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Abstract

The concept of consensus filters for sensor fusion is not an entirely new propo-

sition but one with an internally implemented Bayesian fusion is. This work

documents a novel state update algorithm for sensor fusion which works using

the principle of Bayesian fusion of data with variance implemented on a single

integrator consensus algorithm. Comparative demonstrations of how consensus

over a pinning network is reached is presented along with a weighted Bayesian

Luenberger type observer and a ’Consensus on estimates’ algorithm. This type

of a filter is something that is novel and has not been encountered in previous

literature related to this topic to the best of our knowledge.

In this work we also extend the proof for a distributed Luenberger type observer

design to include the case where the network being considered is a strongly

connected digraph.
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Chapter 1

An Over-view of Sensor Fusion

Techniques

A core problem in navigating through our different environments lies in the understanding

of how we perceive this external world. Information is generally integrated from multiple

sources (senses) to enable this awareness, by employing different sensing techniques. The

rise of the information age, coupled with improvements in technology has enabled the use

of sensors in a variety of applications. Leveraging this influx of data from multiple sensors

by fusing them then becomes an important step in obtaining a reliable understanding of

the environment.

Sensors are devices that detect, or measure a certain physical property such as range,

angle, pressure etc. Any such sensor then comes with an inherent uncertainty, in that the

sensor model (the physical relationships between the sensed input and the actual state of

the sensed environment) can at best be an approximation of the real world. Factoring in

the uncertainty and noise present in the environment, we see that no single sensor can be

used by itself to provide a reliable approximation. This is where the use of multiple sensors

comes into play. Fusing the information from multiple sensors provides one with data that

is much richer and more accurate than otherwise. Multiple sensors can be used to measure

the same physical quantities, to provide redundancy in case of sensor failure.

Thus, we see that multi-sensor fusion allows one to minimize the uncertainty inherent

in a sensing system, thereby making it more reliable.

The problem then raises the question of how best to fuse such diverse information. Fig

1.1 provides us with a flowchart of how such a process might work. The first step involves

an understanding of the nature of input measurements, the larger context/environment,

and the sensor limitations. Obtaining a probabilistic understanding of the measurement

uncertainty in the sensor also features here.
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Figure 1.1: Generalized sensor fusion flowchart

Next is the issue of fusing sensed data in a coherent manner, thereby obtaining an

estimation of the state of the environment being sensed. Care is taken to account for sensor

uncertainties in this step.

In case one is faced with multiple sensor configurations, a third step is required to choose

the multi-sensor system that makes best use of the sensors.

Data fusion, in general, encompasses a vast number of topics, ranging from physical

sensor modelling to signal processing and filtering and estimation.

Different methods have been developed with the goal of fusing information, and a com-

mon approach here is to make use of weighting techniques. The inference problem, wherein

one determines the state of the system, is well known, with solutions reported in the form of

Bayesian estimation [4], Least Squares Estimation and Kalman Filters [2]. Another variable

in the kind of fusion method used concerns the architecture of the sensor system, leading

to the use of either centralized, or hierarchical configurations.
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1.1 Ergodicity

A stochastic process is said to be ergodic if its statistical properties can be determined by

one randomly chosen sufficiently long finite sample of the process.

An ergodic process may have various statistics, for example a wide sense stationary

process X(t) has constant mean

µX = E[X(t)] (1.1)

and an autocovariance

rX(τ) = E[(X(t)− µX)(X(t+ τ)− µX)] (1.2)

The notion of ergodicity also applies to discrete-time random processes.

if

µ̂X =
1

N

N∑
n=1

X[n] (1.3)

then the process is said to be ergodic in mean. In this work, all random processes have been

assumed to be ergodic unless stated otherwise.

1.2 Bayesian Inference

Bayesian inference [7] is a statistical model which updates the probability of a hypothesis

as more information becomes available. It is given as:

P (H|E) = P (E|H)P (H)/P (E) (1.4)

Here, P (H) is the probability estimate for the hypothesis H when the evidence E is yet

to be observed.

P (H|E) is the probability estimate for the hypothesis H when the evidence E is observed.

P (E) is referred to as the ’model evidence’ which is the same for all hypotheses, hence it

does not affect the model.

3



1.3 Bayesian Fusion

If x1,x2,x3.... are measurements of the same event with a standard deviation σ1,σ2,σ3....

yielding a fused

x̂ = [x1/(σ1)
2 + x2/(σ2)

2 + x3/(σ3)
2 + .........]/[1/(σ1)

2 + 1/(σ2)
2 + 1/(σ3)

2 + ...]

This is the formulation for Bayesian fusion.
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Chapter 2

A Study on the Consensus of

Multi-Agent Systems through

Co-operation over a Network

2.1 Introduction

The basic ideas and philosophy of cooperative control systems have been inspired by

naturally occurring phenomena in biological systems, physics, and chemistry. One of the

first attempts to characterize the interaction of connected dynamical systems was by Alan

Turing in his paper ’The Chemical Basis of Morphogenesis’[22] where he considers a reaction

diffusion system which is a ring of n cells each designated by an index i with a ring radius

r. Within the cells there are two chemicals referred to as morphogens by Alan Turing.

The morphogens interconvert with each other and also diffuse around the ring under some

specific set of rules. If the concentrations of these two morphogens are c1 and c2 then

depending on i each cell has a particular 2-tuple (c1(i, t), c2(i, t)) associated with itself

and was calculated by Turing. Such a spatial diffusion of molecules can lead to an ordered

spatial pattern of chemical concentrations as documented by [5]. The article [12] documents

how a unified framework to systematically formulate the reaction-diffusion system as an

interconnected multi-agent dynamical system can be achieved. Hence, this seminal work

by Turing is arguably how the study of biologically inspired dynamic interconnected multi

agent systems may be understood to have started.

In 1987, Craig Reynolds developed an artificial life program called Boid [19] which is a

short form for ”bird-oid” objects. The program simulates naturally occurring flocking in

living beings (like birds) by the means of emergent behavior. The complexity of Boids arise

from the interaction of individual agents (the boids, in this case) adhering to a set of simple
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rules. Individual motions in a flock are the result of the balance of two opposing behaviors:

a desire to stay close to the group and a desire to avoid collisions with other individuals.

Reynolds formulated three rules in his program for the boids to follow. According to him,

the desired behaviors that lead to simulated flocking of boids are:

1. Collision Avoidance: avoid collisions with nearby flockmates

2. Velocity Matching: attempt to match velocity with nearby flockmates

3. Flock Centering: attempt to stay close to nearby flockmates

Boids was very successful in modeling the phenomena of flocking. Its most notable uses

have been in the field of computer generated graphics with the likes of Stanley and Stella

in: Breaking the Ice (1987) and Batman Returns (1992). Boids has also been used to

automatically program multi channel Internet based radio stations [3], for time varying

data visualization [13] and has been extensively used in swarm robotics [11] [20].

It is understood [8] that the rules such as the one developed by Reynolds, depend on the

awareness of each individual of his neighbor. To model the behaviors and interactions of

dynamical systems that are interconnected by the links of a communication network, the

communication network is modeled as a graph with directed edges corresponding to the

allowed flow of information between the systems. The systems are modeled as the nodes in

the graph and are sometimes called agents.

In the next section we will familiarize ourselves with the mathematical frameworks for

the study of interconnected dynamical systems reaching consensus. In the context of such

a system the word ”consensus” [15] refers to reaching an agreement regarding a certain

quantity of interest that depends on the state of all agents. The phrase ’consensus algorithm’

refers to the protocols of interaction (for the purpose of information exchange) between an

agent and all of its neighbors on the network.

