

Czech Technical University of Prague

Faculty of Transportation Sciences

Department of Transport Telematics

MASTER´S THESIS

Author: Bc. Filip Skružný

Leader: Ing. Milan Koukol, Ph.D.

Year: 2017

Control System Development of

Traffic Signal Control in MATLAB for

PTV VISSIM

Acknowledgement

I would like to express my respect and gratitude to Ing. Milan Koukol, Ph.D. for the

supervision of this thesis, his immense knowledge and kindly continuous support.

With my deepest thanks and appreciation to my parents for letting me study at the

University.

…………………………

Filip Skružný

Page | 4

Title: Control System Development of Traffic Signal Control in

MATLAB for PTV VISSIM

Author: Bc. Filip Skružný

Field: Intelligent Transport Systems

Project: Traffic Models and Traffic Control

Type of Thesis: Master’s Thesis

Abstract: This master’s thesis is aimed to control system development of

traffic signal control for microsimulation models in PTV

Vissim. The control system is being developed in Matlab

program and it controls models in PTV Vissim through COM

(Component Object Model) interface.

 Papers are also dedicated to optimization in model testing in a

sense of simplify the work during testing several scenarios

within one model.

 The overall aim is to present new possibilities in controlling and

testing microsimulation models via Matlab. It is considered to

be a quite new, not very well-known and used approach which

could help to broaden horizons and make working with traffic

models more efficient. At least for the people from the faculty.

Key Words: Traffic simulations, PTV Vissim COM interface, Control

system of traffic signal control, Optimization in model testing,

Matlab programming

Page | 5

Abstrakt: Tato diplomová práce je věnována vývoji systému řízení

světelného signalizačního zabezpečení pro mikrosimulační

modely v PTV Vissim. Systém řízení je vyvíjen v programu

Matlab a modely v PTV Vissim ovládá skrze COM

(komponentový objektový model) rozhraní.

 Dále se práce věnuje optimalizaci v testování modelů ve smyslu

zjednodušení práce při testování různých scénářů na jednom

modelu.

 Celkově jde hlavně o představení nových možností v řízení a

testování mikrosimulačních modelů pomocí Matlabu. Jedná se

o poměrně novou, ne příliš zmapovanou cestu, která by mohla

alespoň lidem na fakultě pomoci rozšířit obzory a zefektivnit

práci s modely.

Klíčová slova: Dopravní simulace, PTV Vissim COM rozhraní, Systém řízení

světelného signalizačního zabezpečení, Optimalizace v

testování modelů, Programování v Matlabu

Page | 6

Used abbreviations

COM Component Object Model

GUI Graphical User Interface

VAP Vehicle Actuated Programming

ID Identifier

Page | 7

Contents

Used abbreviations ... 6

Contents ... 7

Introduction .. 9

Chapter 1 Vissim and Matlab ... 10

1.1 Software ... 10

1.2 COM Interface ... 10

1.3 Connection ... 11

Chapter 2 Control Systems ... 15

2.1 Simulations .. 15

2.1.1 Random Seed ... 15

2.1.2 Period Time and Cores ... 15

2.1.3 Simulation Resolution: ... 16

2.1.4 Simulation Run .. 16

2.1.5 Quick Mode .. 17

2.2 Vehicle Inputs and Vehicle Routing.. 17

2.3 Creation of Signal Plan .. 20

2.3.1 Fixed Time ... 22

2.3.2 Dynamic Control .. 28

2.3.3 Evaluation of Signal Plan Creation .. 30

Chapter 3 Optimization in Model Testing and Control System Development 31

3.1 Control System Development ... 31

3.1.1 Concrete Situation .. 31

3.1.2 Model and Input Data... 33

3.1.3 Default Control... 42

3.2 Optimization .. 46

3.2.1 Alternative Signal Plan .. 46

3.2.2 Graphical User Interface .. 48

3.2.3 Outputs ... 51

Page | 8

Chapter 4 Future Vissim COM Usage .. 58

4.1 Intelligent Infrastructure .. 58

4.2 Autonomous Vehicles ... 58

Conclusion ... 61

Bibliography ... 62

Appendix A Source codes ... 64

Page | 9

Introduction

Since every module for PTV Vissim is offered separately and its functionality is very

specific and limited, there is a huge opportunity in obtaining those modules with some

additional software through the COM interface.

One of the best software for that is Matlab. The biggest opportunity of using external

software is the possibility of controlling Vissim model and simulation in a real time.

It can save a lot of time if the code is well build and changing of parameters is done

automatically between each simulation for example. It can bring an opportunity to test

several scenarios within one model without changing all parameters manually in

separated file for each scenario. Since Matlab is mostly designed for mathematical

computation and simulation, it can also evaluate simulation results for better

performance.

Even though the real situation is used in following chapters, many parameters are not

properly calculated or measured. Some data comes from proper traffic survey but some

data is only estimated from other values so that the whole system would give sense

(speaking mainly of some vehicle inputs and vehicle composition from not very busy

inputs to network where the traffic survey did not take place as well as some

parameters in control signalization system).

The reason is that the aim of this work is definitely not to solve some exact situation

but more likely to show the way of what is possible to do using Vissim and Matlab

together. This could work as some kind of manual. Some specific situation is used only

for better understanding the problem and for better imagination.

Advantages of the thesis should be providing of some advanced skills in controlling

Vissim simulations via Matlab, regarding mainly signal control systems and testing of

models. The assignment rose at the Faculty of Transportation Sciences mainly for the

purposes of people from the project Traffic Models and Traffic Control, because this

area has not been significantly examined yet there. They can use it as an overview of

possibilities in this area or use it as a base for their future work with these systems.

The thesis starts with the introduction of used software and the COM interface. It

continues by simulations, control systems and evaluation, all controlled by Matlab.

Then there is the already mentioned more complex control system with a model based

on a real area used. It is followed by a GUI to control such system. It contains several

scenarios to demonstrate optimization in model testing. It is followed by outputs of

simulations. The last chapter is dedicated to a possibility of using Vissim with Matlab

to simulate potential future scenarios. After the conclusion, there are source codes in

appendix.

Page | 10

Chapter 1

Vissim and Matlab

In following subchapters used software is presented as well as the COM interface and

some practical sample of obtaining and changing values of attributes within Vissim

and Matlab.

1.1 Software

The default program that is being used for simulations is PTV Vissim. It is the leading

microscopic simulation program for modelling multimodal transport operations. It

displays all road users and their interactions in one model. Scientifically sound motion

models provide a realistic modelling of all road users. [1]

All models for this thesis were developed and run in Vissim 7.00 – 15. PTV provided

External, VisVAP and Vissig signal controllers and the most important module COM

Interface.

The default program for controlling Vissim models is Matlab (matrix laboratory)

developed by MathWorks. It is a programming language with emphasis on matrix

operations and numerical calculations in general.

Version R2015b and R2017a were mainly used. But so were some other older versions.

COM interface was introduced before version R2006a.

For the operation software, which allows these programs to exchange data, is being

used Microsoft Windows 10.

1.2 COM Interface

The Component Object Model describes how binary components of different

programs collaborate. COM gives access to data and functions contained in other

programs. Since Vissim version 4.0, data contained in Vissim can be accessed via the

COM interface using Vissim as automation server. Since Vissim Version 4.30, COM

scripts can be called directly from the Vissim main menu.

COM does not depend on a certain programming language. COM Objects can be used

in a wide range of programming and scripting languages, including VBA, VBS,

Python, C, C++, C#, Delphi and MATLAB.

Page | 11

Important note is that COM Interface is not available in any version prior to Vissim

4.0 as well as in student and demo versions. A complete version needs to be installed.

The Vissim COM Model is subjected to a strict object hierarchy. It is visible in Figure

1 below. IVissim is the highest-ranking object. To access a sub-object, e.g. a link in

the network, one must follow the hierarchy.

Figure 1: Vissim object hierarchy (source: [2])

The leading “I” of an object (e.g. at IVissim) stands for Interface. The name of the

COM-Interface is the same as the Vissim class name plus the leading “I”. [2]

1.3 Connection

Firs of all, a model in Vissim has to be created and saved. It is better if the path

excludes diacritics (the same applies later to Matlab file).

Many things can be done via COM, such as editing of links, but it is much easier to be

done in Vissim. The requirement is to do as much as possible in Matlab, but the whole

infrastructure is better to be done in Vissim. Thanks to the graphical interface and the

ability to set a real situation in the background, it is fast and precise.

When the infrastructure is ready (or whenever during the process), it is necessary to

click on Help -> Register COM Server and if some additional authorization question

from operation system appears, it has to be confirmed.

After that, Matlab should be started. It is better to use M-Files, but Command Window

works as well, at least for some simple demonstrational commands. Starting with File

-> New -> Blank M-File, the script should be saved with same rule specified above.

Regarding M-Files locations, the path should also exclude spaces.

The command for creating COM server is:

Vissim = actxserver('Vissim.Vissim'), for some specific Vissim version can

Page | 12

be used: Vissim = actxserver('Vissim.Vissim.700').

700 is for version 7.00, which is being used for these papers.

The first Vissim is assigned variable which now represents the IVissim from the

hierarchy. It can be called differently of course, this is just for better overview.

Actxserver creates an in-process server for a dynamic link library (DLL) component

or an out-of-process server for an executable (EXE) component. The following Figure

2 shows the basic steps in creating the server process.

Figure 2: Diagram of creating COM server (source: [3])

Nevertheless, the first command in each M-File should be clear all. It clears all

objects in the Matlab workspace. Without any cleaning command, old variables could

cause troubles if the new ones would not have been specified well. There should be as

well the command clc, which clears only the Command Window. [4]

After starting the COM server, access to the Vissim files should follow. Vissim creates

at least two files, ‘*.inpx’ is a file with Network and ‘*.layx’ is for layout, the ‘*’ is

for file name. As the variable Vissim already represents the IVissim, working with files

is on the next level. It is reachable by adding dot followed by path in brackets and

quotation marks:
Vissim.LoadLayout('c:\Users\...*.layx')

and Vissim.LoadNet('c:\Users\...*.inpx').

Page | 13

The c:\Users\ followed by name of the user is a default Windows location, but files

can be stored anywhere on hard drive. If the path is not specified, file explorer will

appear and let the user to find the desired file.

Now, the connection is ready and Vissim files can be edited and controlled. To reach

specific attributes, the hierarchy must be followed. For example, to reach objects from

INet, Vissim.Net command must be written. To make the writing easier for the future,

this hierarchy way can be stored in a different variable: vnet = Vissim.Net;. For

obtaining specific attribute, function get and ItemByKey need to be used. For setting

some attribute, function set needs to be used:
FirstLinkName = get(vnet.Links.ItemByKey(1),'AttValue','Name');

NewName = 'newstreet';

set(vnet.Links.ItemByKey(1),'AttValue','Name',NewName);

The old name of Link number 1 is stored in FirstLinkName, but in Vissim it has a

new name (newstreet). Setting parameters can be done without previous getting them.

Only the access must be correctly specified. The number in bracket of ItemByKey

works also as variable. Instead of 1 it can contain for example Link_number, but it

needs to be specified above:
Link_number = 1;

set(vnet.Links.ItemByKey(Link_number),'AttValue','Name',NewName);

This number corresponds to a number in Vissim network. After double left clicking

on desired link, the number is in upper left box (No.:).

Another way of getting to attribute is:
Attribute = 'name';

Name_of_Links = vnet.Links.GetMultiAttValues(Attribute);

If there are any sub attributes, it can be reached by GetAll. It will be used later. All

these basic approaches can be found after Vissim installation in

c:\Users\Public\Documents\PTV Vision\PTV Vissim 7\Examples

Training\COM\Basic Commands\COM_examples.m [2]

For details about the various objects and their methods and properties, the COM

interface reference is included in the Online Help. The public methods are shoved in

Figure 3 below. As seen in the figure, it is possible to save changes in the layout or

network as well as to save them in a new files with arbitrary path.

To find out more about objects that are important for controlling and editing models,

the access is throw Help -> Online Help -> Vissim - COM -> Objects. Each object

starts with the “I”.

Page | 14

Figure 3: Public Methods - Online help (source: [1])

Some basic demonstrative program for changing a link name could look like this:
clc;

clear all;

Vissim = actxserver('Vissim.Vissim.700');

Vissim.LoadLayout('c:\Users\...*.layx');

Vissim.LoadNet('c:\Users\...*.inpx');

vnet = Vissim.Net;

NewName = 'newstreet';

set(vnet.Links.ItemByKey(1),'AttValue','Name',NewName);

Vissim.SaveNetAs('e:\…*.inpx');

Vissim.SaveLayout(('e:\…*.layx');

Vissim.Exit;

Vissim.release;

For execution of the M-File, the Run button needs to be pushed. In several seconds,

the Vissim will start desired file, change the link name and thanks to the Vissim.Exit

it will close the Vissim application when changing and saving have been done. The

last function sets the COM server free and the status bar gets from Busy to Ready or

blank space again.

Page | 15

Chapter 2

Control Systems

In this chapter, ways of running simulations are presented as well as possibilities of

putting vehicles into the network. Also, some interface of external signal plan is

shown.

2.1 Simulations

2.1.1 Random Seed

The hierarchy for controlling simulation leads to the second level: sim =

Vissim.Simulation. On this level, one important parameter can be set. It is a value

of random seed. This value initializes a random number generator. Two simulation

runs, using the same network file and random start number, look the same. If the

random seed is changed, the stochastic functions in Vissim are assigned a different

value sequence and the traffic flow changes. This, e.g., allows to simulate stochastic

variations of vehicle arrivals in the network. [1]

This function is set by:
Random_Seed = 42;

set(sim, 'AttValue', 'RandSeed', Random_Seed);

As for the syntax, sim.set('AttValue', 'RandSeed', Random_Seed); has the

same meaning.

Important note is that directly in Vissim, the maximal value for random seed is

4294967295. But when setting in M-File, this number would exceed value range of

attribute. Here the maximal value can be 2147483647. Also, only natural number can

be used.

2.1.2 Period Time and Cores

Other parameter to be set are the period time and number of cores:
period_time = 3600;

sim.set('AttValue', 'SimPeriod', period_time);

The number is a simulation time in simulation seconds.

max_cores = 4;

sim.set('AttValue', 'NumCores', max_cores);

It is a number of processor cores used during simulation. The maximum number of

cores used depends on the computer.

Page | 16

2.1.3 Simulation Resolution:

step_time = 10;

sim.set('AttValue', 'SimRes', step_time);

Simulation resolution is a number of time steps per simulation second. It specifies how

often vehicles and pedestrian are move in a simulation second. The position of vehicles

is recalculated in a simulation second with each time step. The simulation resolution

specifies the number of time steps.

The value can be a natural number from 1 to 20. Values < 5 lead to jerky movements.

This is why this value range is less suitable for production of the final simulation

results. As lower values accelerate the simulation, the use of lower values during setup

of the network model can be helpful.

Values between 5 and 10 lead to a more realistic demonstration. This value range is

suitable for the production of the final simulation results.

Values between 10 and 20 lead to smoother movements. This value range is suitable

for high-quality simulation animations.

The simulation resolution has an impact on the behaviour of vehicles, pedestrians, and

the way they interact. This is why simulations, using different simulation resolutions,

produce different results. [1]

2.1.4 Simulation Run

For the run of the simulation, there are two possibilities depending mainly on the

control. If the aim is to set parameters, run simulation and get results, and there are

no traffic lights, or there are some, but the signal program is specified in some

different program (Vissig, VisVAP,..), continuous run can be used:
sim.RunContinuous;

If there is any need to interrupt the simulation in a specific time, set(sim,

'AttValue', 'SimBreakAt', Sim_break_at); shall be specified above. The

Sim_break_at should include the desired time in simulation seconds of course.

Then, some parameters changes can follow and next sim.RunContinuous will let

the simulation to continue. If a value of signal head/group was changed manually

during the stop, and there is a necessity to give the control back, it can be specified in

the next break as set(SignalController.SGs.ItemByKey(1), 'AttValue',

'ContrByCOM', false);.

However, if the signal program is specified only in M-File, there is a necessity to

check some parameters (especially the simulation seconds and detectors states) as

frequently as possible. In this case, the simulation has to be processed by single

steps: sim.RunSingleStep;

To use it in practise, a Matlab function should be put together. Best working is the

for cycle:
for i=0:(period_time*step_time)

Page | 17

sim.RunSingleStep;

end

The multiplication period_time*step_time delivers as many single steps as it is

required to cover all period. The i rises by one during each cycle. Before the end of

cycle comes, commands and verifying, regarding signal plan and setting parameters

and so on, can be putted.

To be able to observe the vehicle to vehicle interactions, the simulation speed is

possible to be set:
set(sim, 'AttValue', 'SimSpeed', 1);

The value indicates simulation seconds per real-time second. When there is the 1, the

simulation is run in real-time, 10 would mean ten times faster than real-time. It can

be editable during the simulation. To set the speed to maximum, there is a special

command:
set(sim, 'AttValue', 'UseMaxSimSpeed', true);

2.1.5 Quick Mode

When the simulation speed is preferred to observation, there is the Quick Mode in

Vissim. In the Quick Mode, all dynamic objects (e.g. vehicles, pedestrians, dynamic

labels, and colours) are hidden in all network editors. In addition, in the Quick Mode,

list windows and the Quick view are only then updated when it is scrolling or clicking

in them. This allows for a maximum simulation speed. The difference in time duration

is really perceptible. [1]

Inside the Vissim environment, there is a simple button to activate or deactivate this

mode whenever, even during the simulation. For the Matlab, there is a formula:
set(Vissim.Graphics.CurrentNetworkWindow, 'AttValue', 'QuickMode',

1);

1 is to activate and 0 to deactivate the Quick Mode. It can be done any time as well.

2.2 Vehicle Inputs and Vehicle Routing

Inputs of vehicles are the basis of every simulation. They should come from a traffic

survey or from some prediction. In the following example, inputs are artificially set.

The same applies to vehicle routings. Vehicle inputs can be easily set in Vissim. For

better orientation in assigning volume for different classes of vehicles it is useful to

create at every entry link as many inputs as the number of vehicle composition is (in

these papers, only three classes are considered – cars, buses and trucks). The problem

stars when the data is coming from a survey, it is measured for example in five minutes

lasting intervals and it is desirable to change it every five minutes during the simulation

as well. Then a lot of clicking and filling numbers would follow. Again, the same

applies to vehicle routings. It can be really confusing.

To let this setting for Matlab, vehicle inputs should be created for every vehicle class

separately. Vissim hides more black stripes in one link into one stripe, but after

Page | 18

clicking that stripe, a table with all vehicle inputs appears. The example is visible in

Figure 4.

Figure 4: Vehicle inputs

There are four inputs, first two in the bottom link and the second two in the right link.

Just two in each entrance, because only cars and trucks are considered in this example.

All links are one-ways. No volume values are necessary to be filled in Vissim, only in

the right column, two new vehicle compositions should be created (by simple clicking

on New…). Then, also vehicle routs should be created. In this case, each route is

defined for both vehicle types. To divide them and set them to different values, each

vehicle class would need its own route. So, instead of four (from each entrance to each

exit) there would be eight of them. This kind of solution is described and shown in

practise in the next chapter.

The idea is that vehicle intensities are stored in some text file and Matlab will get them

directly from the file (values in time intervals should be recalculated to hourly

intensities first – it can be easily done also in Matlab). Regarding the *.txt file, data

should be stored in rows for relevant vehicle inputs numbers (the first row for the first

vehicle input – cars) and volumes should be divided by spaces. Demonstrative text file

with data for this example is in Figure 5. Some better formatting with title row is

possible, but it has to be renumbered well in Matlab.

