
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 22, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Web service for advanced text analysis

 Student: Jan Švejda

 Supervisor: Ing. Pavel Kordík, Ph.D.

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

Survey modern method for text analysis and representation. Focus on machine learning approaches
including recurrent neural networks and character-level text processing. Design and implement a web
service providing language independent advanced text processing functionalities, such as similarity
of headlines (sentences), sentence embedding, predictions of popularity or ephemerality. The main aim
of the thesis is to design the service itself, it is supposed to utilize existing implementations of particular
methods. Test the service on real datasets and discuss your results.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Web service for advanced text analysis

Jan Švejda

Supervisor: Ing. Pavel Kordík, Ph.D.

11th May 2017

Acknowledgements

I would like to express my gratitude to the supervisor of this thesis, Ing. Pavel
Kordík, Ph.D, who provided a lot of support and expertise in the course of
this work. My thanks belongs also to the faculty, Ing. Milan Václavík and
doc. Ing. Ivan Šimeček, Ph.D. for letting me do some of the heavy comput-
ing on university’s GPU cluster. Last but not least, I would like to thank
Ing. Tomáš Řehořek for helping me with obtaining some of the data used in
this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 11th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Jan Švejda. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Švejda, Jan. Web service for advanced text analysis. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2017.

Abstrakt

Mnoho statistických modelů a modelů strojového učení, které se snaží pokořit
problémy zpracování přirozeného jazyka, mají potenciál asistovat lidem v mno-
ha oborech. V rámci této práce je vytvořena aplikace, která zpřístupňuje tako-
vé modely aplikované na doménu článků z internetu prostřednictvím webové
služby a webové stránky. Tím je novinářům a editorům článků poskytnuta
možnost získat více informací o jejich článku, umožňuje to integraci těchto
modelů s externími systémy a nabízí to interaktivní experimentování s nimi
také lidem, kteří se o zpracování přirozeného jazyka zajímají. Jak webová
služba tak stránka byly úspěšně navrhnuty a implementovány, a to s důrazem
na bezpečnost a škálovatelnost. Aplikace je navržena takovým způsobem, aby
bylo možné ji v budoucnu snadno rozšířit o novou funkcionalitu.

Klíčová slova články z internetu, webová služba, zpracování přirozeného
jazyka, strojové učení

Abstract

Many statistical and machine learning models, which tackle the problems of
natural language processing, have the potential to assist humans in various
domains. In this thesis, an application is created, that gives access to these

ix

models applied to the field of Internet news through a web service and a
website. This provides writers and editors of articles with more information,
makes integration of such models with other systems possible and allows peo-
ple interested in natural language processing to interactively experiment with
them and learn about them, too. Both the web service and the website were
successfully designed and implemented with security and scalability in mind.
The application is designed in such a way, that extending it with new func-
tionalities in the future will be easy.

Keywords Internet news, web service, natural language processing, ma-
chine learning

x

Contents

Introduction 1

1 State-of-the-art 3
1.1 Web services . 3
1.2 Text analysis survey . 6
1.3 Statistical models . 7
1.4 Character-level models . 9
1.5 Machine Learning . 9
1.6 Embeddings . 12

2 Analysis and design 15
2.1 Requirements . 15
2.2 Primary use cases . 18
2.3 Design decisions . 18
2.4 Architecture of the system . 20

3 Realization 25
3.1 Implementation . 25
3.2 API documentation . 27
3.3 Testing . 27
3.4 Deployment . 28
3.5 Security . 30
3.6 Experiments . 32

Conclusion 39

Bibliography 41

A UML diagrams 45

xi

B Data analysis and experiments 49

C How to expand the functionality 53
C.1 Train a new version of an existing model 53
C.2 Create a new model engine for an existing functionality 53
C.3 Create a new functionality . 54

D Screenshots 55

E Acronyms 59

F Contents of enclosed CD 61

xii

List of Figures

1.1 An illustration of an unrolled neuron in a Recurrent Neural Network 12

2.1 Specified requirements of the web service 16
2.2 Architecture of the application . 21
2.3 Package diagram of webgui package 22
2.4 Package diagram of restapi package 24

3.1 An example class diagram of classes in package engine 26
3.2 Class diagram for the business layer 27
3.3 Deployment diagram of the web service 29
3.4 Example of a scaled deployment 30

A.1 Web service’s primary use cases . 46
A.2 Schema of the tech package’s classes 47

B.1 Groups of articles by page views 50
B.2 Embeddings from Char-RNN . 51

D.1 Seq2Cat screen page . 55
D.2 Tf-idf screen page . 56
D.3 Responsive layout of Tf-idf page 57
D.4 Screen of Swagger documentation page 58

xiii

List of Tables

2.1 Depiction of requirement fulfilment 18

3.1 Configurations for the Char-RNN model experiments. 35

xv

Introduction

Modern on-line newspapers often rely on the number of visitors for their rev-
enue. Recommendation systems are used extensively so as to show interesting
content to the user. By doing that, more views are generated in many ways.
In the short term – during one session – the user gets offered more of the
content he is interested in at the moment. In the long term, by making the
user pleased with the content, he comes to like the website more, visits it more
frequently and stays longer. That said, recommending makes sense, generates
profits for the company and the user benefits from more (ideally) interest-
ing and relevant content. Furthermore, news published on the Internet are
more and more often becoming a substitute for newspaper, which creates an
opportunity to be taken advantage of.

This instigated an idea of delivering relevant and useful information not
only to the reader, but also to people creating the content (in this case specif-
ically to editors of Internet news) through the means of a web service, that
would provide textual analysis capabilities on news articles’ titles. By using
established statistical and machine learning methods, the intended web ser-
vice will, for example, enable the editors to adjust the title, allow them to
make better decisions on how to create content or ease production by giv-
ing access to natural language processing algorithms and therefore increase
journal’s revenue and number of readers.

In general, web services are characterised by their interoperability, ease of
integration, scalability and platform independence. As a result, they make a
suitable choice for opening an interface to a company’s service or individual
modules of a larger software. A web service is, in fact, a client-server appli-
cation communicating over a standard protocol, published and accessed most
frequently via the Internet. Two major models of web services exist – Rep-
resentational State Transfer (REST) and SOAP, both will be discussed and
considered in the first chapter.

Firstly, the thesis aims to design and implement the web service itself,
keeping in mind important aspects like extendibility, scalability and security

1

Introduction

as well as considering usability. Extendibility at that should be emphasized,
because its functionalities will likely be broadened in the future. To that end,
the Application Programming Interface (API) of the web service ought to be
documented alongside the most important parts of the service. In addition,
the web service’s main API points must be tested to ascertain its capability
of operation.

Second goal of the thesis is to make a website Graphical User Interface
(GUI) for the users, so that they get the possibility to try out some of the
functionalities. This would serve as sort of an informational portal about the
used algorithms and models as well.

The web service itself was required to provide advanced text analysis func-
tionalities by allowing remote access to core modules, however, no specific
implementation of all the desired analytical functionalities of the system had
existed. On the grounds of that, in the first chapter a short survey of vari-
ous statistical and machine learning models is carried out, including, but not
limited to, character-level processing models. Third goal is to afterwards in-
tegrate existing solutions, in the form of frameworks, implemented models or
widely spread methods, into the web service. These then will constitute its
functionalities.

The thesis stresses out the integration of various models and functionalities
into the web service, to allow the developer to work with models’ multiple
versions and to facilitate the creation of new ones. It also had to be taken into
consideration, that when possible, the models should be designed as language
independent. That means, that merely by swapping data used for training it,
the model will be able to adapt to it, whether the data is in English, German,
Spanish, Japanese or Czech. Primarily though, the application will stick to
Czech and in some cases show on an English dataset, that the models are
capable of being language independent.

Present-day development in the intriguing field of Natural Language Pro-
cessing (NLP) inspired the theme of this thesis. The research in this field
is buoyant and keeps pushing the boundaries of human (machine) knowledge
further. New fascinating possibilities of making computers grasp the notion of
human language arise every day. For someone interested in this field, trying
out some of these algorithms is surely worthwhile. And even if the web service
might not exactly be what media companies would pay for immediately, by
incrementally improving it and widening its capabilities, it will become all the
more useful in the future and maybe commercially appealing.

2

Chapter 1
State-of-the-art

1.1 Web services

A web service (WS) is, basically, an application that can be accessed via
a network, not necessarily the Internet. It can be considered as sort of a
standardization layer between application code and application clients. This
creates a big advantage – web services allow platform independence when inte-
grating different programs or parts of more complicated applications, because
a program can use a WS without any need for compliance with a specific
platform where the service is running [1].

From the bottom to the top, web services can be divided into 4 essential
layers. Communication, packaging, description and discovery. Communica-
tion layer is responsible for transporting messages with technologies like Trans-
mission Control Protocol (TCP) or Hypertext Transfer Protocol (HTTP),
packaging layer defines the way data are structured, which is most frequently
some type of Extensible Markup Language (XML) or JavaScript Object No-
tation (JSON), and lastly description and discovery layers that make using
and finding the service possible [2].

There are two types of designs of web services that are most used these
days, both of which are considered. Following is a summary of them.

1.1.1 SOAP

SOAP is very often used as a packaging layer in web services. As stated in [3]
SOAP is “a lightweight protocol intended for exchanging structured informa-
tion in a decentralized, distributed environment” [3]. The underlying language
of SOAP messages is XML, which gives it wide structural possibilities. Most
frequently, SOAP takes advantage of HTTP or Simple Mail Transfer Pro-
tocol (SMTP) to transmit messages, however, it can be bound with almost
any communication protocol. SOAP interfaces are described using Web Ser-
vice Description Language (WDSL), which establishes a contract between the

3

1. State-of-the-art

client and server. The biggest advantages of SOAP are, that it can provide
enterprise-level security, atomic transactions or built-in error handling. What
is more, thanks to various extensions, it has the possibility to add new func-
tionality quite easily [1].

A SOAP message consists of two basic parts both wrapped in a SOAP
“envelope”. An optional SOAP header and required SOAP body. The header
blocks define meta-data which specify how the message should be handled, for
example the destination, expiration of the message, authentication informa-
tion and so on. Then, body is the actual content of the message. That means
data, return values, parameters and/or other information expressible in XML
format [1].

When talking about SOAP web services, it is understood that the packag-
ing layer of the WS uses SOAP as the protocol. Nonetheless, SOAP by itself
is not a WS. It can be used anywhere else as a communication protocol.

