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Abstract
There is rising supply of remote sensing data and also rising demand for its automatic anal-
ysis, one of the branches of analysis is classification. However, despite the rising demand,
there is no suitable dataset for learning neural networks. The aim of this work is to design,
implement and experimentally evaluate a deep neural network for learning classification
of remote sensing images using labels from OpenStreetMap. Thus this work introduces a
novel aerial image dataset that was annotated using the OpenStreetMap. Using the novel
dataset, the suitability of several state-of-the-art architectures for transfer learning from
ImageNet is assessed and compared to performance of a deep network learned using the
novel dataset only. Two augmentation techniques are evaluated for their appropriateness
on this dataset. It was found that the ResNet50 from the tested architectures is the most
accurate on the dataset and that transfer learning is less suitable than learning from scratch
on this dataset. The multi-source nature of the novel datasets benefits from augmentation
of the color space compared to strictly spatial augmentation.
Keywords: image classification, deep learning, OpenStreetMap, dataset cre-
ation

Abstrakt
Nab́ıdka dat z dálkového pr̊uzkumu Země (DPZ) vzr̊ustá a stejně stoupá poptávka po
metodách umožńıj́ıćı automatickou analýzu těchto dat, jednou z těchto metod je klasi-
ficka. Nicméně přes vzr̊ustaj́ıćı poptávku, neexistuje žádný vhodný dataset pro učeńı
neuronových śıt́ı na těchto datech. Ćılem této práce je navrhnout, implementovat a exper-
imentálně vyhodnotit hlubokou neuronovou śı̌t for učeńı se klasifikace dat z DPZ za použit́ı
anotaćı z OpenStreetMap. Z tohoto d̊uvodu tato práco představuje nový dataset leteckých
sńımk̊u, který byl anotován za pomoci OpenStreetMap. Pomoćı tohoto nového datasetu
byla vyhodnocena vhodnost a chováńı několika moderńıch architektur pomoci přenosového
učeńı z ImageNet. Chováńı śıt́ı naučených pomoci přenosového učeńı bylo porovnávno s
chováńım hluboké śıtě naučené jen za pomoci nového datasetu. Dále byla vyhodnocena
vhodnost dvou augmentačńıch technik pro navržený dataset. Bylo zjǐstěno, že ResNet50
je z testovaných architektur nejvhodněǰśı pro tento dataset a že přenosové učeńı je méně
výhodné než učeńı od nuly na navrženém datasetu. Dále bylo ukázano, že vzhledem k v́ıce
zdrojové povaze dataset použ́ıt́ı augmentace s transformaćı barev je výhodněǰśı než použit́ı
čisté prostorové augmentace.
Kĺıčová slova: klasifikace, hluboké učeńı, OpenStreetMap, vytvářeńı datasetu
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Chapter 1

Introduction

This thesis describes an aerial image dataset creation using the OpenStreetMap (OSM)
[141] as the source of annotations and then evaluates several deep neural network architec-
tures that were trained using the obtained data. First, a general introduction is provided
in this chapter, then Ch. 2 describes related works for the classification (section 2.1) and
segmentation (section 2.2) using remote sensing data and also related works regarding a
remote sensing dataset creation (section 2.3). The Ch. 3 then provides an introduction
into deep learning — section 3.1 describes the early neural networks while the section 3.2
provides a short summary of the state-of-the-art deep learning. The section 3.3 describes
the basic building blocks that constitute a neural network. The architectures that were
used in this work are described in Sec.3.5. The used data are then described in Ch. 4, the
data sources are introduced in section 4.3 (the aerial imagery) and section 4.4 (annotating
the data using the OSM). The obtained data are described in section 4.1 and data sampling
in section 4.5 and augmentation in section 4.6.

The Ch. 5 describes the method used and the individual experiments:

• comparing different architectures with transfer learning (section 5.1)

• learning from scratch of the most successful architecture from transfer learning (sec-
tion 5.2) — same architecture is used for experiments below

• evaluation of the used data augmentation using networks trained from scratch (sec-
tion 5.4)

• evaluation of the use of different activation functions using networks trained from
scratch (section 5.5)

The Ch. 6 briefly describes technologies and software used for implementation of the
work and also describes the implementation itself. Finally, the Ch. 7 provides the results
for the experiments mentioned above. The Ch. 8 concludes the work and the Ch. 9 presents
several direction for possible extensions of this work.

1
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1.1 Motivation

The need to observe the Earth is as old as mankind but only with the invention of the
camera were people able to capture images of the Earth. Images were taken from the
surface in the beginning of photography but it has not taken long for the first aerial photos
to emerge — the very first aerial photo was taken in 1860 from a balloon. However, it was
not until the October 24, 1946 when the first images of the Earth were taken from the
space — from 105 km above the surface [10]. These images were taken from a V-2 rocket;
the first satellite images were taken by the U.S. Explorer 6 on August 14, 1959. A decade
later, the Landsat program1 started to provide up-to-date Earth imagery [127] for use in
many fields — e.g. for studying the urban growth, climate change or biodiversity studies.

The Earth imagery was sparse and rare at the beginning and also available to only a
few as it has been very expensive and of strategic value. The recent technological advances
have, however, led to lower manufacturing and launch costs of the satellites and also allowed
the satellites to be smaller and equipped with better sensors. This has led to an increase
in bot demand and supply of satellite imaging and its analysis.

When remote sensing images were sparse and rare, a manual analysis was the norm,
however manual analysis is quite costly for the amount of satellite images that need to be
analyzed nowadays. This led to a rising demand for tools that were able to analyze the
imagery automatically or, at least, simplify and speed up the analysis.

Many different methods were proposed in the field of computer vision but deep neural
networks have emerged as the state-of-the-art tool for many tasks such as image classifi-
cation [27, 57, 164, 170, 179], image segmentation [7, 165], and speech recognition [163].

1.2 Objectives and scope

The main goal of this thesis is to design, implement and experimentally evaluate a deep neu-
ral network for learning classification of satellite images using labels from OpenStreetMap
(OSM) [141]. Most of the available satellite imagery datasets are manually labeled and
thus are rather small, which makes training of deep networks rather difficult. Thus as the
available datasets of remote sensing imagery are small or not suitable for some reason, the
goal of this thesis is also to create a new dataset and annotate it using the OpenStreetMap
platform [141]. OpenStreetMap is a crowd–sourced open, editable map built in wiki (e.g.
Wikipedia [191]) style by many volunteers. This thesis describes the whole pipeline of the
learning — obtaining the imagery, image preprocessing, creation of training, validation, and
testing datasets with annotations, and experimental evaluation of selected state-of-the-art
architectures.

The main contributions are:

• a new aerial dataset created remedying the problems with current datasets in the
field

1viz https://landsat.gsfc.nasa.gov/

https://landsat.gsfc.nasa.gov/
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– using annotations from OSM thus allowing simple extensions (more data from
all over the world or, more classes) of the dataset in future

– annotations for both classification (singe class per image) and labeling (multiple
classes per image)

• a proposed and evaluated augmentation pipeline for multi-source data

– the created dataset is multi-source (See section 4.3)

– the augmentation brings 2 pp accuracy gains compared to the regular augmen-
tation (validation accuracy 68.19% vs 71.80%, viz section 7.2.1)

• the performance evaluation of several pre-trained architectures and top layer config-
urations

– pretrained on the ImageNet [158] and via transfer learning used on the created
dataset

– state-of-the-art architectures

• a trained network on the dataset

– the selected network architecture is based on the results from the transfer learn-
ing experiment

• evaluation of suitability of several different activation functions for the provided
network
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Chapter 2

Related works

This section targets mostly the recent works focused on aerial image labeling. While
this field is not recent, the early works utilized ad–hoc and knowledge–based approaches
using quite small datasets and these works are not very relevant as the field has shifted
significantly. A few examples of early works are [6, 11, 34, 55, 56, 73, 87, 117]. A review of
classification approaches in remote sensing data that are not covered here is provided in [18,
46]. More details about remote sensing image scene classification method are available in a
recent review [23] that has appeared concurrently with this thesis. To be even more specific,
this work focuses mainly on high–level methods such as convolutional neural networks
(CNNs) as these methods mostly dominate in classification of remote sensing images [23,
194].

2.1 Classification

One of the first classification tasks using remote sensing data was [56], where several small
datasets were used. However the contribution of this work was several manually–crafted
textural features as the individual classes had significantly different textures.

The neural networks (NNs) were used for classification of SAT-4 [8] and SAT-6 [8]
datasets in [8, 153]. Both datasets are very large (SAT-4 has 500,000 samples and SAT-
6 has 405,000 samples), however, they give almost no context and contain only a small
number of classes, SAT-4 has 4 classes and SAT-6 has 6 classes [8]. The datasets consist
of patches 28 ˆ 28 pixels at 1 m per pixel resolution manually labelled and each patch
has 4 spectral bands — red, green, blue, and near-infrared. The SAT-4 dataset consists
of 400,000 training and 100,000 testing images as either barren land, trees, grassland or
background class. The SAT-6 dataset consists of 324,000 training and 81,000 test images
of barren land, trees, grassland, roads, buildings and bodies of waterclasses [8, 153]. The
DeepSat [8] is an architecture where deep features are extracted first and then fed into a
Deep Belief Network (DBN). The author of [153] has used a CNN for classification of the
two datasets and has reached slightly better accuracy than the DeepSat (97.95% vs 99.54%
on SAT-4 and 93.92% vs 99.44% on SAT-6) [153].

A CNN pre–trained on ImageNet [158] was used to classify the UC Merced Land Use

5



6 CHAPTER 2. RELATED WORKS

dataset [197] and Brazilian Coffee Scenes dataset [145] by using transfer learning (for
transfer learning viz section 5.1). Three CNN architectures learned on the ImageNet were
used, two OverFeat [164] models (OverFeat accurate and OverFeat fast) and Caffe [81]
pretrained AlexNet [96]. The Caffe based network had accuracy 93.42%˘ 1.00 on the UC
Merced Land Use dataset, while the OverFeat networks had 90.91%˘1.19 (OverFeat fast)
and 90.13%˘ 1.81 (OverFeat accurate) and all three CNNs were more accurate than other
evaluated descriptors. However, the networks were beaten by color autocorrelogram [71]
and Border–Interior Pixel Classification [175] global descriptors on the Brazilian Coffee
Scenes dataset [145].

A CaffeNet based on the AlexNet [96] was used for land use classification also using
the UC Merced Land Use dataset [197] and Brazilian Coffee Scenes dataset [145]. The
pretrained CaffeeNet on the ImageNet [158] was fine-tuned on UCMerced Land Use dataset
and have reached even better accuracy than [145] with accuracy of 97.10%. The CaffeNet
was learned from scratch on the much larger Brazilian Coffee Scenes dataset and the
author reported accuracy of 91.8% — the authors have also tried using the pretrained
network with fine-tuning but the performance was slightly worse (90.75%). A combination
of both OverFeat and the CaffeNet have reached good results on the UC Merced Land Use
dataset of 99.36% ˘ 0.63 (OverFeat accurate + CaffeNet) and 99.43% ˘ 0.27 (OverFeat
fast + CaffeNet) [145].

A CNN network called PatreoNet was used in [129] for aerial scene classification us-
ing the UC Merced Land Use dataset [197] and Brazilian Coffee Scenes dataset [145] and
reaching accuracy of roughly 90% on both datasets. An evaluation of different network
architectures and transfer learning is in [130] where the authors took several different net-
work architectures (PatreoNet [129], AlexNet [96], CaffeNet [81], GoogLeNet [179], VGG16
[170], and both OverFeats [164]) and evaluated them on the UC Merced Land Use [197],
Brazilian Coffee Scenes [145], and WHU-RS19 [195] datasets. The authors have found
that transfer learning with fine–tuning performs better than learning the networks from
scratch [130]. However, that might have been caused by quite small datasets (each of
these has less than 3000 samples) that might not have been sufficient to learn good feature
extractors. This seems likely because both fine-tuned and learned from scratch networks
have performed comparably on the Brazilian Coffee Scenes dataset that is larger compared
to the other two datasets. The authors have also tried to use an SVM classifier using the
deep features extracted by the individual networks and have found that it works slightly
better than pure CNNs for both fine–tuned and fully trained networks[130].

A two–way bottom up approach is used in [105] for finding objects of given class
on aerial images, however, details about the aerial dataset were not provided thus the
performance is rather unclear.

A different approach was used in [154] where novel quaternion based features were
proposed and then used for classification of the UC Merced Land Use [197] and Brazilian
Coffee Scenes [145] datasets using an SVM classifier which resulted in quite good results —
the accuracy was 92.29% on the UC Merced Land Use dataset and 90.75% on the Brazilian
Coffee Scenes datasets.

This thesis focuses on the use of deep learning for classification in aerial imagery but,
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unlike most of the approaches in the published literature, it learns the deep network from
scratch using the aerial imagery only — the other papers mentioned use either shallow
networks or deep features extracted using networks pre-trained on other datasets or based
on a random initiliaization.

2.2 Segmentation

While strictly speaking this work focuses on the classification and not on the segmentation,
the segmentation approach is still relevant for several reasons. First, the early works in
remote sensing were doing per-pixel classification using low-resolution data that were more
connected to classification than segmentation. Second, the segmentation approaches more
often used deep CNNs similar to the ways used in this thesis as used in this thesis (e.g.
both this thesis and [170] use VGG network).

There are many published papers that focus on road or building segmentation. For
example, road segmentation is done in [14, 36, 45, 122–125]. Another example of seg-
mentation is in [91] where authors used covariance descriptors with a random forest to
create a segmentation mask for 5 classes — Building, Waterbody, Grassed Area, Tree, and
Streetlayer. The work was later extended in [92]. Note that both works have used aerial
data together with height information reconstructed from triplets of aerial images with
overlaps for the segmentation [91, 92]. The single class segmentation of roads was done in
[36] where the main idea was the use of edge detection. Building segmentation was done
in [110, 115, 128, 150]

A support vector machine was used for pixel–wise classification in [70, 172].
Neural networks for road segmentation were used in [123]. An early work featuring

neural networks and comparing them with a Naive Bayess classifier is [34] — however, the
used networks were very simple with at most 10 neurons in a single layer and at most two
hidden layers. Both types of classifiers were used in [11] with the use of hyperspectral data,
however, both the networks and dataset were very small — the network had 56 neurons and
the dataset consisted of 2019 pixels . Pixel–wise classification was also done in [13], where
a neural network was used to classify hyperspectral pixels into several classes. However,the
datasets seem to be not very challenging as these pixels were low–resolution and covering
many quite big areas with a single class thus the classification was able to work quite well
with 98% accuracy [13].

A hallow neural network was also used in [143]. Multi–temporal data and a simple NN
were used in [104] for cloud segmentation. A 4 layer feedforward NN was used for cloud
classification from a single channel visible light data in [103].

A Fully Convolutional Network (FCN) for segmentation of the ISPRS Potsdam bench-
mark dataset [74] (6 classes: impervious surfaces, building, low vegetation, tree, car, clut-
ter/background)is presented in [167]. This network presents a novel no–downsampling
approach to preserve the output dimension and have finer segmentation [167]. A VGG
network [170] pre-trained on the ImageNet [158] was modified for use in the FCN architec-
ture and was used for segmentation over the color infrared CIR channels instead of RGB as
input and a network trained from scratch was used for the the digital surface model (DSM)
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that contains the depth information — the outputs of the two networks were connected
just before the fully-connected layers that were used for final output [167].

A CNN named SatCNN was used in [207] for classification of the SAT-4 and SAT-6
datasets. Object detection in aerial–images using the contextual hierarchical model was
used for detection of trees, cars, roofs, roads, and parking lots in [149].

While segmentation is often closely related to classification in remote sensing applica-
tions, this thesis deals with the classification into many more classes than were used in the
related segmentation work.

2.3 Dataset creation

Many works have created adataset for remote sensing but many of those are not suitable
for all tasks. This section focuses mostly on classification datasets, although a few others
are discussed as well. A brief summary of remote sensing image classification datasets in
the literature is in table 2.1. A custom dataset for road segmentation was created in [125].
The author has used OpenStreetMap (OSM) [141] data together with MapBox Studio
[113] to create segmentation labels for aerial images obtained using [52]. OpenStreetMap
was also used for the creation of building segmentation dataset in [122], where the author
has created the Massachusetts Buildings datasets using labels taken from the OSM using
satellite imagery. The dataset’s labels are quite accurate because the city of Boston has
provided the building footprints to the OSM project [122]. The author has also used the
same approach to create Massachusetts Road dataset for road segmentation [122]. A small
segmentation dataset created using Google Maps [52] for both imagery and segmentation
mask was created in [36].

A hand labeled object detection dataset using Google Earth was created in [149] — the
dataset consists of 196 manually labelled images that contain a larger number of objects:
10477 cars, 973 roofs, 202 roads, 584 parking lots, and 555 tree regions [149], and it can
be considered one of the first larger datasets. Another hand labeled dataset for object
detection was presented in [24] and it contains 10 diffent classes. Two datasets, SAT-4
and SAT-6, are created in [8] — while these datasets are quite large (500,000 and 400,000
patches), they contain only 4 and 6 classes respectively [8].

A small dataset using imagery from IKONOS satellite is used in [198], it consists of 10
classes by 100 panchromatic images 64ˆ 64 px with a spatial resolution of 1 m that were
manually extracted from the original IKONOS images [198].

Two small SPOT5 datasets were created for the purpose of [111], each dataset con-
tains 304 panchromatic images in three classes (97 images in Building class, 97 images in
Vegetation class and 110 images in Farm class). The two datasets differ by the spatial
resolution and size of their images, the first dataset has a spatial resolution of 2.5 m and
512ˆ 512 px patches, the second dataset has a spatial resolution of 10 m and 128ˆ 128 px
patches [111].

A ORNL-I dataset was first introduced in [185] which consists of 850 512 ˆ 512 px
images distributed into 5 classes (agricultural, large-facility, commercial, suburban, and
wooded) [185]. An extended version of ORNL-I dataset called ORNL-II is presented in
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[25], it consists of 512 ˆ 512 px patches having cca 1 m spatial resolution. The dataset
is binary and consists of large–facility class (153 samples) and the background class (974
samples) [25].

The UC Merced Land Use dataset was developed in [197] for the evaluation Bag-
of-visual-words approach on the land-use classification, thus the dataset have a smaller
number of examples for each class than the datasets usually have for learning CNNs. It
consists of 100 256ˆ 256 px RGB patches with a spatial resolution of 0.3 m for each of its
21 classes.

An RGB–NIR dataset (In-House dataset) was created in [5] for testing multispectral
descriptors. The dataset consists of 850 RGB and NIR 80 ˆ 80 px images of spatial
resolution of 1 m manually labeled into 5 classes (grayfield, greenfield, houses, river, and
woods) [5]. Another version of In-House dataset was introduced in [155], where the RGB
image (4500ˆ6000 px) was divided into 606 128ˆ128 px tiles that were manually classified
into one of 6 classes (houses, cemetery, industry, field, river, and trees)[155]. However both
datasets are a bit problematic as all the images are from a single scene that was cut into
the patches, thus the patches do not exhibit great variance.

