
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 15, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Time Series Classification with Artificial Neural Networks

 Student: Bc. Jakub Waller

 Supervisor: Ing. Tomáš Borovička

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2017/18

Instructions

Artificial Neural Networks are often used for time series modeling and classification. In the last decade,
advanced architectures such as deep neural networks or neural networks with memory became popular,
because computational power is more widely available. Convolutional neural networks or long-short term
memory networks are examples successfully applied on time series modeling and classification.

1) Review and theoretically describe different state-of-the-art ANN architectures suitable for univariate as
well as multivariate time series classification.
2) Propose an experiment design in order to compare their ability to learn, effectivity of the training process
and classification performance.
3) Compare different architectures on a set of benchmark datasets.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Time Series Classification with Artificial
Neural Networks

Bc. Jakub Waller

Supervisor: Ing. Tomáš Borovička

9th May 2017

Acknowledgements

I would like to thank my supervisor Ing. Tomáš Borovička for his valuable
advice and inspiring guidance. I am also very grateful to the Data Science
Laboratory at CTU FIT and Datamole for their support. Finally, I wish to
thank all precious people close to me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 9th May 2017 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2017 Jakub Waller. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Waller, Jakub. Time Series Classification with Artificial Neural Networks.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2017.

Abstrakt

Mnoho r̊uzných architektur umělých neuronových śıt́ı bylo navrženo, kupř́ıkla-
du konvolučńı neuronové śıtě a long short-term memory neuronové śıtě. Ćılem
této práce je aplikovat tyto śıtě na klasifikaci časových řad. Po teoretickém
popisu těchto architektur je navržena metoda pro jejich experimentálńı poro-
vnáńı, a ta je následně implementována v Pythonu. Tato metoda zahrnuje
automatickou optimalizaci hyperparametr̊u neuronových śıt́ı. Popsané ar-
chitektury jsou poté d̊ukladně porovnány na třech benchmarkových data-
setech. Toto porovnáńı ukazuje, že long short-term memory neuronové śıtě
dosahuj́ı na dvou ze tř́ı dataset̊u lepš́ıch výsledk̊u než konvolučńı neuronové
śıtě.

Kĺıčová slova konvolučńı neuronové śıtě, rekurentńı neuronové śıtě, long
short-term memory neuronové śıtě, hluboké učeńı, optimalizace hyperpara-
metr̊u, grid search, random search, klasifikace časových řad

ix

Abstract

Various architectures of artificial neural networks have been developed such
as convolutional neural networks and long short-term memory neural net-
works. The aim of this thesis is to apply these networks on the classification
of time series. After a theoretical description of the architectures, an ex-
perimental procedure for their comparison is proposed and implemented in
Python. The procedure includes automatic optimisation of neural network’s
hyperparameters. Based on this procedure, the architectures are thoroughly
compared on three benchmark data sets. The comparison shows that long
short-term memory neural networks achieve better results than convolutional
neural networks on two of these data sets.

Keywords convolutional neural networks, recurrent neural networks, long
short-term memory neural networks, deep learning, hyperparameters optim-
isation, grid search, random search, time series classification

x

Contents

Citation of this thesis . viii

Introduction 1

1 Artificial Neural Networks 3
1.1 Feedforward Neural Networks 3

1.1.1 Structure . 3
1.1.2 Neurone . 4
1.1.3 Learning . 5

1.2 Convolutional Neural Networks 9
1.2.1 Structure . 9

1.3 Recurrent Neural Networks . 11
1.3.1 Structure . 12
1.3.2 Learning . 13
1.3.3 Vanishing Gradient Problem 14

1.4 Long Short-Term Memory Neural Networks 14
1.4.1 Hidden Unit . 15
1.4.2 Peephole Connections 16

2 Implementation 19
2.1 Technical Details . 19
2.2 Implementation Details . 20

3 Experiments 23
3.1 Experimental Design . 23

3.1.1 Process of the Experiment 23
3.1.2 Hyperparameters . 26

3.2 Benchmark Data Sets . 30
3.2.1 Time Series . 30
3.2.2 Classification . 30
3.2.3 Data Sets . 31

xi

3.3 Comparison of Architectures 33
3.3.1 Gun-Point . 33
3.3.2 Strawberry . 40
3.3.3 Japanese Vowels . 45

Conclusion 55

Bibliography 57

A Acronyms 61

B Contents of enclosed CD 63

xii

List of Figures

1.1 Structure of a simple 3-layer neural network. 4
1.2 Artificial neurone. 5
1.3 A simple network with two input nodes, one output neurone, and

a node representing the error function E. 7
1.4 Scheme of a convolutional neural network with B = 2, C = 2, and

D = 1. 10
1.5 The processing of two regions by one filter of size three, with zero-

padding equal to zero and stride equal to one. 11
1.6 Recurrent neural network unfolded into three time-steps with a se-

quential output. 12
1.7 Recurrent neural network unfolded into three time-steps with a non-

sequential output. 13
1.8 The sigmoid function and its derivative. 14
1.9 LSTM’s hidden unit. 15
1.10 Adding peephole connections to LSTM’s hidden unit. 17

3.1 A graphical schema of the experimental procedure. 25
3.2 An example of the Gun-Draw class from the Gun-Point data set. . 31
3.3 An example of the Point class from the Gun-Point data set. 31
3.4 An example of the Strawberry class from the Strawberry data set. 32
3.5 The Japanese Vowels data set. 33
3.6 The classification performance in dependency on the number of

neurones and the number of layers for CNN on the Gun-Point data
set. 35

3.7 The classification performance in dependency on the number of
neurones and the number of layers for LSTM on the Gun-Point
data set. 35

3.8 The classification performance in dependency on the number of
neurones and the number of layers for RNN on the Gun-Point
data set. 36

xiii

3.9 Time of the training (same scale) in dependency on the number of
neurones and the number of layers for CNN on the Gun-Point data
set. 37

3.10 Time of the training (different scale) in dependency on the number
of neurones and the number of layers for CNN on the Gun-Point
data set. 37

3.11 Time of the training in dependency on the number of neurones and
the number of layers for LSTM on the Gun-Point data set. 37

3.12 Time of the training in dependency on the number of neurones and
the number of layers for RNN on the Gun-Point data set. 37

3.13 Comparison of the effectivity of the training process on the Gun-
Point data set. 38

3.14 Comparison of the classification performance for the testing subset
of the Gun-Point data set. 39

3.15 Comparison of F-score for the Gun-Draw class of the Gun-Point
data set. 39

3.16 Comparison of F-score for the Point class of the Gun-Point data set. 39
3.17 The classification performance in dependency on the number of

neurones and the number of layers for CNN on the Strawberry
data set. 41

3.18 The classification performance in dependency on the number of
neurones and the number of layers for LSTM on the Strawberry
data set. 42

3.19 The classification performance in dependency on the number of
neurones and the number of layers for RNN on the Strawberry
data set. 43

3.20 Time of the training (same scale) in dependency on the number
of neurones and the number of layers for CNN on the Strawberry
data set. 43

3.21 Time of the training (different scale) in dependency on the number
of neurones and the number of layers for CNN on the Strawberry
data set. 43

3.22 Time of the training in dependency on the number of neurones and
the number of layers for LSTM on the Strawberry data set. 44

3.23 Time of the training in dependency on the number of neurones and
the number of layers for RNN on the Strawberry data set. 44

3.24 Comparison of the effectivity of the training process on the Straw-
berry data set. 44

3.25 Comparison of the classification performance for the testing subset
of the Strawberry data set. 45

3.26 Comparison of F-score for the Strawberry class of the Strawberry
data set. 46

3.27 Comparison of F-score for the Non-Strawberry class of the Straw-
berry data set. 46

xiv

3.28 The classification performance in dependency on the number of
neurones and the number of layers for CNN on the Japanese Vowels
data set. 47

3.29 The classification performance in dependency on the number of
neurones and the number of layers for LSTM on the Japanese Vow-
els data set. 47

3.30 The classification performance in dependency on the number of
neurones and the number of layers for RNN on the Japanese Vowels
data set. 49

3.31 Time of the training (same scale) in dependency on the number
of neurones and the number of layers for CNN on the Japanese
Vowels data set. 49

3.32 Time of the training (different scale) in dependency on the number
of neurones and the number of layers for CNN on the Japanese
Vowels data set. 49

3.33 Time of the training in dependency on the number of neurones and
the number of layers for LSTM on the Japanese Vowels data set. . 50

3.34 Time of the training in dependency on the number of neurones and
the number of layers for RNN on the Japanese Vowels data set. . . 50

3.35 Comparison of the effectivity of the training process on the Japan-
ese Vowels data set. 50

3.36 Comparison of the classification performance for the testing subset
of the Japanese Vowels data set. 51

3.37 Comparison of F-score for the Speaker 2 class of the Japanese Vow-
els data set. 52

3.38 Comparison of F-score for the Speaker 9 class of the Japanese Vow-
els data set. 52

xv

List of Tables

3.1 Structures of convolutional neural networks, defined using hyper-
parameters B,C, and D. 24

3.2 Optimised hyperparameters for the Gun-Point data set. 34
3.3 Comparison of the effectivity of the training process on the Gun-

Point data set. 38
3.4 Comparison of the classification performance for the testing subset

of the Gun-Point data set. 38
3.5 Comparison of precision separately for classes of the Gun-Point

data set. 40
3.6 Comparison of recall separately for classes of the Gun-Point data

set. 40
3.7 Comparison of F-score separately for Classes of the Gun-Point data

set. 40
3.8 Optimised Hyperparameters for the Strawberry data set. 41
3.9 Comparison of the effectivity of the training process on the Straw-

berry data set. 45
3.10 Comparison of the classification performance for the testing subset

of the Strawberry data set. 45
3.11 Comparison of precision separately for classes of the Strawberry

data set. 46
3.12 Comparison of recall separately for classes of the Strawberry data

set. 46
3.13 Comparison of F-score separately for Classes of the Strawberry

data set. 48
3.14 Optimised Hyperparameters for the Japanese Vowels data set. . . 48
3.15 Comparison of the effectivity of the training process on the Japan-

ese Vowels data set. 51
3.16 Comparison of the classification performance for the testing subset

of the Japanese Vowels data set. 51

xvii

List of Tables

3.17 Comparison of precision separately for classes of the Japanese Vow-
els data set. 52

3.18 Comparison of recall separately for classes of the Japanese Vowels
data set. 52

3.19 Comparison of F-score separately for Classes of the Japanese Vow-
els data set. 53

xviii

Introduction

Artificial neural networks, a group of machine learning algorithms based on
the principles of the human brain, are nowadays used in a wide variety of
domains. State-of-the-art architectures have been improving the progress in
computer vision, speech recognition, natural language processing (e.g. ma-
chine translation), recommender systems, and games (a recent example is
Go [1]). Furthermore, neural networks1 are successfully used for finding new
drug compounds [2], improving energy efficiency in datacentres [3], image
denoising and inpainting [4], super-resolution [5], text generating (including
handwriting) [6] as well as for developing new encryption methods [7].

