Π .α) is impractical for an effec-

tive planner. Nevertheless, the agents can try to calculate the intersection using any

subset of sols(Π .α). If the intersection is nonempty, it contains a solution of Π. Oth-

erwise, agents can add more local solutions and try again, until the whole sols(Π .α)

is provided by each agent. This generic algorithm is listed in Algorithm 1.

Algorithm 1: Generic algorithm showing planning by plan set intersection.

1 Function GenericMAPlanner(Π .α) is
2 Φα ← ∅;
3 loop
4 π ← generate new solution of Π .α;
5 Φα ← Φα ∪ {π . ?};
6 exchange Φα with other agents;
7 Φ←

⋂
β∈agents(Π)

Φβ ;

8 if Φ 6= ∅ then
9 return Φ;

10 end
11 end
12 end

The basic idea behind the multi-agent planning algorithm (Algorithm 1) de-

scribed in this thesis is based on Corollary 2 and it can be described briefly as follows.

Every agent α from the MA-STRIPS problem Π executes its own planning loop per-

haps on a different machine. It keeps generating new solutions of its local planning

problem Π .α and announces their public projections to all other agents. Hence the

set Γ∗α of public plans generated so far by α is known by all the agents. Once there is

30 Chapter 4. Planning by Plan Set Intersection

a single public plan σ generated by all the agents, we can stop the algorithm yield-

ing σ as the public solution of Π. This is because every plan generated by agent β is

automatically β-extensible and hence σ is extensible by Theorem 1.

Algorithm GenericMAPlanner(), executed by each agent α, starts with an empty

set of plans Φα. Then, it sequentially generates new solutions π of local problem

Π .α and adds their public projections to the plan set. After adding new plan,

the plan sets are exchanged between the agents and they compute the intersec-

tion. Alternatively, one trusted agent can be chosen to compute the intersection

to avoid repeating computations. Once there is a single public plan π . ? generated

by all the agents, the intersection of agents’ plan sets is nonempty, and thus we can

stop the algorithm yielding Φ as a set containing some solutions of Π. Algorithm

GenericMAPlanner() is sound and complete as stated by Theorem 3.

Theorem 3 (Completeness and Soundness) Let Π be an MA-STRIPS planning prob-

lem such that sols(Π) 6= ∅. Let Φ be a result of GenericMAPlanner(Π .α) for an arbitrary

agent α. Then Φ 6= ∅ and Φ ⊆ sols(Π) . ?. Moreover, if the underlying planner (1) is

complete, (2) optimal (with respect to length of generated plan) and (3) allows to generate

different plans, then the algorithm always terminates.

Proof. Let π be a solution of Π. As a result of completeness and optimality and of the

underlying planner, agent α will generate, in the worst case, all the solutions of Π .α up to

the length of π. These must include a solution with the public projection π . ?. As this hold

for every agent α, the intersection of their respective public plan sets must be non-empty

and the algorithm terminates. This ensures algorithm completeness and termination. The

soundness of the algorithm directly follows from the properties of intersection, Theorem 1. �

This generic algorithm provides the main structure of a planner. Nevertheless, it

is necessary to fill in two white places in order to allow its implementation. Firstly,

in all but the most trivial domain, the sols(Π .α) is a countably infinite set and thus

it is necessary to design an effective data structure for representing it, such that it

allows an effective implementation of required operations on it. We propose to use

Planning State Machines defined and discussed in Section 4.3. Secondly, algorithm

GenericMAPlanner() requires an underlying classical planner, which is complete,

optimal, and which allows to sequentially generate different solutions of a given

4.3. Planning State Machines (PSM) 31

problem. While first two requirements are met by most of the state-of-the-art plan-

ners, the latter one demands a change in the planner functionality. We describe how

we modified the FastDownward planner in Section 5.3 in Chapter 5 devoted to the

planner implementation.

4.3 Planning State Machines (PSM)

In this section, we utilize finite state machines to effectively represent sets of plans

(or public plans) of a STRIPS problem mentioned in the above algorithm descrip-

tion. These finite state machines, which we call planning state machines (PSM), are

described in Section 4.3.1. PSMs allow us to effectively implement operations which

are crucial for our multi-agent planning algorithm. These operations are (1) adding a

new solution to an existing PSM (Section 4.3.2), (2) computing a public projection of

a PSM (Section 4.3.3), and (3) intersecting public projections of PSMs (Section 4.3.4).

4.3.1 Basics of Planning State Machines

Finite state machines (Hopcroft, Motwani, and Ullman, 2006) are widely used in

computer science for manifold purposes. In this section, we utilize state machines

to recognize and compute solutions of STRIPS and MA-STRIPS planning problems.

To achieve this we use the set of planning actions A as an alphabet while planning

states (sets of facts) become states of our planning state machine (PSM). PSM state-

transitions δ simply resembles planning state progression function γ. Hence a PSM

accepts words over A, that is, plans.

For our purposes, a deterministic finite state machine (DFS) is defined as a tuple

〈Σ, S, s0, δ, F 〉 where Σ is a finite alphabet, S is a finite set of states, s0 ∈ S is an

initial state, δ is a complete state-transition function (δ : S × Σ → S), and F ⊆ S

is a set of accepting states. A non-deterministic finite state machine (NFS) is a tuple

〈Σ, S, s0, δ, F 〉much like a DFS but the state-transition function is non-deterministic,

that is, δ : S × Σ → P(S). For a DFS (for an NFS respectively), the state-transition

function δ can be naturally extended to δ? : S×Σ? → S (respectively to δ? : S×Σ? →

P(S)) where Σ? is the set of all finite words over alphabet Σ. A word w ∈ Σ? is

accepted by a DFS when δ?(s0, w) ∈ F . A word w ∈ Σ? is accepted by an NFS when

δ?(s0, w) ∩ F 6= ∅.

32 Chapter 4. Planning by Plan Set Intersection

Definition 5 A planning state machine (PSM) of a STRIPS problem Π = 〈P,A, I,G〉 is

a DFS Γ = 〈Σ, S, I, δ, F 〉 where

(1) alphabet Σ is the set action ids Σ = {id(a) : a ∈ A},

(2) states are sets of facts (S ⊆ P(P)) with I ∈ S,

(3) transitions satisfy that δ(s, id(a)) = s′ implies γ(s, a) = s′,

(4) and accepting states are F = {s ∈ S : G ⊆ s}.

Let accept(Γ) denote the set of all plans accepted by Γ. �

In general, a PSM does not need to contain all possible planning states of Π be-

cause S is only required to be a subset of P(P) which contains I . However, the

following soundness result can be trivially proved for any PSM.

Lemma 4 Let Γ be a PSM of a STRIPS problem Π. Then accept(Γ) ⊆ sols(Π).

Proof. Follows directly from Definition 5 and definition of γ. �

The opposite inclusion does not necessarily hold. However, for a given STRIPS

problem Π we can easily construct a complete PSM Γ which accepts all the solutions

of Π. A complete PSM needs to contain all the possible transitions and all (reach-

able) planning states. A complete PSM can be constructed by a breath-first search

starting from the initial state and by adding all reachable planning states together

with all possible transitions. Of course this construction is highly ineffective but it

shall be used below to demonstrate basic operations on PSMs. The following defines

a complete PSM.

Definition 6 A PSM Γ = 〈Σ, S, I, δ, F 〉 of Π = 〈P,A, I,G〉 is complete when

(1) S = P(P), and

(2) transitions additionally satisfy that γ(s, a) = s′ implies δ(s, id(a)) = s′ whenever

γ(s, a) is defined. �

Hence a complete PSM accepts every solution of Π, formally as follows.

Lemma 5 For a complete PSM Γ of Π it holds that accept(Γ) = sols(Π).

Proof. Follows directly from Lemma 4 and the definition of γ. �

4.3. Planning State Machines (PSM) 33

4.3.2 Extending a PSM with Solutions

The first operation we define on PSMs is extending an existing PSM with a new so-

lution π. The operation is denoted Γ⊕π and its result is an extended PSM which

accepts all the plans as Γ and additionally π. The operation is implemented simply

by traversing π and by adding corresponding states and transitions to Γ. The fol-

lowing constructive definition suggests an implementation linear in the size of the

added solution. Note that in the definition we consider δ to be a set of triples, writing

〈s, a, s′〉 ∈ δ instead of s′ ∈ δ(s, a).

Definition 7 Let a PSM Γ = 〈Σ, S, I, δ, F 〉 of Π and a solution π = 〈a1, . . . , an〉 of Π be

given. Denote s0 = I and si = γ(si−1, ai−1) for 0 < i ≤ n. The PSM Γ⊕π is defined as

follows.

Γ⊕π = 〈Σ, S ∪ {s0, . . . , sn}, I, δ ∪ {〈si−1, id(ai−1), si〉 : 0 < i ≤ n}, F ∪ {sn}〉

�

The operation ⊕ can extend the set of accepted plans by more than π. However, the

following lemma states that the PSM Γ⊕π accepts all the plans as Γ, and addition-

ally other plans including π. Additionally accepted plans other than π do not cause

any problem because Lemma 4 ensures that every additionally accepted plan is a

solution of Π. Important is that accept(Γ⊕π) ⊆ sols(Π) holds.

Lemma 6 Let Π be a classical STRIPS problem, let Γ be a PSM of Π, and let π ∈ sols(Π).

Then Γ⊕π is correctly defined and accept(Γ) ∪ {π} ⊆ accept(Γ⊕π).

Proof. Let us prove that Γ⊕π is correctly defined as specified by Definition 5. Properties

(1)-(3) are trivial. Property (4) is satisfied because π ∈ sols(Π) and hence G ⊆ sn where sn

is the last state from Definition 7. It follows from Definition 7 that both PSMs are defined

on the same alphabet, and that Γ is a sub-automaton of Γ⊕π. Hence clearly accept(Γ) ⊆

accept(Γ⊕π). Moreover the sequence of states s0, . . . , sn from Definition 7 proves that

π ∈ accept(Γ⊕π). Hence the claim. �

4.3.3 Public Planning State Machines

Previous sections define a planning state machine Γ which effectively represents the

set accept(Γ) of plans. From Γ, we would like to compute the corresponding set of

34 Chapter 4. Planning by Plan Set Intersection

public plans, that is, the set accept(Γ) . ? = {π . ? : π ∈ accept(Γ)}. In this section

we achieve this by transforming PSM Γ to a public planning state machine which (1)

accepts exactly the aforementioned set of public plans and (2) contains only public

information. We call this operation the public projection of PSM Γ and we denote it

Γ . ?.

Public PSMs will be exchanged among agents during our multi-agent planning

algorithm. Therefore, out of privacy concerns, it is essential that public PSMs con-

tain only public information. A first attempt to construct a public PSM from PSM

Γ would be to treat internal actions as ε-transitions and eliminate them from Γ

using standard algorithm. The standard algorithm to eliminate ε-closures simply

“bridges” ε-transitions with new transitions. As for internal facts contained within

states, a first attempt is simply to delete them. Let us consider the example PSM Γ1

from Figure 4.1 (left). After eliminating internal transitions and after deleting inter-

nal facts from states we obtain the PSM Γ2 (Figure 4.1, middle). Unfortunately, Γ2

also accepts the plan 〈p1, p2, p3, p4〉 which is not a public projection of any plan ac-

cepted by Γ1. The problem is that two different states of Γ1, namely {a, x} and {a, y},

were merged in Γ2 after removing internal facts x and y. To solve this problem we

introduce integer marks to distinguish states which would otherwise became equal

after removing internal facts. This is demonstrated by PSM Γ3 (Figure 4.1, right). It

is easy to check that Γ3 accepts exactly public projections of the plans accepted by

Γ1. Also note that Γ3 is non-deterministic because of the non-deterministic transi-

tions from the initial state. Hence public projection can introduce non-determinism.

In order to formally define public PSMs we need to define public projections of

states and actions. The public projection F . ? of a set of facts F is simply the restric-

tion of F to public facts. The public projection a . ? of action a restricts facts in a to

public facts preserving action id.

Definition 8 Let Π be an MA-STRIPS problem. Let F be an arbitrary set F ⊆ facts(Π)

and let a be an action from Π. The public projection F . ? of F , and the public projection

a . ? of action a are defined as follows.

F . ? = F ∩ pub-facts(Π)

a . ? = 〈id(a),pre(a) . ?, add(a) . ?, del(a) . ?〉

4.3. Planning State Machines (PSM) 35

{}

{x} {y}

{a,x} {a,y}

i1 i2

p2

p1 p1

{b,x}

p3 p4

{c,y}

{}

{a}

p2

p1 p1

{b}

p3

p4

{c}

{}

{a}'0 {a}'1

p2

p1 p1

{b}

p3 p4

{c}

(Γ1) (Γ2) (Γ3)

FIGURE 4.1: A motivation example for computing PSM public pro-
jection. We suppose a context where pn are public and in internal
actions, and where a, b, c are public and x, y internal facts. Accepting

states are marked bold. The initial state is {}.

Public projection is extended to sets of actions element-wise. �

The previous discussion explained why public PSMs need to contain integer-

labeled states and why public PSMs need to be non-deterministic. Hence a public

PSM of an MA-STRIPS problem Π is an NFS with the following properties.

Definition 9 A public PSM of an MA-STRIPS problem Π is an NFS Γ∗ = 〈Σ, S, I0, δ, F 〉

where

(1) the alphabet is Σ = {id(a) : a ∈ pub-actions(Π)},

(2) states are integer-labeled sets of public facts (S ⊆ P(pub-facts(Π))× N),

(3) the initial state is I0 = 〈init(Π) . ?, 0〉 and I0 ∈ S,

(4) transitions satisfy that 〈s′, i′〉 ∈ δ(〈s, i〉, id(a)) implies γ(s, a . ?) = s′,

(5) and 〈s, i〉 ∈ F implies goal(Π) ⊆ s.

Let accept(Γ∗) denote the set of all plans accepted by Γ∗. �

Now we describe the public projection algorithm to compute Γ . ? from Γ. It

is motivated by the standard ε-elimination algorithm (Hopcroft, Motwani, and Ull-

man, 2006, Chapter 2.5) extended with integer-mark introduction and public pro-

jection of states. For every state s, the internal closure set int-closureΓ(s) contains all

the states reachable from s by internal transitions only. The set int-closureΓ(s) can

be computed by a DFS and the following definition gives its semantics. We omit the

index Γ when no confusion can arise.

36 Chapter 4. Planning by Plan Set Intersection

Algorithm 2: Algorithm to compute the public projection Γ . ? of PSM Γ.

1 Function PublicProjection(Γ) is
2 〈Σ, S, I, δ, F 〉 ← Γ;
3 Σ0 ← {id(a) : a ∈ pub-actions(Π)};
4 I0 ← 〈I . ?, 0〉;
5 S0 ← {I0};
6 ρ← ∅; // initialize state renaming, ρ : S → P(pub-facts(Π))× N
7 ρ(I)← I0; // set value of ρ(I) to I0

8 foreach s ∈ (S \ {I}) do
9 ρ(s)← 〈s . ?, |S0|〉; // |S0| increases with every iteration

10 S0 ← S0 ∪ ρ(s);
11 end
12 δ0 ← ∅; // initialize new transitions, δ0 : S0 × Σ0 → P(S0)
13 F0 ← ∅;
14 foreach s ∈ S do // for every original state of Γ
15 {r1, . . . , rk} ← int-closure(s);
16 foreach id ∈ Σ0 do
17 δ0(ρ(s), id)← {ρ(δ(ri, id)) : 0 < i ≤ k};
18 end
19 if int-closure(s) ∩ F 6= ∅ then
20 F0 ← F0 ∪ {ρ(s)}; // mark ρ(s) as an accepting state
21 end
22 end
23 Γ∗ ← 〈Σ0, S0, I0, δ0, F0〉;
24 return Γ∗;
25 end

Definition 10 Given PSM Γ of agent local problem Π .α, an internal closure of s0, de-

noted int-closure(s0), is the least set of states such that

(1) s0 ∈ int-closure(s0), and

(2) whenever s ∈ int-closure(s0) for some s then for all a ∈ int-actions(α) it holds that

δ(s, id(a)) ∈ int-closure(s0).

In other words, the set int-closure(s0) contains s0 and all the states reachable from s0 by

transitions corresponding to internal actions. �

Once internal closures are computed for every state of Γ, the public projection

algorithm proceeds as described by Algorithm 2. The role of the state renaming ρ

is to translate states of Γ to states of the public projection. For every state s of Γ,

the renaming defines the state ρ(s) in the constructed public PSM consisting of the

public projection of s and a unique integer mark. The second foreach cycle which

starts at line 14 takes care of “bridging” of internal transitions. When state s′ is

4.3. Planning State Machines (PSM) 37

{}

{a,x} {a,y}

{b,x} {b,y}

{c}

p1 p2

p5 p6

p3 p4

i1

i2

i3

{}

{a,x} {a,y}

{b,x} {b,y}

{c}

p1 p2

p5 p6

p3 p4p3

p6 p5

{}

{c}

p1 p2

p5

p3
p4

p3

p6

{a}'0 {a}'1

{b}

(Γ1) (Γ2) (Γ3)

FIGURE 4.2: Example of computing PSM public projection. We sup-
pose a context where pn are public and in internal actions, and where
a, b, c are public and x, y internal facts. Accepting states are marked

bold. The initial state is {}.

reachable from s in Γ by (zero or more) internal transitions followed by one public

transition id(a), then Γ . ? will contain a transition from ρ(s) to ρ(s′) labeled with

id(a). Finally the condition at line 19 marks accepting states.