Page | 19

Figure 5: Intensities for vehicle inputs

To load the file to Matlab, it should be in the same directory, then simple load

vehs.txt needs to be written. It contains the file name. Then some access should be

specified:
vehins=vnet.VehicleInputs;
vehin(1)=vehins.ItemByKey(1);
vehin(2)=vehins.ItemByKey(2);
vehin(3)=vehins.ItemByKey(3);
vehin(4)=vehins.ItemByKey(4);

Then it is essential to set the vehicle composition, because in Vissim only new empty

classes were created:
Veh_composition_number = 2;
Rel_Flows =

vnet.VehicleCompositions.ItemByKey(Veh_composition_number).VehCompRe

lFlows.GetAll;
set(Rel_Flows{1}, 'AttValue', 'VehType', 100);
set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 50);
set(Rel_Flows{1}, 'AttValue', 'RelFlow', 1);

Veh_composition_number = 3;
Rel_Flows =

vnet.VehicleCompositions.ItemByKey(Veh_composition_number).VehCompRe

lFlows.GetAll;
set(Rel_Flows{1}, 'AttValue', 'VehType', 200);
set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 50);
set(Rel_Flows{1}, 'AttValue', 'RelFlow', 1);

The vehicle composition number starts from two, because the first one was already

formed by Vissim, but it is the shared one for cars and trucks. Here the vehicle type is

defined (100 is for cars and 200 for trucks, 300 would be for buses), then the desired

speed distribution is set – both classes for 50 km/h. Also, the relative flow can be set

here.

The next procedure is to connect these preset classes to corresponding inputs:
vehin(1).set('AttValue', 'VehComp(1)', 2);
vehin(2).set('AttValue', 'VehComp(1)', 3);
vehin(3).set('AttValue', 'VehComp(1)', 2);
vehin(4).set('AttValue', 'VehComp(1)', 3);

veh_id = 1;
vehin(1).set('AttValue', 'Volume(1)', vehs(1,veh_id));
vehin(2).set('AttValue', 'Volume(1)', vehs(2,veh_id));
vehin(3).set('AttValue', 'Volume(1)', vehs(3,veh_id));
vehin(4).set('AttValue', 'Volume(1)', vehs(4,veh_id));

Page | 20

Vehicle composition two stands for cars specified above and three is for trucks. In the

next section, first values from loaded file are set to vehicle inputs before the start of

simulation. The same procedure (the second section with volumes) later appears in the

simulation with time interval verification for volume change. The verification of time

intervals is shown in the next section with signal plan. With each change, small

function appears to load next column:
if veh_id < length(vehs)
 veh_id = veh_id + 1;
end

When the last column is reached but it is not the end of simulation, thanks to the

condition, the last value will remain in vehicle inputs until the end.

The routing could be set like this:
routing(1,2)=vnet.VehicleRoutingDecisionsStatic.ItemByKey(1).VehRout

Sta.ItemByKey(2);
routing(1,2).set('AttValue', 'RelFlow(1)', 1);

The first ItemByKey specifies the starting link and the second one the destination link.

So, this is for vehicles traveling from bottom which then turn. The 1 for real flow does

not mean much. Now, everything depends on the value in the second route from the

same starting link. Considering the same value, 50% of vehicles would turn left and

50% would go straight up. With a zero, no vehicle would go this way and 100% would

turn left. If there was a ten, ten times more vehicles would go this way and so on.

It can be set for each route according to the time interval from a file as well.

2.3 Creation of Signal Plan

Simple static fixed time control is being developed even with some basic kind of

dynamic control in this subchapter.

It is necessary to put signal heads to links in Vissim first. But the program gives

warning that “A signal controller with a signal group must exist before a signal head

can be created.”. So, it is just enough to click on Signal Control -> Signal Controllers

and in the new field right click and Add… -> Edit Signal Control, right click and add

new signal group in the new window. If more than one signal group is required, it

needs to be declared here. Then it should be saved and that is all. It will create a *.sig

file in the same directory as the model is. Signal heads can be installed into lanes after

this declaration.

Signal heads can be easily assigned to signal controller - SC (it can be more of them

by adding them into the lower field as specified above) and signal group in option

window of each signal head in Vissim. But the same work can be done in the M-File.

When choosing this way, it is necessary to keep on mind the order of planting them.

Assigning in M-File follows their IDs – it does with all objects.

Page | 21

For example, if there are four signal heads and two signal controllers and the aim is to

set them for the second controller and divide into two signal groups, the procedure

could look like this:
headl_1=vnet.SignalHeads.ItemByKey(1);

new1_sg='2-2';

headl_1.set('AttValue', 'sg', new1_sg);

headl_3=vnet.SignalHeads.ItemByKey(3);

new2_sg='2-2';

headl_3.set('AttValue', 'sg', new2_sg);

headl_2=vnet.SignalHeads.ItemByKey(2);

new3_sg='2-1';

headl_2.set('AttValue', 'sg', new3_sg);

headl_4=vnet.SignalHeads.ItemByKey(4);

new4_sg='2-1';

headl_4.set('AttValue', 'sg', new4_sg);

The first number specifies the signal controller and the second one the signal group.

The exact formula with hyphen goes for COM but later in the source code in *.inpx

file appears as sg="2 1" and so on. It is stored inside a <signalHeads> tag.

To set exact signal group to some specific state, it has to be reached by the hierarchy:
SignalController = vnet.SignalControllers.ItemByKey(1);
SG(1)=SignalController.SGs.ItemByKey(1);

Then, the state of signal group can be changed (the first one because of the

ItemByKey(1) in the second row):

SG(1).set('AttValue', 'State', 3);

Several values can be filled in the brackets. 3 stands for green – vehicles can move.

Possible states are specified in Table 1.

Page | 22

Table 1: State values of signal groups (source: [1])

Member Value

SignalizationStateAlternatingRedGreen 10

SignalizationStateAmber 4

SignalizationStateFlashingAmber 7

SignalizationStateFlashingGreen 9

SignalizationStateFlashingRed 8

SignalizationStateGreen 3

SignalizationStateGreenAmber 11

SignalizationStateOff 5

SignalizationStateRed 1

SignalizationStateRedAmber 2

SignalizationStateUndefined 6

It is also possible to type 'GREEN' and so on instead of numbers in the brackets.

Unfortunately, this information can be found in the official example M-File, laying on

the hard drive after installation of Vissim - COM_examples.m, but not in the product

help. There is only the table shown above with numbers.

2.3.1 Fixed Time

If it is not necessary to create own signal control in Matlab, there is a powerful software

for creating signal control with fixed time (cycle time is determined and it does not

fluctuate), it is the Vissig module for Vissim. It complements the phase-based fixed

time control by additionally providing stage-based fixed time signal control. Vissig

contains a graphical editor for defining stages and interstages. Signal program creation

in Vissig can be found in Figure 6 for illustration. Even if the control would be done

by Matlab, the second item in the left list (Signal group) needs to be set as it was

commented above.

Page | 23

Figure 6: Vissig environment

If the aim is to run own signal program from Matlab, instructions are here. Most

importantly, some time verification must exist. Signal programs are managed to work

with whole seconds. Best Matlab function for such a verification is rem as a condition

for if function:
verify = 1;
for i=0:(period_time*step_time)
sim.RunSingleStep;
if rem(i/step_time, verify)==0

% commands here
end

end

The rem stands for remainder after division. Here, the division i/step_time delivers

actual simulation second with one decimal digit number. And if the reminder after

dividing this number by 1 (variable verify is set to 1) is equal to zero, the whole

second is verified and can be added to a current length of stage. Inside of the if cycle

(ending by the first end), some commands should follow. In the Matlab environment,

when % is being typed, comment can follow with no influence to the program. It also

turns the colour to green for better view.

For an example of own signal plan with fixed time, a simple four-way intersection was

created. The model created in Vissim can be found in Figure 7. As it is clear from the

picture, the net is created with the ability to travel within all directions. Signal heads

are planted in the network as well as vehicle routing. Violet stripes represent starts of

routing and targets are turquoise. Red and green areas in the middle are conflict areas.

Those are better to set in Vissim as well. Signal heads are set in order: bottom-top-left-

right. Numbers of Signal heads correspond to this order. Signal groups are also

assigned in Vissim, but it can be easily done as it is specified above. Vehicle inputs

are not visible in the picture, those are black stripes at the beginning of links behind

edge of the image. But their numbering correlates with numbering of signal heads.

Page | 24

Figure 7: Vissim model for fixed time signal plan

In the M-File, there are specifications such as model placing and clearing the

environment first, following by setting shortcuts (vnet and sim). Then there are named

signal groups:
SignalController = vnet.SignalControllers.ItemByKey(SC_number);
SG(1)=SignalController.SGs.ItemByKey(1);
SG(2)=SignalController.SGs.ItemByKey(2);
SG(3)=SignalController.SGs.ItemByKey(3);
SG(4)=SignalController.SGs.ItemByKey(4);

Next rows belong to simulation settings:
period_time=3600;

sim.set('AttValue', 'SimPeriod', period_time);
step_time=10;
sim.set('AttValue', 'SimRes', step_time);
max_cores=4;
sim.set('AttValue', 'NumCores', max_cores);

Then some variables are declared:
verify = 1;
tsg1 = 17;
tsg2 = 17;
tsg3 = 17;
sg1_time = 0;
sg2_time = 0;
sg3_time = 0;
t12 = 0;
t23 = 0;
t31 = 0;
stage = 1;

The first variable is for the verification of whole seconds, three next specify lengths of

stages. There are three of them, signal groups 3 and 4 on side roads could have been

merged, because they fulfil the definition of showing exactly the same state in each

Page | 25

moment (the same switching on time, duration and interstage), but it should be always

related only to one exact intersection entrance, which it does not. In this case, they are

in the opposite directions. Other six variables serve to counting time of stage (e.g.

sg1_time) or interstage (e.g. t12). In the last variable (stage) there is stored the

starting stage and later, as the program starts, the current stage/interstage.

The next part of the program is simulation with the signal plan itself, it is stored in

Table 2. Numbers on the left side are there only for better orientation.

Table 2: Signal plan with fixed time

1 for i=0:(period_time*step_time)

2 sim.RunSingleStep;

3 if rem(i/step_time, verify)==0

4 if stage == 1

5 SG(1).set('AttValue', 'State', 3);

6 SG(2).set('AttValue', 'State', 1);

7 SG(3).set('AttValue', 'State', 1);

8 SG(4).set('AttValue', 'State', 1);

9 sg1_time = sg1_time+1;

10 end

11 if stage == 2

12 SG(1).set('AttValue', 'State', 1);

13 SG(2).set('AttValue', 'State', 3);

14 SG(3).set('AttValue', 'State', 1);

15 SG(4).set('AttValue', 'State', 1);

16 sg2_time = sg2_time+1;

17 end

18 if stage == 3

19 SG(1).set('AttValue', 'State', 1);

20 SG(2).set('AttValue', 'State', 1);

21 SG(3).set('AttValue', 'State', 3);

22 SG(4).set('AttValue', 'State', 3);

23 sg3_time = sg3_time+1;

24 end

25 if stage == 12

26 if (t12 == 0) || (t12 == 1)

27 SG(1).set('AttValue', 'State', 4);

28 SG(2).set('AttValue', 'State', 1);

29 end

30 if t12 == 2

31 SG(1).set('AttValue', 'State', 1);

32 SG(2).set('AttValue', 'State', 2);

33 end

34 if t12 > 2

35 stage = 2;

36 sg2_time = 0;

37 end

38 t12 = t12 + 1;

39 end

40 if stage == 23

41 if (t23 == 0) || (t23 == 1)

42 SG(2).set('AttValue', 'State', 4);

43 SG(3).set('AttValue', 'State', 1);

44 SG(4).set('AttValue', 'State', 1);

45 end

46 if t23 == 2

47 SG(2).set('AttValue', 'State', 1);

48 SG(3).set('AttValue', 'State', 2);

Page | 26

49 SG(4).set('AttValue', 'State', 2);

50 end

51 if t23 > 2

52 stage = 3;

53 sg3_time = 0;

54 end

55 t23 = t23 + 1;

56 end

57 if stage == 31

58 if (t31 == 0) || (t31 == 1)

59 SG(3).set('AttValue', 'State', 4);

60 SG(4).set('AttValue', 'State', 4);

61 SG(1).set('AttValue', 'State', 1);

62 end

63 if t31 == 2

64 SG(3).set('AttValue', 'State', 1);

65 SG(4).set('AttValue', 'State', 1);

66 SG(1).set('AttValue', 'State', 2);

67 end

68 if t31 > 2

69 stage = 1;

70 sg1_time = 0;

71 end

72 t31 = t31 + 1;

73 end

74 if sg1_time == tsg1

75 stage = 12;

76 sg1_time = 0;

77 t12 = 0;

78 end

79 if sg2_time == tsg2

80 stage = 23;

81 sg2_time = 0;

82 t23 = 0;

83 end

84 if sg3_time == tsg3

85 stage = 31;

86 sg3_time = 0;

87 t31 = 0;

88 end

89 end

90 end

In the beginning, when the simulation is started, first simulation step happens with no

light at signal heads. The reason is that a single step is processed before their states are

set. But it is just a one tenth of the first second and no vehicle can reach signal heads

that fast. This one step shift appears during the whole simulation, but it has no impact

on simulation course and results, because cycle time and stages last exactly the same

time as it was designed. Simple shifting the simulation step command after the whole

second verification function (including setting of signal heads states) cannot solve this

issue, because stages cannot be set before the simulation starts.

As the program continues, signal groups are set for each state. Inside of the cycle that

is active, every simulation second, one second is added. Until it gets the same length

as the total length of stage is. It is being verified in the bottom of the program (row 74

to 88). After verification, current stage is set to interstage and used variables are set to

zero, so they could be used again. As this part lays at the end of the program, one

Page | 27

simulation second happens before it has impact to signal heads. When it comes to

interstage (row 25), it sets previous signal group with green signal to red-amber and it

remains for two seconds. For the third second it turns red and next signal group turns

amber. As soon as this procedure is done, next stage is called in which the signal group

turns green from amber. Since this moment, the whole process repeats, just for

different signal group. The green signal changes from buttom to top road and then side

roads left and right get the signal at the same time. The order of stages is clear in Figure

8. The F stands for stage, the first signal group is VA, second one VC, then VB and the

fourth is VD.

Figure 8: Stages of fixed time signal plan

Durations of interstages are not calculated from any terrestrial conditions, maximum

vehicle speed and so on. Values are only sudgested for demonstrative purposes as it is

typical for these papers. The cycle lasts for 60 seconds. It is the summary of stages

durations and all interstages, hence (17*3)+(3*3)=60.

As it was mentioned before, some controller has to be present to be able to use signal

heads. When the talk is about Vissig with its own signal plan created, it can still be

used more powerfully with the COM interface. That is thanks to the ability to create

more signal programs within one signal controller.

It could work for example in a respond to increased volume of vehicles in one

direction. The second program would contain longer green signal for this way. Some

detector would check the density or intensity of traffic regularly and when some

threshold value is exceeded, signal program would be changed. There is a simple

procedure to do that:
SignalController = vnet.SignalControllers.ItemByKey(1);
new_signal_program = 2;
set(SignalController, 'AttValue', 'ProgNo', new_signal_program);

Page | 28

2.3.2 Dynamic Control

There are many ways of using the dynamic control. It can be done by changing length

of the green signal, by changing order of phases or by adding phase by call and so on.

When regarding the changing order or adding extra phase, these could be probably

created using Vissig and the COM. Vissig would contain the special phase or different

order inside another one signal program, that can be changed as shown. And the

changing could be dependent on some special traffic situation. Getting the detector

state thanks to the COM will guarantee an impulse for the change.

But when the changing length of the green signal is being considered, there is only

minimal and maximal length of the green signal specified. So, it cannot be done by

changing the signal program. Even creating more signal controllers would not work

here. One possibility is to use VisVAP to create such a control.

VisVAP (Visual VAP) is an easy to use tool for defining the program logic of VAP

signal controllers as a flow chart. All VAP commands are listed in a function library.

The export function allows users to generate *.VAP files, where the control logic is

saved. During simulation runs, actual detector variables are retrieved from the

simulation and processed in the logic, thanks to that, the dynamic control can exist. An

example of dynamic control developed in VisVAP environment is in Figure 9.

Conditions based on detector values are specified in the right box called Expressions.

Parameters as maximal lengths of stages and detector threshold value are stored in the

top right box.

Figure 9: Dynamic control in VisVAP

Page | 29

But this module is not delivered with Vissim automatically and there is a possibility to

avoid it. Again, via COM interface. First of all, it is important to know how to get data

from detectors. After planting the detector into some link, it can be accessed by:
SignalController = vnet.SignalControllers.ItemByKey(1)
dets=SignalController.Detectors;
det_all=dets.GetAll;
det_1=det_all{1};

Detectors are also paired with signal controllers, it can be done in Vissim or as well in

Matlab. If there are more than one detector, function GetAll can be used. It can be

used also for assigning signal heads and so on. Just the type of brackets is different

here. Specific data can be obtaining from detector for example by:
det_1.get('AttValue', 'GapTm')

det_1.get('AttValue', 'Detection')
det_1.get('AttValue', 'Occup')
det_1.get('AttValue', 'Presence')
det_1.get('AttValue', 'Impulse')

det_1.get('AttValue', 'VehSpeed')

The control based on gap time is used in a practical example. Vissim model of this

example is in Figure 10. The GapTm gives a number, which corresponds with the time

that was spent between the first vehicle left the detector and the following vehicle

entered the detector.

Figure 10: Vissim model for dynamic control

It is the same layout as the example for fixed time with one difference. In front of the

first signal head, there is a detector placed. The start of the program is also the same,

only extended by some variables for using the detector:
tsg1max = 37;
claim1 = 1;
maxgap = 1.8;

The variable tsg1max sets the maximal length of green signal for stage 1, it is 37

seconds. Next variable is for providing claim of the detector to prolong stage 1. The

last one value specifies the threshold value for the detector to decide if the stage will

be prolonged. The time gap has to be 1.8 second or less to be able to prolong the stage.

Also, there are some changes inside of the simulation:
for i=0:(period_time*step_time)
sim.RunSingleStep;

Page | 30

if (stage == 1) && (sg1_time >= (tsg1 - 3))
 gap1=det_1.get('AttValue', 'GapTm');
 if gap1 >= maxgap
 claim1 = 0;
 end
end
if rem(i/step_time, verify)==0

% commands here
end
end

This procedure guarantees that the state of the detector (gap time between vehicles)

starts to be checked three seconds before the standard duration of stage 1 is over. Since

this time, whenever the value exceeds the maximum gap time, the claim for prolonging

the state expires. It is checked every simulation step – 10 times per simulation second,

when it is relevant. The program follows the same way as the previous for fixed time

does. Next change is at the end of interstage 31 (from stage 3 to 1), right before the

stage 1 starts again, the variable for claim is set back to 1, to be able to prolong the

stage 1 again: claim1 = 1.

The last difference in the program is at the end, where the duration of current stage is

checked in behalf of interstage:
if (sg1_time >= tsg1) && ((claim1 == 0) || (sg1_time >= tsg1max))
 stage = 12;
 sg1_time = 0;
 t12 = 0;
end

When the maximal length of stage 1 is achieved or the claim for prolonging expires,

interstage 12 is called.

2.3.3 Evaluation of Signal Plan Creation

In the following chapter, a little bit different approach is chosen for the signal control,

so that states are not being overwitted each second with the same value but they persist

until the interstage is required. It has no influence on driving behaviour only the code

is more elegant. But in these papers, it is not delivered in any modular way. It can be

done partially in order that some parameters, such a length of cycle and lengths of

green signal and so on, could be inputted. But for different number of signal groups

and phases, signal heads would have to be assigned and it would be difficult to create

such interface when there is the Vissig interface working well.

