

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Automatic ontology learning from
semi-structured data

Bc. Filip Masri

Supervisor: Ing. Jan Šedivý, CSc.

4th May 2017

Acknowledgements

I would like to thank my thesis supervisor Ing. Jan Šedivý, CSc. for the
continuous support, patience and motivation.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 4th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Filip Masri. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Masri, Filip. Automatic ontology learning from semi-structured data. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2017.

Abstrakt

Používání ontologií pro zachycení znalostí není žádnou novinkou. Důkazem
tomu jsou veřejně dostupné ontologie, například z iniciativy Schema.org, které
se hojně používají pro anotování webové obsahu. Ovšem, tyto ontologie
bývají příliš obecné. Proto je potřeba systémů, které by generovaly onto-
logie zaměřené na specifičtější domény typu Mobilní telefony. Takové onto-
logie by poté mohly sloužit k rozšiřování obecnějších ontologií, jako je právě
Schema.org.
Zde by mohla pomoci tato práce, která se zameřuje na vytváření ontologií z
<table> elementů obsažených ve webových stránkách. Implementovaný sys-
tém využívá metody pro klasifikaci typu tabulky, detekci hlavičky, porozumění
vztahům mezi buňkami v tabulce a vytváření finální ontologie v RDF/OWL
formátu.
Výsledný přístup byl úspěšně aplikován na doménu mobilních telefonů. Jed-
notlivé ontologie byly vygenerovány z tabulek nalezených na stránkách
amazon.com, buymobiles.net, gadgets.ndtv.com a snapdeal.com. Kromě této
domény se daný systém dá využít i na další domény jako např. kamery, firmy,
auta, basketbalový hráči.

Klíčová slova Ontologie, Znalostní databáze, Vytěžování vztahů z tabulek

ix

Abstract

Publicly available ontologies, such as Schema.org, tend to be quite general.
Therefore, demand for systems automatically generating domain specific on-
tologies has arose. The generated ontologies could later extend the general
ones, for example in Schema.org.
This thesis focuses on building ontologies from <table> elements found in
WEB pages. Methods were implemented for table type classification, header
location, table understanding and creating final ontologies in RDF/OWL.
The implemented system has been successfully applied to mobile phones do-
main. Ontologies were generated from tables found on amazon.com, buy-
mobiles.net, gadgets.ndtv.com and snapdeal.com. Moreover, the system is
applicable to other domains, such as cameras, companies, cars and basketball
players.

Keywords Ontologies, Knowledge databases, Table understanding

x

Contents

1 Introduction 1
1.1 What is an ontology . 1
1.2 Insight into building ontology 2
1.3 Problem statement . 3
1.4 Thesis outline . 3

2 Related work 5
2.1 Systems for automatic ontology learning from semi-structured

data . 5
2.2 Table understanding . 7
2.3 Populating knowledge databases 10

3 New system design 13
3.1 System workflow . 13

4 WEB table representation 17
4.1 Description of a HTML table 17
4.2 Table preprocessing . 18
4.3 Converting DOM to a Matrix Form 18

5 WEB table type classification 21
5.1 Related work . 21
5.2 Approach for WEB table type classification 23

6 WEB table header recognition 37
6.1 Related work . 37
6.2 Approach for WEB table header classification 38

7 Table understanding 45
7.1 Hierarchy of a header . 45

xi

7.2 Matching data cell to header cells 47
7.3 Result of the decomposition . 47

8 Entity and Quantitative value recognition in table cells 49
8.1 Entity recognition in header cells 49
8.2 Entity recognition in data cells 50
8.3 Quantitative value recognition in data cells 50
8.4 Natural language as data cells content 51

9 Ontology generation 53
9.1 Building blocks . 53
9.2 Process for generating the ontology 56
9.3 Generated ontologies . 59

10 Comparison of created ontologies to Gold standard 63
10.1 Gold standard ontology . 63
10.2 The distributional method for alignment (DMA) 64
10.3 Results of comparing ontologies 67

Conclusion 75

Bibliography 77

A Contents of CD 81

xii

List of Figures

2.1 Workflow of TARTAR system. 7
2.2 Example of clustering values in F-Logic in TARTAR. 7
2.3 Rules used for defining relations among cells. 8
2.4 Representation of a table. Division of table to 4 categories. 9
2.5 Generated ontologies from tables. 9
2.6 Representation of a knowledge graph. 10

3.1 New system workflow . 14

5.1 Example of ENTITY table. 24
5.2 Example of RELATION table. 24
5.3 Example of MATRIX table. 24
5.4 Example of LAYOUT table. 25
5.5 Example of OTHER table. 25
5.6 Rows/columns used for computing local features. 29
5.7 Table from datart.cz . 33
5.8 Table from heureka.cz . 33
5.9 Table from snapdeal.com . 34
5.10 Table from wikipedia.org . 34

7.1 Rules for reconstructing relations. 46
7.2 Resulting tree-like structure after decomposition. 48

8.1 Specifications table referring to some mobile phone. 49
8.2 Parameter expressed by affirmative/negative words. 50
8.3 Entities recognition in data cells. 50
8.4 Parsing numerical values with units of measument. 51
8.5 Example of natural language content. 51

9.1 Example of statement for adding instances to the ontology. 57
9.2 Statement according to the GoodRelation ontology. 57

xiii

9.3 Statement enabling sharing links to entities. 58
9.4 Statements linking two classes in the header hierarchy. 58
9.5 Statements capturing properties with numerical values. 59
9.6 Graph of amazon ontology with meronyms as classes. 60
9.7 Graph of buymobiles ontology with meronyms as classes. The circle

in the middle is MobilePhone entity, surrounded by found predic-
ates and classes. 61

9.8 Graph of gadgets ontology with meronyms as classes. The circle in
the middle is MobilePhone entity, surrounded by found predicates
and classes. 61

9.9 Graph of snapdeal ontology with meronyms as classes. The circle
in the middle is MobilePhone entity. The first level nodes are cat-
egories of parameters such as Display, Connectivity, MemoryStor-
age, BatteryPower, HardwareConnectivity and General. Next level
contains found classes and predicates. 62

10.1 The distributional representation of a concept. 65
10.2 Workflow of DMA. 65
10.3 Example of an alignment. 67

xiv

List of Tables

5.1 Table types count in the WDC dataset. 26
5.2 Distribution of tables in the Product dataset. 26
5.3 Results of DT table type classification on WDC dataset. 31
5.4 Results of DT table type classification on Product dataset 31
5.5 Results of RF table type classification on WDC dataset. 32
5.6 Results of RF table type classification on Product dataset. 32
5.7 Distribution of table classes in datasets. 34
5.8 Performance verification of WEB table type classification results. . 35

6.1 Result of column/row header detection of selected methods. 38
6.2 Results of DT table header classification on WDC dataset. 41
6.3 Results of DT table header classification on Product dataset. . . . 41
6.4 Results of RF table header classification on WDC dataset. 42
6.5 Results of RF table header classification on Product dataset. . . . 42

9.1 RDF/RDFS building blocks. 54
9.2 OWL building blocks. 55
9.3 GoodRelation building blocks. 56
9.4 Used RDF elements in individual ontologies (meronym as datatype). 59
9.5 Used RDF elements in individual ontologies (meronym as class). . 60

10.1 Results of tests on benchmark tasks. 69
10.2 Results of tests on mobile phone ontologies. 71

xv

Chapter 1
Introduction

Intelligent thinking machines represent the next challenging goal in the cur-
rent information industry. These machines should be able to percept their
surroundings and real world entities they keep interacting with. The rela-
tionship among these objects and their semantic context has to be presented
to the machines in a suitable form, such as knowledge database, from which
they can learn. The knowledge sources rely on creation of concepts describ-
ing different real-world entities and linking them together which is known as
learning ontologies.

1.1 What is an ontology

A common understanding of an ontology has to be defined before diving deeper
into the research of existing systems. The term ontology was specified by
Thomas Gruber in 1993 [1] as "An ontology is a specification of a conceptu-
alization. That is, an ontology is a description (like a formal specification of
a program) of the concepts and relationships that can exist for an agent or a
community of agents."
Therefore, the two building blocks of an ontology are concepts and relations.
Concepts represent classes of entities and their individual members are called
instances. Relations among concepts are called semantic relations. [2]
Moreover, ontologies can be created for different domains and serve as a found-
ation for a knowledge database which is populated with instances of given con-
cepts. Such databases are used in information retrieval, question-answering
systems and other applications. Examples of widely used semantic databases
are:

• WordNet - lexical database of English - synonyms are grouped into sets
of cognitive synonyms (synsets) [3]

• Freebase - large knowledge database acquired by Google [4]

1

1. Introduction

• DBpedia - knowledge database extracting structured data from Wikipe-
dia [5]

• YAGO - knowledge database extracted from multiple sources as Word-
Net, Wikipedia, etc. [6]

1.2 Insight into building ontology

Domain ontology building is a difficult task often performed by domain expert.
Nevertheless, it is still a time consuming process which is the reason why
automatic ontology learning has to be considered. The building process, both
manual and automatic, has to take into consideration following characteristics,
specified in [7]:

• Heterogenity - There are different data sources all over the World Wide
Web (WEB) that potentially offer similar information. Integrating such
data sources could lead to more accurate ontologies and could increase
coverage of the ontologies. However, integrating ontologies is a difficult
task consisting of subtasks as ontology merging, alignment and trans-
formation. Result of an integration of two ontologies could be either
relations linking concepts between them or a new global ontology.

• Uncertainty - Quality of learned ontologies heavily depends on the cor-
rectness of data it is derived from as well as it depends on the method
used for ontology learning. The correctness of an ontology can be sub-
jective and individual domain experts could argue about it.

• Reasoning - Deriving facts that are not expressed in ontology or in
knowledge base explicitly is a challenging task that enriches existing
databases or helps in better understanding of semantic context of given
information. The knowledge databases should be build from consistent
databases in order to reason in them.

• Scalability - Amount of available information keeps rapidly growing. In-
formation can change, expand or appear in different formats. Therefore,
ontologies that describe such information should be scalable and ready
for change.

• Quality - measuring the quality of either manually or automatically cre-
ated ontology is not an easy task. Quality of ontology depends on various
factors such as its structure, hierarchy, used taxonomy, relations used
among concepts, etc. Moreover, the quality also depends on the building
approach which is domain specific. The resulting quality of the ontology
has to be evaluated using a suitable method.

2

1.3. Problem statement

• Interactivity - Most of the ontologies are created manually by domain ex-
perts because its accuracy decreases with the increasing level of automa-
tion. Therefore, the automatic approaches require lots of pre-processing
and post-processing steps.

1.3 Problem statement
The WEB is full of interesting information such as product specifications, per-
sonal information or company information. The published information tend
to have some semantic meaning in the context of its domain. Moreover, the
context can be captured by using annotations/tags. Annotating the content
of a web page belongs to the field called Sematic Web [7] and is still in its
infancy since not many ontologies were developed for the content annotation.
In addition, the existing ontologies GoodRelations [8] and Schema.org [9] are
too general and do not cover vast amount of domain specific information.
The lack of suitable ontologies leads to the demand of systems that would
automatically generate domain specific ontologies that could be linked to the
more general ones. These systems are very valuable and are a competit-
ive advantage in the information industry. The application of such systems
ranges from Semantic Web, knowledge graphs, search optimization systems,
to question-answering, dialogue and recommendation systems.
Automatically generating ontologies is also called ontology learning and it is a
non-trivial task. Obviously, learning can be performed on either unstructured,
semi-structured or structured data. The first two data sources are suitable for
ontology learning since large number of these sources are publicly available on
the WEB.
Nevertheless, ontologies learned from unstructured text tend to be very inac-
curate. Thus, tabular data were chosen since their content is semi-structured
and the relation among its elements can be partially reconstructed.

1.4 Thesis outline
This section serves as a guidepost to the rest of the thesis. Chapters and their
brief descriptions are following:

• Chapter 2 Related work - This chapter serves for familiarization with
various systems and methods used in ontology learning that could be
used in this thesis or could serve as an inspiration.

• Chapter 3 New system design - This chapter briefly describes prob-
lems the proposed system should deal with.

• Chapter 4 WEB table representation - This chapter is dedicated to
internally representing the WEB table in the program memory.

3

1. Introduction

• Chapter 5 WEB table type classification - This chapter mentions
the existence of different WEB table types and means for their distin-
guishing.

• Chapter 6 WEB table header recognition - This chapter solves the
problem of header location in WEB tables.