The PSM public projection algorithm can be alternatively explained on the exam-

ple from Figure 4.2. PSM Γ1 (Figure 4.2, left) is the input PSM. PSM Γ2 (Figure 4.2,

middle) is obtained from Γ1 by eliminating internal transitions. PSM Γ3 (Figure 4.2,

right) is obtained from Γ2 by public projection of states and by marks introduction.

Note that Γ3 additionally compresses Γ2 by unifying states with equal public pro-

jection which has equal sets of outgoing transitions. This is an optimization imple-

mented in our planner but omitted from formal presentation. Another optimiza-

tion is to remove states unreachable from the initial state and to remove states from

which no accepting state is reachable. None of the above optimizations affects the

semantics.

The following definition defines Γ . ? as the result of Algorithm 2 and formally

states algorithm correctness.

Definition 11 Let Π .α be a local problem of agent α and let Γ be a PSM of Π .α. The

public projection of Γ, denoted Γ . ?, is the result of Algorithm 2. �

Lemma 7 Let Π .α be a local problem of agent α and let Γ be a PSM of Π .α. Then Γ . ?

is a public PSM of Π and accept(Γ . ?) = accept(Γ) . ?.

38 Chapter 4. Planning by Plan Set Intersection

Proof. Let Γ∗ = Γ . ? and let δΓ be the transition function of Γ. Let us prove the inclusions

(⊆) and (⊇) separately.

(⊆) Let σ ∈ accept(Γ∗) and let σ = 〈id1, . . . , idn〉. Let s0, . . . , sn be the sequence of

states of Γ∗ which proves σ ∈ accept(Γ∗). Now we can sequentially process these actions

and construct a sequence of action ids π′ such that π′ ∈ accept(Γ) and π′ . ? = σ as follows.

Thanks to the integer labels, we can unambiguously translate every state of Γ∗ to the state of

Γ using function ρ−1. Let ti = ρ−1(si) for 0 ≤ i ≤ n. We start with empty π′. We know that

the transition from si−1 to si labeled by id i has been added to Γ∗ by line 17 of Algorithm 4.

Hence there is state r of Γ such that r ∈ int-closure(ti−1) and δΓ(r, id i) = ti. Hence

there has to be a (possibly empty) sequence of internal action ids 〈id ′1, . . . , id ′l〉 which proves

r ∈ int-closure(ti−1). We simply append 〈id ′1, . . . , id ′l, id i〉 to π′. In this way, we construct

π′ by sequential processing of all action ids from σ. We know that s0 is the initial state of Γ∗

and also that t0 is the initial state of Γ. It holds that π′ . ? = σ because all the actions from σ

were added to π′ in the right order and the additionally added actions are internal. To prove

the claim it is now enough to check that π′ ∈ accept(Γ). When tn is an accepting state of

Γ, we are done. Otherwise, sn is marked as an accepting state of Γ∗ by line 19 and therefore

there exists some accepting state r′ of Γ such that tn ∈ int-closure(r′). Finally, we append

internal action ids which prove tn ∈ int-closure(r′) to π′. Thus π′ ∈ accept(Γ) and hence

the claim.

(⊇) Let π ∈ accept(Γ) and let σ = π . ?. We simulate the plan π = 〈id1, . . . , idn〉 in

the state space of Γ. We shall show that this simulation directly corresponds to the simulation

of σ in Γ∗. Let s0,. . . ,sn be the sequence of states of Γ which proves π ∈ accept(Γ). Clearly

the initial state of Γ (that is, s0) is translated by ρ to the initial state of Γ∗. For a transition

from si−1 to si labeled by id i in Γ we distinguish two following two cases. Either (1) id i

is public or (2) internal. If id i is public, it is trivially added by line 17 to Γ∗ and thus we

can follow the corresponding transition in Γ∗. If id i is internal, we find the first transition

with public action δ(sj−1, id j)→ sj , j > i. Note that all internal actions are removed when

doing a public projection. Thus, we can proceed similarly to the previous case having virtual

transition from δ(si−1, id i) → sj with the only difference that now the needed transition is

added because sj ∈ int-closure(s). It can happen that no such index j exists, i.e., the plan π

ends with a sequence of internal actions. In that case, the state ρ(si−1) is going to be added

to the goal states at line 19. �

4.3. Planning State Machines (PSM) 39

4.3.4 Intersection of Public PSMs

The previous section describes how to compute the public projection of a PSM. Sup-

pose we have two public PSMs of an MA-STRIPS problem Π. This section describes

how to compute an intersection of two public PSMs which is a public PSM which

accepts the plans accepted by both the original PSMs.

There is a standard algorithm (Hopcroft, Motwani, and Ullman, 2006, Theo-

rem 4.8) to compute an intersection of two arbitrary NFSs. The standard algorithm

defines an intersection of NFS Γ∗1 and NSF Γ∗2 as a new NFS whose set of states is

the Cartesian product of states of Γ∗1 and Γ∗2. The intersection of NFSs contains a

transition between two states when there are corresponding transitions in both the

original NFSs Γ∗1 and Γ∗2. This standard algorithm, however, needs to be adjusted

because the standard algorithm applied to public PSMs would not yield a correctly

defined public PSM. The reason is that the structure of states in a public PSM is fixed.

We want to compute an intersection of two public PSMs (of the same MA-STRIPS

problem Π). We can take advantage of the fact that both public PSMs are defined

on the same set of states. Moreover a transition from state 〈s, i〉 labeled by action

a uniquely determines s′ in the destination state 〈s′, i′〉. Hence we do not need

to define the set of states in an intersection as a Cartesian product but we can use

integer-labeled public states and only adjust integer marks appropriately. Thus an

intersection of two public PSMs will be a public PSM. To combine integer marks we

can use arbitrary but fixed injective function from N × N to N such that 0 · 0 = 0. A

classical example is the Cantor pairing function1.

The following defines intersection of public PSMs Γ∗1 and Γ∗2, and proves its cor-

rectness. The set of states of an intersection PSM is constructed using the Cantor

pairing function as follows. Whenever there is a state 〈s, i〉 in Γ∗1 and also a state

〈s, j〉 in Γ∗2 then the intersection PSM contains the state 〈s, i · j〉. Hence every state of

the intersection PSM corresponds to uniquely determined states in Γ∗1 and Γ∗2. The

state transition function of an intersection PSM emulates transition functions of both

input public PSMs. A state in the intersection PSM is accepting when both the cor-

responding states are accepting in Γ∗1 and Γ∗2. Finally note that the Cantor pairing

function is not commutative and thus the intersection operation is commutative up

1i · j = (i+j)(i+j+1)
2

+ j

40 Chapter 4. Planning by Plan Set Intersection

to the integer marks. Nevertheless, all possible resulting public PSMs are equal with

respect to the set of accepted plans.

Definition 12 Let Γ∗1 = 〈Σ, S1, I, δ1, F1〉 and Γ∗2 = 〈Σ, S2, I, δ2, F2〉 be two public PSMs

of an MA-STRIPS problem Π. Let · be the Cantor pairing function. The intersection of Γ∗1

and Γ∗2 is a public PSM Γ∗0 = 〈Σ, S0, I, δ0, F0〉 of problem Π where

(1) S0 = {〈s, i · j〉 : 〈s, i〉 ∈ S1 and 〈s, j〉 ∈ S2}, and

(2) 〈s′, i′ · j′〉 ∈ δ0(〈s, i · j〉, id) iff 〈s′, i′〉 ∈ δ1(〈s, i〉, id) and 〈s′, j′〉 ∈ δ2(〈s, j〉, id),

(3) and F0 = {〈s, i · j〉 : 〈s, i〉 ∈ F1 and 〈s, j〉 ∈ F2}.

The intersection of Γ∗1 and Γ∗2 is denoted Γ∗1 ∩ Γ∗2. �

Lemma 8 The intersection Γ∗1∩Γ∗2 of two public PSMs Γ∗1 and Γ∗2 of Π is a correctly defined

public PSM of Π and the following holds.

accept(Γ∗1 ∩ Γ∗2) = accept(Γ∗1) ∩ accept(Γ∗2)

Proof. Let Γ∗1 = 〈Σ, S1, I, δ1, F1〉 and Γ∗2 = 〈Σ, S2, I, δ2, F2〉. Let Γ∗0 = Γ∗1 ∩ Γ∗2. Let

us first prove that the Γ∗1 ∩ Γ∗2 is a correctly defined PSM of MA-STRIPS problem Π as

specified in Definition 9. Properties (1) to (3) are trivially fulfilled. Property (4) is proved by

Definition 12 (2) and property (5) by Definition 12 (3). Now let us prove the inclusions (⊆)

and (⊇) separately.

(⊆) Let σ = 〈id1, . . . , idn〉 be a public plan such that σ ∈ accept(Γ∗0). Let 〈s0, l0〉, . . . ,

〈sn, ln〉 be the sequence of states which proves σ ∈ accept(Γ∗0). Thanks to the distinctiveness

property of an injective function · we can find ik and jk such that lk = ik · jk for every

0 ≤ k ≤ n. It holds that 〈sn, in〉 ∈ F1 and 〈sn, jn〉 ∈ F2 by Definition 12 (3). Hence the

sequence of states 〈s0, i0〉, . . . , 〈sn, in〉 proves that σ ∈ accept(Γ∗1) by Definition 12 (2).

Similarly σ ∈ accept(Γ∗2). Hence the claim.

(⊇) Let Γ∗0 = 〈Σ, S0, I, δ1, F0〉. Let σ = 〈id1, . . . , idn〉 be a public plan such that

σ ∈ accept(Γ∗1) ∩ accept(Γ∗2) Let 〈s0, i0〉, . . . , 〈sn, in〉 be the sequence of states which

proves σ ∈ accept(Γ∗1) and let 〈q0, j0〉, . . . , 〈qn, jn〉 be the sequence of states which proves

σ ∈ accept(Γ∗2). We know that 〈s0, i0〉 = 〈q0, j0〉 = I . Hence it is easy to check by

Definition 9 (4) that sk = qk for all 0 ≤ k ≤ n. Also we know that 〈sn, in〉 ∈ F1 and

〈sn, jn〉 = 〈qn, jn〉 ∈ F2. Hence 〈sn, in · jn〉 ∈ F0 by Definition 12 (3). Now the sequence of

4.4. Multi-agent Planning with Complete PSMs 41

states 〈s0, i0 · j0〉, . . . , 〈sn, in · jn〉 proves that σ ∈ accept(Γ∗0) by Definition 12 (2). Hence

the claim. �

4.4 Multi-agent Planning with Complete PSMs

The results from the previous sections now make it easy to introduce Algorithm 3

to compute all public solutions of a given MA-STRIPS problem Π. For every agent

α, the algorithm computes the complete PSM of Π .α and its public projection. All

the public PSMs are then intersected and their intersection is returned as a result.

Theorem 9 states that the intersection contains exactly all public solutions of Π.

Algorithm 3: Multi-agent planning algorithm with complete PSMs

1 Function PsmPlanComplete(Π) is
2 foreach α ∈ agents(Π) do
3 Γα ← complete PSM of Π .α; // BFS or DFS search
4 Γ∗α ← Γα . ?;
5 end
6 return

⋂
α∈agents(Π) Γ∗α;

7 end

Theorem 9 Let Π be an MA-STRIPS problem and Γ∗ = PsmPlanComplete(Π). It holds

that accept(Γ∗) = sols(Π) . ?.

Proof. Let Γα denote the complete PSM of Π .α and Γ∗α = Γα . ?. Let us prove the

inclusions (⊆) and (⊇) separately.

(⊆) Let σ ∈ accept(Γ∗). Then σ ∈ accept(Γ∗α) for every α by Lemma 8. Hence

for every α there is πα ∈ accept(Γα) such that σ = πα . ? by Lemma 7. By Lemma 5

πα ∈ sols(Π .α) and thus σ is α-extensible for every α. Hence σ is extensible by Theorem 1.

(⊇) Let π ∈ sols(Π) and σ = π . ?. Hence σ is extensible and thus also α-extensible

for every α by Theorem 1. Hence for every α there is πα ∈ sols(Π .α) with πα . ? = σ.

Clearly πα ∈ accept(Γα) by Lemma 5 and thus σ ∈ accept(Γ∗α) by Lemma 7. Thus

σ ∈ accept(Γ∗α) for all α and hence the claim by Lemma 8. �

Example 9 In this example we demonstrate complete PSMs, public projection, and PSM’s

intersection on our running Example 1. The complete PSM of agent Truck is presented in

Figure 4.3. The black node represents the initial state and the gray nodes are goal states.

42 Chapter 4. Planning by Plan Set Intersection

dbo

upb

upblpb
dob

upb

lpb ltb

utb

dbo

upb

dbo

utb

dob

upb

uto

dob upb

lpb

dbo
ltb

upb
dob

lpb upb

uto

FIGURE 4.3: The complete PSM of agent Truck (Example 9).

Dotted edges represent internal actions, dashed edges public actions, and solid edges

external actions. To improve clarity, we shorten action labels by the first letters of involved

objects, for example, the action fly(prague,brno) is shortened as “fpb”, and so on. We

also remove edges outgoing goal states and we omit state labels which can be easily filled in

using state progression function γ.

The complete PSM of agent Plane is too large for presentation (containing 32 states and

72 transitions). However, its public projection is shown together with the public projection

of Truck’s public PSM in Figure 4.4. Note how public projection decreases number of states

and transitions. The intersection of both public PSMs is shown in Figure 4.5. Note that the

intersection PSM represents infinite set of all possible public solutions by a finite structure.

�

4.4. Multi-agent Planning with Complete PSMs 43

upb

lpb

lpb

ltb

uto

upbutb

uto

lpb

ltb ltbltb lpb

lpb
ltb

uto

ltb
ltb

lpb

lpb

uto

ltb
lpb

uto

uto

utb

uto

utb

upb
uto

utbupbutb

upb

(Truck) (Plane)

FIGURE 4.4: Public projections of complete PSMs of agents from Ex-
ample 9.

uto
utb

ltb

lpb

upb

FIGURE 4.5: Intersection of public PSMs from Figure 4.4 representing
all possible public solutions.

Chapter 5

PSM Planner

“Details emerge more clearly as the fractal curve is redrawn.”

Michael Crichton, Jurassic Park

This chapter describes the main contribution of this thesis. We describe how to use

Planning State Machines together with Algorithm 1 to effectively solve multi-agent

MA-STRIPS problems. Section 4.4 already introduced planning algorithm which is

correct and complete, and its advantage is that it computes all the public solutions

of a given MA-STRIPS problem. However, its time and space complexity renders

it unusable for more complex problems. In this section, we extend the iterative

Algorithm 1 using PSMs for plan set representation and provide several practical

improvements to make it usable in practice.

The multi-agent planning algorithm is described in Algorithm 4. This algorithm

also outlines the content of this chapter. It starts by reduction and sharing some in-

ternal dependencies between public actions at Line 2. This optional step is described

in Section 5.1 and algorithm containing this extension is called PSM-D. Algorithm

continues by computing relaxed solution of the problem at Line 3 and incorporates

this solution into its local problem to direct the first generation of local solution. This

optional step is described in Section 5.2 and algorithm containing this extension is

called PSM-R.

Then the algorithm continues by the main loop (lines 6–17). One execution this

loop is called one iteration of the algorithm. By a new plan in the first step inside the

loop (Line 7), we mean a plan that was not generated in any of the previous loop

46 Chapter 5. PSM Planner

Algorithm 4: Distributed multi-agent planning algorithm.

1 Function PsmPlanDistributed(Π .α) is
2 reduce and share dependency graphs ; // Section 5.1

3 π‘← (relaxed solution of Π) . ? ; // Section 5.2
4 incorporate π‘ into local Π .α;

5 Γα ← empty PSM;
6 loop
7 generate new πα ∈ sols(Π .α); // Section 5.3
8 Γα ← Γα ⊕ πα;
9 Γ∗α ← Γα . ?;

10 announce public PSM Γ∗α to other agents;
11 receive/update public PSMs of other agents;
12 Γ∗ ←

⋂
β∈agents(Π) Γ∗β ; // intersection of public PSMs of all agents

13 if accept(Γ∗) 6= ∅ then
14 return Γ∗;
15 end
16 incorporate other agents Γ∗β into local Π .α; // Section 5.4
17 end
18 end

iterations. To achieve this we propose a technique based on known diverse plan-

ning techniques. Details are provided in Section 5.3. The variable Γα keeps a PSM

representing all the plans generated so far. The new plan πα is added to Γα and

public PSM Γ∗α is computed using Algorithm 2. Then all public PSMs are exchanged

among the agents. In our implementation, this is synchronization step when the

executing agent might need to wait for other agents to finish their computations of

public PSMs. However, an alternative non-blocking implementation where the exe-

cuting agent only updates public PSMs currently available is also possible. Then the

intersection Γ∗ of public PSMs of all the agents is computed and possibly returned

as a result. The intersection is computed by every agent to avoid a centralized com-

ponent. In the last step of the loop, public PSMs of other agents are incorporated

into the local planning problem Π .α using landmarks and action costs. This step,

described in details in Section 5.4, is optional and can be skipped. An optional im-

provement of this mechanism based on plan verification, is described in Section 5.4.1

and called PSM-V. Section 5.5 mentions several implementation problems that we

think worth to mention.

As we already mentioned in previous paragraphs, Algorithm 4 contains three

optional improvements: PSM-D allowing to reduce and share internal dependencies,

5.1. Internal Dependencies of Actions 47

PSM-R creating relaxed solution to direct the search in the first iteration, and PSM-V

providing a plan verification during directing next searches. Obviously, these ex-

tensions can be combined and then their names combine intuitively. PSM-VRD then

represents the ultimate planner containing all three extensions. Experimental evalu-

ation of each extension and the whole planner are provided in Chapter 6.