The Brazilian Coffee Scenes dataset was created for the purposes of [145] and it consists
of 64 ˆ 64 px patches of three classes — coffee (ą 85% coffee pixels), non–coffee (ă 10%
coffee pixels) and mixed (patches not fitting into the previous descriptions). The dataset
is quite large as it has 36,577 samples of non–coffee, 1,438 samples of coffee, and 12,989
samples of mixed [145]. The images consists of three spectral bands — red, green and
near infrared [145]. A similar dataset, hte Brazilian Cerrado-Savanna Scenes Dataset, was
published with [131] for vegetation classification. It consists of 1,311 64ˆ64 px images with
3 spectral bands (red, green, near infrared) with a spatial resolution of 5 m distributed in
4 classes (agriculture, arboreal vegetation, Herbaceous vegetation, Shrubby vegetation).

A dataset with 11 classes was created in [206] for evaluation of a multibag-of-visual-
words model. The dataset was extracted from Google Earth and manually labeled, it
consists of 1232 RGB images of size 512 ˆ 512 px and spatial resolution of 0.2 m divided
into 11 classes each represented by roughly 100 images. This dataset was referenced as
RSC11 dataset in [23].

This work has also made use of a WHU-RS19 dataset created in [195]. However, it
is unclear what dataset was used as the original data are no longer available and the
description in the original work [195] differs from the description in following works [20,
166, 206]. Furthermore, it is unclear who originally created the dataset as two different
works claims its authorship [32, 195]. The "original" works do not provide any details
about the dataset except that it consists of 12 different classes each having 50 images,
while the rest of the works describe the dataset as having 19 classes each consisting of 50
images 600 ˆ 600 px [21, 23, 166, 206] at spatial resolution up to 0.5 m [206]. It seems
that the authors of [32] or [195] had published an extended version of the dataset used in
[32] or [195] without making it clear that the dataset used in the work differs from the
published dataset that was later used in the following works. This possibility is supported
by the work in [23] which states that there are two versions of this dataset.

Another classification dataset was presented in [205], which, similar to the other datasets
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discussed here, contains 2,400 images obtained from Google Earth and manually labeled.
It contains 12 classes, each with 200 images of size 200 ˆ 200 px and a spatial resolution
of 2 m. While the dataset is referred to only as the Google dataset in the original work, it
appears named as SIRI-WHU in [23].

All of the previous datasets suffer from at least one weakness for classification using
NNs — too few examples, too few classes, low variation, or too small patches — which
is the reason why this thesis and [23, 194] introduce new datasets. The Aerial Image
Dataset (AID) is created in [194]. It contains 10,000 600 ˆ 600 px images with spatial
resolution ranging from 0.5 m to 8 m per pixel — the data were manually labeled by
"the specialists in the field of remote sensing image interpretation" [194]. The dataset
contains 30 classes each having from 220 to 420 images and the data were sampled from
selected countries worldwide — mainly from China, the United States, England, France,
Italy, Japan, Germany [194].

Concurrent with our work, a new dataset has been created in [23]. It is the NWPU-
RESISC45 dataset for classification. The authors of [23] have created a dataset of 256 ˆ
256 px patches with spatial resolution ranging from 30 m to 0.2 m. The dataset consists
of 31,500 images divided into 45 classes of 700 images each. While this dataset solves all
of the mentioned weaknesses by providing a large number of samples with a large number
of classes, it consists of images of different spatial resolution as the author wanted to make
the dataset challenging [23]. The authors review existing datasets but they seem to miss
some of the relevant datasets in the field — they do not mention the AID [194] dataset
from a previous year that already solves most of the weaknesses of other datasets and both
its size and number of classes is comparable to their NWPU-RESISC45 dataset (AID has
30 classes while NWPU-RESISC45 dataset has 45 classes).

However, both NWPU-RESISC45 and AID do not have imagery with a single spatial
resolution but rather have images with different spatial resolutions. This might not be the
best idea as the aerial/satellite imagery is obtained usually with known spatial resolution
and large batches of images at given spatial resolution are usually provided. Thus it makes
more sense to provide individual datasets for different spatial resolutions as it is a more
frequently used case — unlike for the "ground" image datasets such as ImageNet [158]
where objects naturally occur at different scales [167].

This thesis, similar to mentioned publications, deals with the creation of a remote
sensing image dataset but it differs from related work in several points:

• the images are annotated using OSM, not manually labelled

• the size of created datasets is significantly higher than the existing dataset

– with the exception of the NWPU-RESISC45 dataset that has comparable size
( 60% compared to the created E44 dataset) and that was published concurrently
with our work in [23]

• compared to the two larger datasets (NWPU-RESISC45 and AID), the spatial reso-
lution is fixed
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year name use images classes bands size [px] res. [m] source link
2008 IKONOS C 1000 10 P 64 ˆ 64 1 [198] NA
2008 ORNL-I C 850 5 P 512 ˆ 512 1 [185] NA
2010 UC Merced Land Use C 2100 21 RGB 256 ˆ 256 0.3 [197] [199]
2010 WHU-RS19 C 1005 19 RGB 600 ˆ 600 up to 0.5 [166, 195] NA
2011 In-House (RGB) C 606 6 RGB 128 ˆ 128 1 [155] [4]
2013 SPOT5 (2.5) C 304 3 P 512 ˆ 512 2.5 [111] NA
2013 SPOT5 (10) C 304 3 P 128 ˆ 128 10 [111] NA
2014 ORNL-II C 1127 2 P 512 ˆ 512 1 [25] NA
2014 In-House (RGB–NIR) C 850 5 RGB,NIR 80 ˆ 80 1 [5] [4]
2015 Brazilian Coffee Scenes C 36,577 3 (2) RG,NIR 64 ˆ 64 NA [145] [146]
2015 SAT-4 C 500,000 4 RGB,NIR 28 ˆ 28 1 [8] [9]
2015 SAT-6 C 405,000 6 RGB,NIR 28 ˆ 28 1 [8] [9]
2016 RSC11 C 1232 11 RGB 512 ˆ 512 0.2 [206] NA
2016 SIRI-WHU C 2,400 12 RGB 200 ˆ 200 2 [205] NA
2016 Brazilian Cerrado-Savanna Scenes C 1,311 4 RG,NIR 64 ˆ 64 5 [131] [146]
2016 AID C 10,000 30 RGB 600 ˆ 600 0.5 – 8 [194] [193]
2017 NWPU-RESISC45 C 31,500 45 RGB 256 ˆ 256 0.2 – 30 [23] [22]
2017 CLS20 (proposed) C 25,551 20 RGB 400 ˆ 400 0.7 — not yet
2017 CLS44 (proposed) C 52,596 44 RGB 400 ˆ 400 0.7 — not yet
2017 LAB20 (proposed) L 25,551 20 RGB 400 ˆ 400 0.7 — not yet
2017 LAB20S44 (proposed) L 52,596 20 RGB 400 ˆ 400 0.7 — not yet
2017 LAB44 (proposed) L 52,596 44 RGB 400 ˆ 400 0.7 — not yet

Table 2.1: List of remote sensing classification datasets. The column use contains "C" for
strictly classification datasets (one possible class per image) and "L" for labeling datasets
(more possible labels per image). The column bands contains "P" for panchromatic
images, "R","G", and "B" for red, green and blue bands, and "NIR" for near–infrared
band.

2.3.1 Use of OpenStreetMap

The OpenStreetMap [141] (viz section 4.4) is created and maintaned by many volunteers
all over the world (similarly as Wikipedia [191]) and it was already used as source of
data for creation of segmentation ground truth mask in [125]. The OpenStreetMap was
used together with MapBox Studio [113] for styling the mask to create road segmentation
Prague dataset [125]. Somewhat similar approach has been undertaken in [76] where both
Google Satellite (actually aerial) Map and classical Google Map were used as source of
data. However, the goal was to show the abilities of the Conditional Adversial Network
[76] rather than serious segmentation task — the network should produce a good looking
map from the aerial map (and vice versa). It is unclear how well could this approach work
as the authors used it only as a proof-of-concept with only small datasets that contained
only the most common objects — the network failed on less frequent object such as lakes,
etc.
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Chapter 3

Neural networks and deep learning

3.1 Beginnings

The field of neural networks (NNs) is very broad as NNs have been around for several
decades and have experienced a boom in the last two decades, thus this chapter will
provide only a shallow overview of only one sub–field — the Deep Learning (DL) in Neural
Networks. The DL has become very popular few years ago as it can accurately solve many
problems that were very hard to solve before.

It is hard to pinpoint the first neural networks as the field has evolved gradually and
the earliest NNs were based on linear regression methods which were around for an even
longer time [160] — the firsts works with linear regression appeared in the beginning of
the 19th Century [160]. The early NNs were not able to learn from the data [116, 160] —
McCulloch has introduced neural networks as a logical calculus in [116]. The first learnable
network was presented in 1949 in [60] (reference from [160]), where Hebb introduced the
idea of unsupervised learning for the NNs. Then approaches to supervised learning in NNs
were introduced (e.g. the perceptron algorithm in 1958 [156], more examples in [160]).

Some authors consider the networks trained by the Group Method of Data Handling
(GMDH) in 1965 [77, 78, 119] to be the first general working learning algorithm for su-
pervised deep feedforward multilayer perceptron [160]. Another example of an early deep
learning architecture is Neocognitron which also first introduced the idea of convolutional
NNs (CNNs) [42, 160] that are nowadays used very widely in pattern and image recognition
tasks — the network presented in [42] has seven layers. While the Neocognitron resembles
the modern NNs architectures, it does not feature a supervised learning algorithm and the
weights were rather set using local unsupervised learning rules [42] or were pre–wired [160].

The use of backpropagation (BP) in NNs first appeared in 1981 [160] in [190] even
though the BP was first described in 1970 [109, 160]. During the 1980s, the BP became
quite popular, e.g. [99, 100, 157], though it seemed that BP was usable only for shallow
networks [160]. Many improvements to the steepest descent used in BP were proposed in
the following years — e.g. the momentum to accelerate the BP [157, 160], even though the
core idea of momentum can be traced back to 1964 to [148]. Another improvement was
the well–known algorithm RProp, which is a variant of BP that takes into account only

13
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the sign of the error derivatives.
The convolutional networks were first trained with BP in 1989 when LeCun applied it

to a network LeNet similar to Neocognitron to recognize handwritten digits of the MNIST
dataset [99, 160], which was the beginning of the massive use of CNNs — the state-of-art
networks are still very similar to LeCun’s network [160].

However, most of the used networks at the time were still shallow as the deep networks
suffered from the vanishing (or exploding) gradients — also known as the Fundamental
Deep Learning Problem [51, 160] — which was first described in [63] (ref. from [160]).

3.2 Winning competitions

Various competitions help to find better algorithms/approaches in machine learning and
the NNs gained much more attention once they started to win these competitions often
— especially in the field of pattern recognition. Even though the NNs won several com-
petitions back in the 90s [160], the breakthrough was made by deep network AlexNet in
2012 when the network won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition
Challenge [158]) while significantly outperforming the second best entry (top-5 test error
rate of 15.3%, compared to 26.2%) [96]. The AlexNet had 60 million parameters and 650,00
neurons in 8 layers — it had reached the limit of the contemporary hardware and it had to
be trained simultaneously using 2 GPUs.

The ILSVRC 2013 confirmed the position of CNNs and was won by ZF Net which is a
CNN based on the AlexNet. While it reached an even lower error rate (11.2%), the network
otherwise remained very similar to the AlexNet and the main contribution of the paper, in
which it was introduced, was a technique for visualization of feature maps and analysis of
the network to various transforms of the input data [203].

One of the advantages of DCNNs is that they can be relatively simple and still achieve
great performance if they are deep enough as was shown by the VGGs networks in [170]
— the VGGs networks used only 3 ˆ 3 filters (the smallest possible still capturing the
positional information) with a stride and pad of 1. The networks also contained 2 ˆ 2
maxpooling layers after some of the convolutional layers and the last three layers were
fully connected. The authors have proposed various networks of this architecture from 11
to 19 layers [170]. The previous networks have often used larger convolutional layers (e.g.
7ˆ 7 in [203] or 11ˆ 11 in [96]) but [170] shows that similar effects can be achieved using
more 3ˆ3 convolutional layers with the advantage of having a lower number of parameters
to optimize.

The DCNNs also do not have to consist of several convolutional, maxpooling and dense
layers stacked after each other in a simple chain. A diversion from this scheme was shown
in [179] where the network GoogLeNet was introduced — the network contains parallel
connections instead of simply chaining all layers. The GoogLeNet contains Inception units
(a network-in-network) which have introduced parallel connections. Otherwise the archi-
tecture remains sequential. Each Inception unit consist of several different parallel streams
with dimensionality reduction as shown in fig. 3.1, the dimensionality reduction is neces-
sary because otherwise the depth of a single unit would be unmanageable. The whole
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Figure 3.1: The Inception unit. It contains parallel connections that are concatenated
together. The 1 ˆ 1 convolutional layers are for dimensionality reduction. Adapted from
[179].

architecture also focuses on computational efficiency — the network does not contain any
dense layers as they were replaced by average pooling layers and the whole network has
12ˆ fewer parameters than the AlexNet [179].

Another famous network is the ResNet [57] which won the ILSVRC 2015 classification
competition with a great error rate of 3.57% (actually, this error rate was achieved by an
ensemble of ResNet networks). Aside from being the winner of the prestigious ILSVRC
2015 [158] (and also ILSVRC 2015 ImageNet detection, ILSVRC 2015 ImageNet localiza-
tion, COCO 2015 detection, and COCO 2015 segmentaion [108] competitions), the ResNet
architecture is also unique for its depth — one of the networks in the paper had 152 layers
which is unprecedented, and surprisingly, the network still has lower complexity than the
VGG networks [57]. To facilitate the learning of such deep network without degradation,
the authors propose the deep residual learning framework viz section 3.5.4. Despite the
novel framework, the core idea can be easily used as it can be implemented by simply
adding a shortcut connection (also called skip connection) between layers which forces the
layers to learn a residual mapping, viz fig. 3.2 for comparison with the VGG network archi-
tecture. Even though shortcut connections have been used before — e.g. with multi-layer
perceptrons (MLPs)([152] ref. from [57]) or an equivalent of connection intermediary layers
to an auxiliary classifier (e.g. GoogLeNet [179], or deeply–supervised nets (DSN) in [102]) —
the ResNets were the first architecture where significant increase in depth led to accuracy
gains [57].

3.3 Building blocks

Deep neural networks are a very modular approach and they can be broken into several
blocks which are made from individual neurons and the complexity of an neural network
architecture can vary from very simple (e.g. a multilayer perceptron — MLP [157]) to
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Figure 3.2: Comparison of VGG19 architecture and ResNet34. The ResNet34 is almost
twice as deep as the VGG16 but it has fewer filters and lower complexity. Adapted from
[57].
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very complex (e.g. GoogLeNet [179]). The NNs are best explained using simple examples
at first and only then more complex ones. The goal of this section is to provide a brief
overview of the deep learning; a more detailed overview is available in [51, 86].

An artificial neural network (NN) is a computational model that is represented by a
weighted graph — nodes are individual neurons and edges show paths by which a signal
flows. A single neuron takes all of the inputs and combines them into a single output signal
which is then sent to all of the outputs of the neuron. The individual inputs are usually
combined using weighted summation where weights are the defined by the connections
by which the signal came into the neuron. More specifically, let us have a single neuron
i with input signals x0, x1, . . . , xn which flows through input connections with weights
w0, w1, . . . , wn, a bias term b and an activation function fpxq, then the output xi of the
neuron at time t is

xirts “ f

˜

bi `
n
ÿ

j“0

wi,jxjrt´ 1s

¸

(3.1)

as described in [41]. Furthermore, when the time domain is not needed, the time indices
are dropped [61] ref. from [41]. The Eq. 3.1 is often written in a matrix form:

xi “ f
`

wT
i x

˘

, (3.2)

where

x “

»

—

—

—

–

1
x0
...
xn

fi

ffi

ffi

ffi

fl

(3.3)

and

wi “

»

—

—

—

–

bi
wi,0
...

wi,n

fi

ffi

ffi

ffi

fl

(3.4)

Some authors consider the activation function be applied after combination of the inputs
(as above) while others consider the activation function be applied directly on the inputs
(and thus the input combination is part of the function). Since the most common approach
in pattern recognition is combining the inputs by summation, most of the researchers in
the field define the activation function as a function on combined inputs and therefore the
naming used here considers the activation function to be fpxq.

The most simple activation is a signum-like function which is used in perceptron:

y “

#

1 b`
řn

j“0wjxj ą 0

0 otherwise
(3.5)

where b is the bias term, x0, . . . , xn are real valued inputs and w0, . . . , wn are weights.
A slightly more complex example is shown in fig. 3.3, which depicts neurons in layers.

Note that for historical reasons, the intermediary layer between the input and output
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Figure 3.3: An example of a simple feedforward neural network with 3 input neurons, 2
neurons in the hidden layer and 1 output neuron.

layer is usually called hidden, however, this notation is less common in the case of neural
networks that have many hidden layers. The feedforward (i.e. no loops in the graph) NNs
usually have used (more about currently used activation functions in section 3.3.2) the
sigmoid activation functions — often–used candidate was the logistic function:

fpxq “
1

1` e´x
(3.6)

The outputy of the example network from fig. 3.3 for given inputs x0, . . . , x3 is:

y “ S

˜

b7 ` w4,7S

˜

b4 `
3
ÿ

j“0

wj,4xj

¸

` w5,7S

˜

b5 `
3
ÿ

j“0

wj,5xj

¸

` w6,7S

˜

b6 `
3
ÿ

j“0

wj,6xj

¸¸

(3.7)
where S is the sigmoid activation function and wi,j describes the weight of the connec-

tion between neurons i and j. Note that if the network had more layers or more outputs,
there would be elements in the formula that occur several times — only the inputs x0, . . . , x3
occur repeatedly in the example — thus the computation would be done in stages to avoid
repetitions.

3.3.1 Layers

The neural networks are usually organized into layers as in fig. 3.3 and neurons in these
layers are usually of the same type. This section introduces several common layers that
are frequently used in NNs — note that this list is not exhaustive and focuses especially
on the layers that are of particular interest to this work.
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3.3.1.1 Dense layer

Dense layers (also called fully connected) were already introduced in the example in fig. 3.3.
A dense layer consists of regular neurons as described in Eq. 3.1 whose inputs are connected
to all outputs of the preceding layer (hence the name dense). The early NNs usually used
only this type of layer, however, dense layers have an enormous number of parameters and
are not suitable if the number of neurons is large. This is one of the reasons why these layers
cannot be used alone for image classification. Furthermore the learning of such networks
can be quite difficult as such networks are rather susceptible to overfitting (several possible
ways to address this issue were proposed such as dropout [174], L1 and L2 regularization
or soft weight sharing [133]). Modern networks for image pattern recognition usually use
dense layers only as the top layers that utilize the features extracted by other types of
layers (e.g. [57, 170, 179]).