• Chapter 7 Table understanding - This chapter is dedicated to mining
relations among table cells.

• Chapter 8 Entity and Quantitative value recognition in table
cells - This chapter describes method for discovering important parts in
the table content.

• Chapter 9Ontology generation - This chapter gives insight into build-
ing the final ontology.

• Chapter 10 Comparison created ontologies to Golden standard -
This chapter experiments with method for automatic ontology compar-
ison to gold standard ontology.

4

Chapter 2
Related work

This thesis specializes on creating ontologies from semi-structured data. Do-
main ontology constructions are usually created by domain experts manually,
which is tedious and time consuming. Therefore, automatic extraction and
building ontology from existing information sources like WEB pages has been
an emerging field of study and an urgent task [10].
Moreover, applications such as the Semantic Web or making web content dir-
ectly queryable need an approach that would facilitate ontology creation. This
simplification would lead to production of vast number and variety of ontolo-
gies required for future web applications [11].
Therefore, a research was done that would give an insight into the problemat-
ics. The structure of the research chapter is following. First, existing systems
used for ontology learning were analyzed. However, some methods used by
the systems are too complex or unclear since the systems are not open-source.
Thus, other methods were explored for inspiration.
Finally, a framework called FLOPPY is mentioned. The framework uses a pro-
cess called "conceptual extraction" for database population. The conceptual
extraction takes a schema similar to an ontology and populates a knowledge
database based on the ontology elements. Hence, adjusting the learned onto-
logies in this thesis to extraction concepts would lead to a knowledge database
and is a great motivation.

2.1 Systems for automatic ontology learning from
semi-structured data

Two systems for automatic ontology learning from semi-structured data were
found among existing articles. Such systems are called MOGO and TARTAR.
Both of them use <table> element for ontology learning. An ontology is
reconstructed from the relations among individual cells in the table.

5

2. Related work

2.1.1 MOGO

First system is called MOGO (a Mini-Ontology GeneratOr) and is a compon-
ent of the overall TANGO (Table ANalysis for Generating Ontologies) [12] pro-
ject. TANGO focuses on concepts recognition in HTML (HyperText Markup
Language) tables and links them to other related concepts. The concept re-
cognition is done by MOGO component that transforms the table into a con-
ceptual model, also called mini-ontology.
The component consists of three services. First is a service used for concept/-
value recognition that evaluates a table column as a set of similar objects
(using WordNet as lexical resource), detects hierarchy among header cells,
detects similar value format in rows/columns, etc. The service uses quite
complex operations as inserting category, deleting category, inserting subcat-
egory, deleting subcategory, changing label, changing entry value and getting
entry value that are iteratively applied to the table representation [13].
The second service discovers relationships among concepts by leveraging
hyponyms and hypernyms. The last service discovers constraints by comput-
ing aggregations among value columns/rows, etc., and adds them to the final
mini-ontology. Moreover, assignment of a name to the concept, derived from
caption and surrounding elements, is also performed [11].
The evaluation was manually tested on 20 downloaded pages with tables and
gave F-measure 90% in concept recognition, 77% in relationship discovery and
90% in constraint discovery.

2.1.2 TARTAR

Second framework is called TARTAR (Transforming ARbitrary TAbles into
fRames) [14] and is a framework receiving HTML pages as input. Then, tab-
ular data is retrieved and corresponding schema is created.
The process of creating schema is divided into several subtasks, depicted in
figure 2.1. First, a table orientation is recognized by heuristic rules. Secondly,
data cells are binded with header cells. Next, the table is transformed to
a special structure, used in object-oriented programming, called F-Logic -
Frame Logic [15] by creating Functional Table Model, showed in figure 2.2.
The F-Logic is similar to the first service in MOGO that finds sets of sim-
ilar objects by applying string similarity patterns. Finally, the F-Logic can
be transformed to Resource Description Format (RDF) [16] / Web Ontology
Language (OWL) [17] format.

6

2.2. Table understanding

Figure 2.1: Workflow of TARTAR system.

Figure 2.2: Example of clustering values in F-Logic in TARTAR.

The framework was tested on 158 tables crawled from a chosen domain.
85,44% of the tables were transformed correctly. The correctness of trans-
forming the frames was compared to manually labeled frames.

2.2 Table understanding
A table understanding is a process of reconstructing knowledge and relations
among concepts from tabular data. The table understanding methods are used
in both MOGO and TARTAR. However, the approach used by MOGO is too

7

2. Related work

unclear and approach used in TARTAR is too complex. Thus, several articles
were analyzed in this field [18] [19] [20] [21]. The names of the subsections are
the official names of the papers.

2.2.1 Ontology Extraction from Tables on the Web

This article [18] mentions formal representation of generalized table structure
based on the adjacency of cells and iterative structures. The representation is
derived by applying simple rules defined in the article. Examples of the rules
are shown in figure 2.3.
However, an interpretation of the table structure has to be manually defined
by the user before deriving representation. By interpretation is meant the
location of header cells determining a specific table type.
Such approach could be used for building hierarchy of the table header.

Figure 2.3: Rules used for defining relations among cells.

2.2.2 Data Extraction from Web Tables: the Devil is in the
Details

This article [19] is a simplification of the article above 2.2.1. Nevertheless,
attention is focused on relating data cells to header cells. Header cells contain
names of described elements. Whereas, data cells contain specific value of the
described element.
More specifically, all cells of a given rectangular table are divided into four re-
gions, as presented in figure 2.4: stub (empty) cells, row-header cells, column-
header cells, delta (data) cells. Then, data cells can be uniquely assigned to
a column-header cell to the left and a row-header cell above, if exists. The
assignment is called a row/column-header path.

8

2.2. Table understanding

Figure 2.4: Representation of a table. Division of table to 4 categories.

2.2.3 Learning of Ontology from the Web-table

In contrast to the articles above 2.2.2 2.2.1 this article [21] describes the whole
process starting with table header location and ending with ontology genera-
tion using RDF/OWL. The process is following:

1. Table header location - location of the header is critical when deriving
ontology from a web table. However, no location approach is explained
in the article.

2. Table type detection - one of five specified table types is chosen ac-
cording to the table header location.

3. Ontology generation - creating ontology includes relationships as IS-
A relationship, class-instance relationship, property relationship, range
relationship and domain relationship. Examples of IS-A relationships
are presented in figure 2.5.

Figure 2.5: Generated ontologies from tables.

9

2. Related work

Such workflow seems to be reasonable when combined with approaches
mentioned in articles 2.2.2 2.2.1.

2.2.4 Compositional Semantic Parsing on Semi-Structured
Tables

This article [20] does not serve for building an ontology from a table. Instead,
it performs question-answering on a chosen table. The table is converted to
a logical form, question is parsed by a semantic parser and then an answer is
induced by a knowledge graph created from the table. Table rows become row
nodes, strings in table nodes become entity nodes and columns become direc-
ted edges from row nodes to the entity nodes of that column. The approach
gives precision of 37,1% when answering questions.
Although, this approach was not used in this thesis it is a clever way for creat-
ing triples from a single table. An example of created knowledge graph based
on triples is depicted in figure 2.6. However, such approach cannot be used for
building ontologies from tables with more complex headers that do not con-
sist of only first header row. The method can be rather used for populating
instances belonging to specific classes and having only first header row.

Figure 2.6: Representation of a knowledge graph.

2.3 Populating knowledge databases
This section describes a framework used for populating a product knowledge
database. The aim of the thesis is to learn ontologies, not to populate data-
bases with concept’s instances. However, such ontologies should be later used
for populating databases and thus an existing system was assessed.

2.3.1 FLOPPY

FLOPPY (a Framework for Large-scale Ontology Population of Product In-
formation in E-commerce Store) [22] is a project focusing on e-commerce. It
is a semi-automatic approach focusing on database population from WEB do-
mains (Amazon, BestBuy, Walmart and Shopping.com), aided by user-defined

10

2.3. Populating knowledge databases

ontology annotations in the form of lexical representations and regular expres-
sions. These annotations are used for looking up for instances values.
The semi-automatic feature is defined as having annotations provided by a
user. Its advantage is that synonyms can be defined manually and thus the
framework can be executed on different product domains.
However, the population specializes only on a product domain (distinguish-
ing 24 product categories). A custom ontology called OntoProduct ontology
has been created for its purposes, fully compatible with GoodRelations and
Consumer Electronics Ontology (CEO) [8].

11

Chapter 3
New system design

Systems mentioned in the previous chapter are all proprietary. Therefore, it
seemed challenging to build own system for building domain specific ontologies
that could be later integrated with existing ontologies.
The considered parts are based on structure of existing systems assessed in
the research. However, the inherent implementation of individual parts allows
further adjustment to precisely fit our purposes.

3.1 System workflow

The design of the system consists of four main parts showed in figure 3.1. At
the beginning, the system takes one or multiple web pages, having HTML
tables, as input. These tables have to be extracted and transformed to an
internal representation. The next step is to recognize the table types in order
to filter out tables not suitable for building ontologies. It is done by applying
machine learning method based on the computed features from the internal
representation.
Also, annotation of rows/columns of the table as header/data parts is neces-
sary for better table understanding. Table understanding is the process of
building hierarchy among header elements and linking data cells to header
cells. Finally, RDF ontologies are generated.

13

3. New system design

Figure 3.1: Workflow: 1.Matrix representation of a WEB table, 2.WEB table
type classification, 3.WEB table header recognition, 4.Table understanding,
5.Ontology generation.

3.1.1 WEB table representation

The table has to be transformed to some internal representation because of
two reasons. First is computation of row/column/global features for classific-
ation tasks. Second is representation of table cells as objects so the table cells
can be divided into data/header cells. Moreover, relations can be specified
among the table cells. The approach is presented in detail in chapter 4.

3.1.2 WEB table type classification

There are several types of tables on the WEB, such as ENTITY, RELATION,
MATRIX, LAYOUT, OTHER tables. These types have to be distinguished
since each table type requires an individual approach for table understanding.
Nevertheless, only ENTITY, RELATION and MATRIX tables can be used
for building ontologies. The problematics is further described in chapter 5.

3.1.3 WEB table header recognition

The location of the table header is an important step. The header recognition
could be skipped if all header cells were marked with <th> element. Unluckily,
that is not true. Thus, a classification method has to be chosen in order to

14

3.1. System workflow

predict whether a table column/row is HEADER/DATA column/row. The
discussion about the choice can be found in chapter 6.

3.1.4 Table understanding

The next process is to mine relations among entities from the table. The
relations are derived from a table annotated with header location marks.
More specifically, the reconstruction of relations uses heuristic rules, defined in
chapter 7, resulting in a graph of entities. Obviously, table understanding de-
pends a lot on a correct header location. Additionally, the table understanding
is also tightly linked with entity recognition, specified in chapter 8.

3.1.5 Ontology generation

The final process is to generate an ontology based on the understanding of the
table. Again, heuristic rules are used in order to "correctly" generate ontology.
More about ontology generation is revealed in chapter 9.

15

Chapter 4
WEB table representation

The whole thesis is about working with HTML tables. Therefore, a method
for internally representing a table in the program has to be chosen and imple-
mented.
Most of the methods mentioned in chapter 2 were working with a matrix
form. [14] [19]. That is because most of the HTML tables on the WEB repres-
ent data in a rectangular form. Thus, transforming the <table> element from
a Document Object Model (DOM) tree to a matrix inside internal memory
seems like a suitable approach.

4.1 Description of a HTML table
A HTML table allows web content creators to publish data in row and column
cells. The elements that can be used to structure the WEB table (<table>,
example is viewed in listing 4.1) are:

1. <caption> - represents the title of a table
2. <thead> - represents a block of cells forming a header
3. <tbody> - represents a block of cells forming the data content of the

table
4. <tr> - represents a block of cells forming a row
5. <th> - represents a single header cell (the width and height of the cell

is defined by colspan/rowspan attribute)
6. <td> - represents a single data cell (the width and height of the cell is

defined by colspan/rowspan attribute)

17

4. WEB table representation

Listing 4.1: Example of HTML table structure
<table>

<thead>
<tr>

<th>Header 1</th>
<th>Header 2</th>

</ tr>
</thead>
<tbody>

<tr>
<td>Data 1</td>
<td>Data 2</td>

</ tr>
</tbody>

</ table>

4.2 Table preprocessing
Few pre-processing steps have to be performed once the <table> tag is ex-
tracted. One of the preprocessing steps is to remove empty rows. These are
rows that do not have any content. The same is done with columns.
Another important preprocessing step is a conversion of the table caption to a
first row of the table. Caption usually serves as the title of a table. Therefore,
it should be involved in building the ontology. The caption is turned into
<th> element with colspan set to the full width of the table. Including the
caption as the main part of the header is done because the algorithm used for
transforming to Matrix representation takes only <th> and <td> tags.