Let us conclude the introduction of this chapter by Theorem 10, which states the

soundness and completeness of Algorithm 4.

Theorem 10 (Completeness and Soundness) Let Π be an MA-STRIPS problem such

that sols(Π) 6= ∅. Let Γ∗ be a result of PsmPlanDistributed(Π .α) for an arbitrary agent

α. Then accept(Γ∗) 6= ∅ and accept(Γ∗) ⊆ sols(Π) . ?. Moreover, if the underlying

planner (1) is complete, (2) optimal (with respect to length of generated plan) and (3) allows

to generate different plans, then the algorithm always terminates.

Proof. The proof of this theorem directly follows the proof of Theorem 3, while considering

the properties of PSM stated by Lemmas 4–8. �

5.1 Internal Dependencies of Actions

One of the benefits of planning with external actions is that every agent can plan

separately its local problem which involves planning of actions for other agents (ex-

ternal actions). Other agents can then only verify whether a plan generated by an-

other agent is α-extensible for them. A disadvantage of this approach is that agents

have only a limited knowledge about external actions because internal facts are re-

moved by public projection. Thus it can happen that an agent plans external actions

inappropriately in a way that the resulting public plan is not α-extensible for some

agent α.

We try to overcome the limitation of partial information about external actions

by quipping agents with additional information about external actions without re-

vealing internal facts. Section 5.1.1 describes dependency graphs which are used as a

formal ground for our analysis of public and external actions. This allows to define

publicly equivalent problems and internally independent problems in Section 5.1.2 and

simply dependent problems in Section 5.1.3. Section 5.1.4 provides a set of reductions

48 Chapter 5. PSM Planner

allowing to simplify possibly complex dependency graphs. Finally, Section 5.1.5 de-

scribes how Algorithm 4 can be extended by planning with dependency graphs. We

conclude this section by analysis of privacy leakage during planning with depen-

dency graphs in Section 5.1.6.

5.1.1 Dependency Graphs

Local planning problem Π .α of agent α contains information about external actions

provided by the set ext-actions(α). The idea is to equip agent α with more infor-

mation described by a suitable structure. A dependency graph is a structure we use

to encapsulate information about public actions which an agent shares with other

agents.

Dependency graphs are known from literature (Jonsson and Bäckström, 1998;

Chrpa, 2010). In our context, a dependency graph ∆ is a bipartite directed graph de-

fined as follows.

Definition 13 A dependency graph ∆ is a bipartite directed graph whose nodes are ac-

tions and facts. We write actions(∆) and facts(∆) to denote action and fact nodes respec-

tively. Given the nodes, graph ∆ contains the following three kinds of edges.

(a→ f) ∈ ∆ iff f ∈ add(a) (a produces f)

(f → a) ∈ ∆ iff f ∈ pre(a) \ del(a) (a requires f)

(f 99K a) ∈ ∆ iff f ∈ pre(a) ∩ del(a) (a consumes f)

Additionally, a fact can be marked as initial in ∆. The set of states marked as initial is

denoted init(∆).

Hence edges of a dependency graph ∆ are uniquely determined by the set of nodes.

Note that action nodes are themselves actions, that is, triples of fact sets. These

action nodes can contain additional facts other than fact nodes facts(∆). We use

dependency graphs to represent internal dependencies of public actions. Depen-

dencies determined by public facts are known to other agents and thus we do not

need them in the graph as fact nodes. From now on we suppose that facts(∆) con-

tains no public facts as fact nodes. Action nodes, however, can contain public facts

in their public actions.

5.1. Internal Dependencies of Actions 49

Definition 14 Let an MA-STRIPS problem Π be given. The minimal dependency graph

MD(α) of agent α ∈ agents(Π) is the dependency graph uniquely determined by the fol-

lowing set of nodes.

actions(MD(α)) = pub-actions(Π)

facts(MD(α)) = ∅

init(MD(α)) = ∅

Hence MD(α) has no edges as there are no fact nodes. Thus the graph contains

only separated public action nodes. Furthermore, the set ext-actions(α) of external

actions of agent α can be trivially expressed as follows.

ext-actions(α) =
⋃
β 6=α

(actions(MD(β)) . ?)

Thus we see that dependency graphs can carry the same information as provided by

ext-actions(α).

Definition 15 The full dependency graph FD(α) of agent α contains all the actions of α

and all the internal facts of α.

actions(FD(α)) = α

facts(FD(α)) = int-facts(α)

init(FD(α)) = init(Π) ∩ int-facts(α)

Hence FD(α) contains all the information known by α. By publishing FD(α), an

agent reveals all his internal knowledge which might be a potential privacy risk. On

the other hand, other agents are by FD(α) provided the most precise information

about dependencies of public actions of α. Every plan of another agent, computed

with FD(α) in mind, is automatically α-extensible. Thus we see that dependency

graphs can carry dependencies information with a varied precision.

Dependency Graph Collections

A dependency graph represents information about public actions of one agent. Ev-

ery agent needs to know information from all the other agents. We use dependency

50 Chapter 5. PSM Planner

graph collections to represent all the required information. A dependency graph collec-

tion D of an MA-STRIPS problem Π is a set of dependency graphs which contains

exactly one dependency graph for every agent of Π. We write D(α) to denote the

graph of α. We write actions(D), facts(D), and init(D) to denote in turn all the ac-

tion, fact, and initial fact nodes from all the graphs in D.

Definition 16 Given problem Π, we can define the minimal collection MD(Π) and the

full collection FD(Π) as follows.

MD(Π) = {MD(α) : α ∈ agents(Π)}

FD(Π) = {FD(α) : α ∈ agents(Π)}

Later we shall show some interesting properties of the minimal and full collections.

Local Problems and Dependency Collections

In order to define local problems informed by D, we need to define facts and ac-

tion projections which preserve information from D. We use symbol .D to denote

projections accordingly to D. Recall that the public projection a . ? of action a is the

restriction of the facts of a to pub-facts(Π). The public projection a .D ? of action a ac-

cordingly to D is the restriction of the facts of a to pub-facts(Π) ∪ facts(D). Public

projection is extended to sets of actions element-wise. Furthermore, external actions

of α according toD, denoted ext-actionsD(α), contain public projections (according to

D) of actions of other agents. In other words, ext-actionsD(α) carries all the informa-

tion published by other agents for agent α. It is computed as follows.

ext-actionsD(α) =
⋃
β 6=α

(actions(D(β)) .D ?)

This equation describes distributed computation of ext-actionsD(α) where every

other agent β separately computes published actions, applies public projection, and

sends the result to α.

In order to define a local planning problem of agent α which would take infor-

mation fromD into consideration, we need to extract fromD facts and initial facts of

other agents. Below we define sets factsD(α) and initD(α) which contain those facts

and initial facts published by other agents, that is, all the facts from D except of the

5.1. Internal Dependencies of Actions 51

facts of α.
factsD(α) = facts(D) \ facts(D(α))

initD(α) = init(D) \ init(D(α))

Now we are ready to define local planning problems according toDwhich extends local

planning problems by the information contained in D.

Definition 17 Let Π be MA-STRIPS problem. The local problem Π .D α of agent α ∈

agents(Π) accordingly to D is the classical STRIPS problem Π .D α = 〈P0, A0, I0, G0〉

where

(1) P0 = facts(Π .α) ∪ factsD(α),

(2) A0 = α ∪ ext-actionsD(α),

(3) I0 = init(Π .α) ∪ initD(α), and

(4) G0 = goal(Π).

We can see that a local problem Π .D α according to D extends the local problem

Π .α by the facts and actions published by D.

Let us consider following two boundary cases of dependency collections: MD(Π)

and FD(Π). Given an MA-STRIPS problem Π, we can construct local problems using

the minimal dependency collection MD(Π). It is easy to see that Π .MD(Π) α = Π .α

for every agent α. With the full dependency collection FD(Π) we obtain equal projec-

tions, that is, Π .FD(Π) α = Π .FD(Π) β for all agents α and β. Moreover, local solutions

equal MA-STRIPS solutions, that is, sols(Π .FD(Π) α) = sols(Π) for every α.

5.1.2 Publicly Equivalent Problems

We have seen that dependency collections can provide information about internal

dependencies with a varied precision. Given two different collections, two differ-

ent local problems can be constructed for every agent. However, when the two lo-

cal problems of the same agent equal on public solutions, we can say that they are

equivalent because their public solutions are equally extensible.

In order to define equivalent collections, we first define public equivalence on

planning problems. Two planning problems Π0 and Π1 are publicly equivalent, de-

noted Π0'Π1, when they have equal public solutions. Formally as follows.

Π0'Π1 ⇔ sols(Π0) . ? = sols(Π1) . ?

52 Chapter 5. PSM Planner

Public equivalence can be extended to dependency graph collections as follows.

Two collectionsD0 andD1 of the same MA-STRIPS problem Π are equivalent, written

D0'D1, when for any agent α, it holds that the local problems Π .D0 α and Π .D1 α

are publicly equivalent. Formally as follows.

D0'D1 ⇔ (Π .D0 α)' (Π .D1 α) (for all α)

Example 10 Given an MA-STRIPS problem Π, with the full dependency collection FD(Π)

we can see that Π'Π .FD(Π) α holds for any agent. Hence to find a public solution of Π

it is enough to solve the local problem (accordingly to FD(Π)) of an arbitrary agent. The

same holds for any dependency collectionD such thatD'FD(Π). Note thatD can be much

smaller and provide less private information than the full dependency collection. �

The above definitions allow us to recognize problems without any internal de-

pendencies which we can define as follow.

Definition 18 An MA-STRIPS problem Π is internally independent when

MD(Π)'FD(Π)

In order to solve an internally independent problem, it is enough to solve the local

problem Π .α of an arbitrary agent. Any local public solution is extensible which

makes internally independent problems easier to solve because there is no need

for interaction and negotiation among the agents. Later we shall show how to al-

gorithmically recognize internally independent problems. The following formally

captures the above properties.

Lemma 11 Let Π be an internally independent MA-STRIPS problem. Then (Π .α)'Π.

Proof. (Π .α)' (Π .MD(Π) α)' (Π .FD(Π) α)'Π �

5.1.3 Simple Action Dependencies

Let us consider dependency collections without internal actions, that is, collections

D where actions(D) contains no internal actions. When D is published, then no

agent publishes actions additional to ext-actions(α) which is desirable out of pri-

vacy concerns. Furthermore, the plan search space of Π .D α is not increased when

5.1. Internal Dependencies of Actions 53

compared to Π .α. Even more, every additionally published fact in D providing a

valid dependency prunes the search space. Action dependencies captured by col-

lections without internal actions can be expressed by requirements on the order of

actions in a plan. This further abstracts the published information providing privacy

protection. Thus it seems reasonable to publish dependency collections without in-

ternal actions.

Simply Dependent Problems

The following defines simply dependent MA-STRIPS problems, where internal de-

pendencies of public actions can be expressed by a dependency collection free of

internal actions.

Definition 19 An MA-STRIPS problem Π is simply dependent when there existsD such

that actions(D) contains no internal actions and D'FD(Π).

Suppose we have a simply dependent MA-STRIPS problem and a dependency

collection D which proves the fact. In order to solve Π, once again, it is enough to

solve only one local problem Π .D α (of an arbitrary agent α).

Lemma 12 Let Π be a simply dependent MA-STRIPS problem. Let D be a dependency

collection which proves that Π is simply dependent. Then (Π .D α)'Π holds for any agent

α ∈ agents(Π).

Proof. (Π .D α)' (Π .FD(Π) α)'Π �

The above method requires all the agents to publish the information from D.

However, the information does not need to be published to all the agents as it is

enough to select one trusted agent and send the information only to him. Hence it is

enough for all the agents to agree on a single trusted agent.

5.1.4 Dependency Graph Reductions

Recognizing simply dependent MA-STRIPS problems might be difficult in general.

That is why we define an approximative method which can provably recognize some

simply dependent problems. We define a set of reduction operations on dependency

graphs and we prove that the operations preserve relation '. Then we apply the

54 Chapter 5. PSM Planner

� �

(R1) (R2)

� �

(R3) (R4)

FIGURE 5.1: Graphical illustration of reduction operations (R1)–(R4).
Circles represent fact nodes and rectangles represent action nodes.
Rounded boxes in (R4) represent any node (either fact or action node).

reductions repeatedly starting with FD(∆) obtaining a dependency graph which can

not be reduced any further. This is done by every agent. When the resulting graphs

contain no internal actions, then we know that the problem is simply dependent.

Additionally, when the resulting graphs contain no internal facts, then we know

that the problem is independent.

Our previous work (Tožička, Jakubův, and Komenda, 2015a) was restricted to

problems where pre(a) = del(a) holds for every action a. This impractical limitation

is removed here. We still restrict our attention to problems where del(a) ⊆ pre(a)

holds for every action a. This is not considered limiting because a problem not meet-

ing this requirement can be easily transformed to a permissible equivalent problem.

All presented benchmarks follow this limitation and thus this translation does not

affect presented results.

Finally, to abstract from the set of initial facts of a dependency graph ∆, we in-

troduce to the graph a special initial action 〈∅, init(∆), ∅〉. We suppose that every

dependency graph has exactly one initial action and hence we do not need to re-

member the set of initial facts. The initial action is handled as public even when it

has no public effect. Both definitions of dependency graphs are trivially equivalent

but the one with an initial action simplifies the presentation of reduction operations.

We proceed by informal descriptions of dependency graph reductions. The for-

mal definition is given below. The operations are depicted in Figure 5.1.

5.1. Internal Dependencies of Actions 55

(R1) Remove Simple Action Dependency. If some internal action has only one de-

lete effect and one add effect and there is no other action depending on the

consumed fact (f1) we can merge both facts into one and remove that action.

(R2) Remove Simple Fact Dependency. If some fact is the only effect of some action

and there is only one action that consumes this effect without any side effects,

we can remove this fact and merge both actions.

(R3) Remove Small Action Cycle. In many domains, there are reversible internal

actions that allow transitions between two (or more) states without any other

preconditions. All these states can be merged into a single state and the actions

changing them can be omitted.

(R4) Merge Equivalent Nodes. If two nodes (facts or actions) equal on incoming

and outgoing edges, then we can merge these two nodes. Mostly this is not

present directly in the domain description but this structure might appear

when we simplify a dependency graph using other reductions.

(R5) Remove Invariants. After several reduction steps, it can happen that all the

delete effects on some fact are removed and the fact is always fulfilled from

the initial state. This happens, for example, in Logistics, where the location

of a vehicle is internal knowledge and can be freely changed as described by

reduction (R3). Once these cycles are removed, only one fact remains. The

remaining fact represents that the vehicle is somewhere, which is always true.

This fact can be freely removed from the dependency graph.

In order to formally define the above reductions we first define operator [F]f1→f2

which renames fact f1 to f2 in the set of facts F ⊆ P .

[F]f1→f2 =


F if f1 6∈ F

(F \ {f1}) ∪ {f2} otherwise

Similarly, we define operator [F]-f = F \ {f} which removes fact f from the set of

facts F . These operators are extended to actions (applying the operator to precondi-

tions, add, and delete effects) and to action sets (element-wise). The operators can

be further extended to dependency graphs, where [∆]-f is the dependency graph

determined by [actions(∆)]-f and [facts(∆)]-f . Finally, for two actions a1 and a2

56 Chapter 5. PSM Planner

we define the merged action a1⊕ a2 as the action obtained by unifying separately

preconditions, add, and delete effects of both the actions.

The following formally defines reduction relation ∆0 → ∆1 which holds when ∆0

can be transformed to ∆1 using one of the reduction operations.

Definition 20 The reduction relation ∆0 → ∆1 on dependency graphs is defined by the

following four rules.

(R1) Rule (R1) is applicable to ∆0 when

(1) ∆0 contains edges (f1 99K a→ f2),

(2) a is internal, and

(3) there are no other edges from/to a, and

(4) there are no other edges from f1.

Then ∆0 → ∆1 where ∆1 is defined as ∆1 = [∆0]f1→f2 . The initial action is pre-

served.

(R2) Rule (R2) is applicable to ∆0 when

(1) ∆0 contains edges (a1→ f 99K a2),

(2) there are no other edges from/to f , and

(3) there are no other edges from a1, and

(4) a2 has no other delete effects, and

(5) a2 is internal action.

Then ∆0 → ∆1 where ∆1 is given by the following.

actions(∆1) = {[a1⊕ a2]-f} ∪ (actions(∆0) \ {a1, a2})

facts(∆1) = [facts(∆0)]-f

If a1 is the initial action of ∆0 then the new merged action becomes the initial action

of ∆1. Otherwise, the initial action is preserved.

(R3) Rule (R3) is applicable to ∆0 when

(1) ∆0 contains edges (f1 99K a1 → f2), and

(2) ∆0 contains edges (f2 99K a2 → f1), and

5.1. Internal Dependencies of Actions 57

(3) a1 and a2 are both internal, and

(4) there are no other edges from/to a1 or a2.

Then ∆0 → ∆1 where ∆1 is given by the following.

actions(∆1) = [actions(∆0) \ {a1, a2}]f2→f1
facts(∆1) = [facts(∆0)]f2→f1

The initial action is preserved as it is public.

(R4) Rule (R4) is applicable to ∆0 when ∆0 contains two nodes n1 and n2 (either action or

fact nodes) such that

(1) nodes n1 and n2 have equal sets of incoming and outgoing edges, and

(2) n1 and n2 are not public actions.