2.2 Mathematical Preliminaries

2.2.1 Description of framework

For all the discussions that are about to follow, We will be using the following general

definitions,

A Graph G = (V, E) is a set of vertices V and edges E
The label for each node is vi ∈ V where i∈{1, 2, 3...n} where n is the number of nodes in

the graph.
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The degree of node vi=deg(vi) is the number of its neighbours |Ni| where Ni={j : ij ∈ E}
The degree matrix is an n× n matrix denoted as ∆ where ∆={∆ij}, where

∆ij =

deg(vi) for i = j

0 for i 6= j

if the adjacency matrix for G = (V, E) is denoted by A then A=[aij ] where aij=1

if (j, i) ∈ E and aij = 0 otherwise.

Then, the Laplacian matrix of the graph is denoted as L and defined to be L=∆-A

2.2.2 Gershgorin’s disc theorem

Let

A = [aij ] ∈ Rn×n (2.1)

and

ri =
n∑

j=1

|aij |, i 6= j (2.2)

That is, ri is the sum of absolute values of all entries in the row i of the adjacency matrix but

the diagonal element. It is a measure of how well connected node i is with its neighbours.

Gershgorin’s Disc Theorem states that all eigenvalues of A are located in the union of

n disks,

G(A) :

n⋃
i=1

Gi(A) (2.3)

where

Gi(A) = {z ∈ C : |z − aii|≤ ri} (2.4)

2.2.3 The general consensus problem in continuous time

A simple consensus algorithm to reach an agreement regarding the state of n integrator

agents with dynamics ẋi = ui can be expressed as following [16]

(2.5)ẋi(t) =
∑
j∈Ni

eij(xj(t)− xi(t)) + bi(t)

7



xi(0) = zi ∈ R

The collective dynamics of the group of agents following the algorithm 3.1 can be written

as

ẋ = −Lx (2.6)

where L is the graph laplacian of the network.

Now since L=∆-A, L has zero row sum.

Hence, 0 is an eigenvalue of L with associated eigenvector 1 , [1, 1, 1, ...]T

Also from Gershgorin’s Disc Theorem, all non zero eigenvectors of L are positive for undi-

rected graphs or have positive real parts for directed graphs.

And, span of the eigenvector 1 (since it has an associated eigenvalue of zero) is contained

in the kernel of L or the null space of L.

It follows that if zero is a simple eigenvalue of L then x(t) −→ x̄1 where x̄ is a scalar

constant. This implies that |xi(t)− xj(t)|−→ 0 as t −→∞
For convergence analysis, we try to show that zero is a simple eigenvakue of L.

If a directed graph is strongly connected then zero is a simple eigenvalue of L. However

this is not the necessary condition according to [9] [6] [18]. Zero is a simple eigenvalue of L

if and only if the associated directed graph contains a rooted spanning tree.

2.2.4 Consensus in discrete time

An iterative form [15] of the consensus algorithm can be stated as follows in discrete time:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

eij(xj(t)− xi(t)) (2.7)

The discrete time collective dynamics of the network can thus be written as:

x(k + 1) = Px(k) (2.8)

Where P=I − εL and ε > 0 is the step size. In general, P = exp(−εL) where P is referred

to as the Perron matrix of a graph G with parameter ε.

8



2.3 Luenberger Observer on a Directed Graph

Let us consider a continuous time linear system which is a representative of the state

trajectory

ẋ = A(t)x+B(t)w (2.9)

being sensed by a sensor modeled by

z = H(t)x+ v (2.10)

Then the continuous time Kalman filter can be modeled as the following set of equations

˙̂x = Ax̂+K(z −Hx̂) (2.11)

K = PHTR−1 (2.12)

Ṗ = AP + PAT +BQBT − PHTR−1HP (2.13)

Here, ˙̂x =central estimate associated with data z. P is the estimation error covariance

matrix, H is the observation matrix and Q and R are the process and measurement noise

covariance matrices respectively.

Lemma 1[14]. Let η = x−x̂ denote the estimation error in the model described above.Then,

η̇ = (A−KH)η+we where we is the input noise to the system and we = Bw+Kv. Without

noise, the error dynamics is a stable linear system with a Lyapunov function

V (η) = ηTP (t)−1η (2.14)

differentiating, we see :

V̇ = η̇TP−1η + ηTP−1η̇ − ηTP−1ṖP−1

= ηT [(A−KH)TP−1+P−1(A−KH)]η−ηT [P−1A+ATP−1+P−1BQBTP−1−HTR−1H]η

= ηT [HTR−1H + P−1BQBTP−1]η < 0

for all

η 6= 0

9



Thus, η = 0 is globally asymptotically stable and V (η) is a Lyapunov function for the linear

system formed by the error dynamics.

Consider a network of n sensors with the following sensing model:

zi(t) = Hi(t)x+ vi (2.15)

with

E[vi(t)vi(s)
T ] = Riδ(t− s) (2.16)

Assuming that the pair(A,H) with

H = col(H1, H2...Hn) (2.17)

is observable, then we propose (extending on proposition 2 on undirected graphs in [14]):

Proposition 1. For a sensor network that is represented by a strongly connected digraph

with an edge weight being represented by eij and has a sensing model equivalent to (7),

Then if each node applies the following distributed estimation algorithm

˙̂xi = Ax̂i +Ki(zi −Hix̂i) + γPi

∑
j∈Ni

eij(x̂j − x̂i) (2.18)

Ki = PiH
T
i R
−1
i , γ > 0

Ṗi = APi + PiA
T +BQBT −KiRiK

T
i

with a Kalman consensus estimator and initial conditions Pi(0) = P0 and ˙̂xi = x(0), then

the collective dynamics of the estimation errors ηi = x− x̂i (without noise) is a stable linear

system with a Lyapunov function (see lemma 6 of [23])

V (η) =

N∑
i=1

piη
TP (t)−1η (2.19)

10



where p = [p1, p2, ..pi.., pN ]T is the left eigenvector of the graph laplacian L associated with

eigenvalue λ=0 (i.e.,p is the first left eigenvector of L) and pTL = 0 and pi > 0 ∀i ∈ N .

Also, asymptotically all estimators agree i.e. ˙̂x1 = ˙̂x2 = ... ˙̂xn = x

Proof : Defining vectors

η = col(η1, η2...ηn)

x̂ = col(x̂1, x̂2..x̂n)

we note that ˙̂xj − ˙̂xi = ηi − ηj and hence the estimator dynamics can be written as

˙̂xi = Ax̂i +Ki(zi −Hix̂i)− γPi

∑
j∈Ni

eij(ηj − ηi) (2.20)

which gives us the following error dynamics for the ith node

η̇i = (A−KiHi)ηi + γPi

∑
j∈Ni

eij(ηj − ηi) (2.21)

denoting Fi = A−KiHi we write,

η̇i = Fiηi + γPi

∑
j∈Ni

eij(ηj − ηi) (2.22)

Now,

V̇ =
∑
i

pi(η
T
i P
−1
i η̇i + η̇i

TP−1i ηi − ηTi P−1i ṖiP
−1
i ηi) + ṗi(η

T
i P
−1
i ηi) (2.23)

since ṗi = 0,

V̇ =
∑
i

pi(η
T
i P
−1
i η̇i + η̇i

TP−1i ηi − ηTi P−1i ṖiP
−1
i ηi) (2.24)

and

ηTi P
−1
i η̇i = ηTi P

−1
i Fiηi + γηTi

∑
j∈Ni

eij(ηj − ηi) (2.25)