SOAP is the platform of choice for large, corporate information systems,
where integration must be rigid and compliant. It is highly standardized and
therefore becomes inherently more complex and expertise demanding. On the
other hand, it offers extensive customization. By not depending on a specific
transport layer, it achieves wide re-usability of code and the possibility to
simply change the web service, say from a HTTP based to a SMTP based
service, or allow various endpoints to interact via different protocols.

1.1.2 Representational State Transfer (REST)

REST was first proposed by Roy Thomas Fielding in the year 2000 as part
of his dissertation thesis and became widely popular on the Internet for its
ease of use. The entire idea is based on HTTP and its four methods GET,
POST, PUT and DELETE. As a consequence to this, REST is limited by its
use solely with HTTP, which is a trade-off for simplicity [4].

The goal of REST is to utilize the already well established, tested and
general-purpose HTTP and simplify web services. It was a reaction to the ever
more complex SOAP, which basically consists of a large number of standards,
that not rarely get implemented in various ways by the software providers
mainly due to dubious and ambiguous definitions. That is a major weakness of
SOAP. Different implementations did not necessarily conform with each other
sometimes. Such behaviour heavily undermines the principles of web services
– implementation independence – which lead to the creation of REST [5].

Even though, some aspects are difficult to directly compare with SOAP,
for REST is not a protocol, but an architectural style, similar functionality
can be achieved with both REST and SOAP web services alike. That is why
both approaches are considered.

As opposed to SOAP, REST is not restricted to the use of XML. In the-
ory REST can take advantage of any kind of format for packaging, although
standardized formats like JSON are preferred. These allow data objects to be

4

1.1. Web services

seamlessly transformed from in-memory representation to formatted text at
one point, and transformed back from text to data objects at another. Though
this is not restricted only to REST, but is an aspect that both of the styles
share, REST has the upper hand in this regard, for it can produce responses
in multiple formats and the client may choose whichever one he/she prefers
from the supported formats.

REST has its own specifics as well as SOAP. Everything accessed via a
REST service is called a resource. This can be anything ranging from images,
structured data, files to HyperText Markup Language (HTML) pages. Each
resource has its own Uniform Resource Identifier (URI), by which they are
identified and located. The messages between peers are created as HTTP
requests with data and parameters (if any) in their body and in the URI. Re-
quests can be of 41 types as mentioned before and should adhere to particular
rules [6]:

1. GET – serves to retrieve a resource. Is safe. Safety means, that no
matter how many times (even never) a GET request is sent, it should
not affect any resources at all. Nothing changes when calling it, so
nothing can go wrong.

2. PUT – is used mainly for updating existing resources. It is idempotent,
which signifies, that repeating the request will not cause any harm. Once
the resource has been updated, updating it again is okay2.

3. DELETE – a request for deleting resources. Is also idempotent, because
deleting an already non-existent resource does not do anything.

4. POST – used for creating resources. It is the only request, that if re-
peated can cause undesired results, so it is neither safe nor idempotent.

An important characteristic of REST is indeed the fact, that communicat-
ing sides do not have to remember any states, because everything needed to
process a request ought to be present in the request itself (or its URI). Such
behaviour particularly reduces complexity, which again encourages software
quality, maintainability and scalability [5].

REST is usually faster and takes less bandwidth than SOAP, because it
employs the less verbose JSON (as opposed to XML in SOAP). On top of
that, SOAP messages need to relay more meta-data. Also, REST is regarded
as a more loosely coupled architecture, because it uses a URI to access and
expose application logic. From this benefits mostly the client, because he does
not need to comply with the entire interface specification unlike SOAP web
services [6].

1Or more if HEAD and some other methods are also taken into account, but these
requests are not as useful in the context of REST and therefore will be omitted.

2GET is also idempotent as idempotence is a weaker assumption than safety.

5

1. State-of-the-art

1.2 Text analysis survey
There are various state-of-the-art approaches to textual analysis, each with a
bit different aim and purpose. These include statistical language models like
n-gram models, frequency models like Term frequency-inverse document fre-
quency (Tf-idf) or continuous space language models, where neural networks
are often used. Therefore, methods, that could have been applied in this work,
had to be evaluated to ascertain, which might work best.

An important factor when choosing appropriate models was, whether they
are (or not) language independent. This property requires the model to ab-
stract from a particular language in question. This means, that by only chang-
ing the language of data provided for the creation of a model, one should be
able to reach comparable results.

Emphasis was put on methods that at least partly had been implemented,
were very well described or could be implemented with the help of existing
frameworks. This is due to the fact, that the thesis’s aim is to utilize existing
text and language analysis possibilities, adjust them if need be, and apply
them to the case of article titles.

For this thesis, a dataset in Czech of about 335 thousand article titles and
a dataset in English of about 423 thousand article titles was made available to
work with. In order to choose the most suitable method, some particularities
of this work’s domain and available datasets needed to be taken into account:

• The primary dataset is in Czech. Contrary to English, Czech has many
word forms – conjugations, declinations, irregular plurals and so on. On
top of that, sentence structure is looser and more varied than in English.
The added complexity of the language makes Czech rather difficult to
process by a machine.

• Because the analyzed texts are actually titles of on-line newspapers,
they usually do not exceed more than about 120 characters, averaging
at about 60–70. In principle, it is just a short phrase or sentence that
summarizes the newspaper article. As a consequence to that, the text
incorporates a lot of information in just a few words, but can also omit
language structure, which would otherwise be present in a common sen-
tence.

• A lot of research in text analysis is done only in English, so methods
that work well on English, might not be as successful with the Czech
language.

• In some topics, the variability of vocabulary and sentence structure is
small and in other large. To explain this, tennis or hockey, for instance,
are covered very often and with repeating words, names of people etc.
On the other hand, topics like mathematics or physics seldom come up
in ordinary Internet news and the keywords used are not very usual.

6

1.3. Statistical models

1.3 Statistical models
Statistical models rely on well founded mathematical grounds, which makes
interpretations and measuring easier. Their methods are concise and accurate
in what they do. A number of them were considered and their main concepts
are described here.

1.3.1 N-gram model

In the task of predicting the next word in a sentence, it can be viewed as
a probability of a word wn, where n > 1, in a sequence of words under the
condition of previous words. (For n = 1 the function is simplified to the
probability of a sentence beginning with the word w1.) That can be expressed
with a probability function P as follows:

P (wn|w1, . . . , wn−1)

If such a function had been computed on text samples, e.g. sentences, it
would be able to effectively predict the next word. However, even with large
corpora of texts, it is virtually impossible to have the probability computed
on every thinkable sentence in the world. Language is superbly varied and
complex, theoretically infinite. So in reality, there would be too many cases
of sentences and words not observed in a dataset (as large as it may be, it
will never be infinite) and so probability of some words being the next word,
would be simply zero [7].

This needs to be improved. The way to do that is by grouping the observa-
tions, taking similarity into account so to say. This can be done by making an
assumption, that the word being predicted, depends solely on a few preceding
words, not the sequence before it. This essentially means to put words into
equivalence classes, where each class contains words, which are preceded by
the same window of words – the window’s length is defined as n− 1. This is
called an n-gram3 model or also an (n− 1)th order Markov model [7].

1.3.2 Tf-idf weighting

Tf-idf weighting is a way of looking at similarity between two documents or
sentences. To calculate similarity, it employs a combination of so called term
frequency and inverse document frequency:

tf-idft,d = tft,d × idft

Here tf-idft,d is the weight of a term4 t in a document d. Then tft,d is the term
frequency of term t in document d, in other words, number of occurrences of

3For n equal to 2 a bigram, equal to 3 a trigram, afterwards simply four-gram etc.
4In the case of article titles a word.

7

1. State-of-the-art

some word in an article title. Finally, idft is the inverse document frequency
of term t [8].

Idf is a way of discriminating words that appear too often and as a result
do not say much about the relevance of documents, e.g. pronouns, connectors
and so on. It is defined by:

idft = log
(
N

dft

)
,

where N is the total number of documents and dft is the number of documents
where term t occurs as well, also called document frequency. Idf is low for
common terms found in many documents and high for more extraordinary
terms [8].

The score defining how similar a document q is to a document d is then a
sum of Tf-idf weights of all the terms in q. Or mathematically put [8]:

S (q, d) =
∑
t∈q

tf-idft,d

1.3.3 Latent Semantic Indexing

Latent Semantic Indexing (LSI), or also called Latent Semantic Analysis, is
a method for understanding language contexts and similarity of words or sec-
tions in large textual corpora. This technique creates a matrix of high di-
mensions, which represents words and word sequences. Afterwards, a decom-
position technique, called Singular Value Decomposition (SVD), is applied to
this matrix. It has been found, that many characteristics of Latent Semantic
Indexing (LSI) resemble human perception of language, probably due to the
fact, that it tries to find relations between when a word occurs and where [9].

In more detail, LSI transformation starts, first of all, with a matrix of
unique words as rows and word sequences as columns constructed from the
input text. The matrix’s values stand for occurrences of a word in the sequence
of words. Then, the matrix is decomposed with SVD into three matrices,
whose product equals the initial matrix. Lastly, similarity of words is obtained
with cosine similarity of vectors, formed by one of the three matrices’ rows of
given words [9]. Cosine similarity is defined as the cosine angle of two vectors
~u and ~v of length n:

cos (~u,~v) = ~u · ~v
‖~u‖‖~v‖

=
∑n

i=1 uivi√∑n
i=1 (ui)2

√∑n
i=1 (vi)2

In this work, LSI is considered for topic extraction from an article headlines
dataset. LSI allows to find words, that contribute to a certain topic, but in
general can do much more. To name but a few – text summarization, spam
filtering, essay scoring, information discovery and retrieval.

8

1.4. Character-level models

1.4 Character-level models

Up to now, the described models were all focused on word-level processing.
However, for some languages (Czech, for example), the need for more training
data is increased, because the model has to be aware of all the word forms,
that have almost the same meaning. Another thing is, that word-level models
generally keep a known vocabulary of words, which is limited. Therefore,
unique or rare words sometimes are not taken into account at all. With
flowery languages, the vocabulary size rises quickly.

Hence, a different approach to the language problem was also considered,
that is – processing the text character by character. This way, the purpose of
vocabulary seizes to exist, instead an alphabet is used. As a result, the benefit
of character-level models is the fact, that they are not limited in vocabulary
size and thus better generalize the language.

The problem of some languages having a lot of word forms should poten-
tially be eliminated as well. Mainly due to the partial similarity of the word
forms, which can be understood, if the word is not taken like a single unit.

Most promising models for character-level models are from the field of
machine learning, and especially that of deep learning.