4.3 Converting DOM to a Matrix Form
After preprocessing, the table can be converted to the matrix representation.
Two classes were created in program in order to represent the data correctly.
The wrapping class internally containing the table is called Table class. The
Table has a reference to the matrix of table cells. Each cell is represented by
a class called TableCell. The TableCell contains reference to the real HTML
element as well as it contains the text content and info about its 2D position
in the table.
Additionally, colspan/rowspan of cells having value more than 1 (spanning
multiple cells) has to be considered in the algorithm. Therefore, instances of
TableCell’s having such rowspan/colspan are copied to the neighboring cells
according to the value in colspan/rowspan. The complete converting algorithm
is described as code in algorithm 1.

18

4.3. Converting DOM to a Matrix Form

Algorithm 1 Algorithm for converting DOM structure of HTML table to a
Matrix Form

1: for < tr > in < table > do
2: for element (<th>/<td>) in < tr > do
3:
4: matrix[i,j] = TableCell(element, i, j)
5: if span (rowspan/colspan value) in element > 1 then
6: copy the TableCell(element, i, j) to span−1 following positions

19

Chapter 5
WEB table type classification

The previous chapter 4 was describing the internal program representation
of a web table since it is the cornerstone of this thesis. Nevertheless, the
representation does not state any information about the table orientation,
type or visual structure. Especially, recognizing table type is very important
because tables on the WEB can present various types of information.
The basic assumption is that tables present information referring to some
entity or listing information about several similar entities. However, tables are
also frequently used for managing the layout of elements on page. The layout
tables obviously cannot be used for building a knowledge database. Therefore,
an approach for classifying tabular elements is going to be described in this
chapter. Such classification model is going to be later used when retrieving
tables from pages that can be leveraged for deriving ontologies.

5.1 Related work

The chapter 2 describes systems or specific methods used for building onto-
logy. WEB table type classification was not mentioned in the related work.
Nevertheless, it is one of key parts of this thesis. Therefore, a brief summariza-
tion of related work to this topic is going to be mentioned in order to select an
approach for implementation of this key step. Again, the names of following
sections are the names of the original papers.

5.1.1 Detecting tables in HTML documents

This article [23] mentions the basic problem of tables used in HTML pages.
The problem is that not all <table> elements indicate the presence of a genu-
ine relational table. Therefore, two methods for GENUINE/NON-GENUINE
table detection were used. First is rule-based method and second is a machine
learning method.
The rule-based method takes the table structure and splits it according to

21

5. WEB table type classification

user-defined rules. The approach will not be assessed in-depth since it was
outperformed by the machine learning approach.
The machine learning approach requires features that capture characteristic
easing table types recognition. This paper presents 16 features - 7 layout
features, 8 content type features and one word group feature. The layout fea-
tures are for example average number of rows/columns and their deviations.
Whereas, content type features compute histograms of image, hyperlink, form,
etc. elements in the table. Thirdly, the word group features depict the textual
content of a table on a word level.
The number of tables used for training and testing the method was 11 477.
They served as an input to a Decision Tree (DT) classification model. A DT
was chosen because it does not require assumptions of feature independence.
A 9-fold cross-validation method was used for testing purposes, dividing the
data into 9 parts. The final results give the best precision of 97.5% with cor-
responding recall 94.25%. The results overcome the rule-based method with
its 79.46%.

5.1.2 Building the Dresden Web Table Corpus: A
Classification Approach

The table detection mentioned in the previous paper has been already greatly
studied. In contrast, table layout classification has been paid only little at-
tention. Table layout classification does not consider only genuine and non-
genuine table type but rather Vertical/Horizontal listings, Matrix, Layout and
Other types. Obviously, knowing the table type helps creating assumptions
about the header location and the ultimate meaning of the table.
Similarly as in the previous paper, features characterizing the tables have to
be extracted. The first group of features are global - they take the table
as a whole. Part of the global features are table structure features such as
maximum/average number of features per row/column or average number of
characters per cell. The second part of global features are consistency and
variation features including standard deviation of cells per row, etc. The last
part of global features are ratio features of image, form, etc. elements in cells.
Obviously, table structure and consistency + variation features refer to layout
features used in the previous paper and the ratio features refer to content type
features in the previous paper.
Moreover, there is a second group of features called local features. They con-
sider only the first two rows, first two columns, last row and last column of a
table as segments for local features. Local features consist of structural fea-
tures such as average size of cells in the block, etc. and content ratio features
- ratio of header, anchor, image, input, etc. elements in the blocks.
In total, 127 features are taken for each of 2022 labeled tables used for evalu-
ation. The evaluation consists of 100 iterations whose results were averaged.
In each iteration, the dataset was randomly split to 90% of training data and

22

5.2. Approach for WEB table type classification

10% of testing data.
The chosen classification models were: Decision Tree, Random Forest and
Support Vector Machines (SVM). The results of a Random Forest are presen-
ted since it gives the best weighted results over all layout types - precision
85.13% and recall 82.06. [24]

5.2 Approach for WEB table type classification

Approaches mentioned in the research part 5.1 give good results when using
machine learning methods. These methods use datasets for building classific-
ation models which are then used for prediction of the table type category.
The advantage of the classification model is its possibility of retraining on
new data if current dataset does not sufficiently cover the variety of predicted
classes. So obviously, the foundation of these methods is a good dataset. Un-
luckily, none of the ground-truth dataset concerning table types is published
publicly on the web. Own datasets have to be created in order to evaluate the
chosen methods. And building own datasets includes determining the table
types to be recognized.
Finally, suitable classification models have to be chosen for prediction. In
this thesis, Random Forest (RF) and Decision Tree (DT) method were chosen
since they showed good results in the previous work.

5.2.1 Types of HTML tables

Five different categories of <table> elements have been found on the WEB.
The categories are same as in [24]. Only Vertical/Horizontal listings were
renamed to RELATION/ENTITY types.

1. ENTITY table contains information about one specific instance of some
class.

23

5. WEB table type classification

Figure 5.1: Example of ENTITY table.

2. RELATION table contains a list of instances of a shared class.

Figure 5.2: Example of RELATION table.

3. MATRIX table has header both in a column and row. Therefore, data
cells have relations to either of the headers.

Figure 5.3: Example of MATRIX table.

4. LAYOUT table serves for structuring the data on a page.

24

5.2. Approach for WEB table type classification

Figure 5.4: Example of LAYOUT table.

5. OTHER is a category for unknown types.

Figure 5.5: Example of OTHER table.

5.2.2 Datasets

A dataset of labeled <table> elements is needed in order to use such machine
learning approach. Nevertheless, there was not found a publicly available
ground-truth dataset. The only dataset found was WDC Web Table Corpus
2015 (WDC dataset) [25] that was gathered by crawling the WEB for web
tables. The discovered tables were labeled by a similar machine learning
method as the one proposed here. Thus, the dataset is not ground-truth and
has to be manually verified.
Another dataset was created from mobile phones domains since it is the target
domain of this thesis.

5.2.2.1 Common WEB crawl dataset

TheWDCWeb Table Corpus 2015 project published JSON (JavaScript Object
Notation) files containing links to pages that have tabular data together with
the table position inside the page. Additionally, probable type (predicted by
machine learning algorithm [24]) of the table was provided corresponding to
one of the five categories specified in 5.2.1. Thus, 1168 tables were downloaded
and their table type was manually checked and corrected, as presented in
table 5.1, in order to have a good quality dataset. Still, 1168 is only a small
part of the whole corpus but it would be time consuming to validate all the
tables in the corpus.

25

5. WEB table type classification

Moreover, multiple similar tables were taken from one WEB domain. As a
result, the dataset contains groups of tables that are structurally identical but
have different textual content.

Table type Tables count
ENTITY 526
RELATION 420
LAYOUT 142
MATRIX 24
OTHER 56

Table 5.1: Table types count in the WDC dataset.

5.2.2.2 Product domains dataset

Another dataset was created as a collection of tables containing specifications
of mobile phones found on relevant WEB domains (english/czech WEB do-
mains). This Product domain dataset (Product dataset) was used only as a
test dataset. Ten pages were taken from each domain and tables containing
mobile phone specifications were extracted.
The dataset was also enriched by tables from Wikipedia and also by a set of 5
RELATION tables. The RELATION tables contain finance data and country
instances. The enrichment was done in order to assess the general use of the
method on various domains.
Importantly, different domains contain different number of pages because the
specifications in WEB domains were split into multiple sub-tables. The over-
view of number of tables for each domain is in table 5.2.

Domain Tables count
amazon.com 20
buymobiles.net 10
datart.cz 80
electroworld.cz 115
expert.cz 10
gadgetsndtv.com 61
heureka.cz 10
mall.cz 10
snapdeal.com 138
wikipedia.org 10
relational 5

Table 5.2: Distribution of tables in the Product dataset.

26

5.2. Approach for WEB table type classification

5.2.3 Features used for classification

Some features have to be assigned to each table in order to classify it. In
this task two different groups of features are considered. First group is called
Global features and second group is called Local features.
Global features consider characteristics of the whole table and all the rows/-
columns together. More precisely, there are 10 features taking all table cells,
4 features taking all columns cells and 4 features taking all rows cells. There
are 18 global features in total.
Local features consider only characteristics of the first two rows/columns and
the last row/column. That means 6 blocks, each having 18 features. In total,
it aggregates to 108 local features.
So there are 126 global and local features used for this classification task.
Most of the 126 features were taken from [24].

5.2.3.1 Global features

Global features can be divided into three sub-categories: features for all cells,
features for row blocks and features for column blocks.

Features for all cells

First three features are strictly numerical and would belong to the table struc-
ture category, mentioned in the research. Next features consider different con-
tent type categories and compute their histograms. These features belong to
the content ratio features category. Such content type categories are: IM-
AGE, FORM, HYPERLINK, ALHABETIC, NUMERIC, EMPTY, OTHER
cells. The summary of the features is below:

1. Average cell length

2. Maximum cell length

3. Standard deviation of the cell length

4. Percentage of image cells

5. Percentage of form cells

6. Percentage of hyperlink cells

7. Percentage of predominantly alphabetic cells

8. Percentage of predominantly numeric cells

9. Percentage of empty cells

10. Percentage of other cells

27

5. WEB table type classification

Features for row and column blocks

These features take either row/column blocks and compute their characterist-
ics. All of the features belong to the table structure group and are following:

1. Average number of cells per blocks

2. Maximum number of cells per blocks

3. Standard deviation of number of cells per blocks

4. Cumulative length consistency

The definition of Cumulative length consistency (CLC) is following - it
computes the consistency of the table segment entries with respect to their
size. In other words, segments where cells content lengths are below twice the
size of the average cell keep a value of the CLC according to the equation.
Whereas, segments with cells that have content twice and more longer have a
constant value 1 distinguish them from segments with values closer to average.
In detail, for each cell c, the size s is taken as the number of characters and
the cumulative length consistency (CLC) is computed per row or column as
follows, where savgi

is the average cell size of table segment (i.e. column or
row) i:

CLCi =
∑

c

0.5− xc, where xc = min(
| sc − savgi

|
savgi

, 1) (5.1)

These consistency scores are averaged across all rows (CLCi) and columns
(CLCi).

5.2.3.2 Local features

Computing local features for all rows/columns would lead to unknown (high)
number of features since dimensions of tables differ. Therefore, local features
are computed only for first two rows/columns and the last row/column, as
viewed in figure 5.6. These rows/columns are most relevant when deciding
about the table type and should be sufficient.

28

5.2. Approach for WEB table type classification

Figure 5.6: Rows/columns used for computing local features. The figure was
borrowed from [24].