Many of the domains, where neural networks are used, contain data sets
comprised of time series, sets of sequentially collected observations. The time
series can be divided into several disjoint classes. One of the endeavours of
machine learning is the classification of time series into correct classes. To
accomplish this task with neural networks, it is necessary to select a proper
neural network architecture. It is further needed to optimise hyperparameters
of the selected neural network, which are higher-level properties considerably
influencing the classification performance of the network.

Accomplishing the classification of time series with neural networks is the
goal of this thesis. After theoretically introducing artificial neural networks,
the work proposes and implements an experimental procedure for comparing
different architectures including automatic optimisation of neural network’s
hyperparameters. Based on this procedure, two state-of-the-art architectures
and one baseline architecture are compared on three benchmark data sets.

The thesis is divided into three chapters with several sections and subsec-

1For simplification, here and further in the thesis, by neural networks it is meant artificial
neural networks.

1

Introduction

tions. Chapter 1 theoretically describes four architectures of artificial neural
networks: feedforward neural networks, convolutional neural networks, re-
current neural networks, and long short-term memory neural networks. The
description includes the structures of the networks, their building blocks—
artificial neurones, and learning algorithms. Chapter 2 provides the transition
from the theoretical part to the experimental part, describing implementation
details, including architecture, programming language, libraries, and specific
settings of the implemented algorithms. Chapter 3 proposes an experimental
design for optimising neural network’s hyperparameters and comparing differ-
ent architectures of neural networks. It introduces three benchmark data sets
and compares three of the architectures (recurrent, convolutional, and long
short-term memory neural networks) on these data sets.

2

Chapter 1
Artificial Neural Networks

The first chapter of this thesis, divided into four sections, focuses on artifi-
cial neural networks. Their principles are explained on feedforward neural
networks in Section 1.1. These networks can be extended into a state-of-
the-art architecture—convolutional neural networks, described in Section 1.2.
The next section defines neural networks with memory called recurrent neural
networks. Lastly, Section 1.4 outlines an improvement of recurrent neural
networks: long short-term memory neural networks.

1.1 Feedforward Neural Networks

A feedforward neural network is a directed computational graph whose nodes,
arranged into vertical layers, represent simple functions. Edges of the graph
connect outputs of nodes in the i-th layer to inputs of nodes in the (i+ 1)-th
layer. The network, therefore, represents a chain of functions and can be
called the network function [8]. The following parts describe the structure of
neural networks and the backpropagation algorithm used for their learning.

1.1.1 Structure

Each neural network consists of at least three layers: one input layer, one or
more hidden layers, and one output layer. An example of a traditional neural
network with three layers is shown in Figure 1.1. The following paragraph
looks at the three types of layers (input, hidden, and output) in more detail.

The purpose of the input layer is to distribute all components of an input
vector into all nodes of the first hidden layer. The number of nodes in the in-
put layer equals to the length of the input vector. The hidden layers together
with the output layer build the core of neural networks. Through the learn-
ing process (also called the training process), described later in Section 1.1.3,

3

1. Artificial Neural Networks

Figure 1.1: Structure of a simple 3-layer neural network.

they learn to solve a certain problem.2 The number of hidden layers, as well
as the number of nodes in these layers, are one of the several hyperparamet-
ers which have to be set and which usually depend on a particular problem.
With increasing number of hidden nodes, artificial neural networks can tackle
more complex data, but they are more difficult to train and more prone to
overfitting. In this case, a neural network appropriately learns the data it is
trained on but cannot generalise for previously unseen data, called the testing
set. The output layer, connected to the last hidden layer, produces an output
vector for each input vector. The number of nodes in the output layer equals
to the length of the output vector.

1.1.2 Neurone

The nodes in the hidden layers and the output layer are artificial neurones.
A scheme of such a neurone3 is depicted in Figure 1.2. The green nodes
x0, x1, . . . , xn are neurone’s inputs. For neurones in the first hidden layer,
the inputs represent an input vector. For neurones in other hidden layers or
in the output layer, the inputs represent outputs of neurones in the previous

2There are attempts to solve more problems at once by using only one neural network.
For further information see for example article Progressive Neural Networks [9].

3For simplification, “neurone” means “artificial neurone”.

4

1.1. Feedforward Neural Networks

Figure 1.2: Artificial neurone.

layer. Each input xi has its weight wi. The weights and bias b (called also
threshold; bias = −threshold) are parameters of the neural network. These
parameters are learnt during the learning process, described in the following
section. The weighted inputs are summed, the bias is added and the result is
put into the activation function f(

∑n
i=0wi · xi + b), represented by the blue

node. The common choice for the activation function is the sigmoid function
S(x) or the hyperbolic tangent tanh(x), which transform the input space into
intervals (0, 1) or (−1, 1), respectively:

S(x) = 1
1 + e−x

tanh(x) = e2x − 1
e2x + 1

1.1.3 Learning

The weights and biases, discussed in the previous section, must be appropriate-
ly adjusted to train the neural network. Let {(x1,y1), (x2,y2), . . . , (xm,ym)}
be a training set where xi is an input vector and yi is an output vector. Let
g be a given function such that

g(xi) = yi (1.1)

5

1. Artificial Neural Networks

for all i ∈ 〈1,m〉. The learning problem consists of optimising the network
weights and biases in a way that the network function λ approximates the
function g. That is, the learning problem consists of minimising the error
function4, defined as

E = 1
2

m∑
i=1
||oi − yi||2, (1.2)

where oi are the output vectors of the network, i.e. λ(xi) = oi for all i ∈ 〈1,m〉.
When introducing new unknown input vectors to the network, it is expected
to interpolate and to produce output vectors approximating outputs of the
function g.

Backpropagation, used as the learning algorithm to minimise the error
function, is an iterative process repeating four steps:

1. forward propagation,

2. calculating the error function,

3. backward propagation,

4. updating the weights5.

There are three types of the backpropagation algorithm, depending on the
number of input vectors used in one iteration. The on-line gradient descent
uses only one randomly selected input vector. The off-line (also called full
batch) gradient descent uses all inputs from the training set. And the mini-
batch gradient descent uses a randomly selected subset of the training data.

The following paragraphs first outline the iteration process of the on-line
gradient descent and later generalise it for the off-line and mini-batch gradi-
ent descents. During the first phase of the backpropagation algorithm, an
input vector is propagated from the input layer through all hidden layers to
the output layer. In the second phase, the error function (1.2) is calculated.
Subsequently, the error is propagated backwards through the network to ana-
lytically obtain the gradient of the error function with respect to all weights

∇E =
(
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂wr

)
. (1.3)

4Called also the loss function, cost function or objective function. This particular error
function is the mean squared error.

5To simplify the notation used in this section, the biases are represented by extra weights
connected to a node with output value 1.

6

1.1. Feedforward Neural Networks

Figure 1.3: A simple network with two input nodes, one output neurone, and
a node representing the error function E.

The simple network in Figure 1.3 illustrates the calculating of the partial
derivatives.6 This network has two inputs x1, x2, and one output neurone f1.
The node E represents the error function. During the forward propagation,
the following is calculated for each neurone in all hidden and output layers of
a neural network:

1. the output of the neurone,

2. partial derivatives of the output with respect to weights of all inputs
connected to the neurone.

For the neurone f1 in Figure 1.3 the result (pictured above the edges) is

1. output o1,

2. ∂o1
∂w1

for the input x1, and ∂o1
∂w2

for the input x2.

The error function E and the partial derivative of the error function with
respect to the output of the output neurone ∂E

∂o1
is calculated in the second

phase. During the backward propagation (pictured below the edges in Fig-
ure 1.3), the partial derivatives of the error function with respect to the neur-
one’s weights are computed using the chain rule:

6For a detailed explanation see, for example, Rojas’s Neural Networks [8].

7

1. Artificial Neural Networks

1. ∂E

∂w1
= ∂E

∂o1
· ∂o1
∂w1

,

2. ∂E

∂w2
= ∂E

∂o1
· ∂o1
∂w2

.

In the case of a network with more layers, the chain rule is applied iter-
atively until the partial derivatives of neurones in all layers are calculated,
resulting in the gradient in Formula (1.3).

The partial gradients can be as well calculated numerically, using the limit
definition of a derivative

∂E

∂wi
= lim

h→0

E(wi + h)− E(wi − h)
2h ,

where E(wi + h) is the error function for the same network in which only one
weight wi is changed. This numerical gradient is calculated for a few weights
and the result is compared to the analytical gradient. If there is no substantial
difference, the gradient is used for updating the weights using the increment

∆wi = −γ ∂E
∂wi

for all i ∈ 〈1, r〉, (1.4)

where γ is the learning rate influencing the speed of the learning process.
A small learning rate means small increments, and usually slower learning. On
the other hand, a large learning rate makes the network improve faster, but
there is a higher probability of overlooking the optimum. A too large7 learning
rate can result in divergence instead of convergence of the error function.

The learning process of the on-line gradient descent, described above, is
applicable to the off-line and mini-batch gradient descents after changes to
the weights increments which look as follows,

∆wi = ∆1wi + ∆2wi + · · ·+ ∆swi.

∆jwi is the increment calculated for the input vector xj. The number of
increments s equals the size of the training set m for the off-line gradient
descent, i.e. every input vector is used. For the mini-batch gradient descent,
the number of increments 1 < s < m represents the size of the batch.

The backpropagation algorithm is repeated as long as the error (the train-
ing loss) decreases. These repetitions are counted in epochs. During one
epoch, every input vector is fed into the neural network once. The number
of epochs largely influences the performance of the network as well as the

7The definition of “too large” depends on a particular data set.

8

1.2. Convolutional Neural Networks

duration of the learning process. Therefore, it is important to interrupt the
training of the network when the training loss has stopped decreasing. A com-
mon solution is to implement the early stopping algorithm. This algorithm
interrupts the learning process if the training loss has not improved for a spe-
cified number of epochs. To prevent overfitting, the training data are split
into a training set and a validation set. The backpropagation algorithm uses
only the training set to adjust the network weights. At the end of each epoch,
the validation loss is calculated using the validation set. The early stopping
algorithm then compares the validation loss instead of the training loss.

The previous three sections described the structure of feedforward neural
networks, their building blocks—artificial neurones, and the backpropagation
algorithm used for training the networks. Various extensions and improve-
ments of this architecture have been developed, such as convolutional neural
networks, outlined in the following sections.