1.5 Machine Learning

The research of Machine Learning (ML) has been steadily growing in the
past years with diverse applications in all kinds of fields. ML methods are
now commonplace so it often happens, that one does not even realize usage
of functionalities powered by such algorithms. In the past few years, ML
has been gaining momentum in automotive industry, search engines, speech
recognition, image captioning, language translation, robotics, optimization,
games and many more.

The capabilities of ML are taken advantage of mostly when dealing with
problems, that are too complicated to program, or with tasks involving large
amounts of data, that a single person could not hope to make sense of. Also
a key feature of such programs is their adaptiveness, which can be achieved
by simply offering the ML new data, which then results in a change of their
behaviour [10].

Generally, two main types of ML exist – supervised and unsupervised
learning5. In the case of the former, the system is presented with inputs and
correct outputs. It then tries to make the most out of it, as if learning by
making mistakes. To illustrate, imagine an example of image classification
of cats and dogs. The training set consists of images, which all have a label

5Sometimes combination of both is used called semi-supervised learning. There is also
a type called reinforcement learning, where the program is supposed to predict more from
given training data.

9

1. State-of-the-art

determining the depicted animal. During training, the system modifies itself
(learns) to distinguish between cats and dogs by correcting its mistakes. When
the system is finally served with an unknown picture, it can access knowledge
attained in the training phase and decide, whether it is a dog or a cat in the
given picture. It is similar to a teacher telling a student what is correct or
not, therefore the name supervised [10].

Unsupervised learning, on the other hand, aims to extract interesting con-
tent from unlabelled data and, for instance, look for unusualness or anomalies,
do clustering of data or also generate new samples. These types of algorithms
are often difficult to evaluate, because it is hard to find an objective metric,
that would distinguish good results from the bad ones [10].

In this work, upon recent successes of neural networks in countless fields of
study, it has been proposed to try to employ deep learning methods in order
to achieve the desired functionality. Deep learning refers to neural networks,
which have multiple hidden layers, it is widely used in many fields ranging from
speech recognition, image processing, search engines and language translation.
Deep learning methods prove to approximate problems, that are in nature
extremely difficult, with acceptable error. A survey of such neural networks
follows.

1.5.1 Artificial Neural networks

A neural network is a computational model, that was inspired by brains and
neural tissue and has interesting capabilities. It consists of computational
nodes interconnected with each other by directed edges. Every node, so called
neuron, has a number of input and output edges. It computes its output with
an activation function by weighing signals coming from input edges. This
is an analogy to synapses in organic neurons, which connect many neurons
and transmit signals throughout the body by emitting chemical substances,
that stimulate neurons to forward the signal further. Generally, three types
of neurons are distinguished. Those, whose input edges are not connected to
other neurons, but to the networks input are aptly called input neurons. On
the other end of the network are output neurons. And between these two layers
reside hidden neurons, whose input and output is connected to other neurons.
By changing the network’s architecture, one can acquire various types of neural
network models, which can have a range of intriguing properties [11].

With data it is then possible to teach the network – which basically means
to adjust the weights of each single neuron, so that the network’s output
is as close to the correct output as possible. This is done using optimization
algorithms, usually a variation of gradient descent or back-propagation. In the
phase of training, the network is fed with training data in batches. After each
batch-processing iteration, a loss function calculates, how correct or wrong the
network has been. To improve, the optimization algorithm calculates by how
much the weights should be adjusted. Besides loss, also accuracy – a metric

10

1.5. Machine Learning

of how precise the network was – is used to estimate the quality of the neural
network [11].

1.5.2 Multilayer Perceptron

Multilayer perceptron (MLP) is a common type among neural networks, which
consists of layers of neurons, that are fully-connected with neurons in their
previous layer. The data in MLP flows strictly forward, without loops, which is
why they are part of a group of networks called feed-forward neural networks.
These networks are frequently used in classification problems6, speech and
image recognition. Furthermore, they often complement other networks in
more complex settings, often as the last layer in a stacked architecture [12].

Mathematically speaking, MLP can be described as a directed acyclic
graph G = (V,E) with a weight function w : E → R. Activation function
of the neurons can be expressed as a simple real function σ : R → R. Usu-
ally, only monotone activation functions are used – for instance, sign function,
hyperbolic tangent function, sigmoid and many more [10].

Edges in the graph correspond to neuron connections and nodes to neurons
themselves. Layers than are disjoint subsets of V , in other words, V =

⋃T
t=0 Vt,

where V0 is the input layer, VT is the output layer and the rest are hidden
layers. It also holds, that every neuron in layer Vi+1 is connected to all neurons
in layer Vi for i ∈ {0, . . . , T − 1}. For example, for T = 1 the neural network’s
architecture is in the form of a bipartite graph. Also, neuron’s output is com-
puted with activation function σ: o = σ (

∑n
i=0wi · xi). Here x0 = 1 and w0 ·x0

forms so called bias, and the rest – xi and wi for i ∈ {1, . . . , n} – are inputs
and corresponding weights from other neurons. The above mentioned bias
enables neurons to learn a specific offset from the inputs [10].

1.5.3 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a feed-forward neural network that chang-
es the neuron structure and network architecture by “the inclusion of edges
that span adjacent time steps, introducing a notion of time to the model” [13].
This allows for more semantic modelling of time-series, predictions, music,
video, language or speech. Recurrent Neural Network (RNN) introduce recur-
rent edges, which are connections between the same neuron in different time
steps – stages in time of processing. This can be better understood from the
depiction in Figure 1.1 [13].

The reason these neural networks are called recurrent is, that in each time
step, the neuron computes its output based on two sources. The input vector
and its previous state in time (its previous time step). This makes it possible
for RNN to create relations in time between input data and facilitates, among
others, time-series modelling [14].

6Deciding whether an input belongs to a specific class or not.

11

1. State-of-the-art

~x

N

~h

⇒

x0 x1 x2 x3

Nt0 Nt1 Nt2 Nt3

h0 h1 h2 h3

. . .

xt

Ntn

ht

Figure 1.1: An illustration of an unrolled neuron in a Recurrent Neural Net-
work. The vector ~x corresponds to network’s inputs, the vector ~h is the output
and finally Nti marks the neuron at time step ti. In each time step, as repre-
sented by arrows in the diagram, the neuron gets fed two inputs, xi and also
the previous state hi−1.

1.5.4 Long short-term Memory model

Traditional RNN models suffer from troublesome training, which is said to
be caused by vanishing and exploding gradients due to the fact, that the
back-propagated error increases or decreases exponentially with the number
of layers. This makes learning hard, although recent advances in computer
performance, especially that of GPUs, allow to mitigate these problems. They
also are not good at remembering things through time [13].

Long Short-Term Memory (LSTM), a modification of RNN, which was
proposed by [15] in 1997, introduces a new RNN model with an innovative
cell structure counteracting above mentioned issues. LSTM names neurons
memory cells and enhances each one of them with added properties, so called
gates. There are usually three gates – input, output and forget gate. They
output a number between 0 and 1, which determines the amount of flow let
through such gate [13, 15].

1.6 Embeddings

Some domain spaces, like languages, have a very high dimensionality and are
very complex. Their typical representation in a computer does not always
capture semantic meaning. Numbers, on the contrary, have a near perfect
machine representation (except for precision and limited size) coming from the
underlying design of computers. Numbers in the computer can be compared
with one another and can be used in mathematical operations in their semantic
way – on a computer, two plus two equals four and ten is less than one hundred.
How does one, however, represent language (or anything other than numbers

12

1.6. Embeddings

for that matter) without losing (at least to some extent) semantic information?
The answer is embeddings, which come into play to do just that.

An embedding is a function from a particular domain into a high dimension
numerical space, which aims to preserve innate meaning of the domain data.
Various methods exist for obtaining such a function. Generally speaking,
they simply place inputs closer and further away from each other depending
on criteria specific for each of these methods. Afterwards, the embeddings can
be used to calculate similarity – with euclidean distance, cosine distance etc.
– or to make certain operations with them [16].

A well-known method for word embeddings is called Word2Vec. Basically,
Word2Vec works on the basis of a shallow neural network, which infers the
semantic meaning of words based on the context they appear in. The results
are quite astonishing. For instance, in embeddings arithmetic, king −man+
woman ≈ queen,Madrid−Spain+France ≈ Paris or Germany+capital ≈
Berlin [17].

In the context of Natural Language Processing (NLP) and machine learn-
ing, embeddings elevate the capabilities of designed models. A single word
entails a lot of information, which is lost, if the word is represented as a mere
identifier “word number XY ”. Embeddings give a better representation of the
data, because they keep this information. As a result, the model can learn
natural language tasks much better and in a more meaningful way.

13

Chapter 2
Analysis and design

2.1 Requirements

Because the service itself is a new, proprietary software solution, requirements
– functional as well as non-functional – could be defined arbitrarily. This
meant a lot of freedom and many possibilities in choosing what to create and
how to do it. However, practicality – that it could in fact be used by a client
sometime in the future – had to be taken into account. For just like companies
seized the power of recommendations systems to create more revenue, they
will want to utilize modern NLP methods.

The broad domain field meant that the WS could be quite an extensive
piece of software, which would exceed the scope of a bachelor thesis. That is
why it has been decided to stick to basic functionality and known algorithms
for now and focus more on the design and architecture of the software. There-
fore, more emphasis and priorities were put in some of the non-functional
requirements, because the system will likely be extended with new function-
alities in the future or will have the current ones enhanced.

2.1.1 Functional requirements

Regarding functional requirements (shown in figure 2.1), the web service
should be capable of being accessed by other systems via the Internet. This
will allow to integrate the WS seamlessly with external systems – be it a
specialized editing system for publishers, a website or anything else. This re-
quirement has top priority, for it is an essential part of the system. Without
it, the functionality cannot be utilized as intended.

As a way of showcasing the possibilities of the system, a web browser
Graphical User Interface (GUI) has been required. Like that, user interactions
with the system are made substantially easier. People, who might be interested
in the topic of NLP, can use it to understand or get information and hands-on
experience with NLP models. It was not necessary for it to be very complex,

15

2. Analysis and design

Figure 2.1: Specified requirements of the web service. Functional requirements
on the left, non-functional on the right.

but instead rather show, what the web service is capable of. The website
should also provide useful explanations about the models.

Following five functional requirements refer to what exactly the system is
supposed to provide for the user. Firstly, an important ability to find similar
articles in a set of already existing articles – this will enable the creator to
compare his work with other articles, find some more relevant information to
his topic, use it as a reference and so on. Because it makes for a very useful
feature, it has been given a high priority.