Then ∆0 → ∆1 where, in the case n1 and n2 are actions, ∆1 is given by the following.

actions(∆1) = {n1⊕n2} ∪ (actions(∆0) \ {n1, n2})

facts(∆1) = facts(∆0)

When n1 or n2 is the initial action of ∆0 then the new merged action becomes the

initial action of ∆1. Otherwise, the initial action is preserved.

In the case n1 and n2 are facts, ∆1 = [∆0]n2→n1 .

(R5) Let ainit be the initial action of ∆0. Rule (R5) is applicable to ∆0 when there exists fact

f such that

(1) ∆0 contains edge (ainit → f), and

(2) ∆0 contains no edge (f 99K a) for any a.

Then ∆0 → ∆1 where ∆1 is defined as ∆1 = [∆0]-f . The initial action of ∆1 is

[ainit]-f .

The following defines reduction equivalence relation ∆0∼∆1 as a reflexive, sym-

metric, and transitive closure of→. In other words, ∆0 and ∆1 are reduction equiva-

lent when one can be transformed to another using the reduction operations. Depen-

dency collections D0 and D1 are reduction equivalent when graphs of corresponding

agents are reduction equivalent.

58 Chapter 5. PSM Planner

Definition 21 Dependency graphs reduction equivalence relation, denoted ∆0∼∆1, is

the least reflexive, symmetric, and transitive closure generated by the relation→.

Given MA-STRIPS problem Π, dependency collections D0 and D1 of Π are reduction

equivalent, written D0∼D1, when D0(α)∼D1(α) for any agent α ∈ agents(Π).

The following theorem formally states that reduction operations preserves public

equivalence.

Theorem 13 Let Π be an MA-STRIPS problem and let pre(a) ⊆ del(a) hold for any inter-

nal action. Let D0 and D1 be dependency collections of problem Π. Then D0∼D1 implies

D0'D1.

Proof. [Proof sketch] It can be shown that none of the reduction operations changes

the set of public plans sols(D0(α)) . ? of any agent α ∈ agents(Π). Therefore repeti-

tive application of reductions assures that D0'D1.

To avoid possible action confusion caused by value renaming, we suppose that

actions are assigned unique ids which are preserved by the reduction, and that plans

are sequences of these ids. �

The consequences of the theorem are discussed in the following section.

Recognizing Simply Dependent Problems

Let us have an MA-STRIPS problem Π where pre(a) ⊆ del(a) holds for every internal

action a. Suppose that every agent α can reduce its full dependency collection FD(α)

to a state where it contains no internal action. Then there is D such that D∼FD(Π)

and hence D'FD(Π) by Theorem 13. Hence Π is simply dependent and its pub-

lic solution can be found without agent interaction, provided all the agents allow

to publish D. Important idea here is that publicly equivalent dependency graphs

do not need to reveal the same amount of sensitive information. Moreover when

D∼MD(α) then Π is independent and can be solved without any interaction and

without revealing other than public information. This gives us an algorithmic ap-

proach to recognize some independent and simply dependent problems.

5.1.5 Planning with Dependency Graphs

This section describes how agents use dependency graphs in order to solve MA-

STRIPS problem Π (Algorithm 6). At first, every agent computes the dependency

5.1. Internal Dependencies of Actions 59

Algorithm 5: Compute the dependency graph to be published by agent α.

1 Function ComputeSharedDG(α) is
2 ∆0 ← FD(α);
3 loop
4 if ∃∆1 : ∆0 → ∆1 then
5 ∆0 ← ∆1;
6 else
7 break;
8 end
9 end

10 if ∆0 contains only public actions then
11 return ∆0;
12 else
13 return MD(α);
14 end
15 end

Algorithm 6: Distributed planning with dependency graphs.

1 ∆← ComputeSharedDG(α);
2 send ∆ to other agents;
3 construct D from other agent’s graphs;
4 compute local problem Π .D α;
5 continue Algorithm 4 with Π .D α instead of Π .α;

graph it is willing to share using function ComputeSharedDG described by Algo-

rithm 5. Every agent α starts with the full dependency graph FD(α) and tries to

apply reduction operations repeatedly as long as it is possible. When the resulting

reduced dependency graph ∆0 contains only public actions, then the agent publishes

∆0. Otherwise, the agent publishes only the minimal dependency graph MD(α). Al-

gorithm 5 clearly terminates for every input because every reduction decreases the

number of nodes in the dependency graph. Hence the algorithm loop (lines 3–9 in

Algorithm 5) can not be iterated more than n times when n is the count of nodes in

FD(α). Moreover, every reduction operation can be performed in a time polynomial

to the size of the problem, and thus the whole algorithm is polynomial-time.

Once the shared dependency graph ∆ is computed, Algorithm 6 continues by

sending ∆ to other agents. Then shared dependency graphs of other agents are

received. This allows every agent to complete the dependency collection D, and to

construct the local problem Π .D α. The rest of the planning procedure is the same

as in the case of Algorithm 4.

60 Chapter 5. PSM Planner

The algorithm can be further simplified when all the agents succeed in reducing

FD(α) to an equivalent dependency graph without internal actions, that is, when Π

is provably simply dependent. Then it is enough to select one agent to compute pub-

lic solution of Π. When some agent α (but not all the agents) succeeds in reducing

FD(α) then every plan created by any other agent will be automatically α-extensible.

Therefore, when exactly one agent fails in reducing FD(α), then this agent can com-

pute the solution of Π .D α, and this solution is guaranteed to be extensible. More

generally, when more agents fail, only these agents are required to continue in iter-

ated negotiation as described by Algorithm 4.

5.1.6 Privacy Leakage Analysis

Although distributed planning with the dependency graphs trades exposition of (re-

duced) private information for efficiency, from perspective of the worst case, there

is no extra private knowledge shared. In this section, we will support this claim by

analysis of what information is leaked by sharing the reduced dependency graph ∆.

According to (Brafman, 2015), a multi-agent planning algorithm is strongly pri-

vacy preserving if no agent can deduce any information about private facts and pri-

vate preconditions/effects of any action, beyond what can be deduced from the pub-

lic projection of the planning problem and the public projection of the solution plan.

The shared reduced dependency graph ∆ can be, in some cases, equivalent to the

original dependency graph. In these cases, renamed internal facts are shared between

the agents. Nevertheless other agents do not know, whether any reduction has been

performed, and so they see a dependency graph which can represent an unlimited

number of different dependency graphs with an equivalent reduction. The definition

of strong privacy allows an agent to share any knowledge which can be deduced

from own actions description, the public projection of other agents actions, and the

public projection of the solution plan. Not much information can be deduced from

the solution plan when solving a single problem. In fact, other agents can deduce

only the information that given sequence of actions is possible and thus no action

deletes preconditions of the immediately following action.

Suppose a situation, when we observe an agent α using a strongly privacy pre-

serving algorithm in long term. The most extreme case is when we know all possible

plans in which the agent can participate in all different problems and we also know

5.1. Internal Dependencies of Actions 61

all the problems which are unsolvable for this agent, thus which public plans are

not α-extensible. We can suppose that all these plans contain all agent’s published

actions and all their possible combinations. From this knowledge we could deduce

what dependencies are between public actions appearing in these plans. Certainly,

this deduced information will contain all the information contained in the shared de-

pendency graph ∆. This gives us the first insight about the amount of information

which is contained in the shared dependency graph. We can state that it contains

information which could be eventually deduced if we follow the agent planning of

all possible different planning tasks.

Let us now compare sharing of dependency graph with privacy which an agent

leaks during a single run of PSM algorithm without sharing of dependency graphs

in the worst case. Suppose that we have two agents α and β with PSM algorithm.

During one iteration, both agents update their public PSMs and share it with the

other agent to check whether there is a non-empty intersection. In the worst case, it

can happen, that the agent α publishes all its possible plans, therefore Γ∗α is complete

and no longer changing, while the agent β still updates his Γ∗β . Then, agent β can

reconstruct all the agent’s α dependencies between its public actions. Again, shared

dependency graph ∆ is certainly a subset of the knowledge β would deduce in this

case.

Even though agents are not able to detect the presence of the internal fact from

a single execution of the PSM algorithm, the agents can deduce the existence of this

fact when cooperating longer time or when it takes long time before the agents find

a common solution. For example, suppose that there is no solution at all. In that

case, each agent publishes all his possible local solution and then announces that

there are no more local solutions. Then, similarly to the previous case, each other

agent can see whether some action has to always precede another action. If such

case exists, the agent deduce that there is a fact or some other dependency between

these actions.

Example 11 In our running Example 1, agent Plane starts to sequentially generate follow-

ing possible solutions – we show only Plane’s own actions and omit the actions planned for

Truck agent, because only these actions can reveal some knowledge about its internal facts

and actions.

• 〈〉

62 Chapter 5. PSM Planner

unload(...)load(...) new-fact
(initial)

FIGURE 5.2: Example of dependency graph containing all knowledge
which can leak during logistics planning.

• 〈unload(plane,brno)〉

• 〈unload(plane,brno),load(plane,brno)〉

• 〈unload(plane,brno),load(plane,brno),unload(plane,brno)〉

• ...

• 〈
unload(plane,brno),load(plane,brno)

∗〉
• 〈

unload(plane,brno),load(plane,brno)
∗ ,unload(plane,brno)〉

Even though there is an infinite number of different public plans, they can be compactly

represented in finite structure (for example PSM uses Planning state machines – see Sec-

tion 5.5 for more details).

From these plans we can observe:

• all plans start with unload(plane,brno) action, and

• a load(plane,brno) action has to be between two unload(plane,brno) ac-

tions.

Moreover, we can observe that, unless an empty plan is generated, there is always action

unload(plane,brno) before load(plane,brno), nevertheless these actions are al-

ready dependent through a public fact in(crown,brno) and thus it does not imply any

internal connection. Similarly, we can observer that between two load(plane,brno)

actions has to be unload(plane,brno) action.

These observations can be modeled by a dependency graph (Figure 5.2) containing one

internal fact that is also present in the initial state. This fact is then consumed by action

unload(plane,brno) and produced by action load(plane,brno). �

We can conclude that the PSM-D algorithm (i.e. PSM extended by sharing depen-

dency graphs) does not publish any more internal information that the PSM algo-

rithm in the worst case. In fact, the most significant difference between these two

5.2. Initial Relaxed Plan Landmark 63

algorithms is that PSM-D exposes exactly the internal information that could be ex-

posed by PSM in the worst case and which can be described in the form of simple

dependencies between the public actions.

5.2 Initial Relaxed Plan Landmark

The delete effect relaxation, where delete effects of actions are ignored, has proved its

relevance both in STRIPS planning (Hoffmann and Nebel, 2001), and recently also in

MA-STRIPS planning (Štolba and Komenda, 2014). It is known that to find a solution

of a relaxed problem is an easier task than to find a solution of the original problem.

There are distributed algorithms to find a solution of a relaxed MA-STRIPS problem

using distributed planning graphs (Štolba and Komenda, 2013). Effective implemen-

tation using exploration queues can also be found in literature (Štolba and Komenda,

2014). All these algorithms respect privacy, that is, they do not reveal internal facts

and actions to other agents.

We use a relaxed solution of MA-STRIPS problem Π to improve Algorithm 4 as

follows. At first we compute some solution π of the relaxation of Π. We compute

its public projection π . ? which is a sequence of public action ids. We use this id se-

quence as an initial landmark in the first loop iteration of Algorithm 4. The sequence

is integrated into Π .α in the same way as in Definition 23 (the public projection π . ?

can be seen as a public PSM which contains only π . ?). The same initial landmark is

used by all the agents. When π . ? is extensible then every agent α is likely to gen-

erate local solution πα such that πα . ? = π . ? in the first iteration. In that case the

algorithm terminates directly in the first iteration causing a dramatic speed-up. Oth-

erwise, the initial landmark is forgotten by all the agents and the algorithm continues

by the second iteration as before. Practical impact of initial relaxed plan landmarks

is experimentally evaluated in Section 6.1.

Example 12 In our running Example 1, we can find a relaxed solution and compute its

public projection. The shortest solution has the following public projection.

σ = 〈 unload(plane,brno), load(truck,brno), unload(truck,ostrava) 〉

We can see that this public plan σ is extensible. When the agents use σ as landmarks in

the first iterations, both of them succeed to generate a plan with public projection σ. Hence

64 Chapter 5. PSM Planner

the intersection of public PSMs is not empty and the algorithm terminates after the first

iteration. �

5.3 Generating New Plans

This section describes how to generate a plan of a classical STRIPS problem which

differs from a set of plans provided as an input. This extension is implemented by

diverse planning techniques. There exists many different approaches to diverse plan-

ning (Tožička et al., 2015). For the generation of different plans we take inspiration

from homotopy class constraints (Bhattacharya, Kumar, and Likhachev, 2010). In our

setting, homotopy classes of plans are naturally defined by plan public projections.

That is, two plans π1 and π2 belong to same homotopy class iff π1 . ? = π2 . ?.

In our implementation, we have extended the FastDownward planner but the

same technique can be used to extend any planner based on a state space search.

The technique is based on the idea of augmented graphs (Bhattacharya, Kumar, and

Likhachev, 2010). Every state is extended by a vector of numbers where each vector

field corresponds to one of the forbidden plans. The i-th vector field value indicates

whether the plan ending at this state is different from the i-th forbidden plan. Value

-1 indicates that current plan differs while a non-negative number denotes the posi-

tion in the corresponding forbidden plan. During action application at some state,

we check whether the applied action equals the expected action at the next position

in the forbidden plan. The initial state corresponds to the vector of zeros. During

the state search, a plan is accepted as a solution only when the plan ends in a state

with only -1 values.

Algorithm 4 starts with an empty set of forbidden plans. In every iteration, the

generated plan is added to this set. This ensures that the algorithm generates a

different plan in every iteration.

As an optimization, we use action costs to force the underlying planner to prefer

internal actions to public actions, and public actions to external actions. These action

costs1 correspond to the knowledge an agent has about these actions. An agent has

full information about its internal actions and as they do not affect other agents they

should be used whenever possible. The agent also has full information about its

1We have chosen costs 10 for internal actions, 100 for public actions, and 1000 for external action.
Nevertheless, the exact values are not important.

5.4. Guiding Plan Search Using Public PSMs 65

public actions but because they can affect other agents they should be used more

carefully. Finally, the agent has only a limited information about external actions of

other agents because some information can be pruned of by public projection. Hence

external actions are the most expensive.

5.4 Guiding Plan Search Using Public PSMs

In every iteration of Algorithm 4, the agent receives public PSMs of all other agents.

These PSMs contain information about plans found by other agents. Information in

these PSMs can be used to guide a new plan generation so that the algorithm finds a

solution faster. We incorporate information from public PSMs into the local planning

problem by extending the problem with soft-landmark actions and by adjusting action

costs. This problem extension influences plan search in the desired way. When agent

α receives public PSM Γ∗β of another agent β, we would like the local plan generator

to prefer sequences of public actions suggested by Γ∗β . This is because Algorithm 4

terminates only when all the agents generate the same public solution. Hence it is

preferable to find a local solution πα ∈ sols(Π .α) such that the public projection

πα . ? is contained in accept(Γ∗β). We achieve this by extending Π .α with special

landmark actions without affecting the set of solutions of Π .α. These landmark

actions basically duplicate actions from Π .α but have decreased action costs. The

landmark actions have additional preconditions to ensure that landmark actions are

used in the order given by Γ∗β .

The process of extending local problem Π .α with Γ∗β is sketched as follows. We

extend the local problem with a set of fresh facts Pmarks distinct from facts of Π .α

where each fresh fact corresponds to a state of Γ∗β . Hence we have bijection µ from

states of Γ∗β to Pmarks . Let Γ∗β contains a transition from s to s′ labeled by action a. We

then extend the local problem with a duplicate of a which (1) can be applied only in

states where µ(s) is valid, and (2) additionally transforms fact µ(s) to µ(s′). In this

way landmark actions can be applied only in the order given by Γ∗β . The following

defines a landmark action.

66 Chapter 5. PSM Planner

Definition 22 Let a be an action and let from and to be two facts. The landmark action

lm-act(a, from, to) is defined as follows.

lm-act(a, from, to) = 〈id(a),pre(a) ∪ {from},add(a) ∪ {to},del(a) ∪ {from}〉

For action id id , the landmark action (w.r.t. agent α) is defined as

lm-actα(id, from, to) = lm-act(a, from, to)

where a is the uniquely determined action of Π .α with id(a) = id. �

Once we have added landmark facts and actions we just extend the initial state of

the local problem with µ(I0) where I0 is the initial state of Γ∗β . A complete extension

of the local problem is formally defined as follows.

Definition 23 Let Π be an MA-STRIPS problem and Γ∗ = 〈Σ, S, I ′, δ, F 〉 a public PSM

of Π. Let Pmarks be a set of facts distinct from facts(Π) such that |Pmarks | = |S| and let µ

be a bijection from S to Pmarks . For α ∈ agents(Π), the problem Π⊗α Γ∗ is defined as the

STRIPS problem 〈P0, A0, I0, G〉 where

(1) P0 = facts(Π .α) ∪ Pmarks , and

(2) A0 = actions(Π .α) ∪ {lm-actα(id , µ(s), µ(s′)) : s′ ∈ δ(s, id)}, and

(3) I0 = init(Π .α) ∪ {µ(I ′)}.

The problem Π⊗α Γ∗ is called the local problem of α extended with Γ∗. �

Note that described extension does not affect the goal state condition. There is

a straightforward relationship between solutions of Π .α and solutions of Π⊗α Γ∗β .

Clearly every solution of Π .α is a solution of the extended problem Π⊗α Γ∗β . On

the other hand, every solution of Π⊗α Γ∗β can be translated to the solution of Π .α

by replacing landmark actions with original actions of Π .α.