1.2 Convolutional Neural Networks

A common machine learning problem using neural networks can be separated
into two parts. First, a hand-designed feature extractor selects the most rel-
evant and important features from the data set. Second, a feedforward neural
network is employed for a machine learning task using these features. Convo-
lutional neural networks, described in this section, have a specifically designed
architecture enabling an automatic extraction of the features.8

1.2.1 Structure

The structure of convolutional neural networks consists of three main build-
ing blocks. Convolutional layers (CONV), pooling layers (POOL), and fully-
connected layers (FC). The composition of these layers commonly follows this
pattern

INPUT → [CONV ∗B → POOL?] ∗ C → FC ∗D → FC,

where INPUT is the input layer, the last FC is the output layer, and the
rest of the layers are the hidden layers. Symbol “∗” indicates repetition,
symbol “?” indicates an optional addition of a layer preceding this symbol,
and symbol “→” represents edges between layers. B,C,D ≥ 0 are adjustable
hyperparameters. Figure 1.4 shows a scheme of a convolutional network, where
B = 2, C = 2, and D = 1. The input layer is pictured in green colour, the

8Moreover, convolutional neural networks give better results for inputs with a local
structure (such as time series or images). [10] Object recognition in images is probably the
machine learning field where the success of convolutional neural networks is best known.
For further information, see, for instance, the article ImageNet Classification with Deep
Convolutional Neural Networks [11].

9

1. Artificial Neural Networks

hidden layers are blue (four convolutional layers, two pooling layers and one
fully-connected layer), and the output layer is depicted in red colour. The
following passages identify and explain in detail the three types of the hidden
layers.

Figure 1.4: Scheme of a convolutional neural network with B = 2, C = 2, and
D = 1.

Convolutional Layer

A convolutional layer consists of several filters (also called local receptive
fields) which can extract elementary features from an input vector. The num-
ber of these filters is a hyperparameter of the network. Each filter is a neurone,
as described in Section 1.1.2, connected to regions of the input vector. One
such filter (labeled f) is depicted in Figure 1.5. The input vector (green nodes)
of size four is divided into two overlapping regions. The first region (on the
left side of the Figure 1.5) contains input nodes x1, x2, and x3 and produces
the output o1. Input nodes x2, x3, and x4, producing the output o2, belong to
the second region (on the right side of the Figure 1.5). For both regions, the
filter’s weights w1, w2, and w3 and bias b stay the same.

There are three hyperparameters specific for the convolutional layer: the
filter size, the stride, and zero-padding. The filter size defines the size of the
regions. The number of different nodes between two consecutive regions is
determined by the stride. Lastly, zero-padding specifies the number of zero
nodes (nodes with value zero) added to the edges of the input vector. Without
these zero nodes, the edges of the input vector are processed fewer times
than the rest of the input. In Figure 1.5, filter size = 3, stride = 1, zero-
padding = 0.

Pooling Layer

Outputs of the filters form so-called feature maps. A pooling layer, usually
placed after a convolutional layer, reduces the dimension of the feature maps

10

1.3. Recurrent Neural Networks

Figure 1.5: The processing of two regions by one filter of size three, with
zero-padding equal to zero and stride equal to one.

to make the network less prone to overfitting and to reduce the computational
complexity. Pooling depends on two hyperparameters: the size of the pooling
windows, and the stride, which is the downsampling factor. Two types of
pooling are commonly used: average pooling and max pooling. The average
pooling computes the average of its inputs and applies a non-linear function
to this average. An output of the max pooling is the maximum of its in-
puts. Scherer et al. [12] empirically show that the max pooling significantly
outperforms the average pooling.

Fully-connected Layer

The extracted and down-sampled features are forwarded into one or more
fully-connected layers. Neurones in such a layer are connected to all outputs
of the neurones in the previous layer, as in the feedforward neural networks.
By using these fully-connected layers, the neural network assigns an output
vector to every input vector (such as a class in a classification task).

1.3 Recurrent Neural Networks

Feedforward neural networks make an assumption that all inputs are inde-
pendent of each other. This is not an invalid assumption for most of the data
sets, but seemingly not for all of them. Time series classification is an example
of a machine learning problem using sequential inputs which are dependent
on each other. Recurrent neural networks, also called neural networks with
memory, however, are suitable for such problems due to their specific struc-
ture. The following part analyses the structure and the learning algorithm:
backpropagation through time.

11

1. Artificial Neural Networks

Figure 1.6: Recurrent neural network unfolded into three time-steps with
a sequential output.

1.3.1 Structure

The structure of a recurrent neural network stays the same as described in
Section 1.1.1. The only difference is that the network is evaluated more times
in a row for all sequential components of an input (such as time points in
a time series). Figure 1.6 demonstrates this process using a simple network
with only one hidden neurone and a one-dimensional output. The left part
of the Figure 1.6 shows the structure of the recurrent neural network. The
node x is an input, the node s is the hidden state, and the node o is the
network’s output. The information about the hidden state s is forwarded in
a loop back to the hidden state. Similarly to feedforward neural networks,
weights u, v and w, and bias b are parameters adjusted during the learning
process. An advantage of recurrent neural networks is that all weights remain
the same for the full sequential input. This significantly reduces the number
of parameters as opposed to feedforward networks where weights change with
every input.

The right part of the Figure 1.6 shows three time-steps of evaluating the
network. In the time-step t, the hidden state st is calculated using the input
xt and the previous hidden state st−1 as

st = f(u · xt + w · st−1 + b),

where f is the activation function discussed in Section 1.1.2. The output of
the hidden state st is forwarded into the input of the next hidden state st+1.
This enables the network to process previous information.

Figure 1.6 depicts a network where both input and output are sequential.
Examples of usage include text generating [13] and machine translation [14,

12

1.3. Recurrent Neural Networks

Figure 1.7: Recurrent neural network unfolded into three time-steps with
a non-sequential output.

15]. However, there are machine learning problems where a non-sequential
output is needed, such as time series classification. This introduces a small
change into evaluating recurrent neural networks, pictured in Figure 1.7. The
hidden state s (in the left part of the Figure 1.7) produces the output o only
for the last input (time-point) x. This process is depicted in the right part of
the Figure 1.7, where hidden states st−1, and st do not produce any outputs;
the only output ot+1 is given by the hidden state st+1.

1.3.2 Learning

This section introduces the learning algorithm of recurrent neural networks,
called backpropagation through time. This algorithm is very similar to back-
propagation described in Section 1.1.3. The error function is defined as

E =
l∑

t=0
Et, (1.5)

where l is the length of the output sequence and

Et = 1
2 ||ot − yt||2.

(y1, y2, . . . , yl) is the true output and (o1, o2, . . . , ol) is the output produced
by the network. For simplification, the error function of the on-line gradient
descent is used, which contains only one output vector. The aim is to calcu-
late the gradient of the error function with respect to all weights (such as in
Equation (1.3)), where

{u, v, w} ∈ {wi}.

13

1. Artificial Neural Networks

Partial derivatives are then calculated as

∂E

∂wi
=

l∑
t=0

∂Et

∂wi
.

Considering a part of the unfolded network from Figure 1.6 for time-steps
{0, 1, . . . , t}, the expression ∂Et

∂wi
is calculated as in the standard backpropaga-

tion for feedforward networks.

1.3.3 Vanishing Gradient Problem

Backpropagation through time, discussed above, has a limitation called the
vanishing gradient problem. Figure 1.8 pictures the sigmoid function and its
derivative. It can be seen that the limits of the derivative approach zero at
both ends. Multiplication of such small derivatives in the chain rule causes
gradients at later time-steps to vanish.9 This implies an inability of recurrent
neural networks to learn long-term dependencies in sequential inputs. One
solution to this problem is using rectified linear units (ReLUs) [11], defined
as f(x) = max(0, x), instead of the sigmoid or hyperbolic tangent activation
functions. Another approach is offered by LSTMs, further described in the
following section.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

S(
x)

, S
'(x

)

S(x)
S'(x)

Figure 1.8: The sigmoid function and its derivative.

1.4 Long Short-Term Memory Neural Networks

LSTMs were originally introduced by Hochreiter and Schmidhuber [17], and
further improved by Gers, Schmidhuber, and Cummins [18]. Recurrent neural

9For a detailed description see for example article [16].

14

1.4. Long Short-Term Memory Neural Networks

Figure 1.9: LSTM’s hidden unit.

networks with LSTMs share the same structure as well as the learning al-
gorithm (backpropagation through time); the difference is in the hidden units,
explained in the following passage.

1.4.1 Hidden Unit

A hidden unit of LSTMs is depicted in Figure 1.9. It consists of four parts:
a cell state Ct, a forget gate ft, an input gate it and an output gate ht. The
cell state (represented by a number in this case and by a vector of numbers
in the case of an input vector with more dimensions) functions as a memory
of the unit containing all important information available in the sequential
input vector. This information is selected and filtered by the three gates,
described in detail in the following paragraphs. Each of the gates has its set
of weights and biases. Weights uf and wf and bias bf belong to the forget
gate, weights ui, wi, ub, and wb and biases bi and bb are used by the input gate,
and the output gate contains weights uh and wh and bias bh. Compared to the
recurrent neural networks, the higher amount of weights and biases increases
the computational complexity of the learning process of LSTMs. However, it
enables the LSTMs to learn long-term dependencies in the data.

The forget gate is responsible for deleting previously saved information
from the unit’s cell state and is defined as

ft = σ(uf · xt + wf · ot−1 + bf).

This gate uses the input xt and the output ot−1 of the previous hidden unit
(on the left of the Figure 1.9). The sigma function outputs a number between
zero and one. If the output is zero, the information in the cell state will be
fully deleted. In the case of an output equal to one, the information will be
kept in the cell state.

15

1. Artificial Neural Networks

Subsequently, the input gate, defined below, stores new information to the
cell state:

it = σ(ui · xt + wi · ot−1 + bi),
Bt = tanh(ub · xt + wb · ot−1 + bb).

The sigma function in the input gate it selects what parts of the cell state
will be updated (in the case of a vector), and the hyperbolic tangent in Bt

specifies what values will be saved to these selected parts. The cell state is
then updated as follows, using the forget gate ft and the multiplication of the
input gate it and Bt:

Ct = it ·Bt + ft · Ct−1.

The last part of the hidden unit is the output gate ht, defined below, which
selects what parts of the cell state will be forwarded to the next hidden unit
(the arrow ot between the second and third blue node in Figure 1.9)

ht = σ(uh · xt + wh · ot−1 + bh).

After this selection, the output gate ht is multiplied with the cell state to
obtain the actual information forwarded to the next hidden unit

ot = σ(ht · tanh(Ct)).

In the case of a sequential output, the same information is used as the output
of the unit (the red node ot in Figure 1.9).

Similarly to recurrent neural networks, all weights and biases are shared
for the full sequential input and learnt during the learning process. After they
are properly adjusted, the LSTM can learn the information contained in the
input vector and use this information for producing an appropriate output
(i.e. an output which minimises the error function (1.5)).

1.4.2 Peephole Connections

Gers and Schmidhuber [19] suggested a modification of this architecture by
adding so-called peephole connections. Figure 1.10 pictures these connections
(red lines). This enables all three gates to use the information contained in
the cell state and to improve the performance of the network. The definitions
of the gates change as follows:

ft = σ(uf · xt + wf · ot−1 + pf · Ct + bf),
it = σ(ui · xt + wi · ot−1 + pi · Ct + bi),
ht = σ(uh · xt + wh · ot−1 + ph · Ct + bh),

where pf , pi and ph are weights assigned to the peephole connections. Accord-
ing to [20], this architecture together with using full gradient training [21] is
the most commonly used architecture in literature.