Unfortunately, just for assigning signal heads to lanes, Vissig or VisVAP have to be

present. Vissim does not consider controlling signal heads over COM as an external

signal controller. It would have to contain a *.dll library on hard drive.

Page | 31

Chapter 3

Optimization in Model Testing and Control

System Development

In this chapter, a representative situation is chosen to demonstrate both, more complex

control system and optimization in model testing. The control system includes two

intersections with coordination and the optimization lies in effective testing of several

scenarios for one situation within one program execution. The benefit is in getting of

results at one time without the necessity of adjusting the model between each scenario

or without the need of having several versions of one model and executing them

separately one after another.

3.1 Control System Development

As it was mentioned before, a concrete situation is chosen to represent more complex

control system. Even though it is a real situation, many elements are let out for

simplification. And some data is estimated and fictional. The aim is not to demonstrate

in detail current situation or to come up with concrete improvement of a traffic

situation in the area. It is about showing possibilities of using Matlab to control Vissim

on not only theoretical level.

3.1.1 Concrete Situation

The situation was selected on the basis of having some traffic data available. It is a

part of city Děčín (Czechia). Wider relations are shown in Figure 11. The city is

situated in a district of the same name (inside the red shape). There are more than fifty

thousand inhabitants and it is located close to the border with Germany on the north

(the map is north oriented). It connects several villages and towns from east to a

highway (D8) with continuity to Prague or Dresden (Germany). It also links northern

and eastern places with Ústí nad Labem. As it is the last city on the river Labe in

Czechia, it dominates with river harbour. The city is an important rail intersection as

well. All together generates significant number of trucks.

Page | 32

Figure 11: Situation with wider relations (source: https://mapy.cz)

A closer detail of processed area is visible in Figure 12. Teplická street in the top left

corner continues to highway and Teplice. On the right (eastern) side, street Ústecká

meets road marked as E442. It leads from Ústí nad Labem through Nový Bor to

Liberec. It is noticeable from the previous figure (except for the city Liberec, it lies

too far from Děčín).

Figure 12: Closer detail of the situation (source: https://mapy.cz, edited)

The Vissim model is constructed from a smaller area than it is pictured in the Figure

12. But the figure shows main direction from the area and it contains intersections

where a traffic survey took part recently from which some data was used. The survey

relates to intersections marked by red X. The model consists of roads inside the violet

shape.

Page | 33

3.1.2 Model and Input Data

3.1.2.1 Input Data

There are four crossings controlled by traffic lights in the selected area. Three of them

are there only for pedestrian crossing. But for the simplicity of demonstrative control,

pedestrians were left out. That is why only two traffic light controlled intersections are

created in the Vissim model below. For better observation of junctions and traffic lanes

divide, there is a satellite shot in Figure 13. It consists of several shots merged together

to achieve a better resolution background for creating the model in Vissim.

Figure 13: Background for the model (source: https://mapy.cz, edited)

In the direction from street Ústecká to street Pivovarská, there is a coordination of

green signals. After the simplification, it is regarding only the intersection Ústecká-

Poštovní-Podmokelská-Čsl. mládeže and the intersection Podmokeská-Ruská (both

streets do not change name behind the intersection, only Podmokelská turns

Pivovarská later). For the purposes of this thesis, the Department of Transport

Telematics provided the survey from the first intersection (Ústecká-…) and

intersection Teplická-Pivovarská (Figure 12). So there is a real input data available for

the first junction. The input data for the last junction had to be adjusted from the survey

of Teplická-Pivovarská. Other inputs to the area were estimated with respect to traffic

relevance of regarded zones. A brief inspection of public transport routes took part in

the estimation as well.

The survey took time from seven p.m. till eleven p.m. and numbers of vehicles were

counted in five minute intervals. Every estimated input was filled by values with

respect to these intervals. Since the street Bezručova and Ruská behind the junction

leading north are one-ways from the area out, these took part only in the vehicle

routings (will be discussed later). And the street in bottom right corner (Figure 13) was

left out during building the model, because it serves only for the shopping centre

Page | 34

attached to the parking lot, for vehicles to have the ability of getting back south without

participating in the Podmokelská street. As it is clear from the Figure 12, the first

section of Podmokelská street is a one-way from east to west and the opposite direction

is provided by one-ways Hankova-Uhelná-Poštovní (in this direction). Because of

these facts, estimated inputs were set only for streets Hankova, Ruská (both from

bottom left in the previous figure) and Plzeňská. All of these two streets associate

mainly local, personal together with public, transportation (local and from

neighbouring villages).

There were eight categories specified for the survey, it was: personal vehicles, vans,

light trucks, heavy trucks, trucks with trailer, buses, public transportation buses and

motorcycles. Again, for the simplicity, they were merged into three categories:

personal vehicles (personal vehicles with motorcycles), trucks (vans, light and heavy

trucks together with trucks with trailer) and buses (buses with public transportation

vehicles).

These inputs are preserved in five minute intervals, just simply multiplied to get hourly

intensities for Vissim. Values are stored in the text file vehinsmatrix.txt, each column

represents one time interval and each row represents inputs of one vehicle class to a

concrete source link. The exact order will be specified in the next subchapter.

Unfortunately, the traffic survey was not the areal one. It means that routing is

available always only within one concrete junction. For example, licence plates would

have to be registered to be able to pair them with other junctions or links for better

view of how do the vehicles behave in the network.

In this case, routing was set for each possible path with divided vehicle classes (some

paths were set only for one or two categories). For example, it was supposed that no

vehicle would travel from the source of Ruská street to Hankova street destination, or

that there would be no trucks coming from Čsl. mládeže to Ruská south and so on. The

traffic survey was used as much as possible in setting at least proportion of vehicle

classes within one path. Then each input value was divided into percentage proportion

for each possible path from this particular source. The percentage proportions were

estimated.

These routing values are stored in the text file roumatrix.txt. It also respects specified

time intervals, so it can be changed with the same period as vehicle inputs. And each

row in this file represents a proportion of one vehicle input for one particular path for

one class.

3.1.2.2 Model Construction

Background

For the construction of the model, first the background image was loaded to a new

Vissim file. To set own image, there is a Background Images item in the Network

Objects section. After loading the image, there is an option to set scale, when user right

clicks into the image. Then by left click and hold during movement, some distance can

Page | 35

be chosen and after releasing the left button, a scale window appears. There should be

specified the real distance in meters of the selected distance.

Infrastructure

The next step is to draw the infrastructure. All links and connectors. Just before

planting signal heads, signal controllers have to be specified. There should be created

two empty signal groups in the first signal controller. Then the second signal controller

needs to be set and it will contain two signal groups as well (it should contain three,

but during the implementation, opposite directions were set to the same signal group,

because they do not differ in any second, even though it is not exactly a correct

practise). The control will be discussed later. The first signal head belongs to the end

of Ústecká street. The second one to the end of Poštovní street. Both of them belong

to the first signal controller and it should be set to the first and second signal group in

the same order during setting them to the network. The last crossing has two signal

heads in each direction of the street Podmokelská, set to the second signal controller

and the first signal group (should be two different, but it would have to be implemented

as well in the Matlab program). The last two signal heads go to Ruská street from south

to north and east way. Here, the signal group is set to the second one within the second

signal controller. The whole model is visible in the Figure 14. The exact position of

each signal head is there noticeable as well.

Figure 14: Vissim model of a specific area in Děčín

Vehicle inputs

Vehicle inputs start at Ústecká, there are the first three of them (in the relevant order

to personal vehicles, trucks and buses). There are always starts of vehicle routings in

the same amount and for the same vehicle classes as the inputs are. Next three inputs

are at the start of Podmokelská street. Every input corresponds to a row in the

vehinsmatrix.txt file, it means, that the first row is for personal vehicles from Ústecká

Page | 36

street, the second row is for trucks from the same direction and the third one is for

buses. Then again, the fourth row is for personal vehicles, but from the opposite side

of the area. Inputs seven to nine are situated at the start of Čsl. mládeže street. Then

from the Hankova street, there are only inputs for personal vehicles and buses. Input

number twelve is the only one from the street Ruská and it belongs to personal

vehicles. The same applies for input number thirteen in the street Plzeňská.

Vehicle compositions

Then there are three new vehicle compositions supposed to be created in Vissim. It is

all right to let them filled by default, it will be set properly in Matlab.

Conflict areas

It is clear from the picture, that there are conflict areas set with respect to traffic signs

setting preferences in the area.

Routing

The complete routing is better to finish in Vissim as well. There have to be a set of

paths for every input (for separated vehicle classes). In the total, there are 38 of them.

The order is also important, because later the rows from roumatrix.txt file will be

assigned. It can be checked in Static Vehicle Routing Decision / Static Vehicle Routs

tables in Vissim. After clicking at any, it shows the path in the model.

Evaluation

There was nothing said about the evaluation yet. To get some evaluation is a purpose

of most simulations. For these papers, evaluation of travel times, queues and delays

are taking place. A great advantage of Vissim is that it can make evaluations even for

specific vehicle classes.

To activate these evaluations, it has to be specified in Vissim first. By clicking the

Evaluation -> Configuration…, new window appears. It is clear in the Figure 15.

Desired vehicle classes have to be selected here to get the data later. Boxes next to

required functions have to be checked and the last column with the interval is also very

important. If the number stays unchanged as 99999, it means that the result will be one

average value. Vissim makes always averages, number of results depends on how big

the interval is. In this thesis, thirty second intervals were chosen. It means that there

will be always period time/30 values for each function. By clicking the More… button,

regarding for example queue counters, another window appears and it can be set which

speed interval will be counted as a queue. The default beginning is if the speed drops

below 5 km/h and the default end of counting is when the vehicle accelerates above 10

km/h.

Page | 37

Figure 15: Evaluation configuration

When this is specified, there should be vehicle travel time measurements added to the

network. There are two of them used in this model. First of them starts on the east side,

where Ústecká meets the background image and ends on the west side (the same

situation for Podmokelská street). And the second one occupies the same spots but in

opposite direction. It will measure vehicles traveling throw the network from east to

west and from west to east.

For the delay measurements, there is not the same procedure, because the delay is

counted from the same section as the travel time. The procedure is to click on Lists ->

Measurements -> Delay Measurements, then by adding there should be two items in

the table and in the right column (VehTravTmMeas) it should be assigned to those

sections.

When the talk is about the queue counter, there is a simple tool in the left list again. It

is placed at the stop line at the street Ústecká and at the stop line at the street

Podmokelská. It will measure queues from the start of those two streets till the first

traffic lights.

M-File

The first several rows are still almost the same. There must be clearing of the Matlab

environment. Then specifying the location of Vissim files and defining access on lower

levels of the hierarchy for easier future declaration (sim, vnet,…). Then there should

be some simulation setting and as mentioned before, defining of the vehicle

composition:
Composs= vnet.VehicleCompositions.GetAll;
Rel_Flows=Composs{2}.VehCompRelFlows.GetAll;
set(Rel_Flows{1}, 'AttValue', 'VehType', 100);

Page | 38

set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 50);
Rel_Flows=Composs{3}.VehCompRelFlows.GetAll;
set(Rel_Flows{1}, 'AttValue', 'VehType', 200);
set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 50);
Rel_Flows=Composs{4}.VehCompRelFlows.GetAll;
set(Rel_Flows{1}, 'AttValue', 'VehType', 300);
set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 50);

The first command load all compositions (three new were added manually in Vissim).

There are four of them in total, when counting the first – default. Since the default one

is mixture of two classes, it will be always skipped by starting with number two. So,

the first new category consists only of personal vehicles (attribute VehType is 100).

200 stands for trucks and 300 for buses. The second attribute (DesSpeedDistr) means

desired speed distribution, which is set to fifty kilometres per hour for all categories.

Continuing in the M-File, these compositions are assigned to concrete vehicle inputs:
vehins=vnet.VehicleInputs.GetAll;
vehins{1}.set('AttValue', 'VehComp(1)', 2);
vehins{2}.set('AttValue', 'VehComp(1)', 3);
vehins{3}.set('AttValue', 'VehComp(1)', 4);
vehins{4}.set('AttValue', 'VehComp(1)', 2);
vehins{5}.set('AttValue', 'VehComp(1)', 3);
vehins{6}.set('AttValue', 'VehComp(1)', 4);
vehins{7}.set('AttValue', 'VehComp(1)', 2);
vehins{8}.set('AttValue', 'VehComp(1)', 3);
vehins{9}.set('AttValue', 'VehComp(1)', 4);
vehins{10}.set('AttValue', 'VehComp(1)', 2);
vehins{11}.set('AttValue', 'VehComp(1)', 4);
vehins{12}.set('AttValue', 'VehComp(1)', 2);
vehins{13}.set('AttValue', 'VehComp(1)', 2);

There are 13 of them in total and this assigning corresponds with the previous section

called Vehicle inputs. In case that there were many inputs, it would be possible to fill

them by function in a for cycle. Values would loaded and assigned prom a text file for

example.

Next part of the program belongs to vehicle routing. If it is not manually assigned in

the Vissim during the process of creating all paths for each vehicle input (and

category), it needs to be done here:
routingsource=vnet.VehicleRoutingDecisionsStatic.GetAll;
routingsource{1}.set('AttValue', 'AllVehTypes', 'false');
routingsource{1}.set('AttValue', 'VehClasses', 10);
routingsource{2}.set('AttValue', 'AllVehTypes', 'false');
routingsource{2}.set('AttValue', 'VehClasses', 20);
routingsource{3}.set('AttValue', 'AllVehTypes', 'false');
routingsource{3}.set('AttValue', 'VehClasses', 30);
routingsource{4}.set('AttValue', 'AllVehTypes', 'false');
routingsource{4}.set('AttValue', 'VehClasses', 10);
routingsource{5}.set('AttValue', 'AllVehTypes', 'false');
routingsource{5}.set('AttValue', 'VehClasses', 20);
routingsource{6}.set('AttValue', 'AllVehTypes', 'false');
routingsource{6}.set('AttValue', 'VehClasses', 30);
routingsource{7}.set('AttValue', 'AllVehTypes', 'false');
routingsource{7}.set('AttValue', 'VehClasses', 10);
routingsource{8}.set('AttValue', 'AllVehTypes', 'false');
routingsource{8}.set('AttValue', 'VehClasses', 20);
routingsource{9}.set('AttValue', 'AllVehTypes', 'false');

Page | 39

routingsource{9}.set('AttValue', 'VehClasses', 30);
routingsource{10}.set('AttValue', 'AllVehTypes', 'false');
routingsource{10}.set('AttValue', 'VehClasses', 10);
routingsource{11}.set('AttValue', 'AllVehTypes', 'false');
routingsource{11}.set('AttValue', 'VehClasses', 30);
routingsource{12}.set('AttValue', 'AllVehTypes', 'false');
routingsource{12}.set('AttValue', 'VehClasses', 10);
routingsource{13}.set('AttValue', 'AllVehTypes', 'false');
routingsource{13}.set('AttValue', 'VehClasses', 10);

Every several paths have the same source, that is why only 13 needs to be set. These

vehicle classes correspond to vehicle types, they are just a one-tenth lower. This

procedure enables to route each vehicle class separately. Before specifying vehicle

classes, checkbox for all vehicle types needs to be unchecked. Since the unchecking

(setting value to false) regards each source, it can be done by setting multiple attribute

value instead of doing it separately as shown:
vnet.VehicleRoutingDecisionsStatic.SetMultiAttValues('AllVehTypes',

'false');

Then again, some simulation settings take part. It is in the same form as in the previous

program.

For the evaluation, some access throw the hierarchy should be declared:
vehTTs1 = vnet.VehicleTravelTimeMeasurements.ItemByKey(1);
vehTTs2 = vnet.VehicleTravelTimeMeasurements.ItemByKey(2);
queue1 = vnet.QueueCounters.ItemByKey(1);
queue2 = vnet.QueueCounters.ItemByKey(2);
del1 = vnet.DelayMeasurement.ItemByKey(1);
del2 = vnet.DelayMeasurement.ItemByKey(2);

Some variables for storing of obtained values need to be specified. And the best way

it to prepare matrixes or vectors of the exact needful sizes:
period_meas = 30;
x=period_meas:period_meas:period_time;
if rem(period_time, period_meas) ~= 0
 x(length(x)+1)=period_time;
end
DelayA=zeros(length(x));
DelayB=zeros(length(x));
TTA=zeros(length(x));
TTB=zeros(length(x));
QA=zeros(length(x));
QB=zeros(length(x));

The variable period_meas has to contain the same number as it is set in Vissim for

the measure interval. The if function ensures that there will be enough space, even

when the last interval is shorter than others. For example, if the period time had been

set to 3550 s, the variables would have contained 119 zeros.

The filling by real values happens inside of the simulation, after a measure interval

verification:
if (i~=0) && (rem((i)/step_time, period_meas)==0) &&

(i<((period_time*step_time)-1))
 TTactual(1,1) = get(vehTTs1,'AttValue',

'TravTm(Current,Total,All)');
 TTactual(2,1) = get(vehTTs2,'AttValue',

'TravTm(Current,Total,All)');

Page | 40

 Qlenactual(1,1) = get(queue1,'AttValue', 'QLen(Current,Total)');
 Qlenactual(2,1) = get(queue2,'AttValue', 'QLen(Current,Total)');
 DLactual(1,1) = get(del1, 'AttValue',

'VehDelay(Current,Total,All)');
 DLactual(2,1) = get(del2, 'AttValue',

'VehDelay(Current,Total,All)');

The first sub attribute defines the specific simulation. Here it is being used only as the

current. The second one specifies the value of a specific time interval. It can be set to

a value (1, 2,…) or an aggregated value of all time intervals of one simulation (Avg,

StdDev, Min, Max). The last possibility is to fill Total as it is used above. It summarizes

values from all time intervals till the current one. To get the data for each time interval

separately, there is procedure developed for this purpose below. The last sub attribute

(if it is available) specifies which vehicle class to show data from. It is set to All to get

average number through all classes. For example, 10 would get data only for personal

vehicles. During the implementation of the program, it seemed that it is impossible to

get data from the last interval, because the Vissim alwas prepared new simulation run

at the end and there were empty cells. That is why the data from the last interval is

being get one simulation step before the end of simulation run (the last condition in

the if function). But it showed up that this issue could be eliminated in the same

window where the evaluation is being set (Figure 15). There is another card called

Result Management and there is a check box Automatically add new columns in lists,

it should be unchecked manually. There is probably a way to do it via Matlab, but it is

quite difficult to get to all functions just with the Online help.

The measure interval verification function continues by getting the real values and

setting them into the final vectors:
if c ~= 1
 if isnan(TTactual(1,1))
 TT(1,c)=0;
 else
 TTsum(1,1) = TTsum(1,1) + TT(1,c-1);
 TT(1,c) = (TTactual(1,1) - TTsum(1,1));
 end
 if isnan(DLactual(1,1))
 DL(1,c)=0;
 else
 DLsum(1,1) = DLsum(1,1) + DL(1,c-1);
 DL(1,c) = (DLactual(1,1) - DLsum(1,1));
 end
 if isnan(Qlenactual(1,1))
 Q(1,c)=0;
 else
 Qsum(1,1) = Qsum(1,1) + Q(1,c-1);
 Q(1,c) = (Qlenactual(1,1) - Qsum(1,1));
 end
 c=c+1;
else
 if isnan(TTactual(1,1))
 TT(1,c)=0;
 else
 TT(1,c) = TTactual(1,1);
 end
 if isnan(DLactual(1,1))
 DL(1,c)=0;

Page | 41

 else
 DL(1,c) = DLactual(1,1);
 end
 if isnan(Qlenactual(1,1))
 Q(1,c)=0;
 else
 Q(1,c) = Qlenactual(1,1);
 end
 c=c+1;
end

There is the same procedure inside the main cycle for the second direction (variables

with 2,1 inside brackets). Here it is left out to save space and keep clarity. The complete

procedure is present in the main program in attachments.