3.3.1.2 Dropout layer

As was mentioned above, dropout is a technique for limiting the overfitting — it approx-
imates the combining of exponentially many different neural network architectures effi-
ciently [174]. The method randomly temporarily drops out neurons from the network
along with all its incoming and outgoing connections. Each neuron is given probability p
that it remains active, otherwise it is dropped out during the training phase. All neurons
when using dropout as described in [174] are active during the testing thus the outputs
from the neurons need to be scaled down in order to average the outputs and reach similar
values to those used during the training phase [174].

Most applications however use the inverted dropout which, unlike classical dropout
from [174], scales the outputs during the training phase and thus no scaling is necessary
during the test phase [86]. A similar concept is DropConnect which drops out individual
connections instead of whole neurons [188]. The DropConnect achieves slightly better
result than classical dropout [188], furthermore, its modified version Sparse DropConnect
seems to achieve even better results [107]. Examples of different dropout approaches are
shown in fig. 3.4.

The dropout is a type of regularization of the optimization [174] — regularization
typically leads to a preference of certain types of weight over another [51].

While technically dropout layer is not a layer but rather a method of regularization, it
can be implemented by a layer that randomly switches off a fraction of outgoing connections
during training phase — e.g. the Keras implementation [26].

3.3.1.3 Convolutional layer

The convolutional layer might be the most important type of a layer for image pattern
recognition as it allows extraction of spatial features in the image without enormous com-
putational costs. Convolutional layers are based on the ideas of parameter sharing, sparse
interactions, and equivariant representations [51]. Convolutional layers are used in appli-
cations where arrangement of inputs carries spatial or temporal information — e.g. video
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Figure 3.4: Example of dropout regularizations
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(3D) [20, 169] images (2D) or natural language (1D) [88]. This section focuses on the use of
the 2D convolution in image processing however the same principles apply in other fields.

The convolutional layer basically applies filters to the input data1 and thus it adds a
another dimension to the image data as several different convolutions are usually used and
each of them results in a different feature map as shown in fig. 3.5. The fig. 3.5 shows a
convolution layer with 9 filters being applied to an input image. Note that the fig. 3.5 also
shows pooling layer (viz section 3.3.1.4) and another convolutional layer, this time with 36
filters.

The convolutional layer is defined by several parameters — width w and height h of
the kernel, number of filters d, padding p , and stride s. The width and height of the
kernel determine the size of the matrix defining the kernel; most common kernels in image
pattern recognition are square kernels (but e.g. Inception 3 uses two layers of 3 ˆ 1 and
1 ˆ 3 convolutions instead of a single 3 ˆ 3 convolution, viz section 3.5.2) . The width w
and height h define the receptive field [86] of the layer. The parameter d determines the
number of filters that will be applied to each input and thus it represents the depth of the
output volume, a single feature map at a certain depth is called depth slice.

The padding p determines whether and how will be the input volume padded by zeros.
The example in Fig. 3.5 has no padding thus the width and the height of the output
are lower than the width and height of the input due to the convolution — no padding is
sometimes called the valid padding (e.g. [26, 51]) and the convolution without padding
is sometimes called the narrow convolution (e.g. [85]). The padding is most often used
to keep the output spatial dimension same as of the input, this type of padding is often
called the same (e.g. [26, 39, 51]) or the half padding (e.g. [39]). For example, if the layer
had stride s “ 1 and h “ w then the same padding keeping the spatial dimensions would
be p “ w´1

2 . An extreme case is the full padding which pads the input with enough zeros
such that every input pixel is visited equally — the border pixels in the case of the same
padding are underrepresented in the model [39, 51].

Stride s sets how often the filter will be applied to an input pixel, s “ 1 means that
the filter will be applied to every pixel and, for example, s “ 3 means that the filter will
be applied to every third pixel. The stride determines downsampling of the input of the
convolution in the spatial dimensions — it is equivalent to a regular convolution with stride
s “ 1 followed by downsampling. This is, however, less computationally efficient than a
convolution with a stride [39, 51].

The output volume of a convolutional layer HoˆWoˆDo is determined by the param-
eters in following way [86, 125]:

Ho “
Hi ´ h` 2p

s` 1
(3.8)

Wo “
Wi ´ w ` 2p

s` 1
(3.9)

Do “ d (3.10)
1Many implementations of convolutional layers often do not really use discrete convolution but rather

cross-correlations which is technically slightly different but the difference is only an implementation detail,
for further details see [51, p. 333].
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Input 224ˆ 224

224ˆ 224ˆ 1

218ˆ 218ˆ 9

114ˆ 114ˆ 9

110ˆ 110ˆ 36

Convolution 7ˆ 7
9 maps Pooling 2ˆ 2

9 maps

Convolution 5ˆ 5
36 maps

Figure 3.5: Example of usage of convolutional and pooling layers. Note that this example
has no padding and thus the convolutions also reduce dimension. More about pooling
layers in section 3.3.1.4.

where h, w, p and s are defined above and Hi and Wi is the spatial dimension of the input
volume.

The convolutional layers utilize weight sharing as the same filter is applied to different
pixels while the traditional dense layer has an individual weight for each of its inputs. This
leads to enormous drop in number of parameters if the kernel size is sufficiently smaller
than the input spatial dimension. The convolutional layer has one set of weights for each
depth slice — all neurons within the slice have the same weights [86].

Sparse interactions (sparse connectivity) between neurons are another idea utilized in
convolutional layers [51, 86]. The interactions are defined by the size of the kernel of the
convolutional layer — e.g. if the kernel size is nˆ n then the size of receptive field of each
neuron in the layer is nˆn, i.e. the neuron is not connected to all neurons in the preceding
layer but only to n2di neurons where di is the depth of the input. The sparse connectivity
also leads to lower number of parameters of a neuron, for example, if the input volume
has size 224 ˆ 224 ˆ 3 and the filter size is 5 ˆ 5, then each neuron in the convolutional
layer will have 5 ¨ 5 ¨ 3 ` 1 “ 76 parameters while a neuron in a dense layer would have
224 ¨ 224 ¨ 3` 1 “ 150529 parameters.

A very important property of convolutional layers is the equivariance to a translation
[51] which means that shifting the output of the convolutional layer is equivalent to shifting
the input and then applying the convolution (except for border areas). This is a desirable
property when we want to detect features that appear at different locations in the input
which happens in typical image applications quite often (not always, the images might be
centered) [51]. If the equivariance to translation is not a desired property, the convolutional
layer might be replaced by locally–connected layer which is basically a convolutional layer
without strict weight sharing [86].
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3.3.1.4 Pooling layer

A pooling layer is a layer reducing the spatial dimension of the input and it is very often
used together with convolutional layers [51, 86]. The core idea is similar to convolutional
layers but instead of convolving close pixels with kernel a pooling function is applied
instead.

The most common pooling is max pooling where the pooling function outputs the
maximum value of the close pixels [39, 51, 86, 209]. Examples of other used pooling
functions are average [39, 51, 86], L2–norm pooling [51, 86], or weighted average based on
the distance from the central pixel [51].

Not only the pooling layer reduces the number of parameters and thus reduces the
possible overfitting, it also helps the network to be invariant to small translations of the
input [51]. Pooling layers have similar parametrization as convolutional layers — width
w, height h, stride s and pooling function f . The width w and height h determine the
size of a rectangular neighbourhood that is pooled together by function f . Stride s has
the same meaning as in convolutional layers and determines how often the pooling will be
applied [51]. The pooling is usually applied to non-overlapping patches hence the stride is
used more often than in convolutional layers, for example, very common pooling layer has
w “ 2 h “ 2 (filter 2 ˆ 2) together with s “ 1 and max pooling function [86, 125] which
results in downsampling and getting rid of 75 % outputs [86]. The dimension reduction
makes the network less computationally demanding.

The output volume of pooling layer Ho ˆWo ˆDo is determined by the parameters in
following way [86]:

Ho “
Hi ´ h

s` 1
(3.11)

Wo “
Wi ´ w

s` 1
(3.12)

Do “ Di (3.13)

where h, w, and s are defined above and Hi, Wi, Di is the dimension of the input volume.
The pooling layers are not necessary and can be efficiently replaced by convolutional

layers with a stride which might be often useful because some architectures and approaches
do not work well with pooling [86, 173]. For example, visualization by deconvolving the
output requires saving switches of max pooling layer during forward pass and thus the
visualization is conditioned by the forward pass — a network with convolutional layers
does not require switches thus it allows visualization unconditional on a image from a
forward pass [173]. A simple all convolutional network without any pooling layers was
shown to work well or even at state-of-the-art performance on various image classification
datasets (CIFAR-10, CIFAR-100 [95], ImageNet [158]) [173].

3.3.1.5 Activation layer

Sometimes an activation function of individual neurons is considered to be an individual
layer [26, 51]. While this distinction is not always used, it is useful when describing more
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complex architectures. Further distinction is made in [51], where two main conventions
are described — complex layer terminology and simple layer terminology. Complex layer
terminology considers set of convolution (convolution stage), activation function (detector
stage), and pooling (pooling stage) to be a single layer [51]. On the other hand, the simple
layer terminology considers it to be three separate layers — consequently, not all layers
have parameters to be learnt [51]. The simple layer terminology seems to become prevalent
as the pooling layer is not used after every convolution and sometimes even completely
omitted [173].

The activation layer only applies an, usually non–linear, activation function to its
inputs, commonly used activation functions are described in Sec. 3.3.2.

3.3.2 Activation functions

Activation function is used to control what the neurons outputs (fires). The choice of an
activation function significantly influences what the network is able to model and how diffi-
cult is the network to train. The non–linear functions are what makes deep network useful
for non–trivial problems — it can be easily shown that classical multi–layer perceptron
with linear activation function is equivalent to a single layer perceptron — just a linear
combination of its inputs.

The non–linearity of activation function (used to be sometimes called squashing func-
tion) is what makes theoretical representational power of neural networks — it was shown
that any continuous function on compact subsets of Rn can be approximated by a feed–
forward NN with a single hidden layer [68]. It was first proven for sigmoid function only [31]
and then for any continuous, bounded and nonconstant activation function [67]. However
this only describes theoretical representative power not its practical usability and train-
ability and it does not make deep learning obsolete (even though some scientists in the
90s presented this theorem as an argument why deep networks are not needed [160]). It is
worth noting that not all activation functions are static in terms of learning — some might
have parameters that are to be learned during the network training (e.g. soft exponential
[49] or adaptive piecewise linear unit [1]).

3.3.2.1 Logistic function

Logistic function used to be one of the most used activation functions in NNs [86]. It is a
function of sigmoid type and often when activation function is called sigmoid, it actually
means that the activation function is the logistic function. The logistic function is defined
as [51, 86]:

σpxq “
1

1` expp´xq
(3.14)

The function has, however, two undesirable properties. First, sigmoids in general have
gradients very close to zero when the activation saturates for large values at either 0 or
1 [86] — such gradient limits the signal flowing to the weights of neuron and in turn
makes learning much harder [86]. This is important during initialization which should
avoid having too many neurons saturated or the learning will go very slow or it will not
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converge at all. Second undesirable property is that the logistic function is not centered
at zero and is strictly positive which might make the learning a bit slower compared to
other sigmoidal function — tanh [86]. The logistic function is usually not used anymore in
feedforward networks [51, 86] where it was overtaken by rectified linear units (ReLU) and
its modifications.

3.3.2.2 Tanh function

The tanh function is another sigmoidal activation function, similarly as the logistic func-
tion, it also gradients close to zero when saturated [51]. It squashes a real-valued number
into range p´1, 1q — unlike logistic function, it is centered around zero thus it is a better
choice than the logistic function [51, 86]. The tanh function is actually just a transforma-
tion of the logistic function σpxq as shown in Eq. 3.15 [51, 86].

tanhpxq “ 2σp2xq ´ 1 (3.15)

3.3.2.3 Rectified linear function (ReLU)

Rectified linear unit (ReLU)[126] is probably the most popular activation function in the
state-of-the art feedforward networks [48, 51, 86]. It have been found that the ReLUs can
significantly accelerate the convergence of stochastic gradient descent [96]. Furthermore,
the traditional ReLU is much less computationally expensive than activation functions
such as the logistic or tanh functions [86] and it often outperforms sigmoidal activation
functions [48]. The only problem of ReLUs is that might get disabled during training – i.e.
they won’t be ever activated again for any input and the output gradient will permanently
be zero [86]. This might happen after a weight update after large gradient flows through
the unit [86]. Many ReLUs modification and derivations were proposed [120, 121] — e.g.
Leaky ReLU, very leaky ReLU, parametric ReLU [58], randomized leaky ReLU [196] or
S-shaped ReLU [82]. Smoothed modifications are, for example, exponential linear unit [29]
and SoftPlus [48]. Most of the modifications solve the problem of dying out neurons as
they allow for gradient flows for any input. A ReLU is defined as [48, 121]:

fpxq “ maxp0, xq (3.16)

The ReLU is recommended as default choice for feedforward networks as it usually
works better than sigmoidal functions and is fast to compute [86]; furthermore, it works
comparably to its modifications [121].

3.3.2.4 Softmax function

Unlike activation functions mentioned previously, the softmax function is a function of the
neuron’s inputs and not of their weighted sum [51, 86]. It is often used as an output layer
because its output can be interpreted as an estimate of probability. It takes a real valued
vector and squashes its element in a such way that they are in range r0, 1s and they add
up to 1 [51, 86].
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The softmax function is defined as [51]:

softmaxpxqi “
exppxiq

řn
j“1 exppxjq

, i “ 1, . . . , n (3.17)

3.3.3 Classification

The classification is usually done using a layer with the softmax activation function where
the output is interpreted as a probability distribution over a discrete variable. If a sin-
gle value instead of a set of estimated probabilities is needed, a label corresponding to
maximum probability is returned [51, p. 183].

3.3.4 Optimization

The optimization (training) of a neural network is usually done using backpropagation and
consists of three steps — forward propagation, loss optimization, and error backpropagation
with parameter update [51]. The forward propagation computes the output of the NN for a
given input, the backpropagation allows to compute the gradient of the optimized function
and the actual update is done using a gradient descent method [51].

3.3.4.1 Loss function

Loss functions measure the quality of a particular parameter assignment after the forward
pass [86]. The forward pass outputs class score for an input and the loss function measures
how much is the score consistent with the ground truth [86]. The loss function is the
function that is optimized during training. Loss functions commonly used are crossentropy,
mean squared error (sometimes without the average — sum of squared errors (SSE) or
called the L2 loss [80, 86]), hinge loss, and others [26, 80].

3.3.4.2 Backpropagation

Backpropagation is a method for computing gradients based on iterative use of the chain
rule of differentiation [51]. For x P R, fpxq : R Ñ R, gpxq : R Ñ R, y “ gpxq, and
z “ fpyq “ fpgpxqq, then the chain rule is [51]:

dz

dx
“

dz

dy

dy

dx
(3.18)

The vector case is more relevant for neural networks. Let x P Rm, y P Rn, z P R,
gpxq : Rm Ñ Rn, fpyq : Rn Ñ R, y “ gpxq, and z “ fpyq, then the chain rule is [51] is:

Bz

Bxi
“

n
ÿ

j“1

Bz

Byj

Byj
Bxi

(3.19)

The backpropagation in NNs is usually with tensors — the tensor notation of the chain
rule is [51]:

∇Xz “
ÿ

j

p∇XYjq
Bz

BYj
(3.20)



3.3. BUILDING BLOCKS 27

where X, Y are tensors, Y “ gpXq and z “ fpYq and j is a tuple of indices [51].
The backpropagation uses the chain rule iteratively as the NNs can be thought of as a

compound function. The backpropagation is usually done for computational graph which
describes the compound function — each node applies a function to the set of arguments
that are the values of previous nodes [51]. For more detailed overview about backpropa-
gation and computational graphs see [51, 86].

3.3.4.3 Gradient descent

The gradient descent is probably the most used approach for optimizing deep NNs [86].
It is an algorithm for finding local optima that works by going down in the loss function
landscape [86]. The vanilla version computes the gradient at current point and takes a
step of fixed length (learning rate) in the direction of the steepest descend. Since NNs
usually have many parameters and are trained using many examples, the gradient descent
is usually replaced by online gradient descent [86] which takes into account only a single
example, or by minibatch gradient descent using small batchs of examples per weight
update. Both modifications are often called stochastic gradient descent (SGD) even though
SGD is only a different name for the online gradient descent [86]. Other modification of
gradient descent includesmomentum that allows to overcome some local optima and speeds
up the convergence in case of long, narrow passes in the loss function landscape. The
momentum methods takes into account the history of the descent — the negative gradient
only changes the velocity of the particle with respect to its momentum, the new position is
then calculated using only the current position and the velocity [86]. Similar concept is the
Nesterov momentum which works exactly the same as classical momentum except that the
gradient is computed at the position after momentum update [86]. Also several different
methods for setting dynamically the learning rate were proposed as a single learning rate
rarely works well. These methods range from single formula for the learning rate (e.g.
step decay, exponential decay or 1

t decay [86]) to tuning the learning rate differently for
individual parameters based o training history (e.g. adagrad [38], Adadelta [202], RMSprop
[183], ESGD [33], Nadam [37], or Adam and AdaMax [89]). See [51] for more details about
gradient descent including second order methods.

3.3.4.4 Hyperparameters

Hyperparameters are the parameters that influence learning of NNs and are not trained
during learning of the network. The most common hyperparameters for optimization are
the (initial) learning rate, learning rate schedule, regularization strength and batch size [16,
51, 86]. When discussing hyperparameters, some authors only consider the hyperparam-
eters for the optimization (e.g. [125]) while others consider even the architecture to be a
hyperparameter [16]. For analysis of individual parameters see [16, 121].

The learning rate parameter is sometimes difficult to set correctly while being tremen-
dously important for the learning [51] — some optimization techniques mitigate this issue
by automatically setting the learning rate (e.g. optimizers adagrad [38] or Adam [89], viz
section 3.3.4.3) but they do so at the cost of introducing other hyperparameters [51].
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The batch size determines how many samples will be used in mini-batch optimization
for one gradient update [51]. While it influences the learning, it also significantly affects
the training time as it determines how many operations will be done at a time. For Image
pattern recognition, the recommended values are 128 and 256 as shown in [121]. The
batch size, however, is often limited by the memory of the GPU used for training of the
network and thus it is recommended to set the batch size as large as possible and reduce
the learning rate proportionally to the batch size [121].

The hyperparameters do not have to be set manually but often a parameter search is
used — the common approaches include grid search and random search [51, p. 436]. More
complex techniques of hyperparameters optimization are sometimes used [51] but they are
often impractical due to their computation complexity.