16

1.4. Long Short-Term Memory Neural Networks

Figure 1.10: Adding peephole connections to LSTM’s hidden unit.

17

Chapter 2
Implementation

The principles and four different architectures of artificial neural networks
were theoretically introduced in the previous chapter. Three of the architec-
tures (convolutional, recurrent and long short-term memory neural networks)
were implemented in order to compare them in the last part of this thesis.
This chapter focuses on the implementation and is divided into two sections.
Section 2.1 describes technical details of the implementation, including ar-
chitecture, programming language, and libraries. Section 2.2 introduces the
implemented program and specifies various settings of algorithms.

2.1 Technical Details

The implementation part of the thesis is written in Python [22], a high-level
programming language widely used in machine learning. Its main advantage
is a large variety of existing libraries, further described in the next section.
The code was written and executed in The Jupyter Notebook [23], a conveni-
ent web-based environment supporting many programming languages such as
Scala, Ruby, R, JavaScript, and Python. The Jupyter Notebook was running
in Docker [24], a software container, using the keras-full image [25].

As mentioned above, Python includes many useful libraries. The following
list shortly describes six of them that were used in the implementation:

• Keras [26] is a high-level neural networks library running on top of either
Theano or TensorFlow. Modularity and minimalism make it a very
efficient tool for creating and experimenting with neural networks.

• TensorFlow [27] is an open source library for machine learning developed
by Google. It features implicit scalability running on both CPUs and
GPUs.

19

2. Implementation

• SciPy [28] is a library for scientific computing. Among others, it imple-
ments a broad range of scientific functions.

• Numpy [29] is a Python extension introducing mainly N-dimensional
array objects. It also includes an extensive library of mathematical
functions to operate on these objects.

• Matplotlib [30] is a 2D plotting library. It offers various types of graphs
such as plots, histograms, bar charts, and scatterplots.

• scikit-learn [31] is a machine learning library built on Numpy, SciPy,
and Matplotlib. It implements many supervised and unsupervised al-
gorithms, preprocessing methods, and model selection techniques.

2.2 Implementation Details

The previous section focused on the technical detailes of the implementation;
this part describes various features of the experiment process and specific set-
tings of the algorithms. The program offers three ways of optimising network
hyperparameters: a manual search, a grid search, and a random search. The
input of the manual search is a neural network model with defined hyperpara-
meters. This model is trained on a training set and evaluated on a testing set.
The program iteratively plots the training loss and the validation loss after
every epoch. This process is repeated three times and the results are averaged
in order to lower the effects of randomness.

The grid search and the random search automatically optimise all hyper-
parameters using a cross-validation on a training set. The grid search takes
sets of values of various hyperparameters as inputs. These sets are further de-
scribed in Chapter 3. Inputs of the random search are uniform distributions of
the hyperparameters values. The output of both functions is the selected best
model and its hyperparameters. This model is then evaluated on a testing set
using the manual search.

The following list describes specific settings of the algorithms:

• Early stopping is implemented for all methods, i.e. if the validation loss
has not improved for n epochs, the training process stops. n = 5 during
the grid search and the random search and n = 10 during the training
process on the full training data set using the manual search. The min-
imum change of the loss counting as an improvement is delta = 0.001.
The maximum number of epochs is limited to 400.

20

2.2. Implementation Details

• The activation function f used in the convolutional layers and the fully-
connected layers (discussed in Section 1.2) as well as in the hidden layers
of recurrent neural networks (described in Section 1.3) is the ReLU.

• The pooling layer is always added to the architecture of the convolutional
neural networks.

• Zero-padding iteratively adds zeros to the front and the back of an input
vector as long as the formula

(l − s+ pf + pb) mod t

is not equal to zero. l represents the length of an input vector, pf and
pb is the amount of zeros padded to the front and to the back of the
vector, respectively. s stands for the size of the filter, and t is the filter
stride.

• Output layers use the softmax function as the activation function defined
as follows:

σ(z)j = ezj∑K
k=1 e

zk

for j = 1, . . . ,K, where z is a vector produced by the last hidden layer.
The lengthK of the vector represents the number of classes. The outputs
of the softmax function for all components of the vector add up to one
and can be interpreted as a categorical distribution.

• Categorical cross entropy is implemented as the loss function, using this
categorical distribution.

21

Chapter 3
Experiments

The second chapter outlined the detailes of the implemented program. This
program is used in the third chapter, which focuses on an experimental com-
parison of two state-of-the-art architectures of neural networks and one baseline
architecture: convolutional neural network, long short-term memory neural
network, and recurrent neural network, respectively. The goal is to compare
them in terms of their ability to learn, the effectivity of the training process
and the classification performance. The first section describes these criteria
and proposes an experimental design for their comparison. The experimental
design includes three benchmark data sets, introduced in the second section.
The last section compares the three network architectures on these data sets.

3.1 Experimental Design

This section is divided into two subsections. The first subsection focuses on
experiments for comparing different architectures of neural networks. It lists
and describes evaluation criteria and metrics, and proposes an experimental
procedure. An important step in this procedure is to properly set neural
network hyperparameters, in order to successfully train it on a given data set.
A design of experiments used for finding the best hyperparameters for any
given data set is presented in the second subsection.

3.1.1 Process of the Experiment

The first subsection focused on the process of the experiment contains three
parts: evaluation criteria, evaluation metrics, and the experimental procedure.

Evaluation Criteria

Different architectures of neural networks are compared in terms of three
criteria:

23

3. Experiments

• The ability to learn examines the structure of the networks, and how
changes in the structure influence the classification performance.

• The effectivity of the training process focuses on the technical para-
meter, i.e. the time spent on training the network.

• The classification performance belongs to one of the most important
metrics in a classification task. It measures how well the network ap-
proximates the function g (1.1), that is whether the network can learn
the patterns in the data.

Evaluation Metrics

Each criterion has a different set of evaluation metrics, outlined in the fol-
lowing list. These metrics are obtained during the experimental procedure,
described in the last part of this subsection. Subsequently, the metrics are
compared separately for each of the benchmark data sets.

Table 3.1: Structures of convolutional neural networks, defined using hyper-
parameters B,C, and D.

Number of layers B C D
3 1 1 1
4 2 1 1
5 1 2 1
6 1 2 2
7 2 2 1
8 2 2 2

• The ability to learn is analysed by plotting the dependency of the
classification performance on the number of neurones and the number
of hidden layers. For LSTMs and recurrent neural networks, the lat-
ter number means the number of layers containing LSTM and recurrent
neurones, respectively. The performance is calculated for one to five hid-
den layers. Table 3.1 shows structures of convolutional neural networks,
defined using hyperparameters B,C, and D, as described in Section 1.2.
The structures have six different depths (three to eight hidden layers).
Set N = {5x|1 ≤ x ≤ 50} defines possible numbers of neurones for all
architectures, as well as numbers of filters for convolutional networks.

• The effectivity of the training process is compared by measuring
the time of the training process.

• The classification performance is evaluated by comparing precision,
recall, and F-score obtained on testing data sets. Furthermore, these

24

3.1. Experimental Design

Figure 3.1: A graphical schema of the experimental procedure.

measures are compared separately for each class to determine whether
there is a difference in the classification performance for various classes.

Experimental Procedure

The graphical schema in Figure 3.1 shows the experimental procedure. The
data, divided into training and testing sets, are imported and transformed into
a proper format. Both sets are randomly shuffled.10 The hyperparameters of
all network architectures are optimised using the training set. This process
is further described later in the following section. The model with the best
classification performance is selected for each of the architectures.

The evaluation metrics are calculated by applying this model to the full
data set. Stratified 70% of the training set is used in the learning process,
and 30% is held out as the validation set for early stopping. The effectivity
of the training process is measured. The model is subsequently applied to

10The pseudorandom number generator seed is fixed for a better reproducibility of the
results.

25

3. Experiments

the testing set, and the classification performance is evaluated. This process
is repeated three times, and the evaluation metrics are averaged accordingly.
The training set is always shuffled between iterations.

The classification performance in dependency on the structure is calcu-
lated. The number of neurones and the number of layers are selected from
the sets described in the second part of this subsection. Other hyperparamet-
ers are fixed according to the selected model. An exhaustive grid search is
executed, resulting in 5 · 50 = 250 models for recurrent neural networks and
6 · 50 = 300 models for convolutional networks. These models are trained on
the training data and tested on the testing data. This process is repeated
three times, and the results are averaged.

3.1.2 Hyperparameters

Hyperparameters are variables defining neural network’s higher-level proper-
ties such as its structure. They are set before the training process, i.e. before
optimising the network parameters.

Recurrent Neural Networks

The following list shortly describes hyperparameters of recurrent neural net-
works.

• The learning rate influences the speed of the learning process by con-
trolling how much the weights change during each update. For more
information see Equation (1.4).

• The learning rate decay sets the speed at which the learning rate de-
cays. A high learning rate has the advantage of a fast learning process
and a broad exploration of the space of the loss function values. On the
other hand, a small learning rate decreases the loss steadily and enables
exploring parts of the search space which would be unreachable with
a high learning rate. The learning rate decay combines the advantages
of both. It sets a high learning rate at the beginning of the learning pro-
cess and continually decreases it by little steps. However, Bengio [32]
recommends keeping the learning rate constant. To reduce the complex-
ity of the experimental design, this recommendation is followed.

• The optimiser is another important hyperparameter. Sections 1.1.3
and 1.3.2 describe the stochastic gradient descent (SGD) as the back-
propagation algorithm, but more optimisers have been developed, such
as RMSprop, Adagrad, Adadelta, Adam, Adamax, and Nadam.

26

3.1. Experimental Design

• The number of epochs, further described in Section 1.1.3, influences
the performance of the network and the length of the training process.
Early stopping interrupts the training process if the validation loss has
not improved for a defined number of epochs. Therefore, this hyper-
parameter is not optimised.

• The size of the batch is another hyperparameter. As described in
Section 1.1.3, the mini-batch gradient descent (and other optimisers)
use only a subset of the training set for updating the weights. A small
batch means more updates and a broader exploration of the weights
space. A bigger batch enables more precise gradient descent, however
only locally, because the descent keeps changing during iterations.

• The number of hidden layers specifies the depth of the network.
Deeper networks are usually able to better generalise from the data
because of their ability to learn features at more levels of abstraction.
On the other hand, larger networks are more prone to overfitting.

• The number of neurones in each hidden layer defines the width of
the network and together with the number of layers forms its structure.
Bengio [32] states that a larger number of neurones usually works better
because the network can generalise well and the negative effects of over-
fitting are reduced by regularisation (see Dropout below).11 Bengio also
argues that using the same amount of neurones in each layer generally
works better or the same as using a decreasing or increasing size.

• Weights initialisation is an important step at the beginning of the
learning algorithm. These eight initialisers are tested: uniform, lecun
uniform, normal, zero, glorot normal, glorot uniform, he normal, and he
uniform.