Secondly and thirdly, artificially generating headlines either randomly or
primed with a starting sequence. The starting sequence would then be finished
and in this way create suggestions of an article title. The random generation
is more of a secondary feature, but can be used to programmatically assign
headlines to articles or serve as an inspiration for writing an article.

Some NLP techniques have the ability to extract what kind of topics ap-
pear in from text datasets and what words constitute such topics – e.g. LSI.
Such functionality is presented by the requirement F6. Just like F3 it has low
priority.

Lastly, the requirement F7, which calls for the functionality of inferring
category (or categories) from a title. This feature consists in telling the user,
which category an article title he had provided falls into. Because this might
become quite helpful in many regards (automatic article classification and so
on), the requirement has high priority.

16

2.1. Requirements

2.1.2 Non-functional requirements

Nowadays, security is an infamous issue of a large number of applications and
information systems, more so on the web. That is the reason why the security
of the web service (and the GUI as well of course) was required with high
priority to protect against malicious attacks and to be sure, that no private
information would get into unauthorized hands or leaked in any way. In other
words, communication between the service and the client must remain secret
and there should be no evident threat to the service of being compromised. To
define it more clearly, the top ten security risks as defined in [18] by OWASP
(if applicable to this case) should be covered.

An important quality of the web service’s Application Programming Inter-
face (API) is its testability. It reflects the need to ascertain, that the system
is capable of proper functionality and does not evince signs of unexpected be-
haviour. Also, if the system is to be extended in the future, there must exist
means of testing it, so that new parts do not break any earlier functionality
without notice. In practice, it means that the entire API (all of its methods)
are required to be tested.

An essential requirement on the system is the API documentation – that
of all available methods, with chief descriptions and documentation of param-
eters, input and output formats. It will serve as a point of reference for anyone
who wishes to use it, either themselves or in a program. It has, of course, a
high priority, because without it, no one would be obliging to implement it
into an external system. Also, public availability of the documentation was of
essence. So that the documentation stays updated, automatic generation is
preferred, but not required.

Because natural language processing algorithms can have heavy demands
on hardware, scalability of the WS was crucial. To ensure reasonable response
times and to be able to react to increasing demands (even hypothetically
speaking), preparing the software to scale well from the start of the project
makes more sense than to arduously compensate for it later. That means,
that the software has to be capable of taking advantage of multiple cores,
processors or even to be able to run on multiple machines each with its own
instance.

Next, the web browser GUI, even though it does not have to be very
complex, is required to have a unified style and a responsive layout, so that
it can be displayed on devices with smaller screens without trouble and still
remain user friendly. The GUI is one of the goals of this thesis, so it has top
priority.

Lastly, the requirement for maintainability is also very important, even
with not so extensive code bases like this one. To be precise, required is: ver-
sioning of files, which are not generated, documentation of the most important
parts, logging and readable code.

17

2. Analysis and design

2.2 Primary use cases
It has been analysed that just two actors are going to interact with the system.
A human – who would like to obtain more information on the article he/she
is creating or someone, who wants to know more about NLP – or, as was
mentioned earlier, an external editorial system. Everyone can access all of the
functionality of the system without constraints, even though they do it in a
different fashion.

The diagram for the use case model can be found in figure A.1. The
use cases themselves are rather straightforward – the user simply accesses
the capabilities of an algorithm. Therefore, it was not necessary to perform
detailed modelling of each case, because the added value would have been
basically none.

The table 2.1 then summarizes which requirements realize each of the
use cases. Further reference on requirements and use cases can be found in
figure 2.1 or A.1.

F3 F4 F5 F6 F7
UC1 (n-gram) +
UC2 (Char-RNN) +
UC3 (n-gram) +
UC4 (Char-RNN) +
UC5 (Word2Vec) +
UC6 (Tf-idf) +
UC7 (LSI) +
UC8 (NN – Seq2Cat) +

Table 2.1: This table depicts, which requirements are fulfilled by which use
case. Requirements F1 and F2 are realized in all cases, because each algorithm
is available in the API as well as via the web browser GUI.

2.3 Design decisions
The programming language chosen for implementing the web service became
Python 3. Python is a high-level, dynamically typed interpreted language
with a big community, support and is used by individuals in small projects as
well as in big companies for large solutions. It is widely used in hundreds of
fields, among many as a rapid development tool in agile software development,
as a testing and penetration tool, on the web, in science and engineering,
business and also education. Python especially took root in computer science
and machine learning thanks to many outstanding frameworks and libraries
facilitating experiments, but also real-life applications that are truly changing
the world [19].

18

2.3. Design decisions

Despite not being the fastest language – compiled languages like C or
C++ are a magnitude faster, even Java – when performance is needed, one
can harness the power of a different language through Python, because it
has bindings to many of them, even Fortran [20]. Many frameworks use that
to bring performance to Python, for instance the ecosystem SciPy. Python
compensates for the lower performance with its concise, readable and explicit
format, which significantly increases maintainability of the code base.

From the point of developing the web service and web browser GUI, the
framework Django seemed like the most suitable choice [21]. Django is excel-
lently documented (that helped immensely), very secure and scalable, which
is why it is used by many prominent websites of companies like Pinterest,
Instagram, Spotify and NASA. It can be extended with a module for creating
REST web services called Django REST Framework, which integrates with
Django, has similar semantics and enables browsable documentation for the
API.

The decision on the web service’s style, whether to employ REST or SOAP
as its means of communication, has been partially decided by choosing Django
as the main framework for implementation. Mainly because of Django REST
Framework. Not only that though, REST fits the needs of the requirements
perfectly – it is flexible, straightforward, simple and yet powerful enough. The
web service is designed to be available only via the Internet, so the SOAP’s
advantage of the possibility to use multiple protocols cannot be utilized. Ba-
sically, its added complexity was weighed out by REST, because it would not
be worth it.

Django has built-in support for communications with databases and comes
equipped with a default SQLite database (DB). It is a lightweight, reliable DB
and does not run in a separate process – SQLite comes alongside Python and
will do with a single regular file. On top of that, Django comes with its own
DB migration system, that significantly increases maintainability, because any
changes to the DB schema are managed automatically.

Constructing DB tables becomes easy, as they are defined by classes in
Python and the communication between Django and the DB is left to the
framework. For this Django uses the so called Active Record pattern as de-
fined by Martin Fowler in [22]. This pattern, practically, maps classes with
attributes to tables and columns in the database, and then offers CRUD7

methods to operate with them. Such behaviour, in cases of applications with
less complicated database schemes, cuts down duplication of the domain in
the DB and in code [23].

Furthermore, a deciding point was also the fact, that machine-learning re-
search is carried out mainly in Python and there exist quite a few good libraries
for it to do natural language modelling. For example, TensorFlow by Google,
which is a library enabling computations through data flow graphs [24]. It

7Create, Read, Update, Delete.

19

2. Analysis and design

is possible to run it either on CPU or GPU by simply installing a different
version of it (the code does not have to be changed at all), in fact with a
few tweaks, it can even run on a CPU/GPU cluster. TensorFlow became one
of the most popular frameworks for training neural networks. For higher ab-
straction of neural networks, using Keras makes developing experimental, but
also production-ready, solutions even easier [25]. There is also the possibil-
ity of swapping the back-end of Keras from TensorFlow to Theano – another
popular machine-learning library for Python [26].

2.4 Architecture of the system

When designing the architecture of the system, a couple of things had to be
considered. First of all, as both a GUI and an API were required, the archi-
tecture must make an effortless extension of the presentation layer possible.
Besides, these extensions needed to be independent of each other, so that
making simple changes in one, would not propagate into other presentation
modules.

The architecture was also required to permit easy addition of new mod-
els to facilitate extensibility of functionalities. Most of the used algorithms
depend heavily on data and various parameters, that when changed, can sig-
nificantly alter their behaviour. To that end, the architecture had to support
loading of different versions of such models and algorithms, including versions
trained on different languages.

In the end, it lead to a strict8 multi-layered architecture with four layers
as can be seen in the figure 2.2. Purpose of the technical layer is frankly to
manage data and its structure. The engine9 layer then consists of classes that
make up the functionality of the application. That means various kinds of
NLP algorithms and models.

After that the business layer provides an abstraction – an interface – that
unifies the access to core functionalities. This is essential, because it enables
better control over the models and isolates any changes from the presentation
layer. This in consequence makes it possible to have the application easily
extended from within, without breaking the packages in the presentation layer.
After confirming that new functionality works properly, extending also the
presentation layer correspondingly is no problem.

In the presentation layer, as many as desired implementations are possible
thanks to the layered architecture and therefore the plan of opening more than
just one way of accessing the application is fulfilled. As can be seen in the

8The packages’ dependencies never skip a layer and depend on the package(s) directly
under them.

9In the context of this work, engine does not refer to a motor, as in car engine, but rather
to something that provides means of accomplishment. In the meaning of, for example, a
search engine or a game engine.

20

2.4. Architecture of the system

Figure 2.2: Package diagram of the application’s architecture. It is a multi-
layered architecture comprised of presentation, business, engine and technical
layer.

figure 2.2, the web browser GUI is implemented in package webgui, and the
API in package restapi both of which depend solely on the business layer.

One might argue, that the Active Record design pattern used by Django to
persist objects, violates the strictness of a multi-layered application, because
it gives anyone with a reference to the object the possibility to access data.
Though that might be true in some cases, in this application, however, data
persistence is used only by the engine layer, and if any other subsequent layer
needs it, it would receive the data merely in the form of basic data types.

21

2. Analysis and design

2.4.1 Web browser interface

The web browser GUI then is organized much in the same way as the well-
known and widely used Model View Controller (MVC) design pattern. The
concept still remains similar as illustrated by figure 2.3, but to stay consistent
with Django’s naming, the packages are a little renamed [22].

Figure 2.3: UML diagram showing how the package webgui is organized simi-
larly to the MVC design pattern, but with addition of the forms package. The
view from MVC corresponds to templates and controller to views so as to stay
consistent with Django’s naming. The forms and business package together
make the model from MVC.

Django’s templating system for creating websites, goes hand in hand with
MVC and so eases the design of HTML pages by enabling component composi-
tion and with flow control elements. It resembles in many regards JavaServer
Faces (JSF). A template may inherit from another one and override some
appearance or may also include different templates. This makes for an un-

22

2.4. Architecture of the system

complicated and yet flexible system, with which even complex websites are
feasible.

The forms package contains a specific structure of parameters and data
used for communication between the templates and views. Templates display
content directly to the user and relay his input to view classes (controllers).
These process the user’s input and call business methods, whose results are
then updated back to the user via templates. The results’ structure, however,
is not changed by the views, but gets presented by the templates, which is
why templates depend on the business layer as well, even though do not call
any methods. Basically, the forms and business package constitute the model
from MVC.