Adding the terms in V̇ and using lemma 1 gives us,

11



V̇ = −
∑
i

pi(η
T
i [HT

i R
−1
i HT

i + P−1i BQBTP−1]ηi) + γ
∑
i,j

pieij(ηj − ηi)2 (2.26)

V̇ = −ηTΛη − γ
∑
i,j

pieij(ηj − ηi)2 ≤ 0 (2.27)

Here Λ is a positive definite block diagonal matrix with diagonal blocks

pi(H
T
i R
−1
i HT

i + P−1i BQBTP−1)

Also, V̇ = 0 implies that all ηi’s are equal and η = 0. Hence x̂i = x ∀i as t → ∞
Later, we demonstrate an implementation of the same in MATLAB and present the numer-

ical results in the final section.
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Chapter 3

Consensus Based Sensor Fusion

3.1 Bayesian Sensor Fusion

Here we propose a set of algorithms which may be termed as consensus filters with internally

implemented Bayesian fusion. It is something that is novel and has not been encountered

in previous literature related to this topic to the best of the author’s knowledge. The

objective in this section is to construct the Bayesian sensor fusion algorithms on a particular

network structure which essentially consists of a strongly connected graph of nodes which

cannot sense, but can update their states according to the trajectory defined by the sensors

which are pinned on to them. The non-sensing nodes also communicate with the other non

sensing nodes as well as the sensing nodes. We consider the multiagent system to have state

dynamics represented by

ẋ(t) = u

where x is the state at a node and u is the input at that node. For the purpose of demon-

stration, a ring network with sensors(leaders) pinned on each node has been used. Let

G = (V, E) be the graph representing the network. Let the adjacency matrix for the said

graph be,

A = [aij ] where aij=1 if(j, i) ∈ E and aij = 0 otherwise. Below we present the adjacency

matrix that we used for the simulation along with a visual representation of the graph G.

A =

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

13



Structure of the communication network

3.1.1 Definition of variables

Here we list all the variables that have been used in this work

N= Set of node labels of non sensing nodes

S= Set of node labels of sensing nodes

The indices used for non−sensing nodes are [i,j,l]

The indices used for sensing nodes are [j0,k0]

ξj0(k) = x0 + δj0 where x0 is the correct measurement and δj0 is a zero mean Gaussian

noise i.e 〈δj0〉 = 0

eij is the set of edges which connect the non sensing nodes

eij=aij where i and j ∈ N
gij0 is the set of pinning gains

gij0=aij where i ∈ S and j ∈ N

14



hj0l is the set of feedback gains from non sensing node to the sensing nodes

hj0l=aij where i ∈ S and j ∈ N
di is the diagonal matrix of the row sums of the adjacency matrix of the graph consisting

solely of the non-sensing nodes, [di]=[aij ] where i and j ∈ N
For our particular digraph, we choose N={1,2,3} and

S={4,5,6}

3.1.2 The state update algorithms

Upon focusing our attention on the non sensing nodes, it is noted that under the combined

influence of the non-sensing nodes and the sensing nodes if the state of the non-sensing node

is denoted as xi, then the continuous time state dynamics for a particular time index i can

be written down as,

(3.1)ẋi =
∑
j

eij(xj − xi) + {
∑
j0

gij0(xj0 − xi)/σ2j0}/(
∑
j0

gij0/σ
2
j0)

or upon expansion

(3.2)ẋi = −dixi +
∑
j

eijxj + {
∑
j0

gij0xj0/σ
2
j0/

∑
j0

gij0/σ
2
j0} − xi

Now, at steady state ẋi = 0 therefore we can come to the conclusion that at steady state

(3.3)xi = [
∑
j

eijxj + {
∑
j0

gij0xj0/σ
2
j0/

∑
j0

gij0/σ
2
j0}]/(1 + di)

And the discrete time state update algorithm can be written down as

(3.4)xi(k + 1) = [xi(k) +
∑
j

eijxj + {
∑
j0

gij0xj0/σ
2
j0/

∑
j0

gij0/σ
2
j0}]/(2 + di)

in recursive form.

For the sake of exposition, the discrete time version may also be written as,

xi(k + 1) = [xi(k) +M +N ]/(2 + di) (3.5)

Here M=
∑

j eijxj(k) and is the average state of all the neighboring non-sensing nodes mul-

tiplied by the in-degree and N=
∑

j0
gij0xj0(k)/σ2j0/

∑
j0
gij0/σ

2
j0

which is the Bayesian fused

sensor reading from all the sensing nodes connected to xi.

15



Intuitively too, it is evident that the (k+1)th state of a non-sensing node is influenced by

3 factors, namely its own previous state, the average influence of its non-sensing neighbors

weighted by their degree of connectivity to the node in consideration and the fused sensor

reading from all the sensing nodes connected to it.

Now we take a look at the sensing nodes. The update equation for the sensing nodes

can have multiple forms. We write the continuous time version as follows:

We can write it as

ẋ = [1/(σ2j0) + (
∑
k0 6=j0

1/σ2k0)]−1[(
∑
k0 6=j0

1/σ2k0)(
∑
l

hj0l)
−1(

∑
l

hj0l(xl − xj0)) + (ξj0/σ
2
j0)]

(3.6)

xj0(k + 1) =[(ξj0(k)/σ2j0) + (
∑
k0 6=j0

1/σ2k0)(
∑
l

hj0lxl(k) (3.7)

/
∑
l

hj0l)/{(1/σ2j0) +
∑
k0 6=j0

1/σ2k0}]

or as
xj0(k + 1) = (P +Q)/R

where P=ξj0(k)/σ2j0

is the noisy measurement at the node xj0 divided by the variance at the node.

Q=(
∑

k0 6=j0
1/σ2k0)(

∑
l hj0lxl(k)/

∑
l hj0l) is the average state of all non-sensing nodes at-

tached to the sensing node multiplied by the total network variance (excluding the node

xj0)

And R=(1/σ2j0) +
∑

k0 6=j0
1/σ2k0 which is the total network variance. This is essentially the

standard Bayesian fusion equation which can be applied upon assuming a scenario where

x1,x2,x3.... are a measurement of the same event with a standard deviation σ1,σ2,σ3....

yielding a fused

x̂ = [x1/(σ1)
2 + x2/(σ2)

2 + x3/(σ3)
2 + .........]/[1/(σ1)

2 + 1/(σ2)
2 + 1/(σ3)

2 + ...]

Now we can transform this same equation to a recursive form by taking the average of

the current fused reading and the posterior fused reading, that is we can write

xj0(k + 1) = 1/2[(P +Q)/R+ xj0(k)]
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that is,

xj0(k + 1) =1/2[(ξj0(k)/σ2j0) + (
∑
k0 6=j0

1/σ2k0)(
∑
l

hj0lxl(k) (3.8)

/
∑
l

hj0l)/{(1/σ2j0) +
∑
k0 6=j0

1/σ2k0}+ xj0(k)]

3.2 Noisy Input

The following two general kind of noisy input signals have been used for the demonstration

of tracking performance for all algorithms in this chapter:

3.2.1 A constant theoretical measurement

This kind of noisy measurement is of the form of

ξj0(k) = x0 +δj0 where x0 is the constant and δj0 is a zero mean Gaussian noise i.e 〈δj0〉 = 0

0 20 40 60 80 100 120

-30

-20

-10

0

10

20

30

40

Figure 3.1: Constant measurement with noise

3.2.2 A sinusoidal theoretical measurement

This kind of noisy measurement is of the form of

ξj0(k) = x(t)+δj0 where x(t) is a sinusoid and δj0 is a zero mean Gaussian noise i.e 〈δj0〉 = 0
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Figure 3.2: Sinusoidal measurement with noise

3.3 Simulation

Coding the above state update algorithms was done in MATLAB 2016B. The results shown

here are for all the variations of the state update algorithms that have been mentioned above.