The first two features are of a table structure category according to cat-
egories mentioned in section 5.1.2. The other features belong to the content
ratio category. Such block features are:

1. Average cell length

2. Standard deviation of cell length

3. Percentage of cells having <th> tag

4. Percentage of cells having <a> tag

5. Percentage of cells having tag

6. Percentage of cells having <input> tag

7. Percentage of cells having <select> tag

8. Percentage of cells having font tags - , , <u>, <i>,

9. Percentage of cells having
 tag

10. Percentage of cells containing colon - ":"

11. Percentage of cells containing number

12. Percentage of cells containing only number

13. Percentage of cells containing non-empty cells

14. Percentage of cells having tag

15. Percentage of cells having tag

16. Percentage of cells containing comma - ","

17. Percentage of cells containing brackets - "(" or ")"

18. Percentage of cells containing affirmative/negative - Yes/No (English),
Ano/Ne (Czech) - ENTITY table types usually contain these

29

5. WEB table type classification

5.2.4 Results of WEB table type classification

The DT and RF methods are going to be evaluated. The datasets specified
in 5.2.2 are taken and 126 features are computed for each table, taking both
global and local features. Then, the following approach was used for evaluating
the methods:

1. Split WDC dataset by 10-fold stratified cross-validation (10f-scv)

2. Perform training and testing of the model according to the splits and
give average results on individual classes

3. Train model on the whole WDC dataset

4. Test model on the Product dataset and give results for individual do-
mains

The above mentioned process uses 10f-scv in order to select model that is
stable on different parts of data. Moreover, the evaluation is divided into two
parts. First, the models are trained on the WDC dataset and tested on an
independent part of the same dataset. This process is performed in order to
estimate classification scores of all five table types.
Next, the model is trained on the whole WDC dataset and then tested on the
Product dataset. This step is performed in order to evaluate the model on
tables from a target domain specified in assignment of the thesis. Based on
these two tests, the final model should give good results on all the five table
types as well as on the product domain. Keeping these constraints should
enable the use of the model on various domains in the future.
Finally, precision of the models tested on WDC dataset is counted as an aver-
age precision of classification of individual classes. In contrast, the precision
on all tables averages predictions of tables from all categories together. There-
fore it is higher then average precision of classes since majority of tables are
either ENTITY or RELATION with high precision scores.
Testing on the Product dataset assumes precision as the number of correctly
predicted table types on a single domain.

5.2.4.1 Decision tree

The choice of a DT heavily depends on its power of feature selection. Indeed,
the first splits in the tree select the most important features within the data-
set. Consequently, a series of several decision rules can result into a strong
classification statement describing a specific table type. On the other hand,
the DT can be over-fitted by exploring features values that would rarely occur
outside of the training dataset. Therefore, additional pruning of the DT was
performed by iteratively limiting the maximum number of leaf nodes. The
pruned tree with best classification scores is presented.

30

5.2. Approach for WEB table type classification

Computed scores are presented for WDC dataset in table 5.3 and for Product
dataset in 5.4.

P (%) \ Method DT UNPRUN DT PRUN (101 LN)
P - All tables 84.4 85.4
P - LAYOUT tables 69 71.7
P - OTHER tables 63.3 65.7
P - RELATION tables 85.7 85.5
P - MATRIX tables 55 55
P - ENTITY class 91.1 92
P - AVG of classes 72.8 74.1

Table 5.3: Results of DT table type classification on WDC dataset. LN - leaf
nodes, P - precision, PRUN - pruned, UNPRUN - unpruned.

P (%) \ Method DT UNPRUN DT PRUN (101 LN)
P - buymobiles 100 100
P - heureka 100 100
P - expert 90 90
P - gadgets 88.5 100
P - electroworld 75.7 93.9
P - mall 100 100
P - amazon 100 100
P - wikipedia 40 50
P - relational 60 60
P - datart 0 10
P - snapdeal 86.2 57.2
P - AVG of domains 76.4 78.3

Table 5.4: Results of DT table type classification on Product dataset. LN -
leaf nodes, P - precision, PRUN - pruned, UNPRUN - unpruned.

5.2.4.2 Random forest

RF method arose from the DT method. RF takes multiple DT’s that are
trained on random samples of the training data. Next, the built trees vote
about the classification of a new sample. The multiplicity of deep DT’s trained
on different parts of the same dataset together with final averaging should
avoid over-fitting.
Obviously, the number of trees is a parameter that has to be set. Thus,
100 trees were chosen as it was selected in the related work. Additionally,
max_features parameter, that defines the number of possible features when
looking for the best split, was set to either values "auto" or "log2(n_features)".

31

5. WEB table type classification

On the contrary, no experiments were done with pruning since RF should avoid
overfitting.
Computed scores are presented for WDC dataset in table 5.5 and for Product
dataset in table 5.6.

P (%) \ Method RF 100 auto RF 100 log2
P - All tables 84.4 89.7
P - LAYOUT tables 71.9 67.6
P - OTHER tables 68 67.7
P - RELATION tables 95.7 94.8
P - MATRIX tables 50 50
P - ENTITY tables 95.6 95.8
P - AVG of classes 76.2 75.2

Table 5.5: Results of RF table type classification on WDC dataset. 100 -
number of trees in RF, auto - automatic max_features parameter selection,
log2 - max_features value set to log2(n_features), P - precision.

P (%) \ Method RF 100 auto RF 100 log2
P - buymobiles 100 100
P - heureka 0 0
P - expert 100 70
P - gadgetsndtv 100 100
P - electroworld 100 100
P - mall 100 100
P - amazon 100 100
P - wikipedia 0 10
P - relational 100 100
P - datart 2.5 0
P - snapdeal 30.4 17.4
P - AVG of domains 66.6 63.4

Table 5.6: Results of RF table type classification on Product dataset. 100 -
number of trees in RF, auto - automatic max_features parameter selection,
log2 - max_features value set to log2(n_features), P - precision.

5.2.4.3 Comparison of results

Both DT and RF seem to have similar precision when tested on part of the
WDC dataset, around 74% and 76%. Both giving around 50% precision on
the MATRIX table type since its distribution in the dataset is minimal.
Whereas, testing on the Product dataset results into 78% and 66%. The
interpretation is following - the tables from datart, heureka and snapdeal have

32

5.2. Approach for WEB table type classification

no highlighting (<th>, , etc.) of the header cells in the first column.
Therefore, the tables are incorrectly but logically classified as RELATION
tables. The same class is assigned to the wikipedia tables because of its
complex header including image. The resolution of the wikipedia issue would
be to expand the WDC dataset by sufficient amount of tables with varying
structure in order to cover unknown table structures.
Generally, the RF method is more stable (due to multiplicity of decision trees)
when classifying tables from one domain. According to the results, 7 out of
11 (having precision 1.0) WEB domains were classified correctly. In contrast,
DT gives better average results but classifies correctly only 4 out of 11 WEB
domains.
Examples of incorrectly classified tables are given in figures 5.7, 5.8, 5.9, 5.10.

Figure 5.7: Table from datart.cz Figure 5.8: Table from
heureka.cz

33

5. WEB table type classification

Figure 5.9: Table from snapdeal.com

Figure 5.10: Table from wiki-
pedia.org

Performance verification

The selected approach is very similar to the approach mentioned in [24].
Therefore, corresponding results are going to be compared.
The sizes of datasets differ - 2022 (paper) vs. 1168 (thesis) tables. The differ-
ence in features is 127 (paper) vs. 126 (thesis) features. The distribution of
classes in the datasets is presented in figure 5.7.

Table type % of classes in Thesis % of classes in Paper
ENTITY 45 22
RELATION 35.9 15.3
LAYOUT 12.1 54.4
MATRIX 2.2 1.66
OTHER 4.8 7

Table 5.7: Distribution of table classes in datasets.

The table 5.8 presents results on individual classes both in the paper and
in the thesis. The paper outperforms the thesis in LAYOUT tables since they

34

5.2. Approach for WEB table type classification

comprised more than half of the paper’s dataset. However, the thesis gives
better results in classification of the ENTITY and RELATION tables that are
the key tables to be used in building knowledge databases.
Obviously, the results were computed on different datasets, with not com-
pletely similar features. Thus, the results serve for general comparison.

Table type P (%) - Thesis P (%) - Paper
ENTITY 95.6 85
RELATION 96.7 68
LAYOUT 71.9 93
MATRIX 50 36
OTHER 68 76
P - AVG of classes 76.2 72

Table 5.8: Performance verification of WEB table type classification results.
P - precision.

35

Chapter 6
WEB table header recognition

The last important step before Table understanding is to distinguish header
and data cells. The distinguishing leads to discovery of relations among cells.
These relations are key parts when learning ontology from tabular data.
Nevertheless, the task of header recognition is not so trivial due to the lack
of annotations of header cells, mentioned in chapter 3. Header can be clas-
sical text, sometimes with different font, sometimes with colon or spanning
multiple cells. Thus, a classification method will be used for classifying table
rows/columns as DATA/HEADER.

6.1 Related work

There are not many articles contributing to this topic. Mainly because the
<th> element enables annotation of the header cells. This element should be
the key element used for understanding the table. Nevertheless, not all tables
on the WEB use the <th> tag.
Therefore a paper exploiting the machine learning method for header classi-
fication has been studied [26]. Again the name of the following section is the
original name of the paper.

6.1.1 Table Header Detection and Classification

This paper describes two methods for table header classification. First, a
heuristic method is used. Second, a machine learning method is tested on
two datasets. The size of the datasets is 130 and 120 tables. These tables
are gathered from the CiteSeerX document repository [27]. A comparison of
these two methods is necessary when choosing an approach in this thesis.
The heuristic approach takes pairs of corresponding rows. A similarity score is
computed for these rows. Then, the first local extrema (first valley) is chosen
as the separating header line while iterating in top-bottom/bottom-top block
table pass.

37

6. WEB table header recognition

In detail, the row pair similarity is following. A similarity score is computed for
corresponding cells (cells that overlap horizontally for rows). The similarity
score consists of weighted font size score, character number score, overlap
score, alignment score. Then, the scores for cell pairs in compared rows are
averaged and supplemented with a row score considering number of cells in the
two rows. This approach reaches up to 60% of precision on the two selected
datasets.
Next, a machine learning was proposed. At the beginning, relevant features
are mentioned. There are two groups of features - single row features and
neighboring row features. The single row features contain number of cells,
average number of characters, percentage of alphabetical/numerical/symbolic
cells, etc. Whereas, neighboring row features are percentage of spanning cells,
average alignment, percentage of same data-types in cells, etc.
These features serve as input to three types of classification models - Random
Forest (RF, 100 trees), Support Vector Machines (SVM), Logistic regression
(LR). The results of 10-fold cross-validation are presented in table 6.1.

Method P - rows (%) P - columns (%)
RF 97 98
SVM 92 86
LR 84 94

Table 6.1: Result of column/row header detection of selected methods. P -
precision.

According to the paper, RF gives best performance and is able to auto-
matically choose the most useful features. Moreover, it has bagging mech-
anism that selects training samples which could reduce variance and avoid
over-fitting. The SVM may probably be affected by the unbalanced number
of header and data cases. The low performance of logistic regression may be
caused by relative limited size of datasets [26].

6.2 Approach for WEB table header classification
The machine learning approach mentioned in the research part gives excellent
results. Therefore, machine learning methods - Random Forest and Decision
Tree were chosen for this task. Again, the foundation of these methods is a
good dataset. Therefore, the same datasets mentioned in 5.2.2 are used.

6.2.1 Dataset

The same datasets (section 5.2.2.1, 5.2.2.2) that were used for table type
classification will be used for header classification task. Each table has label
HEADER or DATA for each column and row. First, all tables will be used

38

6.2. Approach for WEB table header classification

for training the model. Second, only ENTITY tables will be used for training
the model since entity tables are going to be used for building the ontologies.
The results will be compared.

6.2.2 Features used for classification

Some features have to be assigned to each row/column (block). Such features
can be divided into two categories: Single block features and neighboring block
features.

6.2.2.1 Single block features

Each row/column is assinged 16 single block features. Such features are:

1. Block index in the table structure

2. Number of block cells

3. Average cell length among block cells

4. Total number of characters among block cells

5. Percentage of numeric characters among block cells

6. Percentage of alphabetic characters among block cells

7. Percentage of special characters among block cells

8. Percentage of punctuation characters among block cells

9. Percentage of emphasized cells among block cells - containing tags <th>,
<i>, , <h1>, <h2>, <h3>, <h4>, <h5>, <h6>

10. Average cell string similarity ratio - all cell strings are encoded into string
that containts only categorical characters as digit, alphabetical, punc-
tuation and symbolic. Cells are then compared to each other according
to [28]. Average similarity ratio is returned.