For some it might seem counter-productive, nonetheless, it brings many
advantages. If, say, a business method’s name gets changed, only the views
have to be adapted. If method’s parameters change, possibly only the views
need modifications again. In some cases (a totally new parameter added to
the method), the change would propagate into forms and templates as well,
but that would be the same for a traditional MVC. And if the result format
of a business method changes, only templates would need an alteration, in
contrast of both views and controllers in MVC.

2.4.2 Web service’s API

The API is formed by classes defining REST methods, see also figure 2.4.
The data is transformed from data objects into various data formats and vice-
versa automatically with the aid of serializer classes. The user can choose
the format himself by specifying it in the URI, as a format=<format> query
parameter of a request or as a content and accept header in the HTTP method
depending on what is more suitable for him. The representation of objects in
a given format is then handled by the serializers. Among available formats for
output are JSON, XML and HTML, the same for the input with an exception
of HTML.

23

2. Analysis and design

Figure 2.4: The package restapi defining the accessible API. The views con-
sist of classes that implement and determine API methods with the help of
serializers, which transform the data into and from desired formats.

24

Chapter 3
Realization

3.1 Implementation

3.1.1 The engine layer

The application’s backbone, classes that provide functionality, are located in
the package engine. They constitute what the service actually does. Because
the application needs to be well maintainable and expandable, the engine
classes would not do without a proper structure. Because there are quite a
few classes, only a subset of them is illustrated in the figure 3.1. The entirety
of the documentation on classes from this package is available on the attached
CD.

The concept of the engine package is, that the classes are programmed
“against an interface”. This means, that a class, that wants to provide certain
functionality has to form a contract with an interface by implementing it. By
forming a contract, the class is bound to certain behaviour, which means, that
all the classes, that share the same interface, can be uniformly accessed and
dealt with. On account of that, it is possible to reuse a lot of code, that uses
different engines, which, however, implement a common interface.

For instance, the base interface of the engines, called IEngineType, defines
what method every model should implement. After that, sub-interfaces, like
ISimilarityType, establish what kind of functionality is to be expected from
classes that implement it. A class implementing ISimilarityType then would
have to implement all of its methods including those from IEngineType.

Because of this, not only can the interface be implemented by an arbitrary
number of classes10, but also a class can implement many interfaces, without
the issue of inheritance ambiguity11. The interfaces do not implement any-

10As is the same with classes and inheriting sub-classes.
11The diamond problem, for example, where a class inheriting from two classes that share

a common abstract parent class (with some abstract method), does not know, which method
implementation to inherit.

25

3. Realization

Figure 3.1: The package engine contains classes responsible for actual func-
tionality of the web service. This UML class diagram shows only a subset
of them for better understanding. The whole structure can be found on the
attached CD. Also note, that Python has no special construct for interfaces,
so instead in the code, abstract base classes are used, whose methods have no
implementation.

thing, so even if two interfaces defined methods with the same signature, the
class would implement the method just once and satisfy both contracts.

This way, new engine models can be added merely by implementing either
an existing interface, or a brand new interface can create a new contract for
a model providing a totally different functionality to that thus far.

3.1.2 The business layer

The business layer serves as an isolation between the actual implementation
and the presentation layer, hence it follows the facade pattern. It isolates any
changes done to the inner workings of the engines from upper layers, but also
leaves space for more control over the engines.

More on the actual structure of the classes can be found in figure 3.2. All
classes of a type of an engine comply with the exactly same contract, which also
means, that they can be handled in the same manner. Therefore, the common
functionality of the facades is pulled up into classes with static methods, which
take over the control and operate on instances of an engine. Moreover, facade
classes are responsible for calling appropriate models according to the language

26

3.2. API documentation

requested. Some of the models – e.g. Char-RNN, Seq2Cat – do not yet support
multiple languages, only Czech. In such a case, an exception indicating, that
a language version is not supported, is thrown.

Figure 3.2: A UML class diagram showing the organization of the business
layer. Models of the same type (that implement the same interface), can be
dealt with the same way, therefore, functionality is pulled up into common
classes with static methods.

3.2 API documentation
It was crucial that the API had good documentation available. Therefore,
there are actually two ways of exploring it. First of all, it is possible to open the
API in a web browser and visit any available method by specifying its URI – for
the root method it would be https://〈domain-name〉/api/. From there one can
send any requests and see the results immediately. In addition, Swagger docs
are available too – simply by going to https://〈 domain-name〉/api/docs/. At
that site all possible methods are listed with signatures, formats, parameters,
responses and brief description. Swagger docs can be used to access and
examine the API as well, probably in an even easier way than via the browsable
API.

3.3 Testing
Frankly, the entire API was tested. The Django REST framework provides
a useful suite integrated with Python’s unit testing framework unittest. The
tests then can build regular HTTP requests and send them as, for example, a

27

3. Realization

client would. Hypertext Transfer Protocol Secure (HTTPS) is possible, too,
which was vital, because the whole application runs behind it.

The testing itself is run on an in-memory testing database, which is re-
populated with data from the production database, because data for running
the algorithms needed for their execution is stored in there. As a result of
creating a separate DB, no data in the production DB can be damaged by
running tests, because it is ensured, that they run in an isolated environment.
Above that, each test runs in a DB transaction and any changes done by it
are reverted back immediately to how they were before its execution. So, each
test begins with a fresh DB.

Generally, the application was tested in the manner of black-box testing
as a whole. Tests are not designed to go through certain paths in the system,
but are examining, whether the API meets promised functionality. To expand
on that, how well certain algorithms or engines work – how accurate are their
results or predictions etc. – was not tested, as that can be very ambiguous
and sometimes nearly unfeasible.

It was assumed, that engines of the same type are supposed to behave in
the same way, which is why the tests are homogeneous for all of one type.
The content of the messages is not tested in great detail, on the other hand,
an emphasis was put on proper structure, parameters, types, status codes and
expected errors. Tested was mainly the API – by doing that, most of the
functional requirements were covered and verified.

3.4 Deployment

The Django application runs as a Web Server Gateway Interface (WSGI)
compliant client in a uWSGI server. WSGI is a Python standard which defines
how web applications communicate with each other and how they process
requests. All in all, the uWSGI server does nothing else, except for passing
on requests to the application and then its response back to the client [27].

For persistence of data, the application accesses an instance of SQLite 3
database. It is, however, only a matter of configuration (setting up how Django
should access a database server, authorization etc.) to switch the database for
a different one like MySQL, PostgreSQL or Oracle. This has the advantage,
that the database can run as a separate process or even on a totally different
machine for that matter. On account of that, scaling the data layer is unde-
manding and uncomplicated. For now, though, a simple set-up of the database
like this, fulfils the needs for enough performance, because the application is
not data demanding. On top of that, the SQLite database is embedded into
Python, so migrating the application to a different node means just relocating
one file – no need for installation of a new database, configuration, restoration
and so on. This further elevates the flexibility of the application.

28

3.4. Deployment

Figure 3.3: UML deployment diagram describing the deployment settings of
the web service. The web server nginx communicates with a uWSGI server,
that contains the Django application.

As can be seen in figure 3.3, uWSGI communicates with a reverse proxy
server, nginx. Nginx is a high-performance and lightweight production web
server used on high traffic websites, but is perfect for less demanding jobs
as well. The two servers communicate with each other through a Unix Do-
main Socket, which is faster than through a TCP/IP port. Nevertheless, it is
possible to run uWSGI and nginx on different server machines and let them
communicate via TCP/IP. And not only that, but multiple instances of the
application may run on different nodes. The nginx then would take care of
load balancing between the nodes, so that they share the traffic.

As a consequence, this configuration scales without any particular hin-
drances, which makes it just a question of changing the communication set-
tings, installing dependencies and the application itself on new hardware to
have it utilize more resources. For instance, the application would benefit from
dedicating algorithms, that could be sped up by running on GPUs, to a node
specifically designed for them, like a GPU cluster. With this, the advantage
of TensorFlow being able to run either on CPU or GPU just by swapping an
installed Python package, would really come to fruition. As an illustration
of how such deployment would work, an example deployment diagram can be
seen in figure 3.4. For more optimization, the nodes can communicate through

29

3. Realization

Figure 3.4: This deployment setting shows how the web service could be scaled
to utilize more resources. The nginx web server can be configured to balance
load between multiple nodes or to route specific requests to a certain node.
Here, the nginx server sends traffic of algorithms, that are able to use GPU,
to a dedicated GPU cluster. Also, the database runs on a separate server.

faster means, the database could be replicated and run on more machines or
more machines might be dedicated to the algorithms.

3.5 Security

In this day and age, securing software continues to be of profound importance.
For this reason, it had been decided, to make the application and communi-
cation between the server and client secure. The sent data most probably
will not entail any truly confidential data, but communication privacy, even
for simple applications, is becoming a standard. That is why the application
employs HTTPS entirely – for all of its communication through the Internet.

Moreover, as low a possibility of someone targeting one’s web application
(or server, website. . .) is, it never equals zero. That is why, the application
was designed with security in mind. The Django framework helped a lot in
achieving this goal.

Security of the program on its own was required (as defined by the non-
functional requirement N1, see figure 2.1 and section 2.1.2) to focus on security
risks summarized by [18] and try to mitigate them as much as possible. Some

30

3.5. Security

of them do not, in fact, apply to the application’s case, because users do not
authorize themselves at all and no data about them is stored. That means,
that the risks of Broken Authentication and Session Management, Sensitive
Data Exposure and Missing Function Level Access Control are not relevant.
Just like the risk of Unvalidated Redirects and Forwards, because there are
none.

For the case of Injection, the Django framework takes care of properly
escaping all inputs, so that no DB queries result in vulnerable points of an ap-
plication. Subsequently, Cross-Site Scripting (XSS) is prevented by Django’s
innate auto-escaping feature and by not storing or sending any user data [28].
Then, Insecure Direct Object References were carefully avoided using only se-
rializers (which allow only concrete parameters of primitive data types) to
show results to the user and by catching and controlling any exceptions that
might occur. This way, no unwanted information gets to the user.