• Dropout [33] is a regularisation technique used to avoid overfitting.
During training, randomly selected units along with their connections
are dropped out from the network. This makes the network less sensitive
to specific settings of weights, thus prevents it from co-adapting too
much to the training data. The tunable hyperparameter is the dropout
rate, i.e. the amount of dropped out neurones.

• Batch normalisation [34] can be placed after each layer that includes
activation functions. As the network parameters change during training,
the distribution of the activations changes as well. This phenomenon
is called internal covariate shift and it slows down the training process.
Batch normalisation reduces the shift by normalising network activations
during every batch update. The hyperparameter controls whether it is
added into the network’s architecture.

11The disadvantage is more computations.

27

3. Experiments

These hyperparameters are not independent of each other and cannot be
adjusted separately. Instead, the grid search is used, which is capable of
optimising more hyperparameters simultaneously. However, they cannot be
optimised all at once because of the exponential computational complexity of
the grid search. Therefore, they are divided into five smaller subsets:

1. {number of neurones, number of layers, dropout rate},

2. {optimisers, learning rate},

3. {learning rate, batch normalisation, dropout rate},

4. {weights initialisation},

5. {batch size, learning rate}.

The values of the hyperparameters are limited as well:

• learning rate ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1},

• optimisers ∈ {SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax,
Nadam},

• batch size ∈ {1, 2, 3, 4, 8, 16, 32},

• number of layers ∈ {1, 2, 3, 4, 5},

• number of neurones ∈ {50, 100, 150, 200, 250},

• weights initialisation ∈ {uniform, lecun uniform, normal, zero, glorot
normal, glorot uniform, he normal, he uniform},

• dropout rate ∈ {0.0, 0.2, 0.4, 0.6, 0.8},

• batch normalisation ∈ {true, false}.

The experimental procedure for choosing the hyperparameters given a data
set has five iterations. During each iteration, the grid search returns the best
values for a subset of the hyperparameters, which are fixed before the next
iteration. Evaluation of the values of the hyperparameters is based on cross-
validation, where the training set is split into four stratified folds. Three
models are learnt using two of these folds as training data, one fold as a val-
idation set used by the early stopping algorithm, and the remaining fold as
a testing set.

28

3.1. Experimental Design

The random search is another optimisation technique showing good res-
ults as well [32]. During each iteration, every hyperparameter is randomly
selected from the uniform distribution of its values. Thus, the random search
can effectively search in the hyperparameter space. This technique is tested
alongside the grid search, and the better model is selected.

Convolutional Neural Networks

The experimental procedure, introduced above, can be used for both recurrent
neural networks and convolutional neural networks, but the set of hyperpara-
meters differs. The number of layers is extended to three hyperparameters,
B,C and D, as described in Section 1.2. That section also introduces six more
hyperparameters specific for convolutional networks: the number of filters,
the size of each filter, the stride, the zero-padding, the pooling size, and
the pooling stride. To reduce the time complexity of the optimisation al-
gorithm, the pooling size and the pooling stride are fixed to the value 2.
The ordered list of subsets of the remaining hyperparameters looks as follows:

1. {number of neurones, number of filters, B,C,D},

2. {number of neurones, D, dropout rate},

3. {filter size, filter stride},

4. {optimisers, learning rate},

5. {learning rate, batch normalisation, dropout rate},

6. {weights initialisation},

7. {batch size, learning rate}.

The values are limited to these subsets:

• learning rate ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1},

• optimisers ∈ {SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax,
Nadam},

• batch size ∈ {1, 2, 3, 4, 8, 16, 32},

• number of neurones ∈ {50, 100, 150, 250},

• number of filters ∈ {50, 100, 150, 250},

• filter size ∈ {2, 3, 4, 0.05n, 0.1n, 0.2n},

29

3. Experiments

• filter stride ∈ {1, 2, 3},

• B ∈ {1, 2},

• C ∈ {1, 2},

• D ∈ {1, 2},

• weights initialisation ∈ {uniform, lecun uniform, normal, zero, glorot
normal, glorot uniform, he normal, he uniform},

• dropout rate ∈ {0.0, 0.2, 0.4, 0.6, 0.8},

• batch normalisation ∈ {true, false}.

Three filter sizes are defined as ratios of the length n of a time series, as
recommended by [35].

3.2 Benchmark Data Sets

The architectures are compared on three time series classification data sets.
This section theoretically introduces time series and classification and de-
scribes single data sets.

3.2.1 Time Series

A time series is a set of sequentially collected observations. In the case of
equally spaced time points, it is a set {yt}, where t ∈ Z is the time at which
an observation was taken. If the observations are not equally spaced in time,
the notation is {yti}, where i ∈ N. Time series are usually represented by
plots. Two examples are in Figures 3.2 and 3.3.

A multivariate time series is a set of time series with the same timestamps.
Following the notation from above, for equally spaced time points, it is a set
{{y1t}, {y2t}, . . . , {yqt}}, where q is the number of univariate time series (also
called features), and t ∈ Z is the time. In the case of unequally spaced time
points, it is a set {{y1ti}, {y2ti}, . . . , {yqti}}, where i ∈ N.

3.2.2 Classification

Supervised learning is a machine learning task, where training examples are
pairs consisting of an input and a corresponding output. Classification is
a subset of supervised learning, where outputs represent classes (categories).
The classification problem consists of sorting inputs into correct classes. More
formally, a training set has a form of {(x1, y1), (x2, y2), . . . , (xm, ym)}, where
xi are input vectors, and yi are corresponding classes. Time series classification
is a classification problem, where inputs xi represent time series.

30

3.2. Benchmark Data Sets

0 20 40 60 80 100 120 140
t

1.0

0.5

0.0

0.5

1.0
y t

Figure 3.2: An example of the Gun-Draw class from the Gun-Point data set.

0 20 40 60 80 100 120 140
t

1.0

0.5

0.0

0.5

1.0

y t

Figure 3.3: An example of the Point class from the Gun-Point data set.

3.2.3 Data Sets

Time series classification data sets used in the experimental part of this thesis
come from the UCR Time Series Classification Archive [36], and the UCI
Machine Learning Repository [37].

Gun-Point

The first set is the Gun-Point data set, originally published by Ratanama-
hatana and Keogh [38]. It contains 200 univariate time series, 50 of them
belong to the training set and 150 to the testing set. The time series were
obtained by tracking the motion of the right hand of one male and one female
actor. The data set is divided into two classes: Gun-Draw and Point.

31

3. Experiments

0 50 100 150 200
t

1

0

1

2

3

y t

Figure 3.4: An example of the Strawberry class from the Strawberry data set.

Both classes begin with the actors standing and having both hands at
their sides. In the Gun-Draw class, they reach for a gun stored in a holster,
which is mounted at their hips. They draw the gun at an imaginary opponent
for approximately one second, return it to the holster and put their hands
back to their sides. In the Point class, they only point their index fingers at
the opponent and put their hands back to their sides. The time series are
composed of the x-coordinates of the centroids of their hands tracked during
these procedures. Examples of time series for the Gun-Draw and Point classes
are shown in Figures 3.2 and 3.3, respectively. It can be seen that there are
two lumps in the first figure, as the actor had to reach for the gun. No such
lumps are in the Point class figure.

Strawberry

The Strawberry data set, published in [39], comes from the field of food ana-
lysis. It contains 983 univariate time series, divided into the training (370)
and testing (613) set. Two classes were obtained using Fourier transform
infrared spectroscopy of strawberry purées for a Strawberry class and non-
strawberry (such as raspberry, apple, blackberry or adultered strawberry)
purées for a Non-Strawberry class. An example of the Strawberry class is in
Figure 3.4.

Japanese Vowels

The Japanese Vowels data set, originally collected by Kudo et al. [40], is a part
of the UCI Machine Learning Repository [37]. It is split into the training set
(270 time series) and the testing set (370 time series). All time series are
multivariate and contain 12 features. Each time series represents a sound of

32

3.3. Comparison of Architectures

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y t

Figure 3.5: The Japanese Vowels data set.

two Japanese vowels /ae/ uttered successively by one of nine male speakers,
forming a set of nine classes. The features are 12 LPC cepstrum coefficients
obtained from the 12-degree linear prediction analysis. An example of the
time series is in Figure 3.5.

3.3 Comparison of Architectures

The three data sets, introduced above, are used for the comparison of three ar-
chitectures of neural networks. Every set is compared in a separate subsection.
Each architecture is represented by one best model with a set of hyperpara-
meters found during the optimisation process. These models are compared in
terms of the ability to learn, the effectivity of the training process, and the
classification performance.

3.3.1 Gun-Point

The first subsection focuses on the smallest of the data sets, the Gun-Point
data set. The following paragraphs list the optimised hyperparameters and
compare the ability to learn, the effectivity of the training process, and the
classification performance.

33

3. Experiments

Table 3.2: Optimised hyperparameters for the Gun-Point data set.

RNN LSTM CNN
Learning rate 0.0001 0.000684 0.003244
Optimiser Adamax Adamax RMSprop
Batch size 1 27 17
Number of layers 3 4
Number of neurones 100 100 182
Weights initialisation glorot normal he uniform glorot uniform
Dropout rate 0.0 0.439786 0.24793
Batch normalisation False False False
Number of filters 128
Filter size 3
Filter stride 2
B 1
C 1
D 2

Hyperparameters

Table 3.2 shows the optimised hyperparameters for three architectures: recur-
rent neural network (RNN), long short-term memory neural network (LSTM),
and convolutional neural network (CNN). The random search found better
models than the grid search for two architectures (LSTM and CNN). For the
RNN, the model selected by the grid search had better classification perform-
ance than the model selected by the random search.

Ability to Learn

Figure 3.6 shows the classification performance (F-score) in dependency on
the number of neurones (x-axis) and the number of layers (different colour
shades) for CNNs. All results were calculated for up to 250 neurones, but
because of no further information in the data, the plots are limited to 150
neurones. Networks with seven or eight layers are generally worse on this data
set than networks with fewer layers. The classification performance seems to
be correlated with the number of neurones for smaller architectures (five to
approximately 30 neurones). For architectures with more than 30 neurones,
the performance fluctuates but does not change on average. The classification
performance for the CNN architecture on the Gun-Point data set cannot be
concluded independent on the structure of the network.

The classification performance in dependency on the number of neurones
and the number of layers for LSTMs can be seen in Figure 3.7. The classific-
ation performance increases with the number of neurones for networks with

34

3.3. Comparison of Architectures

20 40 60 80 100 120 140
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0
F-

sc
or

e

Number of layers
3
4
5
6
7
8

Figure 3.6: The classification performance in dependency on the number of
neurones and the number of layers for CNN on the Gun-Point data set.

20 40 60 80 100 120 140
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Number of layers
1
2
3
4
5

Figure 3.7: The classification performance in dependency on the number of
neurones and the number of layers for LSTM on the Gun-Point data set.