This procedure not only fills variables by data from each interval, it also turns non-

numerical values to zeros to get homogeneous output. These values appear when there

is no data to forward, it happens for example when no vehicle starts a journey through

the measure section within some concrete measure interval. These values are originally

stored as a NAN (not a number). To deal with the first interval, there must exist a

declaration of c=1; above the simulation start. The second section serves to the first

filling. There is no addition of previous state.

The representation of results is done majorly in graphs, using these filled variables

and the variable x for time sampling. The output representing is shown below, in the

section 3.2.3.

There are more interesting sections in the program. The talk is about loading data from

text files for vehicle inputs and routings. First columns must be loaded before the

simulation start:
load vehinsmatrix.txt;
row2 = 1;
column = 1;
for var1 = 1:length(vehins)
 vehins{var1}.set('AttValue', 'Volume(1)',

vehinsmatrix(row2,column));
 if row2 < size(vehinsmatrix,1)
 row2=row2+1;
 end
end

load routmatrix.txt

row = 1;
routing=vnet.VehicleRoutingDecisionsStatic.GetAll;
for var1 = 1:length(routing)
routingx=routing{var1}.VehRoutSta.GetAll;
 for var2 = 1:length(routingx)
 routingx{var2}.set('AttValue', 'RelFlow(1)',

routmatrix(row,column));
 if row < size(routmatrix,1)
 row=row+1;
 end
 end
end

These functions fill each vehicle input and each relative routing value. Later, in the

simulation section, these functions are repeated, but they lie inside of the time

verification which corresponds to the survey intervals (5 minutes). The variable

Page | 42

column inside of setting commands is increased by one before the assigning. Also, an

added condition keep these procedures from overflowing the file dimension. It can be

found in the appendix as well.

3.1.3 Default Control

Besides the traffic survey, the faculty department provided a documentation regarding

a change of interstage duration for the first interstage (Ústecká - Poštovní). The

requirement came from police of Czechia and the aim was to prolong the interstage

when vehicles from Ústecká are clearing out the conflict area and vehicles from

Poštovní are arriving there. The time from red signal in Ústecká till the green signal in

Poštovní was set to four seconds instead of two.

Thanks to this change, the documentation includes the whole signal plan with stages

and interstages. Because of the fact that this thesis is not aimed to pedestrians, their

stage was simply left out with preserving of vehicle regarding parameters. This stage

was integrated only on request. The truth is that more vehicles can go throw the net

during one cycle when there are no pedestrians demanding their stage. So it is clear

that no results from this model can be used to testify in real about the traffic situation

in this area. The only case would be, for example, a study of the traffic situation if the

pedestrian crossings were replaced by underpasses or footbridges.

The stage schema for this specific model for the first intersection is in Figure 16.

Figure 16: Stages of the first intersection

The cycle time is 60 seconds due to the documentation. The interstage 1.2 takes six

seconds and the second one only four. The interstage parts of signal program are

visible in Figure 17.

Page | 43

Figure 17: Interstages of signal plan

In this case, the second controlled interstage does not meet with real parameters,

because any documentation was available. But since it is sure thing, that these two

interstages are in coordination in the east-west direction, it is clear that the cycle must

be of the same length as well as the green signal. It is just shifted in time. Other

parameters such as signal groups, interstage time table, offset and so on were

estimated. The final stage schema for this junction (Podmokelská - Ruská) is in Figure

18.

Figure 18: Stages of the second intersection

Here, the Table 3 with interstage time follows:

Table 3: Interstage time

 coming

 SG SG1 SG2 SG1

 VA VB VC

le
av

in
g SG1 VA x 8 0

SG2 VB 8 x 8

SG1 VC 0 8 x

The offset was set to 22s and the interstage parts of signal program for the second

controlled interstage are visible in Figure 19.

Page | 44

Figure 19: Interstages of the second signal plan

In the M-File, the start of the control looks like this:
cycle = 60;
offset = 22;
green(1) = 35;
green(2) = green(1);
stage = [0 0];
change = [0 0;0 0];
terminate = [0 0];
start_time = [0 0];
sim_sec = 0;

for i=0:(period_time*step_time)
 sim.RunSingleStep;
if rem(i/step_time, verify(1))==0
 if stage(1) == 0
 if (start_time(1) ~= 0) && (start_time(1) == terminate(1))
 stage(1) = 21;
 end
 if start_time(1) == 0
 SG(1,1).set('AttValue', 'State', 1);
 SG(1,2).set('AttValue', 'State', 3);
 SG(2,1).set('AttValue', 'State', 1);
 SG(2,2).set('AttValue', 'State', 3);
 terminate(1) = 3;
 end
 start_time(1) = start_time(1) + 1;
 if stage(1) == 21
 start_time(1) = 0;
 terminate(1) = 0;
 end
 end

After the variables declaration, the first stage runs. It is a starting stage (stage zero). It

takes three seconds and then it continues to interstage 2.1 in the first intersection. The

second one remains in this stage for the offset time. The time for the first intersection

to remain in this stage should correspond to a value of minimal green signal length. It

is more likely being set to five seconds. In that case, it would be just enough to change

the value of terminate(1) inside of the function from 3 to 5.

The interstage 2.1 follows right after the zero stage. All values in brackets represent

the signal controller by the first number and the signal group by the second number.

Page | 45

 if stage(1) == 21
 if (start_time(1) ~= 0) && (start_time(1) == change(1,1))
 SG(1,1).set('AttValue', 'State', 2);
 end
 if (start_time(1) ~= 0) && (start_time(1) == change(1,2))
 SG(1,2).set('AttValue', 'State', 1);
 end
 if (start_time(1) ~= 0) && (start_time(1) == terminate(1))
 stage(1) = 1;
 end
 if start_time(1) == 0
 SG(1,2).set('AttValue', 'State', 4);
 terminate(1) = 4;
 change(1,1) = 2;
 change(1,2) = 3;
 end
 start_time(1) = start_time(1) + 1;
 if stage(1) == 1
 start_time(1) = 0;
 terminate(1) = 0;
 change(1,:) = 0;
 end
 end

Interstage 1.2 looks very similar, there are only twisted signal groups and terminate

time and change time are different. The stage 1 is quite easily defined:
 if stage(1) == 1
 if (start_time(1)~=0) && (start_time(1) == (terminate(1)-1))
 stage(1) = 12;
 end
 if start_time(1) == 0
 SG(1,1).set('AttValue', 'State', 3);
 terminate(1) = green(1);
 end
 start_time(1) = start_time(1) + 1;
 if stage(1) == 12
 start_time(1) = 0;
 terminate(1) = 0;
 startshift = 1;
 end
 end

The condition to start interstage is reduced by 1, because interstages are defined above

stages and so one simulation second must happen with the same state before the

interstage starts. The startshift has an influence on stage 1 in the second signal

controller. It ensures that the end of the stage comes with compliance to the end of

stage 1 in the first signal controller with the offset.
 if stage(2) == 1
 if startshift == 1
 terminate(2) = start_time(2) + offset;
 startshift = 0;
 end
 if (start_time(2)~=0) && (start_time(2) == (terminate(2)-1))
 stage(2) = 12;
 end
 if start_time(2) == 0
 SG(2,1).set('AttValue', 'State', 3);
 end
 start_time(2) = start_time(2) + 1;

Page | 46

 if stage(2) == 12
 start_time(2) = 0;
 terminate(2) = 0;
 if (maxgreen ~= 0)
 claim1 = 1;
 end
 end
 end

The whole signal program is attached as a part of the main program in attachments.

This kind of controlling is a bit different from the presented one in previous chapter.

The advantage here is that states are not overwritten by the same value but the state

remains untouched till it is time to change it.

3.2 Optimization

The optimization in model testing takes part here. It is based on the idea that there is a

requirement to test several signal plans within one model. The optimization here lies

in the fact, that it can be done with no network and parameters editing between

simulation runs. As well as the simulation runs, it can be started just once. Every

change or different signal plan can be specified in advance in the M-File and Vissim

model can remain in the original form. The results can be then represented in the end

for each scenario together in one graph.

3.2.1 Alternative Signal Plan

To test a different scenario within the same model, some alternative signal plan should

be created. For these purposes the first alternative scenario has a 70s cycle in behalf of

the coordinated direction. Other parameters are the same as in previous signal plan. So

only two rows differ:
cycle = 70;
green(1) = 45;

The third signal plan is based on both of the previous. It includes a dynamic control

which is based on time space between vehicles. For this purpose, an inductive loop

must be present. It is clear in Figure 14: Vissim model of a specific area in Děčín, that

it is already planted in the street Ústecká. Based on the time space, the cycle time can

be increased from 60s to 70s. Again, it is regarding only the coordinated direction. The

maximal time space can be set by the user, it is shown in the following section. The

verification happens always during the stage 1, three seconds before the end of original

length (35s). Once the threshold is exceeded, the claim disappears and appears again

in the next cycle. When the claim disappears several seconds before the end of original

stage length, the interstage starts after the whole original stage terminates. When

vehicles are close to each other and the claim does not disappear till the end of

prolonged stage (45s), it terminates by this second automatically. During the

prolonging, it is always done by adding one second:
if (maxgreen ~= 0) && (stage(1) == 1) && (start_time(1) >=

(green(1)-3)) && (start_time(1) < maxgreen)

Page | 47

 if claim1 == 1
 gap1=det1.get('AttValue', 'GapTm');
 if gap1 > maxgap
 claim1 = 0;
 end
 end
end
if rem(i/step_time, verify(1))==0
 if stage(1) == 1
 if (maxgreen ~= 0) && (start_time(1) >= (terminate(1)-1)) &&

(start_time(1) < (maxgreen-1))
 if claim1 == 1
 terminate(1)=terminate(1)+1;
 end
 end
 if (start_time(1)~=0) && (start_time(1) == (terminate(1)-1))
 stage(1) = 12;
 end
 if start_time(1) == 0
 SG(1,1).set('AttValue', 'State', 3);
 terminate(1) = green(1);
 end
 start_time(1) = start_time(1) + 1;
 if stage(1) == 12
 start_time(1) = 0;
 terminate(1) = 0;
 startshift = 1;
 end
 end

For a better performance of this optimized model testing, there is a possibility to

increase the traffic by some percentage value for each scenario and run it again:
increase = (200/100)+1;
load vehinsmatrix.txt;
vehinsmatrix=vehinsmatrix*increase;

Instead of 300, there is a variable in the program. This will increase the traffic about

200% (to get to total 300%).

As it was already discussed, the optimization lies in the fact, that all of these scenarios

are executable by one click with no further setting. There is a simple procedure to run

these simulations one after another. The user only needs to fill a matrix scenario with

desired scenarios.
EOS=sum(scenario(:,1))+sum(scenario(:,2));
for j=1:EOS
if scenario(1,1)==1

%...
elseif scenario(1,2)==1

%...
elseif scenario(2,1)==1
%...
elseif scenario(2,2)==1
%...
elseif scenario(3,1)==1
%...
elseif scenario(3,2)==1
%...
end
%...

Page | 48

The program gets into the first desired scenario, get parameters and thanks to the elseif

it will come again to get parameters from different scenario after the simulation

happens. When this happens, the value inside relevant scenario is increased for not to

stuck in one cycle forever.

If there were more different signal groups (they would differ in signal groups for

example), signal heads could be easily reassigned to signal groups between simulation

runs by Matlab and there is still no necessity to have separated Vissim models and to

test them apart.

The most easily way of using this optimization would be if the signal programs were

created in VisVap or Vissig. The main program would just reassign signal groups,

signal controllers and change some more required data between simulation runs.

3.2.2 Graphical User Interface

When there is a program developed and it is supposed to be used by some user, it is

the best solution to create a graphical user interface so that he cannot make changes in

the source code. In this case, it is not really necessary, but when considering some

extensive testing, it can be useful.

Matlab includes GUI, it can be called by typing guide in the command window. It

opens a file explorer with a possibility to open blank window or some template. After

selecting the default blank window a program for creating graphical components

appears. It is quite easy here to put buttons, check boxes, list boxes and so on into the

GUI. After saving the file, it creates *.fig. It contains all graphical layout, but it is not

executable itself. Respectively it is, but it lets only the user to push buttons but no

function proceeds. There is a *.m file created together with the graphical one. It is

related to that file and it contains all functions to run the GUI. Each graphical

component added into the GUI creates a section in the M-File, where the

corresponding function should be specified.

The GUI created for this model is in Figure 20. This is how the GUI looks by default.

In the Scenarios section, only the first one is picked. User can pick an arbitrary

combination or all of them. When he picks also the function for the second run for

each scenario in Increased vehicle inputs sub section, white field appears between Set

the increase and % with some preset value. The same happens in the sub section Max

gap for detector when the third scenario (60-70s) is picked. It is visible in Figure 21

together with other picked functions. In the Quick mode section, user can decide

whether he want to observe vehicles in the network or to get results as soon as possible.

In the next section, period time can be edited. The default value is 3600s. Vehicle

inputs start time can be set here. It is divided into 5 minute intervals, that is why the

unit is in minutes as well. If the value lies somewhere inside the interval, it is always

divided by 5 and then rounded to the nearest integer towards infinity. So, when tipping

4 minutes, it will start with the first interval. Number 6 would change it to the second

interval and so on.

Page | 49

The random seed value was already discussed, in the last section it can be set.

Possibilities of the list box, defining how often to change the random seed, are visible

in Figure 21.

Figure 20: GUI for the Děčín model with default values

Figure 21: Filling the GUI

Page | 50

The increase value in the first sub section is set to 350% by default, it can be changed

of course. Together with the threshold 2.2s for maximal gap it creates environment

where the dynamic control is being frequently used. Because of the lack of pedestrian

crossing stages and the fact, that the measured intensity is not very high, it takes part

only a few times even with the threshold set to 3s with the original intensity. That is

why the default increase of vehicle inputs is such a big number.

Every editable field is protected by verification functions to prevent setting

inappropriate value. It shows an error message with a specification how the string or

value should look like every time, when a wrong format of number is being inputted.

For example, the threshold value verification functions look like this:
ThresHold = str2double(get(hObject, 'String'));
if isnan(ThresHold)
 set(hObject, 'String', 2.2);
 errordlg('Input must be a number','Error');
end
ThresHold=str2num(get(hObject, 'String'));
if sum(size(ThresHold)) > 2
 set(hObject, 'String', 2.2);
 errordlg('Input must be a one dimensional number','Error');
end
if ThresHold < 0
 set(hObject, 'String', 2.2);
 errordlg('Input must be a possitive number','Error');
end

The size generates two values for one dimensional element [1 1], sum of it makes 2.

That is why the condition is >2.

The output values are stored in application-defined data. This data is visible within the

Matlab program so it does not disappear after closing the GUI. Unfortunately, when

the aim was to start the main program automatically from the GUI, this data was not

transferred properly and the main program could not operate. For this reason, only

information message appears after clicking on the button Execute. The message

includes the information that the GUI can be closed and to execute the main program,

vis_decin should be typed in the command window. It can work only if these files are

in the same folder. The vis_decin is a name of the main program.

For example, to set a value to the application-defined data can look like this:
setappdata(0,'Quickmode',get(handles.Quickmode,'Value'));

It needs to be specified inside of the function for the Execute button. Then in the main

M-File it can be called and stored in a new variable:
qm = getappdata(0,'Quickmode');

After that, it needs to be cleared from the memory so that it will not interfere in a case

that the program is launched again:
rmappdata(0,'Quickmode')

The whole source code can be found in the appendix section and in electronic

attachments together with the *.fig file.

Page | 51

3.2.3 Outputs

In this subchapter, analysis of results can be found here together with the

interpretation. Results are stored in matrixes and variables and Matlab provides several

filtering and data processing methods as well as powerful graph printing tools. So, in

this situation, there is no necessity to transmit results for analysis and representation

to a different programs or files. Results in figures and tables in this subchapter come

from the main program with a specific setting.

The GUI was set to all scenarios including increased vehicle inputs, the increase was

set to 350% and the threshold value for the detector was set to 2.2s. It was run using

the quick mode and the period time took 3600s. Vehicle input start time was set to 60th

minute and the random seed was 17 with the never change choice.

There are together three figures containing 12 graphs in total and the stand-alone

results are in tables in command window.

3.2.3.1 Travel Time

Very important quantity from traffic simulation is the travel time. As it was specified

in the model creating section, there are two measured sections in opposite direction.

The average values for every measure interval are collected for all vehicle classes

together in a matrix. For all scenarios with the increase function, there are six sets of

data. A logical fact is, that the travel time cannot be equal to zero, but there are zeros

in matrix coming from intervals where no vehicle took this path within the specified

time. To get rid of these zeros to avoid having corrupted data, there is a possibility to

replace them by the closest neighbour:

prov = TT(1,:);
 pr = size(find(prov~=0));
 if pr(2)>=2
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap

');
 end
 TTA(1,:)=prov;

The prov and pr are just auxiliary variables, because in this form, it cannot work with

matrix. The condition is there because it works only when there are at least two non-

zero values. The result values are displayed in Figure 22. Two top graphs represent the

direction of Ústecká – Podmokelská, lower graphs represent the opposite direction.

The left side represents standard vehicle inputs and on the right side, there are

increased values. The red line is for the standard 60s cycle, green represents 70s and

the dynamic control is displayed by blue. It is in the legend box within the last graph.

The same key applies to all other graphs. In the Matlab figures it is possible to zoom

in each graph for better understanding. If there will be straight lines in the graphs,

equal to zero in whole length, it means that specific scenario, corresponding to the

colour, was not selected in the GUI. Graphs are generated automatically and there is

no function to eliminate printing such scenarios. But it is not very difficult to do so.

Page | 52

Figure 22: Results of travel time measurement

The code belonging to graphs representation is visible in appendix section. It was

necessary to edit axes a bit to represent the whole period time and nothing else.

During the analysis of results, sometimes it is very important to get the data smoother

when there is too much of it and it is difficult to understand it. There is a handful

function in Matlab available from version R2016a called movmean. It works on a

principle of floating window. The size of the window can be very easily set. For these

results value 5 was used. It is specified in the beginning of the main program and can

be edited. It could be also very easily planted to the GUI to set this value by user. The

biggest advantage of this function is a fact, that it fills the edge spaces, so it has the

same length as before. The principle of floating window is that it makes mean of

desired number of values and shift by one and do the same. After whole array is done,

it is replaced by those new values. Other functions working with the floating mean

create empty edges and the generated structure do not correspond to the axis values

then. The previous graph smothered by this moving mean function is visible in Figure

23. Other graphs are automatically smothered by this function as well.

Page | 53

Figure 23: Smooth results of travel time measurement

Next to the graph of data from measure intervals, another output is a table with one

dimensional values. Those are overall results from the simulation. Maximal and

average travel times are calculated from all vehicle classes, but then average values

are also separated to each vehicle class. At the end of the program, data is collected

together in matrixes and those are simply represented in the command window by

using table function, which is available in Matlab since version R2013b. For older

versions, there is an alternative function printmat. Unfortunately, this alternative

function does not work in the newest versions.

Results from the specified testing are shown in Table 4 and 5. The first row and column

are used from the old printmat function in all tables. In the command window, there

are names of columns separated by short horizontal lines with the table function. It is

better for orientation but the old form is better usable here in printing results. So, after

running the program, tables will slightly differ in heading from these.