In order to avoid Security Misconfiguration, a lot of effort was put into
configuring correctly the nginx web server. It accepts merely HTTPS and any
HTTP requests are redirected with a status code 301 Moved Permanently re-
sponse. The employed Secure Sockets Layer (SSL) protocol is Transport Layer
Security (TLS) 1.2, just as recommended by Mozilla in [29] and only modern
cipher suites are used. HTTP Strict Transport Security (HSTS)12 is enabled
to have the web server tell the client’s browser to use only HTTPS, if he tries
to connect with HTTP. Thanks to that, Man-In-The-Middle attacks’ diffi-
culty is greatly elevated. Afterwards, during handshake, it is set up to prefer
the server’s cipher, instead of the client’s. Also, to prevent reduced security
because of unreliable Online Certificate Status Protocol (OCSP) responders,
OCSP stapling is allowed.

The next common weak point, Cross-Site Request Forgery (CSRF)13, has
in Django a standard countermeasure – every page that has a form with a
POST request, creates an authentication token to prevent CSRF attacks.

Finally, the issue of Using Components with Known Vulnerabilities is, ad-
mittedly, a little problematic. All software has bugs – that is why software
maintenance exists. Most importantly, however, these bugs, when discovered,
need to be fixed by someone. As for that reason, frameworks with a lot of
support, big community or commercial backing have the upper hand when it
comes to mending mistakes and releasing updated packages as soon as pos-
sible. In that regard, the key components of the application – Django and
Django REST Framework – have it all. In addition, no known vulnerabilities,
which would threaten the safety of the web service, were identified in any of

12If a user sends a HTTP request on the server, it tells the browser to use only HTTPS
for communication.

13The application is requested to do a certain unintended action when the attacker takes
advantage of an already signed in and authorized user to do it. The changes done might
not be even detected, because the vulnerable application takes it as a regular, legitimate
request.

31

3. Realization

the used libraries. Nevertheless, as indicated above, one cannot be really one
hundred percent sure about that.

3.6 Experiments

In order to create the intended functionality, it was necessary to conduct
some data analysis and a number of experiments to evaluate, what could or
could not work. This section describes some of the more interesting models,
that have been experimented with. As stated in the thesis’ task, language-
independence should be taken into account when designing or choosing the
models. In some cases therefore, the web service allows to choose the lan-
guage, either for Czech or English article headlines. The dataset of Czech
headlines originate from a Czech company e.conomia and the English dataset
comes from a data repository for machine learning, fittingly called – Machine
Learning Repository [30].

3.6.1 Popularity prediction

Predicting how popular a certain article might be, would definitely proof to
be a very useful feature, which is also a reason why it had been desired in the
first place. However, expertly predicting popularity is quite difficult even for
humans, let alone machines. How would it be even defined? Is, for instance,
bad popularity a popularity as well? How is it measured? In page views,
comments, likes and/or hates?

These and more questions arose during investigating what kind of method
to use. Deep learning classification models seemed like the best choice, as they
exhibited promising results not only in natural language processing. To make
the problem a little easier for the models, it was simplified to a simple decision,
whether or not the article will be popular. Nevertheless, in the end, none of
the tried classification neural networks could learn how to predict popularity.

Only Czech data were used for this model in particular, because the English
dataset does not contain any information, that could be used as a popularity
factor. In the Czech dataset, the only information available were page views
and on top of that, the data was very noisy (see figure B.1) and had only
about 7000 samples even before excluding outliers. Articles, whose sum of
page views was below the median, were deemed unpopular and those above
popular.

Experimented was with a combination of a recurrent and convolutional
network, with a perceptron classifier on top. Then also with just an embedding
layer, recurrent neural network and a perceptron classifier. Both could not
learn anything in particular, but always predicted the headline to be popular,
which clearly is quite miserable. Changing the parameters of the models was
of no avail.

32

3.6. Experiments

The reason for such an ineffectiveness lies not only with the data, but
also with the task itself (as implied above). There is no major indication of
popularity in the text alone. Moreover, multiple external factors influence the
popularity of an article, so the model does not receive relevant information,
from which it could possibly assess how popular an article would be. That is
a major problem and without data on these factors, creating a model capable
of predicting popularity is probably impossible. To mention but a few of the
external factors:

• Time, when the article is released on the website, determines the audi-
ence and number of people, who will see it on top of the page.

• The author can also decide, where he/she will place the article, which
again influences page views a lot.

• Some articles are posted on social media, some not. Because of that,
comparability of articles is lessened.

• Some articles are promoted, which causes the same issues as the one
before.

All in all, noisy and scarce data, external factors and a problem hard to
grasp even for humans meant, that the models were not successful. So for
now, prediction of popularity was determined not to be incorporated into the
web service.

3.6.2 N-gram models

The advantage of n-gram models is, that they are well interpretable. They
get significantly more efficient with more and more data, as they gradually
approximate a language better and better. The choice of n largely affects how
it behaves. A bigram, for instance, has a lot of freedom in the probability
function – the probability of the next word depends solely on the one before
it. With a growing n though, the probability is stricter. The model loses room
for randomness little by little on the same data. If a dataset had sentences of a
maximum length of 20 words, a 21-gram14 would be just a uniform probability
of the sentences.

With a higher n, the demand for a large data corpus increases. That is
why in practice, bigger models than 5-grams are usually not used. Considering
the data available, bigrams and trigrams were most suitable and interesting
to work with. They are accessible through the web service for Czech as well as
English article headlines. The only downside to n-grams is, that they are not
at all creative, they will never create a new word or will not work at all when

14N -gram is conditioned with n − 1 preceding words, so a 21-gram would even for a 20
word long sentence always predict the next word as an end of a sentence.

33

3. Realization

told to predict what comes after a word (or a word sequence of course), that
did not occur in the training dataset. That is understandably, a limitation of
their design itself.

3.6.3 Tf-idf and Latent Semantic Indexing

For implementation of Tf-idf and LSI, a NLP framework gensim was used [31].
It provides functionalities for both out of the box, which greatly facilitated its
integration into the web service. Tf-idf is able to find similar headlines quite
well, especially when the headline contains keywords, names and terminology.
It is available for the Czech articles and English ones, too.

Results of LSI are not as good on the Czech dataset. As described in
subsection 1.3, LSI was used for topic extraction, but the generated sets of
words, which are supposed to contribute the most to a certain topic, show only
marginal and sometimes hardly noticeable similarity and correlation. The
reason for it not working well was found to be attributed to the fact, that
the Czech language has too many word forms, which for Czech will always be
troublesome.

The English model, on the other hand, seems to have worked much better
in some cases. The LSI could extract rather interesting topics about Harry
Potter, vehicles, air-plane catastrophes, many technology and mobile phones
topics. However, some words still appear quite randomly and without any
relation. The model is, quite understandably, not perfect.

3.6.4 Char-RNN

Char-RNN is a machine learning model first devised by Andrej Karpathy, a
prominent figure in deep learning, and posted on GitHub [32]. It was however
implemented in Lua, so for the actual integration with the web service, a spin-
off by Sherjil Ozair developed for TensorFlow and Python was used [33]. The
model employs a deep recurrent neural network and predicts the next character
based on the given dataset. As a result, it is possible to train the network
on arbitrary textual corpora. The author of Char-RNN shows, that it has
the ability to learn complex syntax and generate nearly valid mathematical
articles in LATEX, valid Wikipedia pages, XML or Linux source code in C,
which is rather impressive [34].

For purposes of the web service, the Char-RNN was trained on the Czech
dataset only. It was due to quite a lot of computation time needed, even when
run on GPUs15, and because later on, the GPUs were unavailable. Also,
generating English headlines was already tried out in [35].

The various configurations of the model, that have been experimented
with, can be seen in table 3.1. As the model learns in an unsupervised manner,

15On a GPU cluster with three GPUs, the training of the second and third network lasted
for about a day.

34

3.6. Experiments

#1 #2 #3
Sequence length 70 70 100
RNN cell RNN LSTM LSTM
RNN size 500 600 600
Number of layers 2 3 2
Epochs 20 70 100
Training Loss 1.235 1.065 0.934

Table 3.1: Configurations for the Char-RNN model experiments.

evaluating which version can generate best headlines was left to the author.
The training loss16 can be a good indication. If it is too high, then the model
did not learn anything. If it is too low then it over-fitted on the training data.
In the end, the third version was chosen, because the headlines made sense the
most and still were creative. Epochs, the amount of iterations on the training
data, varied between the versions, because the training was stopped when no
change was observed in loss in a span of multiple epochs.

The Char-RNN model achieved interesting results for generating random
headlines. They are often quite readable, even grammatically correct more
or less. From time to time, when the neural network has a “good mood”,
it generates entertaining headlines – funny and witty at that. Altogether, it
is intriguing how the neural network hallucinates words and names, creates
headlines that one would even be keen on reading or outputs random gibberish.

It was hoped, that the model would be capable of producing embeddings
among its other functionality. The idea was to take the final inner represen-
tation of a sentence, when fed into the Char-RNN. These embeddings were
then plotted with t-SNE, as can be seen in figure B.2. T-SNE is a technique
for dimensionality reduction suitable for visualization [36]. On behalf of that,
it can be seen, that the data is quite well clustered. However, because the
embeddings come from sentences after they are fed into the network, the final
embedding is retrieved when the last character is processed. This resulted in
the problem, that embeddings corresponded to the ending character sequence
rather than to their semantic properties. The above mentioned figure illus-
trates that, because the colour represents the last character of the sentence.
For example, a big cluster of questions can be found, coloured in purple below
on the right, they all end with a question mark.

Consequently, the Char-RNN model was deemed inapplicable to embed-
dings. Using it to get similarity between titles would not work well at all.

16Loss is a sum of errors (usually something like negative log-likelihood, residual sum
of squares or alike), that tell how well a model is doing its job of learning. The lower the
better. There are two types – training and validation loss, depending on for what data it is
calculated.

35

3. Realization

3.6.5 Auto-encoders

A way of obtaining similarity between article titles would be to obtain their
embeddings in a multidimensional space and use their distance to measure
it as described in 1.6. Auto-encoders are neural networks that can produce
embeddings of arbitrary data. Their concept is quite simple. Auto-encoders
are layered networks, whose input and output layers share the same dimension.
The middle layer, which usually has less dimensions, then constitutes the
embeddings and functions as sort of a compression of the original data. The
network is trained by instructing it to reconstruct its inputs as closely as
possible.

For our datasets, the auto-encoders did not work as well as expected, even
with multiple different configurations of the network – recurrent, convolutional
nor multi-layer perceptrons performed enough to be used in the application.
They were set up to reconstruct the titles character by character, with all
kinds of hyper-parameters17, however, the embeddings did not show any signs
of somehow generalizing the titles, not even on the structural level of the
sentences.