5 to approximately 100 neurones. For networks with more than 100 neur-
ones, the performance stays almost the same with a few fluctuations. These
fluctuations are highest for networks with fewer layers and lowest for deeper
networks.

The classification performance in dependency on the RNN structure, shown
in Figure 3.8, shows big fluctuations. It is positively correlated with the num-

35

3. Experiments

20 40 60 80 100 120 140
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0
F-

sc
or

e

Number of layers
1
2
3
4
5

Figure 3.8: The classification performance in dependency on the number of
neurones and the number of layers for RNN on the Gun-Point data set.

ber of layers; the more layers a network has, the better its classification per-
formance is. No such simple correlation can be found between the performance
and the number of neurones. As the performance for many networks is higher
than for the network selected by the hyperparameters optimisation process
(depicted in Figure 3.14), this process does not work optimally. This beha-
viour is not unexpected because of the computational and time limitations,
discussed in Section 3.1.2. Nevertheless, the average performance for RNNs is
certainly smaller than for CNNs and LSTMs. Thus, the Figure 3.14 contains
relevant information about the three architectures.

In conclusion, the classification performance on the Gun-Point data set is
the least dependent on the LSTM structure. Therefore, this architecture can
be considered the most suitable for learning these data.

Figures 3.9, 3.11, and 3.12 compare the time of the training for different
architectures. As the scales of the y-axes are the same, it can be easily con-
cluded that the training of CNNs is the fastest, and the training of RNNs is
the slowest. The training time for LSTMs and RNNs is positively correlated
with the number of layers, but not with the number of neurones. The training
time for CNNs (shown in detail in Figure 3.10) seems positively correlated
both with the number of layers and the number of neurones.

Effectivity of the Training Process

Table 3.3 and Graph 3.13 compare the effectivity of the training process. The
second column shows the time spent during the training process. The training

36

3.3. Comparison of Architectures

20 40 60 80 100 120 140
Number of neurones

0

100

200

300

400

500

Ti
m

e
(s

)

Number of layers
3
4
5
6
7
8

Figure 3.9: Time of the training
(same scale) in dependency on the
number of neurones and the num-
ber of layers for CNN on the Gun-
Point data set.

20 40 60 80 100 120 140
Number of neurones

1

2

3

4

5

6

7

Ti
m

e
(s

)

Number of layers
3
4
5
6
7
8

Figure 3.10: Time of the training
(different scale) in dependency on
the number of neurones and the
number of layers for CNN on the
Gun-Point data set.

20 40 60 80 100 120 140
Number of neurones

0

100

200

300

400

500

Ti
m

e
(s

)

Number of layers
1
2
3
4
5

Figure 3.11: Time of the training in
dependency on the number of neur-
ones and the number of layers for
LSTM on the Gun-Point data set.

20 40 60 80 100 120 140
Number of neurones

0

100

200

300

400

500

Ti
m

e
(s

)

Number of layers
1
2
3
4
5

Figure 3.12: Time of the training in
dependency on the number of neur-
ones and the number of layers for
RNN on the Gun-Point data set.

of the CNN is significantly faster than the training of the LSTM and RNN.

Classification Performance

Probably the most important criteria for comparing architectures of neural
networks on a classification problem is the classification performance, shown
in Table 3.4 and Graph 3.14. Each row/colour represents one architecture. It
can be concluded that the LSTM has better classification performance on the
testing data, achieving an F-score of 0.95. Also, the state-of-the-art architec-
tures are significantly better than the baseline RNN.

Tables 3.5, 3.6 and 3.7 show precision, recall and F-score, respectively,

37

3. Experiments

Table 3.3: Comparison of the effectivity of the training process on the Gun-
Point data set.

Time (s)
CNN 3.6
LSTM 37.8
RNN 47.4

CNN LSTM RNN0

10

20

30

40

Ti
m

e
(s

)

Figure 3.13: Comparison of the effectivity of the training process on the Gun-
Point data set.

Table 3.4: Comparison of the classification performance for the testing subset
of the Gun-Point data set.

Precision Recall F-score
CNN 0.92 0.91 0.91
LSTM 0.96 0.95 0.95
RNN 0.5 0.5 0.5

38

3.3. Comparison of Architectures

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.14: Comparison of the classification performance for the testing sub-
set of the Gun-Point data set.

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.15: Comparison of F-score
for the Gun-Draw class of the Gun-
Point data set.

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.16: Comparison of F-score
for the Point class of the Gun-Point
data set.

separately for two classes of the Gun-Point data set. Graphs 3.15 and 3.16 then
focus on F-score comparison for the Gun-Draw and Point class, respectively.
The RNN gives solid baseline results, recognising 48% of time series in the
Gun-Draw class, and 51% in the Point class.

The LSTM recognises all time series in the Gun-Draw class, and 91% in
the Point class. The CNN can recognise only 88% of time series in the Gun-
Draw class, but 95% of them in the Point class. These numbers correlate with
precision, where the CNN has better results than the LSTM for the Gun-Draw
class (0.94 versus 0.92), but worse results for the Point class (0.89 versus 1.0).

Considering all three metrics (the ability to learn, the effectivity of the
training process, and the classification performance), the LSTM can be con-

39

3. Experiments

Table 3.5: Comparison of precision separately for classes of the Gun-Point
data set.

CNN LSTM RNN
Gun-Draw 0.94 0.92 0.5
Point 0.89 1.0 0.49

Table 3.6: Comparison of recall separately for classes of the Gun-Point data
set.

CNN LSTM RNN
Gun-Draw 0.88 1.0 0.48
Point 0.95 0.91 0.51

Table 3.7: Comparison of F-score separately for Classes of the Gun-Point data
set.

CNN LSTM RNN
Gun-Draw 0.91 0.96 0.49
Point 0.92 0.95 0.5

cluded as the most suitable for the Gun-Point data set, though it needs the
most time to learn the data.

3.3.2 Strawberry

The second subsection focuses on the largest of the data sets, the Strawberry
data set. Similarly to the previous subsection, the ability to learn, the effectiv-
ity of the training process, and the classification performance are evaluated
for the three architectures.

Hyperparameters

The optimised hyperparameters for the Strawberry data set for three archi-
tectures (RNN, LSTM, and CNN) are in Table 3.8. The best RNN model was
optimised by the grid search, and the CNN and the LSTM were selected by
the random search.

Ability to Learn

Figure 3.17 shows the classification performance (F-score) in dependency on
the number of neurones (x-axis) and the number of layers (different colour
shades) for the CNN. All results were again calculated for up to 250 neurones,
but because of no further information in the data, the plots are limited to 175

40

3.3. Comparison of Architectures

Table 3.8: Optimised Hyperparameters for the Strawberry data set.

RNN LSTM CNN
Learning rate 0.001 0.00027 0.001335
Optimiser Adagrad Adamax Nadam
Batch size 4 26 15
Number of layers 1 1
Number of neurones 150 203 118
Weights initialisation glorot normal he uniform he normal
Dropout rate 0.4 0.381902 0.153957
Batch normalisation True False False
Number of filters 212
Filter size 3
Filter stride 1
B 1
C 2
D 1

20 40 60 80 100 120 140 160
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Number of layers
3
4
5
6
7
8

Figure 3.17: The classification performance in dependency on the number of
neurones and the number of layers for CNN on the Strawberry data set.

neurones. The classification performance of architectures with three layers is
negatively correlated with the number of neurones for up to 90 neurones—the
more neurones each layer has, the lower the performance of the network is.
Architectures with more than three layers give mostly high and stable results
for any number of neurones.

The classification performance in dependency on the number of neurones

41

3. Experiments

20 40 60 80 100 120 140 160
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0
F-

sc
or

e

Number of layers
1
2
3
4
5

Figure 3.18: The classification performance in dependency on the number of
neurones and the number of layers for LSTM on the Strawberry data set.

and the number of layers for the LSTM can be seen in Figure 3.18. There
seems to be a slight negative correlation between the number of layers and the
classification performance. The performance increases for the first 60 neurones
and then stays the same with small fluctuations.

The classification performance in dependency on the RNN structure is
shown in Figure 3.19. Architectures with only one layer give the most un-
stable results, but the mean of the classification performance is the highest.
On the other hand, the performance of architectures with four layers fluctu-
ates the least, but its mean is the lowest. No simple correlation between the
classification performance and the number of neurones can be deduced.

Time in dependency on structure is in Figures 3.20, 3.22 and 3.23. LSTMs
and CNNs (in detail shown in Graph 3.21) with more layers need a longer time
to be trained than networks with fewer layers. For CNNs, there is also a cor-
relation between the time and the number of neurones. When comparing the
three networks, the CNNs are again significantly faster than the two recurrent
architectures.

Effectivity of the Training Process

Table 3.9 and Graph 3.24 show comparison of the effectivity of the training
process. Training of the CNN selected by the hyperparameters optimisation
process is around eight times faster than the training of the recurrent networks.

42

3.3. Comparison of Architectures

20 40 60 80 100 120 140 160
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Number of layers
1
2
3
4
5

Figure 3.19: The classification performance in dependency on the number of
neurones and the number of layers for RNN on the Strawberry data set.

20 40 60 80 100 120 140 160
Number of neurones

0

200

400

600

800

1000

Ti
m

e
(s

)

Number of layers
3
4
5
6
7
8

Figure 3.20: Time of the training
(same scale) in dependency on the
number of neurones and the num-
ber of layers for CNN on the Straw-
berry data set.

20 40 60 80 100 120 140 160
Number of neurones

0

20

40

60

80

100

120

Ti
m

e
(s

)

Number of layers
3
4
5
6
7
8

Figure 3.21: Time of the training
(different scale) in dependency on
the number of neurones and the
number of layers for CNN on the
Strawberry data set.

43

3. Experiments

20 40 60 80 100 120 140 160
Number of neurones

0

200

400

600

800

1000

Ti
m

e
(s

)

Number of layers
1
2
3
4
5

Figure 3.22: Time of the training in
dependency on the number of neur-
ones and the number of layers for
LSTM on the Strawberry data set.

20 40 60 80 100 120 140 160
Number of neurones

0

200

400

600

800

1000

Ti
m

e
(s

)

Number of layers
1
2
3
4
5

Figure 3.23: Time of the training in
dependency on the number of neur-
ones and the number of layers for
RNN on the Strawberry data set.

CNN LSTM RNN0

25

50

75

100

125

150

175

Ti
m

e
(s

)

Figure 3.24: Comparison of the effectivity of the training process on the Straw-
berry data set.

Classification Performance

Comparison of the classification performance for the Strawberry data set is in
Table 3.10 and Figure 3.25. Interestingly, the RNN and the LSTM have the
same results, F-score = 0.87. The CNN, with F-score = 0.96, has the best
classification performance for this data set.

Comparing the measures separately for the two classes of the data set
(Tables 3.11, 3.12, and 3.13, and Figures 3.26 and 3.27), the CNN classifies
both classes equally well, but the LSTM and the RNN are more successful in
classifying the Non-Strawberry class (F-score = 0.89 versus F-score = 0.83 for
the Strawberry class). The CNN can be concluded a more suitable architecture

44

3.3. Comparison of Architectures

Table 3.9: Comparison of the effectivity of the training process on the Straw-
berry data set.