Table 4: Travel time Ústecká-Podmokelská [s]

 personal_veh trucks buses all max_all

60s 38.48411 39.38676 NaN 38.45934 55.33964

increase 90.97753 94.31275 NaN 91.04598 132.78169

70s 38.88332 36.33027 NaN 38.79194 61.21064

increase 87.53287 86.91873 NaN 87.59668 123.99445

60to70s 38.28510 40.34234 NaN 38.27074 54.69068

increase 90.19942 91.76606 NaN 90.16227 139.61833

Page | 54

Table 5: Travel time Podmokelská-Ústecká [s]

 personal_veh trucks buses all max_all

60s 51.96274 50.27360 NaN 51.87680 66.45248

increase 60.85013 60.46217 NaN 61.15895 94.37318

70s 52.15607 49.88429 NaN 51.99071 70.13293

increase 59.58591 58.23984 NaN 59.55893 91.90840

60to70s 52.24057 50.96316 NaN 52.17678 71.33331

increase 59.33382 54.86031 NaN 59.19931 78.88195

Those NAN values in bus sections mean that no buses took this path during the tested

time. In this case, they could have been left out from the evaluation. But it is about

showing possibilities, so this category remains. The first column represents the average

travel time for personal vehicle, then for trucks in the second column followed by

buses. In the fourth column, there is average for all vehicle classes and in the last one

there maximum of all measured intervals for all vehicle classes.

Next to the travel times, interesting quantity is vehicle delay. In Vissim it is

calculated from travel times. It is obtained from the same measure points. Here, some

values can be equal to zero, when vehicles catch the green signal and there is nothing

in front of them slowing them down. The data is smothered at least. It is visible in

Figure 24. Separated results are again in tables. Concretely Table 6 and 7.

Figure 24: Smooth results of delay measurement

Page | 55

Table 6: Delay Ústecká-Podmokelská [s]

 personal_veh trucks buses all max_all

60s 5.29518 6.80330 NaN 5.27240 20.41135

increase 57.80178 61.24202 NaN 57.86141 98.44872

70s 5.73458 3.88357 NaN 5.69350 26.99608

increase 54.21337 53.78643 NaN 54.33575 90.30011

60to70s 5.11052 7.68310 NaN 5.10712 21.82998

increase 56.99272 58.59539 NaN 56.97582 106.21658

Table 7: Delay Podmokelská- Ústecká [s]

 personal_veh trucks buses all max_all

60s 4.07320 2.13421 NaN 4.00311 20.73937

increase 12.91136 12.33276 NaN 12.91136 46.39114

70s 4.19253 2.02754 NaN 4.03900 21.00708

increase 11.32182 10.26869 NaN 11.30295 41.94432

60to70s 4.31165 2.88370 NaN 4.26698 22.45904

increase 10.95791 6.34334 NaN 10.82042 29.53059

3.2.3.2 Queue Length

Queue length can be counted only for all vehicle classes. That is why results are in

smaller tables (Table 8 and 9). Values are counted in meters. In this section, data can

contain zero values again. That is why those are not replaced. It is clear in Figure 25,

where all values from measured intervals are displayed.

Table 8: Queue Ústecká-Podmokelská [m]

 all max_all

60s 2.63293 17.57276

increase 77.10625 154.94151

70s 2.28999 15.14649

increase 73.26252 155.98601

60to70s 2.53271 22.69647

increase 72.28373 149.66903

Page | 56

Table 9: Queue Podmokelská-Ústecká [m]

 all max_all

60s 1.97934 13.60532

increase 57.12998 98.31237

70s 1.84084 15.48875

increase 49.90600 128.80008

60to70s 2.10707 13.46977

increase 52.17921 116.92002

Figure 25: Smooth results of queue measurement

3.2.3.3 Evaluation

For queue and delay, wider floating window could have brought even smoother results.

There is the first graph in Figure 26 for better observation. It is clear from all graphs

and tables, that there is not very big difference between the original signal plan and

the dynamic control. The dynamic control looks a little bit better, but to think about

implementing this system based on these results would not be reasonable for such

network. The only possible outcome could be that the cycle of 70s would not work

well here. And to get better data for the dynamic control, some more testing should

have been done. It was done only as an example for 3600s even though there is more

vehicle inputs data. Also, some more threshold values could be tested.

Page | 57

Figure 26: Detail of the first graph

 There are many other possibilities to evaluate model in Vissim. It allows for example

to store in a log file all events when public transportation stopped. There is also a

possibility to measure vehicle speed by Matlab and so on.

Page | 58

Chapter 4

Future Vissim COM Usage

PTV Vissim is designed to cover all traffic situations that can occur during the present

state of infrastructure and fleet. Regarding mainly the Europe.

Thanks to the COM interface and the number of available detectors, it can be simulated

many situations regarding future trends of the traffic. It can be in a sense of intelligent

infrastructure together with intelligent vehicles or autonomous vehicles and so on.

4.1 Intelligent Infrastructure

Thanks to the detectors and information about all vehicles in the network, that Vissim

provides over the COM, it can be simulated such conditions that respond to the

advanced development of communication between vehicles and infrastructure. For

example, in dependence on formation of some traffic excess, the infrastructure will be

able to transfer such information with vehicles and find out an alternative way for

continuous driving or at least minimal delay. Closing of arbitrary link can be reached

for example by changing of routing together with the signal plan in M-File. It can be

changed whenever during the simulation.

Many other similar or even more complex situations can be simulated. A practical

example is created just for the following subchapter.

4.2 Autonomous Vehicles

Likely progression in the area of autonomous vehicles is their platooning into clusters

depending on their speed and routing. All thanks to the vehicle to vehicle

communication and included sensors. Benefits could be reduced fuel or battery

consumption thanks to the air flow (especially for trucks) and the increased capacity

of communications. [5]

Such conditions are not easy to simulate in Vissim. But there is a possibility to create

these platoons directly in vehicle inputs. A simplified example is concretely designed

below.

In the first place, it is necessary to create the infrastructure in Vissim. For this case, a

one-way, single lane communication is used. The road is crossed by pedestrian path.

The crossing is secured by traffic lights. An inductive loop is present approximately

one meter before the stop line. The working length is two meters back. The second

Page | 59

inductive loop is situated near the vehicle input spot. This one is ten metres long. The

reason is getting states in whole seconds. There is a possibility to shorten the loop, but

the state would have to be checked several times per second so that no vehicle would

pass without detection. In real, this loop would be replaced by shorter one or it would

disappear at all, because vehicles might communicate directly with some part of signal

controller in the future. The whole idea is to prepare a free way for an approaching

cluster of vehicle through an intersection in a desired way, so that other ways would

provide a green signal for pedestrians. The routing preferences from the cluster can be

obtained by functions in M-File. Here it is just simplified to the crossing. The modelled

situation is in Figure 27.

Figure 27: Vissim model for clusters of vehicles

When the infrastructure is ready, vehicle and pedestrian inputs should follow as well

as routing. The future vision could also contain an assumption that the leading vehicle

would go by a homogenous speed in straight sections. The speed could be probably

even higher in cities where only electrical autonomous vehicle could attend the

infrastructure. In this example, the speed of 58km/h is used. There is a necessity to

create a new speed class in Vissim. The access is through Base Data -> Distributions

-> Desired Speed. Here add… and set the LowerBound and UpperBound. Both are

read only, so it cannot be done via Matlab. Important note is that both values cannot

be set to the same number. But even the difference of 0.01km/h satisfies the condition.

In the model example a new speed class id104 with 58.00-58.01km/h is created.

Platooning or clustering is achieved by vehicle input which is being changed every

second. For a few seconds, there is a demand of extreme amount of vehicles. It is

followed by multiple longer time of zero vehicle input. Values are loaded from a text

file. Regarding vehicle composition, there is one new category necessary to be created

in Vissim. It is then set in M-File to only personal vehicles.

For a more homogenous cluster in a sense of lowered spaces between vehicles, a

Driving behaviour would need to be adjusted. A major influence on that has the value

max. look ahead distance, it can be lowered, but it dramatically increases the

probability of vehicle indifference towards the traffic lights. When using a different

Car following model – no interaction, it has the same result. But the probability here

is equal to one. So it is completely useless to install signal heads into such network.

The alternative could be using parking lot to generate vehicles or traffic lights at the

Page | 60

beginning of the network to cumulate them. It would take over the function of specified

vehicle input. But there would be necessary to set the acceleration of vehicles to the

same parameters. But this example is not based on that solution.

The control of this model works on the principle of setting the pedestrians green states

all the time when there are no vehicles. When a cluster approaches, it is interrupted for

the minimal possible time so that vehicles can go through the crossing without

reducing their speed. And just after that, the green state is again returned to pedestrians.

This necessary time is calculated on the basis of vehicle speed (specified for all

vehicles, but can be obtained from the detector as well) and distance of the first

detector from the stop line. An interstage is started after subtraction of interstage time

and verification of safe escaping the crossing from pedestrians and the minimal state

duration. After the cluster leaves, there is again the green state for pedestrians after

another interstage and red stage for vehicle.

If there are many clusters tightly in a row or a really long one, the minimal stage is

prolonged, but only to the maximal value. If that happens and not all vehicles came

through the crossing, pedestrians get their stage but only for the minimal time and then

vehicles are free to drive again. When there are no others on the horizon, the stage

ends quickly and pedestrians are free to go and the cycle repeats from the beginning.

The program can be found in the appendix section. The electronic attachment includes

the Vissim model as well.

Page | 61

Conclusion

It is clear that connecting these two programs can bring new possibilities in simulations

running as well as in results evaluating. The most significant advantage lies in the

model testing of scenarios based on signal plans created in Vissig. The algorithm can

be extended by multiple running of each scenario just with different random seed,

averaged together to get more objective results.

To create fixed time signal plan, it is much easier to do it in Vissig. It showed up that

developing of some interface for signal plans creating by just setting parameters would

be pointless in a share of the Vissig, since this or some other module is obligatory to

be present for using signal heads. But when the aim is to avoid the VisVap module to

create some dynamic signal plan or to create more complex solution with changing

some parameters inside of the signal plan, it can be all perfectly done by Matlab M-

File.

The opportunity of continuing with these papers lies in a possibility to extend the

model testing algorithm by mentioned multiple runs and to deal with the issue of

providing data from the GUI to a different M-File. Also, a dynamic assignment within

a wider network (an area with more intersections and several possibilities of choosing

different paths) can be examined for possibilities of utilization the COM interface with

Matlab. Last but not least, some more data evaluation can be done in Matlab to show

more possibilities in filtering and representing of results.

Page | 62

Bibliography

1. PTV Vissim Help: Product help [online]. PTV, 2015 [cit. 2017-05].

2. PTV Vissim 7 - Introduction to the COM API [online]. PTV AG. D-76131

Karlsruhe, Germany, 2015 [cit. 2017-05].

3. External Interfaces [online]. MATHWORKS, INC. MATLAB. U.S., 2015 [cit.

2017-05].

4. Programming Fundamentals [online]. MATHWORKS, INC. MATLAB. U.S.,

2015 [cit. 2017-05].

5. FERNANDES, Pedro and Urbano NUNES. Platooning With DSRC-Based

IVC-Enabled Autonomous Vehicles: Adding Infrared Communications for IVC

Reliability Improvement. 2012 Intelligent Vehicles Symposium [online]. Spain,

2012, 517-522 [cit. 2017-05].

Page | 63

ANNEXES

Page | 64

Appendix A

Source codes

The electronical attachment is divided into two folders. The first one contains the

Vissim and Matlab files for the Děčín model as well as some other important files

(vehicle inputs, background and so on). The second folder contains files for the

Autonomous Vehicles chapter. Here, in the offline version of attachments, three M-

Files are printed.

GUI

The following Table 10 contains the source code of the GUI for the main program

(decin_gui.m).

 Table 10: GUI source code

1 function varargout = decin_gui(varargin)

2 gui_Singleton = 1;

3 gui_State = struct('gui_Name', mfilename, ...

4 'gui_Singleton', gui_Singleton, ...

5 'gui_OpeningFcn', @decin_gui_OpeningFcn, ...

6 'gui_OutputFcn', @decin_gui_OutputFcn, ...

7 'gui_LayoutFcn', [] , ...

8 'gui_Callback', []);

9 if nargin && ischar(varargin{1})

10 gui_State.gui_Callback = str2func(varargin{1});

11 end

12

13
if nargout

14 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

15 else

16 gui_mainfcn(gui_State, varargin{:});

17 end

18 function decin_gui_OpeningFcn(hObject, eventdata, handles, varargin)

19 handles.output = hObject;

20 guidata(hObject, handles);

21 function varargout = decin_gui_OutputFcn(hObject, eventdata, handles)

22 varargout{1} = handles.output;

23 set(handles.scenario1,'value',1)

24 if get(handles.Run2nd,'Value') == 0

25 set(handles.Increase,'Visible','off');

26 end

27 if get(handles.scenario3,'Value') == 0

28 set(handles.ThresHold,'Visible','off');

29 end

30 function execute_Callback(hObject, eventdata, handles)

31 setappdata(0,'scenario1',get(handles.scenario1,'Value'));

32 setappdata(0,'scenario2',get(handles.scenario2,'Value'));

33 setappdata(0,'scenario3',get(handles.scenario3,'Value'));

34 setappdata(0,'Run2nd',get(handles.Run2nd,'Value'));

35 setappdata(0,'ThresHold',str2num(get(handles.ThresHold,'String')));

36 setappdata(0,'Increase',str2num(get(handles.Increase,'String')));

37 setappdata(0,'PeriodTime',str2num(get(handles.PeriodTime,'String')));

38 setappdata(0,'RandomSeed',str2num(get(handles.RandomSeed,'String')));

39 setappdata(0,'VehinStart',str2num(get(handles.VehinStart,'String')));

40 setappdata(0,'RandomChange',get(handles.RandomChange,'Value'));

41 setappdata(0,'Quickmode',get(handles.Quickmode,'Value'));

42
msgbox('Please close the GUI and type vis_decin in Command Window to execute

the main program','Note','Help');

Page | 65

43 function RandomSeed_Callback(hObject, eventdata, handles)

44 RandomSeed = str2double(get(hObject, 'String'));

45 if isnan(RandomSeed)

46 set(hObject, 'String', 1);

47 errordlg('Input must be a number','Error');

48 end

49 RandomSeed=str2num(get(hObject, 'String'));

50 if sum(size(RandomSeed)) > 2

51 set(hObject, 'String', 1);

52 errordlg('Input must be a one dimensional number','Error');

53 end

54 if (RandomSeed < 0) || (RandomSeed > 2147483647) || (rem(RandomSeed, 1)>0)

55 set(hObject, 'String', 1);

56 errordlg('Input must be a Natural number between 1 to 2147483647','Error');

57 end

58 function RandomSeed_CreateFcn(hObject, eventdata, handles)

59
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

60 set(hObject,'BackgroundColor','white');

61 end

62 function RandomChange_Callback(hObject, eventdata, handles)

63 function RandomChange_CreateFcn(hObject, eventdata, handles)

64
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

65 set(hObject,'BackgroundColor','white');

66 end

67 function PeriodTime_Callback(hObject, eventdata, handles)

68 PeriodTime = str2double(get(hObject, 'String'));

69 if isnan(PeriodTime)

70 set(hObject, 'String', 3600);

71 errordlg('Input must be a number','Error');

72 end

73 PeriodTime=str2num(get(hObject, 'String'));

74 if sum(size(PeriodTime)) > 2

75 set(hObject, 'String', 3600);

76 errordlg('Input must be a one dimensional number','Error');

77 end

78 if PeriodTime < 60

79 set(hObject, 'String', 3600);

80 errordlg('Too low value! (At least 60)','Error');

81 end

82 if rem(PeriodTime, 1)>0

83 set(hObject, 'String', 3600);

84 errordlg('Input must be a Natural number!','Error');

85 end

86 function PeriodTime_CreateFcn(hObject, eventdata, handles)

87
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

88 set(hObject,'BackgroundColor','white');

89 end

90 function VehinStart_Callback(hObject, eventdata, handles)

91 VehinStart = str2double(get(hObject, 'String'));

92 if isnan(VehinStart)

93 set(hObject, 'String', 1);

94 errordlg('Input must be a number','Error');

95 end

96 VehinStart=str2num(get(hObject, 'String'));

97 if sum(size(VehinStart)) > 2

98 set(hObject, 'String', 1);

99 errordlg('Input must be a one dimensional number','Error');

100 end

101 if (VehinStart <= 0) || (VehinStart > 240) || (rem(VehinStart, 1)>0)

102 set(hObject, 'String', 1);

103 errordlg('Input must be a Natural number between 1 to 240','Error');

104 end

105 function VehinStart_CreateFcn(hObject, eventdata, handles)

106
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

107 set(hObject,'BackgroundColor','white');

108 end

109 function scenario1_Callback(hObject, eventdata, handles)

110 function scenario2_Callback(hObject, eventdata, handles)

111 function scenario3_Callback(hObject, eventdata, handles)

112 if get(handles.scenario3,'Value') == 0

113 set(handles.ThresHold,'Visible','off');

114 else

115 set(handles.ThresHold,'Visible','on');

Page | 66

116 end

117 function ThresHold_Callback(hObject, eventdata, handles)

118 ThresHold = str2double(get(hObject, 'String'));

119 if isnan(ThresHold)

120 set(hObject, 'String', 2.2);

121 errordlg('Input must be a number','Error');

122 end

123 ThresHold=str2num(get(hObject, 'String'));

 124 if sum(size(ThresHold)) > 2

125 set(hObject, 'String', 2.2);

126 errordlg('Input must be a one dimensional number','Error');

127 end

128 if ThresHold < 0

129 set(hObject, 'String', 2.2);

130 errordlg('Input must be a possitive number','Error');

131 end

132 function ThresHold_CreateFcn(hObject, eventdata, handles)

133
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

134 set(hObject,'BackgroundColor','white');

135 end

136 function Run2nd_Callback(hObject, eventdata, handles)

137 if get(handles.Run2nd,'Value') == 0

138 set(handles.Increase,'Visible','off');

139 else

140 set(handles.Increase,'Visible','on');

141 end

142 function Increase_Callback(hObject, eventdata, handles)

143 Increase = str2double(get(hObject, 'String'));

144 if isnan(Increase)

145 set(hObject, 'String', 350);

146 errordlg('Input must be a number','Error');

147 end

148 Increase=str2num(get(hObject, 'String'));

149 if sum(size(Increase)) > 2

150 set(hObject, 'String', 350);

151 errordlg('Input must be a one dimensional number','Error');

152 end

153 if Increase < 0

154 set(hObject, 'String', 350);

155 errordlg('Input must be a possitive number','Error');

156 end

157 function Increase_CreateFcn(hObject, eventdata, handles)

158
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

159 set(hObject,'BackgroundColor','white');

160 end

161 function Quickmode_Callback(hObject, eventdata, handles)

Main program

In the next Table 11, source code for the main program appears (vis_decin.m).