The crucial point is that landmark actions are assigned significantly decreased

action costs so that the underlying planner prefers landmark actions to original ac-

tions. In our implementation the costs are set as follows. Suppose that Π .α is being

extended with Γ∗β . The cost of lm-act(a, from, to) is set to 1 if a is owned by α (the

receiver of Γ∗β) or if a is owned by β (the sender). Otherwise the cost 10 is used. The

5.4. Guiding Plan Search Using Public PSMs 67

reasoning behind this choice is that the owner (either α or β) of the action has full

information about it and thus it is more likely to be used correctly.

Definition 23 can be easily adjusted so that it allows repeated extension of Π .α.

During planning, problem Π .α is extended with every Γ∗βi received from other

agents in the previous loop iteration, one by one. Hence the underlaying planner

is launched with the problem

Π⊗α Γ∗β1 ⊗α Γ∗β2 ⊗α · · · ⊗α Γ∗βm

provided ⊗α is left-associative. In the first iteration, the local problem Π .α is used

without any extension.

Practical experiments revealed that the actions costs and landmark actions de-

scribed in this section are crucial for a practical usage of Algorithm 4. For experi-

mental evaluation see Section 6.1.

Section 5.4.1 describes a method PSM-V based on plan verification which allows

to improve performance of multi-agent planning Algorithm 4.

5.4.1 Plan Verification and Analysis

Distributed PSM planner from Algorithm 4 uses public plans generated by other

agents as landmarks to guide future plan search (see Section 5.4). However, it is

desirable to use only extensible plans to guide plan search because non-extensible

plans can not lead to a non-empty public PSMs intersection. Every generated plan

should be verified by other agents in order to determine its extensibility. However,

extensibility (or α-extensibility) checking is expensive and thus we propose only

an approximative method of plan verification. We have firstly published an exten-

sion of a PSM planner with a method of plan verification with promising results

in (Jakubův, Tožička, and Komenda, 2015). The rest of this section describes the

method.

Firstly, we describe how to approximate α-extensibility of public plan σ. Given

a public plan σ = 〈id1, . . . , idn〉 we create a problem Π~α σ which is solvable iff σ

is α-extensible. We extend the set of facts with fresh facts Pmarks = {m0, . . . ,mn}.

We add the action lm-act(ai,mi−1,mi) for all 0 < i ≤ n to the actions of Π~α σ (see

Definition 22). The initial state of Π~α σ is extended with m0 but, this time, the

68 Chapter 5. PSM Planner

last mark fact mn is added to the goal of Π~α σ. This ensures that any solution of

Π~α σ contains all actions from σ in the right order, possibly interleaved with α’s in-

ternal actions. Hence every solution of Π~α σ can be translated to a solution of Π .α

(but not necessarily the other way round). The following formalizes construction of

Π~α σ and proves its correctness.

Definition 24 Let Π be a MA-STRIPS planning problem and α ∈ agents(Π). Let σ =

〈id1, . . . , idn〉 be a public plan of Π. Let Pmarks = {m0, . . . ,mn} be a set of facts distinct

from facts(Π). The α-extensibility check problem of σ, denoted Π~α σ, is the STRIPS

problem 〈Pmarks ∪ (facts(Π) .α), A, (init(Π) .α) ∪ {m0},goal(Π) ∪ {mn}〉 where A =

int-actions(α) ∪ {lm-actα(id ,mi−1,mi) : 0 < i ≤ n}. �

Theorem 14 ((Tožička et al., 2014)) Let Π be an MA-STRIPS problem, let α be an agent

of Π, and let σ be a public plan of Π. Then σ is α-extensible iff sols(Π~α σ) 6= ∅.

Proof. Both the implications are proved similarly by replacing public actions with their

respective landmark actions (⇒) or the other way round (⇐).

(⇒) Let σ be α-extensible. Hence there is π ∈ sols(Π .α) such that π . ? = σ. Clearly

π contains only public actions in the order given by σ. The rest are internal actions of α. We

construct π0 from π by replacing public actions by their respective landmark actions. It is

easy to verify that π0 ∈ sols(Π~α σ).

(⇐) Let π ∈ sols(Π~α σ). Clearly π . ? = σ. Let us construct π0 be translating landmark

actions back to their original actions. It still holds π0 . ? = σ and it is easy to check that

π0 ∈ sols(Π .α). Hence σ is α-extensible. �

The first attempt to use the above construction of Π~α σ has been published

in (Tožička et al., 2014). It tries to centrally generate public solutions σ and to verify

that σ is α-extensible by every agent α. A roadblock of this attempt is that it is

relatively hard for agent α to find out that σ is not α-extensible. Then sols(Π~α σ) =

∅ and it usually requires the underlaying planner used to solve Π~α σ to traverse

the whole search space. That is because the state-of-the-art planners are optimized

to find a solution of a given solvable problem and not to determine that the problem

is not solvable. That is why we have proposed (Jakubův, Tožička, and Komenda,

2015) an approximate method to determine problem solvability.

Previously proposed approximation of Π~α σ solvability (Jakubův, Tožička, and

Komenda, 2015) is done using generic process calculi type system scheme POLYV

5.4. Guiding Plan Search Using Public PSMs 69

(Makholm and Wells, 2005; Jakubův and Wells, 2010). However, the same result

can be achieved using planning graphs (Ghallab, Nau, and Traverso, 2004, Chapter 6)

which we briefly describe here. We construct a complete relaxed planning graph

of Π~α σ, that is, the planning graph of Π~α σ with action delete effects removed.

A planning graph with k layers can be constructed in time polynomial in k. Then,

we examine the last fact layer of the constructed planning graph. Recall that Π~α σ

contains fresh mark facts Pmarks = {m0, . . . ,mn}. When mark mi is valid in some

planning state, it means that (1) public actions a1,. . . ,ai from σ were already correctly

used in the current plan and that (2) the next public action to be used is ai+1. The

result of the analysis is the maximum j such that mj is in the last fact layer of the

relaxed planning graph. This resulting j is interpreted as follows. When j < n then

clearly Π~α σ is unsolvable because mn is a goal fact. Moreover the result j tells us

that there is no way for an agent to follow the public plan σ up to the point where

aj+1 can be applied. This gives us an approximation of a valid prefix of σ. On the

other hand, j = n does not necessarily implies that σ is α-extensible because the

proposed method is only an approximation of Π~α σ solvability.

The above α-extensibility approximation allows the following plan verification

procedure. When agent α generates a new plan πα, it sends its public projection

πα . ? to all the other agents. Once other agent β receives πα . ?, it runs the above

β-extensibility check and sends its result back to agent α (just after line 7 of Algo-

rithm 4). Agent α collects analysis results from all the other agents and computes

their minimum l. Plan πα is then stripped so that only the first l public actions re-

main in it. This stripped plan is then used to extend PSM Γα in Algorithm 4. Hence

only the stripped plan is used as a landmark to guide future plan search. In the

next iteration, a plan with public projection different from πα is required to be com-

puted. When πα . ? = 〈id1, . . . , idn〉 we can even further speed up convergence of

Algorithm 4 by forbidding any plan with public prefix 〈id1, . . . , idl, idl+1〉 to be gen-

erated in the future. This does not affect completeness of Algorithm 4 (Theorem 10)

because only provably non-extensible plans are forbidden.

Example 13 In this example we demonstrate planning with plan analysis on our running

Example 1. The first iteration is as follows. All the agents use an optimal planner in

order to solve their local problems and thus agent Plane creates the simplest plan where the

goal is reached by agent Truck alone. That is, Plane generates following plan (see also

70 Chapter 5. PSM Planner

Example 5):

〈unload(truck,ostrava)〉.

This plan does not pass through the verification process of agent Truck because Truck

needs to execute additional public actions prior to the last goal-reaching action. In the mean-

while, agent Truck generates a plan with following public projection.

σ = 〈unload(plane,brno), load(truck,brno), unload(truck,ostrava) 〉

This public plan is extensible and thus passes through the verification check. Landmark

actions created from σ are added to Plane’s local problem. The intersection of public PSMs

after the first iteration is empty because Plane’s PSM is empty.

In the second iteration, Plane follows the landmarks from the above public plan σ and

it succeeds by generating a plan with the public projection σ. At this point, public PSMs

of both the agents contain σ and hence the algorithm terminates after the second iteration

independently on the plan generated by Truck. �

5.5 Practical STRIPS Extensions

In this section, we describe several interesting problems encountered when imple-

menting a PSM-based planner. Firstly, the theory is based on MA-STRIPS formalism

which is based on STRIPS. Just like STRIPS, MA-STRIPS requires grounded problem

specification which is not appropriate for real world problems. Section 5.5.1 de-

scribes how to move towards more convenient PDDL-like planning language which

allows a compact representation by introduction of parametric actions. Then, in Sec-

tion 5.5.2, we describe how we handle internal goals without the need to publish

them.

5.5.1 From STRIPS to PDDL, and Back Again

STRIPS language is a formal language often used in automated planning theory.

STRIPS also provides a formal base for MA-STRIPS. Nevertheless, it is not very

practical for real world problems because it supports only grounded representa-

tion. Therefore, in practice and in benchmark tests, Planning Domain Definition

5.5. Practical STRIPS Extensions 71

Language (PDDL) is typically used. PDDL supports predicates with typed param-

eters which allow to describe a full range of facts or actions by parametric state-

ments. When we convert our running Example 1 into PDDL language, we can have

only one parametric action drive(from,to) instead of multiple actions for differ-

ent locations. But backward grounding of this parametric action can create instances

which were not in the original domain. To get rid of these instances, new predicate

isRoad(from,to) can be introduced. Such a predicate is never part of action ef-

fects and thus it is constant during execution of any plan. When we ground a PDDL

problem, we can evaluate these predicates and we can omit action instances where

the predicate evaluates to false because these instances can never be used. Using

the same definition of public facts for PDDL as we described in MA-STRIPS, these

constants would be public, because they appear as precondition of actions of dif-

ferent agents. Nevertheless, it is not necessary to communicate them because their

evaluation never changes and thus every agent can has its own copy.

A conversion from PDDL to STRIPS, that is, grounding, is needed in two places.

Firstly, we use it to compute the size of a problem because number of predicates

and actions of the grounded problem better describes real complexity of the prob-

lem. More importantly, it is needed to compute MA-STRIPS representation of input

problems because FMAP problems, which we use as benchmarks (see Section 6.1),

are defined in the PDDL format. Hence input PDDL problem needs to be grounded

so that we can use MA-STRIPS definition of fact privacy classification. FMAP bench-

mark problems define a separate domain and problem PDDL file for every agent.

Firstly, we create a single agent problem by merging all agent domains and prob-

lems. Secondly, we use grounding algorithm implemented in FastDownward plan-

ner2 to ground it. Then, we take all the facts used in the grounded problem and

ground the original agents’ problems to these facts.

5.5.2 Internal Goals

So far we have considered MA-STRIPS problems where all goal facts are public. Nev-

ertheless, in some cases, agents, although cooperative, can have different internal

goals and agents might not be willing to share these facts with other agents because

2See http://www.fast-downward.org/. Script translate.py creates an SAS representation
of an input PDDL problem.

72 Chapter 5. PSM Planner

of privacy concerns. This section describes how to transform an MA-STRIPS prob-

lem with internal goals to an equivalent problem where the original internal goals

can be kept internal.

The transformation extends each agent α with a public confirmation action which

can be executed when all the goals of α are satisfied. The confirmation actions can be

executed only at the end of a plan. The goal of the transformed problem expresses

that all the agents confirmed their goals.

More formally, let Π be an MA-STRIPS problem where some or all goals are

internal. Firstly, we introduce a fresh fact planning with the meaning that plan-

ning is in progress, that is, that no confirmation action (of any agent) has been used

so far. Fact planning shall be initially valid in the initial state of the transformed

problem and shall be deleted by the first confirmation action. Every action from

Π shall be extended with precondition planning. Next we introduce fresh virtual

goal facts done1, . . . , donen. Fact donei means that the confirmation action of the

i-th agent was used. The confirmation action confirm(α, i) of agent the i-th agent α

can be used when all the goals relevant for α (that is public goals and α’s internal

goals) are satisfied. Its add-effect is the virtual goal donei and it deletes planning,

formally, confirm(α, i) = 〈goal(Π) .α, {donei}, {planning}〉. The goal of the trans-

formed MA-STRIPS problem is set to {done1, . . . , donen}.

There is a direct correspondence between solutions of the original and of the

transformed problem. Every solution of the transformed problem can be translated

to a solution of the original problem by removing confirmation actions. Moreover

the goal facts of the transformed problem can be freely published because they do

not carry any confidential information.

Chapter 6

Experiments

“And as the Cherokee walked farther from his mountains,

he began to die.”

Forrest Carter, The Education of Little Tree

This chapter describes experimental evaluation of proposed PSM planner (Algo-

rithm 4) with its optional extensions. Variants PSM-R, PSM-V, and their combination

PSM-VR are evaluated in Section 6.1. Section 6.2 focuses on different privacy classi-

fications and it shows how the increase of privacy of facts and goals affects perfor-

mance of our planner. Finally, Section 6.3 evaluates the impact of reduction and shar-

ing of internal dependencies (variant PSM-VRD) using official results of CoDMAP’15

competition.

6.1 PSM-R and PSM-V Experimental Results

We have performed a set of experiments to compare our planners with another state-

of-the-art multi-agent planners1 and also to evaluate the impact of plan verification

on planning times. We have decided to compare our planners with FMAP (Torreño,

Onaindia, and Sapena, 2014), RDFF (Štolba and Komenda, 2014) and GPPP (Maliah,

Shani, and Stern, 2014). All planners are compared on well defined problems taken

1All the tests were performed on a single PC, CPU Intel i7 3.40GHz with 8 cores, and memory
limited to 8GB RAM.

74 Chapter 6. Experiments

from International Planning Competition (IPC) problems as published by FMAP au-

thors. FMAP classifies facts as public or internal using a manual selection of public

predicate names. On the other hand, RDFF and GPPP use privacy classification as

defined by MA-STRIPS. In practice, FMAP public facts are a superset of MA-STRIPS

public facts. Nevertheless, our PSM-based algorithms can handle both privacy clas-

sifications. In our experiments, we use exactly the same input files as the authors of

FMAP used during its evaluation2, and we also use the same time limit of 30 minutes

for each problem.

The above mentioned state-of-the-art multi-agent planners are compared with

several variants of our PSM-based planner. Variant PSM is the basic version de-

scribed by Algorithm 4 in Chapter 5. Then, we have two extensions of this basic al-

gorithm. Variant PSM-R uses initial relaxed plan landmarks described in Section 5.2.

Variant PSM-V is the basic algorithm extended with the plan verification as described

in Section 5.4.1. Finally, there is PSM-VR which combines both extensions into a solid

planner that benefits from of all these features.

The experiments are organized as follows. Firstly, we describe benchmark do-

mains in Section 6.1.1. Then, in Section 6.1.2, we compare the variants of our algo-

rithm and compare it with FMAP planner which had the highest coverage between

multi-agent planners at the time when experiments were executed. In Section 6.1.3,

we further analyze the communication of the PSM variants and explore its connec-

tion with the number of iteration needed to solve a problem.

6.1.1 Benchmark Domains

We have performed experiments on 244 PDDL problems from following 10 do-

mains. Following list of FMAP domains also describes which information is public:

Blocksworld is a multi-agent version of the classical planning problem where each

of 4 agents represents one robotic arm that can move and stack blocks. All

information in this domain is public.

Depots problems contain two types of agents. Trucks agents transport crates be-

tween hoists located in depots. These depots move crates to correct pallets. De-

pots problems contain from 5 to 12 agents. All information is public.

2We would like to thank the authors of FMAP for a kind support with their planner.

6.1. PSM-R and PSM-V Experimental Results 75

Driverlog problems contain from 2 to 8 agents representing drivers that operate

several trucks to transport packages to required locations. All information is

known by all agents. Nevertheless, some constants are internal (link and path

representing roads and paths connecting different locations).

Elevators contain two types of agents representing slow and fast elevators. The goal is

to transport passengers between floors. Elevators problems contain from 3 to 5

agents. Positions of passengers are always public, while elevator positions and

the number of passengers in each elevator are internal. Passenger positions are

changed by actions board and leave with natural meaning.

Logistics domain contains two types of agents, trucks and planes, transporting pack-

ages between cities. Loading and unloading of packages is performed by ac-

tions load and unload, respectively. A goal specifies only the final location of

packages. A transportation task often requires cooperation of several agents.

Logistics problems contain from 3 to 10 agents. The location of an agent is in-

ternal but the location of a package is public.

Openstacks problems contain a manager agent who handles product orders, and

manufacturer agents who produce these ordered products. This problem is

based on minimum maximum simultaneous open stacks combinatorial opti-

mization problem. All information is public including goals specifying that

the orders have been shipped.

Rovers problems contain from 1 to 8 rovers, each represented by one agent. The goal

is to collect samples and communicate acquired data. Every rover is capable of

fulfilling of an arbitrary goal but an agent has limited resources and thus it

is necessary to decide which goal will be fulfilled by which agent. Sample

locations and information about whether the data have been communicated is

public.

Satellites problems contain from 1 to 12 satellite agents taking images in space. The

pointing of a satellite and whether an image has been taken is public. Both

can be included in a goal.

Woodworking domain contains 4 agents representing 7 machines in a production

chain. All information is public.

76 Chapter 6. Experiments

Zenotravel domain contains from 2 to 8 agents representing planes with a limited

fuel. The goal is to transport passengers between cities but it can also specify

positions of some planes. Positions of passengers and planes are public. A fuel

level is internal. Thus, all fly actions are public and only refuel actions are

internal.