Starting with the actual theoretical measurement value of 3 the state update algorithm

for the network was run for 100 iterative steps.

The following arbitrary value sets were the initial conditions:

Set of initial states x=[0.1,0.2,0.31,3.2,4.2,1.2]

Initial noisy measurements ξ =[0,0,0,3.7243,4.7243,2.7243]

Standard deviations at a node σ=[0,0,0,0.3,0.21,0.004]

later it was changed to σ=[0,0,0,0.2,0.4,0.3]

and it was seen that the algorithm consistently ’distrusts’ the sensing node with the maxi-

mum standard deviation the most, and subsequently the rate of convergence is greatest at

the noisiest node and so on. In the 1st case, the node number 4 with an initial state of 3.2

was the noisiest with a standard deviation of 0.3. And in the 2nd case, the node number 5

with an initial state of 4.2 was the noisiest with a standard deviation of 0.4.

After this, we demonstrate the tracking performance of such algorithms where the track-

ing signal is a Sinusoid. All the other conditions remain the same. For the purpose of

demonstration we choose the second set of standard deviation values.
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3.3.1 Visualization

Fig 3.3 is for the first variation of the state update algorithm (non recursive update scheme

for sensor nodes), which is the pair of update equations numbered (3.4) and (3.7) on the

first set of standard deviations.
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Figure 3.3: Non recursive state update on SD set 1

Fig 3.4 is for the second variation of the state update algorithm (recursive update scheme

for sensor nodes), which is the pair of update equations numbered (3.4) and (3.8) on the

first set of standard deviations
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Figure 3.4: Recursive state update on SD set 1

Fig 3.5 is for the first variation of the state update algorithm (non recursive update

scheme for sensor nodes), which is the pair of update equations numbered (3.4) and (3.7)

on the second set of standard deviations
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Figure 3.5: Non recursive state update on SD set 2

Fig 3.6 is for the second variation of the state update algorithm (recursive update scheme

for sensor nodes), which is the pair of update equations numbered (3.4) and (3.8) on the
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second set of standard deviations
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Figure 3.6: Recursive state update on SD set 2

Fig 3.7 is for the continuous time state update algorithm, which is the pair of update

equations numbered (3.2) and (3.6) on the first set of standard deviations
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Figure 3.7: Continuous time state update on SD 1

Fig 3.8 is for the continuous time state update algorithm, which is the pair of update

equations numbered (3.2) and (3.6) on the second set of standard deviations
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Figure 3.8: Continuous time state update on SD 2

Fig 3.9 is a demonstration for the sinusoidal tracking performance of the first variation

of the discrete time state update algorithm (non recursive update scheme for sensor nodes),

which is the pair of update equations numbered (3.4) and (3.7) on the second set of stan-

dard deviations. The signal that has been used here as an input is a slowly varying sinusoid.

23



0 10 20 30 40 50 60 70 80 90 100

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 3.9: Slow sinusoid response for non recursive

Fig 3.10 is a demonstration for the sinusoidal tracking performance of the first variation

of the discrete time state update algorithm (non recursive update scheme for sensor nodes),

which is the pair of update equations numbered (3.4) and (3.7) on the second set of standard

deviations. The signal that has been used here as an input is a fast varying sinusoid.
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Figure 3.10: Fast sinusoid response for non recursive

Fig 3.11 is a demonstration for the sinusoidal tracking performance of the second varia-
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tion of the discrete time state update algorithm (recursive update scheme for sensor nodes),

which is the pair of update equations numbered (3.4) and (3.8) on the second set of stan-

dard deviations. The signal that has been used here as an input is a slowly varying sinusoid.
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Figure 3.11: Slow sinusoid response for recursive

Fig 3.12 is a demonstration for the sinusoidal tracking performance of the second varia-

tion of the discrete time state update algorithm (recursive update scheme for sensor nodes),

which is the pair of update equations numbered (3.4) and (3.8) on the second set of standard

deviations. The signal that has been used here as an input is a fast varying sinusoid.
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Figure 3.12: Fast sinusoid response for recursive

Fig 3.13 is a demonstration for the sinusoidal tracking performance of the continuous

time state update algorithm, which is the pair of update equations numbered (3.2) and (3.6)

on the second set of standard deviations. The signal that has been used here as an input is

a slowly varying sinusoid.
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Figure 3.13: Slow sinusoid response for continuous time

Fig 3.14 is a demonstration for the sinusoidal tracking performance of the continuous
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time state update algorithm, which is the pair of update equations numbered (3.2) and (3.6)

on the second set of standard deviations. The signal that has been used here as an input is

a fast varying sinusoid.
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Figure 3.14: Fast sinusoid response for continuous

3.4 Low Pass Distributed Consensus Filter

Here we represent an example of consensus on estimates where, only state estimates are

averaged out to reach the consensus state.

This particular section is with reference to the paper [17], where the authors have

introduced an average consensus based distributed low-pass filter that makes the nodes of

a sensor network track the average of n noisy sensor measurements. The sensing model of

the network is the same as the previous analysis, i.e. :

ξj0(k) = x0 +δj0 where x0 is the correct measurement and δj0 is a zero mean Gaussian noise

i.e 〈δj0〉 = 0

All mathematical notations and network configurations remain the same as have already

been discussed in the beginning of this chapter. The only two changes are

in the definition of the set of sensor nodes which we choose for this particular algorithm as,

N={1,2,3,4,5,6}
and in the definition of indices used in describing the sensing nodes. In this case the indices

used for sensing nodes are [i,j].
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The authors have proposed the following dynamic consensus algorithm for this purpose

where each sensor node has been treated as an agent and as a result of this, the existing

results of single integrator dynamics in multiagent systems can be directly applied to the

distributed filters plus one extra consensus term to reflect the measurement features. (we

formulate it in this particular way knowing that there are no self loops in the digraph):

ẋi =
∑
∀j∈N

eij(xi − xj) +
∑
∀j∈N

eij(ξi − xj) (3.9)

and in discrete time:

xi(k + 1) = xi(k) + δ[
∑
∀j∈N

eij(xi − xj) +
∑
∀j∈N

eij(ξi − xj)] (3.10)

with δ being the stepsize, which must be chosen with care to ensure the stability which in

turn can be dependant on the structure of the network graph. The necessary and sufficient

condition [21] for stability under arbitrary interconnection of the sensors is given as

δdmax < 1, where dmax is the maximum node degree of the network. Hence, one natural

choice for δ is δ = (1/1 + dmax)

The authors prove two important related results, namely:

Lemma:

ẋ = −(In + ∆ + L)x+ (In +A)u (3.11)

that is the filter is essentially an LTI system with a proper MIMO transfer function with

strictly negative poles, given by

H(s) = [sIn + (In + ∆ + L)]−1(In +A) (3.12)

Since this kind of an algorithm does not require the information of local error covariance

matrix or that of the local probability density functions, it has been commonly used for

various consensus filter designs. For example in [1], the authors have designed a two-step

consensus filtering strategy where the first step is a standard kalman estimation of state

(which is local) and the second step is the consensus on those estimates. another example

can be found in [10] where the authors employ a similar strategy computing a local state

estimate using a Luenberger type observer.