Time (s)
CNN 21.6
LSTM 179.4
RNN 169.2

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.25: Comparison of the classification performance for the testing sub-
set of the Strawberry data set.

Table 3.10: Comparison of the classification performance for the testing subset
of the Strawberry data set.

Precision Recall F-score
CNN 0.96 0.96 0.96
LSTM 0.88 0.87 0.87
RNN 0.88 0.87 0.87

for this data set.

3.3.3 Japanese Vowels

The last subsection focuses on the comparison of the architectures on the
Japanese Vowels data set.

Hyperparameters

The optimised hyperparameters for the Japanese Vowels data set are shown
in Table 3.14. The grid search found better models for the RNN and the CNN

45

3. Experiments

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.26: Comparison of F-
score for the Strawberry class of
the Strawberry data set.

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.27: Comparison of F-score
for the Non-Strawberry class of the
Strawberry data set.

Table 3.11: Comparison of precision separately for classes of the Strawberry
data set.

CNN LSTM RNN
Strawberry 0.93 0.77 0.78
Non-Strawberry 0.97 0.94 0.93

Table 3.12: Comparison of recall separately for classes of the Strawberry data
set.

CNN LSTM RNN
Strawberry 0.95 0.91 0.89
Non-Strawberry 0.96 0.85 0.86

architectures; the LSTM model was selected by the random search.

Ability to Learn

The classification performance in dependency on the number of neurones and
the number of layers for CNNs (Figure 3.28) and LSTMs (Figure 3.29) look
similar, containing a correlation between the F-score and the number of neur-
ones for the first approximately 50 neurones. For more than 50 neurones, the
classification performance is almost constantly high, only slightly fluctuating
(with F − score close 1.0 for LSTMs, and around 0.9 for CNNs). Except for
LSTMs with one hidden layer, which have worse results than networks with
more layers, the performance is not dependent on the number of layers.

The classification performance for RNNs with more than 40 neurones fluc-
tuates a lot with changes to the structure (Figure 3.30). Networks with fewer

46

3.3. Comparison of Architectures

50 100 150 200 250
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Number of layers
3
4
5
6
7
8

Figure 3.28: The classification performance in dependency on the number of
neurones and the number of layers for CNN on the Japanese Vowels data set.

50 100 150 200 250
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Number of layers
1
2
3
4
5

Figure 3.29: The classification performance in dependency on the number of
neurones and the number of layers for LSTM on the Japanese Vowels data
set.

47

3. Experiments

Table 3.13: Comparison of F-score separately for Classes of the Strawberry
data set.

CNN LSTM RNN
Strawberry 0.94 0.83 0.83
Non-Strawberry 0.97 0.89 0.89

Table 3.14: Optimised Hyperparameters for the Japanese Vowels data set.

RNN LSTM CNN
Learning rate 0.0001 0.000179 0.001
Optimiser RMSprop Adamax RMSprop
Batch size 32 7 4
Number of layers 2 2
Number of neurones 250 227 50
Weights initialisation lecun uniform uniform uniform
Dropout rate 0.2 0.349926 0.0
Batch normalisation True True True
Number of filters 250
Filter size 5
Filter stride 1
B 1
C 2
D 1

layers seem to give more unstable results than deeper networks. The results of
the RNN architecture are more dependent and on average worse (0.29) than
the results of CNNs and LSTMs (0.92 and 0.94, respectively). The optimisa-
tion process works well on this data set and selects a model with high F-score
(0.83, listed in Table 3.16).

CNNs (Graph 3.31) and RNNs (Graph 3.34) need similar times for train-
ing (on average 20.69 and 19.45 seconds for CNNs and RNNs, respectively).
Similarly to the previous two data sets, training times of CNNs (Graph 3.32)
are positively correlated with their structure. Interestingly, training times of
LSTMs (Figure 3.33) seem negatively correlated with the number of neur-
ones. This is probably caused by the early stopping algorithm. More complex
networks can better learn the data and need fewer epochs to be trained.

Effectivity of the Training Process

Comparison of the effectivity of the training process for networks selected
by the hyperparameters optimisation process is shown in Table 3.15 and

48

3.3. Comparison of Architectures

50 100 150 200 250
Number of neurones

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Number of layers
1
2
3
4
5

Figure 3.30: The classification performance in dependency on the number of
neurones and the number of layers for RNN on the Japanese Vowels data set.

50 100 150 200 250
Number of neurones

0

100

200

300

400

500

Ti
m

e
(s

)

Number of layers
3
4
5
6
7
8

Figure 3.31: Time of the training
(same scale) in dependency on the
number of neurones and the num-
ber of layers for CNN on the Ja-
panese Vowels data set.

50 100 150 200 250
Number of neurones

10

20

30

40

50

60

Ti
m

e
(s

)

Number of layers
3
4
5
6
7
8

Figure 3.32: Time of the training
(different scale) in dependency on
the number of neurones and the
number of layers for CNN on the
Japanese Vowels data set.

49

3. Experiments

50 100 150 200 250
Number of neurones

0

100

200

300

400

500

Ti
m

e
(s

)

Number of layers
1
2
3
4
5

Figure 3.33: Time of the training
in dependency on the number of
neurones and the number of layers
for LSTM on the Japanese Vowels
data set.

50 100 150 200 250
Number of neurones

0

100

200

300

400

500

Ti
m

e
(s

)

Number of layers
1
2
3
4
5

Figure 3.34: Time of the training in
dependency on the number of neur-
ones and the number of layers for
RNN on the Japanese Vowels data
set.

CNN LSTM RNN0

10

20

30

40

50

60

70

80

Ti
m

e
(s

)

Figure 3.35: Comparison of the effectivity of the training process on the Ja-
panese Vowels data set.

Graph 3.35. Training of the CNN is again significantly faster than the training
of the LSTM. The RNN needs less time to be trained than the LSTM, though
still two times more than the CNN.

Classification Performance

The classification performance for the Japanese Vowels data set is compared
in Table 3.16 and Figure 3.36. The LSTM has the best results with F-
score = 0.98, followed by the CNN with F-score = 0.96. The RNN gives
solid baseline results for this data set, F-score = 0.83.

50

3.3. Comparison of Architectures

Table 3.15: Comparison of the effectivity of the training process on the Ja-
panese Vowels data set.

Time (s)
CNN 16.2
LSTM 78.0
RNN 33.0

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.36: Comparison of the classification performance for the testing sub-
set of the Japanese Vowels data set.

Table 3.16: Comparison of the classification performance for the testing subset
of the Japanese Vowels data set.

Precision Recall F-score
CNN 0.96 0.96 0.96
LSTM 0.98 0.98 0.98
RNN 0.86 0.82 0.83

The Japanese Vowels data set contains nine classes, as described in Sec-
tion 3.2.3. For six of the classes the CNN and the LSTM give similarly good
results, but there are three exceptions where the F-score of the CNN is lower
than the F-score of the LSTM (with a delta of at least 0.05)—Speakers 2, 4,
and 9. F-scores of Speakers 2 and 9 are compared in Figures 3.37 and 3.38.
Tables 3.17, 3.18, and 3.19 show detailed comparison of precision, recall and
F-score, respectively, for all nine classes.

51

3. Experiments

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.37: Comparison of F-score
for the Speaker 2 class of the Ja-
panese Vowels data set.

CNN LSTM RNN0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Figure 3.38: Comparison of F-score
for the Speaker 9 class of the Ja-
panese Vowels data set.

Table 3.17: Comparison of precision separately for classes of the Japanese
Vowels data set.

CNN LSTM RNN
Speaker 1 0.93 1.0 0.95
Speaker 2 0.91 0.97 0.85
Speaker 3 0.96 0.99 0.97
Speaker 4 0.98 0.98 0.96
Speaker 5 0.99 0.98 0.49
Speaker 6 0.99 0.99 1.0
Speaker 7 0.96 0.98 0.88
Speaker 8 0.97 0.97 0.74
Speaker 9 0.94 0.95 0.71

Table 3.18: Comparison of recall separately for classes of the Japanese Vowels
data set.

CNN LSTM RNN
Speaker 1 0.99 0.98 0.88
Speaker 2 0.87 0.96 0.94
Speaker 3 0.98 0.97 0.65
Speaker 4 0.89 0.98 0.85
Speaker 5 0.99 0.98 0.92
Speaker 6 1.0 1.0 0.99
Speaker 7 1.0 1.0 0.88
Speaker 8 0.98 0.97 0.85
Speaker 9 0.91 0.99 0.71

52

3.3. Comparison of Architectures

Table 3.19: Comparison of F-score separately for Classes of the Japanese
Vowels data set.

CNN LSTM RNN
Speaker 1 0.96 0.99 0.92
Speaker 2 0.89 0.97 0.89
Speaker 3 0.97 0.98 0.78
Speaker 4 0.93 0.98 0.9
Speaker 5 0.99 0.98 0.64
Speaker 6 0.99 0.99 0.99
Speaker 7 0.98 0.99 0.88
Speaker 8 0.97 0.97 0.79
Speaker 9 0.92 0.97 0.71

53

Conclusion

This thesis focused on artificial neural networks, machine learning algorithms
nowadays used in a wide variety of domains. It theoretically described four
different architectures: feedforward, convolutional (CNN), recurrent (RNN),
and long short-term memory (LSTM) neural networks. These networks were
explained in terms of their structure, their building blocks—artificial neurones,
and two learning algorithms: backpropagation and backpropagation through
time. Three of the architectures (CNN, RNN, and LSTM) were implemented
in Keras, a Python neural network library running on top of TensorFlow.

One of common machine learning problems where neural networks can
be used is time series classification. To accomplish this task, it is necessary
to select a proper architecture and to optimise hyperparameters of the net-
work. Thus, an experimental procedure for comparing different architectures
in terms of their ability to learn, the effectivity of the training process, and
the classification performance was proposed and implemented in the third
chapter of this thesis. The process also includes automatic optimisation of
neural network’s hyperparameters using scikit-learn grid and random search
functions.

Based on the experimental procedure, the three implemented architectures
suitable for time series classification were compared on three benchmark data
sets: the Gun-Point data set, the Strawberry data set, and the Japanese
Vowels data set. On the Gun-Point data set, which is the smallest of the three,
the LSTM had the highest classification performance with F-score = 0.95
compare to the CNN (0.91) and the RNN (0.50). The performance of LSTMs
was also the least dependent on the structure of the network. On the other
hand, the training of the LSTM took substantially more time than the training
of the CNN.

On the Strawberry data set, containing the largest training set consisting

55

Conclusion

of 370 univariate time series, the CNN gave the best classification performance
with F-score = 0.96, compare to F-scores of the RNN and the LSTM, which
were both equal to 0.87. Furthermore, the training of the CNN was around
eight times faster than the training of the recurrent networks.