3.4 Network types

Over the years, many different neural networks architectures and approaches were proposed
(not all are always considered to be a NN) — to name just a fraction: perceptron [156],
RBF networs [17], Hopfield networks [66], Boltzmann Machines [62], Restricted Boltzmann
Machines [171], Auto–Encoders (AE) [15], Sparse Auto–Encoders (SAE) [151], Variational
Auto–Encoders (VAE) [90], Denoising Auto–Encoders [186], Deep Belief networks (DBN)
[12], convolutional neural networks CNNs [42, 101] (viz. Ch. 3), Deconvolutional networks
[204], Deep convolutional inverse graphics networks (DCIGN) [97], Generative Adversarial
Networks [50], Recurrent neural networks (RNNs) [40], LSTM networks (networks with
Long short-term memory units) [64], GRU networks (networks with gated recurrent units)
[28], Neural Turing Machines (NTM) [54, 201], bidirectional recurrent neural networks
(BRNNs) [161], Echo State networks [79], Extreme Learning Machines (ELMs), Liquid
State Machines [112], Recombinator networks [65], and Self-organizing maps (SOM) [93].
This short list mentions only several main types of networks (some are subsets of others)
and each of the named approaches contains many finer improvements in subsequent works.
The NNs are a very general field with very different applications. A quite good visual
comparison of most of the listed architectures is presented in [184]. This work focuses
only on a very small subset of networks — convolutional neural networks for image pattern
recognition.

3.5 Used Architectures

3.5.1 VGG16 and VGG19

The VGG16 and VGG19 are well known architectures presented first in [170]. They are
very often used because they have very simple architecture while still being able to have
impressive performance. As mentioned in section 3.2, the VGG network consists only of
3ˆ 3 convolutional layers and 2ˆ 2 max–polling layers with three densely connected top
layers as shown in fig. 3.6. VGG networks are used not only for classifications but also for
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Figure 3.6: A visualization of the VGG16 architecture. Note the simplicity when com-
pared to the Inception architecture (section 3.5.2) — only three types of layers are used in
pyramidal settings. Reused from [30].

segmentation where similar but deconvolutional network is connected on top of the VGG
[132].

3.5.2 Inception v3

Another used architecture is Inception v3 which is an improved version of the original
GoogLeNet with inception units (viz fig. 3.1) [179] that was proposed in [180]. The In-
ception architecture allows for very good results on the ILSVRC2012 ImageNet challenge
[158] with Top-5 error of only 3.58% (an ensemble of networks) [180] while being much
less computationally costly than the VGG architecture [180]. The Inception v3 contains
also different inception units compared to [179] as the 5 ˆ 5 convolutions were replaced
by a mini–network of two layers of 3 ˆ 3 convolutions — this led to a lower number of
parameters per inception unit and this saving allowed an increase in filter-bank sizes [180].
Furthermore, some of the convolutions were replaced by a mini-networks of asymmetrical
convolutions, e.g. a 3ˆ3 convolution was replaced by 3ˆ1 convolution followed by a 1ˆ3
convolution.

3.5.3 Xception

The Xception architecture is inspired by the Inception v3 where the individual inception
units were replaced by depthwise separable convolutions [27]. The author interprets his
architecture as equivalent to an inception unit with "a maximally large number of towers"
[27] and shows that while both architectures behave similarly on the ImageNet dataset
(Xception is slightly better than Inception v3 — top-1 accuracy 79.0% vs 78.2%), the
Xception is significantly better on a very large dataset with 350 million images and 17,000
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Figure 3.7: Visualization of the Inception v3 architecture. The Inception v3 has slightly
different inception units than the GoogLeNet (the original inception unit shown in fig. 3.1).
Reused from [75].

classes (4.3% relative improvement over the Inception v3) while having similar number of
parameters.

3.5.4 ResNet Family

It is a family of residual networks ranging from moderately deep networks with 18 layers
[57] through networks with 152 layers [57] to networks with 200 or even 1001 layers [59].
The ResNet ensemble won the ILSVRC 2015 contest (viz section 3.2) and it was regularly
used as part of ensembles in the top entries in the ILSVRC 2016 contest [159]. The core
idea of residual networks are skip connections (shortcuts) that carry the information to
the output while skipping some layers — the skipped layers thus learn residual mapping
instead of the whole mapping [57], the ResNet with 34 layers is visualized in fig. 3.2. A
single ResNet branch with a skip connection is shown in fig. 3.8. The 50 layer version of
ResNet was used in this thesis as the main network architecture, see section 5.2.

The ResNet has started a boom of residual networks and ResNet-like architectures as
a simple addition of residual connections allowed learning of very deep networks that were
before untrainable [106]. A theoretical analysis of residual networks is provided in [106]
where it was explained why only the shortcuts of depth 2 works best as empirically found
in [57] — authors of [106] shows that deeper shortcuts have the Hessian at the zero initial
point to be a zero matrix which makes it a high-order stationary point that is hard to
escape [3, 106], and the Hessian’s condition number at the zero initial point for shortcuts
of depth one grows unboundedly for deep architectures [106], the shortcuts of depth two,
on the other hand, works very well because the zero initial point for such networks is a
strict saddle point [44, 106] and such points can be easily escaped from using either second
order method or stochastic first order method such as stochastic gradient descent [44].
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Figure 3.8: Visualization of ResNet branch with shortcut connection using TensorBoard.
More about TensorBoard in section 6.2.1.
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Chapter 4

Data

This chapter presents the created proof-of-concept datasets that are one of the main con-
tributions of this thesis and also discusses the methodology of dataset creation:

• dataset description (section 4.1 and section 4.1.2)

• obtaining the imagery (section 4.3)

• annotating the imagery (section 4.4)

• sampling the data (section 4.5)

• data augmentation (section 4.6)

The available remote sensing image datasets, as described in Ch. 2 Sec. 2.3 and
summarized in Tab. 2.1, are not sufficient for learning CNNs from scratch. They are
usually very small (especially in comparison to ImageNet [158] that has 1.2 million images)
or they they have a very small number of classes (e.g. the Brazilian Coffee Scenes dataset
has only two classes) which makes them less interesting. The classifiers in the field were
limited for a long time only to rule based descriptors and hand crafted features [23] as there
were not available datasets that would allow learning more complicated features from the
data. The few datasets that have provided sufficient amount of data (e.g. Brazilian Coffee
Scenes dataset [145] or SAT-4 and SAT-5 datasets [8]) have only a few classes — while low
number of classes is not harmful for learning, these classes tends to be rather general and
most of the difficulties of classification comes from images that, to some extent, contain
both classes rather from complex classes as in the ImageNet.

Furthermore, the CNNs trained on the ImageNet can be often used in other tasks
through transfer learning as they have likely learned good features that are necessary for
classifying complex classes (the features can be also applied to different spectral bands than
they was trained on, for example, a VGG network pretrained using RGB data (ImageNet)
was used for classificaton of CIR data in [167]). Furthermore, CNNs learned on the men-
tioned datasets are much less likely to be useful for transfer learning. While two datasets
solving the weaknesses have emerged recently (AID [194] in 2016, NWPU-RESISC45 [23]

33
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concurrently with this thesis in 2017), both do not have a constant scale. While this might
be useful for some tasks, it is not suitable for many remote sensing applications because
the scale is usually known in such applications [167]. We believe that several datasets with
different scales but constant scale within the dataset are a better approach — especially as
there are objects whose definition is based on their scale.

4.1 Created datasets

Several different datasets were created for the purpose of this thesis. The reasons for
creation of several datasets instead of one are listed in section 4.1.2 while the individual
classes present in the dataset are shortly introduced in section 4.1.1. Examples of individual
classes are shown in fig. 4.1 and chapter A.

4.1.1 Individual classes

Total of 44 classes (viz table 4.1 and fig. 4.1) were selected but not all of them are of the
same quality — some of the classes are very common and can be easily distinguished (e.g.
road, building, or forest), others are very rare and also almost impossible to distinguish
from each other (e.g. power_oil, power_coal, and power_nuclear). The goal of this section
is to provide a short description of the selected classes.

airport
The class airport describes "a place from which flight operations take place" [138].
The objects vary a lot within this class — it contains objects from local airfields to
international airports. This object is often the Airport reference point [176]. Imagery
examples shown in Fig. fig. 4.1a and fig. A.1.

baseball
This class describes baseball pitches, stadiums and places where baseball is played
[138]. Imagery examples shown in fig. 4.1b and Fig. fig. A.2.

bridge
This class describe any bridge — it describes a situation "when a road, railway, path
canal, pipeline or similar is leading over a bridge" [138]. Imagery examples shown in
fig. 4.1c and fig. A.3.

building
Any buildings are members of this class. Imagery examples shown in fig. 4.1d and
fig. A.4.

castle
A castle is considered to be a "residential and often fortified buildings often from
medieval times" [138]. The class fort describes more modern forts. Imagery examples
shown in fig. 4.1e and fig. A.5.
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cemetery
A class describing a (larger) place for burials [138]. It often appears near churches.
Imagery examples shown in fig. 4.1f and fig. A.6.

coastline
The border of land and sea. It is defined as "the mean high water spring line between
the sea and land" [138]. Imagery examples shown in fig. 4.1i and fig. A.9.

cooling_tower
A cooling tower is large and distinctive tower in the landscape. It describes towers
that "use evaporation of water to reject heat from processes such as cooling the
circulating water used in oil refineries, chemical plants, power plants" [138]. Imagery
examples shown in fig. 4.1j and fig. A.10.

dam
A dam is any "wall built across a river or stream to block and regulate the flow of
the river" [138]. It can vary from very small objects built on streams to large dams
spanning hundreds of meters. It also describes walls of a pond. Imagery examples
shown in fig. 4.1k and fig. A.11.

farmland
A farmland is "an area of farmland used for tillage and pasture (animals, crops,
vegetables, flowers, fruit growing)" [138]. It differs from the class meadow by its
purpose and plants growing on it. Imagery examples shown in fig. 4.1l and fig. A.12.

forest
A forest is a "managed woodland or woodland plantation" [138]. However, there is
a discord between OSM users about how forests and woodlands should be tagged.
The class definition used here in this thesis is the most prevalent within Europe. If
obtaining data for other regions, a change of definitions might be necessary, viz [135]
for details. Imagery examples shown in fig. 4.1m and fig. A.13.

fort This class describes historical military fortresses that are more modern than castle
[138]. Imagery examples shown in fig. 4.1n and fig. A.14.

fuel_station
A fuel station is "retail-type facility where motor vehicles can be refueled" [138]. This
class describes only fuel stations that are used by road vehicles. Imagery examples
shown in fig. 4.1o and fig. A.15.

golf This class describe a golf course where golf can be played. Imagery examples shown
in fig. 4.1p and fig. A.16.

greenhouse
This class describe the "land used for growing plants in greenhouses" [138]. A green-
house is "a glass or plastic covered building used to grow plants" [138]. Imagery
examples shown in fig. 4.1q and fig. A.17.
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harbour
This class defines the "area of water where ships, boats, and barges can moor" [136].
Unlike the class marina, it should be used for larger boats, however, OSM users do
not always make this distinction. Imagery examples shown in fig. 4.1r and fig. A.18.

helipad
A helipad is "a landing area or platform for helicopters" [138]. Imagery examples
shown in fig. 4.1s and fig. A.19.

highway
This class describes the most important roads within a country. It represents objects
defined as motorway and trunk in the OSM [138]. Imagery examples shown in fig. 4.1t
and fig. A.20.

chimney
A chimney is "a tall distinctive vertical conduit for venting hot gases or smoke,
normally found near power stations or large factories" [138]. Imagery examples shown
in fig. 4.1g and fig. A.7.

church
This class describes buildings that were built as churches [138], these object do not
have be used as churches anymore. Such buildings are often distinctive by their
architecture or location. Imagery examples shown in fig. 4.1h and fig. A.8.

lake A lake is "a body of relatively still fresh or salt water of considerable size, localized
in a basin that is surrounded by land" [137]. Imagery examples shown in fig. 4.1u
and fig. A.21.

landfill
A landfill is "a place where waste is dumped" [138]. It is often distinctive in the
landscape. Imagery examples shown in fig. 4.1v and fig. A.22.

marina
A marina is "a facility for mooring leisure yachts and motor boats" [138]. It is
often mistaken for harbour that should be used for facility for larger ships. Imagery
examples shown in fig. 4.1w and fig. A.23.

meadow
A meadow is "an area of land primarily vegetated by grass and other non-woody
plants, usually mowed for making hay" [138]. Imagery examples shown in fig. 4.1x
and fig. A.24.

orchard
This class is used for "intentional planting of trees or shrubs maintained for food
production" [138]. Imagery examples shown in fig. 4.1y and fig. A.25.
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parking
This class represents car parks [138]. However, sometimes it is used for very small
places for parking of several cars only. Imagery examples shown in fig. 4.1z and
fig. A.26.

pipeline
This class describes major pipelines [138]. The use of the class is limited only to
pipelines that are overground. Imagery examples shown in fig. 4.1aa and fig. A.27.

power_coal
This is a small class describing places where electricity is produced using coal gener-
ators. Imagery examples shown in fig. 4.1ab and fig. A.28.

power_hydro
This is a class describing places where electricity is produced using water. Imagery
examples shown in fig. 4.1ac and fig. A.29.

power_nuclear
This is a small class describing places where electricity is produced using nuclear
reactors. Imagery examples shown in fig. 4.1ad and fig. A.30.

power_oil
This is a small class describing places where electricity is produced using oil genera-
tors. Imagery examples shown in fig. 4.1ae and fig. A.31.

power_solar
This is a class describing places where energy is produced using solar energy. This
class describes both large solar parks and smaller generators placed on roofs of build-
ings. Imagery examples shown in fig. 4.1af and fig. A.32.

power_wind
This is a small class describing places where electricity is produced using wind tur-
bines. Due to the recent support of renewable resources, many new wind turbines
have been built recently — not all of them are captured by the aerial imagery available
in Google Maps. Imagery examples shown in fig. 4.1ag and fig. A.33.

quarry
This class describes places for surface mineral extraction [138]. Imagery examples
shown in fig. 4.1ah and fig. A.34.

raceway
A raceway is "a course or track for (motor) racing" [138]. Imagery examples shown
in fig. 4.1ai and fig. A.35.

rail This class represents rails for "full sized passenger or freight trains in the standard
gauge for the country or state" [138]. Imagery examples shown in fig. 4.1aj and
fig. A.36.
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river
This class describes rivers that are large enough to be defined as an area in the OSM
[138] as narrow streams are often almost indistinguishable in the aerial imagery.
Imagery examples shown in fig. 4.1ak and fig. A.37.

road
This class describes any road that is not in the class highway. Imagery examples
shown in fig. 4.1al and fig. A.38.

runway
A runway is "a strip of land kept clear and set aside for airplanes to take off from and
land on" [138]. It can be just a strip of grass. Imagery examples shown in fig. 4.1am
and fig. A.39.

snow_fence
A snow fence is "a solid fence-like structure built across steep slopes to reduce risk
and severity of (snow) avalanches" [138]. However, it is the only class from the used
classes that appears mostly in mountains which can lead to a detection of mountains
instead of snow fences. Imagery examples shown in fig. 4.1an and fig. A.40.

stadium
A stadium is "a major sports facility with substantial tiered seating" [138]. As created
datasets are target on Europe, the overlap with class baseball is minimal. For other
regions one of the class should not be used or the labeling datasets should be used.
Imagery examples shown in section 4.1.1 and fig. A.41.

taxiway
This class represents paths "on an airport connecting runways with ramps, hangars,
terminals and other facilities" [138]. Imagery examples shown in fig. 4.1ap and
fig. A.42.

train_station
This class describes train station buildings. This class should be used mostly for the
labeling tasks as there is an overlap with classes building and rail. Imagery examples
shown in fig. 4.1aq and fig. A.43.

vineyard
A vineyard is "a piece of land where grapes are grown" [138]. Imagery examples
shown in fig. 4.1ar and fig. A.44.

4.1.2 Division into several datasets

One common problem with remote sensing datasets is that a single image can contain
several objects and thus it is hard to classify the image as a single class. Authors of
individual datasets usually solve the problem by careful selection of the images and possible
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a airport b baseball c bridge d building e castle

f cemetery g chimney h church i coastline j cooling_tower

k dam l farmland m forest n fort o fuel_station

p golf q greenhouse r harbour s helipad t highway

u lake v landfill w marina x meadow y orchard

z parking aa pipeline ab power_coal ac power_hydro ad power_nuclear

ae power_oil af power_solar ag power_wind ah quarry ai raceway

aj rail ak river al road am runway an snow_fence

ao stadium ap taxiway aq train_station ar vineyard

Figure 4.1: Examples of imagery for all 44 classes.
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classes in a such way that the ambiguity is removed (e.g. UC Merced Land Use dataset
[197] have only very specific classes). Another problem is that sometimes the classes are
hierarchical and not mutually exclusive, e.g. a class stadium or church are subsets of more
general class building. This work takes two different approaches to the latter problem —
one dataset (classification) creates a hierarchy and more specific class has priority over
a general class (e.g. if a object is both building and stadium, its final class is stadium)
in order to make the classes well defined and disjoint, the other dataset (labeling) allows
an image to belong to several classes, for example, if both stadium and road are present,
both labels should be assigned. Both types of datasets consist of a single set of imagery,
however, they differ in the annotations. The classification datasets assign the class to the
patch based on the object in the center of the patch, while the labeling datasets assign the
labels by object present anywhere in the patch.

The datasets also differ by the included classes as a smaller dataset was created for
use in the classification tasks as it minimize hierarchical overlaps of classes (e.g the class
taxiway is usually part of class airport). Thus the datasets were also divided by two
different set of classes — one with 20 classes and one with all 44 classes. The classes
that were selected for the dataset with 20 classes are shown in table 4.1 where they have
checkmark in the column 20 cls. These classes were selected for minimal overlaps in their
definitions and thus this dataset is suitable for the strict classification task where only one
class is assigned per image. The 20 classes in the smaller datasets also are more clear and
better distinguished from each other and the distinction between them is usually clear —
unlike in the full dataset (named 44cls) where classes such as castle and fort are harder to
classify even for a human subject.

This two divisions lead to a total number of 5 datasets where the tasks are distin-
guished by a prefix LAB for the labeling task and CLS for the classification task — CLS20,
LAB20,CLS44, and LAB44. The fifth dataset is used only for the labeling task and while
it contains imagery from the full dataset, the annotations contain only the 20 classes as
the smaller datasets. The fifth dataset is denominated as LAB20S44. The fifth dataset is
suitable for labeling as it contains the set of better defined classes and it still utilizes all
the obtained imagery which results in higher number of samples. It however, deepens the
imbalance between classes as, for example, many of the classes not included in the set of
20 classes are subclasses of a class building and thus the class building will be much more
frequent in the dataset LAB20S44 compared to the dataset LAB20.