28



3.5 Simulation

The above mentioned dynamic consensus algorithm on estimates was run for 100 iterations

to track a theoretical measurement value of 3 and we used the same set of initial values for

the demonstration of its consensus performance, namely:

Set of initial states x=[0.1,0.2,0.31,3.2,4.2,1.2]

Initial noisy measurements ξ =[0,0,0,3.7243,4.7243,2.7243]

Standard deviations at a node σ=[0,0,0,0.3,0.21,0.004]

and later it was changed to σ=[0,0,0,0.2,0.4,0.3]

We also demonstrate the tracking performance of this algorithm using a sinusoidal input

for the second set of standard deviations.

3.5.1 Visualization

Fig 3.15 is for the discrete time dynamic consensus algorithm on estimates, which is the

update equation numbered (3.10) on the first set of standard deviations.
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Figure 3.15: Discrete time consensus on estimates for SD 1

Fig 3.16 is for the discrete time dynamic consensus algorithm on estimates, which is the

update equation numbered (3.10) on the second set of standard deviations.
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Figure 3.16: Discrete time consensus on estimates for SD 2

Fig 3.17 is for the continuous time dynamic consensus algorithm on estimates, which is

the update equation numbered (3.9) on the first set of standard deviations.
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Figure 3.17: Continuous time consensus on estimates for SD 1

Fig 3.18 is for the continuous time dynamic consensus algorithm on estimates, which is

the update equation numbered (3.9) on the second set of standard deviations.
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Figure 3.18: Continuous time consensus on estimates for SD 2

Fig 3.19 is a demonstration for the sinusoidal tracking performance of the discrete time

dynamic consensus algorithm on estimates, which is the which is the update equation num-

bered (3.10) on the second set of standard deviations. The signal that has been used here

as an input is a slow varying sinusoid.
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Figure 3.19: Slow sinusoid response for discrete time consensus on estimates

Fig 3.20 is a demonstration for the sinusoidal tracking performance of the discrete time

dynamic consensus algorithm on estimates, which is the which is the update equation num-

bered (3.10) on the second set of standard deviations. The signal that has been used here

as an input is a fast varying sinusoid.

32



0 10 20 30 40 50 60 70 80 90 100

-2

-1

0

1

2

3

4

Figure 3.20: Fast sinusoid response for discrete time consensus on estimates

Fig 3.21 is a demonstration for the sinusoidal tracking performance of the continuous

time dynamic consensus algorithm on estimates, which is the which is the update equation

numbered (3.9) on the second set of standard deviations. The signal that has been used

here as an input is a slow varying sinusoid.
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Figure 3.21: Slow sinusoid response for continuous time consensus on estimates

Fig 3.22 is a demonstration for the sinusoidal tracking performance of the continuous

time dynamic consensus algorithm on estimates, which is the which is the update equation

numbered (3.9) on the second set of standard deviations. The signal that has been used

here as an input is a fast varying sinusoid.
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Figure 3.22: Fast sinusoid response for continuous time consensus on estimates

3.6 Luenberger Observer

In this section we modify the distributed Luenberger observer that was proposed in [14]

which we proved to be a valid consensus algorithm for a directed network graph as well and

try to implement the Bayesian fusion by the straightforward method of modifying the edge

weights so as to reflect the Bayesian decision making process. The Luenberger observer is

of the form

˙̂xi = Ax̂i +Ki(zi −Hix̂i) + γPi

∑
j∈Ni

eij(x̂j − x̂i) (3.13)

Ki = PiH
T
i R
−1
i , γ > 0
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Ṗi = APi + PiA
T +BQBT −KiRiK

T
i

with a Kalman consensus estimator and initial conditions Pi(0) = P0 and ˙̂xi = x(0)

In order to appropriately weigh the edges for a Bayesian Consensus without affecting the

condition that the graph is strongly connected, we make the following changes:

Ki −→ Ki(1 + 1/σ2i )

We multiply the local state update gain Ki with (1 + 1/σ2i ) where σ2i is the variance of

measurement at node i

eij −→ [(
∑
k 6=i

1/σ2k)/(σ2i +
∑
k 6=i

1/σ2k)]eij

We multiply the eij ∈ 0, 1 with (
∑

k 6=i 1/σ2k)/(σ2i +
∑

k 6=i 1/σ2k)

Over here, we see that the Bayesian weights have been chosen in such a manner so as

to make the algorithm trust the local update term more than the consensus term when the

variance of measurement at the node being considered is lower compared to the network

variance, at the same time if the network variance of measurement is lower compared to the

variance of measurement at the node of consideration then the algorithm trusts the network

more, and the measurement at the sensor less.

3.7 Simulation

The Luenberger observer described above was run on a 6-node digraph network configura-

tion (following the proof) which is the same as the one that was chosen for the Bayesian

consensus filter in the beginning of this chapter. The only change being, all nodes are now

considered as sensor nodes. For the first two simulations, we are tracking a process of the

form

z = x0 + δ where x0 is a constant and δ is a zero mean Gaussian noise with a covariance R.

Hence, ẋ = 0

and this gives us the following set of starting values,

A = [0], B = [0],Q = [0],H = [1],R = σ2,P0 = 1 and a random initial state

x(0)=[90.1, 8.6, 2.1, 1.9, 3.8, 19]
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We observe the convergence of the observer with a constant measurement value of 3 at

first and then we try a sinusoidally varying measurement value. We choose the set of initial

states x=[90.1, 8.6, 2.1, 1.9, 3.8, 19]

Initial noisy measurements ξ =[1.8,2.1,0.3.7243,4.7243,2.7243]

Standard deviations at a node σ=[11.4, 3.8, 4.6, 4.3, 8.2,13.4]

and later it was changed to σ=[10,13,14,4.5,8.5,8]

3.7.1 Visualization

Fig 3.23 is a demonstration of convergence for the Luenberger observer on the first set of

standard deviations. We note that the rate of convergence to the theoretical measurement

value is extremely slow.
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Figure 3.23: Luenberger observer on SD 1
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Fig 3.24 is a demonstration of convergence for the Luenberger observer on the second

set of standard deviations. We note that the rate of convergence to the theoretical mea-

surement value is extremely slow.
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Figure 3.24: Luenberger observer on SD 2

Fig 3.25 is a demonstration of the behaviour of the Luenberger observer on the second

set of standard deviations for a theoretical measurement value which is a slowly varying

sinusoid. We note that the Luenberger observer by itself possesses little to zero tracking

ability for a varying measurement signal.
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Figure 3.25: Slow sinusoid response of luenberger observer

Fig 3.26 is a demonstration of the behaviour of the Luenberger observer on the second

set of standard deviations for a theoretical measurement value which is a fast varying sinu-

soid. We note that the Luenberger observer by itself possesses little to zero tracking ability

for a varying measurement signal.
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Figure 3.26: Fast sinusoid response for luenberger observer

3.8 Conclusion

In this chapter we see the relative consensus performance of consensus algorithms based

various strategies, namely: Bayesian Consensus, Consensus on estimates and a Luenberger

estimator. We see that the performance of the first two strategies have been noticeably

better than the last one in the test cases that we have considered. In the next section we

go into a deeper analysis of the results.
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Chapter 4

Statistical Observations

4.1 Bayesian Consensus Fusion on a Strongly Connected Di-

graph (where sensors are not communicating to each

other)