11. Standard deviation of cell length among block cells

12. Percentage of cells with hyperlinks among block cells

13. Percentage of cells with colon among block cells - ":"

14. Percentage of cells with comma among block cells - ","

15. Percentage of cells with brackets among block cells - "(" or ")"

16. Percentage of cells with affirmative/negative words among block cells -
Yes/No (English), Ano/Ne (Czech)

39

6. WEB table header recognition

6.2.2.2 Neighboring block features

Neighboring block features could help in capturing differences among data/-
header clusters. Each block gets extra features that compare current block
against the next block in the table structure. The comparison is made against
the row below when computing for rows, against column to the right when
computing for columns. Such features are:

1. Percentage of spanning cells - a cell spanning over multiple cells in the
lower row or in the column to the right

2. Number of cells difference - abs(number of cells upper – number of cells
lower) / (number of cells upper + number of cells lower). Header rows
often have missing cells, similar to the "number of cells" for single rows.

3. Percentage of same cell data type. Here data type refers to alphabetical,
digit and symbol.

6.2.3 Results of table header classification

Two classification methods were tried for this task. First is DT and second
is RF. The methods work with 19 features, taking both single block features
and neighboring block features. Following approach was used for evaluating
the methods:

1. Split WDC dataset by 10-fold stratified cross-validation (10f-scv)
2. Perform training and testing of the model according to the splits and

give average results for accuracy on individual classes
3. Split WDC dataset having only ENTITY tables (ENTITY WDC Data-

set) by 10-fold stratified cross-validation (10f-scv)
4. Perform training and testing of the model according to the splits and

give average results for accuracy on individual classes
5. Train model on the whole WDC dataset
6. Test model on the whole Product dataset and give results for individual

domains
7. Train model on the ENTITY WDC Dataset
8. Test model on the ENTITY Product dataset and give results for indi-

vidual domains

The approach above uses 10f-scv in order to select model that is stable
on different parts of data. Moreover, the evaluation is divided into two parts.
First, the models are trained on the WDC dataset/ENTITYWDC dataset and
tested on an independent part of the same dataset. This process is performed
in order to estimate classification scores of the HEADER/DATA blocks on

40

6.2. Approach for WEB table header classification

all types of tables. Further, focusing on the ENTITY tables should improve
understanding the product specification tables.
Next, the model is trained on the whole WDC dataset/ENTITY WDC data-
set and then tested on the Product dataset. This step is performed in order
to evaluate the model on tables from a target domain specified in assignment
of the thesis.
As a result, training on the ENTITY WDC dataset is expected to give better
results since it specializes on the recognition of HEADER/DATA blocks in
ENTITY tables. Training on the whole WDC dataset contains noise created
by blocks of LAYOUT, OTHER, MATRIX and RELATION tables.

6.2.3.1 Decision tree

The reasons for selecting DT were the same as in section 5.2.4.1. Computed
scores are presented for WDC dataset in table 6.2 and for Product dataset in
table 6.3.

P (%) \ Method DT E DT E PRUN (48 LN) DT A DT A PRUN (48 LN)
P - All blocks 99.2 99.3 98.2 98.5
P - HEADER 95.5 95.5 87.3 84.8
P - DATA 99.6 99.7 98.9 99.4
P - AVG of classes 97.5 97.6 93.1 92.1

Table 6.2: Results of DT table header classification on WDC dataset. E -
ENTITY tables only, A - All tables, PRUN - pruned, LN - leaf nodes, P -
precision.

P (%) \ Method DT E DT E PRUN (48 LN) DT A DT A PRUN (48 LN)
P - buymobiles 100 100 80 100
P - heureka 100 0 0 0
P - expert 100 100 20 100
P - gadgets 83.8 73.5 69.1 83.8
P - electroworld 66.1 63.2 77 95.4
P - mall 100 100 0 0
P - amazon 95 95 80 95
P - wikipedia 30 10 70 60
P - datart 77.6 20.9 26.9 69.4
P - snapdeal 81.4 78.6 58.8 77.1
P - AVG of domains 83.4 64.1 48.2 68.1

Table 6.3: Results of DT table header classification on Product dataset. E
- ENTITY tables only, A - All tables, PRUN - pruned, LN - leaf nodes, P -
precision.

41

6. WEB table header recognition

6.2.3.2 Random forest

The reasons for selecting RF were the same as in section 5.2.4.2. 100 tree es-
timators were used as mentioned the paper [26]. Computed scores are presen-
ted for WDC dataset in table 6.4 and for Product dataset in table 6.5.

P (%) \ Method RF E RF A
P - All blocks 99.5 98.9
P - HEADER 95.9 87.1
P - DATA 99.9 99.6
P - AVG of classes 97.9 93.4

Table 6.4: Results of RF table header classification on WDC dataset. E -
Entity tables only, A - All tables, P - precision.

P (%) \ Method RF E RF A
P - buymobiles 100 100
P - heureka 100 0
P - expert 100 40
P - gadgets 83.8 72.1
P - electroworld 94.3 93.1
P - mall 100 100
P - amazon 95 95
P - wikipedia 80 80
P - datart 28.4 13.4
P - snapdeal 80 53.6
P - AVG of domains 86.1 64.7

Table 6.5: Results of RF table header classification on Product dataset. E -
Entity tables only, A - All tables, P - precision.

6.2.3.3 Comparison of the results

Both DT and RF seem to have similar average precision on classes when tested
on part of the ENTITY WDC dataset, around 97.5%.
In contrast, testing on the whole WDC dataset decreases the precision of
HEADER block classification to 87%. Clearly, excellent HEADER block re-
cognition is critical for precise ontology generation, so 87% is insufficient.
Precision of the DATA block stays the same since it comprises much bigger
part of the dataset (table usually has only one or two HEADER blocks but
multiple DATA blocks).
Similarly, DT and RF methods gave similar results on the Product dataset,
84% and 86%.

42

6.2. Approach for WEB table header classification

Performance verification
The classification approach was inspired by paper [26]. This paper takes 175
tables parsed from PDF (Portable Document Format) files, 11 single block
features, 8 neighbor block features. In comparison, the approach proposed in
this thesis takes 16 single block features and 3 neighbor block features.
The RF proposed in the paper gives precision of 91% (the result from the
paper was averaged from correctly classified HEADER/DATA results). The
RF used in this thesis reached precision 93.4% when trained and tested on all
types of tables. The features used in both works slightly differ, as well as the
datasets. Therefore, these results are considered only for general comparison.

43

Chapter 7
Table understanding

Table understanding is the process of deriving relations among cells in tables.
These relations are the key factor needed for generating ontologies. More
specifically, the cells are divided into two categories. First are header cells,
marked by WEB table header classification. Second are data cells, giving ac-
tual values of the properties specified in header.
Obviously, the need is to create a hierarchy between header cells. Con-
sequently, link the data cells to correct header elements.

7.1 Hierarchy of a header

Reconstructing the hierarchy of the table header is the first step to be done.
The reconstruction can be done by applying simple rules defined in figure 7.1.
Similar to the ones defined in section 2.2.1.

45

7. Table understanding

Figure 7.1: Rules for reconstructing relations.

The rule a) says that two neighboring cells do not have a specific rela-
tion if their height/width (colspan/rowspan value) is the same. The rules
b), c) define that cell above/"to the left" is a parent of the other cell if its
height/width is bigger.
Moreover, partial overlaps are considered to be the same category as b), c)
in this work. The section 2.2.1 categorizes it as a).
Then, the algorithm for the reconstruction is formally described in algorithm 2:

Algorithm 2 Algorithm for recognizing header hierarchy
1: for cell in headerCells do
2:
3: for leftCell in cell.cellsToTheLeft do
4:
5: if leftCell is higher than cell then
6: Append leftCell to parents of cell
7: BREAK
8:
9: for upperCell in cell.cellsAbove do

10:
11: if upperCell is wider than cell then
12: Append upperCell to parents of cell
13: BREAK

46

7.2. Matching data cell to header cells

7.2 Matching data cell to header cells
There exists a relation between a data and header cell in each table. The
question is whether it can be recognized by a machine approach. One method,
presented in [19], links the cells by row/column-header paths. The approach
is very easy. Moreover, it works for most tables found on the WEB.
In detail, the path from the data cell is searched for the upper/left header
cell, if they exist. Additionally, sequence of ancestors of the left header cell
is retrieved. Then, it is checked whether it contains the upper header cell.
If yes, the upper header cell is already an ancestor and thus cannot serve as
direct parent of the data cell. The same check is done vice versa.

Then, the algorithm is formally described in algorithm 3:

Algorithm 3 Algorithm for matching data cell to header cell
1: for cell in dataCells do
2:
3: leftParent = NULL
4: upperParent = NULL
5: for leftCell in cell.cellsToTheLeft do
6:
7: if leftCell is header then
8: leftParent = leftCell
9: BREAK

10:
11: for upperCell in cell.cellsAbove do
12:
13: if upperCell is header then
14: upperParent = upperCell
15: BREAK
16:
17: if leftParent != NULL and leftParent not in upperCell.ancestors

then
18: Append leftParent to cell parents
19:
20: if upperParent != NULL and upperParent not in leftCell.ancestors

then
21: Append upperParent to cell parents

7.3 Result of the decomposition
A tree-like structure of relations among individual cells in a table can be
generated by applying algorithms mentioned above. Example of such result
is presented in figure 7.2.

47

7. Table understanding

Figure 7.2: Resulting tree-like structure after decomposition.

48

Chapter 8
Entity and Quantitative value

recognition in table cells

Another important step is to analyze the content of individual cells. The cell’s
content can contain unknown entities as well as numerical values supplemented
by a unit of measurement (Quantitative value).
There are basically three categories of elements to be recognized in ENTITY
tables, like the one in figure 8.1. These categories are: entities in header
cell, entities in data cell, numeric value content. The categories are going
to be shown on a specific table that defines parameters of a some mobile
phone product. Lets assume that the header rows/columns would be correctly
classified. So the first column would be marked as header column.

Figure 8.1: Specifications table referring to some mobile phone.

8.1 Entity recognition in header cells

It is quite frequent that some parameters of ENTITY tables are marked by
affirmative/negative words. These parameters specify existence of a part of
the described entity, also call a meronymy. Thus, the header cell can be
marked as being an entity. In figure 8.2, "Wifi" would be an entity.

49

8. Entity and Quantitative value recognition in table cells

Figure 8.2: Parameter expressed by affirmative/negative words.

8.2 Entity recognition in data cells

In other cases, the entities can be specified in data cells. Multiple entities can
be specified in one cell. However, they are usually separated by a comma.
Then, the entities in the data cell are instances of the concept mentioned in
its parent cell.
In the example presented in figure 8.3 "Android 5.1" would be correctly linked
to its parent entity "OS". Thus, Android 5.1 would be an instance of an
Operating System entity.

Figure 8.3: Entities recognition in data cells.

8.3 Quantitative value recognition in data cells

Additionally, numerical values and their corresponding units of measurement
can be parsed from the data cells. The parsing is done by regular expressions.
Considering only cells that begin with a number and are followed by a single
word that should denote the unit. Also, only numerical values without unit
are taken, as shown in figure 8.4.

50

8.4. Natural language as data cells content

Figure 8.4: Parsing numerical values with units of measument.

8.4 Natural language as data cells content
Some data cells describe the parameters in longer sentences. These sentences,
as in figure 8.5, are difficult to parse for their numerical and unit values since
there could be lots of misunderstanding. Lets consider value "this phone is
sold with 4GB memory, not 8GB". The parser would find both values but one
of them is not correct.
Also, there are no entities that could be recognized by splitting the sentence by
commas. Therefore, a filter is applied to all the comma-split parts. Such filter
computes number of predefined stop-words (a list of stop-words for several
languages) and filters out parts that have more stop-words (indicating natural
language) than some threshold (set to 2 in the thesis).

Figure 8.5: Example of natural language content.

51

Chapter 9
Ontology generation

The ontology generation takes the tree-like structure of a table decomposed to
relations and generates a file according to syntactical and structural rules. The
thesis specializes on a product domain. Therefore, an ontology defining Mobile
phones was taken from GoodRelation ontologies [8] as a reference model, also
called a gold standard ontology. Hence, the final ontology will consist of the
same building blocks as the gold standard ontology. Moreover, the generated
ontologies can be later linked to relevant classes defined in ontology standards,
such as Schema.org [9], GoodRelation [8], etc.

9.1 Building blocks

The building blocks consist of a mix of standards used for describing onto-
logies. The basic standard for creating ontologies is called RDF (Resource
Description Framework). Later, several standards such as RDFS, OWL, etc.,
were created as extensions of RDF.

9.1.1 Resource description framework + schema

The RDF data model [16] is similar to classical conceptual modeling ap-
proaches (such as entity–relationship or class diagrams). It is based on making
statements about resources (in particular "web resources") in the form of sub-
ject–predicate–object expressions (triples). The subject denotes the resource,
and the predicate denotes a relationship between the subject and the object.
Additionally, RDFS (Resource description framework schema) defines more
constructs built on the limited vocabulary of RDF.
RDFS is a set of classes and properties, presented in table 9.1, using the
RDF extensible knowledge representation data model. Its main purpose is
the description of new ontologies intended to structure RDF resources.