4.2 Obtaining the dataset

The whole pipeline for obtaining the dataset is shown in fig. 4.2 — the parts that use
the Google Static Maps API for obtaining the aerial data (viz section 4.3) and OSM (viz
section 4.4) are highlighted. The process of sampling places with given class is described in
section 4.5, the process for downloading the imagery and annotations is shortly described
in chapter 6, and the data augmentation in section 4.6.
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Figure 4.2: A diagram describing the dataset creation pipeline. Parts in red use the OSM
[141], while parts in purple use the Google Static Maps API[52].
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4.3 Aerial data

The proposed dataset consists of aerial imagery with three spectral bands (red, green,
and blue). The data were obtained from Google Maps [52] that provide aerial map im-
ages stitched together from various providers. Use of images from several sources is quite
common for constructing remote sensing datasets — for example, Google Earth was used
in creation of datasets in [23, 194, 195, 205, 206]. Furthermore, Hu et al. analyze the
suitability of Google Earth imagery for land use mapping in their work Exploring the Use
of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping [69] and
they have come to conclusion that such imagery is suitable for application where the red,
green, and blue spectral bands are sufficient. Thus that even though the Google Earth
images are post-processed from the original image sources, the imagery is still suitable for
many remote sensing tasks [69, 194].

Another reason for the use of Google Maps imagery is that the requirement of this
thesis was to use open imagery source and the [52] provides free access to aerial/satellite
imagery all over the world unlike other open sources that are often limited to small areas
(e.g. [134]). Furthermore, the Google Maps API [52] allows easy access to the imagery by
simply supplying the coordinates and thus alleviate many problems with image alignment.
The Google Earth/Maps imagery is a multi-source imagery and thus have also quite a high
variability across the world. This is beneficial for the purposes of the dataset creation as
it contains images with different quality, post-processing, and, to some extent, different
weather conditions thus allowing to learn better generalizing features.

4.3.1 Weaknesses

The main weakness of Google Maps imagery is the interval of updates — the imagery
tends to be a bit outdated. While this is not a significant problem in most cases as the
physical features changes only slowly, the problem might be accentuated for several classes
(e.g. power_wind). This problem is not present when manually annotating the images but
only when external annotations are used because such annotations will not be typically
synchronized with the aerial data.

4.4 Annotating the data using OpenStreetMap

Most of the datasets described in this work are manually annotated by expert in remote
sensing interpration (e.g. [5, 23, 145, 194, 195, 197, 205]), however, this process is quite
costly for larger datatets and it might be one of the reasons why most of the datasets
have modest size. Furthermore, the labels are usually known as the classes are most of
the times physical features that are noted in maps (e.g. roads, rivers, buildings, etc.),
thus it makes sense to use a map for annotating the images and avoid duplicate work.
The use of such annotations might, however, lead to a problem with gap between times of
acquisition of annotations and the aerial imagery, see section 4.3.1. While there are many
maps in the world, the OpenStreetMap (OSM) [141] is probably most suitable because is
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both relatively up-to-date and with open access. An example of rendered OSM is shown
in fig. 4.3.

Figure 4.3: An example of a rendered OSM. Obtained using [140].

This thesis uses OpenStreetMap [141] for both labeling of obtained imagery and se-
lecting the location at which the imagery should be obtained. In order to have more or
less balanced dataset, the list of classes is created first and then based on this list, a set of
images is obtained for each class (More details in section 4.5). Then the area covered by
the image is determined and OpenStreetMap is again used for annotating the image.

The OSM consists of three different types of objects — nodes, ways, and relations that
can have tags consisting of a key and possibly a value to them [138], example shown in
fig. 4.4. A way is a sequence of nodes and it is used for describing both lines (e.g. road) or
closed polygons (e.g. building), while relation is a set of nodes, ways, and other relations
(e.g. stadium building with open area in the middle might consist of an outer way and an
inner way).

4.4.1 Weaknesses of OpenStreetMap

The OpenStreetMap, however, suffers occasionally from several weaknesses which is hardly
unexpected as it is created by many users with different levels of expertise. The most
notable weakness is connected to the OSM’s strength — the OSM depends heavily on its
community and the quality and accuracy of a map is often proportional to the quality of
the local community that creates it. The OSM contains regions of different quality — some
are up-to-date and mapped with rich features and objects while others are outdated and
contain deprecated tags.
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a relation b way (closed) c node

Figure 4.4: Types of objects in the OSM. The relation can contain ways, nodes but also
other relations. A way is an ordered sequence of nodes and can be either closed (a polygon)
or open. Each object may contain tags. Imagery obtained using [140]

Another weakness is inconsistent map tagging and object annotation — the map con-
sists of many different types of objects and each of them can have different tags and
in spite of the effort of the OSM community, inconsistent tags occurs. For example, a
tag amenity=parking is often assigned to a single node placed in the middle of the real
parking area or the whole parking are can be traced with a polygon with the assigned
tag — this results in problems with segmentation mask creation and, in our case, with
area weighted sampling as a single node has no area and thus zero weight. Moreover,
the OSM maps have also tags parking:lane (reserved for parking areas along roads) and
amenity=parking_space (reserved for tagging a single parking spot within a parking area)
and as the mapping is done by users with varying expertise, it sometimes happens that a
user tags an object with a wrong tag.

Some tags also depend on subjective decision of individual users and such tags also
are often inconsistent — for example, a tag man_made=chimney should be used only for
mapping huge chimneys but it is often not the case. Furthermore, the OSM are still under
development and new features and tags are being proposed and, occasionally, old ones are
being deprecated. The implementation of these changes depends again on the activity of
the local community and the old tags can survive in the map for a long time. For example,
there was a confusion whether water reservoir should be tagged as landuse=reservoir or
using a new way with two tags natural=water and water=reservoir [138]. The confusion
might have resulted in inconsistent tagging. There are also many optional tags that could
be very useful for dataset creation (e.g. tags surface or height) but their usage varies
heavily and thus they are not reliable.

However, the OSM is very accurate for regions with active and large local community
as it is often made by people who live in the area and know their surroundings very well.
This, together with the richness of features, makes up well for the weaknesses mentioned
above and thus the OSM are our choice as the source of annotations.
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4.5 Sampling the Earth

Despite the coverage of the OpenStreetMap and the Google Map, this dataset covers mostly
Europe only — and even then most of the samples are from Germany. The focus of the
dataset was determined by several reasons. Since up-to-date and as exact as possible labels
are needed, the Europe and especially Germany were selected as the target region as the
OpenStreetMap has strong community there and is probably, by our subjective view, most
accurate there. The OpenStreetMap community has come up with two main explanations
why the OSM lacks in the U.S. — first, the OSM in the U.S. obtained a large import of
map data from a database Tiger [19] in 2007 [192] which might have discouraged early
users from contributing and second, the U.S. residents have open access to mapping project
such as The National Map [177] which might have lowered the demand for OSM. The OSM
lacks even more in the rest of the world even though the situation is getting slowly better.

Despite this bias towards Europe and Germany in particular, the imagery should come
more or less uniformly sampled from the target region and not from just a particular
subregion. The dataset should be, at least partially, balanced in order for the network to
have enough of data of each classes to learn the individual classes well — if, for example,
the patches were sampled randomly and unconditionally of the class, most of the data
would be covered by farmlands and forests, occasionally with several buildings and roads
and almost none of the complex classes would be present. A network would have then
seen almost no samples of certain categories and would fail to learn those as the training
would be steered by the preeminent classes. Furthermore, the most common classes (e.g.
farmland, forest, building) are not very interesting as they can be quite easily classified
using multi-spectral, but low resolution data (e.g. [13]). Moreover, if the goal was to
learn the most common classes, the SAT-4 and SAT-6 datasets [8] could be used instead.
Therefore the imagery of this dataset was sampled with respect to a given class to have
the dataset at least partially balanced. Namely, 1350 images were attempted to obtain
for each of the classes. It was not possible to obtain the full number of images for certain
classes as they do not occur in such number in Europe (e.g. cooling-tower class).

Two different approaches were used for sampling imagery for different classes — a
random search and bulk download — based on the frequency of occurrence of the sampled
class. The two different approaches were used in order to reduce technical difficulties of
the sampling. The random search was used for sampling very common classes (e.g. forest,
meadow, farmland, road, . . . ) and it was used in order to have great variety in the data
and sample the Germany more or less uniformly. The bulk download approach was used
for classes that occur very rarely and would not be efficiently found by the random search
or, in most cases, the classes were so infrequent that the whole region contained less then
desired number of images of the class (e.g. classes airport, baseball or cooling-tower).

4.5.1 Random search sampling

This approach was used for sampling of very common classes the within target region
(Germany). First, a point inside the region was generated at random from the uniform
distribution, then a local search around the point was made and set Sl of all objects of given
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Figure 4.5: A diagram describing the sampling proces for a given class. The blue part
describes the bulk sampling, the orange describes the random search sampling. The green
shows the sampling method that is common for both parts and that is shown in fig. 4.6.

class within a certain radius r was obtained. An object was randomly selected from the set
S of obtained objects and its coordinates were returned. The radius r is set differently for
each class as it is based on the frequency of occurrences of the class — this was motivated
by technical reasons as large radius r is costly as too many objects have to obtained while
too small radius r is costly as it results in many empty sets. The random object from the
set was obtained in a same way as in the bulk download, see section 4.5.3. This approach
could not be used for the more rare classes as it would take a very long time to find them if
there was only a few of them and, more importantly, if the region contained less objects of
the given class than desired, it would be impossible to determine whether all appropriate
objects were obtained. Thus it would be impossible to stop the sampling. The random
search sampling procedure is summarized in Listing 4.1.

Listing 4.1: Pseudocode of the random sampling for a single class
samples = [ ]
while len ( samples ) < N:

pt = random_point ( )
i f pt in boundary :

ob j e c t s = obtain_object_in_radius ( pt , r )
sample = weighted_sample ( ob j ec t s , 1 )
samples . add ( sample )
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4.5.2 Bulk download sampling

This approach was used for the more rare classes — a set Sg of all objects of given class
was obtained at once and then sampled (see section 4.5.3 for details of the sampling).
While theoretically this approach is suitable for all classes and not only for the rare ones,
practical difficulties limited its use — the most common classes were computationally very
costly to obtain and also the set of objects would not fit in the memory.

4.5.3 Sampling of obtained objects

The objects were sampled from the sets of objects — in case of the random search sampling,
a single object was sampled from the local set Sl and in case of the bulk download sampling,
a set of n object was obtained from the set of all objects Sg, where n is the desired number
of images of the particular class. The sampling was done on the OSM nodes and thus it
was different than would be the uniform sampling of the Earth as there was bias for certain
objects. If the object of the class was defined using only nodes or ways (viz section 4.4),
the sampling was done uniformly over the set of the nodes. This sampling was used, for
example, for road, rail, coastline, and river classes. This type of sampling exhibits bias for
objects that consists of more nodes than the others — e.g. if user A of the OSM created
roads consisting of many nodes, while user B tagged the roads using much fewer nodes,
the sampling would be biased towards the roads of user A. Despite the theoretical bias, we
have observed no significant variations in complexity of objects of most classes.

Two different samplings were used if the object could be interpreted as an area. First,
if the object was defined as area only for some instances but as a node for other instances,
the objects defined as an area would be treated as if they were a single node (e.g. airport,
baseball, harbour, cooling-tower). If most of the objects of the given class were defined as
an area, then the rest of the objects was discarded and the objects defined as an area were
sampled with respect to their size (such classes have 3in column weighted in table 4.1).
If the size had not been taken into account, then the sampling would have been strongly
biased towards small objects that are more numerous but that do not represent most of the
class occurrence on the Earth — for example, a huge forest defined as a single area would
have much lower probability of being selected than that one of several small groves would
be selected even though a point sampled uniformly would have higher probability to end
up in the larger forest than in one of the small groves. In order to obtain higher variety
in the dataset, the objects were not, however, sampled proportionally to their areas but
rather to square root of their areas — if some of the classes were sampled proportionally
to their areas, we would end up with images that are completely covered with the object
and such images are not as useful for learning. After several experiments, the weighting
by square root of the area seems as the best trade-off between reducing the bias to very
small objects and keeping variety of the dataset. While the weighting could be elaborated
and analyzed in more detail, the decision is not as crucial for the dataset and the analysis
was left for future works.
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Figure 4.6: A diagram describing the sampling of obtained objects. The inputs are a set
of objects S, a class that is being sampled (to know whether the sampled objects represent
areas and whether weighted sampling should be used), and a number N of objects to be
sampled.
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4.6 Augmentation

Image augmentation is a process of enlarging the dataset by creating new artificial samples
[51]. More samples usually helps with generalization [51], thus augmentation is used when
there is not enough data and a NN is overfitting. The augmentation modifies the data and
creates a new samples that somewhat resembles the samples within the dataset. While this
migh be problematic for certain tasks, it is relatively simple for image recognition tasks
[51, p. 240] — the input image is usually transformed by, for example, shifts by several
pixels or rotations.

The augmentation used in [26] is limited to rotations, shifts, flips, shear transformation
and zoom transformation. While shear and zoom transformation are often useful for general
image recognition, they are not used in this thesis as we deal with aerial images that were
rectified and have constant scale. Two different augmentation configurations were tested
— simple and complex.

4.6.1 Used transforms

4.6.1.1 Shift

Shift can be horizontal or vertical, this transform shifts the input image by random number
of pixels. The unknown pixels after shift are usually either filled with a default value or
by the nearest known pixel. The shifting range might be defined relative to the size of the
image — e.g. 5% vertical shift of image with width 400 px shifts the image by 20 px to
right.

4.6.1.2 Flips

Flips can also be horizontal or vertical, flipping transforms flip the image over the horizontal
or vertical axis.

4.6.1.3 Rotation

Rotation rotates the image by a random number of degrees. The unknown images are filled
in same way as for shifting transforms.

4.6.1.4 Sharpening

The implementation from [84] was used for sharpening. The sharpening process is con-
trolled by two parameters α and lightness λ. The sharpening operation is defined as
convolving matrix S with the image matrix (per channel). The matrix S is defined as [84]:

S “ p1´ αq

»

–

0 0 0
0 1 0
0 0 0

fi

fl` α

»

–

´1 ´1 ´1
´1 8` λ ´1
´1 ´1 ´1

fi

fl (4.1)
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4.6.1.5 Blurring

A Gaussian blur was used for blurring, the only parameter being the standard deviation σ
of the filter. See [84] for the implementation.

4.6.1.6 Brightening

Two different brightening modes were used, adding a random value to each of the pixel (ad-
ditive mode) or multiplying the values of each pixel by a random constant (multiplicative
mode). The output value is clipped to interval r0, 255s and discretized.

4.6.1.7 Contrast Normalization

This changes the contrast of the image and it is parametrized by a single parameter α.
The new pixel intensity (per channel) pi,j before clipping is defined as:

pi,j “ α ¨ ppi,j ´ 128q ` 128 (4.2)

where pi,j is the original intensity. The values are then cropped to interval r0, 255s and
discretized.

4.6.2 Simple augmentation

The simple augmentation contains only simple transforms that allows it to be realtime,
thus every time an image is used in training, it gets augmented differently. The simple
augmentation is summarized in the table 4.2.

transform range probability
horizontal shift ´5%´ 5% 1
vertical shift ´5%´ 5% 1
rotation ´20°´ 20° 1
horizontal flip — 0.5
vertical flip — 0.5

Table 4.2: Transforms in the simple augmentation. The column probability represents
the probability with which the augmentation will be applied to an image.

4.6.3 Complex augmentation

The complex augmentation includes several computationally more costly transforms, thus
the training images were augmented before training with a factor 10, i.e. a single image
have been augmented into 10 new images. This augmentation is used because the obtained
aerial data are from multiple sources and thus the individual images differ substantially in
colors and sharpness. The complex augmentation was designed so the output images mimic
the variation in the data as visually close as possible. The complex augmentation includes



52 CHAPTER 4. DATA

contrast and brightness transforms, rotations, flips and also sharpness modifications. Fur-
thermore, the contrast and brightness transforms were applied also in per channel form in
order to simulate the color variations in the data. This augmentation was made to be a
part of preprocessing pipeline and was run on the raw images obtained from the Google
Maps before they were cropped to the required size. Thus no method for filling the un-
known pixels after rotation and shifts was required as the margin between the raw images
and cropped images was sufficient to cover all rotations (if smaller images were used, the
unknown pixels would be filled by the nearest known pixels).

Summary of used all transforms in the complex augmentation is provided in table 4.3.

transform range probability per channel
horizontal flip — 0.5 7

vertical flip — 0.5 7

sharpen α: 0 – 0.8
λ: 0.75 – 1.3 0.4 7

blur 0.25 – 1.5 0.4 7

brighten (additive) -15 – 15 0.6 7

brighten (multiplicative) 0.75 – 1.25 0.5 7

contrast normalization 0.8 – 1.2 0.5 7

contrast normalization 0.9 – 1.1 0.6 3

Table 4.3: Transforms in the complex augmentation. The column probability represents
the probability with which the augmentation will be applied to an image. Column per
channel describes whether a new random value for the parameters was drawn for each
channel.



4.6. AUGMENTATION 53

a not augmented,
cropped only

b c d e f

g h i j k

l not augmented,
cropped only

m n o p q

r s t u v

Figure 4.7: Examples of augmented imagery.
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Chapter 5

Methods

This thesis is divided into three distinctive parts — creation of datasets, using them for
training deep neural networks and evaluation. While the dataset creation was described
in previous chapter, the training and evaluation is described here.

5.1 Transfer learning

A several architectures with good performance were selected for the transfer learning:
VGG16 [170], VGG19[170], ResNet50 [57], Inception 3 [180], and Xception [27] (See sec-
tion 3.5 for details). Transfer learning is a process where a network trained using some
data is adapted for use on different data [51] —the pretrained network is usually used as
feature extractor and only the top layers are trained again for classification on the new
dataset. The transfer learning is based on the premise that the first layers usually learn
only general filters that can be used if the dataset are similar enough (which is case for
many image datasets).

The individual pretrained networks were used without their top layers for production
of so called bottleneck features [2] which were then input to several different top layers
configurations that were then trained, i.e. the top layers in the original network were
replaced by different layers and the rest of the layers were frozen so no weights update
occurred during training. For computational gains, the bottleneck features were precom-
puted on the datasets and only the shallow networks consisting only from the top layers
were subsequently trained which is much computationally cheaper (at the cost of no online
augmentation — however, the training data were augmented on the disk before the training
to mitigate this issue, viz section 4.6).

The individual top layer configurations (section 5.1.1) and individual architectures (sec-
tion 3.5) were then evaluated and the best architecture from the transfer learning was then
used for learning from scratch using only the proposed dataset. The individual top layers
configurations were used only in the transfer learning as the preceding layers were frozen,
during the full learning, the default top layer configuration for the selected network was
used as the gains by additional layers would be (if any) minimal. The transfer learning
also provided a baseline for evaluation of the performance of the networks learned from
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scratch.