Table 11: Source code of the main program

1 %decin

2 clear all;

3 close all;

4 disp('Program vis_decin.m running');

5 disp('Initializing... (It might take a while)');

6 Vissim = actxserver('Vissim.Vissim.700'); % Start Vissim

7 Vissim.LoadNet

8 sim=Vissim.simulation;

9 vnet=Vissim.Net;

10 %Declaration:

11 scenario=zeros(3,2);

12 step_time = 10;

13 max_cores = 4;

14 window = 5;

15 maxgap = getappdata(0,'ThresHold');

16 increase = (getappdata(0,'Increase')/100)+1;

17 period_time = getappdata(0,'PeriodTime');

18 random_seed = getappdata(0,'RandomSeed');

Page | 67

19 startcol = ceil(getappdata(0,'VehinStart')/5);

20 seed_change = getappdata(0,'RandomChange');

21 qm = getappdata(0,'Quickmode');

22 if getappdata(0,'scenario1')==1

23 scenario(1,1) = 1;

24 if getappdata(0,'Run2nd')==1

25 scenario(1,2) = 1;

26 end

27 end

28 if getappdata(0,'scenario2')==1

29 scenario(2,1) = 1;

30 if getappdata(0,'Run2nd')==1

31 scenario(2,2) = 1;

32 end

33 end

34 if getappdata(0,'scenario3')==1

35 scenario(3,1) = 1;

36 if getappdata(0,'Run2nd')==1

37 scenario(3,2) = 1;

38 end

39 end

40 rmappdata(0,'ThresHold')

41 rmappdata(0,'Increase')

42 rmappdata(0,'PeriodTime')

43 rmappdata(0,'RandomSeed')

44 rmappdata(0,'VehinStart')

45 rmappdata(0,'RandomChange')

46 rmappdata(0,'scenario1')

47 rmappdata(0,'scenario2')

48 rmappdata(0,'scenario3')

49 rmappdata(0,'Quickmode')

50 %Sim parameters assignment

51 sim.set('AttValue', 'SimPeriod', period_time);

52 sim.set('AttValue', 'SimRes', step_time);

53 sim.set('AttValue', 'NumCores', max_cores);

54 set(Vissim.Simulation, 'AttValue', 'RandSeed', random_seed);

55 set(Vissim.Graphics.CurrentNetworkWindow, 'AttValue', 'QuickMode', qm);

56 %Defining signal controllers & detectors

57 SCs = vnet.SignalControllers.GetAll;

58 SG(1,1)=SCs{1}.SGs.ItemByKey(1);

59 SG(1,2)=SCs{1}.SGs.ItemByKey(2);

60 SG(2,1)=SCs{2}.SGs.ItemByKey(1);

61 SG(2,2)=SCs{2}.SGs.ItemByKey(2);

62 dets = SCs{1}.Detectors.GetAll;

63 det1 = dets{1};

64 %Defining composition

65 Composs= vnet.VehicleCompositions.GetAll;

66 Rel_Flows=Composs{2}.VehCompRelFlows.GetAll;

67 set(Rel_Flows{1}, 'AttValue', 'VehType', 100);

68 set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 50);

69 Rel_Flows=Composs{3}.VehCompRelFlows.GetAll;

70 set(Rel_Flows{1}, 'AttValue', 'VehType', 200);

71 set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 50);

72 Rel_Flows=Composs{4}.VehCompRelFlows.GetAll;

73 set(Rel_Flows{1}, 'AttValue', 'VehType', 300);

74 set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 50);

75 %Defining routing VehClasses

76 routingsource=vnet.VehicleRoutingDecisionsStatic.GetAll;

77 routingsource{1}.set('AttValue', 'AllVehTypes', 'false');

78 routingsource{1}.set('AttValue', 'VehClasses', 10);

79 routingsource{2}.set('AttValue', 'AllVehTypes', 'false');

80 routingsource{2}.set('AttValue', 'VehClasses', 20);

81 routingsource{3}.set('AttValue', 'AllVehTypes', 'false');

82 routingsource{3}.set('AttValue', 'VehClasses', 30);

83 routingsource{4}.set('AttValue', 'AllVehTypes', 'false');

84 routingsource{4}.set('AttValue', 'VehClasses', 10);

85 routingsource{5}.set('AttValue', 'AllVehTypes', 'false');

86 routingsource{5}.set('AttValue', 'VehClasses', 20);

87 routingsource{6}.set('AttValue', 'AllVehTypes', 'false');

88 routingsource{6}.set('AttValue', 'VehClasses', 30);

89 routingsource{7}.set('AttValue', 'AllVehTypes', 'false');

90 routingsource{7}.set('AttValue', 'VehClasses', 10);

91 routingsource{8}.set('AttValue', 'AllVehTypes', 'false');

92 routingsource{8}.set('AttValue', 'VehClasses', 20);

93 routingsource{9}.set('AttValue', 'AllVehTypes', 'false');

94 routingsource{9}.set('AttValue', 'VehClasses', 30);

95 routingsource{10}.set('AttValue', 'AllVehTypes', 'false');

Page | 68

96 routingsource{10}.set('AttValue', 'VehClasses', 10);

97 routingsource{11}.set('AttValue', 'AllVehTypes', 'false');

98 routingsource{11}.set('AttValue', 'VehClasses', 30);

99 routingsource{12}.set('AttValue', 'AllVehTypes', 'false');

100 routingsource{12}.set('AttValue', 'VehClasses', 10);

101 routingsource{13}.set('AttValue', 'AllVehTypes', 'false');

102 routingsource{13}.set('AttValue', 'VehClasses', 10);

103 %Defining VehCompositions on Inputs

104 vehins=vnet.VehicleInputs.GetAll;

105 vehins{1}.set('AttValue', 'VehComp(1)', 2);

106 vehins{2}.set('AttValue', 'VehComp(1)', 3);

107 vehins{3}.set('AttValue', 'VehComp(1)', 4);

108 vehins{4}.set('AttValue', 'VehComp(1)', 2);

109 vehins{5}.set('AttValue', 'VehComp(1)', 3);

110 vehins{6}.set('AttValue', 'VehComp(1)', 4);

111 vehins{7}.set('AttValue', 'VehComp(1)', 2);

112 vehins{8}.set('AttValue', 'VehComp(1)', 3);

113 vehins{9}.set('AttValue', 'VehComp(1)', 4);

114 vehins{10}.set('AttValue', 'VehComp(1)', 2);

115 vehins{11}.set('AttValue', 'VehComp(1)', 4);

116 vehins{12}.set('AttValue', 'VehComp(1)', 2);

117 vehins{13}.set('AttValue', 'VehComp(1)', 2);

118 %other simulation parameters

119 verify = [1 5*60];

120 offset = 22;

121 EOS=sum(scenario(:,1))+sum(scenario(:,2));

122 period_meas = 30;

123 %zero matrix for evaluation

124 x=period_meas:period_meas:period_time;

125 if rem(period_time, period_meas) ~= 0

126 x(length(x)+1)=period_time;

127 end

128 DelayA=zeros(3,length(x));

129 DelayB=zeros(3,length(x));

130 TTA=zeros(3,length(x));

131 TTB=zeros(3,length(x));

132 QA=zeros(3,length(x));

133 QB=zeros(3,length(x));

134 DelayA2=zeros(3,length(x));

135 DelayB2=zeros(3,length(x));

136 TTA2=zeros(3,length(x));

137 TTB2=zeros(3,length(x));

138 QA2=zeros(3,length(x));

139 QB2=zeros(3,length(x));

140 maxQA=zeros(3,1);

141 maxQB=zeros(3,1);

142 avgQA=zeros(3,1);

143 avgQB=zeros(3,1);

144 maxDelayA=zeros(3,1);

145 maxDelayB=zeros(3,1);

146 avgDelayA=zeros(3,1);

147 avgDelayB=zeros(3,1);

148 maxTTA=zeros(3,1);

149 maxTTB=zeros(3,1);

150 avgTTA=zeros(3,1);

151 avgTTB=zeros(3,1);

152 avgDelaypA=zeros(3,1);

153 avgDelaypB=zeros(3,1);

154 avgDelaytA=zeros(3,1);

155 avgDelaytB=zeros(3,1);

156 avgDelaybA=zeros(3,1);

157 avgDelaybB=zeros(3,1);

158 avgTTpA=zeros(3,1);

159 avgTTpB=zeros(3,1);

160 avgTTtA=zeros(3,1);

161 avgTTtB=zeros(3,1);

162 avgTTbA=zeros(3,1);

163 avgTTbB=zeros(3,1);

164 maxQA2=zeros(3,1);

165 maxQB2=zeros(3,1);

166 avgQA2=zeros(3,1);

167 avgQB2=zeros(3,1);

168 maxDelayA2=zeros(3,1);

169 maxDelayB2=zeros(3,1);

170 avgDelayA2=zeros(3,1);

171 avgDelayB2=zeros(3,1);

172 maxTTA2=zeros(3,1);

Page | 69

173 maxTTB2=zeros(3,1);

174 avgTTA2=zeros(3,1);

175 avgTTB2=zeros(3,1);

176 avgDelaypA2=zeros(3,1);

177 avgDelaypB2=zeros(3,1);

178 avgDelaytA2=zeros(3,1);

179 avgDelaytB2=zeros(3,1);

180 avgDelaybA2=zeros(3,1);

181 avgDelaybB2=zeros(3,1);

182 avgTTpA2=zeros(3,1);

183 avgTTpB2=zeros(3,1);

184 avgTTtA2=zeros(3,1);

185 avgTTtB2=zeros(3,1);

186 avgTTbA2=zeros(3,1);

187 avgTTbB2=zeros(3,1);

188 %simulation

189 for j=1:EOS

190 if scenario(1,1)==1

191 if (seed_change == 1) || (seed_change == 2)

192 format longG

193 random_seed = round(2147483646*rand)+1;

194 set(Vissim.Simulation, 'AttValue', 'RandSeed', random_seed);

195 format short

196 end

197 cycle = 60;

198 green(1) = 35;

199 green(2) = green(1);

200 maxgreen=0;

201 load vehinsmatrix.txt;

202 scenario(1,1)=2;

203 disp('Scenario 1,1 running');

204 elseif scenario(1,2)==1

205 if (seed_change == 1)

206 format longG

207 random_seed = round(2147483646*rand)+1;

208 set(Vissim.Simulation, 'AttValue', 'RandSeed', random_seed);

209 format short

210 end

211 cycle = 60;

212 green(1) = 35;

213 green(2) = green(1);

214 maxgreen=0;

215 load vehinsmatrix.txt;

216 vehinsmatrix=vehinsmatrix*increase;

217 scenario(1,2)=2;

218 disp('Scenario 1,2 running');

219 elseif scenario(2,1)==1

220 if (seed_change == 1) || (seed_change == 2)

221 format longG

222 random_seed = round(2147483646*rand)+1;

223 set(Vissim.Simulation, 'AttValue', 'RandSeed', random_seed);

224 format short

225 end

226 cycle = 70;

227 green(1) = 45;

228 green(2) = green(1);

229 maxgreen=0;

230 load vehinsmatrix.txt;

231 scenario(2,1)=2;

232 disp('Scenario 2,1 running');

233 elseif scenario(2,2)==1

234 if (seed_change == 1)

235 format longG

236 random_seed = round(2147483646*rand)+1;

237 set(Vissim.Simulation, 'AttValue', 'RandSeed', random_seed);

238 format short

239 end

240 cycle = 70;

241 green(1) = 45;

242 green(2) = green(1);

243 maxgreen=0;

244 load vehinsmatrix.txt;

245 vehinsmatrix=vehinsmatrix*increase;

246 scenario(2,2)=2;

247 disp('Scenario 2,2 running');

248 elseif scenario(3,1)==1

249 if (seed_change == 1) || (seed_change == 2)

Page | 70

250 format longG

251 random_seed = round(2147483646*rand)+1;

252 set(Vissim.Simulation, 'AttValue', 'RandSeed', random_seed);

253 format short

254 end

255 cycle = 60;

256 green(1) = 35;

257 green(2) = green(1);

258 maxgreen=45;

259 load vehinsmatrix.txt;

260 scenario(3,1)=2;

261 disp('Scenario 3,1 running');

262 elseif scenario(3,2)==1

263 if (seed_change == 1)

264 format longG

265 random_seed = round(2147483646*rand)+1;

266 set(Vissim.Simulation, 'AttValue', 'RandSeed', random_seed);

267 format short

268 end

269 cycle = 60;

270 green(1) = 35;

271 green(2) = green(1);

272 maxgreen=45;

273 load vehinsmatrix.txt;

274 vehinsmatrix=vehinsmatrix*increase;

275 scenario(3,2)=2;

276 disp('Scenario 3,2 running');

277 end

278 stage = [0 0];

279 change = [0 0;0 0];

280 terminate = [0 0];

281 start_time = [0 0];

282 sim_sec = 0;

283 claim1 = 1;

284 startshift = 0;

285 gap1 = 0;

286 c=1;

287 vehTTs1 = vnet.VehicleTravelTimeMeasurements.ItemByKey(1);

288 vehTTs2 = vnet.VehicleTravelTimeMeasurements.ItemByKey(2);

289 queue1 = vnet.QueueCounters.ItemByKey(1);

290 queue2 = vnet.QueueCounters.ItemByKey(2);

291 del1 = vnet.DelayMeasurement.ItemByKey(1);

292 del2 = vnet.DelayMeasurement.ItemByKey(2);

293 TT = [0;0];

294 Q = [0;0];

295 TTactual = [0;0];

296 TTsum = [0;0];

297 Qlenactual = [0;0];

298 Qsum = [0;0];

299 maxQ = [0;0];

300 delactual = [0;0];

301 DLactual = [0;0];

302 DLsum = [0;0];

303 DL = [0;0];

304 %Loading VehInputs

305 row2 = 1;

306 column = startcol;

307 for var1 = 1:length(vehins)

308 vehins{var1}.set('AttValue', 'Volume(1)', vehinsmatrix(row2,column));

309 if row2 < size(vehinsmatrix,1)

310 row2=row2+1;

311 end

312 end

313 %Loading routing data

314 row = 1;

315 load routmatrix.txt

316 routing=vnet.VehicleRoutingDecisionsStatic.GetAll;

317 for var1 = 1:length(routing)

318 routingx=routing{var1}.VehRoutSta.GetAll;

319 for var2 = 1:length(routingx)

320 routingx{var2}.set('AttValue', 'RelFlow(1)', routmatrix(row,column));

321 if row < size(routmatrix,1)

322 row=row+1;

323 end

324 end

325 end

326 for i=0:(period_time*step_time)

Page | 71

327 sim.RunSingleStep;

328
 if (maxgreen ~= 0) && (stage(1) == 1) && (start_time(1) >= (green(1)-3))

&& (start_time(1) < maxgreen)

329 if claim1 == 1

330 gap1=det1.get('AttValue', 'GapTm');

331 if gap1 > maxgap

332 claim1 = 0;

333 end

334 end

335 end

336 if rem(i/step_time, verify(1))==0

337 if stage(1) == 0

338 if (start_time(1) ~= 0) && (start_time(1) == terminate(1))

339 stage(1) = 21;

340 end

341 if start_time(1) == 0

342 SG(1,1).set('AttValue', 'State', 1);

343 SG(1,2).set('AttValue', 'State', 3);

344 SG(2,1).set('AttValue', 'State', 1);

345 SG(2,2).set('AttValue', 'State', 3);

346 terminate(1) = 3;

347 end

348 start_time(1) = start_time(1) + 1;

349 if stage(1) == 21

350 start_time(1) = 0;

351 terminate(1) = 0;

352 end

353 end

354 if stage(1) == 21

355 if (start_time(1) ~= 0) && (start_time(1) == change(1,1))

356 SG(1,1).set('AttValue', 'State', 2);

357 end

358 if (start_time(1) ~= 0) && (start_time(1) == change(1,2))

359 SG(1,2).set('AttValue', 'State', 1);

360 end

361 if (start_time(1) ~= 0) && (start_time(1) == terminate(1))

362 stage(1) = 1;

363 end

364 if start_time(1) == 0

365 SG(1,2).set('AttValue', 'State', 4);

366 change(1,1) = 2;

367 change(1,2) = 3;

368 end

369 start_time(1) = start_time(1) + 1;

370 if stage(1) == 1

371 start_time(1) = 0;

372 terminate(1) = 0;

373 change(1,:) = 0;

374 end

375 end

376 if stage(1) == 12

377 if (start_time(1) ~= 0) && (start_time(1) == change(1,1))

378 SG(1,1).set('AttValue', 'State', 1);

379 end

380 if (start_time(1) ~= 0) && (start_time(1) == change(1,2))

381 SG(1,2).set('AttValue', 'State', 2);

382 end

383 if (start_time(1) ~= 0) && (start_time(1) == terminate(1))

384 stage(1) = 2;

385 end

386 if start_time(1) == 0

387 SG(1,1).set('AttValue', 'State', 4);

388 terminate(1) = 6;

389 change(1,1) = 3;

390 change(1,2) = 4;

391 end

392 start_time(1) = start_time(1) + 1;

393 if stage(1) == 2

394 start_time(1) = 0;

395 terminate(1) = 0;

396 change(1,:) = 0;

397 end

398 end

399 if stage(1) == 1

400
 if (maxgreen ~= 0) && (start_time(1) >= (terminate(1)-1)) &&

(start_time(1) < (maxgreen-1))

401 if claim1 == 1

Page | 72

402 terminate(1)=terminate(1)+1;

403 end

404 end

405 if (start_time(1) ~= 0) && (start_time(1) == (terminate(1)-1))

406 stage(1) = 12;

407 end

408 if start_time(1) == 0

409 SG(1,1).set('AttValue', 'State', 3);

410 terminate(1) = green(1);

411 end

412 start_time(1) = start_time(1) + 1;

413 if stage(1) == 12

414 start_time(1) = 0;

415 terminate(1) = 0;

416 startshift = 1;

417 end

418 end

419

420 if stage(1) == 2

421 if (start_time(1) ~= 0) && (start_time(1) == (terminate(1)-1))

422 stage(1) = 21;

423 end

424 if start_time(1) == 0

425 SG(1,2).set('AttValue', 'State', 3);

426 terminate(1) = cycle - (4 + 6 + green(1));

427 end

428 start_time(1) = start_time(1) + 1;

429 if stage(1) == 21

430 start_time(1) = 0;

431 terminate(1) = 0;

432 end

433 end

434 %stages(2)

435 if stage(2) == 0

436 if (start_time(2) ~= 0) && (start_time(2) == terminate(2))

437 stage(2) = 21;

438 end

439 if start_time(2) == 0

440 terminate(2) = (offset - 4);

441 end

442 start_time(2) = start_time(2) + 1;

443 if stage(2) == 21

444 start_time(2) = 0;

445 terminate(2) = 0;

446 end

447 end

448 if stage(2) == 21

449 if (start_time(2) ~= 0) && (start_time(2) == change(2,1))

450 SG(2,1).set('AttValue', 'State', 2);

451 end

452 if (start_time(2) ~= 0) && (start_time(2) == change(2,2))

453 SG(2,2).set('AttValue', 'State', 1);

454 end

455 if (start_time(2) ~= 0) && (start_time(2) == terminate(2))

456 stage(2) = 1;

457 end

458 if start_time(2) == 0

459 SG(2,2).set('AttValue', 'State', 4);

460 terminate(2) = 8;

461 change(2,1) = 6;

462 change(2,2) = 3;

463 end

464 start_time(2) = start_time(2) + 1;

465 if stage(2) == 1

466 start_time(2) = 0;

467 terminate(2) = 0;

468 change(2,:) = 0;

469 end

470 end

471 if stage(2) == 12

472 if (start_time(2) ~= 0) && (start_time(2) == change(2,1))

473 SG(2,1).set('AttValue', 'State', 1);

474 end

475 if (start_time(2) ~= 0) && (start_time(2) == change(2,2))

476 SG(2,2).set('AttValue', 'State', 2);

477 end

478 if (start_time(2) ~= 0) && (start_time(2) == terminate(2))

Page | 73

479 stage(2) = 2;

480 end

481 if start_time(2) == 0

482 SG(2,1).set('AttValue', 'State', 4);

483 terminate(2) = 8;

484 change(2,1) = 3;

485 change(2,2) = 6;

486 end

487 start_time(2) = start_time(2) + 1;

488 if stage(2) == 2

489 start_time(2) = 0;

490 terminate(2) = 0;

491 change(2,:) = 0;

492 end

493 end

494 if stage(2) == 1

495 if startshift == 1

496 terminate(2) = start_time(2) + offset;

497 startshift = 0;