These problems, published by the authors of FMAP, are inspired by traditional

benchmark problems of International Planning Competition (IPC)3. In FMAP, the

privacy classification is defined as a list of predicates shared with other agent. It

is therefore possible to specify that some knowledge is shared between only two

agents, for example. However, in these problems all knowledge is always shared

among all the agents. Goals are always public. Let us call this set of problems FMAP

problems and refer to this level of privacy as FMAP privacy.

In FMAP problems, constants known to all agents are often considered to be in-

ternal. For example, every agent knows that there is a road between two cities but

the agents do not know that other agents know it. Thus, for example in Driverlog

domain, every truck publishes its drive action without precondition that there is a

road connecting two cities. In the descriptions, when it is stated that “All information

is public”, the problem can contain these internal constants.

6.1.2 Overall Benchmark Results

Table 6.1 shows an overall coverage of solved problems. We can see that the FMAP

has better results in most of the domains and also in the overall coverage when

compared with basic PSM, PSM-R and PSM-V variants. Nevertheless, we can see that

both PSM-R and PSM-V excel in few domains (PSM-R in Elevators and Logistics, and

PSM-V in Rovers). PSM extended with both features – PSM-VR – keeps the benefits of

these features and outperforms FMAP in the overall score.

A relaxed plan helps especially in Elevators and Logistics domains. In both do-

mains the relaxed plan well captures the coordination points, that is, where the pas-

senger (or package) will be transported by which agent (elevator or truck). The relaxed

plan thus represents a solution outline which is then extended by each agent with

internal actions. This allows to solve the task in a single iteration.

3http://ipc.icaps-conference.org/

6.1. PSM-R and PSM-V Experimental Results 77

Domain FMAP PSM PSM-R PSM-V PSM-VR

Blocksworld (34) 19 27 26 26 26
Depots (20) 6 0 0 0 3
Driverlog (20) 15 10 13 14 14
Elevators (30) 30 1 30 4 30
Logistics (20) 10 0 20 0 20
Openstacks (30) 23 30 30 30 30
Rovers (20) 19 7 6 14 16
Satellite (20) 16 6 6 9 9
Woodworking (30) 22 27 27 27 27
Zenotravel (20) 18 17 18 17 18

Total (244) 178 125 176 141 193

TABLE 6.1: Number of problems solved by the compared planners.
Privacy classification follows FMAP and thus the results are not di-

rectly comparable with MA-STRIPS planners.

Plan verification, represented by PSM-V variant, helped in Driverlog and Rovers

problems where many solutions generated by an agent were unacceptable by some

other agent. In Driverlog, this is caused by the privacy of constants defining the

topology of the world (the predicates link and path describing connected locations).

The convergence is improved by trimming out parts of plans which are impossible

to fulfill, that is, a drive action between locations which are not connected by a

road. In Rovers, the situation is similar – private constants describe abilities of each

rover. When an agent requires some action from another agent which can not be

performed then the verification allows to remove such a plan from landmarks so

that other agents are not confused by it.

Table 6.2 compares run times needed to solve selected tasks solvable by all the

PSM variants. We can see that all the PSM variants scale much better than FMAP,

especially in the Openstacks problems which are all solved in the first iteration. PSM

performs best in most domains. This is a result of the requirement that the selected

problems have to be solvable by all the variants and the basic PSM does not need to

spend time on relaxed plan creation or on verification.

Left graph of Figure 6.1 shows how much time it is needed to solve different

problems by PSM-VR as a function of problem size. The problem size is calculated as

a number of actions and facts of the grounded problem (described in Section 5.5.1).

Right graph of Figure 6.1 shows the time spent during the verification of other

78 Chapter 6. Experiments

FMAP PSM PSM-V PSM-R PSM-VR

Driverlog
p-01 0.6 2.2 (2) 2.3 (2) 1.1 (1) 1.2 (1)
p-05 1.8 33.8 (9) 6.5 (3) 3.2 (2) 4.1 (2)
p-08 11.9 9.6 (3) 6.0 (2) 4.2 (2) 5.4 (2)
p-10 2.1 3.0 (2) 4.3 (2) 3.5 (2) 4.8 (2)
p-13 16.2 13.7 (3) 14.6 (3) 8.2 (2) 8.3 (2)
Openstacks
p-01 1.4 1.7 (1) 1.2 (1) 1.2 (1) 1.4 (1)
p-06 9.7 1.8 (1) 1.7 (1) 1.8 (1) 3.1 (1)
p-11 51.0 1.8 (1) 2.3 (1) 3.3 (1) 5.7 (1)
p-16 171.0 2.2 (1) 4.4 (1) 5.5 (1) 9.1 (1)
p-21 497.0 2.4 (1) 6.4 (1) 8.7 (1) 14.1 (1)
p-26 N/A 2.9 (1) 12.5 (1) 13.3 (1) 22.6 (1)
Woodworking
p-01 2.7 1.2 (1) 2.0 (1) 1.2 (1) 2.1 (1)
p-06 200.3 4.0 (2) 10.2 (2) 3.5 (2) 7.4 (2)
p-11 1.9 1.2 (1) 1.4 (1) 1.2 (1) 1.5 (1)
p-16 N/A 3.2 (2) 5.7 (2) 3.3 (2) 5.7 (2)
p-21 0.4 1.2 (1) 1.3 (1) 1.2 (1) 1.5 (1)
p-26 N/A 1.4 (1) 2.1 (1) 1.5 (1) 2.7 (1)

TABLE 6.2: Comparison of run times on selected problems solved by
all the planners. Times are in seconds, PSM variants have number of

iterations in parenthesis.

FIGURE 6.1: Left: Time needed to solve task as a function of problem
size (log axis; time 2000 means not solved). Right: Portion of time an

agent spends on verification of other agents’ plans.

6.1. PSM-R and PSM-V Experimental Results 79

FIGURE 6.2: Number of iterations and amount of communication of
PSM variants – always taken as average over problems solved by all
methods in the graph (number of problems is appended to the do-

main name).

agents’ plans. It shows that an agent spends less than one third of its computa-

tion time on verification. In average, it is approximately 14% of agent computation

time. The relative time needed for verification is independent on the problem size

and its grow/descent depends on a particular domain.

6.1.3 Communication Overhead Evaluation

Graph 6.2 shows an average number of iterations required to solve problems of se-

lected domains (left), and the amount of communication among the agents (right).

The averages are taken only for the problems solved by all three variants: PSM-R,

PSM-V and PSM-VR. The numbers in parenthesis show how many problems is in

this intersection (note that no Depot nor Logistic problem is solvable by PSM-R and

thus the domains are not included). The performance measured by the number of it-

erations does not differ much over the domains (with the exception of elevators where

the number of iterations of one problem is significantly decreased). The amount of

communication is measured as the total number of actions sent among all agents.

This includes the exchange of public plan projections used as landmarks and also

queries for plan verification. As expected, we can see that verification requires ad-

ditional communication but in several domains this increase is outweighed by the

decrease in number of iterations needed to solve the task.

80 Chapter 6. Experiments

6.2 PSM-VR Privacy Experiments

In this section, we analyze different privacy classifications (Section 6.2.1) and we

compare benchmark domains with respect to these classifications (Section 6.2.2). We

experimentally evaluate the impact of privacy classifications on the performance of

our best PSM-based planner PSM-VR. We compare PSM-VR with other state-of-the-

art MA-STRIPS planners (Section 6.2.3).

6.2.1 Privacy Classifications

In Section 3.2, we have described MA-STRIPS privacy classification which defines

the minimal amount of public information needed to be shared by different agents.

MA-STRIPS requires facts used by actions of at least two different agents to be pub-

lic. We have converted FMAP problems to MA-STRIPS problems (as described in

Section 5.5.1) which reduces the amount of public information. Moreover, we allow

agents to have internal goals which further increases privacy.

We now have four different privacy classifications for our benchmark problem

set. First is the original FMAP privacy setting. Second, denoted FMAP�, is a vari-

ant of FMAP where those facts mentioned only by a single agent are made inter-

nal (which can make some goals internal). Third, denoted MA-STRIPS, is the MA-

STRIPS privacy classification with public goals. Fourth, denoted MA-STRIPS�, is the

MA-STRIPS classification which allows internal goals.

Let FMAP(Π) denote the percentage of private facts in problem Π with respect

to FMAP classification, and similarly for the other three privacy classifications. It

certainly holds that FMAP(Π) ≤ FMAP�(Π) and MA-STRIPS(Π) ≤ MA-STRIPS�(Π),

and finally FMAP(Π) ≤ MA-STRIPS(Π).

6.2.2 Privacy in Benchmark Domains

Privacy of agent knowledge in different domains with these privacy classifications

is following:

Blocksworld

FMAP: All information is public.

6.2. PSM-VR Privacy Experiments 81

FMAP�: Information what each agent is holding is made internal (predicate

holding). This predicate is never part of the goal and thus all goals are

public.

MA-STRIPS: Facts that do not need to be shared are internal including all

instances of predicate holding. Nevertheless, every action changes the

position of a block which affects every other agent, and thus all the action

are public.

MA-STRIPS�: Same as MA-STRIPS.

Depots

FMAP: All information is public.

FMAP�: The location of a truck is internal (predicate at). This predicate is

never part of any goal and thus all goals are public.

MA-STRIPS: Truck locations and truck loads are always internal. The position

of a crate is specified by predicate on. A crate can be either on a hoist or

on a truck. When it is on a truck, the predicate is internal.

MA-STRIPS�: Same as MA-STRIPS.

Driverlog

FMAP: All information is known by each agent. Nevertheless, some constants

are defined as internal (link and path).

FMAP�: Driver locations are internal (predicate at). Those parts of a goal spec-

ifying driver locations are internal.

MA-STRIPS: The location of a driver (predicate at) is internal if it is not part

of a goal. Actions walk changing driver’s position are also internal unless

they mention some public position.

MA-STRIPS�: Predicate at is always internal and the respective parts of goals

are internal to some agent.

Elevators

FMAP: Positions of passengers are always public while elevator positions and

the number of passengers in each elevator are internal.

82 Chapter 6. Experiments

FMAP�: Same as FMAP.

MA-STRIPS: Only passenger positions at floors accessible by two or more el-

evators and goal positions are public. Actions board and leave at these

floors are public. All other information is internal.

MA-STRIPS�: Positions of passengers at floors accessible by only one elevator

and respective board/leave actions are internal.

Logistics

FMAP: Agent locations are internal but the package location is public.

FMAP�: Same as FMAP.

MA-STRIPS: Locations of packages accessible to only one truck or plane are

internal to appropriate agent. Actions load and unload at these locations

are internal too.

MA-STRIPS�: Same as MA-STRIPS.

Openstacks

FMAP: All information is public including goals that the orders have been

shipped.

FMAP�: Information about orders (predicates waiting and shipped), includ-

ing all goals, is known to manager only. Manufacturers have empty goals.

MA-STRIPS: Instances of predicate waiting are internal. Goal facts shipped

are public.

MA-STRIPS�: Same as FMAP�.

Rovers

FMAP: Locations of samples and whether the data have been communicated

are public.

FMAP�: Same as FMAP.

MA-STRIPS: If a sample can be analyzed by only one rover then the location

of this sample is agent’s internal fact.

MA-STRIPS�: Same as MA-STRIPS.

Satellites

6.2. PSM-VR Privacy Experiments 83

FMAP: Pointings of satellites and whether the image has been taken is pub-

lic.Both are used by goals.

FMAP�: Pointings of satellites are internal (predicate pointing). This is occa-

sionally internal part of a goal.

MA-STRIPS: Pointings of satellites are internal unless they appear in a goal.

MA-STRIPS�: Same as FMAP�.

Woodworking

FMAP: All information is public.

FMAP�: Constants and the internal state, specifying whether some board is

loaded in the highspeed saw (predicate in-highspeed-saw), are internal.

MA-STRIPS: As in FMAP�. Moreover, saw agent always starts the produc-

tion chain and thus the availability of resources is its internal knowl-

edge (that is, predicate available). Saw agent has to perform at least

two actions before it produces an intermediate product needed by other

agents. Thus these initial actions are also internal (for example, action

load-highspeed-saw).

MA-STRIPS�: Same as MA-STRIPS.

Zenotravel

FMAP: Positions of passengers and planes are public. A fuel level is internal.

Thus, all fly actions are public and only refuel actions are internal.

FMAP�: Positions of planes are internal (predicate at). Thus, only positions of

passengers are public. Therefore, actions fly and zoom (which is actually

a shortcut for two fly actions) are internal.

MA-STRIPS: Same as FMAP�, except that goal facts that are public and the po-

sitions of passengers (predicate in) in cities reachable by only one plane,

which are internal.

MA-STRIPS�: Similarly to FMAP�, positions of planes are always internal.

Moreover, positions of passengers (predicate in) in cities reachable by

only one plane are also internal.

Privacy classifications on benchmark domains, measured as a relative ratio of

internal facts and actions, are demonstrated in Table 6.3.

84 Chapter 6. Experiments

FMAP FMAP� MA-STRIPS MA-STRIPS�

Blocksworld 0% 0% 16% 0% 26% 0% 26% 0%
Depots 0% 0% 5% 6% 39% 6% 39% 6%
Driverlog 0% 0% 38% 10% 36% 8% 38% 10%
Elevators 33% 18% 33% 18% 74% 37% 74% 37%
Logistics 9% 10% 9% 10% 70% 32% 70% 32%
Openstacks 0% 0% 34% 0% 17% 0% 34% 0%
Rovers 70% 54% 70% 54% 77% 59% 77% 59%
Satellite 19% 3% 46% 79% 48% 76% 48% 79%
Woodworking 3% 0% 4% 0% 29% 2% 29% 2%
Zenotravel 19% 8% 35% 83% 60% 77% 61% 83%

TABLE 6.3: Percentage of internal facts (left) and actions (right) in
benchmark domains with respect to different privacy classifications.

Values are averages over problems in each domain.

6.2.3 Privacy Benchmarks

In Section 6.1 above we have compared our PSM-based planners with FMAP on

problems with FMAP privacy classification. Now we compare our best PSM-VR

with MA-STRIPS based algorithms RDFF and GPPP. Both planners, similarly to

FMAP, are state-space search planners. RDFF (Štolba and Komenda, 2014) is based

on distribution of A* algorithm with distributed heuristics with a variable number of

agents involved in heuristic estimation. Greedy Privacy Preserving Planner (GPPP)

(Maliah, Shani, and Stern, 2014) is based on an iterative deepening search in relaxed

subproblems enhanced with landmarks. Table 6.4 shows that PSM-VR outperforms

both state-of-the-art algorithms4, even though GPPP solved more instances of De-

pots, Satellite and Zenotravel domains.

Table 6.5 shows overall results of PSM-VR algorithm for all privacy settings. Un-

fortunately, we are not aware of any planner that could be used to compare the

performance on problems with internal goals. We can see that in some domains,

increased privacy improves the performance of the planner, while in others, the per-

formance decreases. For example, in Satellites problems, the most difficult goal is the

final position pointing of a satellite (predicate pointing). If this goal is internal, then

the complexity of the problem decreases. The opposite case is represented by Open-

stacks domain. When the goals are public then a producer (agent manufacturer) can

4We would like to thank Michal Štolba for evaluating RDFF and GPPP on our benchmarks.

6.2. PSM-VR Privacy Experiments 85

Domain RDFF GPPP PSM-VR

Blocksworld (34) 6.8 3 26
Depots (20) 6.2 8 6
Driverlog (20) 14 9 15
Elevators (30) 2.9 16† 30
Logistics (20) 5.8 20 20
Openstacks (30) 11.7 0‡ 30
Rovers (20) 14.7 10 18
Satellite (20) 10.8 16 11
Woodworking (30) 5.6 0‡ 24
Zenotravel (20) 6.1 20 13

Total (244) 84.6 102 193

TABLE 6.4: Number of MA-STRIPS problems solved by the compared
planners: RDFF, GPPP, and PSM-VR. †Used version of the domain
in GPPP experiments without action costs, consisting of 16 problems.

‡GPPP does not support action costs.

FIGURE 6.3: Performance of PSM-VR with different privacy classifica-
tions measured by the number of iterations and amount of commu-
nication. Values are averages over those problems solved by all the
planners. Number of the problems considered for each domain is in

parenthesis.

86 Chapter 6. Experiments

Domain FMAP FMAP� MA-STRIPS MA-STRIPS�

Blocksworld (34) 26 24 26 26
Depots (20) 3 4 6 4
Driverlog (20) 14 15 15 15
Elevators (30) 30 30 30 30
Logistics (20) 20 20 20 20
Openstacks (30) 30 12 30 26
Rovers (20) 16 14 18 18
Satellite (20) 9 18 11 17
Woodworking (30) 27 22 24 23
Zenotravel (20) 18 16 13 16

Total (244) 193 175 193 195

TABLE 6.5: Problem coverage of PSM-VR on benchmark domains
with different privacy classifications. Number of problems in each

domain is in parenthesis.

more easily create a plan fitting the requirements of a consumer (agent manager). In-

ternal goals improve the performance with MA-STRIPS classifications, but the effect

on FMAP classifications is the opposite. The best overall coverage is for MA-STRIPS�

with 195 solved problems out of 244 problems. This shows that increase of internal

facts do not only support privacy but it can also improve performance.