3.6.6 Seq2Cat

Sequence to Category, or Seq2Cat in short, is a neural network designed to
classify a category of an article. It consists of an embedding layer, then a
bidirectional Gated Recurrent Unit (GRU) layer and finally a multi-layer per-
ceptron classifier with softmax18. Supervised training was used on annotated
data – in the Czech dataset, a big amount of categories had to be merged
with their more abstract equivalents, because these categories were not as
numerous as others. After re-annotating some of the data, 18 categories re-
mained – sport, hockey, football, free time, women, economy, science, life,
motor sport etc. The network is not character-level though, it has a fixed
vocabulary of about 80 thousand words – those that occurred at least twice
in the dataset. The rest of the words is substituted with an 〈unknown〉 token.

The results with Czech data were fairly satisfying, for the network reached
a validation loss of about 1.1919 and an accuracy of 67.9%. Especially good
in categorizing is the network when it comes to sports, football and hockey,
these are recognized almost always. Exceptionally well fares Seq2Cat also
in recognizing politics, domestic and foreign news. With motor sport, it is
quite sure of itself as well, probably due to specific terminology used in such
headlines. The model is limited only to the Czech data, but can, however, be
easily extended to provide category classification for English as well.

17A term referring to activation functions, optimization algorithm, size and other param-
eters influencing the behaviour of a neural network.

18A type of an activation function
19For loss, categorical cross-entropy was used.

36

3.6. Experiments

All in all, Seq2Cat was a success. Rather pleasing is also the fact, that
it might become quite useful, not only for suggesting which category should
the editor put an article in. For example, if a company had lots of data on
unclassified articles (e.g. because they were old, some information was lost
after a while etc.), rather than annotating them by hand, a Seq2Cat model
would be a reasonable option to consider. With its help an author could also
customize the title, so that it better fits a category, which would make it more
understandable for the user at the same time.

37

Conclusion

The thesis’ main goal was to design and implement a web service that would be
the basis of a service, helping content creators of Internet news websites adjust
their articles – the title of an article – to better suit the needs of their clients.
This was achieved by means of a multi-layered Django web application written
in Python, that took advantage of a web service framework Django REST
Framework. As clarified in part 2.2 and 3.1, the implementation succeeded
in making the service widely extendible and secure. On top of that, it was
created and designed to scale without any hindrances, because of the service’s
elevated hardware resource requirements. The web service was also tested,
with automated tests, that run in total isolation from a running application
in production deployment, even alongside each other on the same machine.

Secondly, implementation of a GUI in Django resulted in a responsive
website, that is very informative and creates the possibility of examining how
the employed functionalities work. The website makes for an access point to
the API documentation as well, which further elevates the usability of the
web application. The API itself can be accessed in multiple ways – from
a web browser through the browsable API, from documentation or through
a REST client. On top of that, the request body and the response can be
formatted in JSON or XML, too. Because of that, the client has more freedom
in implementing and using the web service.

Attaining desired functionality proved to be difficult at times, as some of
the NLP models, which were meant to be used in the web application, did not
reach expected results. Nevertheless, already as it is now, the web application
offers an intriguing insight of what NLP models are capable of when dealing
with news article data. While that is true, extensions of the functionalities
will probably follow. Especially successful was the Seq2Cat model, which
can classify an article title according to its category. This can be used to
automatically annotate existing data or to ensure that a certain title will
be immediately recognized by a human as belonging to a given category by
modifying it in such a way, that Seq2Cat will classify it correctly.

39

Conclusion

Further work might consist in extending the functionalities of the web ser-
vice. To give an example, summarizing the whole article body into a shorter
sentence would yield interesting results in providing an attractive way of leav-
ing the task of naming an article to the computer. Such a functionality might
be supported (or be entirely separate for that matter) by an image captioning
system, because practically all articles are accompanied with an image that
further elaborates on what the article is going to be about.

If then some functionality of the web service would need to be exclusive
only to some users (a company paying for a service for instance), an user au-
thentication system would likely have to be implemented into the web service.
Luckily, Django has inherent support for user authentication, so such a task
would not be difficult to do. In addition, if there was a need, a mobile app
could be another interesting way of demonstrating the power of NLP, because
the web service’s API can be integrated with basically any kind of device or
system by design.

40

Bibliography

[1] Tidwell, D.; Snell, J.; et al. Programming Web Services with SOAP.
O’Reilly, 2001, ISBN 0-596-00095-2.

[2] W3C. Web Services Architecture. 2004, [Online; accessed: 2017-03-10].
Available from: https://www.w3.org/TR/ws-arch/

[3] W3C. SOAP Version 1.2 Part 1: Messaging Framework (Second Edi-
tion). 2007, [Online; accessed: 2017-03-09]. Available from: https:
//www.w3.org/TR/soap12-part1/

[4] Fielding, R. T. Architectural Styles and the Design of Network-based Soft-
ware Architectures. Dissertation thesis, University of California, Irvine,
2000, aAI9980887.

[5] Wilde, E.; Pautasso, C. (editors). REST: From research to Practice, chap-
ter REST and Web Services: In Theory and in Practice. Springer-Verlag
New York, 2011, ISBN 978-1-4419-8303-9, pp. 35–57.

[6] Richardson, L.; Ruby, S. RESTful Web Services. O’Reilly, 2007, ISBN
978-0-596-52926-0.

[7] Manning, C. D.; Manning, H. S. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, second edition, 2000, ISBN 0-262-
13360-1.

[8] Manning, C. D.; Raghavan, P.; et al. An Introduction to Information
Retrieval. Cambridge University Press, 2009, ISBN 0521865719.

[9] Landauer, T. K.; Woltz, P. W.; et al. An introduction to latent seman-
tic analysis. Discourse Processes, volume 25, no. 2-3, 1998: pp. 259–
284, doi:10.1080/01638539809545028, [Online]. Available from: http:
//dx.doi.org/10.1080/01638539809545028

41

https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/soap12-part1/
https://www.w3.org/TR/soap12-part1/
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.1080/01638539809545028

Bibliography

[10] Shalev-Schwartz, S.; Ben-David, S. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014, ISBN
978-1-107-05713-5.

[11] Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms
And Applications. Pearson, 1994, ISBN 978-0133341867.

[12] Popescu, M.-C.; Balas, V. E.; et al. Multilayer Perceptron and Neu-
ral Networks. WSEAS Transactions on Circuits and Systems, volume 8,
no. 7, July 2009, ISSN 1109-2734.

[13] Lipton, Z. C. A Critical Review of Recurrent Neural Networks for Se-
quence Learning. CoRR, volume abs/1506.00019, 2015, [Online]. Avail-
able from: http://arxiv.org/abs/1506.00019

[14] Kacprzyk, J.; Pedrycz, W. (editors). Springer Handbook of Computational
Intelligence, chapter Artificial Neural Network Models. Springer-Verlag
New York, 2015, ISBN 978-3-662-43504-5, pp. 455–471.

[15] Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Com-
put., volume 9, no. 8, November 1997: pp. 1735–1780, ISSN 0899-
7667, doi:10.1162/neco.1997.9.8.1735, [Online]. Available from: http:
//dx.doi.org/10.1162/neco.1997.9.8.1735

[16] Kusner, M.; Sun, Y.; et al. From Word Embeddings To Document Dis-
tances. In Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), edited by D. Blei; F. Bach, JMLR Workshop and
Conference Proceedings, 2015, pp. 957–966, [Online]. Available from:
http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf

[17] Mikolov, T.; Sutskever, I.; et al. Distributed Representations of
Words and Phrases and their Compositionality. In Advances in Neu-
ral Information Processing Systems 26, edited by C. J. C. Burges;
L. Bottou; M. Welling; Z. Ghahramani; K. Q. Weinberger, Curran
Associates, Inc., 2013, pp. 3111–3119, [Online]. Available from: http:
//papers.nips.cc/paper/5021-distributed-representations-of-
words-and-phrases-and-their-compositionality.pdf

[18] OWASP. OWASP Top 10 - 2013. OWASP Foundation, October 2013.

[19] Python Software Foundation. Python Success Stories. 2017, [Online; ac-
cessed: 2017-04-22]. Available from: https://www.python.org/about/
success/

[20] Python Software Foundation. Integrating Python With Other Languages.
April 2016, [Online; accessed: 2017-04-22]. Available from: https://
wiki.python.org/moin/IntegratingPythonWithOtherLanguages

42

http://arxiv.org/abs/1506.00019
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.python.org/about/success/
https://www.python.org/about/success/
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages

Bibliography

[21] Django Software Foundation. Django (Version 1.11) [Computer Software].
2017, [Online]. Available from: https://www.djangoproject.com/

[22] Fowler, M. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, first edition, 2002, ISBN 978-0321127426.

[23] Holovaty, A.; Moss, J. K. The Definitive Guide to Django: Web Develop-
ment Done Right. Apress, 2007, ISBN 978-1590597255.

[24] Abadi, M.; Agarwal, A.; et al. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. 2015, [Online]. Available from: http:
//tensorflow.org/

[25] Chollet, F. Keras. 2015, [Online]. Available from: https://github.com/
fchollet/keras

[26] Theano Development Team. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints, volume
abs/1605.02688, May 2016, [Online]. Available from: http://arxiv.org/
abs/1605.02688

[27] Eby, P. PEP 3333 – Python Web Server Gateway Interface v1.0.1.
September 2010, [Online; accessed: 2017-04-24]. Available from: https:
//www.python.org/dev/peps/pep-3333/

[28] Django Software Foundation. Security in Django. 2017, [Online; ac-
cessed: 2017-04-26]. Available from: https://docs.djangoproject.com/
en/1.11/topics/security/

[29] Mozilla. Security/Server Side TLS. 2016, [Online; accessed: 2017-04-26].
Available from: https://wiki.mozilla.org/Security/Server_Side_
TLS

[30] Lichman, M. UCI Machine Learning Repository. 2013, [Online]. Available
from: http://archive.ics.uci.edu/ml

[31] Řehůřek, R.; Sojka, P. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, ELRA, May 2010, pp. 45–50, [Online].
Available from: http://is.muni.cz/publication/884893/en

[32] Karpathy, A. Multi-layer Recurrent Neural Networks (LSTM, GRU,
RNN) for character-level language models in Torch. 2016, [Online; ac-
cessed: 2017-04-29]. Available from: https://github.com/karpathy/
char-rnn

43

https://www.djangoproject.com/
http://tensorflow.org/
http://tensorflow.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://docs.djangoproject.com/en/1.11/topics/security/
https://docs.djangoproject.com/en/1.11/topics/security/
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
http://archive.ics.uci.edu/ml
http://is.muni.cz/publication/884893/en
https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn

Bibliography

[33] Ozair, S. Multi-layer Recurrent Neural Networks (LSTM, RNN) for
character-level language models in Python using Tensorflow. 2017,
[Online; accessed: 2017-04-29]. Available from: https://github.com/
sherjilozair/char-rnn-tensorflow

[34] Karpathy, A. The Unreasonable Effectiveness of Recurrent Neural Net-
works. May 2015, [Online; accessed: 2017-04-29]. Available from: http:
//karpathy.github.io/2015/05/21/rnn-effectiveness/

[35] Eidnes, L. Auto-Generating Clickbait With Recurrent Neural
Networks. 2015, [Online; accessed: 2017-04-29]. Available from:
https://larseidnes.com/2015/10/13/auto-generating-clickbait-
with-recurrent-neural-networks/

[36] Maaten, L. v. d.; Hinton, G. E. Visualizing High-Dimensional Data Using
t-SNE. Journal of Machine Learning Research, volume 9, 2008: pp. 2579–
2605.