498 end

499 if (start_time(2) ~= 0) && (start_time(2) == (terminate(2)-1))

500 stage(2) = 12;

501 end

502 if start_time(2) == 0

503 SG(2,1).set('AttValue', 'State', 3);

504 end

505 start_time(2) = start_time(2) + 1;

506 if stage(2) == 12

507 start_time(2) = 0;

508 terminate(2) = 0;

509 if (maxgreen ~= 0)

510 claim1 = 1;

511 end

512 end

513 end

514 if stage(2) == 2

515 if (start_time(2) ~= 0) && (start_time(2) == (terminate(2)-1))

516 stage(2) = 21;

517 end

518 if start_time(2) == 0

519 SG(2,2).set('AttValue', 'State', 3);

520 terminate(2) = cycle - green (2) - 8 - 8;

521 end

522 start_time(2) = start_time(2) + 1;

523 if stage(2) == 21

524 start_time(2) = 0;

525 terminate(2) = 0;

526 end

527 end

528 sim_sec = sim_sec + 1;

529 end

530 if (rem(i/step_time, verify(2))==0) && i~=0

531 column = column + 1;

532 row = 1;

533 row2 = 1;

534 if column <= length(vehinsmatrix)

535 for var1 = 1:length(vehins)

536
 vehins{var1}.set('AttValue', 'Volume(1)',

vehinsmatrix(row2,column));

537 row2=row2+1;

538 end

539 end

540 if column <= length(routmatrix)

541 for var2 = 1:length(routingx)

542
 routingx{var2}.set('AttValue', 'RelFlow(1)',

routmatrix(row,column));

543 row=row+1;

544 end

545 end

546 end

547 %data collecting

548
 if (i~=0) && (rem((i)/step_time, period_meas)==0) &&

(i<((period_time*step_time)-1))

549 TTactual(1,1) = get(vehTTs1,'AttValue', 'TravTm(Current,Total,All)');

550 TTactual(2,1) = get(vehTTs2,'AttValue', 'TravTm(Current,Total,All)');

551 Qlenactual(1,1) = get(queue1,'AttValue', 'QLen(Current,Total)');

552 Qlenactual(2,1) = get(queue2,'AttValue', 'QLen(Current,Total)');

Page | 74

553 DLactual(1,1) = get(del1, 'AttValue', 'VehDelay(Current,Total,All)');

554 DLactual(2,1) = get(del2, 'AttValue', 'VehDelay(Current,Total,All)');

555 if c ~= 1

556 if isnan(TTactual(1,1))

557 TT(1,c)=0;

558 else

559 TTsum(1,1) = TTsum(1,1) + TT(1,c-1);

560 TT(1,c) = (TTactual(1,1) - TTsum(1,1));

561 end

562 if isnan(DLactual(1,1))

563 DL(1,c)=0;

564 else

565 DLsum(1,1) = DLsum(1,1) + DL(1,c-1);

566 DL(1,c) = (DLactual(1,1) - DLsum(1,1));

567 end

568 if isnan(Qlenactual(1,1))

569 Q(1,c)=0;

570 else

571 Qsum(1,1) = Qsum(1,1) + Q(1,c-1);

572 Q(1,c) = (Qlenactual(1,1) - Qsum(1,1));

573 end

574 %second direction

575 if isnan(TTactual(2,1))

576 TT(2,c)=0;

577 else

578 TTsum(2,1) = TTsum(2,1) + TT(2,c-1);

579 TT(2,c) = (TTactual(2,1) - TTsum(2,1));

580 end

581 if isnan(DLactual(2,1))

582 DL(2,c)=0;

583 else

584 DLsum(2,1) = DLsum(2,1) + DL(2,c-1);

585 DL(2,c) = (DLactual(2,1) - DLsum(2,1));

586 end

587 if isnan(Qlenactual(2,1))

588 Q(2,c)=0;

589 else

590 Qsum(2,1) = Qsum(2,1) + Q(2,c-1);

591 Q(2,c) = (Qlenactual(2,1) - Qsum(2,1));

592 end

593 c=c+1;

594 else

595 if isnan(TTactual(1,1))

596 TT(1,c)=0;

597 else

598 TT(1,c) = TTactual(1,1);

599 end

600 if isnan(DLactual(1,1))

601 DL(1,c)=0;

602 else

603 DL(1,c) = DLactual(1,1);

604 end

605 if isnan(Qlenactual(1,1))

606 Q(1,c)=0;

607 else

608 Q(1,c) = Qlenactual(1,1);

609 end

610 %second direction

611 if isnan(TTactual(2,1))

612 TT(2,c)=0;

613 else

614 TT(2,c) = TTactual(2,1);

615 end

616 if isnan(DLactual(2,1))

617 DL(2,c)=0;

618 else

619 DL(2,c) = DLactual(2,1);

620 end

621 if isnan(Qlenactual(2,1))

622 Q(2,c)=0;

623 else

624 Q(2,c) = Qlenactual(2,1);

625 end

626 c=c+1;

627 end

628 end

629 if i==((period_time*step_time)-1)

Page | 75

630 TTactual(1,1) = get(vehTTs1,'AttValue', 'TravTm(Current,Total,All)');

631 TTactual(2,1) = get(vehTTs2,'AttValue', 'TravTm(Current,Total,All)');

632 Qlenactual(1,1) = get(queue1,'AttValue', 'QLen(Current,Total)');

633 Qlenactual(2,1) = get(queue2,'AttValue', 'QLen(Current,Total)');

634 DLactual(1,1) = get(del1,'AttValue', 'VehDelay(Current,Total,All)');

635 DLactual(2,1) = get(del2,'AttValue', 'VehDelay(Current,Total,All)');

636 if isnan(TTactual(1,1))

637 TT(1,c)=0;

638 else

639 TTsum(1,1) = TTsum(1,1) + TT(1,c-1);

640 TT(1,c) = (TTactual(1,1) - TTsum(1,1));

641 end

642 if isnan(DLactual(1,1))

643 DL(1,c)=0;

644 else

645 DLsum(1,1) = DLsum(1,1) + DL(1,c-1);

646 DL(1,c) = (DLactual(1,1) - DLsum(1,1));

647 end

648 if isnan(Qlenactual(1,1))

649 Q(1,c)=0;

650 else

651 Qsum(1,1) = Qsum(1,1) + Q(1,c-1);

652 Q(1,c) = (Qlenactual(1,1) - Qsum(1,1));

653 end

654 %second direction

655 if isnan(TTactual(2,1))

656 TT(2,c)=0;

657 else

658 TTsum(2,1) = TTsum(2,1) + TT(2,c-1);

659 TT(2,c) = (TTactual(2,1) - TTsum(2,1));

660 end

661 if isnan(DLactual(2,1))

662 DL(2,c)=0;

663 else

664 DLsum(2,1) = DLsum(2,1) + DL(2,c-1);

665 DL(2,c) = (DLactual(2,1) - DLsum(2,1));

666 end

667 if isnan(Qlenactual(2,1))

668 Q(2,c)=0;

669 else

670 Qsum(2,1) = Qsum(2,1) + Q(2,c-1);

671 Q(2,c) = (Qlenactual(2,1) - Qsum(2,1));

672 end

673 maxQ(1) = get(queue1,'AttValue', 'QLen(Current,Max)');

674 maxQ(2) = get(queue2,'AttValue', 'QLen(Current,Max)');

675 avgQ(1) = get(queue1,'AttValue', 'QLen(Current,Avg)');

676 avgQ(2) = get(queue2,'AttValue', 'QLen(Current,Avg)');

677 maxDelay(1) = get(del1,'AttValue', 'VehDelay(Current,Max,All)');

678 maxDelay(2) = get(del2,'AttValue', 'VehDelay(Current,Max,All)');

679 avgDelay(1) = get(del1,'AttValue', 'VehDelay(Current,Avg,All)');

680 avgDelay(2) = get(del2,'AttValue', 'VehDelay(Current,Avg,All)');

681 maxTT(1) = get(vehTTs1,'AttValue', 'TravTm(Current,Max,All)');

682 maxTT(2) = get(vehTTs2,'AttValue', 'TravTm(Current,Max,All)');

683 avgTT(1) = get(vehTTs1,'AttValue', 'TravTm(Current,Avg,All)');

684 avgTT(2) = get(vehTTs2,'AttValue', 'TravTm(Current,Avg,All)');

685 avgDelayp(1) = get(del1,'AttValue', 'VehDelay(Current,Avg,10)');

686 avgDealyp(2) = get(del2,'AttValue', 'VehDelay(Current,Avg,10)');

687 avgDelayt(1) = get(del1,'AttValue', 'VehDelay(Current,Avg,20)');

688 avgDelayt(2) = get(del2,'AttValue', 'VehDelay(Current,Avg,20)');

689 avgDelayb(1) = get(del1,'AttValue', 'VehDelay(Current,Avg,30)');

690 avgDelayb(2) = get(del2,'AttValue', 'VehDelay(Current,Avg,30)');

691 avgTTp(1) = get(vehTTs1,'AttValue', 'TravTm(Current,Avg,10)');

692 avgTTp(2) = get(vehTTs2,'AttValue', 'TravTm(Current,Avg,10)');

693 avgTTt(1) = get(vehTTs1,'AttValue', 'TravTm(Current,Avg,20)');

694 avgTTt(2) = get(vehTTs2,'AttValue', 'TravTm(Current,Avg,20)');

695 avgTTb(1) = get(vehTTs1,'AttValue', 'TravTm(Current,Avg,30)');

696 avgTTb(2) = get(vehTTs2,'AttValue', 'TravTm(Current,Avg,30)');

697 end

698 end

699 sim.Stop;

700 if scenario(1,1)==2

701 DelayA(1,:)=movmean(DL(1,:),window);

702 DelayB(1,:)=movmean(DL(2,:),window);

703 prov = TT(1,:);

704 pr = size(find(prov~=0));

705 if pr(2)>=2

Page | 76

706
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

707 end

708 TTA(1,:)=movmean(prov,window);

709 prov = TT(2,:);

710 pr = size(find(prov~=0));

711 if pr(2)>=2

712
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

713 end

714 TTB(1,:)=movmean(prov,window);

715 QA(1,:)=movmean(Q(1,:),window);

716 QB(1,:)=movmean(Q(2,:),window);

717 maxQA(1)=maxQ(1);

718 maxQB(1)=maxQ(2);

719 avgQA(1)=avgQ(1);

720 avgQB(1)=avgQ(2);

721 maxDelayA(1)=maxDelay(1);

722 maxDelayB(1)=maxDelay(2);

723 avgDelayA(1)=avgDelay(1);

724 avgDelayB(1)=avgDelay(2);

725 maxTTA(1)=maxTT(1);

726 maxTTB(1)=maxTT(2);

727 avgTTA(1)=avgTT(1);

728 avgTTB(1)=avgTT(2);

729 avgDelaypA(1)=avgDelayp(1);

730 avgDelaypB(1)=avgDealyp(2);

731 avgDelaytA(1)=avgDelayt(1);

732 avgDelaytB(1)=avgDelayt(2);

733 avgDelaybA(1)=avgDelayb(1);

734 avgDelaybB(1)=avgDelayb(2);

735 avgTTpA(1)=avgTTp(1);

736 avgTTpB(1)=avgTTp(2);

737 avgTTtA(1)=avgTTt(1);

738 avgTTtB(1)=avgTTt(2);

739 avgTTbA(1)=avgTTb(1);

740 avgTTbB(1)=avgTTb(2);

741 scenario(1,1)=3;

742 elseif scenario(1,2)==2

743 DelayA2(1,:)=movmean(DL(1,:),window);

744 DelayB2(1,:)=movmean(DL(2,:),window);

745 prov = TT(1,:);

746 pr = size(find(prov~=0));

747 if pr(2)>=2

748
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

749 end

750 TTA2(1,:)=movmean(prov,window);

751 prov = TT(2,:);

752 pr = size(find(prov~=0));

753 if pr(2)>=2

754
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

755 end

756 TTB2(1,:)=movmean(prov,window);

757 QA2(1,:)=movmean(Q(1,:),window);

758 QB2(1,:)=movmean(Q(2,:),window);

759 maxQA2(1)=maxQ(1);

760 maxQB2(1)=maxQ(2);

761 avgQA2(1)=avgQ(1);

762 avgQB2(1)=avgQ(2);

763 maxDelayA2(1)=maxDelay(1);

764 maxDelayB2(1)=maxDelay(2);

765 avgDelayA2(1)=avgDelay(1);

766 avgDelayB2(1)=avgDelay(2);

767 maxTTA2(1)=maxTT(1);

768 maxTTB2(1)=maxTT(2);

769 avgTTA2(1)=avgTT(1);

770 avgTTB2(1)=avgTT(2);

771 avgDelaypA2(1)=avgDelayp(1);

772 avgDelaypB2(1)=avgDealyp(2);

773 avgDelaytA2(1)=avgDelayt(1);

774 avgDelaytB2(1)=avgDelayt(2);

775 avgDelaybA2(1)=avgDelayb(1);

776 avgDelaybB2(1)=avgDelayb(2);

777 avgTTpA2(1)=avgTTp(1);

778 avgTTpB2(1)=avgTTp(2);

Page | 77

779 avgTTtA2(1)=avgTTt(1);

780 avgTTtB2(1)=avgTTt(2);

781 avgTTbA2(1)=avgTTb(1);

782 avgTTbB2(1)=avgTTb(2);

783 scenario(1,2)=3;

784 elseif scenario(2,1)==2

785 DelayA(2,:)=movmean(DL(1,:),window);

786 DelayB(2,:)=movmean(DL(2,:),window);

787 prov = TT(1,:);

788 pr = size(find(prov~=0));

789 if pr(2)>=2

790
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

791 end

792 TTA(2,:)=movmean(prov,window);

793 prov = TT(2,:);

794 pr = size(find(prov~=0));

795 if pr(2)>=2

796
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

797 end

798 TTB(2,:)=movmean(prov,window);

799 QA(2,:)=movmean(Q(1,:),window);

800 QB(2,:)=movmean(Q(2,:),window);

801 maxQA(2)=maxQ(1);

802 maxQB(2)=maxQ(2);

803 avgQA(2)=avgQ(1);

804 avgQB(2)=avgQ(2);

805 maxDelayA(2)=maxDelay(1);

806 maxDelayB(2)=maxDelay(2);

807 avgDelayA(2)=avgDelay(1);

808 avgDelayB(2)=avgDelay(2);

809 maxTTA(2)=maxTT(1);

810 maxTTB(2)=maxTT(2);

811 avgTTA(2)=avgTT(1);

812 avgTTB(2)=avgTT(2);

813 avgDelaypA(2)=avgDelayp(1);

814 avgDelaypB(2)=avgDealyp(2);

815 avgDelaytA(2)=avgDelayt(1);

816 avgDelaytB(2)=avgDelayt(2);

817 avgDelaybA(2)=avgDelayb(1);

818 avgDelaybB(2)=avgDelayb(2);

819 avgTTpA(2)=avgTTp(1);

820 avgTTpB(2)=avgTTp(2);

821 avgTTtA(2)=avgTTt(1);

822 avgTTtB(2)=avgTTt(2);

823 avgTTbA(2)=avgTTb(1);

824 avgTTbB(2)=avgTTb(2);

825 scenario(2,1)=3;

826 elseif scenario(2,2)==2

827 DelayA2(2,:)=movmean(DL(1,:),window);

828 DelayB2(2,:)=movmean(DL(2,:),window);

829 prov = TT(1,:);

830 pr = size(find(prov~=0));

831 if pr(2)>=2

832
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

833 end

834 TTA2(2,:)=movmean(prov,window);

835 prov = TT(2,:);

836 pr = size(find(prov~=0));

837 if pr(2)>=2

838
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

839 end

840 TTB2(2,:)=movmean(prov,window);

841 QA2(2,:)=movmean(Q(1,:),window);

842 QB2(2,:)=movmean(Q(2,:),window);

843 maxQA2(2)=maxQ(1);

844 maxQB2(2)=maxQ(2);

845 avgQA2(2)=avgQ(1);

846 avgQB2(2)=avgQ(2);

847 maxDelayA2(2)=maxDelay(1);

848 maxDelayB2(2)=maxDelay(2);

849 avgDelayA2(2)=avgDelay(1);

850 avgDelayB2(2)=avgDelay(2);

851 maxTTA2(2)=maxTT(1);

Page | 78

852 maxTTB2(2)=maxTT(2);

853 avgTTA2(2)=avgTT(1);

854 avgTTB2(2)=avgTT(2);

855 avgDelaypA2(2)=avgDelayp(1);

856 avgDelaypB2(2)=avgDealyp(2);

857 avgDelaytA2(2)=avgDelayt(1);

858 avgDelaytB2(2)=avgDelayt(2);

859 avgDelaybA2(2)=avgDelayb(1);

860 avgDelaybB2(2)=avgDelayb(2);

861 avgTTpA2(2)=avgTTp(1);

862 avgTTpB2(2)=avgTTp(2);

863 avgTTtA2(2)=avgTTt(1);

864 avgTTtB2(2)=avgTTt(2);

865 avgTTbA2(2)=avgTTb(1);

866 avgTTbB2(2)=avgTTb(2);

867 scenario(2,2)=3;

868 elseif scenario(3,1)==2

869 DelayA(3,:)=movmean(DL(1,:),window);

870 DelayB(3,:)=movmean(DL(2,:),window);

871 prov = TT(1,:);

872 pr = size(find(prov~=0));

873 if pr(2)>=2

874
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

875 end

876 TTA(3,:)=movmean(prov,window);

877 prov = TT(2,:);

878 pr = size(find(prov~=0));

879 if pr(2)>=2

880
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

881 end

882 TTB(3,:)=movmean(prov,window);

883 QA(3,:)=movmean(Q(1,:),window);

884 QB(3,:)=movmean(Q(2,:),window);

885 maxQA(3)=maxQ(1);

886 maxQB(3)=maxQ(2);

887 avgQA(3)=avgQ(1);

888 avgQB(3)=avgQ(2);

889 maxDelayA(3)=maxDelay(1);

890 maxDelayB(3)=maxDelay(2);

891 avgDelayA(3)=avgDelay(1);

892 avgDelayB(3)=avgDelay(2);

893 maxTTA(3)=maxTT(1);

894 maxTTB(3)=maxTT(2);

895 avgTTA(3)=avgTT(1);

896 avgTTB(3)=avgTT(2);

897 avgDelaypA(3)=avgDelayp(1);

898 avgDelaypB(3)=avgDealyp(2);

899 avgDelaytA(3)=avgDelayt(1);

900 avgDelaytB(3)=avgDelayt(2);

901 avgDelaybA(3)=avgDelayb(1);

902 avgDelaybB(3)=avgDelayb(2);

903 avgTTpA(3)=avgTTp(1);

904 avgTTpB(3)=avgTTp(2);

905 avgTTtA(3)=avgTTt(1);

906 avgTTtB(3)=avgTTt(2);

907 avgTTbA(3)=avgTTb(1);

908 avgTTbB(3)=avgTTb(2);

909 scenario(3,1)=3;

910 elseif scenario(3,2)==2

911 DelayA2(3,:)=movmean(DL(1,:),window);

912 DelayB2(3,:)=movmean(DL(2,:),window);

913 prov = TT(1,:);

914 pr = size(find(prov~=0));

915 if pr(2)>=2

916
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

917 end

918 TTA2(3,:)=movmean(prov,window);

919 prov = TT(2,:);

920 pr = size(find(prov~=0));

921 if pr(2)>=2

922
 prov =

interp1(find(prov~=0),prov(prov~=0),1:length(prov),'nearest','extrap');

923 end

924 TTB2(3,:)=movmean(prov,window);

Page | 79

925 QA2(3,:)=movmean(Q(1,:),window);

926 QB2(3,:)=movmean(Q(2,:),window);

927 maxQA2(3)=maxQ(1);