Here we observe the statistics of the outputs for the Bayesian consensus algorithms. The

algorithms that are to be tested in this section are the following:

Algorithm set A (Discrete time, non-recursive sensor state update):

(4.1)xi(k + 1) = [xi(k) +
∑
j

eijxj + {
∑
j0

gij0xj0/σ
2
j0/

∑
j0

gij0/σ
2
j0}]/(2 + di)

xj0(k + 1) =[(ξj0(k)/σ2j0) + (
∑
k0 6=j0

1/σ2k0)(
∑
l

hj0lxl(k) (4.2)

/
∑
l

hj0l)/{(1/σ2j0) +
∑
k0 6=j0

1/σ2k0}]

Algorithm set B (Discrete time, recursive sensor state update):

(4.3)xi(k + 1) = [xi(k) +
∑
j

eijxj + {
∑
j0

gij0xj0/σ
2
j0/

∑
j0

gij0/σ
2
j0}]/(2 + di)

xj0(k + 1) =1/2[(ξj0(k)/σ2j0) + (
∑
k0 6=j0

1/σ2k0)(
∑
l

hj0lxl(k) (4.4)

/
∑
l

hj0l)/{(1/σ2j0) +
∑
k0 6=j0

1/σ2k0}+ xj0(k)]
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Algorithm set C (Continuous time):

(4.5)ẋi = −dixi +
∑
j

eijxj + {
∑
j0

gij0xj0/σ
2
j0/

∑
j0

gij0/σ
2
j0} − xi

ẋ = [1/(σ2j0) + (
∑
k0 6=j0

1/σ2k0)]−1[(
∑
k0 6=j0

1/σ2k0)(
∑
l

hj0l)
−1(

∑
l

hj0l(xl − xj0)) + (ξj0/σ
2
j0)]

(4.6)

4.2 Recursive vs Non Recursive/Process Variance

To make a comparison between the three sets of sensor state update algorithms, the vari-

ances at different nodes (after the transients approximately died down) has been compared.

• Using the recursive sensor state update algorithm (A) for a set of large standard devi-

ations (i.e generally noisy sensors) like σ=[0,0,0,0.2,0.4,0.3] the variances at the nodes

1 to 6 were observed to be

σ2=[0.0015,0.0014,0.0013,0.0059,0.0026,0.0027]

A visual example of such an evolution of states is in Fig.3.6

Using the recursive sensor state update algorithm for a set of very low standard de-

viations (i.e very precise sensors) like σ=[0,0,0,0.002,0.004,0.003] the variances at the

nodes 1 to 6 were observed to be

σ2=[0.1033,0.1518,0.1597,0.0227,0.1410,0.1093] *1.0e-03

A visual example of such an evolution of states is in Fig.4.1
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Figure 4.1: Recursive discrete time bayesian on low SD

• Using the non recursive sensor state update algorithm for a set of high standard devi-

ations (i.e generally noisy sensors) like σ=[0,0,0,0.2,0.4,0.3] the variances at the nodes

1 to 6 were observed to be

σ2=[0.0030,0.0035,0.0025,0.0117,0.0080,0.0069]

A visual example of such an evolution of states is in Fig.3.5

Using the non recursive sensor state update algorithm for a set of very low standard

deviations (i.e very precise sensors) like σ=[0,0,0,0.002,0.004,0.003] the variances at

the nodes 1 to 6 were observed to be

σ2=[0.1468,0.2080,0.2120,0.0288,0.1606,0.1226] *1.0e-04

A visual example of such an evolution of states is in Fig.4.2
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Figure 4.2: Non recursive discrete time bayesian on low SD

Using the continuous time state update algorithm for a set of high standard deviations

(i.e generally noisy sensors) like σ=[0,0,0,0.2,0.4,0.3] the variances at the nodes 1 to

6 were observed to be

σ2=[0.0053,0.0030,0.0038,0.0158,0.0046,0.0073]

A visual example of such an evolution of states is in Fig.3.7 and 3.8

Using the continuous time state update algorithm for a set of very low standard de-

viations (i.e very precise sensors) like σ=[0,0,0,0.002,0.004,0.003] the variances at the

nodes 1 to 6 were observed to be

σ2=[0.1362,0.1704,0.1461,0.1537,0.1668,0.1071] *1.0e-05

A visual example of such an evolution of states is in Fig.4.3
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Figure 4.3: Continuous time bayesian state update on low SD

4.2.1 Discussion on the results

• What can be seen from the above set of observations is that when dealing with noisy

sensors, the recursive state update algorithm set B for the sensing nodes is clearly

superior in case of the nodes 4 through 6 i.e the sensing nodes where the variances

are almost half of what can be observed while using the non recursive state update

algorithm set A. It is also clearly superior when its interaction with the non-sensing

state update algorithm is considered, which can be seen as an almost two fold increase

in variance in the nodes 1 through 3 i.e the non-sensing nodes, when the non-recursive

algorithm is applied.

• Interestingly however, the non recursive sensor state update algorithm outperforms

the recursive sensor state update algorithm as can be seen by a difference in variances

between the two which is almost a couple of orders of magnitude when the sensors

are extremely precise.
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• As expected, the process variance of the continuous time state update algorithm set

C is very similar to that of the non-recursive discrete time state update algorithm set

A.

4.2.2 Coupling

As a way to visualize the coupling between the states for both the recursive and the

non recursive versions of the state update algorithm, we use the MATLAB functions

xcorr(), which returns a matrix whose columns contain the autocorrelation and cross-

correlation sequences for all combinations of the columns of the input matrix and

xcov(), which returns a matrix whose columns contain the autocovariance and cross-

covariance sequences for all combinations of the columns of the input matrix. In this

case, an input matrix that contains as its columns the sequence of state updates for

each node of the graph for a set of standard deviations σ=[0,0,0,0.2,0.4,0.3] was used.

Only the last 70 iterations were used (out of the 100 iterations for which the code

was run) for the purpose of disregarding the transient states. Each such column has

one autocorrelation/autocovariance sequence and 5 cross-correlation/cross-covariance

sequences. Therefore the output matrices have 36 columns and 139 rows.

Fig.4.4 and Fig.4.5 are the plots for the outputs of the xcov() function and the xcorr()

respectively when the recursive state update algorithm is used. It can be seen that

the covariance and correlation becomes the strongest while approaching a lag of zero,

that is the end of the sequence.
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Figure 4.4: Crosscovariance on DT recursive
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Figure 4.5: Crosscorrelation on DT recursive
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Fig.4.6 and Fig.4.7 are the plots for the outputs of the xcov() function and the xcorr()

respectively when the non-recursive state update algorithm is used.

It can be observed here that the non recursive algorithm gives rise to ’less similar’

state update sequences when compared to the state update sequences of the recursive

version.

Here too it is seen that the covariance and correlation becomes the strongest while

approaching a zero lag, which is the end of the sequence.

Fig.4.8 and Fig.4.9 are the plots for the outputs of the xcov() function and the xcorr()

respectively when the continuous time state update algorithm is used.

It can be observed here that it has coupling characteristics very similar to the non-

recursive discrete time state update algorithm

For two time series xt and yt we can calculate the true cross-covariance as

σxy(T ) = 1/(N − 1)
N∑
t=1

(xt−T − x̄)(yt − ȳ)

where x̄=mean of time series x and ȳ=mean of time series y

at zero lag,

σxy(0) = 1/(N − 1)

N∑
t=1

(xt − x̄)(yt − ȳ)

and when there is autocovariance,

σxx(0) = 1/(N − 1)
N∑
t=1

(xt − x̄)2

which is the variance of the time series.