6.3 PSM-D Experimental Results

For experimental evaluation of reduction of internal dependencies (Section 5.1) we

use benchmark results from the CoDMAP’15 competition5. The benchmark set con-

tains 12 domains with 20 problems per domain. Each agent has its own domain and

problem files containing description of known facts and actions. Additionally, some

facts/predicates are specified as private and thus should not be communicated to

other agents. The privacy classification roughly corresponds to MA-STRIPS.

We firstly present analysis of internal dependencies and their reductions in Sec-

tion 6.3.1. Then, in Section 6.3.2, we present results independently evaluated by

organizers of the CoDMAP’15 competition.

5See http://agents.fel.cvut.cz/codmap

6.3. PSM-D Experimental Results 87

Domain
Facts

/ Public
Merge
facts

Fact
disclosure

Actions
/ Public

Success

Blocksworld 787 / 733 53 100 % 1368 / 1368 100 %
Depots 1203 / 1139 56 85 % 2007 / 2007 100 %
Driverlog 1532 / 1419 16 25 % 7682 / 7426 100 %
Elevators 509 / 343 43 29 % 2060 / 1767 70 %
Logitics 240 / 154 56 63 % 342 / 298 100 %
Rovers 2113 / 1251 31 3 % 3662 / 1555 13 %
Satellite 846 / 578 0 0 % 8839 / 914 1 %
Taxi 177 / 173 0 0 % 107 / 107 100 %
Wireless 1456 / 1421 25 73 % 1809 / 1809 100 %
Woodworking 1448 / 1425 7 27 % 4126 / 4126 100 %
Zenotravel 1349 / 1204 0 0 % 13516 / 2364 0 %

TABLE 6.6: Results of the analysis of internal dependencies of public
actions in benchmark domains.

6.3.1 Domain Analysis

In this section, we present analysis of internal dependencies of public action in the

benchmark problems.

We have evaluated internal dependencies of public actions within benchmark

problems by constructing full dependency graph for every agent in every bench-

mark problem. We have applied Algorithm 5 to reduce full dependency graphs to

an irreducible publicly equivalent dependency graph. The results of the analysis

are presented in Table 6.6. The table columns have the following meaning. Column

(Facts / Public) represents an average number of all facts, and of public facts respec-

tively, in a domain problem. Column (Merge facts) represents an average size of

facts(∆) in the resulting irreducible dependency graph. Column (Fact disclosure)

represents the percentage of published merge facts with respect to all the internal

facts. Column (Actions / Public) represents an average number of all actions, and of

public actions respectively, in a domain problem. Column (Success) represents the

percentage of agents capable of reducing their full dependency graph to a publicly

equivalent graph without internal actions.

We can see that seven of the benchmark domains, namely Blocksworld, Depots,

Driverlog, Logistics, Taxi, Wireless, and Woodworking were found simply dependent.

All the problems in these domains can be solved by solving a local problem of a

single agent. On the contrary, in most problems of domains Rovers, Satellite, and

Zenotravel, none of the agents were able to reduce its full dependency graph so that

88 Chapter 6. Experiments

FIGURE 6.4: Comparison of planning times (in seconds) of PSM-VR
algorithm without (X axis) and with (Y axis) internal problem reduc-

tion.

it contains no internal actions. Hence the agents in these domain publish only the

minimal dependency graphs and hence the analysis does not help in solving them.

Finally, in Elevators domain, some of the agents succeeded in reducing their full de-

pendency graphs and thus the analysis can partially help to solve them.

6.3.2 Experimental Results

To evaluate the impact of dependency analysis, we use two variants of our PSM plan-

ner submitted to the CoDMAP’15 competition (Tožička, Jakubův, and Komenda,

2015b). Namely, we use planner PSM-VR (Section 5.2 and Section 5.4.1) and its ex-

tension with dependency analysis PSM-VRD (Section 5.1).

Figure 6.4 evaluates the impact of the dependency analysis on CoDMAP bench-

mark problems. For each problem, a point is drawn at the position corresponding to

the runtime without dependency analysis (x-coordinate) and the runtime with de-

pendency analysis (y-coordinate). Hence the points below the diagonal constitute

improvements. Results show that the dependency analysis decreases overall plan-

ning time of PSM algorithm. We can see that in few cases the time increases which is

6.3. PSM-D Experimental Results 89

Domain # M
A

P
L

A
N

L
M

C
U

T
‡

M
A

P
L

A
N

M
A

-L
M

C
U

T
‡

M
H

-F
M

A
P

M
A

P
L

A
N

FF
+D

T
G

P
S

M
-V

R

P
S

M
-V

R
D

Blocksworld 20 2 1 0 14 12 20
Depots 20 5 2 2 10 1 16
Driverlog 20 15 9 18 18 16 20
Elevators 20 2 0 9 9 2 5
Logitics 20 4 5 4 16 0 16
Openstacks 20 1 1 8 18 14 18
Rovers 20 2 4 18 19 13 13
Satellite 20 13 4 4 14 7 17
Taxi 20 19 14 20 19 9 20
Wireless 20 3 2 0 4 0† 0†

Woodworking 20 3 4 8 14 9 19
Zenotravel 20 6 6 16 19 16 16
Coverage 240 75 52 107 174 99 180

TABLE 6.7: Official results of CoDMAP multi-agent planner competi-
tion (http://agents.fel.cvut.cz/codmap/results/). Table
shows overall coverage of solved problem instances. ‡This is opti-
mal planner. †This post-submission domain was not supported by
the planner parser. These results are presented with the consent of

CoDMAP organizers.

caused by the time consumed by reduction process. Also, by publishing additional

facts, the problem size can grow and thus it can become harder to solve.

Tables 6.7, 6.8, and 6.9 show official results of the CoDMAP competition. We can

see that the dependency analysis significantly improved the performance of PSM-

VR planner. Moreover, PSM-VRD achieved the overall best coverage in 8 out of 12

domains. As expected, the highest coverage directly corresponds to the success of

dependency analysis. The table also shows results of two additional criteria com-

paring the quality (IPC Score) of solutions and the time (IPC Agile Score) need to

find the solution. In both criteria PSM-VRD performed very well even though it was

outperformed by MAPLAN-FF+DTG planner in the IPC Agile Score.

Table 6.10 shows times the planners needed to solve problems. Problems contain

only those solved by all the planners. Some planners did not solved any problems of

90 Chapter 6. Experiments

Domain # M
A

P
L

A
N

L
M

C
U

T
‡

M
A

P
L

A
N

M
A

-L
M

C
U

T
‡

M
H

-F
M

A
P

M
A

P
L

A
N

FF
+D

T
G

P
S

M
-V

R

P
S

M
-V

R
D

Blocksworld 20 2 1 0 7 11 17

Depots 20 5 2 2 6 1 15

Driverlog 20 15 9 17 12 14 16

Elevators 20 2 0 8 6 1 4

Logitics 20 4 5 4 13 0 15

Openstacks 20 1 1 8 18 9 12

Rovers 20 2 4 18 16 5 5

Satellite 20 13 4 4 10 6 13

Taxi 20 19 14 17 15 6 16

Wireless 20 3 2 0 4 0† 0†

Woodworking 20 3 4 7 13 8 17

Zenotravel 20 6 6 15 15 10 10

IPC Score 240 75 52 100 135 72 140

TABLE 6.8: Official results of CoDMAP multi-agent planner competi-
tion (http://agents.fel.cvut.cz/codmap/results/). Table
shows IPC score over the plan quality Q (a sum of Q∗/Q over all
problems, where Q∗ is the cost of an optimal plan, or of the best plan
found by any of the planners for the given problem during the com-
petition). ‡This is optimal planner. †This post-submission domain
was not supported by the planner parser. These results are presented

with the consent of CoDMAP organizers.

6.3. PSM-D Experimental Results 91

Domain # M
A

P
L

A
N

L
M

C
U

T
‡

M
A

P
L

A
N

M
A

-L
M

C
U

T
‡

M
H

-F
M

A
P

M
A

P
L

A
N

FF
+D

T
G

P
S

M
-V

R

P
S

M
-V

R
D

Blocksworld 20 1 0 0 14 5 14

Depots 20 3 1 1 9 0 14

Driverlog 20 10 4 11 17 7 14

Elevators 20 1 0 4 8 1 4

Logitics 20 3 2 2 13 0 14

Openstacks 20 0 0 3 18 7 8

Rovers 20 1 1 7 19 6 6

Satellite 20 10 2 1 13 3 12

Taxi 20 14 7 10 19 3 15

Wireless 20 3 2 0 2 0† 0 †

Woodworking 20 2 3 4 9 5 18

Zenotravel 20 5 4 10 18 8 8

Agile Score 240 52 27 52 159 45 127

TABLE 6.9: Official results of CoDMAP multi-agent planner compe-
tition (http://agents.fel.cvut.cz/codmap/results/). Ta-
ble shows IPC Agile score over the planning time T (a sum of
1/(1 + log10(T/T ∗)) over all problems, where T ∗ is the runtime of the
fastest planner for the given problem during the competition). ‡This
is optimal planner. †This post-submission domain was not supported
by the planner parser. These results are presented with the consent of

CoDMAP organizers.

92 Chapter 6. Experiments

Domain # M
A

P
L

A
N

L
M

C
U

T
‡

M
A

P
L

A
N

M
A

-L
M

C
U

T
‡

M
H

-F
M

A
P

M
A

P
L

A
N

FF
+D

T
G

P
S

M
-V

R

P
S

M
-V

R
D

Depots 1 2 3 12 1 56 4

Driverlog 9 18 622 28 14 172 39

Rovers 1 1296 1396 47 1 15 13

Satellite 2 1634 496 17 2 22 22

Taxi 7 18 331 212 11 2525 32

Woodworking 1 4 5 25 2 29 6

Zenotravel 6 11 57 23 1806 54 53

Total 27 2983 2910 363 1836 2873 168

TABLE 6.10: Official results of CoDMAP multi-agent planner compe-
tition (http://agents.fel.cvut.cz/codmap/results/). Ta-
ble shows sum of times (in seconds) needed to solve selected prob-
lems. Selected problems contain problems solved by all the planners.
‡This is optimal planner. These results are presented with the consent

of CoDMAP organizers.

6.3. PSM-D Experimental Results 93

some domains and thus these domains were omitted. We can see that even though

PSM-VRD did not solved any problem in the fastest time, it outperformed other plan-

ners in total. Reductions of internal dependencies allowed achieve more uniform

planning times (especially, it significantly reduced long planning times of Driverlog

and Taxi domains). In total, it allowed to improve the performance of PSM-VR more

than 17-times.

Chapter 7

Conclusions

“Now I can eat well, sleep well and be glad.

I can go everywhere with a good feeling.”

Geronimo

The problem of multi-agent domain-independent planning is a natural and realistic

extension of classical planning and thus it has attracted a lot of attention among re-

searchers recently. The research focuses on the whole range of related problems from

the problem definition and languages for problem description to the implementation

of various planners. So far, most of the planner implementations were based on dis-

tribution of existing centralized solvers for classical planning. In this thesis, we have

decided to take a different approach. We designed a novel planner that focuses on

inter-agent coordination and naturally allows to be executed in parallel by all the

agents.

The first part of the thesis formally introduced the problem of privacy-preserving

multi-agent domain-independent planning and related terminology. Then, we in-

troduced a novel planner scheme combining coordination-space search with com-

pilation to classical planning. We proposed a compact representation of large and

possibly infinite sets of local plans in the form Planning State Machines (PSM). PSMs

allowed us to effectively implement desired operations, namely PSM intersection

and public projection. We have also shown how this planning approach can be used

to find all solutions to the problem during a single iteration of communication be-

tween the agents.

96 Chapter 7. Conclusions

The core of the thesis extends the proposed generic planning scheme with im-

provements and heuristics. We proposed several practical improvements to increase

the effectiveness and coverage of the basic algorithm. Distributed delete-relaxation

heuristic (PSM-R), approximative plan analysis (PSM-V), and reduction of internal

dependencies (PSM-D), all proved to be effective in practice. Each of the improve-

ments helps to solve a particular class of problems and we have shown that all the

improvements can be combined together without impairing each other (PSM-VRD).

Finally, the last part of the thesis focuses on experimental evaluation of the plan-

ner and its improvements. These experiments revealed that the created PSM-VRD

planner outperforms state-of-the-art planners. Moreover, this result was confirmed

by an independent evaluation at the CoDMAP’15 competition.

Experimental results confirm that exploiting the problem of agent coordination

is a viable approach to multi-agent planning.

7.1 Thesis Achievements

This section summarizes the achievements of this thesis. The following list repre-

sents published results that extended the state of the art in multi-agent planning:

(1) Design of novel coordination-space distributed iterative multi-agent planner scheme.

This thesis describes planning by plan set intersection and proposes a general

iterative scheme to implement it.

(2) Effective representation of sets of local solutions.

Planning state machines are introduced to compactly represent even countably

infinite sets of plans. Required operations are described and their properties

are proved.

(3) PSM-VRD planner implementation.

Proposed scheme of the coordination-space planner is implemented and the

proof of soundness and completeness is provided. Three extensions of the

basic algorithm are introduced and analyzed in detail.

7.1. Thesis Achievements 97

(4) Novel graph representation of planning problem.

This thesis defines novel graph representation of planning problem. This rep-

resentation is used for representation of internal dependencies of public ac-

tions and their analysis.

(5) Reductions of internal dependencies.

Graph representation of internal dependencies allows us to design and imple-

ment safe reductions. These reductions are shown to enable the detection of

problems that can be trivially solved and to significantly improve the time-

efficiency of solving many other problems. Similar reductions have been suc-

cessfully used in classical planning as a preprocessing step (Tožička et al.,

2016).

(6) Experimental evaluation of the planner.

This thesis provides thorough experimental evaluation of the implemented

planner and its variants on the state-of-the-art multi-agent planning problems

and their comparison with other state-of-the-art multi-agent planners.

(7) Privacy preservation analysis.

The algorithm, together with its extensions is analyzed with respect to the pro-

tection of private information. Moreover, the thesis shows that PSM-VRD facil-

itates operation under various privacy specifications.

(8) Winner of the CoDMAP’15 competition.

The implemented planner participated at the CoDMAP’15 international com-

petition of multi-agent planners, and won its distributed track.

(9) Best Student Paper Award at ICAART’16

The article describing reductions of internal dependencies has been awarded

the Best Student Paper Award at ICAART’16 conference.

The described achievements demonstrate that all the objectives described in Sec-

tion 1.1.1 were accomplished, while the results exceeded our expectations. This in-

cludes the bonus objective aiming to make a contribution to the research of classi-

cal planning, which was accomplished by polynomial reductions of planning prob-

lems (Tožička et al., 2016).

98 Chapter 7. Conclusions

7.2 Selected Related Publications

This section provides an overview of the author’s publications related to multi-agent

planning. Moreover, it also lists the author’s articles on diverse planning, which is

problem closely related to the content of this thesis (especially to the generation of

local solutions, see Section 5.3).

Multi-Agent Planning Articles

Articles in Impacted Journals

• Jan Tožička, Jan Jakubův, Antonı́n Komenda, Michal Pěchouček: Privacy-con-

cerned multiagent planning. Knowl. Inf. Syst. 48(3): 581-618 (2016).

Articles in Proceedings

• Jan Tožička, Michal Štolba, Antonı́n Komenda: ε-Strong Privacy Preserving

Multiagent Planner by Computational Tractability. ICAART 2017: (to appear).

• Jan Tožička, Jan Jakubův, Martin Svatoš, Antonı́n Komenda: Recursive Poly-

nomial Reductions for Classical Planning. ICAPS 2016: 317-325.

• Michal Štolba, Jan Tožička, Antonı́n Komenda: Secure Multi-Agent Planning.

PrAISe@ECAI 2016: 11:1-11:8.

• Michal Štolba, Jan Tožička, Antonı́n Komenda: Secure Multi-Agent Planning

Algorithms. ECAI 2016: 1714-1715.

• Jan Tožička, Jan Jakubův, Antonı́n Komenda: Recursive Reductions of Internal

Dependencies in Multiagent Planning. ICAART (2) 2016: 181-191.

• Jan Tožička, Jan Jakubův, Antonı́n Komenda: From Public Plans to Global So-

lutions in Multiagent Planning. EUMAS/AT 2015: 21-33.

• Jan Tožička, Jan Jakubův, Antonı́n Komenda: On Internally Dependent Public

Actions in Multiagent Planning. DMAP 2015: 18-24.

• Jan Jakubův, Jan Tožička, Antonı́n Komenda: Multiagent Planning by Plan Set

Intersection and Plan Verification. ICAART (2) 2015: 173-182.

7.2. Selected Related Publications 99

• Jan Jakubův, Jan Tožička, Antonı́n Komenda: Using Process Calculi for Plan

Verification in Multiagent Planning. ICAART (Revised Selected Papers) 2015:

245-261.

• Jan Tožička, Jan Jakubův, Antonı́n Komenda: Generating Multi-Agent Plans

by Distributed Intersection of Finite State Machines. ECAI 2014: 1111-1112.

• Jan Tožička, Jan Jakubův, Karel Durkota, Antonı́n Komenda, Michal Pěchou-

ček: Multiagent Planning Supported by Plan Diversity Metrics and Landmark

Actions. ICAART (1) 2014: 178-189.

Diverse Planning Articles

Articles in Impacted Journals and Book Chapters

• Jan Tožička, Antonı́n Komenda: Diverse Planning for UAV Control and Re-

mote Sensing. Sensors 16(12):2199 (2016).

• Jan Tožička, Jan Jakubův, Karel Durkota, Antonı́n Komenda: Extensibility Ba-

sed Multiagent Planner with Plan Diversity Metrics. Trans. Computational

Collective Intelligence 20: 117-139 (2015).