5.1.1 Top layer configurations

Several different top layer configuration were used — the configuration could either use
global average pooling (GAP) or global max pooling (GMP) which were followed by output
layer that used either softmax function for classification tasks or the logistic sigmoid func-
tion for the labeling task. Optionally, there could be an intermediary dense layer with 256
ReLU neurons. The configurations with the intermediary layers could also use a dropout
of 0.5 to deal with overfitting. This resulted in 6 different top layer configuration for each
of tasks as summarized in table 5.1.

name task pooling intermediary dropout output
GAP-softmax classification GAP 3 7 softmax
GMP-softmax classification GMP 3 7 softmax

GAP-256dense-softmax classification GAP 3 7 softmax
GMP-256dense-softmax classification GMP 3 7 softmax

GAP-256dense-0.5drop-softmax classification GAP 3 3 softmax
GMP-256dense-0.5drop-softmax classification GMP 3 3 softmax

GAP-sigmoid labeling GAP 3 7 sigmoid
GMP-sigmoid labeling GMP 3 7 sigmoid

GAP-256dense-sigmoid labeling GAP 3 7 sigmoid
GMP-256dense-sigmoid labeling GMP 3 7 sigmoid

GAP-256dense-0.5drop-sigmoid labeling GAP 3 3 sigmoid
GMP-256dense-0.5drop-sigmoid labeling GMP 3 3 sigmoid

Table 5.1: Summary of used top layer configurations. The column task describes for which
task the configuration was used. The column pooling describes which pooling was used,
the column intermediary whether an intermediary dense layer with 256 ReLU neurons
was used. The columns dropout shows whether a dropout of 0.5 has been applied to the
intermediary layer and finally, the column output describes the used output layer.

5.1.2 Hyperparameters

The networks were trained using optimizer Nadam [37] with initial learning rate l “ 0.002,
v “ 0.999,µ “ 0.9, ε “ 1 ˆ 10´8, and schedule decay of 0.004 as recommended in [26]
(the parameters have different names: v “ β2 and µ “ β1 in [26]). The batch size for
experiments with transfer learning was set to be 512 and the networks were trained for 100
runs over the whole dataset (epochs). The 100 epochs were more than sufficient to reach a
stable performance over the validation set. The used loss function was crossentropy (named
categorical_crossentropy in [26]) for the classification task and binary crossentropy for
the labeling task.

5.2 Learning from scratch

The best architecture from the transfer learning was then selected for learning from scratch.
The network with highest performance was the ResNet50 (viz section 7.1.1).The ResNet
network with 50 layers was then learned from scratch on the proposed datasets in order
to obtain a network capable of good classification performance. The network was trained
using pre-augmented data (viz section 4.6.3).
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5.2.0.1 Hyperparameters

The used optimizer was Nadam with the same parameters as in the transfer learning, the
used batch size was 64 (the maximum size fitting into memory). The networks were trained
until no significant improvement was observed (between 30 and 70 epochs) as the training
was computationally very costly (up to several days on GeForce GTX TITAN X ). The
used loss functions were also the same as in the transfer learning.

5.3 Accuracy metrics

The accuracy was used as a metric of choice because it is the most often used metric in
image classification. The used accuracy slightly differs for classification and for labeling.
The accuracy for classification is defined as the fraction of correctly predicted classes to
the number of predictions [51, p. 103]:

accCLS “
correct
all

(5.1)

The labeling task actually consists of many binary classifications — each image can either
be labeled or not. The published accuracy is actually an average accuracy for all the
individual subtasks [26]:

accLAB “
1

n

n
ÿ

i“1

accCLSi (5.2)

where n is the number of possible labels and accCLSi is the accuracy of a single classification
subtask.

5.4 Evaluation of data augmentation

The data augmentation plays a crucial role in fighting the overfitting when the datasets
are not huge [51]. The proposed augmentation pipeline (See section 4.6) was evaluated
and compared to other augmentation techniques using the CLS20 dataset. Four different
augmentation configurations were tested:

1. only horizontal and vertical flipping augmentation (no degradation in the data)

2. default augmentation on the generated dataset (flips + random rotations ˘20° and
random shifts ˘5%)

3. proposed complex augmentation on the raw data (viz section 4.6.3)

4. both complex and default augmentation

The hyperparameters were the same as in the section 5.2.0.1.
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5.5 Evaluation of different activation functions

While the ResNet architecture used ReLU activations by default, many other different
activations were proposed (See section 3.3.2). Use of different activation functions such as
exponential linear unit (ELU), leaky ReLU, and parametric ReLU might bring accuracy
gains [121]. Thus the ResNet50 implementation from [26] was modified to use also different
activation functions. The LAB20 dataset was used for learning, and the learning setup
was same as in the section 5.2.0.1.

5.6 Visualization

To better understand the behavior of a network, several different techniques are usually
used. The include saliency maps [168], occlusion maps [203], class activation maps (CAM)
[208], and gradCAM [162]. This works used only saliency maps and gradCAM because the
occlusion maps are basicaly equivalent to gradCAM while being computationally expensive
and CAM requires suitable network architecture. The gradCAM produce similar results as
the CAM method but is independent of network architecture [162]. While saliency maps
were used for experiments, the gradCAM was chosen as the main method for visualization
(viz figs. 7.8 to 7.10).

The gradCAM method is similar to backpropagation as it propagates the importance of
individual neurons from a given layer back to the input to visualize the attention map. The
gradCAM method can be used for class activation maps for any layer in the network. The
usual choice is the last convolutional layer as these features are of the highest level [162]
and the most interesting — such attention maps can be often used for object detection.
The activation maps for earlier layers show more low-level features [162].
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Implementation

The work was implemented in python 2 and python 3 with Ipython [147], the neural
networks were implemented using NN library keras [26] and computational framework
Tensorflow [114]. Other used packages include scipy [83], Scikit–learn [144], pandas [118],
NumPy [187], matplotlib [72], seaborn [189], keras-vis [94], imgaug [84], overpy [35], gdal
[43], shapely [47].

The data were manipulated using scripts mostly based on code of georasters package
[142].

The work can be divided into several parts that were implemented separately.

6.1 Dataset creation

The dataset creation (viz chapter 4) consists of two major parts — downloading the images
and annotating the images. The Data Obtainer scripts first uses Annotation Obtainer to
find the location for obtaining the imagery. The Annotation Obtainer takes a list of classes
and number of desired samples per class and using process described in section 4.5 finds
the coordinates of desired images. The Annotation Obtainer uses the Overpass API [139]
that was designed for fast, read-only access to OSM. A python package OverPy [35] is used
as wrapper for the OverpassAPI.

Then the Data Obtainer uses Imagery Obtainer which downloads the images for given
locations and zoom level using the Google Static Maps API [52]. The images are returned
as instances of (modified) georaster. A georaster is a class for manipulating geo-tagged
images; the original code of georasters [142] was slightly modified for the purposes of this
work (mostly minor modifications only).

Then another script is used for splitting the data into training, testing, validation
datasets. The training data were then augmented using script for augmentation process
described in section 4.6. This script uses the imgaug [84] python package for image aug-
mentation.
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6.2 Training neural networks

The training was implemented using keras [26] that is a library that utilize either tensorflow
[114] or theano [182] backends for training neural networks. The backend tensorflow was
used for the purposes of this thesis. Tensorflow is machine learning library that expresses
computations as stateful dataflow graphs [114].

The keras provides high-level functional API for defining neural networks that allows
to design even very complex architectures in several lines of code.

The keras also provides pre-trained networks on ImageNet, thus all the experiments
with transfer learning (viz section 5.1) used networks provided by [26]. The modifications
of ResNet50 using different activation functions (viz section 5.5) were based on code for
ResNet50 provided by [26] that was slightly modified for the purposes of this thesis.

6.2.1 Other tools used during training

The tensorflow comes with TensorBoard [53] that allows to visualize the computational
graphs and also the training process. The TensorBoard was utilized to monitor the progress
of the more computationally expensive trainings to stop them if a plateau has been reached.
An example of TensorBoard for monitoring training and validation accuracy is shown in
fig. 6.1.

Figure 6.1: An example of use of TensorBoard for monitoring the training process.

The TensorBoard also allows to visualize the distribution of weights for given layer, for
example, fig. 6.2a shows the plot showing the development of the parameter distribution
in time for biases in the dense layer with 256 neuron in transfer learning with ResNet50
feature extractor and shallow network consisting of GAP layer, 256 dense neurons with 0.5
dropout and softmax layer on the CLS20 dataset (viz section 5.1.1 for details). The fig. 6.2b
shows the plot for biases in the softmax layer in transfer learning with Inception v3 feature
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extractor and shallow network consisting of GAP layer, 256 dense neurons and softmax
layer on the CLS20 dataset.

a bias for dense layer in ResNet50-GAP-256d-
0.5drop-softmax

b bias for softmax layer in Inception v3-GAP-
256d-softmax

Figure 6.2: Visualization of weight distribution using TensorBoard. The lines represent the
percentiles: maximum, 93%, 84%, 69%, 50%, 31%, 16%, 7%,minimum from top to bottom
[53]

Another possibility is to visualize the information using 3D surface plots as shown in
fig. 6.3 for the same layers as described above.

a bias for dense layer in ResNet50-GAP-256d-
0.5drop-softmax

b bias for softmax layer in Inception v3-GAP-
256d-softmax

Figure 6.3: 3D isualization of weight distribution using TensorBoard.

It is possible to visualize a network architecture using the Tensorboard computational
graph. This allows to understand even the complex architectures such as ResNets. For
example, a Tensorboard visualization graph for a ResNet unit with shortcut is shown in
fig. 3.8.
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6.3 Evaluation

The evaluation used the library scikit-learn [144] for computing metrics and analyzing the
results. The gradCAM attention maps and saliency maps were computed and visualized
using the package keras-vis[94]. Other used packaged for evaluation and visualization
include matplotlib [72], seaborn [189], and pandas [118].



Chapter 7

Results

This thesis consists of several experiments with the data in order to find the most suitable
pipeline for the classification of the data. The first set of experiments consist of a transfer
learning from the ImageNet [158] where several competition winning networks trained
on the ImageNet were used for the classification of the proposed dataset. The second
experiment focus on the data augmentation and its benefits. And finally, the best network
architecture is selected and its performance evaluated.

7.1 Transfer learning

Several competition winning architectures (viz section 3.2) were selected for a transfer
learning with weights learned on the ImageNet. The used networks are VGG 16 and
VGG 19 [170], Inception v3 [180], ResNet50 [57] and also Xception [27] (not a winner of a
competition but found to perform slightly better than the Inception v3 [27]). The goal of
the transfer learning was not to produce the final classifier network but rather to obtain a
baseline of the dataset and also to compare different architectures. The networks were used
to produce a bottleneck features (viz section 5.1) and those were used as inputs to shallow
networks. These shallow networks represent an equivalent to the top layer configurations
stitched on top of the frozen architectures. According to preliminary experiments, the use
of the bottleneck features sped up the learning at least by factor 10.

The general overview of the performance of all various combinations of top layer con-
figurations and architecture is available in tables 7.1 to 7.4 for both training and validation
accuracies on the CLS20 and LAB20 datasets. The results other datasets are available in
section B.1.

While the situation is clear from overview tables tables 7.1 to 7.4 that shows the
performance at the last epoch, plots of individual runs are available in sections B.2 and B.3.
The ResNet50 pretrained network with GAP layers, dense layer with 256 neurons and 0.5
droput and output layer (dense with either softmax for classification or logistic sigmoid for
labeling) performs generally the best. A further discussion of obtained results is available
in section 7.1.1 (Comparison of architectures) and section 7.1.2 (Comparison of top layer
configurations).

63



64 CHAPTER 7. RESULTS

Top layers
GAP GMP GMP GAP GMP GAP
soft soft 256d 256d 256d 256d

soft soft 0.5drop 0.5drop
soft soft

Fig. B.1d B.2d B.3d B.4d B.5d B.6d
Fig. B.7d ResNet50 65.61 65.61 96.13 96.15 67.79 67.76
Fig. B.8d VGG 16 54.50 34.43 5.18 71.83 42.17 50.41
Fig. B.9d VGG 19 54.11 32.90 56.96 87.15 41.36 60.12
Fig. B.10d Xception 64.20 38.19 5.13 85.71 5.13 60.21
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Fig. B.11d Inception v3 63.68 58.42 77.23 98.66 50.86 75.63

Table 7.1: The training accuracy of the classification task on CLS2O dataset. The
accuracy is reported for the last epoch. The highest value for given architecture is in
green, for the particular top layer in blue, and the overal highest value is in bold. The
references to figures contains graphs of whole training for the given architecture or top
layer configuration.

Top layers
GAP GMP GMP GAP GMP GAP
soft soft 256d 256d 256d 256d

soft soft 0.5drop 0.5drop
soft soft

Fig. B.1d B.2d B.3d B.4d B.5d B.6d
Fig. B.7d ResNet50 56.47 56.47 54.39 54.77 59.75 58.76
Fig. B.8d VGG 16 52.97 33.70 5.27 48.11 46.95 51.87
Fig. B.9d VGG 19 52.20 30.67 46.21 48.12 48.09 53.31
Fig. B.10d Xception 53.97 34.57 5.27 50.65 5.27 56.88
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Fig. B.11d Inception v3 53.30 49.92 47.05 50.80 51.58 54.24

Table 7.2: The validation accuracy of the classification task on CLS2O dataset. The
reported accuracy is the average over last 10 epochs. The highest value for given archi-
tecture is in green, for the particular top layer in blue, and the overal highest value is in
bold.The references to figures contains graphs of whole training for the given architecture
or top layer configuration.
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Top layers
GAP GMP GMP GAP GMP GAP

sig sig 256d 256d 256d 256d
sig sig 0.5drop 0.5drop

sig sig
Fig. B.1a B.2a B.3a B.4a B.5a B.6a

Fig. B.7a ResNet50 88.23 88.23 92.10 92.19 88.98 89.04
Fig. B.8a VGG 16 87.25 84.76 87.92 89.95 86.58 88.07
Fig. B.9a VGG 19 87.23 84.82 87.96 89.96 86.68 88.05
Fig. B.10a Xception 88.07 86.65 88.12 89.81 86.11 88.19
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Fig. B.11a Inception v3 88.06 87.51 89.52 91.25 87.76 88.72

Table 7.3: The training accuracy of the labeling task on LAB20 dataset. The accuracy
is reported for the last epoch. The highest value for given architecture is in green, for the
particular top layer in blue, and the overal highest value is in bold. The references to figures
contains graphs of whole training for the given architecture or top layer configuration.

Top layers
GAP GMP GMP GAP GMP GAP

sig sig 256d 256d 256d 256d
sig sig 0.5drop 0.5drop

sig sig
Fig. B.1a B.2a B.3a B.4a B.5a B.6a

Fig. B.7a ResNet50 87.73 87.73 86.16 86.09 88.32 88.23
Fig. B.8a VGG 16 87.39 85.02 87.22 86.74 87.06 87.88
Fig. B.9a VGG 19 87.32 84.73 87.27 86.54 87.18 87.94
Fig. B.10a Xception 87.62 86.15 87.47 87.16 86.60 88.09
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Fig. B.11a Inception v3 87.72 87.15 86.74 85.82 87.78 87.98

Table 7.4: The validation accuracy of the labeling task on LAB20 dataset. The reported
accuracy is the average over last 10 epochs. The highest value for given architecture is
in green, for the particular top layer in blue, and the overal highest value is in bold.The
references to figures contains graphs of whole training for the given architecture or top
layer configuration.
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7.1.1 Comparing architectures

We can observe that the ResNet50 is generally performing the best — on all five datasets,
it has reached the highest overall validation accuracy (the bold value in tables 7.1 to 7.4).
Furthermore, ResNet50 was the best for all top layer configurations (blue values in ta-
bles 7.1 to 7.4) except for the configurations with dense layers without dropout where
the networks with ResNet features tended to overfit a bit in comparison with the Xcep-
tion. The Xception architecture seemed to produce more robust features than the other
architectures as it had the best validation results with top layer configurations with dense
layer without dropout. The networks with VGG feature extractors performed generally
the worst — only the VGG19 was better than the Inception v3 on classification datasets
when using the GMP pooling layer as both the Inception v3 and VGG16 failed in this case
(accuracy ă 10%). The conclusion is clear — the ResNet50 pretrained network is the most
suitable for transfer learning.
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Figure 7.1: Accuracy of transfer learning using various architectures and the GAP-
256dense-0.5drop top layer configuration on the LAB20 dataset. See section B.2 for other
top layer configurations and datasets.

7.1.2 Comparing top layers

Several different top layers were used for the classification after the features were extracted
using the pretrained network. These top layers usually contain either a global average
pooling (GAP) layer or a global max pooling layer (GMP). These layers behave similarly as
the average pooling and max pooling layers but they are rather applied at the whole feature
map instead of just to a neighbourhood of a cell. Note that sometimes their inclusion did
not really make sense but they have been included anyway for the sake of completeness,
e.g. fig. B.7, where both GMP and GAP behave almost identically —- the ResNet50
architecture contains already an average pooling layer and a repeated application of either
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GAP or GMP does not change the output of the pretrained network. The usage of either
GAP or GMP matters for other architectures though and it seems that the GMP leads to
quite significantly lower accuracy than the GAP for both classification and labeling tasks.

The layer containing 256 densely connected neurons without any dropout overfits to
the training set for all architectures and datasets. While not only the training error is
significantly lower then the validation error, the validation error also decreases with more
epochs of training. The networks that have a dense layer with 0.5 dropout also overfits in
the sense that it performs significantly better on the training set than on the validation
set but it does not exhibit significantly decreasing accuracy on the validation set which
confirms that the dropout works well.

The combination of GAP with a dense layer with 256 neurons and 0.5 dropout seems
to works best for all architectures (green values in tables 7.1 to 7.4) for transfer learning —
the dense layer allows the network to learn quite complicated combinations of the extracted
features while the dropout successfully limits the overfitting. Note that the final top layer
was a dense layer with the softmax activation function for the classification task and the
sigmoid activation function for the labeling task. The lesson learned is that when using
transfer learning with frozen networks as feature extractors, it is suitable to add a dense
layer with dropout to make the best from the extracted features.
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Figure 7.2: Accuracy of transfer learning using ResNet50 and various top layers configu-
rations on the LAB20 dataset. See section B.3 for other architectures and datasets.

7.2 Learning ResNet50 from scratch

Since the ResNet50 is state-of-art-network1 and it performed the best in the transfer learn-
ing experiments (viz section 7.1), it was the architecture of choice for learning the weights

1it was regularly found in the winning neural networks ensembles in the prestigious competition
ILSVRC 2016 [158, 159]
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using only the proposed datasets from scratch. Unsurprisingly, the networks, that have
learned all their weights and not only the top layers worked better than the transfer learn-
ing experiments as the dataset is of sufficient size to learn general features. Due to the
computational complexity, the experiments with learning the full network has limited only
to the smaller datasets (CLS20 and LAB20). A significant increase in accuracy compared
to the transfer learning was observed as shown in fig. 7.3 for the classification task with
20cls dataset.
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Figure 7.3: Comparison between transfer learning and learning from scratch for ResNet50
on the CLS20 dataset. Note that the transfer learning network shown there is the best
network from the transfer learning experiment.