In MATLAB the xcov() function computes raw covariance with no normalization.

That is, to get the true covariance the output must be divided by N-1. For expository

purpose, the 70th row of the cross covariance matrix is taken (which corresponds to

the zero lag) and is arranged into a 6x6 matrix (by using the reshape() function in

MATLAB) whose elements are arranged in the following way where [A,B,C,D,E,F]

correspond to the columns containing the states of nodes 1-6 for any given number

of iterations for any version of the algorithm (the pair of update equations numbered

(3.4) and (3.8) has been used for this particular exposition)
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xcov0 =



AA AB AC AD AE AF

BA BB BC BD BE BF

CA CB CC CD CE CF

DA DB DC DD DE DF

EA EB EC ED EE EF

FA FB FC FD FE FF


Here, the letter sequence XY where X and Y ∈ [A,B,C,D,E, F ] corresponds to the

expression

σxy(0) =
N∑
t=1

(xt − x̄)(yt − ȳ)

where the symbols have their usual meaning.

The letter sequence XX where X ∈ [A,B,C,D,E, F ] corresponds to the expression

σxx(0) =
N∑
t=1

(xt − x̄)2

Which indicates towards the conclusion that upon normalizing the xcov0 matrix by

dividing it by N-1 (where N=70), the diagonal elements of the resulting matrix will

be equal to the variance of the process at the corresponding nodes.

Such a matrix aids in clearly visualizing the coupling of the sensing nodes with the

non sensing nodes even when the network structure is unavailable. The position of the

maximally correlated elements coincide with the position of the connected elements

in the adjacency matrix. One such matrix obtained is presented below,

Nxcov0 =



7 4 2 5 1 0

4 5 2 4 4 1

2 2 4 1 1 3

5 4 1 40 1 −1

1 4 1 1 13 0

0 1 3 −1 0 14


∗ 10−4

where the variance at the nodes, obtained using the var() function is

σ2 = [0.0007, 0.0005, 0.0004, 0.0040, 0.0013, 0.0014]
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Figure 4.6: Crosscovariance on DT non recursive
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Figure 4.7: Crosscorrelation on DT non recursive
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Figure 4.8: Crosscovariance on CT state update
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Figure 4.9: Crosscorrelation on CT state update
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4.2.3 Noise output

• As a last step to visualize the random noise generation at the output, for each node

the state values for a very noisy sensor were subtracted from the state values of a

very precise sensor for a very large number of steps (1000 in this case)to get the noise

and then a check was run to see if the noise is indeed Gaussian. For this purpose

the MATLAB command normplot() was used and as a sample the results for node

1 (Fig.4.10) and node 4 (Fig.4.11) are presented indicating that the noise indeed is

Gaussian for both the sensing and the non sensing nodes

• Another interesting observation is obtained when the cross-correlation and cross-

covariance matrices of the Gaussian noise matrix obtained in the previous step is

evaluated using MATLAB

Fig.4.12 and Fig.4.13 shows that the output Gaussian noise has a degree of cross-

covariance and cross-correlation (in that order) with peaks at a lag of zero as well. It

is consistent with the fact that when white noise is an input to a linear system, the

output is a correlated Gaussian noise whose autocorrelation sequence is not a Dirac

delta function.

-0.15 -0.1 -0.05 0 0.05 0.1

Data

0.001

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

0.999

P
ro

b
a
b
ili

ty

Normal Probability Plot

Figure 4.10: Normplot for non-sensing node 1
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Figure 4.11: Normplot for sensing node 4
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Figure 4.12: Crosscovariance for noise output at node 1
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Figure 4.13: Crosscorrelation for noise output at node 4

•

4.2.4 General discussion

In general for the above set of observations and analysis, we can conclude that the recursive

version of the sensor state update algorithm performs better for noisy sensors where as it

performs much worse but still excellent in case of very precise sensors. As future work, a

further addition to the simulation code itself can be an implementation of Prim’s algorithm

to find the root of the spanning tree given the adjacency matrix. In case of a large adjacency

matrix, this will become necessary for determining the possible position of the pinning nodes.
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4.3 Generalized Consensus on Estimates for n Noisy Sensors

in a Communication Network

In this section we observe the output statistics for the consensus algorithm on estimates.

The algorithms that are to be tested in this section are the following:

Algorithm set D (Discrete time):

(4.7)xi(k + 1) = xi(k) + δ[
∑
∀j∈N

eij(xi − xj) +
∑
∀j∈N

eij(ξi − xj)]

Algorithm set E (Continuous time):

(4.8)ẋi =
∑
∀j∈N

eij(xi − xj) +
∑
∀j∈N

eij(ξi − xj)

4.4 Process Variance

We observe the process variance of the two sets of algorithms in this section in the same

way as it was observed in section 4.2 earlier in the chapter.

Running algorithm set D on a set of large standard deviations(i.e generally noisy sen-

sors) like σ=[0,0,0,0.2,0.4,0.3] the variances at the nodes 1 to 6 were observed to be

σ2=[0.0060,0.0177,0.0157,0.0013,0.0044,0.0039]

A visual example of such an evolution of states is in Fig.3.16

Using the algorithm set D for a set of very low standard deviations (i.e very precise

sensors) like σ=[0,0,0,0.002,0.004,0.003] the variances at the nodes 1 to 6 were ob-

served to be

σ2=[0.0641,0.1781,0.1173,0.0160,0.0445,0.0293] *1.0e-05

A visual example of such an evolution of states is in Fig.4.14
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Figure 4.14: Discrete time consensus on estimates on low SD

Running algorithm set E on a set of large standard deviations(i.e generally noisy sen-

sors) like σ=[0,0,0,0.2,0.4,0.3] the variances at the nodes 1 to 6 were observed to be

σ2=[0.0034,0.0074,0.0056,0.0009,0.0019,0.0014]

A visual example of such an evolution of states is in Fig.3.18

Using the algorithm set E for a set of very low standard deviations (i.e very precise

sensors) like σ=[0,0,0,0.002,0.004,0.003] the variances at the nodes 1 to 6 were ob-

served to be

σ2=[0.23611,0.3945,0.1950,0.0589,0.0985,0.0487] *1.0e-05

A visual example of such an evolution of states is in Fig.4.15
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Figure 4.15: Continuous time consensus on estimates on low SD

4.4.1 Discussion on results

From what can be inferred from the above process variances, the performance of the consen-

sus on estimates is a little bit inferior for noisy sensor data, when compared to the Bayesian

consensus algorithm for the same set of sensor variances. However, its calculation does not

require the knowledge of sensor variances and for this very fact it remains more easily im-

plementable. For sensors with less noise, the consensus algorithm on estimates outperforms

the Bayesian state update algorithm by 1-2 orders of magnitude.

4.4.2 Coupling

In order to visualize the coupling between the states for both the algorithms, we again use

the xcorr and xcov functions in MATLAB in exactly the same way as has been described

in 4.2.2.