Articles in Proceedings

• Jan Tožička, David Šišlák, Michal Pěchouček: Planning of Diverse Trajectories

for UAV Control Displays. AAMAS 2013: 1231-1232.

• Jan Tožička, Jan Balata, Zdeněk Mikovec: Diverse Trajectory Planning for UAV

Control Displays. AAMAS 2013: 1411-1412.

• Jan Tožička, David Šišlák, Michal Pěchouček: Planning of Diverse Trajectories.

ICAART (2) 2013: 120-129.

• Jan Tožička, David Šišlák, Michal Pěchouček: Diverse Planning for UAV Tra-

jectories. ICAART (Revised Selected Papers) 2013: 277-292.

Bibliography

Amir, Eyal and Barbara Engelhardt (2003). “Factored Planning”. In: Proceedings of

the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI) 2003,

pp. 929–935.

Bacchus, Fahiem and Qiang Yang (1994). “Downward Refinement and the Efficiency

of Hierarchical Problem Solving”. In: Artificial Intelligence 71.1, pp. 43–100.

Bhattacharya, Subhrajit, Vijay Kumar, and Maxim Likhachev (2010). “Search-Based

Path Planning with Homotopy Class Constraints.” In: Third Annual Symposium on

Combinatorial Search (SOCS) 2010. Ed. by Ariel Felner and Nathan R. Sturtevant.

AAAI Press.

Blum, Avrim L. and Merrick L. Furst (1995). “Fast Planning Through Planning Graph

Analysis”. In: Artificial Intelligence 90.1, pp. 1636–1642.

Bonet, Blai and Hctor Geffner (2001). “Planning as Heuristic Search”. In: Artificial

Intelligence 129, pp. 5–33.

Borrajo, Daniel (2013). “Plan Sharing for Multi-Agent Planning”. In: Proceedings of

Second Workshop on Distributed and Multi-Agent Planning (DMAP), Workshop of

ICAPS 2013, pp. 57–65.

Boutilier, Craig and Ronen I. Brafman (2001). “Partial Order Planning with Concur-

rent Interacting Actions”. In: Journal of Artificial Intelligence Research 14, pp. 105–

136.

Brafman, Ronen I. (2015). “A Privacy Preserving Algorithm for Multi-Agent Plan-

ning and Search”. In: Proceedings of the Twenty-Fourth International Joint Conference

on Artificial Intelligence (IJCAI) 2015, pp. 1530–1536.

Brafman, Ronen I. and Carmel Domshlak (2006). “Factored Planning: How, When,

and When Not”. In: Proceedings, The Twenty-First National Conference on Artificial

Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence 2006,

pp. 809–814.

102 BIBLIOGRAPHY

Brafman, Ronen I. and Carmel Domshlak (2008). “From One to Many: Planning for

Loosely Coupled Multi-Agent Systems”. In: Proceedings of the Eighteenth Inter-

national Conference on Automated Planning and Scheduling (ICAPS) 2008. Vol. 8,

pp. 28–35.

Brenner, Michael (2003). “Multiagent Planning with Partially Ordered Temporal

Plans”. In: Proceedings of the Eighteenth International Joint Conference on Artificial

Intelligence (IJCAI) 2003. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., pp. 1513–1514.

Bylander, Tom (1994). “The Computational Complexity of Propositional STRIPS

Planning”. In: Artificial Intelligence 69, pp. 165–204.

Chrpa, Lukáš (2010). “Generation of Macro-Operators via Investigation of Action

Dependencies in plans”. In: Knowledge Engineering Review 25.3, pp. 281–297.

Clarke, Edward H. (1971). “Multipart Pricing of Public Goods”. In: Public Choice 11.1,

pp. 17–33. ISSN: 1573-7101.

Darwiche, Adnan and Mark Hopkins (2001). “Using Recursive Decomposition to

Construct Elimination Orders, Jointrees, and Dtrees”. In: Proceedings of Symbolic

and Quantitative Approaches to Reasoning with Uncertainty, Sixth European Confer-

ence (ECSQARU) 2001, pp. 180–191.

Dimopoulos, Yannis, Muhammad Adnan Hashmi, and Pavlos Moraitis (2010). “Ex-

tending SATPLAN to Multiple Agents”. In: Proceedings of the Thirtieth Interna-

tional Conference on Innovative Techniques and Applications of Artificial Intelligence

(SGAI) 2010, pp. 137–150.

Durkota, Karel and Antonı́n Komenda (2013). “Deterministic Multiagent Planning

Techniques: Experimental Comparison (Short paper)”. In: Proceedings of Second

Workshop on Distributed and Multi-Agent Planning (DMAP), Workshop of ICAPS

2013, pp. 43–47.

Fabre, Eric et al. (2010). “Cost-Optimal Factored Planning: Promises and Pitfalls”.

In: Proceedings of the Twentieth International Conference on Automated Planning and

Scheduling (ICAPS) 2010, pp. 65–72.

Fikes, Richard E. and Nils J. Nilsson (1971). “STRIPS: A New Approach to the Ap-

plication of Theorem Proving to Problem Solving”. In: Proceedings of the Second

International Joint Conference on Artificial Intelligence (IJCAI) 1971, pp. 608–620.

BIBLIOGRAPHY 103

Ghallab, Malik, Dana S. Nau, and Paolo Traverso (2004). Automated Planning: Theory

and Practice. Elsevier. ISBN: 9781558608566.

Groves, Theodore (1973). “Incentives in Teams”. In: Econometrica 41.4, pp. 617–631.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A Formal Basis for the

Heuristic Determination of Minimum Cost Paths”. In: IEEE Transactions on Sys-

tems Science and Cybernetics 4.2, pp. 100–107. ISSN: 0536-1567.

Helmert, Malte et al. (2007). “Flexible Abstraction Heuristics for Optimal Sequential

Planning”. In: Proceedings of the Seventeenth International Conference on Automated

Planning and Scheduling (ICAPS) 2007, pp. 176–183.

Hoffmann, Jörg and Bernhard Nebel (2001). “The FF Planning System: Fast Plan

Generation Through Heuristic Search”. In: Journal of Artificial Intelligence Research

(JAIR) 14, pp. 253–302.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman (2006). Introduction to

Automata Theory, Languages, and Computation (3rd Edition). Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc. ISBN: 0321455363.

Jakubův, Jan, Jan Tožička, and Antonı́n Komenda (2015). “Multiagent Planning by

Plan Set Intersection and Plan Verification”. In: Proceedings of the Sevent Interna-

tional Conference on Agents and Artificial Intelligence (ICAART) 2015, pp. 173–182.

Jakubův, Jan and Joe B. Wells (2010). “Expressiveness of Generic Process Shape Ty-

pes”. In: Proceedings of the Fifth International Conference on Trustworthly Global Com-

puting (TGC) 2010. Vol. 6084. Lecture Notes in Computer Science (LNCS). Sprin-

ger, pp. 103–119. ISBN: 978-3-642-15639-7.

Jensen, Rune M. and Manuela M. Veloso (2000). “OBDD-based Universal Planning

for Synchronized Agents in Non-Deterministic Domains”. In: Journal of Artificial

Intelligence Research 13, pp. 189–226.

Jezequel, Loı̈g and Eric Fabre (2012). “A#: A Distributed Version of A* for Factored

Planning”. In: Proceedings of the Fifty-First IEEE Conference on Decision and Control

(CDC) 2012, pp. 7377–7382.

Jonsson, Anders and Michael Rovatsos (2011). “Scaling Up Multiagent Planning: A

Best-Response Approach”. In: Proceedings of the Twenty-First International Confer-

ence on Automated Planning and Scheduling (ICAPS) 2011, pp. 114–121.

104 BIBLIOGRAPHY

Jonsson, Peter and Christer Bäckström (1998). “Tractable Plan Existence Does Not

Imply Tractable Plan Generation”. In: Annals of Mathematics and Artificial Intelli-

gence 22, pp. 281–296.

Kautz, Henry, David Mcallester, and Bart Selman (1996). “Encoding Plans in Propo-

sitional Logic”. In: Knowledge Representation and Reasoning. Morgan Kaufmann,

pp. 374–384.

Kautz, Henry A., Bart Selman, and Jörg Hoffmann (2006). “SatPlan: Planning as Sat-

isfiability”. In: Abstracts of the Fifth International Planning Competition.

Kelareva, Elena et al. (2007). “Factored Planning Using Decomposition Trees”. In:

Proceedings of the Twentieth International Joint Conference on Artificial Intelligence

(IJCAI) 2007, pp. 1942–1947.

Kitano, Hiroaki et al. (1999). “RoboCup Rescue: Search and Rescue in Large-Scale

Disasters as a Domain for Autonomous Agents Research”. In: IEEE International

Conference on Systems, Man, and Cybernetics. IEEE Computer Society, pp. 739–746.

Kovács, Dániel. L. (2012). “A Multi-Agent Extension of PDDL3.1”. In: Proceedings

of the Third Workshop on the International Planning Competition (IPC), Workshop of

ICAPS 2012. Atibaia, So Paulo, Brazil, pp. 19–27.

Lansky, Amy L. and Lise Getoor (1995). “Scope and Abstraction: Two Criteria for

Localized Planning”. In: Proceedings of the Fourteenth International Joint Conference

on Artificial Intelligence (IJCAI) 1995, pp. 1612–1619.

Makholm, Henning and Joe B. Wells (2005). “Instant Polymorphic Type Systems for

Mobile Process Calculi: Just Add Reduction Rules and Close”. In: Proceedings of

Fourteenth European Symposium on Programming (ESOP) 2005. Vol. 3444. Lecture

Notes in Computer Science (LNCS). Springer, pp. 389–407. ISBN: 3-540-25435-8.

Maliah, Shlomi, Guy Shani, and Roni Stern (2014). “Privacy Preserving Landmark

Detection”. In: Proceedings of Twenty-First European Conference on Artificial Intelli-

gence (ECAI) 2014.

Mundhenk, Martin et al. (2000). “Complexity of Finite-horizon Markov Decision

Process Problems”. In: Journal of ACM 47.4, pp. 681–720. ISSN: 0004-5411.

Newell, Allen, John C. Shaw, and Herbert A. Simon (1959). “Report on a General

Problem-Solving Program”. In: Proceedings of the International Conference on Infor-

mation Processing, pp. 256–264.

BIBLIOGRAPHY 105

Nissim, Raz and Ronen Brafman (2012a). “Multi-Agent A* for Parallel and Distribu-

ted Systems”. In: Proceedings of Workshop on Heuristics and Search for Domain-

Independent Planning, Workshop of ICAPS 2012, pp. 43–51.

Nissim, Raz and Ronen I. Brafman (2012b). “Multi-Agent A* for Parallel and Dis-

tributed Systems”. In: Proceedings of Eleventh International Conference on Autono-

mous Agents and Multiagent Systems (AAMAS) 2012. Valencia, Spain, pp. 1265–

1266. ISBN: 0-9817381-3-3, 978-0-9817381-3-0.

— (2013). “Cost-Optimal Planning by Self-Interested Agents”. In: Proceedings of the

Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI) 2013. Bellevue,

Washington: AAAI Press, pp. 732–738.

Nissim, Raz, Ronen I. Brafman, and Carmel Domshlak (2010). “A General, Fully

Distributed Multi-Agent Planning Algorithm”. In: Proceedings of Ninth Interna-

tional Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2010,

pp. 1323–1330.

Oglietti, Marcelo and Amedeo Cesta (2004). “CSTRIPS: Towards Explicit Concur-

rent Planning”. In: Proceedings of Ninth National Symposium of ’Associazione Ital-

iana per l’Intelligenza Artificiale (AI*IA) 2004, Third Italian Workshop on Planning

and Scheduling (IWP) 2004. ISBN: 88-89422-09-2. Perugia, Italy.

Pellier, Damien (2010). “Distributed Planning through Graph Merging”. In: Proceed-

ings of the Second International Conference on Agents and Artificial Intelligence

(ICAART) 2010, pp. 128–134.

Rosenthal, Robert W. (1973). “A Class of Games Possessing Pure-Strategy Nash Equi-

libria”. In: International Journal of Game Theory 2.1, pp. 65–67. ISSN: 1432-1270.

Sacerdott, Earl D. (1973). “Planning in a Hierarchy of Abstraction Spaces”. In: Pro-

ceedings of the Third International Joint Conference on Artificial Intelligence (IJCAI)

1973. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 412–422.

Štolba, Michal and Antonı́n Komenda (2013). “Fast-Forward Heuristic for Multia-

gent Planning”. In: Proceedings of Second Workshop on Distributed and Multi-Agent

Planning (DMAP), Workshop of ICAPS 2013. Vol. 120, pp. 75–83.

Štolba, Michal and Antonı́n Komenda (2014). “Relaxation Heuristics for Multiagent

Planning”. In: Proceedings of the Twenty-Fourth International Conference on Auto-

mated Planning and Scheduling (ICAPS) 2014, pp. 298–306.

106 BIBLIOGRAPHY

Štolba, Michal, Antonı́n Komenda, and Dániel L. Kovács (2016). “Competition of

Distributed and Multiagent Planners (CoDMAP)”. In: Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence (AAAI) 2016, pp. 4343–4345.

Tate, Austin (1976). Project Planning Using a Hierarchic Non-linear Planner. Depart-

ment of Artificial Intelligence Research Report No 25, University of Edinburgh.

Torreño, Alejandro, Eva Onaindia, and Oscar Sapena (2014). “FMAP: Distributed

Cooperative Multi-Agent Planning”. In: Applied Intelligence 41.2, pp. 606–626.

Torreño, Alejandro, Eva Onaindia, and Oscar Sapena (2014). “A Flexible Coupling

Approach to Multi-Agent Planning Under Incomplete Information”. In: Knowl-

edge and Information Systems 38.1, pp. 141–178.

Tožička, Jan, Jan Jakubův, and Antonı́n Komenda (2014). “Generating Multi-Agent

Plans by Distributed Intersection of Finite State Machines”. In: Proceedings of

Twenty-First European Conference on Artificial Intelligence (ECAI) 2014, pp. 1111–

1112.

— (2015a). “On Internally Dependent Public Actions in Multiagent Planning”. In:

Proceedings of Fourth Workshop on Distributed and Multi-Agent Planning (DMAP),

Workshop of ICAPS 2015.

— (2015b). “PSM-based Planners Description for CoDMAP 2015 Competition”. In:

Proceedings of Competition of Distributed and Multiagent Planners (CoDMAP) 2015.

Tožička, Jan et al. (2014). “Multiagent Planning Supported by Plan Diversity Metrics

and Landmark Actions”. In: Proceedings of the Sixth International Conference on

Agents and Artificial Intelligence (ICAART) 2014, pp. 179–189.

Tožička, Jan et al. (2016). “Recursive Polynomial Reductions for Classical Planning”.

In: Proceedings of the Twenty-Sixth International Conference on Automated Planning

and Scheduling (ICAPS) 2016, pp. 317–325.

Tožička, Jan, Jan Jakubův, and Antonı́n Komenda (2016). “Recursive Reductions of

Internal Dependencies in Multiagent Planning”. In: Proceedings of the Eight Inter-

national Conference on Agents and Artificial Intelligence (ICAART) 2016, pp. 181–191.

ISBN: 978-989-758-172-4.

Tožička, Jan et al. (2015). “Extensibility Based Multiagent Planner with Plan Diver-

sity Metrics”. In: Transactions on Computational Collective Intelligence XX. Ed. by

Ngoc Thanh Nguyen et al. Cham: Springer International Publishing, pp. 117–

139. ISBN: 978-3-319-27543-7.

BIBLIOGRAPHY 107

Tožička, Jan et al. (2016). “Privacy-Concerned Multiagent Planning”. In: Knowledge

and Information Systems 48.3, pp. 581–618. ISSN: 0219-3116.

Vickrey, William (1961). “Counterspeculation, Auctions, and Competitive Sealed

Tenders”. In: Journal of Finance 16.1, pp. 8–37.

de Weerdt, Mathijs and Brad Clement (2009). “Introduction to Planning in Multi-

agent Systems”. In: Multiagent Grid Systems 5.4, pp. 345–355. ISSN: 1574-1702.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Thesis Objectives

	Contributions and Accomplishments
	Organization

	Related Work
	Multi-Agent Planning
	Multi-Agent Planning Domain Description Languages
	Multi-Agent Planners

	Formal Foundations of Multi-Agent Planning
	Multi-Agent Planning Problem
	Privacy Classification of Facts and Actions
	Local Planning Problems

	Planning by Plan Set Intersection
	Planning with External Actions
	Generic Planner
	Planning State Machines (PSM)
	Basics of Planning State Machines
	Extending a PSM with Solutions
	Public Planning State Machines
	Intersection of Public PSMs

	Multi-agent Planning with Complete PSMs

	PSM Planner
	Internal Dependencies of Actions
	Dependency Graphs
	Publicly Equivalent Problems
	Simple Action Dependencies
	Dependency Graph Reductions
	Planning with Dependency Graphs
	Privacy Leakage Analysis

	Initial Relaxed Plan Landmark
	Generating New Plans
	Guiding Plan Search Using Public PSMs
	Plan Verification and Analysis

	Practical Strips Extensions
	From Strips to PDDL, and Back Again
	Internal Goals

	Experiments
	Psm-r and Psm-v Experimental Results
	Benchmark Domains
	Overall Benchmark Results
	Communication Overhead Evaluation

	Psm-vr Privacy Experiments
	Privacy Classifications
	Privacy in Benchmark Domains
	Privacy Benchmarks

	Psm-d Experimental Results
	Domain Analysis
	Experimental Results

	Conclusions
	Thesis Achievements
	Selected Related Publications

	Bibliography