CLS20 LAB20 LAB44
network train val. train val. train val.
ResNet50 (from scratch) 98.43 71.80 99.92 91.59 99.91 95.10
best from transfer 67.79 59.75 88.98 88.32 93.16 93.15

Table 7.5: Performance of training from scratch — comparison of the ResNet50 trained from
scratch for given dataset and the best network from the transfer learning (viz section 7.1).

7.2.1 The benefit of augmentation

The classification task of the 20cls dataset was also used for an investigation of the bene-
fits of the complex data augmentation compared to a regular augmentation. Four different
configurations were used — no augmentation, complex augmentation only, simple augmen-
tation only and both augmentations.

The proposed complex augmentation pipeline (viz section 4.6) for aerial datasets per-
forms the best — it even outperforms the combination of both complex and simple aug-
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mentations by a small margin. The simple augmentation performed better than the aug-
mentation with flips only by a small margin — the random rotation seems crucial for the
aerial data as most of the classes has no regular orientation in the landscape. However, the
overall winner is the complex augmentation — it performed best on the validation dataset
with a solid margin (2 pp). The only disadvantage of the complex augmentation is that
it is quite costly. To partially alleviate the costs, this experiment used the augmentation
as part of preprocessing the data, viz section 4.6.3. The training was then done without
any live augmentation as the data that were fed to the optimizer were already augmented.
The augmentation as part of preprocessing seems useful as the complex augmentation is
costly and it could be possibly a bottleneck during training.

The complex augmentation comprises of several different transforms that are randomly
applied to the input — besides random rotations and flipping, the complex augmentation
also includes sharpening, blurring, additive and multiplicative brightness changes and also
contrast transforms (channel wise) on the uncropped raw data (more details about the
augmentation pipeline in section 4.6. This experiment shown that the complex augmenta-
tions is beneficial as it performs better than the simple by solid margins on the validation
dataset. However, further analysis is needed to identify the individual gains from the indi-
vidual transforms during the augmentation as it is possible that not all of the transforms
are beneficial. The performance on the CLS20 dataset is shown in table 7.6.

augmentation training acc. [%] validation acc [%]
flips only 98.51 66.00
simple 98.05 68.19
complex 98.43 71.80
both 97.69 69.53

Table 7.6: Comparison of different augmentation methods (for description viz section 4.6).
The complex augmentation performs the best, the combination of the simple and complex
augmentation performs only slightly worse.

7.2.2 Different activations

The ResNet50 network performed very similarly for different activation functions (ReLU,
ELU, PReLU) and its performance was almost identical for all three activation functions.
The PReLU seems to learn faster on the training dataset which might be caused by the
additional trainable parameter leading to earlier overfitting while the ELU overfits the
slowest. The performance on the validation dataset is very similar. PReLU seems to be
overfitting the most and the network with this activation had the deepest drop after initial
peak. The results from [121] were not reproduced — the PReLU and ELU are comparable
to ReLU and not superior. The difference in obtained results might be caused by using
different networks and different datasets — the ResNet50 network is much deeper than the
networks used in [121] and ResNets in general are able to learn complex classes well which
might have undermined the influence of different activations.
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Figure 7.4: Testing different activation on the LAB20 dataset.

7.2.3 Evaluation of the learned network

The network learned on the CLS20 dataset was chosen for further analysis.

The confusion matrix is shown in fig. 7.7. We can observe that the network was able
to learn most of the classes well even though there are some surprising patterns that are
discussed bellow. Examples of nicely classified images are shown in fig. 7.8, examples of
complete failure are shown in fig. 7.9. The fig. 7.10 contains examples that are wrongly
classified when compared to the truth label but the mistakes are understandable and human
expert would likely made the same mistakes as there is ambiguity to which class the image
should belong (for the classification task, the labeling task solves this problem by allowing
multiple classes per image).

While both gradCAM and saliency maps visualization were obtained for evaluating the
performance (viz section 5.6), it was found out that the gradCAM visualization is superior
and easier to understand to than the saliency map. An example of both saliency and
gradCAM visualization is provided in fig. 7.5.

The provided gradCAM visualization are always for the layer after the last skip connec-
tion to visualize the high level features. However, to show that the gradCAM visualization
depends on the used layer, the fig. 7.6 shows the visualization from the first convolutional
layer to the same last layer as the other visualization. The 8 visualizations in the middle is
randomly sampled as the number of layers is much higher and each can be visualized. The
lower layers learn the low level features while the top layers learn higher level features.
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Figure 7.5: An example of a saliency map and a gradCAM visualization. The saliency
map is inferior to the gradCAM as most of the spatial information is lost.

a b c d e

f g h i j

Figure 7.6: The gradCAM visualizatiosn differ for each target layer. Here are examples of
gradCAM vizalization for class bridge for different layers in the ResNet50 network. The
first visualization is for first layer while the last visualization is for the layer after the
last skip connection. The other layers are sampled randomly and are ordered from the
shallowest to the deepest.



72 CHAPTER 7. RESULTS

ba
seb

all

bri
dge

bu
ild

ing

cem
ete

ry

co
ast

lin
e

far
mlan

d
for

est go
lf

ha
rbo

ur

hig
hw

ay

mari
na

mea
dow

pow
er_

sol
ar

pow
er_

wind
qu

arr
y rai

l
riv

er
roa

d

ru
nw

ay

sta
dium

Predicted label

baseball

bridge

building

cemetery

coastline

farmland

forest

golf

harbour

highway

marina

meadow

power_solar

power_wind

quarry

rail

river

road

runway

stadium

Tr
ue

la
be

l

75.0 0.0 6.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 1.0 1.0 1.0 0.0 4.0 0.0 7.0

0.7 65.9 0.0 0.7 0.7 0.0 2.2 0.0 2.2 12.6 0.0 0.0 0.0 0.0 0.7 8.1 2.2 3.0 0.7 0.0

4.4 0.0 35.6 3.7 0.7 0.0 0.7 0.0 3.0 0.0 1.5 2.2 31.1 5.2 0.7 2.2 0.7 4.4 0.0 3.7

1.5 0.0 4.4 79.3 0.0 0.0 1.5 0.7 0.0 0.0 0.0 1.5 4.4 0.7 2.2 1.5 0.0 2.2 0.0 0.0

0.0 0.0 0.0 0.7 88.1 2.2 0.0 0.0 4.4 0.0 0.7 0.7 0.0 0.7 0.0 0.0 1.5 0.0 0.7 0.0

0.0 0.0 0.7 0.0 1.5 52.6 1.5 0.7 3.0 0.0 0.0 21.5 3.0 5.2 3.0 0.7 1.5 0.7 3.7 0.7

0.0 0.0 0.0 5.2 2.2 1.5 59.3 0.0 0.7 0.0 0.0 8.1 1.5 3.7 3.7 2.2 5.9 4.4 1.5 0.0

0.7 0.0 0.0 3.0 0.0 0.0 0.7 79.3 0.7 0.0 0.0 12.6 0.0 1.5 0.7 0.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.2 2.4 0.0 0.0 0.0 82.9 0.0 6.1 0.0 1.2 0.0 1.2 1.2 3.7 0.0 0.0 0.0

0.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 88.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.7 0.0

0.0 1.5 0.7 0.0 1.5 0.0 0.0 0.0 40.0 0.7 45.2 0.0 0.7 0.0 0.0 0.0 6.7 2.2 0.7 0.0

4.4 0.0 0.7 2.2 2.2 8.1 3.7 2.2 0.7 2.2 0.0 49.6 2.2 5.2 5.2 1.5 3.7 1.5 2.2 2.2

0.7 0.7 5.9 0.0 0.0 0.7 0.0 0.0 1.5 0.7 0.0 0.0 85.9 0.0 0.7 0.7 0.0 1.5 0.0 0.7

0.0 0.0 0.0 0.7 0.0 2.2 0.0 0.0 0.7 0.0 0.0 2.2 1.5 88.1 1.5 1.5 0.0 0.7 0.0 0.7

0.0 0.7 0.7 0.7 0.7 0.0 1.5 0.0 4.4 0.0 0.0 1.5 0.0 0.7 86.7 0.7 0.7 0.7 0.0 0.0

0.0 12.6 0.7 2.2 3.0 1.5 2.2 0.0 0.7 4.4 0.0 3.7 1.5 0.0 0.0 46.7 7.4 12.6 0.7 0.0

0.0 5.2 0.0 0.7 4.4 0.7 1.5 0.7 7.4 0.7 2.2 5.9 0.0 2.2 1.5 4.4 56.3 5.2 0.7 0.0

1.5 4.4 1.5 1.5 1.5 0.0 1.5 0.0 0.7 3.7 0.0 1.5 5.2 1.5 2.2 5.9 0.7 65.9 0.7 0.0

0.7 0.7 0.0 0.0 0.0 5.9 0.0 0.7 0.0 1.5 0.0 5.9 1.5 3.7 1.5 0.0 1.5 0.7 74.8 0.7

3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.8 3.1 0.0 1.5 0.0 0.0 0.0 0.8 89.3

Normalized confusion matrix

0

10

20

30

40

50

60

70

80

Figure 7.7: The confusion matrix over the test data of the ResNet50 network learned from
scratch on the CLS20 dataset.
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Figure 7.8: Visualization of correct classifications. The input image is on the left, gradCAM
visualizations for the predicted class on the right.
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Figure 7.9: Visualization of the fail cases. The input image is on the left, gradCAM
visualizations for the predicted class on the right.
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Figure 7.10: Visualization of the ambiguous cases. The input image is on the left, gradCAM
visualizations for the predicted class on the right.
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7.2.3.1 Mistaking building for power_solar

While it seems that these two classes are very different, it is not the case — there are
two most common cases where power_solar class appears: either as a power farm or
as small solar panels over the roofs of buildings (and mostly imperceptible in our data).
The network thus learned that in some cases, the buildings are member of the power_solar
class. This behavior is unlikely to disappear unless the power_solar data would be cleared.
The building was classified as power_solar in more than one third of samples (37%) which
is quite bad considering that the building is usually very clearly defined in the image —
it is, however, likely that the accuracy would be much higher if the network would be
learned again but without the power_solar class or using a manually cleaned dataset (part
of possible future work).

7.2.3.2 bridge vs road, river, highway

The network make quite frequently mistakes on missing the bridge or classifying it as bridge
when there is no bridge. This also might be partially caused by the difficulty of the dataset
— it contains bridges that are very hard to distinguish in the aerial image. For example,
the class overpass from the UCMerced Land Use dataset [197] is always visible at first
glance while the bridges in our dataset might be distinguished only from the context (viz
fig. 7.11).

a An example of class over-
pass [197]

b An example of class bridge
from our dataset

Figure 7.11: xample of differences in difficulty of UCMerced Land Use dataset and proposed
dataset

7.2.3.3 Frequent mistakes on classes meadow and road

These two classes are not frequently mistaken for a small set of similar classes but the
mistakes are more uniformly distributed to other classes (viz rows in fig. 7.7). This is most
likely caused by their frequent occurrence when other classes are present. Class meadow is
a bit more often mistaken for farmland but otherwise the mistakes are quite uniform.
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7.2.3.4 Good classification of class highway

The class highway is classified very accurately and the only classes that are mistaken with
highway are bridge, road, rail, and runway. Furthermore, only the class bridge exhibits
is mistaken with highway more frequently and this is caused by common occurrence of
bridges in imagery of class highway and vice versa.

7.2.3.5 Other frequent mistakes

There are several frequent mistakes that are not really surprising and that are often caused
by ambiguity in the data. First, baseball is quite often mistaken for stadium, coastline is
mistaken for harbour, golf is mistaken for meadow, harbour for marina, quarry for harbour
(some quarries are filled with water), and river for bridge and harbour.

7.2.3.6 Several visualizations of the labeling task

The labeling task did not differ much from the classification task, thus it is described only
briefly. The labeling network behaves similarly as the classification networks in terms of
mistakes. The mistakes of the network were of three types — missing a label, adding wrong
label and mistaking one object for another. When mistaking one object for another, the
network tended to make similar mistakes as the classification network. For example, the
network has mistaken bridge for rail (other classes were labeled correctly) in fig. 7.12.
Another type of mistake is omission when the network omits a label — for example, the
network has omitted labels highway, farmland, and meadow in fig. 7.13. And the last type
is addition when the network adds a label that should not be there, for example a label
meadow has been added in fig. 7.14; this type of mistake was the least frequent.

And finally, a correct labeling is shown in fig. 7.15.
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Figure 7.12: Example of output from the labeling task. The network has mistaken bridge
for rail.

Figure 7.13: Example of output from the labeling task. The network has omitted labels
highway, farmland, and meadow.
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Figure 7.14: Example of output from the labeling task. The network has added label
meadow.

Figure 7.15: Example of output from the labeling task. The network has correctly labeled
all labels.
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Chapter 8

Conclusion

This thesis evaluated the use of OpenStreetMap for obtaining the labels for aerial/satellite
imagery and their subsequent use for network training by creating a new dataset that does
not suffer from the weaknesses of other datasets in the field and that was used for training a
convolutional network for aerial image classification. The contribution can be summarized
into several points:

1. Dataset creation with annotations from OSM

Several datasets was created using using imagery from Google Maps as they have been
shown to be a suitable replacement for more costly satellite imagery for land use clas-
sification. The labels were obtained using the Overpass API from the OpenStretMap
and several datasets were created. The created dataset address the weakness of other
published datasets.

2. Evaluation of augmentation suitable for the created dataset

A proposed augmentation pipeline was empirically evaluated and found to be suitable
for use with the multisource data from Google Maps. The complex augmentation led
to 2 pp gain in accuracy compared to simple accuracy.

3. Transfer learningA several experiments using obtained datasets were run in order
to evaluate their quality and to establish a baseline classification performance for the
datasets. These experiments included evaluating transfer learning from the ImageNet
for several different architectures (VGG16, VGG19, Inception v3, Xception, and
ResNet50).

It was shown that the pretrained ResNet50 architecture is the most suitable for
transfer learning and that adding a dense layer with dropout to the frozen network
is beneficial.

4. Evaluation of different activation functions

One of the created datasets was also used for the evaluation of use of several different
activation functions (ReLU, ELU, PReLU) in the ResNet50 architecture. There were
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observed no significant differences in the use of ELU or PReLU in the ResNet50
architecture instead of the ReLU.

5. Analysis of a network trained using one of the created datasets.

A performance of a ResNet50 network over a proposed CLS20 dataset was then
evaluated further and it was shown that the network was able to learn correct repre-
sentations for most classes and that the most frequent mistakes were caused by the
ambiguity in the data or unsuitable tagging in the OpenStreetMap.

The work describes the whole process from obtaining data through experiments with
different architectures to final evaluation of selected neural network.



Chapter 9

Future work

While some of the work has been done there is plenty to research further. One of the ways
to expand this work is examination of more CNNs architectures as many novel architectures
has emerged recently (though they are mostly extensions of networks used in this work —
e.g. Inception v4 and Inception-ResNet [178], Wide ResNet [200], ResNet-in-ResNet [181],
or FractalNet [98]). Other research directions include the analysis of the data augmentation
for such multi-source data as are Google Maps — while the used augmentation pipeline was
found beneficial, further analysis is needed to broke the gain into individual gains (losses)
for individual augmentation steps in the pipeline. Yet another research direction concerns
the dataset creation and annotating using the OpenStreetMap — the dataset could be
manually cleaned to show how much of the error is caused by the mistakes in tagging in
the OSM and also by the ambiguity in the data.
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[142] Ö. Özak. GeoRasters: Fast and flexible tool to work with GIS raster files. [Online;

accessed 2017-02-27]. 2015–. url: https://github.com/ozak/georasters.
[143] J. Paola and R. Schowengerdt. “A detailed comparison of backpropagation neural

network and maximum-likelihood classifiers for urban land use classification”. In:
IEEE Transactions on Geoscience and Remote Sensing 33.4 (July 1995), pp. 981–
996. doi: 10.1109/36.406684. url: https://doi.org/10.1109%2F36.406684.

https://doi.org/10.1109/sibgrapi.2015.39
https://doi.org/10.1109%2Fsibgrapi.2015.39
https://doi.org/10.1109%2Fsibgrapi.2015.39
http://arxiv.org/abs/1602.01517
https://doi.org/10.1109/prrs.2016.7867024
https://doi.org/10.1109%2Fprrs.2016.7867024
https://doi.org/10.1109%2Fprrs.2016.7867024
http://arxiv.org/abs/1505.04366
http://arxiv.org/abs/1505.04366
https://doi.org/10.1162/neco.1992.4.4.473
https://doi.org/10.1162/neco.1992.4.4.473
https://doi.org/10.1162%2Fneco.1992.4.4.473
https://openaerialmap.org/
http://wiki.openstreetmap.org/wiki/Forest
http://wiki.openstreetmap.org/wiki/Forest
http://wiki.openstreetmap.org/wiki/Harbour
http://wiki.openstreetmap.org/wiki/Harbour
https://wiki.openstreetmap.org/wiki/Key:water
https://wiki.openstreetmap.org/wiki/Key:water
http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Overpass_API
http://wiki.openstreetmap.org/wiki/Overpass_API
http://overpass-turbo.eu/
 https://www.openstreetmap.org 
https://github.com/ozak/georasters
https://doi.org/10.1109/36.406684
https://doi.org/10.1109%2F36.406684


BIBLIOGRAPHY 97

[144] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Ma-
chine Learning Research 12 (2011), pp. 2825–2830. url: http://arxiv.org/pdf/
1201.0490v2.pdf.

[145] O. A. B. Penatti, K. Nogueira, and J. A. dos Santos. “Do deep features generalize
from everyday objects to remote sensing and aerial scenes domains?” In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
IEEE, June 2015. doi: 10.1109/cvprw.2015.7301382. url: https://doi.org/
10.1109%2Fcvprw.2015.7301382.

[146] O. A. B. Penatti, K. Nogueira, and J. A. dos Santos. PatreoDatasets. 2016. url:
http://www.patreo.dcc.ufmg.br/category/downloads/datasets/.

[147] F. Perez and B. E. Granger. “IPython: A System for Interactive Scientific Comput-
ing”. In: Computing in Science & Engineering 9.3 (2007), pp. 21–29. doi: 10.1109/
mcse.2007.53. url: http://dx.doi.org/10.1109/MCSE.2007.53.

[148] B. Polyak. “Some methods of speeding up the convergence of iteration methods”.
In: USSR Computational Mathematics and Mathematical Physics 4.5 (Jan. 1964),
pp. 1–17. doi: 10.1016/0041-5553(64)90137-5. url: https://doi.org/10.
1016%2F0041-5553%2864%2990137-5.

[149] J. Porway, K. Wang, B. Yao, and S. C. Zhu. “A hierarchical and contextual model
for aerial image understanding”. In: 2008 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, June 2008. doi: 10.1109/cvpr.2008.4587359.
url: https://doi.org/10.1109%2Fcvpr.2008.4587359.