The classification performance for the Japanese Vowels data set was highest
for the LSTM (F-score = 0.98), followed by the CNN (F-score = 0.96) and
the RNN (F-score = 0.83). However, the average training time for different
structures of CNNs and RNNs was approximately eight times lower than the
average training time of LSTMs. For almost all tested structures, the CNNs
and the LSTMs gave high classification performance.

Comparing the classification performance in dependency on the structure
for all data sets, the following can be concluded. First, the variance of the
performance of CNNs and LSTMs seems correlated with the complexity of the
training data set, i.e. with the size of the set and the number of features. On
the least complex set, the Gun-Point data set, the results showed the highest
variance (0.140). On the other hand, on the Japanese Vowels data set, which is
the most complex set including 270 time series with 12 features, the variance
of the results was the lowest (0.097). This indicates that the LSTMs and
CNNs can better learn more complex data sets which is probably caused by
more information available in these sets.

Second, the results show that LSTMs and CNNs have better learning abil-
ities than RNNs. The average performance of the RNNs on all data sets was
significantly lower than the performance of the state-of-the-art architectures.
The largest difference was on the Japanese Vowels data set (0.29 versus 0.94
and 0.92 for LSTMs and CNNs, respectively), also indicating that the per-
formance of RNNs decreases with the increasing complexity of the data set.

In conclusion, the LSTM architecture was the most suitable for two of the
data sets, and the CNN architecture gave the best results for one data set.
This does not imply that LSTMs are in general better than CNNs. Machine
learning problems are data-dependent: for each data set, it is necessary to
optimise hyperparameters of every architecture, compare the selected models
in terms of the ability to learn, the effectivity of the training process, and the
classification performance, and use the best model on such data set.

56

Bibliography

[1] Silver, D.; Huang, A.; et al. Mastering the game of Go with deep
neural networks and tree search. Nature, volume 529, 2016: pp. 484–503.
Available from: http://www.nature.com/nature/journal/v529/n7587/
full/nature16961.html

[2] Gómez-Bombarelli, R.; Duvenaud, D. K.; et al. Automatic chemical
design using a data-driven continuous representation of molecules. CoRR,
volume abs/1610.02415, 2016. Available from: http://arxiv.org/abs/
1610.02415

[3] Gao, J.; Jamidar, R. Machine learning applications for data center op-
timization. Google White Paper, 2014.

[4] Xie, J.; Xu, L.; et al. Image Denoising and Inpainting with Deep
Neural Networks. In Advances in Neural Information Processing Sys-
tems 25, edited by F. Pereira; C. J. C. Burges; L. Bottou;
K. Q. Weinberger, Curran Associates, Inc., 2012, pp. 341–349. Avail-
able from: http://papers.nips.cc/paper/4686-image-denoising-
and-inpainting-with-deep-neural-networks.pdf

[5] Dong, C.; Loy, C. C.; et al. Learning a Deep Convolutional Network for
Image Super-Resolution. Cham: Springer International Publishing, 2014,
ISBN 978-3-319-10593-2, pp. 184–199, doi:10.1007/978-3-319-10593-2 13.
Available from: http://dx.doi.org/10.1007/978-3-319-10593-2_13

[6] Graves, A. Generating Sequences With Recurrent Neural Networks.
CoRR, volume abs/1308.0850, 2013. Available from: http://arxiv.org/
abs/1308.0850

[7] Abadi, M.; Andersen, D. G. Learning to Protect Communications with
Adversarial Neural Cryptography. CoRR, volume abs/1610.06918, 2016.
Available from: http://arxiv.org/abs/1610.06918

57

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://arxiv.org/abs/1610.02415
http://arxiv.org/abs/1610.02415
http://papers.nips.cc/paper/4686-image-denoising-and-inpainting-with-deep-neural-networks.pdf
http://papers.nips.cc/paper/4686-image-denoising-and-inpainting-with-deep-neural-networks.pdf
http://dx.doi.org/10.1007/978-3-319-10593-2_13
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1610.06918

Bibliography

[8] Rojas, R. Neural networks: a systematic introduction. Springer Science
& Business Media, 2013.

[9] Rusu, A. A.; Rabinowitz, N. C.; et al. Progressive Neural Net-
works. CoRR, volume abs/1606.04671, 2016. Available from: http:
//arxiv.org/abs/1606.04671

[10] LeCun, Y.; Bengio, Y.; et al. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks,
volume 3361, no. 10, 1995: p. 1995.

[11] Krizhevsky, A.; Sutskever, I.; et al. Imagenet classification with deep con-
volutional neural networks. In Advances in neural information processing
systems, 2012, pp. 1097–1105.

[12] Scherer, D.; Müller, A.; et al. Evaluation of pooling operations in convo-
lutional architectures for object recognition. In International Conference
on Artificial Neural Networks, Springer, 2010, pp. 92–101.

[13] Sutskever, I.; Martens, J.; et al. Generating text with recurrent neural
networks. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), 2011, pp. 1017–1024.

[14] Cho, K.; Van Merriënboer, B.; et al. Learning phrase representations us-
ing RNN encoder-decoder for statistical machine translation. arXiv pre-
print arXiv:1406.1078, 2014.

[15] Sutskever, I.; Vinyals, O.; et al. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, 2014, pp.
3104–3112.

[16] Pascanu, R.; Mikolov, T.; et al. On the difficulty of training recurrent
neural networks. ICML (3), volume 28, 2013: pp. 1310–1318.

[17] Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural compu-
tation, volume 9, no. 8, 1997: pp. 1735–1780.

[18] Gers, F. A.; Schmidhuber, J.; et al. Learning to forget: Continual pre-
diction with LSTM. Neural computation, volume 12, no. 10, 2000: pp.
2451–2471.

[19] Gers, F. A.; Schmidhuber, J. Recurrent nets that time and count. In
Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on, volume 3, IEEE, 2000, pp.
189–194.

[20] Greff, K.; Srivastava, R. K.; et al. LSTM: A search space odyssey. IEEE
transactions on neural networks and learning systems, 2016.

58

http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671

Bibliography

[21] Graves, A.; Schmidhuber, J. Framewise phoneme classification with bi-
directional LSTM and other neural network architectures. Neural Net-
works, volume 18, no. 5, 2005: pp. 602–610.

[22] Python Software Foundation. Python Language Reference, version 2.7.
2001–, [Online; accessed on 9th May 2017]. Available from: http://
www.python.org/

[23] Kluyver, T.; Ragan-Kelley, B.; et al. Jupyter Notebooks—a publishing
format for reproducible computational workflows. Positioning and Power
in Academic Publishing: Players, Agents and Agendas, 2016: p. 87.

[24] Merkel, D. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J., volume 2014, no. 239, Mar. 2014,
ISSN 1075-3583. Available from: http://dl.acm.org/citation.cfm?id=
2600239.2600241

[25] gw000 2.0.2. gw000/keras-full. 2016, [Online; accessed on 9th May 2017].
Available from: https://hub.docker.com/r/gw000/keras-full/

[26] Chollet, F. Keras 2.0.2. https://github.com/fchollet/keras, 2015,
[Online; accessed on 9th May 2017].

[27] Abadi, M.; Agarwal, A.; et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[28] Jones, E.; Oliphant, T.; et al. SciPy: Open source scientific tools for
Python. 2001–, [Online; accessed on 9th May 2017]. Available from: http:
//www.scipy.org/

[29] van der Walt, S.; Colbert, S. C.; et al. The NumPy Array: A Structure for
Efficient Numerical Computation. Computing in Science & Engineering,
volume 13, no. 2, 2011: pp. 22–30, doi:10.1109/MCSE.2011.37, http:
//aip.scitation.org/doi/pdf/10.1109/MCSE.2011.37. Available from:
http://aip.scitation.org/doi/abs/10.1109/MCSE.2011.37

[30] Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In
Science & Engineering, volume 9, no. 3, 2007: pp. 90–95, doi:10.1109/
MCSE.2007.55.

[31] Pedregosa, F.; Varoquaux, G.; et al. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, volume 12, no. Oct, 2011:
pp. 2825–2830.

[32] Bengio, Y. Practical recommendations for gradient-based training of deep
architectures. In Neural networks: Tricks of the trade, Springer, 2012, pp.
437–478.

59

http://www.python.org/
http://www.python.org/
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://hub.docker.com/r/gw000/keras-full/
https://github.com/fchollet/keras
http://www.scipy.org/
http://www.scipy.org/
http://aip.scitation.org/doi/pdf/10.1109/MCSE.2011.37
http://aip.scitation.org/doi/pdf/10.1109/MCSE.2011.37
http://aip.scitation.org/doi/abs/10.1109/MCSE.2011.37

Bibliography

[33] Srivastava, N.; Hinton, G.; et al. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine Learning
Research, volume 15, 2014: pp. 1929–1958. Available from: http:
//jmlr.org/papers/v15/srivastava14a.html

[34] Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[35] Cui, Z.; Chen, W.; et al. Multi-scale convolutional neural networks for
time series classification. arXiv preprint arXiv:1603.06995, 2016.

[36] Chen, Y.; Keogh, E.; et al. The UCR Time Series Classification Archive.
July 2015, www.cs.ucr.edu/˜eamonn/time_series_data/.

[37] Lichman, M. UCI Machine Learning Repository. 2013. Available from:
http://archive.ics.uci.edu/ml

[38] Ratanamahatana, C. A.; Keogh, E. Everything you know about dynamic
time warping is wrong. In Third Workshop on Mining Temporal and Se-
quential Data, Citeseer, 2004.

[39] Holland, J.; Kemsley, E.; et al. Use of Fourier transform infrared spectro-
scopy and partial least squares regression for the detection of adultera-
tion of strawberry purees. Journal of the Science of Food and Agriculture,
volume 76, no. 2, 1998: pp. 263–269.

[40] Kudo, M.; Toyama, J.; et al. Multidimensional curve classification using
passing-through regions. Pattern Recognition Letters, volume 20, no. 11,
1999: pp. 1103–1111.

60

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
www.cs.ucr.edu/~eamonn/time_series_data/
http://archive.ics.uci.edu/ml

Appendix A
Acronyms

ANN Artificial Neural Network

CNN Convolutional Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

LSTM Long Short-Term Memory Neural Network

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

61

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

impl..implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
DP Waller Jakub 2017.pdf............the thesis text in PDF format

63

	Citation of this thesis
	Introduction
	Artificial Neural Networks
	Feedforward Neural Networks
	Structure
	Neurone
	Learning

	Convolutional Neural Networks
	Structure

	Recurrent Neural Networks
	Structure
	Learning
	Vanishing Gradient Problem

	Long Short-Term Memory Neural Networks
	Hidden Unit
	Peephole Connections

	Implementation
	Technical Details
	Implementation Details

	Experiments
	Experimental Design
	Process of the Experiment
	Hyperparameters

	Benchmark Data Sets
	Time Series
	Classification
	Data Sets

	Comparison of Architectures
	Gun-Point
	Strawberry
	Japanese Vowels

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