53

9. Ontology generation

Name Description
rdfs:Class Classes define set of similar objects

with some properties.
rdf:Property Property describes a relation

between subject resources and
object resources.

rdfs:type Type defines that the source (sub-
ject) is an instance of a specific class.

rdfs:range Range is used to state that the val-
ues of a property are instances of one
or more classes.

rdfs:domain Domain is used to state that any re-
source that has a given property is
an instance of one or more classes.

Table 9.1: RDF/RDFS building blocks.

9.1.2 Web ontology language

The W3C Web Ontology Language (OWL) is a Semantic Web language de-
signed to represent rich and complex knowledge about things, groups of things,
and relations between things. OWL is a computational logic-based language
such that knowledge expressed in OWL can be exploited by computer pro-
grams [17]. OWL building blocks are described in table 9.2.

54

9.1. Building blocks

Name Description
owl:Class An owl:Class defines a group of indi-

viduals that belong together because
they share some properties. It is a
subclass of the rdfs:Class.

owl:DatatypeProperty A datatype property is one of
two main categories of proper-
ties. It links individuals to
data values, and is defined as
an instance of the built-in OWL
class owl:DatatypeProperty. An
owl:DatatypeProperty is a subclass
of the RDF class rdf:Property.

owl:ObjectProperty An object property is one of two
main categories of properties. It
links individuals to individuals, and
is defined as an instance of the built-
in OWL class owl:ObjectProperty.
This defines a property with the re-
striction that its values should be
individuals. An owl:ObjectProperty
is a subclass of the RDF class
rdf:Property.

Table 9.2: OWL building blocks.

9.1.3 GoodRelations

The goal of GoodRelations [8] is to define a data structure for e-commerce that
is suited for product entities specified on WEB. GoodRelations defines several
classes that can be used to denote the products and offers on WEB pages.
Two of them, http://purl.org/goodrelations/v1#ProductOrService and
http://purl.org/goodrelations/v1#QuantitativeValue are described in
table 9.3.

55

http://purl.org/goodrelations/v1#ProductOrService
http://purl.org/goodrelations/v1#QuantitativeValue

9. Ontology generation

Name Description
ProductOrService ProductOrService is the superclass

of all classes describing products or
services types. Example of such sub-
classes is "Mobile Phone".

QuantitativeValue Some properties can have numer-
ical values, further defined by units
of measurement. QuantitativeValue
class was created for this reason.

Table 9.3: GoodRelation building blocks.

9.1.4 XML schema definition

XSD (XML Schema Definition), a recommendation of the World Wide Web
Consortium (W3C), specifies how to formally describe the elements in an
Extensible Markup Language (XML) document. Its strength is the definition
of datatypes - the ability to define element and attribute content as containing
values such as integers and dates rather than arbitrary text [29].

boolean Boolean datatype (http://www.w3.org/2001/XMLSchema#boolean)
is used in GoodRelation ontology for defining existence of features belonging to
a specific product. Such triple would be (subject:MobilePhone predicate:wifi
object:True) - saying a mobile phone has a WiFi.

9.2 Process for generating the ontology

Now, the table has been decomposed to a tree-like structure, entities and
numerical values were recognized, building blocks were presented. Knowing all
these parts, the tree-like structure and recognized content can be transformed
to an ontology by assembling different parts of building blocks.

9.2.1 Create wrapping entity

First, a wrapping entity (the class being described by the ontology) has to
be created. The entity contains the properties defined in the table. One way
of defining the wrapping entity is to derive it from the contents of the table,
as specified in [30] as a protagonist recognition problem. In this thesis, the
wrapping entity is given as an input from the user when executing the table
extraction. The statement about the wrapping entity is following.

: MobilePhone rd f : type owl : Class

56

http://www.w3.org/2001/XMLSchema#boolean

9.2. Process for generating the ontology

9.2.2 Adding instances

Next, the entities found in the data cells are added to the ontology, as depicted
in figure 9.1. These entities are added as instances of the concept specified in
header cell it is being linked to.

Figure 9.1: Example of statement for adding instances to the ontology.

9.2.3 Entities recognized in header cells

According to MobilePhone ontology in GoodRealation repository, meronyms
(being part of - "wheel is a meronymy of automobile") are added as owl:DatatypeProperty
properties with a boolean range.
However, this attitude decreases the extensibility of the ontology. Normally,
the meronymy entities should be created as classes having a relationship to the
wrapping entity. This way, multiple concepts could share relations to these
entities.
Thus, two approaches shown in figures 9.2, 9.3 can be chosen.

Figure 9.2: Statement according to the GoodRelation ontology.

57

9. Ontology generation

Figure 9.3: Statement enabling sharing links to entities.

9.2.4 Header properties without instance

Other header cells, not as the ones mentioned above, are analyzed in order to
append them to the ontology. Such cells can refer to either Class element or
Property element.

9.2.4.1 Class

The existence of instance "Blue" in data cell determines the "Colour" to be an
owl:Class. The task now is to link the "Colour" class to its parent element.
According to the figure 9.4, "Colour" has a parent "Appearance" taken from the
tree-like structure depicting relations among table cells. Therefore, a relation
has to be defined between the classes "Colour" and "Apperance". The easiest
way is to create a new property "colour" declaring existance of class "Colour"
belonging to class "Appearance".

Figure 9.4: Statements linking two classes in the header hierarchy.

58

9.3. Generated ontologies

9.2.4.2 Property

Some header cells are linked by data cells having quantitative values (number
and additionally a unit). These header cells are of type owl:ObjectProperty
and their values can be gr:QuantitativeValue. Moreover, possible regular ex-
pressions and units are added as commentaries to the ontology.
Finally, these cells are linked to the wrapping entity or to their parent that
must be a owl:Class in the header hierarchy, as shown in figure 9.5.

Figure 9.5: Statements capturing properties with numerical values.

9.3 Generated ontologies

The previous methods were applied to four product domains used in the test-
ing Product dataset. Thus, 10 pages with mobile phones parameters were
analyzed from each domain and corresponding ontologies were generated.
These domains were amazon.com (amazon), buymobiles (buymobiles), gad-
gets.ndtv.com (gadgets), snapdeal.com (snapdeal).
First, the ontologies were generated according to rules where meronyms are
captured by a DatatypeProperty. Their distribution of structural elements is
presented in table 9.4.

Ontology / Elements amazon buymobiles gadgets snapdeal
Classes 49 29 19 51
Object properties 63 40 26 54
Datatype properties 12 4 28 26
Individuals 174 107 56 126
Levels of hierarchy 1 1 1 2

Table 9.4: Used RDF elements in individual ontologies (meronym as data-
type).

59

9. Ontology generation

Next, the ontologies were generated according to rules where meronyms
are defined as individual classes, as presented in table 9.4.

Ontology / Elements amazon buymobiles gadgets snapdeal
Classes 62 34 42 71
Object properties 75 43 47 71
Individuals 170 107 55 125
Levels of hierarchy 1 1 1 2

Table 9.5: Used RDF elements in individual ontologies (meronym as class).

The levels of hierarchy parameter depicts the depth of the generated graph.
In other words, number of ancestor nodes from the leaf nodes. The visualiz-
ation of the graphs (capturing mainly the levels of hierarchy since individual
elements are hardly readable) is presented in figures 9.6, 9.7, 9.8, 9.9. The
graphs were generated by WebVOWL [31] - a Web-based Visualization of
Ontologies.

Figure 9.6: Graph of amazon ontology with meronyms as classes. The circle in
the middle is MobilePhone entity, surrounded by found predicates and classes.

60

9.3. Generated ontologies

Figure 9.7: Graph of buymobiles ontology with meronyms as classes. The
circle in the middle is MobilePhone entity, surrounded by found predicates
and classes.

Figure 9.8: Graph of gadgets ontology with meronyms as classes. The circle in
the middle is MobilePhone entity, surrounded by found predicates and classes.

61

9. Ontology generation

Figure 9.9: Graph of snapdeal ontology with meronyms as classes. The circle
in the middle is MobilePhone entity. The first level nodes are categories
of parameters such as Display, Connectivity, MemoryStorage, BatteryPower,
HardwareConnectivity and General. Next level contains found classes and
predicates.

62

Chapter 10
Comparison of created

ontologies to Gold standard

An evaluation of the system has to be done from the view of the quality of
learned ontologies. This evaluation would consider the lexical and structural
quality of the ontology. Nevertheless, such task is very difficult and subjective
since opinions on the structural quality can differ.
Yet, an evaluation method was chosen [32] in order to compare the learned
ontology to a gold standard ontology and see if the best ontology can be se-
lected according to the experimental results. Such evaluation method had to
be implemented from scratch since no open-source publicly available methods
were found.
After implementation, the MobilePhone ontology, a part of GoodRelation re-
pository, was used as the gold standard.

10.1 Gold standard ontology

Generally, the gold standard ontologies are assumed to represent well and ac-
curately the significant knowledge of the domain. However, the structure of
the ontology relies only on its authors and their methodology.
An effort was made for discovery of a public ontology with a suitable taxonomy
and structure. During the search, only MobilePhone ontology was found, be-
ing a part of the GoodRelation project.
On one hand, the ontology contains correct names of parameters associated
with the mobile phone object. In other words, the ontology uses correct tax-
onomy.
On the other hand, the structure of the ontology is arguable. Mainly the use
of DatatypeProperty for defining meronyms, mentioned in 9.2.3, leads to low
extendability of the ontology.
Therefore two versions of this ontology were considered. The first one is the

63

10. Comparison of created ontologies to Gold standard

original MobilePhone ontology. The second one is an ontology where some
properties were transformed to actual classes.

10.1.1 Parts of the ontology

The ontology can be divided into several parts. The parts are Classes and
their Individuals, ObjectProperties and DatatypeProperties.

Classes and Individuals There are two main classes in the ontology to be
recognized - MobilePhone and MediaFormat. MobilePhone is the base class
of the ontology. It is a subclass of the ProductOrService class, defined in the
GoodRealtion ontology.
MediaFormat is a supplementary class with instances like JPEG, MP3, MP4,
.etc.

Datatype properties There are 29 datatype properties in the ontology.
These properties define meronyms of the mobile phone product - parts/fea-
tures of the mobile phone. The existence of the parts are specified by boolean
datatype. Example of the properties are obk:bluetooth, obk:cardSlot, obk:gps,
etc.

Object properties There are 16 object properties that define properties
having a numerical range. Examples of these properties are obk:cpuClockSpeed,
obk:cpuCores, obk:ramSize, etc.

10.2 The distributional method for alignment
(DMA)

The gold standard ontology and the learned ontology are going to be aligned
in this section. The DMA method is going to be used for alignment. There
are also other methods that use only string similarity matching of the concept
names. However, DMA should outperform the string matching since it trans-
forms the concepts and properties of the compared ontologies into probability
distributions defining wider context of the aligned elements. In this thesis, the
simple string matching is used only as a supplementary method. The DMA
consists of three main steps: transformation, matching and evaluation.

10.2.1 Transformation

Each concept or a property from an ontology should be represented in some
form in order to compare it to elements of the other ontology. In this method,
a distributional representation is obtained.
First, a common term space is created by extracting terms that appear in

64

10.2. The distributional method for alignment (DMA)

labels, name of concepts, comments, concepts instances, domain and range
properties of the learned and gold standard ontology. These surrounding ele-
ments define the context of the element.
Then, each element in the ontology is represented by a term vector, as the
one in figure 10.1, consisting of the terms from the common term space. Each
term in the term vector is assigned a frequency number according to the oc-
currence count in the element’s context.
Finally, the vector is normalized by the term space size. The whole process in
visualized in figure 10.2.

Figure 10.1: The distributional representation of a concept. Figure was bor-
rowed from [32].

Figure 10.2: Workflow of DMA. Figure was taken from [32].

10.2.2 Matching

Each pair of elements belonging to the same category (either Concept or Prop-
erty) from the learned and golden standard ontology has to be assigned a dis-
similarity score (how "close" the concepts are). For this purpose, a probability
metric can be used. The metric chosen in this thesis is called Total Variational
Distance (TVD), defined in equation 10.1.