44

https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
https://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/

Appendix A
UML diagrams

45

A. UML diagrams

Figure A.1: Use case diagram of actors and primary use cases of the web
service. Both actors can access the entire WS, but they are depicted separately
to emphasize, that both humans and machines can use the system.

46

Figure A.2: Class diagram of the package tech. These classes are mapped into
the database schema of the application.

47

Appendix B
Data analysis and experiments

49

B. Data analysis and experiments

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

1
2

0
0

−
1

0
0

0

−
8

0
0

−
6

0
0

−
4

0
0

−
2

0
00

2
0

0

4
0

0

Deviation

G
ro

u
p
 1

:
fr

o
m

 5
 t

o
 3

9
9
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

1
2

0
0

−
1

0
0

0

−
8

0
0

−
6

0
0

−
4

0
0

−
2

0
00

2
0

0

4
0

0

Deviation

G
ro

u
p
 2

:
fr

o
m

 3
9
9
 t

o
 6

8
5
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

1
2

0
0

−
1

0
0

0

−
8

0
0

−
6

0
0

−
4

0
0

−
2

0
00

2
0

0

4
0

0

6
0

0

Deviation

G
ro

u
p
 3

:
fr

o
m

 6
8
5
 t

o
 1

0
3
5
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

1
2

0
0

−
1

0
0

0

−
8

0
0

−
6

0
0

−
4

0
0

−
2

0
00

2
0

0

4
0

0

Deviation

G
ro

u
p
 4

:
fr

o
m

 1
0
3
5
 t

o
 1

4
5
3
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

1
5

0
0

−
1

0
0

0

−
5

0
00

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

Deviation

G
ro

u
p
 5

:
fr

o
m

 1
4
5
3
 t

o
 2

0
0
9
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

1
5

0
0

−
1

0
0

0

−
5

0
00

5
0

0

1
0

0
0

Deviation

G
ro

u
p
 6

:
fr

o
m

 2
0
0
9
 t

o
 2

7
4
1
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

1
5

0
0

−
1

0
0

0

−
5

0
00

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Deviation

G
ro

u
p
 7

:
fr

o
m

 2
7
4
1
 t

o
 3

9
2
5
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

1
5

0
0

−
1

0
0

0

−
5

0
00

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Deviation

G
ro

u
p
 8

:
fr

o
m

 3
9
2
5
 t

o
 5

5
8
2
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

2
0

0
0

−
1

0
0

00

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Deviation

G
ro

u
p
 9

:
fr

o
m

 5
5
8
2
 t

o
 8

5
0
8
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

2
0

0
00

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

Deviation

G
ro

u
p
 1

0
:

fr
o
m

 8
5
0
8
 t

o
 1

3
6
6
2
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m
−

2
0

0
00

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

Deviation

G
ro

u
p
 1

1
:

fr
o
m

 1
3
6
6
2
 t

o
 2

5
5
3
6
 t

o
ta

l
v
ie

w
s

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

1
0

h
1

1
h

1
2

h
1

3
h

1
4

h
1

5
h

1
6

h
1

7
h

1
8

h
1

9
h

2
0

h
2

1
h

2
2

h
2

3
h

2
4

h
2

d
3

d
4

d
5

d
6

d
7

d
1

m
2

m

0

2
0

0
0

0

4
0

0
0

0

6
0

0
0

0

8
0

0
0

0

Deviation

G
ro

u
p
 1

2
:

fr
o
m

 2
5
5
3
6
 t

o
 3

0
5
7
0
1
 t

o
ta

l
v
ie

w
s

Figure B.1: This plot shows the number of views in time intervals. On axis y
is the deviation from the average in a given group. There is equal number of
articles in each group.

50

−
2
0

−
1
0

0
1
0

2
0

−
1
5

−
1
0

−
505

1
0

1
5

Figure B.2: A t-SNE visualization of embeddings acquired from the Char-
RNN model.

51

Appendix C
How to expand the functionality

To integrate new natural language processing algorithms into the web service,
you need to do a few things according to what you want to do. Following are
the instructions corresponding to that.

C.1 Train a new version of an existing model
This is the easiest way of expanding the functionality. However, some models
do not support this, as training them on a regular computer would take too
long, sometimes even weeks.

1. Enter the Django shell with python3 manage.py shell and then im-
port the model you want. Then train a new model by calling its method
model.train_anew(...) on it. You could write a Python script for it,
too.

2. To change its behaviour, use existing, or create new parameters for it.
The model will store itself afterwards into the database (so if you want
to test it later, do not forget to create a new fixture – see README.md in
the project on how to do that).

3. You can make this newly trained version the default one. The appli-
cation will load for the website and API the model with is_default
attribute set to true in the database. You can also specify it directly
when calling train_anew().

C.2 Create a new model engine for an existing
functionality

1. To create a new way of delivering the same functionality as is already
defined (for example similarity, category extraction and so on), create

53

C. How to expand the functionality

a Python class inside engine package and inherit the desired interface
from engine_types.py and the SingletonMixin class, so that it does
not have to load data every time a new request needs to be processed.

2. To persist data, create a class in tech/models.py sub-classing the com-
mon ModelVersionAR class. This will enable you to use an Active Record
class directly mapped to the DB. In order for the DB to be created,
run python3 manage.py makemigrations and subsequently python3
manage.py migrate so that changes in the DB schema take effect.

3. Then implement all of the abstract methods. If you want to make it
language independent, implement it like the Bigram model does or create
your own way of achieving it.

4. Afterwards, you need to create a facade class in the business package,
in order to access the model.

5. If you want to showcase the model, create a website base template for the
functionality or use one from webgui/templates/webgui/bases, inherit
from one of statistical_base.html or machine_learning_base.html
and then create a template for the model in webgui/templates/webgui.
You can use the prepared templates for results and errors, but feel free
to make new ones:

a) create links to the new model’s web page in the sub-menu inside
website_base.html,

b) to transmit parameters from the website, use forms in templates
and inherit from View in a class, which you will put into package
views. Then provide serializers and take care of any exceptions
and handling of the input/output,

c) add the new View to urls.py and assign a path to it to let Django
know of your new web page and view.

6. If you would like to make it accessible through the API, create an
APIView subclass, that implements the desired REST methods, and use
serializers to process input/output. Then:

a) document the API in webgui/static/docs/swagger.yaml,
b) test the API in restapi/tests.

C.3 Create a new functionality
1. Inherit the interface IEngineType and create new interface methods

defining what functionality you want the models to provide, but do not
implement any of the methods yet. Then follow instructions in C.2.

54

Appendix D
Screenshots

Figure D.1: Screen of the Seq2Cat model web page.

55

D. Screenshots

Figure D.2: Screen of the Tf-idf model web page.

56

Figure D.3: Screen of Tf-idf page as it shows up on smaller width displays.
All of the web pages are responsive similarly to this one.

57

D. Screenshots

Figure D.4: Screen of Swagger documentation of the API. It is possible, as
shown in the picture, to call the API methods from the documentation.

58

Appendix E
Acronyms

API Application Programming Interface.

CSRF Cross-Site Request Forgery.

DB database.

GRU Gated Recurrent Unit.

GUI Graphical User Interface.

HSTS HTTP Strict Transport Security.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

JSF JavaServer Faces.

JSON JavaScript Object Notation.

LSI Latent Semantic Indexing.

LSTM Long Short-Term Memory.

ML Machine Learning.

MLP Multilayer perceptron.

MVC Model View Controller.

NLP Natural Language Processing.

59

Acronyms

OCSP Online Certificate Status Protocol.

REST Representational State Transfer.

RNN Recurrent Neural Network.

SMTP Simple Mail Transfer Protocol.

SSL Secure Sockets Layer.

SVD Singular Value Decomposition.

TCP Transmission Control Protocol.

Tf-idf Term frequency-inverse document frequency.

TLS Transport Layer Security.

URI Uniform Resource Identifier.

WDSL Web Service Description Language.

WS web service.

WSGI Web Server Gateway Interface.

XML Extensible Markup Language.

XSS Cross-Site Scripting.

60

Appendix F
Contents of enclosed CD

README.txt the file with CD contents description
src.......................................the directory of source codes

aws_project................................implementation sources
aws_project............................Django project directory
tech...........................python sources for technical layer
engine...........................python sources for engine layer
business.......................python sources for business layer
webgui..........................python sources for the Web GUI
restapi.......................python sources for the REST API
misc data, scripts and miscellaneous
certs...................................... folder for certificates
README.md explanation how to install and run
aws_site.ini................................init file for uWSGI
aws_nginx.conf configuration file for nginx
secret_key.txt.............................Django’s secret key
manage.py.......................Django project management file
requirements.txt python package requirements for pip3
uwsgi_params................configuration for uWSGI and nginx
ArticleWS.EAP...........Enterprise Architect documentation file

thesis..............the directory of LATEX source codes of the thesis
res resources for the thesis

img...images
pdf screenshots and other
bib...bibliography files

BP_Švejda_Jan_2017.pdf the thesis text in LATEX source code
text..the thesis text directory

BP_Švejda_Jan_2017.pdf.............the thesis text in PDF format

61

	Introduction
	State-of-the-art
	Web services
	Text analysis survey
	Statistical models
	Character-level models
	Machine Learning
	Embeddings

	Analysis and design
	Requirements
	Primary use cases
	Design decisions
	Architecture of the system

	Realization
	Implementation
	API documentation
	Testing
	Deployment
	Security
	Experiments

	Conclusion
	Bibliography
	UML diagrams
	Data analysis and experiments
	How to expand the functionality
	Train a new version of an existing model
	Create a new model engine for an existing functionality
	Create a new functionality

	Screenshots
	Acronyms
	Contents of enclosed CD