Fig 4.16 and Fig 4.17 are the plots for the outputs of the xcov() function and the xcorr()

function respectively when the Algorithm set D is used.
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Figure 4.16: Crosscorrelation on DT consensus on estimates
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Figure 4.17: Crosscovariance on DT consensus on estimates

Fig 4.18 and Fig 4.19 are the plots for the outputs of the xcov() function and the xcorr()

function respectively when the Algorithm set E is used.
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Figure 4.18: Crosscorrelation on CT consensus on estimates
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Figure 4.19: Crosscovariance on CT consensus on estimates

Using the update algorithm D, we get the matrix

xcov0 =



AA AB AC AD AE AF

BA BB BC BD BE BF

CA CB CC CD CE CF

DA DB DC DD DE DF

EA EB EC ED EE EF

FA FB FC FD FE FF


and from that the normalized cross covariance matrix

Nxcov0 =



.0448 .0319 .0108 .0224 .0159 .0054

.0319 .2162 .0734 .0159 .1081 .0367

.0108 .0734 .1132 .0054 .0367 .0566

.0224 .0159 .0054 .0112 .0080 .0027

.0159 .1081 .0367 .0080 .0541 .0184

.0054 .0367 .0566 .0027 .0184 .0283


∗ 10−5
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where the process variance at the nodes, obtained using the var() function is

σ2 = [0.0448, 0.2162, 0.1132, 0.0112, 0.0541, 0.0283] ∗ 10−5

4.4.3 Noise output

To visualize the noise characteristics at each node, we subtract the state values for a very

noisy sensor from the state values of a very precise sensor for a very large number of steps

(1000 in this case). We use the normplot() command to demonstrate the Gaussian nature

of the noise. Fig. 4.20 is the normplot for node 4 in the network.
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Figure 4.20: Normplot for node 4
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The same Gaussian noise that is at the output of node 4, is shown to have a degree of cross

covariance, as shown in Fig. 4.21 and cross correlation, as shown in Fig 4.22 - which is not

simply a Dirac delta function at the zero lag position. In other words it is a coloured noise

having a Gaussian distribution,which is consistent with the fact that the system that is in

consideration is a linear system.
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Figure 4.21: Crosscovariance for noise on Consensus on estimates
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Figure 4.22: Crosscorrelation for noise on Consensus on estimates

4.4.4 General discussion

for the above set of observations and analysis, we can conclude that in general for noisy

sensors, the Bayesian state update algorithm performs better than the consensus algorithm

on estimates. However when the task of tracking a fast varying signal is considered, the

consensus algorithm on estimates perform better than the Bayesian state update algorithm.

Below in fig 4.23 we exhibit the cross correlation between a high frequency sinusoid and the

sensor node outputs for the Bayesian state update algorithm and in fig 4.24 we exhibit the

same for the consensus algorithm on estimates.
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Figure 4.23: Bayesian state update crosscorrelation with sinusoidal input
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Figure 4.24: Consensus on estimates crosscorrelation with sinusoidal input

4.5 Luenberger Observer on a Strongly Connected Digraph

(where all the nodes are sensors)

Here we observe the statistics of the outputs for the Luenberger observer that was discussed

in 4.6. It is given as:
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˙̂xi = Ax̂i +Ki(zi −Hix̂i) + γPi

∑
j∈Ni

eij(x̂j − x̂i) (4.9)

Ki = PiH
T
i R
−1
i , γ > 0

Ṗi = APi + PiA
T +BQBT −KiRiK

T
i

with a Kalman consensus estimator and initial conditions Pi(0) = P0 and ˙̂xi = x(0)

with a modified Bayesian weighing of the injection gain Ki and the edge weight eij

Ki −→ Ki(1 + 1/σ2i )

eij −→ [(
∑
k 6=i

1/σ2k)/(σ2i +
∑
k 6=i

1/σ2k)]eij

4.6 Process Variance

We observe the process variance of the Luenberger observer algorithm in this section in the

same way as it was observed in section 4.2 and 4.4 earlier in the chapter.

Running the Luenberger observer algorithm on a set of large standard deviations(i.e

generally noisy sensors) like σ=[11.4, 3.8,4.6,4.3,8.2,13.4] the variances at the nodes 1

to 6 were observed to be

σ2=[0.2159,0.2252,0.2089,0.2301,0.2412,0.2110]

A visual example of such an evolution of states is in Fig.3.23

Using the Luenberger observer for a set of very low standard deviations does not work

very well in this case because of the design of the Bayesian weighings which tends

towards a singularity error with very low values of sensor variances.

4.6.1 Discussion on results

It is evident from the above set of observations that when dealing with noisy sensors, The

currently implemented version of the Luenberger observer does not perform satisfactorily.
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The reason behind this could be the lack of an optimal design approach to fine tune the

observer coefficients. In the original Olfati Saber paper [14] as well, the convergence was

never satisfactory. A redesigning of the Bayesian weights may be necessary as well to get

rid of the singularity errors for sensors with low variance in measurements.

4.6.2 Coupling

In order to visualize the coupling between the states for the algorithm, we again use the

xcorr and xcov functions in MATLAB in exactly the same way as has been described in

4.2.2 and 4.4.2.

Fig 4.25 and Fig 4.26 are the plots for the outputs of the xcov() function and the xcorr()

function respectively when the Luenberger observer is used.
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Figure 4.25: Crosscorrelation on Luenberger
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Figure 4.26: Crosscovariance on Luenberger

Using the Luenberger observer, we get the normalized cross covariance matrix

Nxcov0 =



.3299 .3731 .3242 .3462 .4356 .2985

.3731 .4256 .3696 .3935 .4982 .3397

.3242 .3696 .3221 .3423 .4331 .2959

.3462 .3935 .3423 .3652 .4610 .3151

.4356 .4982 .4331 .4610 .5894 .3980

.2985 .3397 .2959 .3151 .3980 .2726


where the process variance at the nodes, obtained using the var() function is

σ2 = [0.3299, 0.4256, 0.3221, 0.3652, 0.5894, 0.2726]
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4.6.3 Noise output

We use the normplot() command to demonstrate the Gaussian nature of the noise. Fig.

4.26 is the normplot for node 4 in the network.

-10 -5 0 5 10

Data

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

P
ro

b
a

b
ili

ty

Normal Probability Plot

Figure 4.27: Luenberger noise normplot for node 4

The same Gaussian noise that is at the output of node 4, is shown to have a degree of cross

covariance, as shown in Fig. 4.27 and cross correlation, as shown in Fig 4.28 - which is a

coloured noise having a Gaussian distribution, which is consistent with the fact that the

system that is in consideration is a linear system.
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Figure 4.28: Luenberger noise crosscovariance for node 4
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Figure 4.29: Luenberger noise crosscorrelation for node 4

4.6.4 General discussion

for the above set of observations and analysis, we can conclude that in general for noisy

sensors, the Luenberger state estimator is not ideally suited without an optimized design.

This remains an area where opportunity for future work remains in case of a Bayesian

weighted distributed Luenberger observer design.
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Chapter 5

Conclusion and Future Work

In this work, we were able to show that the single integrator Bayesian Consensus algorithm

performs satisfactorily for tracking a steady/slowly varying measurement value. Infact it

was shown to be performing better than the already established Consensus on estimates

algorithm. However, The tracking performance of the Bayesian Consensus algorithm is

inferior to that of the Consensus on estimates filter.

We also observe that the un-optimized performance of the Luenberger type observer is

not comparable to that of the Bayesian or the Consensus on estimates algorithm. In its

present form it is virtually useless, it however has promising prospects in the sense that

the accounted for variances at the sensor nodes (through Bayesian weighing) may lead to a

robust observer once optimized.

For future work an extension of the present work to cater for non linear dynamics may

be considered. Also, Hardware based implementations of the algorithms may be another

avenue of interest. However, the most immediate improvement would be the optimization

of the Luenberger observer design.
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