TV D = 1
2

∑
i

|p(i)− q(i)| (10.1)

65

10. Comparison of created ontologies to Gold standard

The p and q in the equation represent elements from the learned/gold
standard ontology.
The DMA considers a one-to-one matching of the elements from the two on-
tologies. Therefore, the number of pairs is the minimum number of elements
from either ontologies.
As a results, the final matching consists of pairs that have minimal dissimil-
arity distance (SimDisti). In aggregation, all the pairs should minimize the
value of the equation 10.2. N represents all possible pairs. M represents the
final pairs.

argminN{
M∑
i

SimDisti} (10.2)

Nevertheless, sometimes multiple pairs can have the same dissimilarity
score. In these cases, the pair with highest bi-gram string similarity is selected.
In following equation 10.3, s1 is the first string, s2 is the second string to be
compared. pairs is a function returning all pairs of successive letters in the
string ("FRANCE" => ["FR", "RA", "AN", "NC", "CE"]).

bigram(s1, s2) = 2 ∗ |pairs(s1)
⋂
pairs(s2)|

|pairs(s1)|+ |pairs(s2)| (10.3)

10.2.2.1 Evaluation

The correct matching is the most important step when performing evaluation
and heavily affects the results. After matching, an approach has to be chosen
that captures the similarity of the matching pairs both from lexical and struc-
tural view. Therefore, specific precision (equation 10.4), recall (equation 10.5)
and F-measure (equation 10.6) scores were chosen that consider the lexical and
structural characteristics:

P = 1
M

M∑
i

(1− SimDisti)PCPi (10.4)

R = 1
M

M∑
i

(1− SimDisti)PCRi (10.5)

F = (β2 + 1)P ∗R
β2R+ P

(10.6)

The precision and recall depend on Probabilistic Cotopy Precision (PCP)
and Probabilistic Cotopy Recall (PCR) factors that compute the error ratio
of the structure similarity of the compared ontologies.
For a pair of matching concepts CL in the learned ontology and a concept
CG in the gold ontology, PCPi and PCRi (where i is the identifier of the
matching pair) are defined by using the Cotopy Set of the concepts.

66

10.3. Results of comparing ontologies

In detail, the Cotopy Set of a concept CS(C) is the set of all its direct and in-
direct super- and subconcepts and its direct properties, including the concept
C itself.
Then, PCPi is the number of concepts in the cotopy set of CL correctly
matched to concepts (correct matching is defined in alignment files that are
further described at the end of this text) in the cotopy set of CG, divided by
the number of concepts in the cotopy set of CL, as showed in equation 10.7

PCPi = ||CS(CL)
⋂
CS(CG)||

||CS(CL)|| (10.7)

PCRi is the number of concepts in the cotopy set of CL matched to con-
cepts in the cotopy set of CG, divided by the number of concepts participating
in the cotopy set of CG, as showed in equation 10.8.

PCRi = ||CS(CL)
⋂
CS(CG)||

||CS(CG)|| (10.8)

The correctness of the matched pairs used in PCRi and PCPi has to
be defined in a separate alignment file. This file contains pairs of elements
from different ontologies that can be substituted one for another, as viewed
in figure 10.3.

Figure 10.3: Example of an alignment.

10.3 Results of comparing ontologies
First, the DMA method described above is going to be tested on a bench-
mark ontology. This has to be done in verify performance of the implemented
method to the original results mentioned in [32]. After ensuring about the
quality, the method is going to be launched on ontologies mentioned in sec-
tion 9.3.

10.3.1 Testing on benchmark ontologies

The benchmark ontology and its modifications were taken from The Ontology
Alignment Evaluation Initiative (OAEI). The initiative assesses strength/weak-
nesses of current alignment systems, compares techniques used in the systems
and helps in improving the systems.
The borrowed benchmark ontologies describe Bibliographic references and
contain 33 named classes, 24 object properties, 40 data properties, 56 named
individuals and 20 anonymous individuals.

67

10. Comparison of created ontologies to Gold standard

Several tests were performed in order to compare the quality of the implemen-
ted algorithm to the original results. These test were:

1. Test the ontology against itself (ID=101)

2. Test the ontology against a totally irrelevant one (food ontology)(ID=102)

3. Test the ontology against its generalization in OWL Lite (some con-
straints are modified)(ID=103)

4. Test the ontology with its restriction in OWL Lite (unavailable con-
straints have been discarded)(ID=104)

5. Each label or identifier is replaced by a random one (ID=201)

6. Each label or identifier is replaced by a random one. Comments (rdfs:comment
and dc:description) have been suppressed as well. (ID=202)

7. Different naming conventions (Uppercasing, underscore, dash, etc.) are
used for labels. Comments have been suppressed (ID=204)

8. Labels are replaced by synonyms. Comments have been suppressed
(ID=205)

9. The complete ontology is translated to French (ID=206)

10. Each label or identifiers translated to French (ID=207)

11. Combination of methods above (ID=208)

12. Combination of methods above (ID=209)

13. Combination of methods above (ID=210)

The resulting scores of benchmark tests are summarized in table 10.1.

68

10.3. Results of comparing ontologies

Scores / Tasks P R F-measure Alignments F-measure original
101 1.0 1.0 1.0 97/97 (1.0) 1.0
102 0.0 0.0 0.0 0/0 (0.0) 0.0
103 0.98 0.98 0.98 97/97 (1.0) 0.9
104 0.98 0.98 0.98 97/97 (1.0) 0.8
201 0.94 0.94 0.94 93/97 (0.96) 0.94
202 0.05 0.05 0.05 5/97 (0.05) 0.04
204 0.98 0.98 0.98 97/97 (1.0) 0.96
205 0.96 0.96 0.96 94/97 (0.97) 0.96
206 0.98 0.98 0.98 96/97 (0.99) 0.96
207 0.98 0.98 0.98 96/97 (0.99) 0.96
208 0.82 0.82 0.82 81/97 (0.84) 0.04
209 0.32 0.32 0.32 32/97 (0.33) 0.04
210 0.3 0.3 0.3 30/97 (0.31) 0.04

Table 10.1: Results of tests on benchmark tasks. P - precision, R - re-
call, Alignments - number of matched alignments from the alignment file,
F-measure original - scores from the original paper.

The F-measure of task 101 was correctly evaluated as 1.0 since it is com-
pared to itself. Similarly F-measure of 102 is 0.0 because it is compared to an
irrelevant one.
Removing tags owl:unionOf, owl:oneOf, etc. in 103, 104 does not affect correct
matching, only creates small difference in the context of elements leading to
a small increase in scores.
Changing the names of the identifiers in 201 decreases the scores. However,
the comments that partially form the context keep it above 90%. Removing
the comments lowers the F-measure to 5% in 202.
Next, the naming conventions are changed and comments are suppressed in
204. The naming conventions should not much affect the results since lan-
guage processing methods (all chars to lowercase, removing non-alphabetical
and non-numerical characters, etc.) are used when creating the bag of words.
Further, replacing labels by synonyms in 205 leads to confusion in pair match-
ing (94 out of 97 pairs were correctly matched) since no semantic word simil-
arity methods are used.
Interesting are tasks 206, 207 that have been translated to French. However,
the comments have not been left out which keeps the quality of pair matching
high. Also, many French words are similar to the English ones.
Mixing all the techniques above leads to general decrease in the results.
According to the results table, the implemented algorithm shows very similar
results on the F-measure as the original article. That is a sign of correct im-
plementation. Nevertheless, some steps such as text-preprocessing might have
been done differently and could be the reason why some scores, for example

69

10. Comparison of created ontologies to Gold standard

tasks 208-210, slightly differ.

10.3.2 Testing on product ontologies

The correctness of the implementation of the proposed method was proved
above. Now, the task is to take the generated mobile phone ontologies in
section 9.3 and compare them to the gold standard MobilePhone ontology.
The DMA method is going to be used for evaluation. Nevertheless, some rules
have to be set before executing the tests. First of all, some test are going to
consider the comment tags as a part of a context of an element and some will
not. The reason is that the generated ontologies do not contain such tags.
Moreover, the ontologies can define meronyms in different ways, as mentioned
in section 9.2.3. Both types of the generated ontologies are going to be as-
sessed.
Finally, it has to be mentioned that the class MobilePhone in generated mo-
bile phone ontologies had to be linked to a parent class ProductOrService
(http://purl.org/goodrelations/v1#ProductOrService) in order to mir-
ror a similar structure as the one used in gold standard ontology.

In total, four different computations were done for each ontology:

1. MER_AS_DATA - this is the ontology where meronyms were defined
as datatype properties.

2. MER_AS_DATA_TRANS - this is the ontology where meronyms were
defined as datatype properties. Moreover, names of correctly matched
concepts in alignment file were replaced by their linked concepts from the
gold standard ontology. This was done in order to eliminate differences
in precision, recall and F-measure caused by correctly matched pairs
that are expressed by synonyms.

3. MER_AS_CLASS - this is the ontology where meronyms were defined
as classes.

4. MER_AS_CLASS_COMM - this is the ontology where meronyms were
defined as classes. Moreover, it is the only task where comments of the
elements were fetched into the context.

The resulting scores of ontology tests are summarized in table 10.2. The
results are followed by a discussion.

70

http://purl.org/goodrelations/v1#ProductOrService

10.3. Results of comparing ontologies

Scores / Tasks P R F-measure Alignments
amazon MER_AS_DATA 0.61 0.64 0.62 13/21 (0.62)
amazon MER_AS_DATA_TRANS 0.63 0.66 0.65 18/21 (0.86)
amazon MER_AS_CLASS 0.58 0.65 0.61 22/33 (0.66)
amazon MER_AS_CLASS_COMM 0.56 0.64 0.60 18/33 (0.55)
buymobiles MER_AS_DATA 0.53 0.56 0.55 6/11 (0.55)
buymobiles MER_AS_DATA_TRANS 0.54 0.57 0.55 7/11 (0.64)
buymobiles MER_AS_CLASS 0.52 0.57 0.54 11/15 (0.73)
buymobiles MER_AS_CLASS_COMM 0.49 0.55 0.52 5/15 (0.33)
gadgets MER_AS_DATA 0.60 0.62 0.61 13/17 (0.76)
gadgets MER_AS_DATA_TRANS 0.61 0.62 0.62 14/17 (0.82)
gadgets MER_AS_CLASS 0.58 0.63 0.60 17/26 (0.65)
gadgets MER_AS_CLASS_COMM 0.55 0.61 0.58 13/26 (0.5)
snapdeal MER_AS_DATA 0.49 0.63 0.55 17/21 (0.76)
snapdeal MER_AS_DATA_TRANS 0.49 0.64 0.55 21/21 (1.0)
snapdeal MER_AS_CLASS 0.48 0.66 0.55 27/38 (0.71)
snapdeal MER_AS_CLASS_COMM 0.48 0.65 0.55 26/38 (0.68)

Table 10.2: Results of tests on mobile phone ontologies. P - precision, R -
recall, Alignments - number of matched alignments from the alignment file
(%).

Upper-bound for recall constrained by structure The recall is defined
in range between 0 and 1. However, an upper-bound can be computed when
considering the number of alignments. Lets consider amazon ontology. 107
matching pairs were found by the DMA, 22 out of them were defined in the
alignment file (when considering meronyms as datatype properties). Thus 22
pairs would have PCRi equal to 1 when considering the same level of hierarchy.
The taxonomic dissimilarity would be 1 when considering translation. The
other 85 pairs must have at least two matching ancestors ProductOrService
and MobilePhone. The PCRi would be 0.66 for these pairs since only the name
of the paired elements would not match. The taxonomic similarity is omitted
in this case (set to 1 since looking for upper-boundary). Thus, the upper bound
for recall constrained by structure results to (22 ∗ 1 + 85 ∗ 0.66)/107 = 0.73.
Clearly the recall cannot be improved, only if more alignments would be found.

Comparison of ontologies based on the meronyms definition The
meronyms defined as either classes or datatype properties seem to give similar
results. Some generated ontologies (like snapdeal) where more elements are
defined as instances of classes can profit from the transformation of the gold
standard ontology.

71

10. Comparison of created ontologies to Gold standard

Levels of hierarchy The snapdeal ontology is the only one with 2 levels of
hierarchy. Meaning that the leaf nodes are not linked directly to the Mobile-
Phone entity but there is an extra node in-between. This structural difference
in comparison to the gold standard ontology is visible in the results. The
snapdeal ontology has a high recall when aligned to other ontologies. In con-
trast, the precision (decreased by the more complex structure) is the lowest
among all.
Also, instances cannot be forgotten when talking about levels of hierarchy.
Instances are individuals of a specific class. Therefore, the class it is being
instance of is added to the sequence of its ancestors. So, the instances have
+1 longer path to the root entity. It is very important since the gold standard
ontology has only 4 individuals. Whereas, the generated ontologies tend to
have up to 100 individuals. Therefore, some classes of the gold standard onto-
logy are paired with instances of the learned ontology having longer ancestors
path. This happened with the buymobiles ontology. The level of the hierarchy
is 1 as is the level of the gold standard ontology. However, buymobiles has
small number of classes but high number of instances which are paired to the
classes of reference ontology.