928 maxQB2(3)=maxQ(2);

929 avgQA2(3)=avgQ(1);

930 avgQB2(3)=avgQ(2);

931 maxDelayA2(3)=maxDelay(1);

932 maxDelayB2(3)=maxDelay(2);

933 avgDelayA2(3)=avgDelay(1);

934 avgDelayB2(3)=avgDelay(2);

935 maxTTA2(3)=maxTT(1);

936 maxTTB2(3)=maxTT(2);

937 avgTTA2(3)=avgTT(1);

938 avgTTB2(3)=avgTT(2);

939 avgDelaypA2(3)=avgDelayp(1);

940 avgDelaypB2(3)=avgDealyp(2);

941 avgDelaytA2(3)=avgDelayt(1);

942 avgDelaytB2(3)=avgDelayt(2);

943 avgDelaybA2(3)=avgDelayb(1);

944 avgDelaybB2(3)=avgDelayb(2);

945 avgTTpA2(3)=avgTTp(1);

946 avgTTpB2(3)=avgTTp(2);

947 avgTTtA2(3)=avgTTt(1);

948 avgTTtB2(3)=avgTTt(2);

949 avgTTbA2(3)=avgTTb(1);

950 avgTTbB2(3)=avgTTb(2);

951 scenario(3,2)=3;

952 end

953 end

954 %Delays

955 figure('Name','Delays');

956 subplot(2,2,1); plot(x,DelayA(1,:),'r')

957 hold on

958 subplot(2,2,1); plot(x,DelayA(2,:),'g')

959 hold on

960 subplot(2,2,1); plot(x,DelayA(3,:),'b')

961
title('Delay Ustecka-Podmokelska'), xlabel('sample period'),

ylabel('seconds'), xlim([period_meas period_time])

962 if sum(sum(DelayA))>0

963 ylim([0 max(max(DelayA))])

964 end

965 subplot(2,2,2); plot(x,DelayA2(1,:),'r')

966 hold on

967 subplot(2,2,2); plot(x,DelayA2(2,:),'g')

968 hold on

969 subplot(2,2,2); plot(x,DelayA2(3,:),'b')

970
title('Delay Ustecka-Podmokelska with traffic increased'), xlabel('sample

period'), ylabel('seconds'), xlim([period_meas period_time])

971 if sum(sum(DelayA2))>0

972 ylim([0 max(max(DelayA2))])

973 end

974 subplot(2,2,3); plot(x,DelayB(1,:),'r')

975 hold on

976 subplot(2,2,3); plot(x,DelayB(2,:),'g')

977 hold on

978 subplot(2,2,3); plot(x,DelayB(3,:),'b')

979
title('Delay Podmokelska-Ustecka'), xlabel('sample period'),

ylabel('seconds'), xlim([period_meas period_time])

980 if sum(sum(DelayB))>0

981 ylim([0 max(max(DelayB))])

982 end

983 subplot(2,2,4); plot(x,DelayB2(1,:),'r')

984 hold on

985 subplot(2,2,4); plot(x,DelayB2(2,:),'g')

986 hold on

987 subplot(2,2,4); plot(x,DelayB2(3,:),'b')

988
title('Delay Podmokelska-Ustecka with traffic increased'), xlabel('sample

period'), ylabel('seconds'), xlim([period_meas period_time])

989 if sum(sum(DelayB2))>0

990 ylim([0 max(max(DelayB2))])

991 end

992 legend('Cycle = 60s', 'Cycle = 70s', '60-70 with dynamic', 'Location','Best')

993 %Queues

994 figure('Name','Queues')

995 subplot(2,2,1); plot(x,QA(1,:),'r')

996 hold on

997 subplot(2,2,1); plot(x,QA(2,:),'g')

Page | 80

998 hold on

999 subplot(2,2,1); plot(x,QA(3,:),'b')

1000
title('Queue Ustecka-Podmokelska'), xlabel('sample period'),

ylabel('meters'), xlim([period_meas period_time])

1001 if sum(sum(QA))>0

1002 ylim([0 max(max(QA))])

1003 end

1004 subplot(2,2,2); plot(x,QA2(1,:),'r')

1005 hold on

1006 subplot(2,2,2); plot(x,QA2(2,:),'g')

1007 hold on

1008 subplot(2,2,2); plot(x,QA2(3,:),'b')

1009
title('Queue Ustecka-Podmokelska with traffic increased'), xlabel('sample

period'), ylabel('meters'), xlim([period_meas period_time])

1010 if sum(sum(QA2))>0

1011 ylim([0 max(max(QA2))])

1012 end

1013 subplot(2,2,3); plot(x,QB(1,:),'r')

1014 hold on

1015 subplot(2,2,3); plot(x,QB(2,:),'g')

1016 hold on

1017 subplot(2,2,3); plot(x,QB(3,:),'b')

1018
title('Queue Podmokelska-Ustecka'), xlabel('sample period'),

ylabel('meters'), xlim([period_meas period_time])

1019 if sum(sum(QB))>0

1020 ylim([0 max(max(QB))])

1021 end

1022 subplot(2,2,4); plot(x,QB2(1,:),'r')

1023 hold on

1024 subplot(2,2,4); plot(x,QB2(2,:),'g')

1025 hold on

1026 subplot(2,2,4); plot(x,QB2(3,:),'b')

1027
title('Queue Podmokelska-Ustecka with traffic increased'), xlabel('sample

period'), ylabel('meters'), xlim([period_meas period_time])

1028 if sum(sum(QB2))>0

1029 ylim([0 max(max(QB2))])

1030 end

1031 legend('Cycle = 60s', 'Cycle = 70s', '60-70 with dynamic', 'Location','Best')

1032 figure('Name','Travel times');

1033 subplot(2,2,1); plot(x,TTA(1,:),'r')

1034 hold on

1035 subplot(2,2,1); plot(x,TTA(2,:),'g')

1036 hold on

1037 subplot(2,2,1); plot(x,TTA(3,:),'b')

1038
title('Travel time Ustecka-Podmokelska'), xlabel('sample period'),

ylabel('seconds'), xlim([period_meas period_time])

1039 if sum(sum(TTA))>0

1040 ylim([0 max(max(TTA))])

1041 end

1042 subplot(2,2,2); plot(x,TTA2(1,:),'r')

1043 hold on

1044 subplot(2,2,2); plot(x,TTA2(2,:),'g')

1045 hold on

1046 subplot(2,2,2); plot(x,TTA2(3,:),'b')

1047
title('Travel time Ustecka-Podmokelska with traffic increased'),

xlabel('sample period'), ylabel('seconds'), xlim([period_meas period_time])

1048 if sum(sum(TTA2))>0

1049 ylim([0 max(max(TTA2))])

1050 end

1051 subplot(2,2,3); plot(x,TTB(1,:),'r')

1052 hold on

1053 subplot(2,2,3); plot(x,TTB(2,:),'g')

1054 hold on

1055 subplot(2,2,3); plot(x,TTB(3,:),'b')

1056
title('Travel time Podmokelska-Ustecka'), xlabel('sample period'),

ylabel('seconds'), xlim([period_meas period_time])

1057 if sum(sum(TTB))>0

1058 ylim([0 max(max(TTB))])

1059 end

1060 subplot(2,2,4); plot(x,TTB2(1,:),'r')

1061 hold on

1062 subplot(2,2,4); plot(x,TTB2(2,:),'g')

1063 hold on

1064 subplot(2,2,4); plot(x,TTB2(3,:),'b')

1065
title('Travel time Podmokelska-Ustecka with traffic increased'),

xlabel('sample period'), ylabel('seconds'), xlim([period_meas period_time])

1066 if sum(sum(TTB2))>0

Page | 81

1067 ylim([0 max(max(TTB2))])

1068 end

1069 legend('Cycle = 60s', 'Cycle = 70s', '60-70 with dynamic', 'Location','Best')

1070 disp('All done! See results in figures and tables above:');

1071 %Tables

1072 TTust_podm = [avgTTpA(1),avgTTtA(1),avgTTbA(1),avgTTA(1),maxTTA(1);

1073 avgTTpA2(1),avgTTtA2(1),avgTTbA2(1),avgTTA2(1),maxTTA2(1);

1074 avgTTpA(2),avgTTtA(2),avgTTbA(2),avgTTA(2),maxTTA(2);

1075 avgTTpA2(2),avgTTtA2(2),avgTTbA2(2),avgTTA2(2),maxTTA2(2);

1076 avgTTpA(3),avgTTtA(3),avgTTbA(3),avgTTA(3),maxTTA(3);

1077 avgTTpA2(3),avgTTtA2(3),avgTTbA2(3),avgTTA2(3),maxTTA2(3);];

1078 TTpodm_ust = [avgTTpB(1),avgTTtB(1),avgTTbB(1),avgTTB(1),maxTTB(1);

1079 avgTTpB2(1),avgTTtB2(1),avgTTbB2(1),avgTTB2(1),maxTTB2(1);

1080 avgTTpB(2),avgTTtB(2),avgTTbB(2),avgTTB(2),maxTTB(2);

1081 avgTTpB2(2),avgTTtB2(2),avgTTbB2(2),avgTTB2(2),maxTTB2(2);

1082 avgTTpB(3),avgTTtB(3),avgTTbB(3),avgTTB(3),maxTTB(3);

1083 avgTTpB2(3),avgTTtB2(3),avgTTbB2(3),avgTTB2(3),maxTTB2(3);];

1084
Delust_podm =

[avgDelaypA(1),avgDelaytA(1),avgDelaybA(1),avgDelayA(1),maxDelayA(1);

1085

avgDelaypA2(1),avgDelaytA2(1),avgDelaybA2(1),avgDelayA2(1),maxDelayA2(1);

1086

avgDelaypA(2),avgDelaytA(2),avgDelaybA(2),avgDelayA(2),maxDelayA(2);

1087

avgDelaypA2(2),avgDelaytA2(2),avgDelaybA2(2),avgDelayA2(2),maxDelayA2(2);

1088

avgDelaypA(3),avgDelaytA(3),avgDelaybA(3),avgDelayA(3),maxDelayA(3);

1089

avgDelaypA2(3),avgDelaytA2(3),avgDelaybA2(3),avgDelayA2(3),maxDelayA2(3);];

1090
Delpodm_ust =

[avgDelaypB(1),avgDelaytB(1),avgDelaybB(1),avgDelayB(1),maxDelayB(1);

1091

avgDelayB2(1),avgDelaytB2(1),avgDelaybB2(1),avgDelayB2(1),maxDelayB2(1);

1092

avgDelaypB(2),avgDelaytB(2),avgDelaybB(2),avgDelayB(2),maxDelayB(2);

1093

avgDelaypB2(2),avgDelaytB2(2),avgDelaybB2(2),avgDelayB2(2),maxDelayB2(2);

1094

avgDelaypB(3),avgDelaytB(3),avgDelaybB(3),avgDelayB(3),maxDelayB(3);

1095

avgDelaypB2(3),avgDelaytB2(3),avgDelaybB2(3),avgDelayB2(3),maxDelayB2(3);];

1096 Qust_podm = [avgQA(1), maxQA(1);

1097 avgQA2(1), maxQA2(1);

1098 avgQA(2), maxQA(2);

1099 avgQA2(2), maxQA2(2);

1100 avgQA(3), maxQA(3);

1101 avgQA2(3), maxQA2(3);];

1102 Qpodm_ust = [avgQB(1), maxQB(1);

1103 avgQB2(1), maxQB2(1);

1104 avgQB(2), maxQB(2);

1105 avgQB2(2), maxQB2(2);

1106 avgQB(3), maxQB(3);

1107 avgQB2(3), maxQB2(3);];

1108 Scen = {'60s', 'increase', '70s', 'increase', '60-70s', 'increase'};

1109 disp('Travel time Ustecka-Podmokelska [s]');

1110 T1=table;

1111 T1.Scenario = Scen';

1112 T1.personal_veh = TTust_podm(:,1);

1113 T1.trucks = TTust_podm(:,2);

1114 T1.buses = TTust_podm(:,3);

1115 T1.all = TTust_podm(:,4);

1116 T1.max_all = TTust_podm(:,5)

1117 disp('Travel time Podmokelska-Ustecka [s]:')

1118 T2=table;

1119 T2.Scenario = Scen';

1120 T2.personal_veh = TTpodm_ust(:,1);

1121 T2.trucks = TTpodm_ust(:,2);

1122 T2.buses = TTpodm_ust(:,3);

1123 T2.all = TTpodm_ust(:,4);

1124 T2.max_all = TTpodm_ust(:,5)

1125 disp('Delay Ustecka-Podmokelska [s]:')

1126 T3=table;

1127 T3.Scenario = Scen';

1128 T3.personal_veh = Delust_podm(:,1);

1129 T3.trucks = Delust_podm(:,2);

1130 T3.buses = Delust_podm(:,3);

1131 T3.all = Delust_podm(:,4);

Page | 82

1132 T3.max_all = Delust_podm(:,5)

1133 disp('Delay Podmokelska-Ustecka [s]:')

1134 T4=table;

1135 T4.Scenario = Scen';

1136 T4.personal_veh = Delpodm_ust(:,1);

1137 T4.trucks = Delpodm_ust(:,2);

1138 T4.buses = Delpodm_ust(:,3);

1139 T4.all = Delpodm_ust(:,4);

1140 T4.max_all = Delpodm_ust(:,5)

1141 disp('Queue Ustecka-Podmokelska [m]:')

1142 T5=table;

1143 T5.Scenario = Scen';

1144 T5.all = Qust_podm(:,1);

1145 T5.max_all = Qust_podm(:,2)

1146 disp('Queue Podmokelska-Ustecka [m]:')

1147 T6=table;

1148 T6.Scenario = Scen';

1149 T6.all = Qpodm_ust(:,1);

1150 T6.max_all = Qpodm_ust(:,2)

Autonomous vehicles

In the last table (Table 12), there is a source code for the autonomous vehicle chapter

(autonomous.m).

Table 12: Source code for Autonomous Vehicles

1 %autonomous vehicles

2 clear all;

3 close all;

4 Vissim = actxserver('Vissim.Vissim.700'); % Start Vissim

5 Vissim.LoadNet

6 sim=Vissim.simulation;

7 vnet=Vissim.Net;

8 SC_number = 1;

9 SignalController = vnet.SignalControllers.ItemByKey(SC_number);

10 SG(1)=SignalController.SGs.ItemByKey(1);

11 SG(2)=SignalController.SGs.ItemByKey(2);

12 SH_1=vnet.SignalHeads.ItemByKey(1);

13 SH_1pos=get(SH_1, 'AttValue', 'Pos');

14 dets=SignalController.Detectors;

15 det_all=dets.GetAll;

16 det_1=det_all{1};

17 det_2=det_all{2};

18 det_1pos=get(det_1, 'AttValue', 'Pos');

19 v_veh = 58;

20 s = SH_1pos - det_1pos - 10;

21 v = v_veh/3.6;

22 t = floor(s/v)-1;

23 period_time=3600;

24 sim.set('AttValue', 'SimPeriod', period_time);

25 sim.get('AttValue', 'SimPeriod')

26 step_time=10;

27 sim.set('AttValue', 'SimRes', step_time);

28 max_cores=4;

29 sim.set('AttValue', 'NumCores', max_cores);

30 vehins=vnet.VehicleInputs;

31 load vehs.txt

32 veh_id = 1;

33 vehin(1)=vehins.ItemByKey(1);

34 Veh_composition_number = 2;

35
Rel_Flows =

vnet.VehicleCompositions.ItemByKey(Veh_composition_number).VehCompRelFlows.GetAll;

36 set(Rel_Flows{1}, 'AttValue', 'VehType', 100);

37 set(Rel_Flows{1}, 'AttValue', 'DesSpeedDistr', 1047);

38 set(Rel_Flows{1}, 'AttValue', 'RelFlow', 1);

39 vehin(1).set('AttValue', 'VehComp(1)', 2);

40 vehin(1).set('AttValue', 'Volume(1)', vehs(1,veh_id));

41 pedins=vnet.PedestrianInputs;

42 pedin(1)=pedins.ItemByKey(1);

43 pedin(1).set('AttValue', 'Volume(1)', 1000);

44 pedin(2)=pedins.ItemByKey(2);

Page | 83

45 pedin(2).set('AttValue', 'Volume(1)', 1100);

46 verify = 1;

47 time = 0;

48 tsg1 = 17;

49 tsg1max = 45;

50 tsg2min = 2;

51 sg1_time = 0;

52 sg2_time = 0;

53 relative_time = 0;

54 t12 = 0;

55 t21 = 0;

56 stage = 2;

57 demand = 0;

58 transition = 3;

59 shift = t - (transition+1);

60 wait = 0;

61 for i=0:(period_time*step_time)

62 sim.RunSingleStep;

63 if rem(i/step_time, verify)==0

64 time=time+1;

65 if stage == 1

66 detect=det_1.get('AttValue', 'Detection');

67 if detect == 1

68 relative_time = 0;

69 end

70 if (relative_time >= (t-1))

71 stage = 12;

72 t12 = 0;

73 sg1_time = 0;

74 relative_time = 0;

75 demand = 0;

76 elseif (sg1_time > tsg1max)

77 stage = 12;

78 t12 = 0;

79 sg1_time = 0;

80 relative_time = 0;

81 demand = 0;

82 else

83 SG(1).set('AttValue', 'State', 3);

84 SG(2).set('AttValue', 'State', 1);

85 sg1_time = sg1_time+1;

86 relative_time = relative_time + 1;

87 end

88 end

89 if stage == 2

90 detect=det_1.get('AttValue', 'Detection');

91 detect2=det_2.get('AttValue', 'Detection');

92 if (detect == 1) || (demand == 1) || (detect2 == 1)

93 if t >= tsg2min

94 if (wait >= shift) && (sg2_time > tsg2min)

95 stage = 21;

96 sg2_time = 0;

97 t21 = 0;

98 wait = 0;

99 else

100 SG(1).set('AttValue', 'State', 1);

101 SG(2).set('AttValue', 'State', 3);

102 sg2_time = sg2_time+1;

103 wait = wait + 1;

104 end

105 elseif (sg2_time >= tsg2min)

106 stage = 21;

107 sg2_time = 0;

108 t21 = 0;

109 else

110 SG(1).set('AttValue', 'State', 1);

111 SG(2).set('AttValue', 'State', 3);

112 sg2_time = sg2_time+1;

113 end

114 demand = 1;

115 else

116 SG(1).set('AttValue', 'State', 1);

117 SG(2).set('AttValue', 'State', 3);

118 sg2_time = sg2_time+1;

119 end

120 end

121 if stage == 12

Page | 84

122 if (t12 == 0) || (t12 == 1)

123 SG(1).set('AttValue', 'State', 4);

124 SG(2).set('AttValue', 'State', 1);

125 end

126 if t12 == 2

127 SG(1).set('AttValue', 'State', 1);

128 SG(2).set('AttValue', 'State', 1);

129 stage = 2;

130 sg2_time = 0;

131 end

132 t12 = t12 + 1;

133 end

134 if stage == 21

135 if t21 < transition

136 SG(1).set('AttValue', 'State', 1);

137 SG(2).set('AttValue', 'State', 1);

138 end

139 if t21 == transition

140 SG(1).set('AttValue', 'State', 2);

141 SG(2).set('AttValue', 'State', 1);

142 stage = 1;

143 sg1_time = 0;

144 demand = 0;

145 end

146 t21 = t21 + 1;

147 end

148 vehin(1).set('AttValue', 'Volume(1)', vehs(1,veh_id));

149 if veh_id < length(vehs)

150 veh_id = veh_id + 1;

151 end

152 end

153 end