[150] N. T. Quang, N. T. Thuy, D. V. Sang, and H. T. T. Binh. “An Efficient Framework
for Pixel-wise Building Segmentation from Aerial Images”. In: Proceedings of the
Sixth International Symposium on Information and Communication Technology -
SoICT 2015. Association for Computing Machinery (ACM), 2015. doi: 10.1145/
2833258.2833272. url: https://doi.org/10.1145%2F2833258.2833272.

[151] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. “Efficient learning of sparse
representations with an energy-based model”. In: Proceedings of 20th International
Conference on Neural Information Processing Systems. 2007. url: https://papers.
nips.cc/paper/3112- efficient- learning- of- sparse- representations-
with-an-energy-based-model.pdf.

[152] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge: Cambridge
University Press, 1996. isbn: 0-521-46086-7.

[153] V. Risojevic. “Analysis of learned features for remote sensing image classification”.
In: 2016 13th Symposium on Neural Networks and Applications (NEUREL). IEEE,
Nov. 2016. doi: 10.1109/neurel.2016.7800145. url: https://doi.org/10.
1109%2Fneurel.2016.7800145.

http://arxiv.org/pdf/1201.0490v2.pdf
http://arxiv.org/pdf/1201.0490v2.pdf
https://doi.org/10.1109/cvprw.2015.7301382
https://doi.org/10.1109%2Fcvprw.2015.7301382
https://doi.org/10.1109%2Fcvprw.2015.7301382
http://www.patreo.dcc.ufmg.br/category/downloads/datasets/
https://doi.org/10.1109/mcse.2007.53
https://doi.org/10.1109/mcse.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016%2F0041-5553%2864%2990137-5
https://doi.org/10.1016%2F0041-5553%2864%2990137-5
https://doi.org/10.1109/cvpr.2008.4587359
https://doi.org/10.1109%2Fcvpr.2008.4587359
https://doi.org/10.1145/2833258.2833272
https://doi.org/10.1145/2833258.2833272
https://doi.org/10.1145%2F2833258.2833272
https://papers.nips.cc/paper/3112-efficient-learning-of-sparse-representations-with-an-energy-based-model.pdf
https://papers.nips.cc/paper/3112-efficient-learning-of-sparse-representations-with-an-energy-based-model.pdf
https://papers.nips.cc/paper/3112-efficient-learning-of-sparse-representations-with-an-energy-based-model.pdf
https://doi.org/10.1109/neurel.2016.7800145
https://doi.org/10.1109%2Fneurel.2016.7800145
https://doi.org/10.1109%2Fneurel.2016.7800145


98 BIBLIOGRAPHY

[154] V. Risojevic and Z. Babic. “Unsupervised Quaternion Feature Learning for Re-
mote Sensing Image Classification”. In: IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing 9.4 (Apr. 2016), pp. 1521–1531. doi:
10.1109/jstars.2015.2513898. url: https://doi.org/10.1109%2Fjstars.
2015.2513898.
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Appendix A

Imagery examples

A.1 Examples for class airport

a b c d e

f g h i j

Figure A.1: Examples for class airport

105



106 APPENDIX A. IMAGERY EXAMPLES

A.2 Examples for class baseball

a b c d e

f g h i j

Figure A.2: Examples for class baseball

A.3 Examples for class bridge

a b c d e

f g h i j

Figure A.3: Examples for class bridge
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A.4 Examples for class building

a b c d e

f g h i j

Figure A.4: Examples for class building

A.5 Examples for class castle

a b c d e

f g h i j

Figure A.5: Examples for class castle
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A.6 Examples for class cemetery

a b c d e

f g h i j

Figure A.6: Examples for class cemetery

A.7 Examples for class chimney

a b c d e

f g h i j

Figure A.7: Examples for class chimney
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A.8 Examples for class church

a b c d e

f g h i j

Figure A.8: Examples for class church

A.9 Examples for class coastline

a b c d e

f g h i j

Figure A.9: Examples for class coastline
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A.10 Examples for class cooling_tower

a b c d e

f g h i j

Figure A.10: Examples for class cooling_tower

A.11 Examples for class dam

a b c d e

f g h i j

Figure A.11: Examples for class dam
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A.12 Examples for class farmland

a b c d e

f g h i j

Figure A.12: Examples for class farmland

A.13 Examples for class forest

a b c d e

f g h i j

Figure A.13: Examples for class forest
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A.14 Examples for class fort

a b c d e

f g h i j

Figure A.14: Examples for class fort

A.15 Examples for class fuel_station

a b c d e

f g h i j

Figure A.15: Examples for class fuel_station
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A.16 Examples for class golf

a b c d e

f g h i j

Figure A.16: Examples for class golf

A.17 Examples for class greenhouse

a b c d e

f g h i j

Figure A.17: Examples for class greenhouse
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A.18 Examples for class harbour

a b c d e

f g h i j

Figure A.18: Examples for class harbour

A.19 Examples for class helipad

a b c d e

f g h i j

Figure A.19: Examples for class helipad
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A.20 Examples for class highway

a b c d e

f g h i j

Figure A.20: Examples for class highway

A.21 Examples for class lake

a b c d e

f g h i j

Figure A.21: Examples for class lake
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A.22 Examples for class landfill

a b c d e

f g h i j

Figure A.22: Examples for class landfill

A.23 Examples for class marina

a b c d e

f g h i j

Figure A.23: Examples for class marina
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A.24 Examples for class meadow

a b c d e

f g h i j

Figure A.24: Examples for class meadow

A.25 Examples for class orchard

a b c d e

f g h i j

Figure A.25: Examples for class orchard
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A.26 Examples for class parking

a b c d e

f g h i j

Figure A.26: Examples for class parking

A.27 Examples for class pipeline

a b c d e

f g h i j

Figure A.27: Examples for class pipeline
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A.28 Examples for class power_coal

a b c d e

f g h i j

Figure A.28: Examples for class power_coal

A.29 Examples for class power_hydro

a b c d e

f g h i j

Figure A.29: Examples for class power_hydro
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A.30 Examples for class power_nuclear

a b c d e

f g h i j

Figure A.30: Examples for class power_nuclear

A.31 Examples for class power_oil

a b c d e

f g h i j

Figure A.31: Examples for class power_oil
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A.32 Examples for class power_solar

a b c d e

f g h i j

Figure A.32: Examples for class power_solar

A.33 Examples for class power_wind

a b c d e

f g h i j

Figure A.33: Examples for class power_wind
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A.34 Examples for class quarry

a b c d e

f g h i j

Figure A.34: Examples for class quarry

A.35 Examples for class raceway

a b c d e

f g h i j

Figure A.35: Examples for class raceway
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A.36 Examples for class rail

a b c d e

f g h i j

Figure A.36: Examples for class rail

A.37 Examples for class river

a b c d e

f g h i j

Figure A.37: Examples for class river
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A.38 Examples for class road

a b c d e

f g h i j

Figure A.38: Examples for class road

A.39 Examples for class runway

a b c d e

f g h i j

Figure A.39: Examples for class runway
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A.40 Examples for class snow_fence

a b c d e

f g h i j

Figure A.40: Examples for class snow_fence

A.41 Examples for class stadium

a b c d e

f g h i j

Figure A.41: Examples for class stadium
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A.42 Examples for class taxiway

a b c d e

f g h i j

Figure A.42: Examples for class taxiway

A.43 Examples for class train_station

a b c d e

f g h i j

Figure A.43: Examples for class train_station
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A.44 Examples for class vineyard

a b c d e

f g h i j

Figure A.44: Examples for class vineyard
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A.45 Blured images

a b c d e

f g h i j

Figure A.45: The dataset contains several images that were blurred by the provider for
security reasons. The number of blurred images in the dataset is insignificant and it
concerns only several classes — power_nuclear, airport, taxiway, and runway.
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A.46 Brightness and contrast variability of the dataset
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ay az ba bb bc

bd be bf bg bh

bi bj bk bl bm

bn bo bp bq br

bs bt bu bv bw

Figure A.46: Several handpicked examples to show the great contrast and brightness vari-
aton in the proposed dataset.
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Top layers
GAP GMP GMP GAP GMP GAP

sig sig 256d 256d 256d 256d
sig sig 0.5drop 0.5drop

sig sig
Fig. B.1a B.2a B.3a B.4a B.5a B.6a

Fig. B.7a ResNet50 88.23 88.23 92.10 92.19 88.98 89.04
Fig. B.8a VGG 16 87.25 84.76 87.92 89.95 86.58 88.07
Fig. B.9a VGG 19 87.23 84.82 87.96 89.96 86.68 88.05
Fig. B.10a Xception 88.07 86.65 88.12 89.81 86.11 88.19

A
rc
hi
te
ct
ur
e

Fig. B.11a Inception v3 88.06 87.51 89.52 91.25 87.76 88.72

Table B.1: The training accuracy of the labeling task on LAB20 dataset. The accuracy
is reported for the last epoch. The highest value for given architecture is in green, for the
particular top layer in blue, and the overall highest value is in bold. The references to
figures contain graphs of whole training for the given architecture or top layer configuration.

Top layers
GAP GMP GMP GAP GMP GAP

sig sig 256d 256d 256d 256d
sig sig 0.5drop 0.5drop

sig sig
Fig. B.1a B.2a B.3a B.4a B.5a B.6a

Fig. B.7a ResNet50 87.73 87.73 86.16 86.09 88.32 88.23
Fig. B.8a VGG 16 87.39 85.02 87.22 86.74 87.06 87.88
Fig. B.9a VGG 19 87.32 84.73 87.27 86.54 87.18 87.94
Fig. B.10a Xception 87.62 86.15 87.47 87.16 86.60 88.09

A
rc
hi
te
ct
ur
e

Fig. B.11a Inception v3 87.72 87.15 86.74 85.82 87.78 87.98

Table B.2: The validation accuracy of the labeling task on LAB20 dataset. The reported
accuracy is the average over last 10 epochs. The highest value for given architecture is
in green, for the particular top layer in blue, and the overall highest value is in bold.The
references to figures contain graphs of whole training for the given architecture or top layer
configuration.
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Top layers
GAP GMP GMP GAP GMP GAP

sig sig 256d 256d 256d 256d
sig sig 0.5drop 0.5drop

sig sig
Fig. B.1b B.2b B.3b B.4b B.5b B.6b

Fig. B.7b ResNet50 93.05 93.05 94.03 94.04 93.16 93.18
Fig. B.8b VGG 16 92.64 91.65 92.74 93.43 92.38 92.84
Fig. B.9b VGG 19 92.63 91.69 92.72 93.40 92.34 92.83
Fig. B.10b Xception 92.99 92.16 92.97 93.50 92.43 92.91

A
rc
hi
te
ct
ur
e

Fig. B.11b Inception v3 93.00 92.75 93.37 93.73 92.74 93.01

Table B.3: The training accuracy of the labeling task on LAB44 dataset. The accuracy
is reported for the last epoch. The highest value for given architecture is in green, for the
particular top layer in blue, and the overall highest value is in bold. The references to
figures contain graphs of whole training for the given architecture or top layer configuration.

Top layers
GAP GMP GMP GAP GMP GAP

sig sig 256d 256d 256d 256d
sig sig 0.5drop 0.5drop

sig sig
Fig. B.1b B.2b B.3b B.4b B.5b B.6b

Fig. B.7b ResNet50 92.99 93.02 92.70 92.69 93.15 93.13
Fig. B.8b VGG 16 92.60 92.01 92.75 92.77 92.57 92.99
Fig. B.9b VGG 19 92.70 91.57 92.72 92.79 92.52 92.98
Fig. B.10b Xception 92.94 91.85 92.82 92.96 92.61 93.03

A
rc
hi
te
ct
ur
e

Fig. B.11b Inception v3 92.92 92.73 92.70 92.62 92.88 93.00

Table B.4: The validation accuracy of the labeling task on LAB44 dataset. The reported
accuracy is the average over last 10 epochs. The highest value for given architecture is
in green, for the particular top layer in blue, and the overall highest value is in bold.The
references to figures contain graphs of whole training for the given architecture or top layer
configuration.
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Top layers
GAP GMP GMP GAP GMP GAP

sig sig 256d 256d 256d 256d
sig sig 0.5drop 0.5drop

sig sig
Fig. B.1c B.2c B.3c B.4c B.5c B.6c

Fig. B.7c ResNet50 95.00 95.00 95.80 95.85 95.18 95.18
Fig. B.8c VGG 16 94.76 93.95 94.87 95.39 94.62 94.94
Fig. B.9c VGG 19 94.75 93.98 94.85 95.39 94.61 94.93
Fig. B.10c Xception 94.97 94.37 95.01 95.47 94.69 95.02

A
rc
hi
te
ct
ur
e

Fig. B.11c Inception v3 94.97 94.80 95.36 95.61 94.89 95.09

Table B.5: The training accuracy of the labeling task on LAB20S44 dataset. The accuracy
is reported for the last epoch. The highest value for given architecture is in green, for the
particular top layer in blue, and the overall highest value is in bold. The references to
figures contain graphs of whole training for the given architecture or top layer configuration.

Top layers
GAP GMP GMP GAP GMP GAP

sig sig 256d 256d 256d 256d
sig sig 0.5drop 0.5drop

sig sig
Fig. B.1c B.2c B.3c B.4c B.5c B.6c

Fig. B.7c ResNet50 95.01 95.02 94.72 94.72 95.09 95.09
Fig. B.8c VGG 16 94.84 93.85 94.86 94.77 94.77 95.01
Fig. B.9c VGG 19 94.77 93.36 94.84 94.76 94.74 94.97
Fig. B.10c Xception 94.71 94.58 94.89 94.86 94.87 95.06

A
rc
hi
te
ct
ur
e

Fig. B.11c Inception v3 94.97 94.78 94.78 94.72 94.98 95.04

Table B.6: The validation accuracy of the labeling task on LAB20S44 dataset. The re-
ported accuracy is the average over last 10 epochs. The highest value for given architecture
is in green, for the particular top layer in blue, and the overall highest value is in bold.The
references to figures contain graphs of whole training for the given architecture or top layer
configuration.
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Top layers
GAP GMP GMP GAP GMP GAP
soft soft 256d 256d 256d 256d

soft soft 0.5drop 0.5drop
soft soft

Fig. B.1d B.2d B.3d B.4d B.5d B.6d
Fig. B.7d ResNet50 65.61 65.61 96.13 96.15 67.79 67.76
Fig. B.8d VGG 16 54.50 34.43 5.18 71.83 42.17 50.41
Fig. B.9d VGG 19 54.11 32.90 56.96 87.15 41.36 60.12
Fig. B.10d Xception 64.20 38.19 5.13 85.71 5.13 60.21

A
rc
hi
te
ct
ur
e

Fig. B.11d Inception v3 63.68 58.42 77.23 98.66 50.86 75.63

Table B.7: The training accuracy of the classification task on CLS2O dataset. The
accuracy is reported for the last epoch. The highest value for given architecture is in
green, for the particular top layer in blue, and the overall highest value is in bold. The
references to figures contain graphs of whole training for the given architecture or top layer
configuration.

Top layers
GAP GMP GMP GAP GMP GAP
soft soft 256d 256d 256d 256d

soft soft 0.5drop 0.5drop
soft soft

Fig. B.1d B.2d B.3d B.4d B.5d B.6d
Fig. B.7d ResNet50 56.47 56.47 54.39 54.77 59.75 58.76
Fig. B.8d VGG 16 52.97 33.70 5.27 48.11 46.95 51.87
Fig. B.9d VGG 19 52.20 30.67 46.21 48.12 48.09 53.31
Fig. B.10d Xception 53.97 34.57 5.27 50.65 5.27 56.88

A
rc
hi
te
ct
ur
e

Fig. B.11d Inception v3 53.30 49.92 47.05 50.80 51.58 54.24

Table B.8: The validation accuracy of the classification task on CLS2O dataset. The
reported accuracy is the average over last 10 epochs. The highest value for given archi-
tecture is in green, for the particular top layer in blue, and the overall highest value is in
bold.The references to figures contain graphs of whole training for the given architecture
or top layer configuration.
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Top layers
GAP GMP GMP GAP GMP GAP
soft soft 256d 256d 256d 256d

soft soft 0.5drop 0.5drop
soft soft

Fig. B.1e B.2e B.3e B.4e B.5e B.6e
Fig. B.7e ResNet50 52.38 52.39 69.37 69.44 45.22 45.27
Fig. B.8e VGG 16 42.16 16.06 2.57 46.87 24.07 30.95
Fig. B.9e VGG 19 41.88 18.04 37.11 N/A 22.73 41.35
Fig. B.10e Xception 52.01 21.81 2.51 60.15 2.54 42.33

A
rc
hi
te
ct
ur
e

Fig. B.11e Inception v3 51.99 45.89 50.52 82.91 32.08 52.41

Table B.9: The training accuracy of the classification task on CLS44 dataset. The
accuracy is reported for the last epoch. The highest value for given architecture is in
green, for the particular top layer in blue, and the overall highest value is in bold. The
references to figures contain graphs of whole training for the given architecture or top layer
configuration.

Top layers
GAP GMP GMP GAP GMP GAP
soft soft 256d 256d 256d 256d

soft soft 0.5drop 0.5drop
soft soft

Fig. B.1e B.2e B.3e B.4e B.5e B.6e
Fig. B.7e ResNet50 45.20 45.14 43.81 43.29 46.21 46.46
Fig. B.8e VGG 16 40.34 14.75 2.57 39.69 6.10 36.41
Fig. B.9e VGG 19 40.97 18.22 35.63 N/A 31.40 42.32
Fig. B.10e Xception 43.22 19.09 2.57 42.64 2.57 44.25

A
rc
hi
te
ct
ur
e

Fig. B.11e Inception v3 42.04 38.24 38.91 36.76 38.26 43.48

Table B.10: The validation accuracy of the classification task on CLS44 dataset. The
reported accuracy is the average over last 10 epochs. The highest value for given archi-
tecture is in green, for the particular top layer in blue, and the overall highest value is in
bold.The references to figures contain graphs of whole training for the given architecture
or top layer configuration.
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B.2 Training process of all NNs

B.2.1 Different architectures with GAP layer for transfer learning
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Figure B.1
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B.2.2 Different architectures with GMP layers for transfer learning
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Figure B.2
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B.2.3 Different architectures with GAP-256dense layers for transfer learn-
ing
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Figure B.3
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B.2.4 Different architectures with GMP-256dense layers for transfer
learning
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B.2.5 Different architectures with GAP-256dense-0.5drop layers for trans-
fer learning
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B.2.6 Different architectures with GMP-256dense-0.5drop layers for trans-
fer learning
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B.3 Different top layers for transfer learning by architecture

B.3.1 Different top layers of ResNet50 for transfer learning
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B.3.2 Different top layers of VGG 16 for transfer learning
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B.3.3 Different top layers of VGG 19 for transfer learning
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B.3.4 Different top layers of Xception for transfer learning
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B.3.5 Different top layers of Inception v3 for transfer learning
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