Translation of correctly matched elements The translation was per-
formed in order to asses how much the word similarity of correctly matched
elements influences the final scores. In each ontology, at least four transla-
tions had to be performed (such as translating "phoneTalkTime" from learned
ontology to "talkTime" in gold standard ontology).
Nevertheless, the improvement caused by uniting the names of parameters
ranges only in 1-3%. That is understandable, for example consider a bag of
words with 500 words. And one word would be correctly translated. Then, in
TVD (dissimilarity measure), two differences (|p(i)− q(i)|) would be reduced
to zero since the two words were translated. So the change would be 0.004
(2/500) and is really low.
Moreover, the generated ontologies do not contain comments. Therefore, the
lexical changes can be done only on names of elements which is a very limited
space.

Number of matches in alignment file Obviously, the quality of the on-
tology increases with higher number of correctly paired elements. Therefore,
amazon and snapdeal give higher recall because there are more aligned ele-
ments than in other ontologies.

Overall size of the ontology Amazon is the largest of ontologies. The
advantage of some big ontologies is a higher probability of finding a matching
alignment. And the higher number of correctly pairs elements leads to better
scores, as mentioned on the previous paragraph.

72

10.3. Results of comparing ontologies

Which is the best ontology? Selecting the best generated ontology is
arguable. First of all, the evaluation algorithm very much depends on the
quality of the gold standard ontology. And the quality emerges from the way
how human beings percept relations among entities and their hierarchy level
in the complete entity space. Thus, it can be quite subjective.
Also, the algorithm works on one-to-one matching of elements in ontologies.
Therefore, the number of pairs to be matched is the lower count of elements
in both ontologies. So the final scores of the ontology are computed from:
1. correctly matched elements, 2. paired elements that have low dissimilarity
values and complete the missing positions in the pairs to be matched. So
obviously, the algorithm does not encounter the amount of uncertain elements
that do not fit in the pairs to be matched. This way, an ontology with many
alignments but lots of uncertain (like amazon) could be selected as the best
ontology.
Thirdly, the DMA does not capture the semantic similarity of words. Instead,
it uses context of the elements. That would be fine if the ontologies would be
well commented. Nevertheless, that is not the case of automatically generated
ontologies.

73

Conclusion

Building an ontology learning system is a non-trivial task. However, it is an
essential building block in case of mining and understanding knowledge from
different data sources. This semantically understandable knowledge can be
used for building knowledge graphs that are nowadays the key part of intel-
ligent applications. Such applications understand customers needs, especially
chatbots, question-answering systems and recommendation systems.
More specifically, this thesis brought an insight into building ontologies from
tabular data in HTML documents. These HTML documents are the input to
the implemented ontology learning system. First, the documents are searched
for relevant tables which are detected by a machine learning classifier. Such
classifier receives table represented by features, computed from the internal
matrix representation of the WEB table, and predicts the table type as EN-
TITY, RELATION, LAYOUT, etc. Nevertheless, the implemented system
specializes only on building ontologies from ENTITY tables. Therefore, the
classifier was applied to 11 sites with ENTITY tables and correctly predicted
table types in 7 of them.
After, the table cells had to be labeled as data/header cells. The labeling
had to be done to correctly understand relations in the table. Therefore, a
machine learning method was trained for classifying table cells. The header
classification correctly labeled 86% of various tables found in sites with mo-
bile phones. An excellent precision is necessary, because it was found out that
table understanding heavily depends on correctly labeled structure.
Furthermore, several methods were presented that transform the labeled table
into a tree graph. The graph, together with trivial named entity recognition,
is an input for ontology generation algorithm. Such algorithm constructs the
ontology by applying several predefined rules that assemble structural blocks,
borrowed from standards, such as RDF, OWL, etc.
Finally, ontologies were generated for four mobile phone sites such as amazon,
snapdeal, gadgets and buymobiles. These four ontologies were compared
to the gold standard MobilePhone ontology by a chosen alignment method

75

Conclusion

(DMA) that captures the taxonomic and structural similarity. As a result,
amazon ontology was selected as the most similar to the reference ontology
with its 65% F-measure score. Nevertheless, the results heavily depend on
the quality of the gold standard ontology, as well as on the used alignment
method. Especially, the quality of both gold standard ontology and generated
ontologies is very subjective. Thus, more approaches for building ontologies
are mentioned in the thesis, because it is always up to the domain expert to
decide which ontology is more suitable.
As a result, the proposed system can be applied for generating fuzzy onto-
logies for different domains like products, companies, basketball players, etc.
These ontologies can serve as a draft for domain ontology expert that creates
the final ontology. In such case, an automatic approach for merging the fuzzy
ontologies to a less fuzzy ontology is suggested as a future step. The merged
ontology would consist of elements shared among the input ontologies. Thus,
it would filter out elements with uncertain names and values.
Another possible application can be found in conceptual extraction. The gen-
erated ontologies can serve as extraction concepts whose taxonomy is used for
key-value pairs extraction in given input documents. Then, database popu-
lation can be performed from these key-value pairs according to the ontology
structure.

76

Bibliography

[1] Gruber, T. R.; et al. A translation approach to portable ontology spe-
cifications. Knowledge acquisition, volume 5, no. 2, 1993: pp. 199–220.

[2] Medelyan, O.; Witten, I. H.; et al. Automatic construction of lexicons,
taxonomies, ontologies, and other knowledge structures. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, volume 3,
no. 4, 2013: pp. 257–279.

[3] Miller, G. A. WordNet: a lexical database for English. Communications
of the ACM, volume 38, no. 11, 1995: pp. 39–41.

[4] Bollacker, K.; Evans, C.; et al. Freebase: a collaboratively created graph
database for structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, AcM,
2008, pp. 1247–1250.

[5] Auer, S.; Bizer, C.; et al. Dbpedia: A nucleus for a web of open data. In
The semantic web, Springer, 2007, pp. 722–735.

[6] Suchanek, F. M.; Kasneci, G.; et al. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on World Wide Web,
ACM, 2007, pp. 697–706.

[7] Semantic Web refers to W3C’s vision of the Web of linked data. https:
//www.w3.org/standards/semanticweb/, accessed: 2017-03-05.

[8] Hepp, M. GoodRelations is a vocabulary for publishing the de-
tails of products and services. http://www.heppnetz.de/projects/
goodrelations/, accessed: 2017-03-05.

[9] Ronallo, J. HTML5 Microdata and Schema. org. Code4Lib Journal,
volume 16, 2012.

77

https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
http://www.heppnetz.de/projects/goodrelations/
http://www.heppnetz.de/projects/goodrelations/

Bibliography

[10] Wang, S.; Zeng, Y.; et al. Ontology extraction and integration from semi-
structured data. In International Conference on Active Media Technology,
Springer, 2011, pp. 39–48.

[11] Lynn, S.; Embley, D. W. Automatic Generation of Ontologies from Ca-
nonicalized Web Tables. submitted manuscript, 2008.

[12] Tijerino, Y. A.; Embley, D. W.; et al. Towards Ontology Generation from
Tables. World Wide Web, volume 8, no. 3, 2005: pp. 261–285.

[13] Wang, X. Tabular abstraction, editing, and formatting. 1996.

[14] Pivk, A.; Cimiano, P.; et al. Transforming arbitrary tables into logical
form with TARTAR. Data & Knowledge Engineering, volume 60, no. 3,
2007: pp. 567–595.

[15] Kifer, M.; Lausen, G. F-logic: a higher-order language for reasoning about
objects, inheritance, and scheme. In ACM SIGMOD Record, volume 18,
ACM, 1989, pp. 134–146.

[16] Group, R. W. RDF is a standard model for data interchange on the Web.
https://www.w3.org/RDF/.

[17] Group, O. W. The W3C Web Ontology Language (OWL) is a Se-
mantic Web language designed to represent rich and complex know-
ledge about things, groups of things, and relations between things.
https://www.w3.org/OWL/.

[18] Tanaka, M.; Ishida, T. Ontology extraction from tables on the web. In
Applications and the Internet, 2006. SAINT 2006. International Sym-
posium on, IEEE, 2006, pp. 7–pp.

[19] Nagy, G.; Seth, S.; et al. Data extraction from web tables: The devil
is in the details. In Document Analysis and Recognition (ICDAR), 2011
International Conference on, IEEE, 2011, pp. 242–246.

[20] Pasupat, P.; Liang, P. Compositional semantic parsing on semi-structured
tables. arXiv preprint arXiv:1508.00305, 2015.

[21] Cha, S.-i.; Ma, Z.-m.; et al. Learning of ontology from the web-table. In
Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth Interna-
tional Conference on, volume 3, IEEE, 2011, pp. 1454–1458.

[22] Nederstigt, L. J.; Aanen, S. S.; et al. FLOPPIES: a framework for large-
scale ontology population of product information from tabular data in
e-commerce stores. Decision Support Systems, volume 59, 2014: pp. 296–
311.

78

https://www.w3.org/RDF/
https://www.w3.org/OWL/

Bibliography

[23] Wang, Y.; Hu, J. Detecting tables in html documents. In International
Workshop on Document Analysis Systems, Springer, 2002, pp. 249–260.

[24] Eberius, J.; Braunschweig, K.; et al. Building the dresden web table
corpus: A classification approach. In Big Data Computing (BDC), 2015
IEEE/ACM 2nd International Symposium on, IEEE, 2015, pp. 41–50.

[25] Lehmberg, O.; Ritze, D.; et al. A large public corpus of web tables con-
taining time and context metadata. In Proceedings of the 25th Interna-
tional Conference Companion on World Wide Web, International World
Wide Web Conferences Steering Committee, 2016, pp. 75–76.

[26] Fang, J.; Mitra, P.; et al. Table Header Detection and Classification. In
AAAI, 2012, pp. 599–605.

[27] CiteSeerx is an evolving scientific literature digital library and search
engine. http://csxstatic.ist.psu.edu/about, accessed: 2017-03-28.

[28] Black, P. E. Ratcliff/Obershelp pattern recognition. Dictionary of Al-
gorithms and Data Structures, volume 17, 2004.

[29] Group, X. S. W. XML Schemas express shared vocabularies and allow
machines to carry out rules made by people. https://www.w3.org/XML/
Schema.

[30] Crestan, E.; Pantel, P. Web-scale knowledge extraction from semi-
structured tables. In Proceedings of the 19th international conference on
World wide web, ACM, 2010, pp. 1081–1082.

[31] Lohmann, S.; Negru, S.; et al. Visualizing Ontologies with VOWL. Se-
mantic Web, volume 7, no. 4, 2016: pp. 399–419, doi:10.3233/SW-150200.
Available from: http://dx.doi.org/10.3233/SW-150200

[32] Zavitsanos, E.; Paliouras, G.; et al. Gold standard evaluation of ontology
learning methods through ontology transformation and alignment. IEEE
Transactions on Knowledge and Data Engineering, volume 23, no. 11,
2011: pp. 1635–1648.

79

http://csxstatic.ist.psu.edu/about
https://www.w3.org/XML/Schema
https://www.w3.org/XML/Schema
http://dx.doi.org/10.3233/SW-150200

Appendix A
Contents of CD

Attached CD contains datasets, generated ontologies, alignment files, python
scripts and other files needed for completing the work.

root
MachineLearning

ProductDataset - contains HTML tables and computed features
for different product domains
WDC Dataset - contains HTML tables and computed features for
tables from WDC dataset
FeaturesGenerator.py - a script for downloading HTML tables
and generating features
HeaderDetection.ipynb - a script for training and testing
header detection classifier
LayoutDetection.ipynb - a script for training and testing
layout detection classifier
sample.gz - file containing information about WDC dataset
header_detection.plk - trained model
layout_detection.plk - trained model

OntologyLearning - contains scripts and programs used for building
the ontologies
ComparingOntology

OntologiesAndAlignments - contains built ontologies, gold
standard ontology and alignment files
ScoringOntologyAgainstGoldStandard.ipynb - script for scoring
learned ontologies against final ontologies

Thesis - sources of the text

81

